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Acoustic radiation force on a spherical thermoviscous particle in a thermoviscous
fluid including scattering and microstreaming
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We derive general analytical expressions for the time-averaged acoustic radiation force on a small spherical
particle suspended in a fluid and located in an axisymmetric incident acoustic wave. We treat the cases of the
particle being either an elastic solid or a fluid particle. The effects of particle vibrations, acoustic scattering,
acoustic microstreaming, heat conduction, and temperature-dependent fluid viscosity are all included in the
theory. Acoustic streaming inside the particle is also taken into account for the case of a fluid particle. No
restrictions are placed on the widths of the viscous and thermal boundary layers relative to the particle radius.
We compare the resulting acoustic radiation force with that obtained from previous theories in the literature, and
we identify limits, where the theories agree, and specific cases of particle and fluid materials, where qualitative
or significant quantitative deviations between the theories arise.
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I. INTRODUCTION

A particle suspended in a fluid and subjected to an acoustic
field experiences a steady time-averaged force due to the scat-
tering of the wave, the so-called acoustic radiation force F rad.
The analytical theory of F rad has a long history, going back
to King, who in 1934 studied an incompressible spherical
particle in an ideal (nonthermoviscous) fluid [1], followed by
Yosioka and Kawasima, who in 1955 included the compress-
ibility of the particle [2], a result reformulated in terms of the
acoustic potential by Gor’kov in 1962 [3]. An important ad-
vance of the analytical theory of F rad was made by Doinikov,
who in 1994 and 1997 replaced the ideal fluid with a viscous
and heat conducting fluid and studied a rigid heat conducting
solid particle and a viscous and heat conducting fluid particle
and took both acoustic scattering and streaming into account
[4–8]. More recently, further developments to the theory have
been made by Settnes and Bruus in 2012 [9] and by Karlsen
and Bruus in 2015 [10], who studied F rad for compressible
particles in viscous and thermoviscous fluids, respectively,
considering the acoustic scattering, but not the streaming, and
by Doinikov, Fankhauser, and Dual in 2021, who studied an
elastic solid particle in a viscoelastic fluid [11].

The increased interest in the theory of F rad in recent years
is due to experimental advances and technological applica-
tions in microscale acoustofluidics and acoustic tweezers.
In these technologies F rad is the primary working mecha-
nism used for focusing [12], sorting [13,14], trapping [15],
nanoscale separation [16], and levitating particles [17,18].
These advances have been supported by numerical simula-
tions [19,20]. The particular motivation for the present work is
a combination of the numerical study by Baasch, Pavlic, and
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Dual, who in 2019 emphasized the importance of the acoustic
streaming generated by the particle in a viscous fluid, the
so-called microstreaming, for heavy microparticles [21], and
the numerical and experimental study at DTU and Lund Uni-
versity of the importance of including temperature-dependent
parameters in acoustofluidic systems [22,23].

In this work, we develop an extension of the analyti-
cal model of the acoustic radiation force F rad presented by
Doinikov in 1994 and 1997 [4–8] for either a rigid or a fluid
spherical particle suspended in a thermoviscous fluid. Our
extension comprises the inclusion of (1) elastic instead of
rigid solid particles; (2) temperature- and density-dependent
material parameters, in particular the viscosity; (3) the tan-
gential part of the Stokes drift in the boundary condition of
the acoustic streaming on the particle surface; and (4) inner
streaming in a fluid particle.

The structure of the paper is the following. The governing
equations are presented in Sec. II followed by the solution to
the acoustic scattering and streaming problems in Secs. III and
IV, respectively. The general results for F rad are derived in
Sec. V, with specific limiting cases presented and compared to
the literature in Sec. VI. In Sec. VII, we study F rad versus par-
ticle size in a standing wave for eight selected combinations of
particle and fluid materials. Finally, we conclude in Sec. VIII
and present mathematical details in Appendices A–F. Some
supporting MATLAB scripts and lists of general analytical
expressions for selected coefficients are provided in the Sup-
plemental Material [24].

II. GOVERNING EQUATIONS

We consider a spherical particle, often called a “sphere”
for short, which can either be an isotropic elastic solid or a
Newtonian fluid, in a time-harmonically perturbed surround-
ing fluid medium. The harmonic acoustic perturbation has the
frequency f and corresponding angular frequency ω = 2π f ,
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and we use the following series expansions for all physical
fields that describe the particle and the surrounding fluid:

g(r, t ) = g0 + Re[g1(r) e−iωt ] + g2(r, t ). (1)

The zero-order fields g0 describe an initial unperturbed state
of a surrounding quiescent and homogeneous fluid and a
stationary particle. The complex-valued first-order fields g1

describe the first-order acoustic response, which follows the
actuation frequency f . The second-order fields g2 describe
a nonlinear response containing small second-order harmon-
ics and a steady time-averaged response. We only study the
latter in this work. All physical parameters q characterizing
the fluids and solids are temperature and density dependent.
The first-order time-harmonic response includes a first-order
density field ρ1 and a first-order temperature field T1, which
in turn perturb the material parameters. Thus, we expand all
parameters as

q(r, t ) = q0 + Re[q1(r) e−iωt ], (2a)

q1(r) =
(

∂q

∂T

)
T =T0

T1(r) +
(

∂q

∂ρ

)
ρ=ρ0

ρ1(r). (2b)

Our objective is to evaluate the radiation force F rad on
solid and fluid particles with a spherical equilibrium shape.
When perturbed acoustically, the particle acquires the time-
dependent volume �(t ) with surface ∂�(t ). F rad is the time
average, an operation denoted by angled brackets 〈 . . . 〉, of
the stress σ integrated over the vibrating surface ∂�(t ) with
normal vector n,

F rad =
〈 ∮

∂�(t )
σ · n dS

〉
. (3)

Assuming that the particle drifts very little during an acoustic
period, F rad can be written as [5,10]

F rad =
∮

∂�0

〈σ2 − ρ0v1v1〉 · n dS, (4)

where ∂�0 is the equilibrium surface of the particle.

A. Thermodynamic identities

For both fluids and solids, we introduce the isothermal
compressibility κT , the isentropic compressibility κs, the iso-
baric thermal expansion coefficients αp, the specific heat
capacity at constant pressure cp and at constant volume cV ,
the ratio of specific heats γ , the thermal conductivity kth, and
the thermal diffusivity Dth. These quantities are related by the
expressions

κT = γ κs (fluids and solids), (5a)

γ = cp

cV
= 1 + α2

pT

ρcpκs
(fluids and solids), (5b)

Dth = kth

ρcp
(fluids and solids), (5c)

where ρ and T is the mass density and the temperature field
in the respective media.

B. Thermoviscous fluids

First, we present the governing equations for a thermovis-
cous Newtonian fluid. The fluid is described by the internal
energy per mass ε, the temperature T , pressure p, density ρ,
and velocity field v. We introduce the fluid stress tensor σ,
which is expressed in terms of the pressure p, the fluid velocity
field v, the dynamic viscosity η, and the bulk viscosity ηb,

σ = η[∇v + (∇v)T] + [(
ηb − 2

3η
)
(∇ · v) − p

]
I. (6)

The governing equations for the fluids are the conservation of
mass, momentum, and energy, without external body forces
and heat sources [25–27],

∂tρ = ∇ · (−ρv), (7a)

∂t (ρv) = ∇ · (σ − ρvv), (7b)

∂t
(
ρε + 1

2ρv2) = ∇ · [v · σ + kth∇T − ρ
(
ε + 1

2v2)v].
(7c)

To close the system of equations, we supplement with the first
law of thermodynamics relating changes of the internal energy
per mass ε, the entropy per mass s, and the density ρ, and with
the equation of state relating changes in density, pressure, and
temperature,

dε = T ds − p d

(
1

ρ

)
= T ds + p

ρ2
dρ, (8a)

ds = cp

T
dT − αp

ρ
d p, (8b)

dρ = ρκT d p − ραp dT . (8c)

For fluids, the isentropic sound speed c is related to the isen-
tropic compressibility through the relation

c = (ρκs)−
1
2 (fluids). (9)

In summary, the fluid fields g and fluid parameters q that we
expand according to Eqs. (1) and (2), respectively, are

g = {T, ρ, p, v, σ, ε, s}, (10a)

q = {c, η, ηb, kth, κT , κs, cp, αp, γ , cV , Dth}. (10b)

1. First-order equations for fluids

With the expansions (1) and (2), and using v0 = 0, the first-
order terms of Eq. (7) become

−iωρ1 = −ρ0∇ · v1, (11a)

−iωρ0v1 = η0∇2v1+ (ηb
0 + 1

3η0)∇(∇ · v1) − ∇p1,

(11b)

−iω(ρ0ε1 + ρ1ε0) = −p0∇ · v1 + kth
0 ∇2T1 − ρ0ε0∇ · v1.

(11c)

Similarly, the first-order terms of Eq. (8) become

ε1 = T0s1 + p0

ρ2
0

ρ1, (12a)

ρ1 = ρ0κT 0 p1 − ρ0αp0T1, (12b)

s1 = cp0

T0
T1 − αp0

ρ0
p1. (12c)
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Inserting Eq. (12) into Eqs. (11a) and (11c), and eliminating
Eq. (11a) from Eq. (11c), yields

∇ · v1 = iωκT 0 p1 − iωαp0T1, (13a)

Dth
0 ∇2T1 = −iωT1 + iω

αp0T0

ρ0cp0
p1. (13b)

Equations (11b) and (13) determine the five components of
the fields v1, p1, and T1, and they are conveniently solved by
applying a Helmholtz decomposition of v1,

v1 = ∇φ1 + ∇ × ψ1. (14)

Inserting Eq. (14) into Eqs. (11b) and (13) leads to

−ω2φ1 =
(

1

ρ0κT 0
− iω

ηb
0 + 4

3η0

ρ0

)
∇2φ1 + iω

αp0

ρ0κT 0
T1,

(15a)

−iωT1 = γ0Dth
0 ∇2T1 − γ0 − 1

αp0
∇2φ1, (15b)

−iωψ1 = ν0∇2ψ1, with ν0 = η0/ρ0, (15c)

p1 = iωρ0φ1 +
(

ηb
0 + 4

3
η0

)
∇2φ1. (15d)

One can then combine Eqs. (15a) and (15b) to solve for φ1

and T1 while p1 is expressed in terms of φ1, and ψ1 is found
from Eq. (15c).

2. Second-order time-averaged equations for fluids

In second order, we study only the steady part of the
response obtained by time-averaging over an acoustic oscil-
lation cycle. The fluid viscosities are expanded as in Eq. (2),
so the second-order time-averaged terms of the stress tensor
Eq. (6) become

〈σ2〉 = η0[∇〈v2〉 + (∇〈v2〉)T] + (
ηb

0 − 2
3η0

)
(∇ · 〈v2〉) I

− 〈p2〉 I + 〈η1[∇v1 + (∇v1)T]

+ (
ηb

1 − 2
3η1

)
(∇ · v1) I〉. (16)

We introduce in Eq. (16) the kinematic viscosities ν0 = 1
ρ0

η0,

νb
0 = 1

ρ0
ηb

0, ν1 = 1
ρ0

η1, and νb
1 = 1

ρ0
ηb

1 so that the second-order
terms in Eqs. (7a) and (7b) become

∇ · 〈v2〉 = − 1

ρ0
∇ · 〈ρ1v1〉, (17a)

ν0∇2〈v2〉 +
(

νb
0 + 1

3
ν0

)
∇(∇ · 〈v2〉

) − 1

ρ0
∇〈p2〉

= −∇ ·
〈
ν1[∇v1 + (∇v1)T] +

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
+∇ · 〈v1v1〉. (17b)

These equations make no reference to the second-order tem-
perature field T2, so the energy conservation [Eq. (7c)] is not
needed in second order.

C. Thermoelastic solids

A thermoelastic linear isotropic solid is described as in
Refs. [10,28]. We introduce the mechanical displacement field

u(r0, t ) of a solid element from its equilibrium location r0,
the temperature field T , and the mass density ρ. The solid
stress tensor σ is expressed in terms of u and the temperature
T relative to the equilibrium value T0,

σ = −αp

κT
(T − T0)I + ρc2

tr[(∇u) + (∇u)T]

+ ρ
(
c2

lo − 2c2
tr

)
(∇ · u)I. (18)

Here we have introduced the longitudinal clo and transverse ctr

speed of sound in the solid, which are related to the isentropic
compressibility κT and the density as

1

ρκT
= c2

lo − 4

3
c2

tr (solids). (19)

We also introduce the adiabatic sound speed c in solids,

c2 = c2
lo + (γ − 1)

1

ρκT
(solids). (20)

The physical fields in solids are governed by the momentum
equation and the heat diffusion equation,

ρ∂2
t u = ∇ · σ, (21a)

∂t T + (γ − 1)

αp
∂t∇ · u = γ

ρcp
∇ · (kth∇T ). (21b)

We express the velocity field v in the solid from u by,

v = ∂t u (solids). (22)

The solid fields g and solid parameters q that we expand
according to Eqs. (1) and (2), respectively, are

g = {T, ρ, u, σ, v}, (23a)

q = {c, clo, ctr, kth, κT , κs, cp, αp, γ , cV , Dth}. (23b)

1. First-order equations in solids

Perturbation expansion of Eq. (21) gives the governing
first-order equations,

−ρ0ω
2u1 = ∇ · σ1, (24a)

−iω
γ0 − 1

αp0
∇ · u1 = γ0Dth

0 ∇2T1 + iωT1. (24b)

The quantity −iωu1 in the solid is the counterpart to the
first-order velocity v1 in the fluid. To solve the system of
equations (24), we use the Helmholtz decomposition

−iωu1 = ∇φ1 + ∇ × ψ1. (25)

Inserting Eq. (25) into Eq. (24) we derive

−ω2φ1 = c2
lo0∇2φ1 + iω

αp0

ρ0κT 0
T1, (26a)

−iωT1 = γ0Dth
0 ∇2T1 − γ0 − 1

αp0
∇2φ1, (26b)

−ω2ψ1 = c2
tr0∇2ψ1. (26c)

2. Second-order response in the solid

The second-order response in the solid is not needed, as the
time-averaged second-order velocity field is zero.
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FIG. 1. (a) The spherical particle with radius a and the referenced coordinate systems used in the calculation. (b) The incident pressure
wave, described by the potential φin

1c and the corresponding scattered response, described by φsc
1c, φsc

1t , ψ
sc
1 , φ′

1c, φ′
1t , and ψ′

1. (c) The second-order
time-averaged streaming rolls generated by the first-order wave scattering.

III. THE FIRST-ORDER PROBLEM

We consider a spherical particle with radius a centered in a
spherical coordinate system (r, θ, ϕ) as shown in Fig. 1(a). For
a solid particle, we must solve Eq. (26) for r < a and Eq. (15)
for r > a, whereas for a fluid particle, we must solve Eq. (15)
in both regions. Clearly, these two systems of equations have
the same structure, and following Karlsen and Bruus [10],
they can be treated in the same manner using unified potential
theory.

A. Unified potential theory for fluids and solids

To determine ψ1 in either a solid or a fluid, we must solve
Eqs. (15c) and (26c), which both can be written as

∇2ψ1 + k2
s ψ1 = 0, (fluids and solids). (27)

By defining the kinematic viscosity ν0 of a solid as

ν0 = i
c2

tr0

ω
, (solids), (28)

the square of the shear wave number ks in both fluids and
solids can be written as

k2
s = i

ω

ν0
, (fluids and solids). (29)

To determine φ1 and T1 we solve Eqs. (15a) and (15b) for
fluids and Eqs. (26a) and (26b) for solids. In both cases,
combining the pair of equations, a single equation for φ1 is
obtained,

αxl∇2∇2φ1 + βxlk
2
0∇2φ1 + k4

0φ1 = 0, k0 = ω

c0
. (30)

Here αxl and βxl for fluids (xl = fl) and solids (xl = sl) are
given by

αfl = −i(1 − iγ0�s)�t , βfl = 1 − i(�s + γ0�t ), (31a)

αsl = −i(1 + X )�t , βsl = 1 − iγ0�t , (31b)

�s =
(
ηb

0 + 4
3η0

)
ω

ρ0c2
0

, �t = Dth
0 ω

c2
0

, (31c)

X = (γ0 − 1)(1 − χ ), χ = 1

ρ0κs0c2
0

, (31d)

where we have introduced the viscous and thermal damping
factors, �s and �t , and the two parameters X and χ . The
biharmonic equation (30) is solved by factorization,(∇2 + k2

c

)(∇2 + k2
t

)
φ1 = 0, (32)

which, combined with (30), yields k2
c + k2

t = βxlk2
0/αxl and

k2
c k2

t = k4
0/αxl, and thus

k2
c = k2

0
1

2αxl

(
βxl −

√
β2

xl − 4αxl
)
, (33a)

k2
t = k2

0
1

2αxl

(
βxl +

√
β2

xl − 4αxl
)
. (33b)

The solution for φ1 is then split into two components,

φ1 = φ1c + φ1t , (34)

where

∇2φ1c + k2
c φ1c = 0, (35a)

∇2φ1t + k2
t φ1t = 0. (35b)

After solving for φ1, T1 can be determined in fluids and solids
from Eqs. (15a) and (26a),

T1 = iωρ0κT 0

αp0

(
φ1 + c2

0

ω2

1 − iγ0�s

γ0
∇2φ1

)
(fluids), (36a)

T1 = iωρ0κT 0

αp0

(
φ1 + c2

lo0

ω2
∇2φ1

)
(solids). (36b)

For the systems we are considering here, �s, �t � 1, and
expanding to first order in these parameters, we find the fol-
lowing wave numbers when using k0 = ω/c0,

kc = k0

[
1 + i

2
[�s + (γ0 − 1)�t ]

]
, (37a)

kt = 1 + i

δt

[
1 + i

2
(γ0 − 1)(�s − �t )

]
, (37b)

ks = 1 + i

δs
, for fluids, (37c)

and

kc = k0

[
1 + i

2
(γ0 − 1)χ�t

]
, (38a)
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kt = 1 + i

δt

1√
1 + X

[
1 − i

2
(γ0 − 1)χ�t

]
, (38b)

ks = ω

ctr0
, for solids. (38c)

Here we have introduced the thermal and viscous boundary
layer thicknesses δt and δs as

δt =
√

2Dth
0

ω
, δs =

√
2ν0

ω
. (39)

To lowest order in �s and �t , we also find that

T1 = bcφ1c + btφ1t , (fluids and solids), (40a)

bc = iω(γ0 − 1)

αp0c2
0

, bt = 1

χαp0Dth
0

, (40b)

where χ = 1 for fluids. Thus, the governing first-order equa-
tions are the same for fluids and solids, only differing by the
form of their wave numbers. In fluids, both kt and ks describe
strongly damped waves, whereas in solids ks describes a prop-
agating transverse wave.

B. Partial-wave expansions and scattering coefficients

Following Karlsen and Bruus [10], quantities inside the
particle (r < a) are denoted with a prime, whereas outside in
the surrounding fluid medium (r > a) they remain unprimed,
see Figs. 1(b) and 1(c). Moreover, a tilde denotes the ratio of a
parameter q′

0 inside a particle and q0 in the surrounding fluid
(in contrast to Doinikov, who uses the tilde to denote particle
parameters [4–8]),

q̃0 = q′
0

q0
. (41)

To determine the field solutions of the first-order problem, we
consider an axisymmetric incident wave in the surrounding
fluid medium, which is far enough away from solid bound-
aries, such that thermal and viscous modes from there are
vanishingly small. When the incident field interacts with the
particle, scattered fields are generated. Thus, we write φ1c

outside the particle as the sum of an incident field and a
scattered field, while the remaining potentials only contain a
scattered part,

φ1c =
{

φin
1c + φsc

1c, r > a,

φ′
1c, r < a,

(42a)

φ1t =
{
φsc

1t , r > a,

φ′
1t , r < a,

(42b)

ψ1 =
{
ψsc

1 , r > a,

ψ′
1, r < a.

(42c)

All potentials φin
1c, φsc

1c, φsc
1t , ψsc

1 , φ′
1c, φ′

1t , and ψ′
1 are solutions

to Helmholtz equations. Inside the particle for r < a, the so-
lutions are written in terms spherical Bessel functions jn(k′

i r)
and Legendre polynomials Pn(cos θ ) to avoid singularities at
r = 0. Outside the particle for r > a, the scattered fields are
written in terms of the decaying outgoing spherical Hankel
functions hn(kir).

1. In the surrounding fluid (unprimed), r > a

φin
1c =

∞∑
n=0

φin
1c,n(r)Pn(cos θ ),

with φin
1c,n(r) = An jn(kcr), (43a)

φsc
1c =

∞∑
n=0

φsc
1c,n(r)Pn(cos θ ),

with φsc
1c,n(r) = Anα

sc
c,nhn(kcr), (43b)

φsc
1t =

∞∑
n=0

φsc
1t,n(r)Pn(cos θ ),

with φsc
1t,n(r) = Anα

sc
t,nhn(kt r), (43c)

ψsc
1 = eϕ

∞∑
n=1

ψ sc
1,n(r)∂θPn(cos θ ),

with ψ sc
1,n(r) = Anα

sc
s,nhn(ksr). (43d)

2. Inside the particle (primed), r < a

φ′
1c =

∞∑
n=0

φ′
1c,n(r)Pn(cos θ ),

with φ′
1c,n(r) = Anα

′
c,n jn(k′

cr), (44a)

φ′
1t =

∞∑
n=0

φ′
1t,n(r)Pn(cos θ ),

with φ′
1t,n(r) = Anα

′
t,n jn(k′

t r), (44b)

ψ′
1 = eϕ

∞∑
n=1

ψ ′
1,n(r)∂θPn(cos θ ),

with ψ ′
1,n(r) = Anα

′
s,n jn(k′

sr). (44c)

Here the wave coefficients An defines the incident wave, and
the scattering coefficients αsc

c,n, αsc
t,n, αsc

s,n, α′
c,n, α′

t,n, and α′
s,n

are determined from the boundary conditions (continuous
stress, velocity, temperature, and heat flux) at the particle-
fluid interface r = a. A compact notation αi,n, with index i =
0, 1, 2, 3, 4, 5, 6 = 0, c, t, s, c′, t ′, s′ and mode number n =
0, 1, 2, . . ., is introduced for the six scattering coefficients, and
when we include unity for the incoming wave for each mode
n, we obtain

{αi,n}i=0,1,...,6 = {
1, αsc

c,n, α
sc
t,n, α

sc
s,n, α

′
c,n, α

′
t,n, α

′
s,n

}
,

with i = 0, 1, 2, 3, 4, 5, 6 = 0, c, t, s, c′, t ′, s′. (45)

When imposing the boundary conditions at the particle sur-
face, it is convenient to express the first-order pressure in
terms of the potentials,

p1 = iωρ0(φ1c + φ1t ) − (
ηb

0 + 4
3η0

)(
k2

c φ1c + k2
t φ1t

)
. (46)

The velocity in a solid is given by v1 = −iωu1, and using
the definition (28) of solid viscosity, we express the first-order
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stress σ1 for both fluids and solids as

σ1 = η0
[(

2k2
c − k2

s

)
φ1c + (

2k2
t − k2

s

)
φ1t

]
I + η0[∇v1 + (∇v1)T], (fluids and solids). (47)

Last, from Eqs. (43) and (44) and the definition v1 = ∇φ1c + ∇φ1t + ∇ × ψsc
1 for both the unprimed and primed first-order

velocity, we have the following expressions:

v1r =
∞∑

n=0

vn
1r (r)Pn(cos θ ),

with vn
1r (r) = An

1

a

[
xc j′n(kcr) + αsc

c,nxch′
n(kcr) + αsc

t,nxt h
′
n(kt r) − αsc

s,na
n(n + 1)

r
hn(ksr)

]
, (48a)

v1θ =
∞∑

n=1

vn
1θ (r)∂θPn(cos θ ),

with vn
1θ (r) = An

1

a

[
a

r
jn(kcr) + αsc

c,n

a

r
hn(kcr) + αsc

t,n

a

r
hn(kt r) − αsc

s,n

(
xsh

′
n(ksr) + a

r
hn(ksr)

)]
, (48b)

v′
1r =

∞∑
n=0

vn′
1r (r)Pn(cos θ ),

with vn′
1r (r) = An

1

a

[
α′

c,nx′
c j′n(k′

cr) + α′
t,nx′

t j′n(k′
t r) − α′

s,na
n(n + 1)

r
jn(k′

sr)

]
, (48c)

v′
1θ =

∞∑
n=1

vn′
1θ (r)∂θPn(cos θ ),

with vn′
1θ (r) = An

1

a

[
α′

c,n

a

r
jn(k′

cr) + α′
t,n

a

r
jn(k′

t r) − α′
s,n

(
x′

s j′n(k′
sr) + a

r
jn(k′

sr)

)]
, (48d)

where primed spherical Bessel and Hankel functions refer to differentiation with respect to the argument and where we have
introduced the normalized wave numbers,

xc = kca, xt = kt a, xs = ksa, for r > a, (49a)

x′
c = k′

ca, x′
t = k′

t a, x′
s = k′

sa, for r < a. (49b)

The boundary conditions on the particle surface are continuity of velocity, stress, temperature, and heat flux. For a fluid
particle, the Young-Laplace pressure psurf due to the surface tension γsurf is explicitly added as a discontinuity in the normal-stress
boundary condition,

v1r = v′
1r, v1θ = v′

1θ , (50a)

T1 = T ′
1 , kth

0 ∂rT1 = kth′
0 ∂rT ′

1 , (50b)

σ1θr = σ ′
1θr, σ1rr = σ ′

1rr + psurf , (50c)

psurf = − iγsurf

a2ω

(
∂2
θ v′

1r + ∂θv
′
1r cot θ + 2v′

1r

)∣∣
r=a. (50d)

Here Eq. (50d) for psurf is valid for an axisymetrically perturbed spherical surface [8,29]. Substituting Eq. (48c) into Eq. (50d),
and using ∂2

θ Pn(cos θ ) + ∂θPn(cos θ ) cot θ + 2Pn(cos θ ) = −(n − 1)(n + 2)Pn(cos θ ), yields

psurf =
∞∑

n=0

i
γsurf

a2ω
(n − 1)(n + 2)vn′

1r (a)Pn(cos θ ). (51)

For each value of n, the final expressions of the boundary conditions from (50) are

v1r = v′
1r

αsc
c,nxch′

n(xc) + αsc
t,nxt h

′
n(xt ) − αsc

s,nn(n + 1)hn(xs) − α′
c,nx′

c j′n(x′
c) − α′

t,nx′
t j′n(x′

t ) + α′
s,nn(n + 1) jn(x′

s) = −xc j′n(xc), (52a)

v1θ = v′
1θ

αsc
c,nhn(xc) + αsc

t,nhn(xt ) − αsc
s,n[xsh

′
n(xs) + hn(xs)] − α′

c,n jn(x′
c) − α′

t,n jn(x′
t ) + α′

s,n[x′
s j′n(x′

s) + jn(x′
s)] = − jn(xc), (52b)

T1 = T ′
1

αsc
c,nbchn(xc) + αsc

t,nbt hn(xt ) − α′
c,nb′

c jn(x′
c) − α′

t,nb′
t jn(x′

t ) = −bc jn(xc), (52c)
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kth
0 ∂rT1 = kth′

0 ∂rT ′
1

αsc
c,nkth

0 bcxch′
n(xc) + αsc

t,nkth
0 bt xt h

′
n(xt ) − α′

c,nkth′
0 b′

cx′
c j′n(x′

c) − α′
t,nkth′

0 b′
t x

′
t j′n(x′

t ) = −kth
0 bcxc j′n(xc), (52d)

σ1θr = σ ′
1θr

αsc
c,n2η0[xch′

n(xc) − hn(xc)] + αsc
t,n2η0[xt h

′
n(xt ) − hn(xt )] − αsc

s,nη0
[
x2

s h′′
n (xs) + (n2 + n − 2)hn(xs)

]
−α′

c,n2η′
0[x′

c j′n(x′
c) − jn(x′

c)] − α′
t,n2η′

0[x′
t j′n(x′

t ) − jn(x′
t )] + α′

s,nη
′
0

[
x′2

s j′′n (x′
s) + (n2 + n − 2) jn(x′

s)
]

= −2η0[xc j′n(xc) − jn(xc)], (52e)

σ1rr = σ ′
1rr + psurf

αsc
c,nη0

[(
2x2

c − x2
s

)
hn(xc) + 2x2

c h′′
n (xc)

] + αsc
t,nη0

[(
2x2

t − x2
s

)
hn(xt ) + 2x2

t h′′
n (xt )

]
−αsc

s,nη02n(n + 1)[xsh
′
n(xs) − hn(xs)] − α′

c,nη
′
0

[(
2x′2

c − x′2
s

)
jn(x′

c) + 2x′2
c j′′n (x′

c) + (n − 1)(n + 2)
iγsurf

aωη′
0

x′
c j′n(x′

c)

]

−α′
t,nη

′
0

[(
2x′2

t − x′2
s

)
jn(x′

t ) + 2x′2
t j′′n (x′

t ) + (n − 1)(n + 2)
iγsurf

aωη′
0

x′
t j′n(x′

t )
] + α′

s,nη
′
0

[
2n(n + 1)[x′

s j′n(x′
s) − jn(x′

s)]

+ (n − 1)n(n + 1)(n + 2)
iγsurf

aωη′
0

jn(x′
s)

]
= −η0

[(
2x2

c − x2
s

)
jn(xc) + 2x2

c j′′n (xc)
]
. (52f)

We notice that the terms with n = 1, describing trans-
lation of the sphere, are unaffected by the surface tension
terms, and that for a solid particle, we have γsurf = 0. The
expressions (52) show that the scattering coefficients {αi,n},
i = 1, 2, . . . , 6, for each mode n can be found by solving the
following 6 × 6 matrix equation,

6∑
i=1

Mki,nαi,n = Nk,n, k = 1, 2, . . . , 6, mode n, (53a)

where the 36 matrix elements (Mn)ik for a given mode n can
be read off from Eq. (52), as can the six vector components
(Nn)k on the right-hand side,

Nn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−xc j′n(xc)

− jn(xc)

−bc jn(xc)

−kth
0 bcxc j′n(xc)

−2η0[xc j′n(xc) − jn(xc)]

−η0
[(

2x2
c − x2

s

)
jn(xc) + 2x2

c j′′n (xc)
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (53b)

Note that Eqs. (52b) and (52e) are void for mode n = 0,
leading to a 4 × 4 matrix system in this case of the monopole
coefficients. For a given mode n, the scattering coefficients
can be found by Cramer’s rule,

αi,n = ∣∣Mn

∣∣−1 ∣∣M (i)
n

∣∣, i = 1, 2, . . . , 6, (53c)

where | . . . | indicates the determinant, and M (i)
n is the matrix

Mn with its ith column replaced by Nn.
We consider the long-wavelength limit, where the incident

wavelength λ = c0/ f is much longer than the particle radius
and the boundary layer thicknesses, λ 	 a, δt , δ

′
t , δs, δ

′
s for

fluids and λ, δ′
s 	 a, δt , δ

′
t , δs for solids. No restrictions are

put on the particle radius relative to the boundary-layer
thicknesses. The long-wavelength limit is characterized by
the small parameter x0, in which we develop leading-order

expressions,

x0 = k0a = 2π
a

λ
� 1. (54)

It is assumed that all fluids and solids have speeds of
sounds—and therefore wavelengths—of roughly the same
order of magnitude, leading to

|xc|2, |x′
c|2 ∼ x2

0 . (55)
For the case of either a solid or a fluid particle, the following
general scalings hold,

�s, �t ,
|bc|
|bt | ,

|b′
c|

|bt | ∼ x2
0 . (56)

Last, due to the definition of solid viscosity (28) and the
difference in solid and fluid shear wave numbers ks, one has
the following different scalings for the case of a solid sphere
and a fluid sphere, respectively:

|x′
s|2, |η̃0|−1 ∼ x2

0 � |xs|2, |xt |2, |x′
t |2, (solids), (57a)

x2
0 � |xs|2, |x′

s|2, |xt |2, |x′
t |2, (fluids). (57b)

We expand the determinants in (53c) to lowest order in x0,
while respecting the scalings in Eqs. (55), (56), and (57), in
order to find explicit expressions for the scattering coefficients
in the long-wavelength limit. We performed this laborious
procedure with the algebraic tool Maple [30]. For a solid, we
only need the unprimed scattering coefficients to calculate the
radiation force, whereas for a fluid, we also need the primed
ones. Only scattering coefficients for n = 0, 1, 2 turn out to
give significant contributions to the final force expressions.
The scattering coefficients for a solid and for a fluid particle
are given in Appendices B and C, respectively. We find that
the expressions for αsc

c,0 and αsc
c,1 in solids are identical to those

given by Karlsen and Bruus [10], whereas αsc
c,0 for a fluid

differs for a nonzero surface tension, γsurf �= 0.
It is remarkable that in this problem, the quadrupole (n =

2) scattering coefficients contribute to leading order together
with the monopole (n = 0) and dipole (n = 1) scattering coef-
ficients that normally are the dominant terms [1–3,9,10]. We
comment further on the quadrupole terms in Sec. V C.
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IV. THE SECOND-ORDER PROBLEM

We now turn to the solution of the second-order equa-
tions (17) for the pressure 〈p2〉 and streaming 〈v2〉. We largely
follow the method used by Doinikov [4,5].

A. The general solution

First, we split the fields into incident and scattered fields
(superscript “in” and “sc,” respectively) outside the particle,
and inside a fluid particle they are described by the transmitted
(superscript “prime”) fields,

〈v2〉 =
{〈

vin
2

〉 + 〈
vsc

2

〉
, r > a,〈

v′
2

〉
, r < a,

(58a)

〈p2〉 =
{〈

pin
2

〉 + 〈
psc

2

〉
, r > a,〈

p′
2

〉
, r < a.

(58b)

Here the second-order incident field 〈vin
2 〉 is calculated from

the governing equations (17) using the given first-order po-
tential φin

1c in Eq. (43a) describing the incident first-order
wave. Solutions for 〈vin

2 〉 in the case of standing plane waves,
traveling plane waves, and diverging spherical waves are given
by Doinikov in Refs. [4,31]. Below, we show how to solve for
the scattered fields “sc” outside the particle, and note without
showing it that the transmitted fields “prime” inside the par-
ticle are solved identically. We do, however, write explicitly
when differences in the two solutions occur.

Second, we express 〈vsc
2 〉 and the right-hand side of the

Navier-Stokes equation (17b) by Helmholtz decompositions,

〈
vsc

2

〉 = ∇φsc
2 + ∇ × ψsc

2 , (59a)

∇ · 〈v1v1 − ν1[∇v1 + (∇v1)T] − (
νb

1 − 2
3ν1

)
(∇ · v1)I

〉
nii = ν0(∇Q + ∇ × q). (59b)

The subscript “nii” (read as “no-incident-incident”) indicates that all terms containing products of two incident first-order fields
are discarded. The source terms Q and q are found from the first-order fields v1, ν1, and νb

1 , and subsequently we determine the
potential fields φsc

2 and ψsc
2 . We express the terms in Eq. (59b) by partial-wave expansions,

Q = 1

a2

∞∑
n=0

Qn(r̂)Pn(cos θ ), (60a)

q = eϕ

1

a2

∞∑
n=1

qn(r̂)∂θPn(cos θ ), (60b)

∇ ·
〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

= er
ν0

a3

∞∑
n=0

(2n + 1)χrn(r̂)Pn(cos θ ) − eθ

ν0

a3

∞∑
n=1

(2n + 1)χθn(r̂)∂θPn(cos θ ), (60c)

χrn(r̂) = a3

2ν0

∫ π

0
dθ Pn(cos θ ) sin θ er ·

{
∇ ·

〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

}
, (60d)

χθn(r̂) = −a3

2n(n + 1)ν0

∫ π

0
dθ [∂θPn(cos θ )] sin θ eθ ·

{
∇ ·

〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

}
, (60e)

where we have introduced the nondimensional radial coor-
dinate r̂ = r/a. Combining Eqs. (59b) and (60), we find the
following equations for Qn and qn:

r̂∂r̂Qn(r̂) − n(n + 1)qn(r̂) = (2n + 1)r̂χrn(r̂), (61a)

−Qn(r̂) + r̂∂r̂qn(r̂) + qn(r̂) = (2n + 1)r̂χθn(r̂). (61b)

By differentiating (61b) and using (61a), we obtain an equa-
tion for qn,[

∂2
r̂ + 2

r̂
∂r̂ − n(n + 1)

r̂2

]
qn(r̂)

= 2n + 1

r̂
[χθn(r̂) + r̂∂r̂χθn(r̂) + χrn(r̂)]. (62)

The homogeneous solution to this equation is

qhom
n (r̂) = c3nr̂−(n+1) + c4nr̂n. (63)

A particular solution is found from the Green’s function
Gn(ξ, r̂) that solves the inhomogeneous equation,

[
∂2

r̂ + 2

r̂
∂r̂ − n(n + 1)

r̂2

]
Gn(ξ, r̂) = δ(r̂ − ξ ). (64)

From standard methods, we determine Gn(ξ, r̂) to be

Gn(ξ, r̂) =
{− 1

2n+1ξ−(n−1)r̂n, r̂ < ξ,

− 1
2n+1ξ n+2r̂−(n+1), r̂ > ξ.

(65)

By combining the expressions (63) and (65) for qhom
n (r̂)

and Gn(ξ, r̂), we determine qn(r̂), and subsequently, Qn(r̂)
is found directly from Eq. (61b). After using integration
by parts on the term containing ∂r̂χθn(r̂), the two solutions
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become

qn(r̂) = −r̂−(n+1)

{∫ r̂

1
ξ n+1[χrn(ξ ) − (n + 1)χθn(ξ )] dξ − c3n

n

}
+ r̂n

{∫ r̂

1
ξ−n[χrn(ξ ) + nχθn(ξ )] dξ − c4n

n + 1

}
, (66a)

Qn(r̂) = r̂−(n+1)

{
n
∫ r̂

1
ξ n+1[χrn(ξ ) − (n + 1)χθn(ξ )] dξ − c3n

}
+ r̂n

{
(n + 1)

∫ r̂

1
ξ−n[χrn(ξ ) + nχθn(ξ )] dξ − c4n

}
. (66c)

Substituting unprimed fields and parameters outside the particle, by primed fields and parameters, the same equations are obeyed
inside the particle for q′

n and Q′
n. The integration constants c3n, c4n, c′

3n, and c′
4n are determined later by the boundary conditions

at r̂ → 0, r̂ = 1, and r̂ → ∞.
Substituting Eqs. (59a) and (59b) into (17) yields

∇2φsc
2 = − 1

ρ0
∇ · 〈ρ1v1〉nii, (67a)

∇2ψsc
2 = q, (67b)

1

ρ0

〈
psc

2

〉 = −ν0Q −
(

νb
0 + 4

3
ν0

)
1

ρ0
∇ · 〈ρ1v1〉nii. (67c)

To determine φsc
2 and ψsc

2 , we insert the partial-wave expansions

φsc
2 =

∞∑
n=0

φsc
2,n(r̂)Pn(cos θ ), (68a)

ψsc
2 = eϕ

∞∑
n=1

ψ sc
2,n(r̂)∂θPn(cos θ ), (68b)

1

ρ0
∇ · 〈ρ1v1〉nii =

∞∑
n=0

2n + 1

a2
μn(r̂)Pn(cos θ ), (68c)

μn(r̂) = a2

2ρ0

∫ π

0
∇ · 〈ρ1v1〉niiPn(cos θ ) sin θ dθ, (68d)

into Eq. (67) and obtain

[
∂2

r̂ + 2

r̂
∂r̂ − n(n + 1)

r̂2

]
φsc

2,n(r̂) = −(2n + 1)μn(r̂), (69a)

[
∂2

r̂ + 2

r̂
∂r̂ − n(n + 1)

r̂2

]
ψ sc

2,n(r̂) = qn(r̂). (69b)

The left-hand sides contain the same differential operator as in Eq. (62), so using the same Green’s function Gn (65) as before,
we obtain the solution for φsc

2,n and ψ sc
2,n,

φsc
2,n(r̂) = r̂−(n+1)

[ ∫ r̂

1
ξ n+2μn(ξ ) dξ − c1n

]
− r̂n

[ ∫ r̂

1
ξ−(n−1)μn(ξ ) dξ − c2n

]
, (70a)

ψ sc
2,n(r̂) = − r̂−(n+1)

2(2n + 3)

{∫ r̂

1
ξ n+3[χrn(ξ ) − (n + 3)χθn(ξ )] dξ − c6n

}

− r̂n

2(2n − 1)

{∫ r̂

1
ξ−n+2[χrn(ξ ) + (n − 2)χθn(ξ )] dξ − c5n

}

+ r̂−(n−1)

2(2n − 1)

{∫ r̂

1
ξ n+1[χrn(ξ ) − (n + 1)χθn(ξ )] dξ − c3n

n

}

+ r̂n+2

2(2n + 3)

{∫ r̂

1
ξ−n[χrn(ξ ) + nχθn(ξ )] dξ − c4n

n + 1

}
. (70b)
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The same equations are obeyed by the transmitted poten-
tials φ′

2,n and ψ ′
2,n with primed integration constants c′

in. We
determine the constants {c′

1n, c′
3n, c′

6n} and {c2n, c4n, c5n} by in-
sisting that 〈v′

2〉 does not diverge for r̂ → 0, and that 〈vsc
2 〉 →

0 for r̂ → ∞,

c′
1n = −

∫ 1

0
ξ n+2μ′

n(ξ ) dξ, (71a)

c2n =
∫ ∞

1
ξ−(n−1)μn(ξ ) dξ, (71b)

c′
3n = −n

∫ 1

0
ξ n+1[χ ′

rn(ξ ) − (n + 1)χ ′
θn(ξ )] dξ, (71c)

c4n = (n + 1)
∫ ∞

1
ξ−n[χrn(ξ ) + nχθn(ξ )] dξ, (71d)

c5n =
∫ ∞

1
ξ−(n−2)[χrn(ξ ) + (n − 2)χθn(ξ )] dξ, (71e)

c′
6n = −

∫ 1

0
ξ n+3[χ ′

rn(ξ ) − (n + 3)χ ′
θn(ξ )] dξ, (71f)

c′
5n = c6n = 0. (71g)

The two constants c′
5n and c6n are set to zero because c′

5n

leads to the same kind of terms in 〈v′
2〉 as those containing

c′
2n, and similarly for c6n with respect to c1n in 〈vsc

2 〉. The re-
maining four coefficients c1n, c′

2n, c3n, and c′
4n are discussed in

Secs. IV B and IV C when applying the second-order bound-
ary conditions at r̂ = 1.

B. Fluid-solid boundary conditions

For the case of a solid particle, we have no second-order
time-averaged motion inside the sphere. Therefore, we only
need to determine the two last unprimed constants c1n and c3n.
This is done through the no-slip boundary condition to second
order at r̂ = 1, including the Stokes-drift terms [32],〈

vsc
2

〉 = −〈
vin

2

〉 − 〈(s1 · ∇)v1〉, s1 = i

ω
v1. (72)

This boundary condition is different from the one used by
Doinikov, who replaced 〈(s1 · ∇)v1〉 with 〈s1r∂rv1〉 [4,5].
While this is equivalent for the case of a rigid sphere, it is
generally not true for the case of a compressible sphere. We
make another expansion on the right-hand side of Eq. (72),
where all terms are evaluated at r̂ = 1,

〈
vin

2

〉 + 〈
(s1 · ∇)v1

〉 = er
1

a

∞∑
n=0

(2n + 1)asl
n Pn(cos θ ) − eθ

1

a

∞∑
n=1

(2n + 1)bsl
n ∂θPn(cos θ ), (73a)

asl
n = a

2

∫ π

0
er · [〈vin

2

〉 + 〈(s1 · ∇)v1〉
]
Pn(cos θ ) sin θ dθ, (73b)

bsl
n = − a

2n(n + 1)

∫ π

0
eθ · [〈vin

2

〉 + 〈(s1 · ∇)v1〉
]
∂θPn(cos θ ) sin θ dθ. (73c)

Using that

〈
vsc

2

〉 = er

∞∑
n=0

1

a

[
∂r̂φ

sc
2,n(r̂) − n(n + 1)

r̂
ψ sc

2,n(r̂)

]
Pn(cos θ ) + eθ

∞∑
n=1

1

a

[
1

r̂
φsc

2,n(r̂) − 1

r̂
ψ sc

2,n(r̂) − ∂r̂ψ
sc
2,n(r̂)

]
∂θPn(cos θ ), (74)

and inserting the explicit forms (70) for φsc
2,n and ψ sc

2,n at r̂ = 1, we find two equations for the remaining constants,

n(n + 1)

[
c3n

2n(2n − 1)
+ c4n

2(n + 1)(2n + 3)
− c5n

2(2n − 1)

]
+ (n + 1)c1n + nc2n = −(2n + 1)asl

n , (75a)

−c1n + c2n + (2 − n)c3n

2n(2n − 1)
+ (n + 3)c4n

2(n + 1)(2n + 3)
− (n + 1)c5n

2(2n − 1)
= (2n + 1)bsl

n . (75b)

As we show in Sec. V, only c31 is needed to evaluate the
acoustic radiation force F rad, so we refrain from determining
c3n for n �= 1 and c1n. From (75), we obtain

c31 = −3

2
asl

1 + 3bsl
1 − 3

2
c21 − 1

4
c41 + 3

2
c51. (76)

C. Fluid-fluid boundary conditions

For a fluid particle, the second-order time-averaged equa-
tions of motion are solved both inside and outside the particle.
For the boundary conditions, we follow the method used in
Ref. [33]. In this case, we assume that the tangential motion
and the tangential stress over the momentary boundary of the
particle are continuous. Meanwhile, the structural integrity of
the particle-fluid interface is assumed to be upheld by surface

tension, such that no time-averaged flow can happen across
the momentary boundary, which has no perpendicular motion
to second order. The boundary conditions at r̂ = 1 for a fluid
particle can then be formulated as

〈
vsc

2r

〉 = −〈
vin

2r

〉 − 〈
(s1 · ∇)v1

〉 · er, (77a)〈
v′

2r

〉 = −〈(s1 · ∇)v′
1〉 · er, (77b)〈

vsc
2θ

〉 − 〈
v′

2θ

〉 = −〈
vin

2θ

〉 − 〈(s1 · ∇)(v1 − v′
1)〉 · eθ , (77c)〈

σ sc
2θr

〉 − 〈
σ ′

2θr

〉 = −〈
σ in

2θr

〉 − 〈(s1 · ∇)[(σ1 − σ ′
1) · er]〉 · eθ .

(77d)
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The time-averaged stress component 〈σ2θr〉 for the full wave
outside the particle is given by

〈
σ2θr

〉 = η0

a

(
1

r̂
∂θ 〈v2r〉 − 1

r̂
〈v2θ 〉 + ∂r̂〈v2θ 〉

)

+ 1

a

〈
η1

(
1

r̂
∂θv1r − 1

r̂
v1θ + ∂r̂v1θ

)〉
. (78)

The same expression is obeyed by the stress component 〈σ ′
2θr〉

with primed fields for the transmitted wave inside the particle.
Similarly to Sec. IV B, we expand the second-order incident
fields and the products of first-order fields into partial-wave
expansions and insert into Eqs. (77) and (78) the explicit
expressions (74) for the second-order scattered and primed
fields. At r̂ = 1 we then obtain the following four expansion
coefficients:

afl
n = a

2

∫ π

0
er ·

[〈
vin

2

〉 + 〈(s1 · ∇)v1〉
]
Pn(cos θ ) sin θ dθ, (79a)

afl′
n = a

2

∫ π

0
er · 〈(s1 · ∇)v′

1〉Pn(cos θ ) sin θ dθ, (79b)

bfl
n = −a

2n(n + 1)

∫ π

0
eθ ·

[〈
vin

2

〉 + 〈(s1 · ∇)(v1 − v′
1)〉

]
∂θPn(cos θ ) sin θ dθ, (79c)

dfl
n = −a

2n(n + 1)η0

∫ π

0

{
η0
(
∂r̂
〈
vin

2θ

〉 + ∂θ

〈
vin

2r

〉 − 〈
vin

2θ

〉) + a〈(s1 · ∇)[(σ1 − σ ′
1) · er]〉 · eθ

+〈η1(∂θv1r + ∂r̂v1θ − v1θ )〉 − 〈η′
1(∂θv

′
1r + ∂r̂v

′
1θ − v′

1θ )〉
}

∂θPn(cos θ ) sin θ dθ. (79d)

The resulting four equation for the determination of the unknown constants c1n, c′
2n, c3n, and c′

4n, become

−(2n + 1)afl
n = (n + 1)c1n + nc2n + n(n + 1)

[
c3n

2n(2n − 1)
+ c4n

2(n + 1)(2n + 3)
− c5n

2(2n − 1)

]
, (80a)

−(2n + 1)afl′
n = (n + 1)c′

1n + nc′
2n + n(n + 1)

[
c′

3n

2n(2n − 1)
+ c′

4n

2(n + 1)(2n + 3)
− c′

6n

2(2n + 3)

]
, (80b)

(2n + 1)bfl
n = −(c1n − c′

1n) + (c2n − c′
2n) − (n − 2)(c3n − c′

3n)

2n(2n − 1)
+ (n + 3)(c4n − c′

4n)

2(n + 1)(2n + 3)
− (n + 1)c5n

2(2n − 1)
− nc′

6n

2(2n + 3)
, (80c)

(2n + 1)dfl
n = 2(n + 2)(c1n − η̃0c′

1n) + 2(n − 1)(c2n − η̃0c′
2n) + n2 − 1

n(2n − 1)
(c3n − η̃0c′

3n)

+ n(n + 2)(c4n − η̃0c′
4n)

(n + 1)(2n + 3)
− (n2 − 1)c5n

2n − 1
+ η̃0n(n + 2)c′

6

2n + 3
. (80d)

As for the solid particle in Sec. IV B, we only need c31 to evaluate the acoustic radiation force on a fluid particle,

c31 = − 3

2
afl

1 + 3bfl
1 − 3

2
c21 − 1

4
c41 + 3

2
c51 + 1

1 + η̃0

[(
− 3afl′

1 − 5c′
11 − 1

2
c′

31 + 1

2
c′

61

)
η̃0

− 3

2
afl

1 − 3bfl
1 − dfl

1 + 1

2
c21 + 1

4
c41 − 1

2
c51

]
. (81)

V. THE ACOUSTIC RADIATION FORCE

With the axisymmetric solutions of the first-order acoustic fields in Sec. III and the second-order steady fields in Sec. IV at
hand, we can now evaluate the radiation force F rad from Eq. (4). We note that only terms containing scattered fields contribute
to F rad, such that

F rad =
∮

∂�0

(〈
σsc

2

〉 − ρ0〈v1v1〉nii
) · n dS

= ρ0

∮
∂�0

dS

{[
2ν0∂r

〈
vsc

2r

〉 + (
νb

0 − 2

3
ν0

)
∇ · 〈vsc

2

〉 − 1

ρ0

〈
psc

2

〉]
er + ν0

[
∂r
〈
vsc

2θ

〉 − 1

r

〈
vsc

2θ

〉 + 1

r
∂θ

〈
vsc

2r

〉]
eθ

−
〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

· er

}
. (82)
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Using dS = a2 sin θ dθ dϕ and writing the spherical unit vectors in terms of their Cartesian components, only a contribution
along the direction of wave propagation ez will remain after integrating over the azimuthal angle ϕ. In Eq. (82) the terms
containing 〈vsc

2 〉 and 〈psc
2 〉 can be substantially simplified as follows. We first express ∇ · 〈vsc

2 〉 = ∇2φsc
2 and 〈psc

2 〉 by the right-
hand sides of Eq. (67a) and Eq. (67c), respectively. Then we insert the expressions (74), (60a), and (68c) for 〈vsc

2 〉, Q, and
1
ρ0

〈ρ1v1〉nii, respectively. Using the Legendre orthogonal relations [Eq. (A1)], the θ integrals are carried out, leaving only partial-
wave contributions with n = 1. A further simplification is obtained by grouping the terms with φsc

2,1 and ψ sc
2,1, respectively, and

noting that the left-hand sides of Eq. (69) appear with r̂ = 1, and thus they can be substituted by the much simpler right-hand
sides. In the final expression, only Q1(1) and q1(1) appear, with values given by Eq. (66) for n = 1 and r̂ = 1. The resulting
simplified expression for F rad Eq. (82) becomes

F rad = −4πρ0ν0c31 ez − ρ0

∮
∂�0

dS

〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

· er . (83)

Inspection of the constant c31, which is given by Eqs. (76) and (81) for a solid and fluid particle, respectively, reveals two types
of contributions: terms containing the steady 〈vin

2 〉 and terms containing time-averaged products of the first-order acoustic fields.
Consequently, it is convenient to split F rad into two contributions: F rad

11 containing the time-averaged first-order products and
F rad

2,in containing the streaming velocity 〈vin
2 〉 of the incident wave,

F rad = F rad
11 + F rad

2,in. (84)

The final step in the calculation is the evaluation of F rad
11 and F rad

2,in. This is a particularly tedious part of the calculation that is
best treated for solid and fluid particles separately in the ensuing two subsections.

A. Solid particle

For a solid particle, we evaluate expression (83) for F rad by inserting c31 from Eq. (76), which can be expressed explicitly in
terms of the time-averaged products of first-order acoustic fields known from Sec. III B and terms including the known field 〈vin

2 〉
discussed after Eq. (58). To do this, we insert the explicit expressions (73b) and (73c) for asl

1 and bsl
1 , as well as the relations (71)

for c21, c41, and c51 with μ1(ξ ), χr1(ξ ), and χθ1(ξ ) from Eqs. (68d), (60d), and (60e), respectively. We notice that 〈vin
2 〉 appears

only in some terms of asl
1 and bsl

1 , and these are thus grouped and manipulated to obtain F rad
2,in for a solid particle as

F rad
2,in = ez

3η0

2a

∮
∂�0

dS
〈
vin

2z

〉
. (85)

This corresponds to the Stokes drag on the particle generated by the steady streaming of the incident wave.
Next we compute F rad

11 , which contains the remainder of the terms, all involving time-averaged products of first-order acoustic
fields. It is convenient to rewrite the two terms arising from c41 and c51, Eqs. (71d) and (71e) with n = 1, as detailed in
Appendix D,

− ez4πρ0ν0

(
3

2
c51 − 1

4
c41

)

= ρ0

∮
∂�0

dS

〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

· er

− ez3πρ0a2
∫ ∞

1
dξ

∫ π

0
dθ sin θ (1 − ξ−2) er ·

〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

· ez

− ez3πρ0a3
∫ ∞

1
dξ

∫ π

0
dθ sin2 θ

1

2
(ξ − ξ−1)

{
∇ ·

〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

}
· eθ . (86)

We note that the term with the surface integral “
∮
∂�0

” also appears in Eq. (83), but with opposite sign, and it thus cancels out.

After similarly manipulating asl
1 , bsl

1 , and c21, F rad
11 becomes

F rad
11 = −ez3πρ0

{
− a2ν0

ρ0

∫ ∞

1
dξ

∫ π

0
dθ cos θ sin θ∇ · 1

2
Re[ρ1v

∗
1]nii + a2

∫ ∞

1
dξ

∫ π

0
dθ sin θ (1 − ξ−2)

× 1

2
Re

[
er ·

(
v1v

∗
1 − ν1[∇v1 + (∇v1)T]∗ −

[
νb

1 − 2

3
ν1

]
(∇ · v∗

1 )I
)

· ez + 1

2
aξ

{
∇ ·

(
v1v

∗
1 − ν1[∇v1 + (∇v1)T]∗

−
[
νb

1 − 2

3
ν1

]
(∇ · v∗

1 )I
)}

· eθ sin θ

]
nii

+
∫ π

0
dθ

sin θ

2
Re

[
a3

x2
s

(
v1r∂rv

∗
1r + 1

r
v1θ ∂θv

∗
1r − 1

r
v1θv

∗
1θ

)
cos θ

− a3

x2
s

(
v1r∂rv

∗
1θ + 1

r
v1θ ∂θv

∗
1θ − 1

r
v1rv

∗
1θ

)
sin θ

]
r̂=1

}
. (87)
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At this point, we need explicit relations for ρ1, ν1, and νb
1 .

Combining Eqs. (11a), (14), and (35) leads to ρ1,

ρ1 = − ρ0

ν0x2
s

(
x2

cφ1c + x2
t φ1t

)
. (88a)

This is used alongside T1 from Eq. (40) in the first-order
expansions for η1 and ηb

1 [see Eq. (2b)] to reach

ν1 = x2
c

x2
s

Bcφ1c + x2
t

x2
s

Btφ1t , (88b)

νb
1 = x2

c

x2
s

Bb
cφ1c + x2

t

x2
s

Bb
t φ1t . (88c)

Here we have introduced Bc, Bt , Bb
c , and Bb

t that to lowest order
in x0 become

Bc =
[

1 − γ0

αp0η0

(
∂η

∂T

)
T0

− ρ0

η0

(
∂η

∂ρ

)
ρ0

]
, (89a)

Bt =
[

1

αp0η0

(
∂η

∂T

)
T0

− ρ0

η0

(
∂η

∂ρ

)
ρ0

]
, (89b)

Bb
c =

[
1 − γ0

αp0η0

(
∂ηb

∂T

)
T0

− ρ0

η0

(
∂ηb

∂ρ

)
ρ0

]
, (89c)

Bb
t =

[
1

αp0η0

(
∂ηb

∂T

)
T0

− ρ0

η0

(
∂ηb

∂ρ

)
ρ0

]
. (89d)

Now we insert Eq. (88) into (87) with φ1c, φ1t , and v1 from
Eqs. (43) and (48) to reach an explicit relation for F rad

11 that
can be evaluated analytically. The result is a double sum over
mode indices n and m, where all terms contain quadratic com-
binations of scattering coefficients αi,n, but only the unprimed
ones {αi,n}i=0,1,2,3 = {1, αsc

c,n, α
sc
t,n, α

sc
s,n}. After evaluating the

integrals over θ , see Eq. (A1), and switching dummy indices
(e.g., [n − 1] → n) as well as complex conjugation (e.g.,
Re[vn∗

1r v
n+1
1r ] = Re[vn

1rv
n+1∗
1r ]), one obtains a single sum where

all terms contain AnA∗
n+1αi,nα

∗
k,n+1, as detailed in the Supple-

mental Material [24]. The resulting form of F rad
11 is

F rad
11 = −3πρ0

∞∑
n=0

n + 1

(2n + 1)(2n + 3)
Re(AnA∗

n+1Dn) ez,

(90a)

Dn =
3∑

i,k=0

Sik,nαi,nα
∗
k,n+1, (90b)

where we have introduced the force coefficient Dn and the
16 second-order coefficients Sik,n for i, k = 0, 1, 2, 3 for each
mode n. The explicit expressions for Sik,n are determined
by grouping all terms with specific quadratic combinations
αi,nα

∗
k,n+1 of the first-order scattering coefficients αi,n. We

have made extensive use of the algebraic tool Maple [30] to
derive Sik,n analytically, as listed in Sec. S3 A of the Supple-
mental Material [24]. This ends the analysis of F rad for a solid
particle, and we now proceed to the case of a fluid particle.

B. Fluid particle

For a fluid particle, we use the same computational method
as for a solid particle. We insert expression (81) for c31 into
Eq. (83) for F rad. We subsequently substitute the explicit
expressions (79) for afl

n , afl′
n , bfl

n, and dfl
n , as well as the relations

(71) for c′
11, c21, c′

31, c41, c51, and c′
61 with μ1(ξ ), χr1(ξ ),

and χθ1(ξ ) from Eqs. (68d), (60d), and (60e), respectively,
and with μ′

1(ξ ), χ ′
r1(ξ ), and χ ′

θ1(ξ ) also from Eqs. (68d),
(60d), and (60e) but with all unprimed fields and parameters
substituted by primed quantities. Each term is then evaluated
separately, and their contributions to the force are summed.
The resulting expression for F rad

11 for a fluid particle has the
same form as for a solid particle, however, now with 49
second-order coefficients Sik,n with i, k = 0, 1, 2, . . . , 6 for
each mode n, because, in contrast to a solid particle, the three
transmitted scattering coefficients α′

c,n, α′
t,n, and α′

s,n are also
included,

F rad
11 = −3πρ0

∞∑
n=0

n + 1

(2n + 1)(2n + 3)
Re(AnA∗

n+1Dn) ez, (91a)

Dn =
6∑

i,k=0

Sik,nαi,nα
∗
k,n+1. (91b)

General expressions for the 49 second-order coefficients Sik,n for a fluid are given in Sec. S3 B of the Supplemental Material
[24].

The contribution to F rad from the second-order incident field 〈vin
2 〉 in Eq. (81) is found in analogy with the solid-particle case

Eq. (85),

F rad
2,in = ez

{
3η0

2a

∮
∂�0

dS
〈
vin

2z

〉 + πη0a

1 + η̃0

∫ π

0
dθ sin θ

[
3
(〈
vin

2r

〉
cos θ + 〈

vin
2θ

〉
sin θ

) + (
∂r̂
〈
vin

2θ

〉 + ∂θ

〈
vin

2r

〉 − 〈
vin

2θ

〉)
sin θ

]
r̂=1

}
. (92)
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C. Frad in the long-wavelength limit x0 � 1

To leading order in the dimensionless wave number (54) x0 = k0a, only D0 and D1 contribute to F rad
11 for both solid and fluid

particles,

F rad
11 = −πρ0Re

(
A0A∗

1D0 + 2

5
A1A∗

2D1

)
ez, (93a)

D0 =
N∑

i,k=0

Sik,0αi,0α
∗
k,1 ∝ x3

0, (93b)

D1 =
N∑

i,k=0

Sik,1αi,1α
∗
k,2 ∝ x3

0, for x0 � 1 with N = 3 (6) for solids (fluids), (93c)

where the leading-order x3
0 of D0 and D1 is shown. The

terms contributing to this leading order are given in Appen-
dices B (solids) and C (fluids) for αi,n and in Appendices E
(solids) and F (fluids) for Sik,0 and Sik,1. We note that both
the second-order coefficients Sik,n and the scattering coeffi-
cients αi,n depend on x0. The obtained scaling D0, D1 ∝ x3

0
can therefore be obtained not only from the compressional
(index c) monopole and dipole scattering coefficients αc,0

and αc,1, respectively, that traditionally dominate [1–3,9,10]
but also from the compressional (index c) quadrupole scat-
tering coefficients αc,2. Three examples of leading-order
terms are (1) monopole-incident-wave scattering (part of D0),
Sc0,0αc,0α

∗
0,1 ∝ x0

0x3
0x0

0 = x3
0, (2) dipole-incident-wave scatter-

ing (part of D1), Sc0,1αc,1α
∗
0,2 ∝ x0

0x3
0x0

0 = x3
0, and (3) dipole-

quadrupole scattering (part of D1), Scc,1αc,1α
∗
c,2 ∝ x−5

0 x3
0x5

0 =
x3

0. Example (3) appears only because microstreaming is taken
into account. As mentioned, all leading-order terms are given
explicitly in the Appendices, and we emphasize that all vis-
cous (index s) and thermal (index t) contributions of the
form Sik,nαi,nα

∗
k,n+1 with i = s, t and/or k = s, t are due to

microstreaming.
The result in Eq. (93) can be expressed in terms of pin

1
and vin

1 and brought to the familiar form used in the literature
[3,9,10]. In the long-wavelength limit, �s and �t are negli-
gible compared to unity, so kc ≈ k0 in Eq. (37a). From the
properties of jn(kcr) and Pn(cos θ ), we derive the following
from Eq. (43a):

φin
1c∇φin *

1c

∣∣
r̂=0 = 1

3
k0A0A∗

1 ez, (94a)

(∇φin
1c · ∇)∇φin *

1c

∣∣
r̂=0 =

(
2A1A∗

2k3
0

45
− A1A∗

0k3
0

9

)
ez. (94b)

We use vin
1 = ∇φin

1c and pin
1 ≈ iωρ0φ

in
1c from Eq. (46) and

combine Eq. (94) with Eq. (93) to derive

F rad
11 = −πa3

{
2κs0

3
Re

[
9(D0 + D∗

1 )

2x3
0

pin
1 ∇pin *

1

]

− ρ0Re

[
−9D1

x3
0

(vin
1 · ∇)vin *

1

]}
r̂=0

. (95)

F rad
11 is equal to F rad derived by Settnes and Bruus [9] and by

Karlsen and Bruus [10] when substituting their monopole and

dipole coefficients f0 and f1 with

f0 → 9(D0 + D∗
1 )

2x3
0

, f1 → −9D1

x3
0

. (96)

For a solid particle, the long-wavelength limit of F rad
2,in is found

from Eq. (85) by noting that 〈vin
2z〉 does not vary much across

the particle surface, thus

F rad
2,in ≈ 6πη0a

〈
vin

2z

〉∣∣
r=0 ez. (97)

For a fluid particle, the long-wavelength limit of F rad
2,in is

found from Eq. (92) by first noting that |∂r̂〈vin
2θ 〉| ∼ | a

λ
〈vin

2θ 〉|,
which is neglected compared to the remaining terms in
Eq. (92), and then by making the approximation〈

vin
2

〉
r̂=1 ≈ 〈

vin
2z

〉
r̂=0(cos θ er − sin θ eθ ). (98)

Finally, the components 〈vin
2 〉r̂=1 are inserted in Eq. (92), and

we arrive at

F rad
2,in ≈ 2π

2 + 3η̃0

1 + η̃0
η0
〈
vin

2z

〉∣∣
r=0 ez, (99)

which is the well-known result for the drag force on a droplet
in a constant Stokes flow [34].

We conclude that in the long-wavelength limit, F rad exerted
on a suspended particle by an arbitrary axisymmetric incident
wave defined by φin

1c is given by

F rad = F rad
11 + F rad

2,in,

Solid particle: F rad
11 from Eq. (95), F rad

2,in from Eq. (97),

D0 from Eq. (93b), D1 from Eq. (93c),
αi,n from Appendix B, and Sik,n from Appendix E,

Fluid particle: F rad
11 from Eq. (95), F rad

2,in from Eq. (99),

D0 from Eq. (93b), D1 from Eq. (93c),
αi,n from Appendix C, and Sik,n from Appendix F.

(100)

These closed-form analytical expressions for F rad acting on
a spherical solid particle and on a spherical fluid particle in
the long-wavelength limit constitute the primary result of this
work. MATLAB scripts for computing D0 and D1 in the long-
wavelength limit are included in Sec. S1 in the Supplemental
Material [24].
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VI. D0 AND D1 IN THE LIMITS OF VERY THIN
AND VERY THICK BOUNDARY LAYERS

The force coefficients D0 and D1 are complicated func-
tions of the physical parameters of the system. To facilitate
direct comparison of the expression (100) for F rad with the
results in the literature by Gor’kov [3], Doinikov [6–8], and
Karlsen and Bruus [10], we derive some limiting cases for
D0 and D1. Specifically, we consider the weakly dissipative
limit where thermal and viscous boundary-layer thicknesses
δt and δs are much smaller than the particle radius a, that is
δt , δs � a, and the opposite strongly dissipative limit, where
δt , δs 	 a.

A. Limiting cases for solid particles

The weakly dissipative limit for a solid particle in a ther-
moviscous fluid in the long-wavelength limit is characterized
by δs, δt , δ

′
t � a � λ. By keeping terms up to first order in

δ/a in D0 and D1 from Eq. (100), we derive

D0 = 2i

3

(
α

sc,wd
c,0 + α

sc,wd *
c,1

)
, (101a)

D1 = 2i

3
α

sc,wd
c,1 , (101b)

α
sc,wd
c,0 = − ix3

c

3

[
1 − κ̃s0

− 3

2

(1 + i)(γ0 − 1)
(
1 − α̃p0

ρ̃0 c̃p0

)2

1 + (1 + X ′)1/2
(
D̃th

0

)1/2(
k̃th

0

)−1

δt

a

]
, (101c)

α
sc,wd
c,1 = ix3

c

3

ρ̃0 − 1

2ρ̃0 + 1

[
1 + 3(1 + i)

ρ̃0 − 1

2ρ̃0 + 1

δs

a

]
. (101d)

When inserting Eq. (101) into Eq. (96) and noting that xc ≈
x0, we obtain the same monopole and dipole coefficients f0

and f1 as derived by Karlsen and Bruus [10] in their Eqs. (66)
and (71). The only minor discrepancy is that Karlsen and
Bruus have (1 − X ′)1/2 instead of (1 + X ′)1/2 in the denomi-
nator of the thermal correction to α

sc,wd
c,0 . This sign difference,

which is insignificant since X ′ � 1 for most solids, is due to
a simple sign error by Karlsen and Bruus in their expressions
(48b) for the thermal wave number.

In Ref. [7], Doinikov computed D0 and D1 for a rigid solid
particle in his Eqs. (21) and (22). Our result (101) reduces
exactly to his, when we model a rigid sphere without thermal
and mechanical expansion by setting α′

p0 = 0, c′
tr0/c0 → ∞,

and c′
lo0/c0 → ∞,

D0 = 2ρ̃0x3
0

3(2ρ̃0 + 1)

[
1 + (1 − i)(ρ̃0 − 1)2

ρ̃0(2ρ̃0 + 1)

δs

a

− (1 + i)(γ0 − 1)(2ρ̃0 + 1)

2ρ0
[
1 + (

δt k̃th
0

)−1
δ′

t

] δt

a

]
, (102a)

D1 = −2(ρ̃0 − 1)x3
0

9(2ρ̃0 + 1)

[
1 + 3(1 + i)

ρ̃0 − 1

2ρ̃0 + 1

δs

a

]
. (102b)

It should be noted that Doinikov in his 1997 work [6] de-
fined the coefficients Zn, which have an opposite sign to the
corresponding Dn coefficients defined in his own 1994 work
[4,5] and in our present work. We also note that Doinikov in
his 1997 work [6] moved the contributions to the F rad

11 from
what would correspond to his S00,n coefficients into F rad

2,in,
because they only result from the incident wave. However,
these coefficients do not contribute to the weakly dissipative
limit.

Last, we note that expressions (101) reduce to the results
for F rad obtained by Settness and Bruus for nonthermal vis-
cous fluids [9] by letting δt/a → 0 and by Gor’kov for ideal
fluids [3] by letting δs/a → 0 and δt/a → 0.

We now pass to the strongly dissipative limit of large
boundary layers characterized by a � δs, δt , δ

′
t � λ. The

dominant terms in D0 and D1 for δs/a, δt/a, δ′
t/a → ∞ are

simple and purely imaginary,

D0 = D1 = − i

6
x3

0
δ2

s

a2
. (103)

However, we see from expression (95) for F rad
11 that using

Eq. (103) leads to D0 + D∗
1 = 0 in the first term, and if further-

more (vin
1 · ∇)vin∗

1 is real to leading order (e.g., for standing
waves), also the second term is zero. Consequently, we need
to include the dominant real terms in D0 and D1,

D0 = x3
0

[
− i

6

δ2
s

a2
− 2(ρ̃0 − 1)

27
(3Bc + 2)

]

+ x3
0

2(ρ̃0 + 2)

27
[
1 − 4

3
c′2

tr0

c2
0

γ0−1
1+X ′

α̃2
p0χ

′

c̃p0

]

×
{

1 − κ̃s0 + (γ0 − 1)ρ̃0

1 + X ′ α̃p0χ
′

×
[

1

ρ̃0

(
1 − α̃p0

ρ̃0c̃p0

)
+ 4c′2

tr0κ̃s0

3c2
0

(
1 − α̃p0

ρ̃0c̃p0κ̃s0

)]}
,

(104a)

D1 = x3
0

[
− i

6

δ2
s

a2
+ 2(ρ̃0 − 1)

27

]
. (104b)

In the strongly dissipative limit, the included temperature
and density dependency of the fluid viscosity enters through
Bc defined in Eq. (89a). We note that |Bc| � 1 causes large
changes to F rad

11 if simultaneously the density contrast ρ̃0

between the particle and the surrounding fluid deviates suf-
ficiently from unity.

In general, the expressions (96) for f0 and f1 in the strongly
dissipative limit differ from the results derived by Karlsen
and Bruus, Eqs. (65) and (73) in Ref. [10], which signals
the importance of the inclusion of acoustic microstreaming
in the calculation of F rad on small particles. We note that the
difference is most dramatic when ρ̃0 differs significantly from
unity.
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For a rigid particle, D0 and D1 in Eq. (104), are reduced
by applying the same assumptions as used in connection with
Eq. (102),

D0 = −2x3
0

9

[
3i

4

δ2
s

a2
+ Bc(ρ̃0 − 1) + ρ̃0 − 4

3

]
, (105a)

D1 = −2x3
0

9

[
3i

4

δ2
s

a2
− ρ̃0 − 1

3

]
. (105b)

We compare these expressions to the result by Doinikov,
Eqs. (25) and (26) in Ref. [7] taken to leading order in δ/a.
First, we set Bc = 0, because Doinikov does not treat the
temperature and density dependency of the viscosity η, and
then we obtain identical real parts. Second, as discussed after
Eq. (102), Doinikov has defined F rad

11 and F rad
2,in by a different

grouping of terms in Ref. [6] than we have. When moving
the terms in Doinikov’s work (S90 = S91 = 1

9 x3
0x−2

s defined in
the Appendix of Ref. [5]) corresponding to our second-order
coefficients S00,0 and S00,1 from F rad

2,in back to F rad
11 , we obtain

the same imaginary parts as well. We note that Doinikov’s
coefficients S90 and S91 differ from our S00,0 and S00,1 given
in Appendix E, because in the second-order no-slip boundary
conditions (72) used in our analysis, Doinikov replaced the
full Stokes term 〈(s1 · ∇)v1〉 by the radial part 〈s1r∂rv1〉. How-
ever, for the special case of a rigid sphere, these two versions
of the boundary condition lead to the same final expression for
F rad.

B. Limiting cases for fluid particles

For a thermoviscous fluid particle of radius a in a thermo-
viscous fluid, the weakly dissipative limit is characterized by

δs, δt , δ
′
s, δ

′
t � a � λ. The general expressions for D0 and D1

in Eq. (100) then reduce to

D0 = 2x3
0

9

[
1 − κ̃s0 − 3

2

(1 + i)(γ0 − 1)

1 + (
D̃th

0

)1/2(
k̃th

0

)−1

×
(

1 − α̃p0

ρ̃0c̃p0

)2(
1 − ρ̃0

(1 + η̃0)(2ρ̃0 + 1)

)
δt

a

+ ρ̃0 − 1

2ρ̃0 + 1
+ 3(1 − i)(ρ̃0 − 1)2

(2ρ̃0 + 1)2
(
1 + ν̃

1/2
0 η̃−1

0

) δs

a

]
, (106a)

D1 = −2x3
0

9

[
ρ̃0 − 1

2ρ̃0 + 1
+ 3(1 + i)(ρ̃0 − 1)2

(2ρ̃0 + 1)2
(
1 + ν̃

1/2
0 η̃−1

0

)
×

(
1 − (3 + i)(2ρ̃0 + 1)

4(3ρ̃0 + 2)(1 + η̃0)

)
δs

a

]
. (106b)

Using Eq. (96), we compare the result (106) to Eqs. (33) and
(34) in Ref. [8] by Doinikov and to Eqs. (60) and (69) in
Ref. [10] by Karlsen and Bruus. We find that all three results
agree, except that the factors [1 − ρ̃0

(1+η̃0 )(2ρ̃0+1) ] in D0 and [1 −
(3+i)(2ρ̃0+1)

4(3ρ̃0+2)(1+η̃0 ) ] in D1 in Eq. (106) are replaced by unity in the
two other theories. This difference between the present theory
and the previous work arises due to our inclusion of acoustic
microstreaming inside the fluid particle, and we notice that the
difference vanishes for very viscous droplets where η̃0 	 1.
To obtain the comparison with Doinikov’s result, we keep
only the linear terms in Eqs. (35) and (36) in Ref. [8], and
then we apply δ′

t/δt = (D̃th
0 )1/2 and δ′

s/δs = (ν̃0)1/2 alongside
the relation from Eq. (5b). Again, we note that the expressions
converge to the ideal fluid result for vanishing boundary lay-
ers.

Passing on to the large boundary-layer limit characterized
by a � δs, δt , δ

′
s, δ

′
t � λ, we reduce the force coefficients D0

and D1 in Eq. (100) to

D0 = 2x3
0

9(1 + η̃0)

{
− i

δ2
s

a2

2 + 3η̃0

4
− 2

3
(ρ̃0 − 1)(1 + η̃0) + [1 − κ̃s0 + (γ0 − 1)α̃p0K̃]

×
[
−i

δ2
s

a2
+ (1 + η̃0)(3η̃0ρ̃0 + 6η̃0 − 2ρ̃0 + 8)

3(3η̃0 + 2)

]
+ (ρ̃0 − 1)η̃0

3η̃0 + 2

[
−κ̃s0B′

c − Bc

η̃0
(3η̃2

0 + 4η̃0 + 2) + B′
t (γ0 − 1)α̃p0K̃

]

− 2(γ0 − 1)K̃

15Dth′
0 ν−1

0

[
α̃p0(η̃0 − 1) + 5k̃th

0 (1 − α̃p0)
]}

,

for
2γsurf

3a
κ ′

s0 � 1 and K̃ = 1 − α̃p0

ρ̃0c̃p0
, (107a)

D1 = − i

18
x3

0
δ2

s

a2

η̃0
[
114η̃2

0 + 457η̃0 + 305 − i 40γsurf

aωη0
(7 + 3η̃0)

]
(1 + η̃0)

[
38η̃2

0 + 89η̃0 + 48 − i 40γsurf

aωη0
(1 + η̃0)

] . (107b)

As in Eq. (104) for a solid particle, expressions (107) for D0

and D1 for a fluid particle differ significantly from what was
found by Karlsen and Bruus [10] [Eqs. (62) and (73)], who
neglected microstreaming, which tends to dominate the ther-
moviscous corrections for large boundary layers. Moreover,

result (107) also differs from what was found by Doinikov in
1997 [8] [Eqs. (45) and (46)], where external microstreaming
was included. This discrepancy is caused by our inclusion of
microstreaming inside the droplet (〈v′

2〉 �= 0), the temperature
and density dependency of the viscosities [Bc, B′

c, B′
t �= 0 in
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TABLE I. Parameters at T0 = 300 K for all fluids and solids used in the examples in Figs. 2 and 3. Parameters are given for water [35–38],
oil [39,40], air [41,42], copper [41,43], and polystyrene [10]. We have given the parameters necessary to compute the scattering coefficients
αi,n and the second-order coefficients Sik,n found in the Appendices. Note that κs0, κT 0, and γ0 can be found from Eqs. (5) and (9) for a fluid
and that clo0, κs0, κT 0, and γ0 can be found from Eqs. (5), (19), and (20) for a solid. We could only find data for ( ∂η

∂ρ
)ρ0

for water, so the quantity
is set to zero for all other fluids.

Parameter Water Oil Air Copper Polystyrene Unit

c0 1502 1445 347.4 5010 2400 m s−1

ctr0 – – – 2270 1150 m s−1

ρ0 996.6 922.6 1.161 8930 1050 kg m−3

αp0 2.75 × 10−4 7.05 × 10−4 3.35 × 10−3 1.65 × 10−5 2.09 × 10−4 K−1

cp0 4181 2058.4 1007 385 1220 J kg−1 K−1

kth
0 6.10 × 10−1 0.166 2.64 × 10−2 401 0.154 W m−1 K−1

γ0 − 1, Eq. (5b) 0.012 0.15 0.40 0.004 0.04 –
η0 8.54 × 10−4 5.74 × 10−2 1.85 × 10−5 – – Pa s
ηb

0 2.4 × 10−3 8.513 × 10−2 1.1 × 10−5 – – Pa s
1
η0

( ∂η

∂T )T0
−0.022 −0.044 0.0025 – – K−1

1
η0

( ∂η

∂ρ
)ρ0

−2.3 × 10−4 – – – – m3 kg−1

Eq. (89)], and the tangential component of the displacement
s1 (〈s1θ

1
r ∂θv1〉 �= 0) in the Stokes terms in Eqs. (72) and (77).

Agreement is obtained when turning off inner microstreaming
(〈v′

2〉 = 0) and making the viscosities constant (Bc, B′
c, B′

t =
0) in our model Eq. (100) and by adding the tangential com-
ponent 〈s1θ

1
r ∂θv1〉 to the Stokes term in Doinikov’s boundary

conditions. We note that the effects of inner microstream-
ing on F rad can almost be removed by simply taking the
limit η̃0 → ∞; however, in expression (107a) for D0, a term

− 4x3
0 (γ0−1)

135Dth′
0 ν−1

0
α̃p0(1 − α̃p0

ρ̃0 c̃p0
) remains, which is independent of η̃0

but which is nevertheless induced by the inner microstreaming
through the second-order Stokes terms of the inner streaming
in Eq. (77) and the compressional term c′

11 in Eq. (71a).

VII. RESULTS FOR A STANDING PLANE WAVE

To illustrate some of the implications of our theory,
we consider the important case of a weakly damped, one-
dimensional, standing incident pressure wave pin

1 (z) along the
z axis having the complex wave number kc, amplitude pa, and
phase shift kcd ,

pin
1 (z) = pa cos[kc(z + d )], (108a)

vin
1 (z) = −i

1

ωρ0
∇pin

1 = i
kc pa

ωρ0
sin[kc(z + d )] ez. (108b)

Inserting pin
1 and vin

1 in Eq. (100), we obtain F rad on a spherical
particle of radius a to leading order x3

0 = k3
0a3,

F rad = 4π�aca3k0Eac sin(2k0d ) ez, (109a)

Eac = 1
4κs0 p2

a, (109b)

�ac = 3
2 x−3

0 Re(D0 − 2D1), (109c)

where we have introduced the usual acoustic energy density
Eac and acoustic contrast factor �ac [1,2,9,10]. A main feature
is that �ac > 0 signifies particle migration towards pressure
nodes, whereas �ac < 0 directs particles towards antinodes.
We note that the incident field (108) leads to the following

steady incident streaming 〈vin
2 〉 [5]:

〈
vin

2

〉 = i|pakc|2
8ρ2

0ω3
{(kc − k∗

c ) sin[(kc + k∗
c )(z + d )]

− (kc + k∗
c ) sin[(kc − k∗

c )(z + d )]} ez. (110)

Using this to compute F rad
2,in by Eq. (97) or (99) leads to

contributions of order x5
0 or higher, which can be neglected

compared to F rad
11 . In the following we study the contrast factor

�ac defined in Eq. (109c) as a function of particle radius a
from 0.05 to 30 μm at a frequency of either 1 kHz or 1 MHz
for selected fluid and solid particles in liquids or gasses.

A. The contrast factor for solid particles

We study the following four examples of solid micro-
spheres in fluids: (a) Polystyrene in water, (b) polystyrene
in oil, (c) polystyrene in air, and (d) copper in oil, with the
material parameters listed in Table I. Case (a) is chosen as
it is studied extensively both experimentally and theoretically
in the acoustofluidic literature [15,44–46]. Case (b) is chosen
for the increased density ratio ρ̃0 and thermal factor γ0 − 1 of
an organic liquid (oil) compared to water. Case (c) is chosen
for its relevance to aerosol studies [47]. Case (d) is the one
selected and studied numerically by Baasch, Pavlic, and Dual
for its pronounced thermoviscous response [21]. In Fig. 2 we
plot �ac versus δs/a computed from Eq. (109c) (thick dark
blue line “Winckelmann”) for these four cases and compare
with the results for �ac obtained by Doinikov [7] (thick light
red line “Doinikov”), Karlsen and Bruus [10] (thin magenta
line “Karlsen”), Settnes and Bruus [9] (black dotted line
“Settnes”), and Gor’kov [3] (green dashed line “Gor’kov”).
For the following discussion of the role of the thermoviscous
effects in this figure, we refer to the selected parameter val-
ues listed in Table II. The elastic solid-particle result can be
compared directly with Doinikov’s rigid solid-particle result
[7] for the low compressibility cases (c) of a polystyrene
sphere in air, κ̃s0 = 3 × 10−5, and (d) of a copper sphere in
oil, κ̃s0 = 10−2. However, for the cases with a polystyrene
sphere in (a) water, κ̃s0 = 0.53, and (b) oil, κ̃s0 = 0.46, it is
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FIG. 2. The acoustic contrast factor �ac plotted versus normalized boundary-layer width δs/a. Green dashed lines are the ideal-fluid theory
following Gor’kov [3]. Black dotted lines are from Settnes and Bruus [9], thin magenta lines are from Karlsen and Bruus [10], thick light red
lines are from Doinikov 1997 [7], and thick dark blue lines are the present theory by Winckelmann and Bruus. (a) A polystyrene sphere in
water at frequency f = 1 MHz. (b) A polystyrene sphere in oil at f = 1 MHz. (c) A polystyrene sphere in air at f = 1 kHz. The inset shows
the large-particle behavior. (d) A copper sphere in oil at f = 1 MHz.

a poor approximation. Thus, to obtain a more illuminating
comparison in (a) and (b), we add the compressibilty term
−x3

0
2
9 κ̃s0 to the D0 coefficient (named −Z0 in Ref. [7]), which

makes Doinikov’s results converge to the ideal-fluid result by
Gor’kov in the limit of vanishing boundary layers.

For large particles, a 	 δs, we see that the four boundary-
layer theories converge towards the ideal-fluid result by
Gor’kov for all cases. For a small particle, a � δs, signifi-
cant thermoviscous corrections to the ideal-fluid theory arise.
We observe that the corrections found by each theory are

TABLE II. Parameters for the four combinations of solid parti-
cles in fluids discussed in Sec. VII A and shown in Fig. 2 for the
cases (a) polystyrene in water, (b) polystyrene in oil, (c) polystyrene
in air, and (d) copper in oil.

Case Ref. (a) (b) (c) (d)

ρ̃0 − 1 Eq. (41) 0.05 0.14 903 8.7
κ̃s0 Eq. (41) 0.53 0.46 3 × 10−5 0.01
Bc Eq. (89a) 1.2 9.5 −0.30 9.5
γ0 − 1 Eq. (5b) 0.012 0.15 0.40 0.15

most pronounced for a large relative density contrast ρ̃0 − 1.
Case (a) of polystyrene in water with ρ̃0 − 1 = 0.05 shown
in Fig. 2(a) illustrates this point, as we see less dramatic
corrections from the ideal-fluid theory compared to the three
other solid-fluid combinations, only a modest 30% decrease
for the smallest 50-nm-radius particles. It is clearly seen
from cases (b)–(d) with ρ̃0 − 1 = 0.14, 903, and 8.7 that
the microstreaming included by Doinikov and Winckelmann
becomes dominant for small particles, in agreement with
the recent numerical study by Pavlic et al. [48]. The results
by Doinikov and Winckelmann exhibit the same qualitative
behavior, but significant quantitative discrepancies between
the two microstreaming models develop when the tempera-
ture dependency of the viscosity, included by Winckelmann
through the fluid parameter Bc, is large. This discrepancy is
particularly large in cases (b) and (d) both having Bc = 9.5,
but less prominent for cases (a) and (c) with Bc = 1.2 and
−0.30, respectively.

We add the following specific comments to Figs. 2(b)–2(d):
In Fig. 2(b) it is noteworthy that the full thermoviscous model
by Winckelmann for a polystyrene particle in oil at 1 MHz,
in contrast to Doinikov’s model, predicts a sign reversal of
the acoustic contrast factor �ac and that this happens at a
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TABLE III. Parameters for the four combinations of fluid parti-
cles in fluids discussed in Sec. VII B and shown in Fig. 3 for the cases
(a) oil in water, (b) water in oil, (c) water in air, and (d) oil in air.

Case (a) (b) (c) (d)

ρ̃0 − 1 −0.07 0.08 857 794
κ̃s0 1.17 0.86 6 × 10−5 7 × 10−5

η̃0 67 0.015 46 3.1 × 103

Bc 1.2 9.5 −0.30 −0.30
Bt −81 −63 0.75 0.75
B′

t −63 −81 −81 −63
γ0 − 1 0.012 0.15 0.40 0.40
γsurf 38 mN m−1 38 mN m−1 72 mN m−1 22 mN m−1

relatively large particle radius a = 3.1 μm. In Fig. 2(c), a
polystyrene particle in air at 1 kHz, both Doinikov’s and
Winckelman’s models predict a strong thermoviscous re-
sponse, including a sign reversal in �ac for relatively large
particles at nearly the same radius a = 9.5 μm and a =
9.0 μm, respectively. Finally, Fig. 2(d) with a copper sphere in
oil at 1 MHz was treated more in depth in a numerical study
by Baasch, Pavlic, and Dual [21]. They found a remarkable

sign reversal in �ac at a relatively large particle radius a, and
they furthermore showed that this was correctly predicted by
the viscous rigid-solid theory by Doinikov [5]. Qualitatively,
we confirm this sign reversal, but quantitatively we find it
to happen for a = 4.7 μm, which is nearly three times the
value 1.6 μm predicted by the Doinikov model. Moreover, by
including the temperature dependency of the viscosity, we find
that at the smallest particle radius a = 300 nm, �ac is an order
of magnitude larger than predicted by the Doinikov model.

B. The contrast factor for fluid particles

We now replace the solid particle by a fluid particle, and
study the following four examples of spherical microdroplets
in fluids: (a) An oil droplet in water, (b) a water droplet in
oil, (c) a water droplet in air, and (d) an oil droplet in air,
with material parameters listed in Tables I and III. Cases (a)
and (b) are chosen for their relevance to studies of droplets
and emulsions [46,49,50]. Cases (c) and (d) are chosen for
their relevance for aerosol studies [47]. In Fig. 3 we plot
�ac versus δs/a computed from Eq. (109c) (thick dark blue
line “Winckelmann”) for these four cases and compare with
the results for �ac obtained by Doinikov [8] (thick light
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FIG. 3. The acoustic contrast factor �ac plotted versus normalized boundary-layer thickness δs/a. Green dashed lines are the ideal-fluid
theory following Gor’kov [3]. Black dotted lines are from Settnes and Bruus [9], thin magenta lines are from Karlsen and Bruus [10], thick
light red lines are from Doinikov 1997 [8], and thick dark blue lines are the present theory by Winckelmann and Bruus. (a) An oil droplet in
water at frequency f = 1 MHz. (b) A water droplet in oil at f = 1 MHz. (c) A water droplet in air at f = 1 kHz. (d) An oil droplet in air at
f = 1 kHz. The insets in (c) and (d) show the large-particle behavior.
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red line “Doinikov”), Karlsen and Bruus [10] (thin magenta
line “Karlsen”), Settnes and Bruus [9] (black dotted line
“Settnes”), and Gor’kov [3] (green dashed line “Gor’kov”).
As for solid particles, we see that for large fluid particles,
a 	 δs, the four boundary-layer theories converge towards the
ideal-fluid result by Gor’kov for all cases.

Case (a), an oil droplet in water, is shown in Fig. 3(a). Here
Karlsen and Bruus predicted an approximate doubling of �ac

compared to the ideal-fluid theory. By adding microstreaming,
Doinikov and Winckelmann also predict large variations from
the ideal theory, but in contrast to the solid-particle cases, the
two microstreaming models behave qualitatively different for
small particles. We find that the sharp increase of �ac for
δs/a � 2 given by the Doinikov model is an artifact, which
is due to the previously mentioned neglect of the tangential
component s1θ of the displacement s1 in the Stokes terms
in Eqs. (72) and (77) combined with the effects of surface
tension in the scattering coefficients. The downwards slope
in the curve by Winckelmann for δs/a � 2 stems from a
combination of surface tension and the inclusion of streaming
inside the fluid droplet. The temperature dependency of the
viscosities only make slight quantitative contributions to the
behavior of the curve by Winckelmann.

In case (b), a water droplet suspended in oil shown in
Fig. 3(b), the Doinikov and the Winckelmann model have
a similar behavior as in case (a), namely an increase and a
decrease, respectively, of �ac for δs/a � 2. The stronger de-
crease of �ac in the Winckelmann model setting in at δs/a � 5
is due to inner streaming not included in the Doinikov model.
In contrast to case (a), the microstreaming models in case (b)
exhibit a sign change of �ac, and for both models this happens
at nearly the same particle size a ≈ δs. The sharp increase in
�ac predicted by Doinikov is again due to the neglect of some
of the Stokes terms as discussed before, while surface tension
plays a minor role for the curves by Doinikov and Winckel-
mann in case (b). Like in case (a), temperature dependencies
in the viscosities lead to quantitative changes to the curve by
Winckelmann. Comparing Fig. 2(b), Fig. 2(d), and Fig. 3(b),
we note that the Winckelmann model predicts the sign change
in �ac to happen at a ≈ δs for polystyrene, copper, and water
particles in oil. Finally, we note that also the Karlsen-model
predicts a sign change of �ac for a water droplet in oil, but
this happens for much smaller particles of size a ≈ 0.04δs, not
shown. Clearly, microstreaming is dominating the behavior
of F rad for microparticles with a � δs and a density ratio ρ̃0

deviating sufficiently from unity.
Case (c) of a water droplet in air shown in Fig. 3(c) was

studied by Karlsen and Bruus [10], who found a remarkable
sign reversal in �ac. For an acoustic frequency of 1 kHz, this
sign reversal happens for relatively large droplets of radius
a ≈ 1.6 μm surrounded by a thick boundary layer with δs ≈
45a. Adding microstreaming, a corresponding sign reversal
is also found by both Doinikov and Winckelmann, albeit for
significantly larger particles, a ≈ 9.7 μm. In this case, the dis-
crepancy between Doinikov and Winckelmann is minute, due
to a small value of Bc = −0.3 and a large value of η̃0 = 46,
making this case similar to the solid-particle-in-air case in
Fig. 2(c).

Case (d) with an oil droplet in air shown in Fig. 3(d)
exhibits similar qualitative behavior as for the water droplet

in case (c) for four of the five models. The exception is the
Karlsen model, where no sign reversal occurs in �ac for the oil
droplet, in contrast to the sign reversal in �ac at δ ≈ 45a for
the water droplet. The microstreaming models by Doinikov
and Winckelmann predict a sign reversal in �ac for relatively
large oil droplets with a ≈ 9.9 μm and a ≈ 9.5 μm, respec-
tively, close to the value a ≈ 9.7 μm found above for water
droplets.

We do not cover the case of gas bubbles in a surrounding
fluid for several reasons. Bubble dynamics often involves
nonlinearities and cavitation effects [51,52], as well as gas
diffusion across the interface [53], effects that are not included
in our work. Also, in microfluidic experiments, bubbles are
typically stabilized by surface coatings, which alters the bub-
ble dynamics [51] and requires the addition of extra terms in
the boundary conditions to describe the surface coating. But
we do expect our model to be accurate for large bubbles in
weak acoustic fields, where surface effects and nonlinearities
are negligible.

C. Rigidified droplets

Impurities tend to collect at fluid-fluid interfaces, which
can make the interface resemble that of a rigid boundary [54].
It is also often desired to use surfactants to stabilize suspended
droplets [55,56]. Our result for F rad in Eq. (100) for fluid par-
ticles in fluids, is derived for pure fluid-fluid interfaces under
ideal conditions. A detailed description of impure interfaces
and their complex dynamics is beyond the scope of this work,
but in the following we discuss how to compute F rad on a fluid
droplet with a rigidified interface in a simplified model. For a
rigidified interface, which is strong enough to impose a no-slip
boundary condition on the acoustic streaming, the fluid-fluid
boundary condition (77) is replaced by the fluid-solid bound-
ary condition (72). This is equivalent to using the theory (100)
for solid particles, but with the scattering coefficients αi,n

from Appendix B for solids particles replaced by αi,n from
Appendix C for fluid particles with i = 0, 1, 2, 3. In Fig. 4,
we show the result of computing �ac from Eq. (109c) in this
manner (dashed curves) compared to �ac computed for a pure
fluid-fluid interface (full curves) for the two cases Fig. 4(a)
an oil droplet in water and Fig. 4(b) a water droplet in oil,
corresponding to the pure fluid-fluid cases of Fig. 3(a) and
3(b). It is seen that when assuming a rigidified interface, �ac

undergoes qualitative and quantitative changes in both cases.
We note that the dashed curves in Fig. 4 for �ac in rigidified
droplets have a quantitatively similar behavior to that found
for �ac in the Winckelmann model for solids shown in Fig. 2.

Furthermore, we remark that �ac for rigidified oil in water
(dashed curve) [Fig. 4(a)] resembles −�ac for polystyrene in
water Fig. 2(a), which can be explained by κ̃s0 − 1 > 0 for
oil in water, whereas κ̃s0 − 1 < 0 for polystyrene in water.
In contrast, we remark that �ac for rigidified water in oil
(dashed curve) [Fig. 4(b)] resembles +�ac for polystyrene in
oil Fig. 2(b), because here κ̃s0 − 1 < 0 in both cases. Finally,
we note that the two remaining fluid-fluid cases studied in
Fig. 3(c) and 3(d) are only affected to a negligible degree by
rigidified interfaces, and therefore they are not shown in this
discussion.
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FIG. 4. The acoustic contrast factor �ac from Eq. (109c) plot-
ted versus δs/a computed for a fluid particle in a fluid using the
fluid-fluid boundary condition (77) (full curve) and the fluid-solid
boundary condition (72) (dashed curve). (a) An oil droplet in water
at frequency f = 1 MHz. (b) A water droplet in oil at f = 1 MHz.

VIII. CONCLUSION

We have developed an extension of the model of the acous-
tic radiation force F rad presented by Doinikov in 1997 [6–8]
for a rigid and for a fluid spherical particle suspended in a
thermoviscous fluid. Our extension comprises the inclusion
of (1) elastic instead of rigid solid particles, (2) temperature-
and density-dependent material parameters, in particular the
viscosity, (3) the tangential part of the Stokes drift in the
boundary condition of the acoustic streaming on the particle
surface, and (4) inner streaming in a fluid particle. Using the
method of Karlsen and Bruus [10] in Sec. III to compute
the first-order fields and that of Doinikov [4,5] in Sec. IV
to compute the second-order fields, we arrive in Eq. (84)
at F rad = F rad

11 + F rad
2,in, where F rad

2,in is the trivial Stokes drag
force due to the streaming velocity of the incoming field, and
F rad

11 is the force in terms of the force coefficients Dn due to
time-averaged products of the first-order acoustic fields given
by Eqs. (90) and (91) for solid and fluid particles, respectively.
The main result of our work is the long-wavelength limit of
F rad presented in Eq. (100).

In Sec. VI we compute the force coefficients D0 and D1

analytically in the limit of very thin and very thick boundary

layers, and compare our results with results in the litera-
ture. We verify that we obtain the same result as Doinikov
[6–8] when the differences in the above-mentioned model
assumptions are negligible. Using Eqs. (95) and (96) allows
for direct comparison to the models without microstreaming,
namely the thermoviscous model by Karlsen and Bruus [10],
the viscous model by Settnes and Bruus [9], and the ideal-
fluid model by Gor’kov [3]. We recover the results of these
models for particles much larger than the acoustic boundary-
layer width but find large deviations for certain parameter
values (in particular for ρ̃0 	 1) in the opposite limit. We
thus conclude, in agreement with Doinikov for thermovis-
cous fluids and with recent numerical studies by Baasch,
Pavlic, and Dual [21] for viscous fluids, that microstream-
ing can dominate the acoustic radiation force F rad for small
particles.

Further comparisons between the above five models are
carried out in Secs. VII A and VII B for the important special
case of a standing incident wave by plotting the acoustic con-
trast factor �ac of Eq. (109c) versus the normalized viscous
boundary layer thickness δs/a for selected choices of particles
and fluids. For the four solid-in-fluid examples (a) polystyrene
in water, (b) polystyrene in oil, (c) polystyrene in air, and (d)
copper in oil, shown in Fig. 2, the two main observations
are as follows: (1) The large values in (c) and (d) of the
relative density contrast ρ̃0 − 1 result in large thermoviscous
deviations from the ideal-fluid Gor’kov model, and even in
a sign reversal if microstreaming is included (the Doinikov
and the Winckelmann models). (2) The two models including
microstreaming exhibit the same qualitative trends, but quan-
titatively they differ significantly as shown for solid particles
in oil in (b) and (d), where the Winckelmann model predicts
a sign reversal for relatively large particle radii due to the
inclusion of the temperature-dependency of the viscosity. For
the four fluid-in-fluid examples (a) oil in water, (b) water in
oil, (c) water in air, and (d) oil in air, shown in Fig. 3, the
two main observations are as follows: (3) Each model predicts
largely the same �ac for droplets in air (c) and (d) as for
solid particles in air, except for the Karlsen model. (4) The
Winckelmann model deviates qualitatively from the Doinikov
model for droplets in liquids (a) and (b), due to our inclusion
of the tangential Stokes drift boundary condition and the inner
streaming.

Finally, we have in Sec. VII C briefly addressed how to
analyze the experimentally important case of droplets with
rigidified surfaces due to impurities or surfactants, by com-
bining fluid-fluid scattering coefficients with a second-order
no-slip boundary condition. In Fig. 4 is shown for oil-in-water
and water-in-oil systems, how the response of a rigidified
droplet resembles that of an elastic solid particle.

We have extended the basic analytical theory of the acous-
tic radiation force on a single suspended particle by including
temperature- and density dependent material parameters and
by taking inner streaming in droplets into account. We have
shown specific examples where these effects are important.
We hope that our analysis will inspire related experimental
efforts in the fields of microscale acoustofluidics, acoustic
levitation, and aerosol dynamics.
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APPENDIX A: INTEGRALS OF LEGENDRE POLYNOMIALS

Below we list a series of useful integrals containing products of Legendre polynomials and their derivatives [57],∫ π

0
Pn(cos θ )Pm(cos θ ) sin θ dθ = 2

2n + 1
δmn, (A1a)

∫ π

0
∂θPn(cos θ )∂θPm(cos θ ) sin θ dθ = 2n(n + 1)

2n + 1
δmn, (A1b)

∫ π

0
Pn(cos θ )Pm(cos θ ) cos θ sin θ dθ =

⎧⎪⎪⎨
⎪⎪⎩

2(n+1)
(2n+1)(2n+3) m = n + 1

2n
(2n−1)(2n+1) m = n − 1

0 otherwise

, (A1c)

∫ π

0
Pn(cos θ )∂θPm(cos θ ) sin2 θ dθ =

⎧⎪⎪⎨
⎪⎪⎩

− 2(n+1)(n+2)
(2n+1)(2n+3) m = n + 1
2(n−1)n

(2n−1)(2n+1) m = n − 1

0 otherwise

, (A1d)

∫ π

0
∂θPn(cos θ )∂θPm(cos θ ) cos θ sin θ dθ =

⎧⎪⎪⎨
⎪⎪⎩

2n(n+1)(n+2)
(2n+1)(2n+3) m = n + 1
2(n−1)n(n+1)
(2n−1)(2n+1) m = n − 1

0 otherwise

, (A1e)

∫ π

0
∂θPn(cos θ )∂2

θ Pm(cos θ ) sin2 θ dθ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 2n(n+1)(n+2)2

(2n+1)(2n+3) m = n + 1

2(n−1)2n(n+1)
(2n−1)(2n+1) m = n − 1

0 otherwise

, (A1f)

APPENDIX B: SCATTERING COEFFICIENTS FOR SOLIDS

Here we present the analytical expressions of the acoustic scattering coefficients αi,n, i = 0, 1, 2, 3 and n = 0, 1, 2 for solid
particles. Only the coefficients that contribute to F rad to leading order in x0 are given explicitly, whereas only the order in x0 is
stated for the remaining coefficients, which are αsc

t,1 and αsc
t,2,

α0,n = 1, (B1)

αsc
c,0 = − ix3

c

3

(1 − κ̃s0) + 3(γ0 − 1)
[(

1 − α̃p0

ρ̃0 c̃p0

)(
1 − χ ′α̃p0

ρ̃0 c̃p0

) − 4
3

χ ′α̃p0 κ̃s0

c̃p0

c′2
tr0

c2
0

(
1 − α̃p0

ρ̃0 c̃p0 κ̃s0

)]
H (xt , x′

t )

1 + 4(γ0 − 1)
χ ′α̃2

p0c′2
tr0

ρ̃0 c̃2
p0c2

0
H (xt , x′

t )
, (B2)

αsc
t,0 = − x2

c xt

i + xt

(γ0 − 1)
(
1 − α̃p0

ρ̃0 c̃p0

)
H (xt , x′

t )e
−ixt

1 + 4(γ0 − 1)
χ ′α̃2

p0c′2
tr0

ρ̃0 c̃2
p0c2

0
H (xt , x′

t )
, (B3)

αsc
c,1 = − ix3

c

3

(ρ̃0 − 1)
(
3 − 3ixs − x2

s

)
x2

s (2ρ̃0 + 1) − 9(1 − ixs)
, αsc

t,1 ∼ O
(
x3

0

)
, αsc

s,1 = ixc(ρ̃0 − 1)x2
s e−ixs

x2
s (2ρ̃0 + 1) − 9(1 − ixs)

, (B4)

αsc
c,2 = 2ix5

c

135x2
s

15(1 − ixs) − 6x2
s + ix3

s

ixs − 1
, αsc

t,2 ∼ O
(
x4

0

)
, αsc

s,2 = − ix2
c

9

xse−ixs

ixs − 1
, (B5)

with the definition H (xt , x′
t ) = 1

x2
t

(
1

1 − ixt
− 1

k̃th
0

tan x′
t

tan x′
t − x′

t

)−1

. (B6)

APPENDIX C: SCATTERING COEFFICIENTS FOR FLUIDS

Here we present the analytical expressions of the acoustic scattering coefficients αi,n, i = 0, 1, 2, 3, 4, 5, 6 and n = 0, 1, 2 for
fluid particles. As above, only the coefficients that contribute to F rad to leading order in x0 are given explicitly, while only the
order in x0 is stated for the remaining coefficients, which are αsc

t,1, α′
t,1, αsc

t,2, and α′
t,2,

α0,n = 1, (C1)
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αsc
c,0 = − ix3

c

3

1 − κ̃s0 + 3(γ0 − 1)
(
1 − α̃p0

ρ̃0 c̃p0

)2
H (xt , x′

t ) − 2γsurf κ
′
s0

3a

[
1 + 3(γ0 − 1)

(
1 − α̃2

p0

ρ̃2
0 c̃2

p0 κ̃s0

)
H (xt , x′

t )
]

1 − 2γsurf κ
′
s0

3a

[
1 − 3(γ0 − 1)

α̃2
p0

ρ̃2
0 c̃2

p0 κ̃s0
H (xt , x′

t )
] , (C2)

αsc
t,0 = − x2

c xt

i + xt

(γ0 − 1)
[(

1 − α̃p0

ρ̃0 c̃p0

) − 2γsurf κ
′
s0

3a

]
H (xt , x′

t )e
−ixt

1 − 2γsurf κ
′
s0

3a

[
1 − 3(γ0 − 1)

α̃2
p0

ρ̃2
0 c̃2

p0 κ̃s0
H (xt , x′

t )
] , α′

c,0 =
ρ̃−1

0 + (γ0 − 1) 2γsurf κ
′
s0

a
α̃p0

ρ̃2
0 c̃p0 κ̃s0

H (xt , x′
t )

1 − 2γsurf κ
′
s0

3a

[
1 − 3(γ0 − 1)

α̃2
p0

ρ̃2
0 c̃2

p0 κ̃s0
H (xt , x′

t )
] , (C3)

α′
t,0 = x2

c x′
t

sin x′
t − x′

t cos x′
t

(γ0 − 1) α̃p0

ρ̃0 c̃p0

[(
1 − α̃p0

ρ̃0 c̃p0

) − 2γsurf κ
′
s0

3a

]
H (xt , x′

t )

1 − 2γsurf κ
′
s0

3a

[
1 − 3(γ0 − 1)

α̃2
p0

ρ̃2
0 c̃2

p0 κ̃s0
H (xt , x′

t )
] , (C4)

αsc
c,1 = ix3

c

3

(ρ̃0 − 1)[1 + F (xs, x′
s) − G(xs)]

(2ρ̃0 + 1)[1 + F (xs, x′
s)] − 3G(xs)

, αsc
t,1 ∼ O

(
x3

0

)
, αsc

s,1 = ixc(ρ̃0 − 1)e−ixs

(2ρ̃0 + 1)[1 + F (xs, x′
s)] − 3G(xs)

, (C5)

α′
c,1 = 3xc

x′
c

1 − 2+ρ̃0

3ρ̃0
G(xs) + F (xs, x′

s)
[
1 + 4

ρ̃0x2
s
(ρ̃0 − 1)(η̃0 − 1)

]
(2ρ̃0 + 1)[1 + F (xs, x′

s)] − 3G(xs)
, α′

t,1 ∼ O
(
x3

0

)
, (C6)

α′
s,1 = xc

x′
s j2(x′

s)

(ρ̃0 − 1)F (xs, x′
s)

(2ρ̃0 + 1)[1 + F (xs, x′
s)] − 3G(xs)

, (C7)

αsc
c,2 = − ix5

c xs

45

32(η̃0 − 1)2 − 2x2
s (η̃0 − 1)(ρ̃0 − 1) + [10(η̃0 − 1) − (ρ̃0 − 1)x2

s ]κ1(xs, x′
s) + 2iγsurf

η0aω
[8(η̃0 − 1) + 4κ1(xs, x′

s)]

X1(xs) + η̃0X2(xs, x′
s) + η̃2

0X3(xs, x′
s) + 2iγsurf

η0aω
X4(xs, x′

s)
,

(C8)

αsc
s,2 = x2

c

6h3(xs)

(η̃0 − 1)
[
32(η̃0 − 1) − 2(ρ̃0 − 2)x2

s

] − η̃0
[
10(η̃0 − 1) − (ρ̃0 − 1)x2

s

]
κ2(x′

s) + 2iγsurf

η0aω
[8(η̃0 − 1) − 4η̃0κ2(x′

s)]

X1(xs) + η̃0X2(xs, x′
s) + η̃2

0X3(xs, x′
s) + 2iγsurf

η0aω
X4(xs, x′

s)
,

(C9)

α′
c,2 = 5x2

c x2
s

2x′2
c x′

s

xsx′
sκ1(xs, x′

s) + 2(η̃0 − 1)κ3(xs, x′
s) + [

3x2
s (ρ̃0 − 1) − 12 2iγsurf

η0aω

]
κ4(xs, x′

s)

X1(xs) + η̃0X2(xs, x′
s) + η̃2

0X3(xs, x′
s) + 2iγsurf

η0aω
X4(xs, x′

s)
, (C10)

α′
s,2 = x2

c x2
s

6x′
s j3(x′

s)

2xs(η̃0 − 1) + [
(ρ̃0 − 1)x2

s − 10(η̃0 − 1) − 4 2iγsurf

η0aω

] h2(xs )
h3(xs )

X1(xs) + η̃0X2(xs, x′
s) + η̃2

0X3(xs, x′
s) + 2iγsurf

η0aω
X4(xs, x′

s)
, (C11)

αsc
t,2 ∼ x4

0, α′
t,2 ∼ x4

0 . (C12)

Alongside H (xt , x′
t ) from Appendix B, we have here defined the functions

G(xs) = 3

xs

(
1

xs
− i

)
, F (xs, x′

s) = 1 − ixs

2(1 − η̃0) + η̃0x′2
s (tan x′

s−x′
s )

(3−x′2
s ) tan x′

s−3x′
s

, (C13a)

X1(xs) = (
240 − 30x2

s + x4
s

)h2(xs)

h3(xs)
− 2xs(x

2
s + 24), (C13b)

X2(xs, x′
s) = x′

s j2(x′
s)

j3(x′
s)

[(
75 − 15

2
x2

s

)h2(xs)

h3(xs)
− xs

(
x2

s + 15
)]

+
[(

3

2
x′2

s + 30

)
x2

s + 15x′2
s − 480

]
h2(xs)

h3(xs)
+ 2xs

(
x2

s − 3

2
x′2

s + 48
)
, (C13c)

X3(xs, x′
s) = 3[5h2(xs) − xsh3(xs)]

2h3(xs)

(x′3
s − 10x′

s) j2(x′
s) + (32 − 2x′2

s ) j3(x′
s)

j3(x′
s)

, (C13d)

X4(xs, x′
s) = 6

{[
10(η̃0 − 1) − x2

s

]h2(xs)

h3(xs)
− 2xs(η̃0 − 1) + η̃0

xsh3(xs) − 5h2(xs)

h3(xs)

x′
s j2(x′

s)

j3(x′
s)

}
, (C13e)

κ1(xs, x′
s) = h2(xs)xs

h3(xs)
− η̃0

x′
s j2(x′

s)

j3(x′
s)

, κ2(x′
s) = j2(x′

s)x′
s

j3(x′
s)

, (C13f)
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κ3(xs, x′
s) = [3xsh3(xs) − 15h2(xs)] j2(x′

s) + [xsh3(xs) + 3h2(xs)]x′
s j3(x′

s)

h3(xs) j3(x′
s)

, κ4(xs, x′
s) = h2(xs) j2(x′

s)

h3(xs) j3(x′
s)

. (C13g)

APPENDIX D: DERIVATION OF EQ. (86) INVOLVING c41 AND c51

The details of the computation leading to Eq. (86) involving c41 and c51 are given here. First, the expressions for c41 and c51

from Eqs. (71d) and (71e) are used to obtain,

− ez4πρ0ν0

(
3

2
c51 − 1

4
c41

)
= −ez2πρ0ν0

∫ ∞

1
(3ξ − ξ−1)[χr1(ξ ) − 2χθ1(ξ )] + 3χθ1(ξ )(ξ − ξ−1) dξ . (D1)

Then χr1(ξ ) and χθn(ξ ) are inserted from Eqs. (60d) and (60e) for n = 1, and the second term in the integrand yields

− ez 2πρ0ν0

∫ ∞

1
3χθ1(ξ )(ξ − ξ−1)dξ

= −ez3πρ0a3
∫ ∞

1

∫ π

0

1

2
(ξ − ξ−1)

{
∇ ·

〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

}
· eθ sin2 θ dθdξ . (D2)

To ease the notation in the following, we introduce

X =
〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

. (D3a)

Using this expression for X , the first term of the integrand in Eq. (D1) becomes

− ez2πρ0ν0

∫ ∞

1
(3ξ − ξ−1)[χr1(ξ ) − 2χθ1(ξ )]dξ

= −ez2πρ0ν0
a3

2ν0

∫ ∞

1

∫ π

0
(3ξ − ξ−1) (∇ · X ) · (er cos θ − eθ sin θ ) sin θ dθdξ

= −ezπρ0a3
∫ ∞

1

∫ π

0
(3ξ−1 − ξ−3) (∇ · X ) · ez ξ 2 sin θ dθdξ

= −ezπρ0a3
∫ ∞

1

∫ π

0

{
∇ · [(3ξ−1 − ξ−3)X ] + 3

a
(ξ−2 − ξ−4) er · X

}
· ez ξ 2 sin θ dθ dξ, (D3b)

and by inserting the definition of X in the second term of the integrand in Eq. (D3b), we obtain

− ezπρ0a3
∫ ∞

1

∫ π

0

[
3

a
(ξ−2 − ξ−4) er · X

]
· ez ξ 2 sin θ dθdξ

= −ez3πρ0a2
∫ ∞

1

∫ π

0
(1 − ξ−2) er ·

〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

· ez sin θ dθdξ . (D3c)

Last, using Gauss’s law, we evaluate the divergence term of the integrand in Eq. (D3b),

− ezπρ0a3
∫ ∞

1

∫ π

0
{∇ · [(3ξ−1 − ξ−3)X ]} · ez ξ 2 sin θ dθdξ

= −ez
ρ0

2

∫ ∞

1

∫ π

0

∫ 2π

0
{∇ · [(3ξ−1 − ξ−3)X ]} · ez (aξ )2 sin θ dϕdθ adξ,

= −ρ0

2

∫
�

∇ · [(3ξ−1 − ξ−3)X ]dV,

= −ρ0

2

∮
∂�0

(3ξ−1 − ξ−3)X · (−er ) dS − ρ0

2

∮
∂�∞

(3ξ−1 − ξ−3)X · er dS,

= ρ0

∮
∂�0

〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

· er dS. (D3d)

Here we have introduced the volume � between the particle surface ∂�0 and a spherical surface ∂�∞ centered at r = 0 with a
radius going to infinity. In the last line of Eq. (D3d), we have used that the integrand goes to zero on ∂�∞, and the definition of
X has been reinserted. With the three result from Eqs. (D2), (D3c), and (D3d) inserted in Eq. (D1), we obtain the result stated in
Eq. (86).
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APPENDIX E: THE SECOND-ORDER COEFFICIENTS Sik,n FOR A SOLID PARTICLE IN A FLUID

The 16 Sik,n coefficients that contribute to Dn to leading order in x0 are stated: Nine coefficients for n = 0 and seven for n = 1.
For the remaining 16 coefficients in modes n = 0 and n = 1, we only state their order in x0 here,

S00,0 = x3
0

3x2
s

, S00,1 = x3
0

3x2
s

, S0c,0 = 2i

3
, S0c,1 ∼ O(1), S0t,0 ∼ O

(
x2

0

)
, S0t,1 ∼ O(x0),

S0s,0 = −x2
0

2i(1 + Bc)

x2
s

e−xs , S0s,1 ∼ O
(
x3

0

)
, Sc0,0 = 2i

3
, Sc0,1 = 2i

3
, Scc,0 = 6

x2
s x3

0

, Scc,1 = 135

x2
s x5

0

,

Sct,0 ∼ O
(
x−1

0

)
, Sct,1 ∼ O

(
x−2

0

)
,

Scs,0 = 1

24x4
s x0

[(−x7
s + x6

s − 14x5
s + 18x4

s − 48x3
s − 96x2

s − 144xs − 144
)
e−xs + E1(xs)x6

s

(
x2

s + 12
)]

,

Scs,1 = − 3i

4x5
s x2

0

[(−x7
s + x6

s − 2x5
s + 6x4

s + 48x3
s + 168x2

s + 360xs + 360
)
e−xs + E1(xs)x8

s

]
,

St0,0 = 2ix0

3xt
eixt , St0,1 ∼ O

(
x2

0

)
,

Stc,0 = 1

24xtx2
s x2

0

{−[
x4

t Bt + (
x2

s + 18Bt + 6
)
x2

t + 12x2
s

]
x4

t E1(−ixt ) + [
x7

t Bt i + x6
t Bt + (

x2
s i + 16iBt + 6i

)
x5

t

+ (
x2

s + 12Bt + 6
)
x4

t + (
10ix2

s − 12iBt − 12i
)
x3

t + (
6x2

s + 12Bt − 36
)
x2

t − 144ixt + 144
]
eixt

}
,

Stc,1 ∼ O
(
x−3

0

)
, Stt,0 ∼ O(1), Stt,1 ∼ O(1),

Sts,0 = 1

24x4
s xt

{[
x4

t Bt + (
(Bt + 1)x2

s + 18Bt + 6
)
x2

t + x4
s + 12x2

s

](
x2

s + x2
t

)2
E1(xs − ixt ) + [−x7

t Bt i − (xs + 1)Bt x
6
t

+ (
(−2iBt − i)x2

s + 2iBt xs − 16iBt − 6i
)
x5

t + (
(−2Bt − 1)x3

s − x2
s + (−12Bt − 6)xs − 12Bt − 6

)
x4

t

+ (
(−Bt i − 2i)x4

s + (2iBt + 2i)x3
s + (−24iBt − 16i)x2

s + (12iBt + 12i)xs + 12iBt + 12i
)
x3

t

+ (
(−Bt − 2)x5

s + x4
s Bt + (−20Bt − 12)x3

s − 24x2
s Bt + (−12Bt + 36)xs − 12Bt + 36

)
x2

t + (−x6
s i + 2ix5

s

− 18ix4
s + 48ix3

s + 96ix2
s + 144ixs + 144i

)
xt − x7

s + x6
s − 14x5

s + 18x4
s − 48x3

s − 96x2
s − 144xs − 144

]
e−xs+ixt

}
,

Sts,1 ∼ O(1), Ss0,0 = 0, Ss0,1 = x2
0

6i

5x2
s

eixs , Ssc,0 = 0,

Ssc,1 = 1

32x4
s x3

0

[(
x10

s + 18x8
s

)
E1(−ixs) − (

x9
s i + 16ix7

s + x8
s − 12ix5

s + 12x6
s − 288ix3

s + 12x4
s + 4320ixs + 1728x2

s − 4320
)
eixs

]
,

Sst,0 = 0, Sst,1 ∼ O(1), Sss,0 = 0,

Sss,1 = − i

2
xsE1(xs − ixs)

(
x2

s + 9
) + 1

x7
s

e(−1+i)xs

[
1

4
(−1 + i)x9

s + 1

4
x8

s + 1

2
(−5 + 4i)x7

s + 1

4
(9 + 3i)x6

s + 1

4
(9 + 57i)x5

s

+ 1

4
(−72 + 177i)x4

s + (−108 + 72i)x3
s − (270 + 18i)x2

s − 270(1 + i)xs − 270i

]
. (E1)

Here we have used the exponential integral function defined as E1(x) = ∫ ∞
1 ξ−1e−xξ dξ .

APPENDIX F: THE SECOND-ORDER COEFFICIENTS Sik,n FOR A FLUID PARTICLE IN A FLUID

The 45 Sik,n coefficients that contribute to Dn to leading order in x0 are stated: 21 coefficients for n = 0 and 24 for n = 1. For
the remaining 53 coefficients in modes n = 0 and n = 1, we only state their order in x0.

S00,0 = 2 + η̃0

9(1 + η̃0)x2
s

x3
0, S00,1 = 2(5 + 4η̃0)

45(1 + η̃0)x2
s

x3
0, S0c,0 = −2i

(−η̃0x2
s − x2

s + 6Bc + η̃0
)

3(1 + η̃0)x2
s

,

S0c,1 = −4i(3η̃0 + 10)

(1 + η̃0)x2
s x2

0

, S0t,0 ∼ O
(
x2

0

)
, S0t,1 ∼ O(x0),

S0s,0 = −2ie−xs
(
3Bcη̃0x2

s + 2η̃0x2
s + x3

s − 6Bcxs − η̃0xs + 3x2
s − 6Bc − η̃0

)
3x4

s (1 + η̃0)
x2

0,
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S0s,1 = −3x4
s + (9η̃0 + 25)x3

s + (33η̃0 + 105)x2
s + (72η̃0 + 240)xs + 72η̃0 + 240

3x5
s (1 + η̃0)

e−xs x0,

S0c′,0 ∼ O
(
x5

0

)
, S0c′,1 = 13x′2

0 x0η̃0

45x2
s (1 + η̃0)

, S0t ′,0 ∼ O
(
x2

0

)
, S0t ′,1 ∼ O(x0),

S0s′,0 = −2ix2
0 η̃0

9

[(
x′4

s + 24x′2
s + 51

)
sinh(x′

s) − (
7x′3

s + 51x′
s

)
cosh(x′

s)
]

(1 + η̃0)x2
s x′2

s

,

S0s′,1 =
[(

x′5
s + 55x′3

s + 348x′
s

)
cosh(x′

s) − 3
(
3x′4

s + 57x′2
s + 116

)
sinh(x′

s)
]
x0η̃0

3(1 + η̃0)x2
s x′3

s

,

Sc0,0 = 2i
(
η̃0x2

s + x2
s + η̃0 + 2

)
3(1 + η̃0)x2

s

, Sc0,1 = 2i
(
5η̃0x2

s + 5x2
s + 8η̃0 + 12

)
15(1 + η̃0)x2

s

, Scc,0 = 4η̃0 + 12

(1 + η̃0)x2
s

x−3
0 ,

Scc,1 = 72η̃0 + 258

(1 + η̃0)x2
s

x−5
0 , Sct,0 ∼ O

(
x−1

0

)
, Sct,1 ∼ O

(
x−2

0

)
,

Scs,0 = 1

24x4
s x0(1 + η̃0)

{[−x7
s η̃0 + x6

s η̃0 + (−14η̃0 − 8)x5
s + (18η̃0 + 8)x4

s + (−48η̃0 − 64)x3
s + (−48η̃0 − 96)x2

s

+ (−96η̃0 − 288)xs − 96η̃0 − 288
]
e−xs + x6

s

(
η̃0x2

s + 12η̃0 + 8
)
E1(xs)

}
,

Scs,1 = −i

4(1 + η̃0)x5
s x2

0

[(−3η̃0x7
s + 3η̃0x6

s − 2x7
s − 6η̃0x5

s + 2x6
s + 18η̃0x4

s − 4x5
s + 72η̃0x3

s

+ 36x4
s + 264η̃0x2

s + 200x3
s + 576η̃0xs + 888x2

s + 576η̃0 + 2064xs + 2064
)
e−xs + 3x8

s

(
η̃0 + 2

3

)
E1(xs)

]
,

Scc′,0 ∼ O
(
x2

0

)
, Scc′,1 = − 2iη̃0x′2

0

3(1 + η̃0)x2
s x2

0

, Sct ′,0 ∼ O
(
x−1

0

)
, Sct ′,1 ∼ O

(
x−2

0

)
,

Scs′,0 = −2
[(

x′4
s + 24x′2

s + 51
)

sinh(x′
s) − (

7x′3
s + 51x′

s

)
cosh(x′

s)
]
η̃0

3(1 + η̃0)x2
s x0x′2

s

,

Scs′,1 = 2i
[(

x′5
s + 55x′3

s + 510x′
s

)
cosh(x′

s) − 3
(
3x′4

s + 75x′2
s + 170

)
sinh(x′

s)
]
η̃0

(1 + η̃0)x2
s x2

0x′3
s

,

St0,0 = x0eixt

9xtx2
s (1 + η̃0)

[−4ix2
t + (

2x2
s + 6η̃0 + 12

)
xt + 6i

(
1 + x2

s

)
η̃0 + 12i + 6ix2

s

]
, St0,1 ∼ O

(
x2

0

)
,

Stc,0 = 1

24xtx2
s (1 + η̃0)x2

0

{−[
η̃0Bt x

4
t + ((

x2
s + 18Bt + 6

)
η̃0 + 12Bt + 4

)
x2

t + 4(3η̃0 + 2)x2
s

]
x4

t E1(−ixt )

+ [
Bt η̃0x7

t i + Bt η̃0x6
t + ((

x2
s i + 16iBt + 6i

)
η̃0 + 12iBt + 4i

)
x5

t + ((
x2

s + 12Bt + 6
)
η̃0 + 12Bt + 4

)
x4

t

+ (
(10ix2

s − 12iBt − 12i)η̃0 + 8ix2
s − 24iBt − 8i

)
x3

t + ((
6x2

s + 12Bt − 36
)
η̃0 + 8x2

s − 72Bt − 88
)
x2

t

− (96iη̃0 + 288i)xt + 96η̃0 + 288
]
eixt

}
, Stc,1 ∼ O

(
x−3

0

)
, Stt,0 ∼ O(1), Stt,1 ∼ O(1),

Sts,0 = 1

24xtx4
s (1 + η̃0)

{[−Bt η̃0x7
t i − η̃0Bt (xs + 1)x6

t + (−i(2Bt + 1)η̃0x2
s + 2iBt η̃0xs − (16iBt + 6i)η̃0 − 12iBt − 4i

)
x5

t

− (
(2Bt + 1)η̃0x3

s + x2
s η̃0 + ((12Bt + 6)η̃0 + 12Bt + 4)xs + (12Bt + 6)η̃0 + 12Bt + 4

)
x4

t

+ (−η̃0(Bt + 2)x4
s i + 2iη̃0(Bt + 1)x3

s + (−(24iBt + 16i)η̃0 − 12iBt − 12i)x2
s + ((12iBt + 12i)η̃0 + 24iBt + 8i)xs

+ (12iBt + 12i)η̃0 + 24iBt + 8i
)
x3

t + ( −η̃0(Bt + 2)x5
s + η̃0x4

s Bt + (−(20Bt + 12)η̃0 − 12Bt − 12)x3
s + (−24Bt η̃0

+ 12Bt − 4)x2
s + ((−12Bt + 36)η̃0 + 72Bt + 88)xs + (−12Bt + 36)η̃0 + 72Bt + 88

)
x2

t + (−η̃0x6
s i + 2iη̃0x5

s

+ (−18iη̃0 − 8i)x4
s + (48iη̃0 + 64i)x3

s + (48iη̃0 + 96i)x2
s + (96iη̃0 + 288i)xs + 96iη̃0 + 288i

)
xt − x7

s η̃0 + η̃0x6
s

− (14η̃0 + 8)x5
s + (18η̃0 + 8)x4

s − (48η̃0 + 64)x3
s − (48η̃0 + 96)x2

s − (96η̃0 + 288)xs − 96η̃0 − 288
]
e−xs+ixt

+ [
η̃0Bt x

4
t + (

(Bt + 1)η̃0x2
s + (18Bt + 6)η̃0 + 12Bt + 4

)
x2

t + x2
s

(
η̃0x2

s + 12η̃0 + 8
)](

x2
s + x2

t

)2
E1(−ixt + xs)

}
,

Sts,1 ∼ O(1), Stc′,0 ∼ O
(
x3

0

)
, Stc′,1 ∼ O

(
x2

0

)
, Stt ′,0 ∼ O(1), Stt ′,1 ∼ O(1),
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Sts′,0 = 2ieixt (i + xt )
[(

x′4
s + 24x′2

s + 51
)

sinh(x′
s) − (

7x′3
s + 51x′

s

)
cosh(x′

s)
]
η̃0

3(1 + η̃0)x2
s xtx′2

s

, Sts′,1 ∼ O(1), Ss0,0 = 0,

Ss0,1 = 2eixs
(
4iη̃0x2

s + 3ix2
s + x3

s + 8iη̃0 + 8xsη̃0 + 12i + 12xs
)

15x4
s (1 + η̃0)

x2
0, Ssc,0 = 0,

Ssc,1 = 1

32x4
s x3

0 (1 + η̃0)

{
x8

s

(
η̃0x2

s + 18η̃0 + 12
)
E1(−ixs) − [

x9
s η̃0i + x8

s η̃0 + (16iη̃0 + 12i)x7
s + (12η̃0 + 12)x6

s

− (12iη̃0 + 24i)x5
s + (12η̃0 − 72)x4

s + (−288iη̃0 − 384i)x3
s + (288η̃0 + 576)x2

s + (2304iη̃0 + 8256i)xs

− 2304η̃0 − 8256
]
eixs

}
, Sst,0 = 0, Sst,1 ∼ O(1), Sss,0 = 0,

Sss,1 = 1

4x7
s (1 + η̃0)

{−2ix8
s

(
η̃0x2

s + 9η̃0 + 6
)
E1(xs − ixs) + [

(−1 + i)η̃0x9
s + x8

s η̃0 + (−6 + 6i + (−10 + 8i)η̃0
)
x7

s

+ (10 − 4i + (9 + 3i)η̃0)x6
s + (2 − 14i + (9 + 9i)η̃0)x5

s + (9iη̃0 − 104 − 6i)x4
s + (−792 − 56i − 192η̃0)x3

s

+ (−2064 − 744i − (576 + 192i)η̃0)x2
s + (−2064 − 2064i − (576 + 576i)η̃0)xs − 576iη̃0 − 2064i

]
e(−1+i)xs

}
,

Ssc′,0 = 0, Ssc′,1 = 2η̃0eixs x′2
0

(−5xs + 6ix2
s − 5i

)
15x4

s (1 + η̃0)
, Sst ′,0 = 0, Sst ′,1 ∼ O(1), Sss′,0 = 0,
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