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Acoustic radiation force on a heated spherical particle in a fluid including scattering
and microstreaming from a standing ultrasound wave
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Analytical expressions are derived for the time-averaged, quasisteady, acoustic radiation force on a heated,
spherical, elastic, solid microparticle suspended in a fluid and located in an axisymmetric incident acoustic wave.
The heating is assumed to be spherically symmetric, and the effects of particle vibrations, sound scattering,
and acoustic microstreaming are included in the calculations of the acoustic radiation force. It is found that
changes in the speed of sound of the fluid due to temperature gradients can significantly change the force on
the particle, particularly through perturbations to the microstreaming pattern surrounding the particle. For some
fluid-solid combinations, the effects of particle heating even reverse the direction of the force on the particle for
a temperature increase at the particle surface as small as 1 K.
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I. INTRODUCTION

A particle suspended in a fluid perturbed by an acoustic
wave experiences a time-averaged force, termed the acoustic
radiation force F rad. Theoretical studies of F rad date
back to King in 1934 [1] who assumed the particle to be
incompressible and the surrounding fluid to be ideal, meaning
zero viscosity and zero thermal conductivity. Subsequently,
Yosioka and Kawasima [2] included the effects of particle
compressibility in 1955, and the results were summarized
and expressed on a potential form by Gor’kov [3] in 1962.
Doinikov published two series of papers taking into account
the effects of fluid viscosity [4,5] in 1994 and the effects of
heat conduction [6–8] in 1997, where he included both the
linear scattering of the acoustic wave and the nonlinear steady
acoustic microstreaming developing around the particle.
More recent developments were made by Settnes and Bruus
in 2012 [9]; Karlsen and Bruus in 2015 [10]; and Doinikov,
Fankhauser, and Dual in 2021 [11]. A detailed study of F rad

on small particles in a thermoviscous fluid was conducted in
our recent work [12]. Here, the effects of particle vibrations,
acoustic scattering, temperature- and density-dependent
material parameters, and thermoviscous microstreaming were
included in the analytical derivation of F rad, and it was found
that microstreaming effects may dominate F rad when the
viscous and thermal boundary-layer widths δs and δt are com-
parable to or larger than the particle radius a. The importance
of the microstreaming patterns for F rad, alongside recent stud-
ies of the acoustic body force due to temperature gradients by
Joergensen and Bruus [13], motivated the present study of the
acoustic radiation force on a heated spherical microparticle.

In this paper we derive analytical expressions for F rad

on a spherical elastic particle in a Newtonian fluid, includ-
ing adiabatic acoustic scattering and microstreaming, based
on an extension of the theoretical framework presented in
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Refs. [4–6,12]. In this extension we include a quasisteady
background temperature field with gradients, which we calcu-
late from a purely diffusive heat equation. The particle radius
a is assumed to be much smaller than the wavelength λ of
the incident acoustic wave. The acoustic field is assumed to
be adiabatic, which is a good approximation in the limit of
5δt � a � λ [12]. Previously, Lee and Wang in 1984 and
1988 [14,15] studied the special case of a heated (or cooled)
heavy rigid sphere in an ideal inviscid gas, and without taking
acoustic microstreaming into account in their analysis. They
only considered a short-ranged temperature field, but here we
argue that the primary change of F rad is caused by heating of
the bulk fluid surrounding the particle, and we therefore reach
different conclusions than Lee and Wang.

Unlike previous studies of thermal and viscous contribu-
tions to F rad [4–10,12], we find that effects of externally
generated thermal gradients may alter F rad on particles in the
long-wavelength limit even for small boundary layer widths
δ � a. This may lead to new possibilities for acoustic han-
dling of above micrometer-sized particles at MHz ultrasound
frequencies through the use of heat sources.

The paper is structured as follows: governing equations are
presented in Sec. II; our mathematical model is presented
and solved in Sec. III; the results for an incident, standing,
plane wave are analyzed in Sec. IV; and finally we conclude
in Sec. V. Some mathematical details are presented in Ap-
pendices A, B, C, and D, and supporting MATLAB scripts,
numerical simulations in COMSOL MULTIPHYSICS, and details
on material parameters are provided in the Supplemental Ma-
terial [16], which includes Refs. [10,17–27].

II. GOVERNING EQUATIONS

Our model includes an isotropic, elastic, solid particle
suspended in a Newtonian fluid. The particle is assumed to
be heated by either an external source (e.g., a laser) or an
internal source (e.g., an exothermic chemical reaction), and
consequently heat conduction leads to the formation of a
temperature gradient in the surrounding fluid. The fluid is
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perturbed by a monochromatic adiabatic acoustic wave with
frequency f and angular frequency ω = 2π f . All physical
fields g(r, t ) describing the system in space r and time t are
expanded in perturbation series, and the material parameters
q(r, t ) vary through their dependency of temperature T and
density ρ,

g(r, t ) = g0(r, t ) + Re[g1(r, t )e−iωt ] + g2(r, t ), (1a)

q = q0[T0(r, t )] + Re[q1(r, t )e−iωt ], (1b)

q1(r, t ) =
(

∂q

∂T

)
T =T0

T1(r, t ) +
(

∂q

∂ρ

)
ρ=ρ0

ρ1(r, t ). (1c)

The zeroth-order fields g0(r, t ) describe a quiescent fluid, with
a background temperature field T0(r, t ), and the zeroth-order
parameters q0(r, t ) are assumed to be functions of T0 only,
so their density dependency is neglected in the following.
The complex-valued first-order fields g1 describe the lin-
ear acoustic response, which follows the actuation frequency
f . The second-order fields g2(r, t ) describe a nonlinear re-
sponse containing small second-order harmonics and a steady
time-averaged response. Only the time-averaged second-order
effects are considered here, and they are denoted by angled
brackets, e.g., 〈g2(r, t )〉. The acoustic oscillations and stream-
ing generally depend on the background temperature field
T0(r, t ) due to the temperature dependencies of all physical
parameters q0. We assume that the temperature field develops
on a timescale much slower than that of an acoustic oscillation
period f −1, and the complex-valued acoustic fields g1(r, t )
are calculated as steady fields at any given time t using the
instantaneous temperature field T0(r, t ). The objective is to
compute F rad by the time average of the stress σ integrated
over the vibrating particle surface ∂�(t ) with normal vector
n:

F rad =
〈 ∮

∂�(t )
σ · n dS

〉
. (2)

Assuming that the particle drift is negligible during an acous-
tic period, F rad can be written as [4,10]

F rad =
∮

∂�0

〈σ2 − ρ0v1v1〉 · n dS, (3)

where ∂�0 is the equilibrium surface of the particle, and v is
the velocity field of the fluid surrounding the particle.

A. Thermal diffusion

The temperature field is treated as a transient background
field. Heat diffusion is assumed to dominate over the heat
convection caused by the acoustic streaming 〈v2〉; thus, we
assume a low Péclet number,

Pe = a|〈v2〉|
Dth

0

� 1, Dth
0 = kth

0

ρ0cp0
. (4)

Here, |〈v2〉| is the magnitude of the steady streaming field
in the fluid near the particle of radius a, Dth

0 is the thermal
diffusivity, ρ0 is the mass density of the quiescent medium at
a given temperature T0, kth

0 is the thermal conductivity, and
cp0 is the specific heat capacity at constant pressure. The time
average of the particle motion is assumed to be zero, and the

temperature in both the solid particle and the fluid thus follow
the heat diffusion equation,

∂t T0 = 1

ρ0cp0
∇ · (

kth
0 ∇T0

) + 1

ρ0cp0
P, (5)

where P is the power density absorbed by the medium due to
an external or internal source of energy.

We assume that gradients in the temperature field T0 are
small enough that material parameters q0 only deviate slightly
from their ambient value q∞

0 , and that the change is linear in
the deviation 	T0 from the ambient temperature,

	T0(r, t ) = T0(r, t ) − T ∞
0 (6a)

q0 ≈ q∞
0 (1 + aq	T0), aq = 1

q∞
0

(
∂q0

∂T

)
T ∞

0

, (6b)

|aq	T0| � 1, (6c)

and terms containing ∂rT0(r, t ) are neglected. (6d)

The assumption (6d) is justified by a numerical study pre-
sented in the Supplemental Material [16]. The assumption
is based on the fact that the temperature field 	T0 falls off
as 	T0 ∼ r−1, where r is the distance to the particle center,
whereas ∂rT0 ∼ r−2. We argue that the primary perturbation to
F rad is due to the enhancement of a directional microstream-
ing caused by temperature-induced, long-ranged perturbations
of the acoustic fields in the bulk. Consequently, the dominat-
ing terms are likely to be the ones decaying slowly with r−1.

B. Viscous fluid dynamics

The surrounding fluid is described by the fluid velocity
field v and the fluid stress tensor σ expressed in terms of
the dynamic viscosity η, the bulk viscosity ηb, and the fluid
pressure p,

σ = η[∇v + (∇v)T] + [(
ηb − 2

3η
)
(∇ · v) − p

]
I. (7)

The physical fields are governed by local conservation of mass
and momentum. To derive the acoustic equations, we assume
the adiabatic condition ds = 0 on the entropy s per unit mass
and apply an equation of state relating p and ρ,

∂tρ = ∇ · (−ρv), (8a)

∂t (ρv) = ∇ · (σ − ρvv), (8b)

ds = cp

T
dT − αp

ρ
d p = 0, (8c)

p = p(ρ). (8d)

We also introduce the isentropic compressibility κs,

κs = 1

ρ

(
∂ρ

∂ p

)
s

= 1

ρc2
(fluids), (9)

where c is the speed of sound in the fluid.
The fluid fields and parameters are expanded as described

by Eq. (1), and we assume that the initial state of the fluid is
quiescent, v0 = 0. With the assumption (6d), Eqs. (7) and (8)
give the first-order acoustic response,

iω
1

c2
0

p1 = ρ0∇ · v1, (10a)

−iωρ0v1 = η0∇2v1 + (
ηb

0 + 1
3η0

)∇(∇ · v1) − ∇p1. (10b)
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The adiabatic assumption in Eq. (8c) further dictates that the
acoustic temperature field T1 is proportional to the pressure
p1,

T1 = κs0(γ0 − 1)

αp0
p1, γ0 = 1 + α2

p0T0

ρ0cp0κs0
, (11)

where we have introduced the usual ratio γ0 = cp0/cv0 of the
specific heat capacities. We then use ρ1 = c−2

0 p1 and combine
Eqs. (1c) and (11),

η1 = −Bc
ν0

c2
0

p1, (12a)

ηb
1 = −Bb

c
ν0

c2
0

p1, (12b)

Bc =
[

1 − γ0

αp0η0

(
∂η

∂T

)
T0

− ρ0

η0

(
∂η

∂ρ

)
ρ0

]
, (12c)

Bb
c =

[
1 − γ0

αp0η0

(
∂ηb

∂T

)
T0

− ρ0

η0

(
∂ηb

∂ρ

)
ρ0

]
. (12d)

The time-averaged second-order terms of Eqs. (7) and (8)
describe the nonlinear streaming response,

0 = ∇ ·
〈
ρ0v2 + 1

c2
0

p1v1

〉
, (13a)

0 = ∇ · 〈σ2 − ρ0v1v1〉, (13b)

〈σ2〉 = η0[∇〈v2〉 + (∇〈v2〉)T] + (
ηb

0 − 2
3η0

)
(∇ · 〈v2〉) I

−〈p2〉 I+〈
η1[∇v1 + (∇v1)T] + (

ηb
1− 2

3η1
)
(∇ · v1) I

〉
.

(13c)

We note that the zeroth-order quantities c0, ρ0, η0, and ηb
0 de-

pend implicitly on the spatial coordinates r through gradients
in the background temperature T0(r, t ).

C. Isotropic elastic solid mechanics

The linear elastic solid is described by the the mechanical
displacement field u, and the solid stress tensor σ, which is
expressed in terms of the transverse and longitudinal speeds
of sound ctr and clo,

σ = ρc2
tr[∇u + (∇u)T] + ρ

(
c2

lo − 2c2
tr

)
(∇ · u) I. (14)

The mechanical displacement field u can then be determined
in time and space from the Cauchy equation,

ρ∂2
t u = ∇ · σ. (15)

For solids, the isentropic compressibility κs can be expressed
as

κs = 1

ρ
(
c2

lo − 4
3 c2

tr

) (solids). (16)

Expanding the fields into a perturbation series with u0 = 0,
one can describe the acoustic vibrations by

−ρ0ω
2u1 = ρ0c2

tr0∇2u1 + ρ0
(
c2

lo0 − c2
tr0

)∇(∇ · u1), (17)

where we have used the assumption (6d). Following Ref. [10],
we also define the velocity field v1 and the complex-valued

“viscosity” η0 of the solid by

v1 = −iωu1 and η0 = i
ρ0c2

tr0

ω
, for solids. (18)

The second-order response is not calculated for solids, as
the time-averaged second-order velocity field is zero, and the
steady thermal expansion is negligible.

III. MODEL

As illustrated in Fig. 1, the physical model consists of a
spherical, heated, solid particle of radius a, which is centered
at the origin of a spherical coordinate system (r, θ, ϕ). The
particle is surrounded by a viscous fluid of infinite extent,
and an incident pressure wave with axisymmetry around the z
axis propagates in the fluid and scatters on the sphere. Since
many of the same physical quantities are defined in both the
solid and the fluid, we denote all fields and parameters in the
solid at r < a with a prime, e.g., ρ ′

0 and v′
1, whereas the fluid

fields and parameters at r > a remain unprimed, e.g., ρ0 and
v1. Ratios of parameters of the solid particle relative to the
surrounding fluid are denoted by a tilde and the normalized
radial coordinate is denoted by a hat,

q̃0 = q′
0

q0
, r̂ = r

a
. (19)

In the following derivation we largely use the same notation
and basic partial-wave expansion as in our previous work [12].

A. The zeroth-order heat diffusion

When calculating the background temperature field, we
assume that only the spherical solid particle is heated by the
power source. Further, it is assumed that the power is uni-
formly absorbed throughout the particle, so the power density
P is given by

P(r, t ) = P0 �(1 − r̂)�(t ), (20)

where �(ξ ) is the Heaviside step function. The assumptions
(6) are applied to Eq. (5) neglecting terms |aq	T0| � 1, and
we solve for the temperature field T ′

0 inside the particle (r̂ <

1) and for T0 outside the particle (r̂ > 1),

∂t T
′

0 = Dth∞′
0 ∇2T ′

0 + 1

ρ∞′
0 c∞′

p0

P0, t > 0, (21a)

∂t T0 = Dth∞
0 ∇2T0. (21b)

Initially for t < 0, the particle is assumed to be at ambient
temperature T ∞

0 . Then, at time t = 0, the heating P is turned
on. We apply continuity of temperature and heat flux, and the
temperature is held at T ∞

0 infinitely far from the sphere, so the
boundary conditions are

T0(r, 0) = T ′
0 (r, 0) = T ∞

0 , (22a)

T0(a, t ) = T ′
0 (a, t ), (22b)

kth∞
0 ∂rT0(a, t ) = kth∞′

0 ∂rT ′
0 (a, t ), (22c)

T0(∞, t ) = T ∞
0 . (22d)

The heat diffusion problem in Eqs. (21) and (22) is treated in
Ref. [28], where the solution is written as an integral to be
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(a) (b) (c) (d)

φin
1c

φsc,0
1c

vsc,0
2 F rad

φin
1c

φsc,0
1c

ψsc
1

φ1cψ1

δs a

ΔT0

φin
1c

φsc
1c

ΔT0

vsc
2

φin
1c

φsc
1c

F rad

FIG. 1. (a) The standard constant-temperature case 	T0 = 0 [4] of a spherical particle in an incident acoustic wave φin
1c (green arrow),

which gives rise to the acoustic radiation force F rad (red arrow) on the particle through scattered waves (such as φsc,0
1c , dashed lines) and

microstreaming 〈vsc,0
2 〉 (quadrupolarlike blue arrows). (b) Emphasizing further details of the standard case: the viscous scattering ψsc

1 in the
boundary layer (light blue) of width δs outside and the transmitted waves φ′

1c and ψ′
1 inside the particle of radius a. (c) Heating of the particle

gives rise to the temperature deviation 	T0 (light red) in the surrounding fluid. The scattered acoustic wave φsc
1c (warped dashed lines) for

	T0 > 0 is significantly changed by this heated bulk region compared to φsc,0
1c in panels (a) and (b). (d) Acoustic scattering on the heated

sphere with thermal contributions to both scattering and microstreaming 〈vsc
2 〉 (blue), now with a significant directional component that leads

to a modified acoustic radiation force F rad (red arrow).

numerically evaluated. However, as described in Appendix A,
a good analytic approximation can be found for times t � 5t th

d ,
where t th

d is the characteristic timescale for heat diffusion over
a particle radius. For polystyrene at room temperature we
obtain

t � 5t th
d = 5

a2

Dth∞′
0

≈
(

a

5 μm

)2

× 1 ms, (23)

which, for the particle sizes we consider here, is well below
the timescale for the bulk fluid dynamics. In this long-time
limit, the solution for the deviation 	T0(r̂, t ) in the tempera-
ture of the fluid from the ambient T ∞

0 becomes

	T0(r̂, t ) = 	T surf
0

r̂
erfc

[
xth

D (t ) r̂
]
, for t � 5t th

d , (24a)

xth
D (t ) = a

(
4Dth∞

0 t
)− 1

2 , 	T surf
0 = P0a2

3kth∞
0

, (24b)

where 	T surf
0 is the asymptotic value of the surface temper-

ature of the particle. In the following theoretical derivation,
	T0(r̂, t ) is the temperature profile (24).

B. The first-order acoustic scattering

The fluid is mechanically perturbed by an external incident
acoustic wave that scatters on the particle. The first-order fluid
fields are split into an incident (in) field and a scattered (sc)
field,

p1 = pin
1 + psc

1 , v1 = vin
1 + vsc

1 . (25)

Note that pin
1 and vin

1 are the fields in the fluid at constant
ambient temperature 	T0 = 0 and without the particle,

iω
1

c∞2
0

pin
1 = ρ∞

0 ∇ · vin
1 , (26a)

−iωρ∞
0 vin

1 = −∇pin
1 + η∞

0 ∇2vin
1

+ (
ηb∞

0 + 1
3η∞

0

)∇(∇ · vin
1

)
. (26b)

The total fields p1 and v1 obey the governing equations in
the heated fluid with 	T0 > 0, and therefore the scattered
fields psc

1 and vsc
1 represent the presence of both the particle

and of the temperature deviation in the bulk fluid. Subtracting
Eq. (26) from Eq. (10), we find the set of equations describing
the scattered fields as follows:(

iω

c2
0

− iω

c∞2
0

)
pin

1 + iω

c2
0

psc
1 = (ρ0 − ρ∞

0 )∇ · vin
1 + ρ0∇ · vsc

1 ,

(27a)

− iω
(
ρ0 − ρ∞

0

)
vin

1 − iωρ0v
sc
1

= (η0 − η∞
0 )∇2vin

1 + [(
ηb

0 + 1
3η0

) − (
ηb∞

0 + 1
3η∞

0

)]
×∇(∇ · vin

1

)+η0∇2vsc
1 +(

ηb
0+ 1

3η0
)∇(∇ · vsc

1

)−∇psc
1 .

(27b)

We note that terms with prefactors q0 − q∞
0 are explicitly

caused by the gradient in T0, and thus do not appear in our pre-
vious work [12]. Consequently, in the following we encounter
inhomogeneous Helmholtz equations, and we must rederive
the first-order solutions of Ref. [12].

As in Ref. [12], we solve the first-order acoustic scattering
problem by Helmholtz decompositions of the velocities vin

1
(purely compressional) and vsc

1 of the fluid as well as v′
1 of the

particle,

vin
1 = ∇φin

1 , (28a)

vsc
1 = ∇φsc

1 + ∇ × ψsc
1 , (28b)

v′
1 = ∇φ′

1 + ∇ × ψ′
1. (28c)

In Ref. [12], we split the scalar potentials φ1 and φ′
1 into a

compressional long-range part describing the weakly damped
bulk waves and a thermal part describing the short-range
thermal boundary layer. The thermal boundary layer drops out
due to the adiabaticity assumption (8c), so φ1 only refers to the
compressional part. Inserting Eq. (28a) in Eq. (26), Eqs. (28a)
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and (28b) in Eq. (27), and Eqs. (28c) and (18) in Eq. (17), we
derive that

∇2φ′
1 + k′2

c φ′
1 = 0, k′

c = ω

c∞′
lo0

, (29a)

∇2ψ′
1 + k′2

s ψ′
1 = 0, k′

s = ω

c∞′
tr0

, (29b)

∇2ψsc
1 + k2

s ψ
sc
1 = 0, ks = 1 + i

δs
, δs =

(
2η∞

0

ρ∞
0 ω

) 1
2

, (29c)

∇2φin
1 + k2

0φ
in
1 = 0, k0 = ω

c∞
0

, (29d)

∇2 psc
1 + k2

0 psc
1 = k2

02ac	T0 pin
1 , (29e)

vin
1 = 1

iωρ∞
0

∇pin
1 , pin

1 = iωρ∞
0 φin

1 , (29f)

vsc
1 = 1

iωρ∞
0

∇psc
1 − aρ	T0

iωρ∞
0

∇pin
1 + ∇ × ψsc

1 , (29g)

ac = 1

c∞
0

(
∂c0

∂T

)
T ∞

0

, aρ = 1

ρ∞
0

(
∂ρ0

∂T

)
T ∞

0

. (29h)

Here, we have introduced the undamped compressional wave
numbers k0 and k′

c, the shear wave numbers ks and k′
s, and the

viscous boundary-layer thickness δs. We have neglected small
factors |aq	T0| � 1 and the usual compressional damping
factor �c compared to unity in the derivation of Eq. (29).
Factors of �c are neglected because we will be working in the
long-wavelength limit characterized by the small parameter
x0,

x0 = k0a � 1, (30a)

�c = (
ηb∞

0 + 4
3η∞

0

)
ωκ∞

s0 ∼ x2
0δ

2
s a−2 � 1. (30b)

Moreover as |pin
1 | 
 |psc

1 |, terms of the form aq	T0 pin
1 are

kept (see Appendix B for further details). We also introduce
the following normalized wave numbers,

xs = ksa, x′
c = k′

ca, x′
s = k′

sa. (31)

Equations (29a), (29b), (29c), and (29d) are all homo-
geneous Helmholtz equations with axisymmetric solutions
expressed in terms of spherical Bessel functions jn(x), spher-
ical outgoing Hankel functions h(+)

n (x) (called hn(x) in
Ref. [12]), and Legendre polynomials Pn(cos θ ),

φin
1 =

∞∑
n=0

An jn(x0r̂)Pn(cos θ ), (32a)

φ′
1 =

∞∑
n=0

Anα
′
c,n jn(x′

cr̂)Pn(cos θ ), (32b)

ψ′
1 = eϕ

∞∑
n=1

Anα
′
s,n jn(x′

sr̂)∂θPn(cos θ ), (32c)

ψsc
1 = eϕ

∞∑
n=1

Anα
sc
s,nh(+)

n (xsr̂)∂θPn(cos θ ). (32d)

The inhomogenous Helmholtz equation (29e) is solved by
a partial-wave expansion for psc

1 ,

psc
1 =

∞∑
n=0

psc
1,n(r̂)Pn(cos θ ), (33a)

D̂r̂ psc
1,n(r̂) = iρ∞

0 ω 2ac	T0x2
0 r̂2 jn(x0r̂), (33b)

D̂r̂ =
[

d

dr̂

(
r̂2 d

dr̂

)
− n(n + 1) + x2

0 r̂2

]
. (33c)

To construct a Green’s function Gn(r̂, ξ ) for Eq. (33b)
that solves D̂r̂Gn(r̂, ξ ) = δ(r̂ − ξ ), we introduce the incom-
ing spherical Hankel functions h(−)

n (x). The Green’s function
Gn(r̂, ξ ), which obeys the conditions of continuity, Gn(r̂ =
ξ+, ξ ) = Gn(r̂ = ξ−, ξ ), and the derivative jump, ∂r̂Gn(r̂ =
ξ+, ξ ) − ∂r̂Gn(r̂ = ξ−, ξ ) = ξ−2, is given by

Gn(r̂, ξ ) =
{[

Bn(ξ ) + x0

2i
h(−)

n (x0ξ )

]
h(+)

n (x0r̂)

+ Cn(ξ )h(−)
n (x0r̂)

}
�(r̂ − ξ )

+
{[

Cn(ξ ) + x0

2i
h(+)

n (x0ξ )

]
h(−)

n (x0r̂)

+ Bn(ξ )h(+)
n (x0r̂)

}
�(ξ − r̂). (34)

Here, Bn(ξ ) and Cn(ξ ) are found from the remaining boundary
conditions. Then, with Gn(r̂, ξ ) given by Eq. (34), the solution
to Eq. (33b) that satisfies the Sommerfeld radiation condition
for outgoing waves, limr̂→∞ [r̂∂r̂φ

sc
1,n(r̂) − ix0r̂φsc

1,n(r̂)] = 0,
can be written as

psc
1,n(r̂) = iρ∞

0 ωAn
[(

αsc
c,n + I (−)

n (r̂, t )
)
h(+)

n (x0r̂)

+ (I (+)
n (∞, t )−I (+)

n (r̂, t ))h(−)
n (x0r̂)

]
, (35a)

I (±)
n (r̂, t ) = acx3

0

i

∫ r̂

1
ξ 2	T0(ξ, t )h(±)

n (x0ξ ) jn(x0ξ )dξ . (35b)

psc
1 from Eqs. (33a) and (35) reduces to the standard result

when setting 	T0 = 0, for which I (±)
n (r̂, t ) = 0 and αsc

c,n =
αsc,0

c,n . We note that psc
1,n in Eq. (35a) contains both an out-

going wave h(+)
n with a nonzero prefactor for all values

of r̂, and an incoming wave h(−)
n , which, however, disap-

pears outside the heated region around the particle, since
I (+)
n (r̂, t ) = I (+)

n (∞, t ) there, where the temperature rise is
exponentially suppressed [see Eq. (35b)]. Consequently, far
away from the heated region, the scattered wave is purely
outgoing as expected. Even for small temperature deviations
	T0 in the fluid, psc

1 is significantly perturbed by thermal
effects in a large region set by the thermal diffusion length
(see details in the Supplemental Material [16]). Lastly, the
constants {αsc

c,n, α
sc
s,n, α

′
c,n, α

′
s,n} are found from the boundary

conditions at the particle-fluid boundary, r̂ = 1. The boundary
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conditions at the particle boundary are continuous velocity
and stress,

v1r = v′
1r, v1θ = v′

1θ , (36a)

σ1θr = σ ′
1θr, σ1rr = σ ′

1rr . (36b)

In contrast to the six boundary conditions used in our
work [12], we only need four here, because the adiabatic
assumption excludes the thermal scalar potential and the cor-
responding two thermal scattering coefficients αsc

t,n and α′
t,n

from the theory. Using the velocity potentials Eqs. (28) and
(32); the stress tensors from Eqs. (7) and (14) with the pres-
sures from Eqs. (29f), (33a), and (35); and the definition (18)
of velocity and viscosity in the solid, we write the boundary
conditions (36) expressed for each value of n as follows:
v1r = v′

1r

αsc
c,nx0h(+)′

n (x0) − αsc
s,nn(n + 1)h(+)

n (xs)

− α′
c,nx′

c j′n(x′
c) + α′

s,nn(n + 1) jn(x′
s)

= −x0 j′n(x0) − I (+)
n (∞, t )x0h(−)′

n (x0), (37a)

v1θ = v′
1θ

αsc
c,nh(+)

n (x0) − αsc
s,n[xsh

(+)′
n (xs) + h(+)

n (xs)]

− α′
c,n jn(x′

c) + α′
s,n[x′

s j′n(x′
s) + jn(x′

s)]

= − jn(x0) − I (+)
n (∞, t )h(−)

n (x0), (37b)

σ1θr = σ ′
1θr

αsc
c,n2η0[x0h(+)′

n (x0) − h(+)
n (x0)]

− αsc
s,nη0

[
x2

s h(+)′′
n (xs) + (n2 + n − 2)h(+)

n (xs)
]

− α′
c,n2η′

0[x′
c j′n(x′

c)− jn(x′
c)]

+ α′
s,nη

′
0

[
x′2

s j′′n (x′
s) + (n2 + n − 2) jn(x′

s)
]

= −2η0[x0 j′n(x0) − jn(x0)]

− I (+)
n (∞, t )2η0[x0h(−)′

n (x0) − h(−)
n (x0)], (37c)

σ1rr = σ ′
1rr

αsc
c,nη0

[(
2x2

0 − x2
s

)
h(+)

n (x0) + 2x2
0h(+)′′

n (x0)
]

− αsc
s,nη02n(n + 1)[xsh

(+)′
n (xs) − h(+)

n (xs)]

− α′
c,nη

′
0

[(
2x′2

c − x′2
s

)
jn(x′

c) + 2x′2
c j′′n (x′

c)
]

+ α′
s,nη

′
02n(n + 1)[x′

s j′n(x′
s) − jn(x′

s)]

= −I (+)
n (∞, t )η0

[(
2x2

0 − x2
s

)
h(−)

n (x0) + 2x2
0h(−)′′

n (x0)
]

− η0
[(

2x2
0 − x2

s

)
jn(x0) + 2x2

0 j′′n (x0)
]
. (37d)

Note that for n = 0, Eqs. (37b) and (37c) are void, so in
this case only two equations with two unknown coefficients
need to be solved. Similar to the corresponding boundary
condition equations (52) in Ref. [12], we write Eq. (37) as
a 4-by-4 matrix equation and apply Cramer’s rule to find the
scattering coefficients by expanding the involved determinants
to leading order in x0. We use the following scalings in our

derivation,

�s, I (±)
n (∞, t ), η̃−1

0 ∼ x2
0, x′

c, x′
s,

∣∣aq	T0

∣∣ ∼ x0. (38)

For solid particles, only the two scattering coefficients αsc
c,n

and αsc
s,n of the fluid are needed to calculate F rad. To leading

order in x0, the coefficient αsc
s,n is unchanged compared to the

case 	T0 = 0, whereas αsc
c,n is

αsc
c,n = αsc,0

c,n + I (+)
n (∞, t ), (39)

where αsc,0
c,n is the scattering coefficient evaluated at 	T0 = 0.

The expressions for αsc
s,n and αsc,0

c,n to leading order in x0 for
n = 0, 1, and 2, which are the coefficients needed to calculate
F rad, are found to be

αsc,0
c,0 = − ix3

0

3

[
1 − κ̃∞

s0

]
, (40a)

αsc,0
c,1 = ix3

0

3

(
ρ̃∞

0 − 1
)[

3(ixs − 1) + x2
s

]
(
2ρ̃∞

0 + 1
)
x2

s − 9(1 − ixs)
, (40b)

αsc
s,1 = ix0

(
ρ̃∞

0 − 1
)
x2

s e−ixs(
2ρ̃∞

0 + 1
)
x2

s − 9(1 − ixs)
, (40c)

αsc,0
c,2 = 2ix5

0

15

6ix2
s + x3

s − 15(i + xs )

9x2
s (i + xs )

, (40d)

αsc
s,2 = − x2

0xse−ixs

9(i + xs )
. (40e)

C. The second-order steady streaming and Frad

We now depart from assuming an arbitrary incident ax-
isymmetric pressure wave and focus on the important special
case of a standing plane wave. The incident pressure pin

1 (z)
varies spatially along the z axis with the wave number k0, the
amplitude pa, and the phase shift k0d ,

pin
1 (z) = pa cos[k0(z + d )], (41)

which, by comparing to Eqs. (29f) and (32a), corresponds to
defining the incident wave by

An = pa

iρ∞
0 ω

2n + 1

2
in[eik0d + (−1)ne−ik0d ]. (42)

To evaluate F rad, we compute the second-order time-
averaged fields, velocity 〈v2〉 and pressure 〈p2〉. They are split
into an incident (in) and a scattered (sc) part, where the former
is assumed to be generated solely by the incident pressure field
without any gradients in T0 and with no suspended particle in
the fluid,

〈p2〉 = 〈
pin

2

〉 + 〈
psc

2

〉
, (43a)〈

v2
〉 = 〈

vin
2

〉 + 〈
vsc

2

〉
, (43b)

0 = ∇ · 〈
ρ∞

0 vin
2

〉 + 1

c∞2
0

∇ · 〈
pin

1 vin
1

〉
, (43c)

0 = ∇ · 〈
η∞

0

[∇vin
2 + (∇vin

2

)T]
+ (

ηb∞
0 − 2

3η∞
0

)(∇ · vin
2

)
I

− pin
2 I + ηin

1

[∇vin
1 + (∇vin

1 )T]
+ (

ηb,in
1 − 2

3ηin
1

)(∇ · vin
1

)
I − ρ∞

0 vin
1 vin

1

〉
, (43d)
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where 〈vsc
2 〉 is the microstreaming. Subtracting Eqs. (43c) and

(43d) from Eq. (13), and using that 〈vin
2 〉 and 〈pin

1 vin
1 〉 are

negligibly small for a standing wave, we find the following
equations for 〈vsc

2 〉 and 〈psc
2 〉 to leading order,

∇ · 〈
vsc

2

〉 = − 1

ρ∞
0 c∞2

0

∇ · 〈p1v1〉nii, (44a)

ν∞
0 ∇2

〈
vsc

2

〉+(
νb∞

0 −2

3
ν∞

0

)
∇(∇ · 〈

vsc
2

〉)
I − 1

ρ∞
0

∇〈
psc

2

〉
I

= −∇ ·
〈
ν1[∇v1 + (∇v1)T]

+
[
νb

1 − 2

3
ν1

]
(∇ · v1) I

〉
nii

+∇ · 〈v1v1〉nii+aρ	T0∇ · 〈
vin

1 vin
1

〉
, (44b)

where the index “nii” (stands for “no incident-incident”) indi-
cates that terms with products of two first-order incident fields
are discarded. In Eq. (44) we have introduced the kinematic
viscosities to zeroth and first order,

ν∞
0 = η∞

0

ρ∞
0

, νb∞
0 = ηb∞

0

ρ∞
0

, (45a)

ν1 = η1

ρ∞
0

≈ −B∞
c

ν∞
0

ρ∞
0 c∞2

0

p1, (45b)

νb
1 = ηb

1

ρ∞
0

≈ −Bb∞
c

ν∞
0

ρ∞
0 c∞2

0

p1. (45c)

To facilitate the computation of F rad, we note that the inci-
dent terms, which make no reference to the particle heating

or scattering, cannot contribute to the radiation force, and
therefore, we obtain the useful expression∮

∂�0

〈
η∞

0

[∇vin
2 + (∇vin

2

)T] + (
ηb∞

0 − 2
3η∞

0

)(∇ · vin
2

)
I

− pin
2 I + ηin

1

[∇vin
1 +(∇vin

1

)T] + (
ηb,in

1 − 2
3ηin

1

)(∇ · vin
1

)
I

− ρ∞
0 vin

1 vin
1

〉 · n dS = 0. (46)

Then, by subtracting Eq. (46) from Eq. (3), we find

F rad = ρ∞
0

∮
∂�0

{〈
ν∞

0

[∇vsc
2 + (∇vsc

2

)T]
+(

νb∞
0 − 2

3ν∞
0

)(∇ · vsc
2

)
I− 1

ρ∞
0

psc
2 I

〉
+ 〈

ν1[∇v1+(∇v1)T] +(
νb

1 − 2
3ν1

)
(∇ · v1) I − v1v1

〉
nii

− aρ	T0
〈
vin

1 vin
1

〉} · ndS. (47)

The sets of Eqs. (44) and (47) determine F rad similarly to
Eq. (17) (for the second-order scattered fields) and Eq. (82)
in Ref. [12], but differing by the appearance here of the
additional terms containing 〈vin

1 vin
1 〉 (see Appendix C for

further explanation). However, the solution method remains
unchanged, as these new terms are included using the
same Helmholtz decomposition and the same partial-wave
expansion as for the other terms containing products of
first-order fields. From this point, 〈vsc

2 〉, 〈psc
2 〉, and F rad

are thus computed using the same technique as detailed in
Ref. [12], Secs. IV A, IV B, V A, and Appendix D, and
therefore it suffices here simply to summarize the result for
F rad. Since 〈vin

2 〉 is neglected here, F rad only contains the
component consisting of time-averaged first-order products,
denoted F rad

11 in Ref. [12], Eqs. (84) and (87), and not the
drag-force component, denoted F rad

2,in [12],

F rad = − ez3πρ∞
0

{
− a2ν∞

0

ρ∞
0 c∞2

0

∫ ∞

1
dξ

∫ π

0
dθ cos θ sin θ ∇ · 1

2
Re[p1v1]nii

+ a2
∫ ∞

1
dξ

∫ π

0
dθ sin θ (1 − ξ−2)

1

2
Re

[
er · (

aρ	T0v
in
1 vin∗

1

) · ez + 1

2
aξ

{
aρ	T0∇ · (

vin
1 vin∗

1

)} · eθ sin θ

+ er · (
v1v

∗
1 − ν1[∇v1 + (∇v1)T]∗ − [

νb
1 − 2

3ν1
]
(∇ · v∗

1 )I
)

nii · ez

+ 1

2
aξ

{∇ · (
v1v

∗
1 − ν1[∇v1 + (∇v1)T]∗ − [

νb
1 − 2

3ν1
]
(∇ · v∗

1 )I
)

nii

} · eθ sin θ

]

+
∫ π

0
dθ

sin θ

2
Re

[
a3

x2
s

(
v1r∂rv

∗
1r + 1

r
v1θ ∂θv

∗
1r − 1

r
v1θv

∗
1θ

)
cos θ − a3

x2
s

(
v1r∂rv

∗
1θ + 1

r
v1θ ∂θv

∗
1θ − 1

r
v1rv

∗
1θ

)
sin θ

]
r̂=1

}
.

(48)

We emphasize two differences between this expression
for F rad and expression (87) in Ref. [12] for F rad

11 , which is
replicated in Appendix C, Eq. (C5). First, two extra terms con-
taining aρ	T0v

in
1 vin∗

1 enter in the second integral of Eq. (48).
Second, the first-order fields here are different due to the in-
clusion of a spatially varying T0 through the integrals I (±)

n (r̂, t )
and their r̂ derivatives, and due to the assumption of an
adiabatic acoustic wave which was not enforced in Ref. [12].

Because of the latter, the final result here does not contain any
of the combinations of thermal scattering coefficients αt,n that
appear in F rad

11 of Ref. [12]. The mathematical structure of
F rad is a sum over quadratic terms of scattering coefficients,

F rad = −ez3πρ∞
0

∞∑
n=0

n + 1

(2n + 1)(2n + 3)
Re(AnA∗

n+1Dn),

with Dn = D0
n + D	T0

n , (49a)
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Di
n = Si

00,n + Si
0c,nα

sc,0∗
c,n+1 + Si

0s,nα
sc∗
s,n+1 + Si

c0,nα
sc,0
c,n

+ Si
cc,nα

sc,0
c,n αsc,0∗

c,n+1 + Si
cs,nα

sc,0
c,n αsc∗

s,n+1 + Si
s0,nα

sc
s,n

+ Si
sc,nα

sc
s,nα

sc,0∗
c,n+1 + Si

ss,nα
sc
s,nα

sc∗
s,n+1, i = 0,	T0.

(49b)

Here, we have defined the force coefficients Dn and the
second-order coefficients Si

kl,n, i = 0, 	T0. We note that the
effects of radiation pressure and microstreaming are mixed in
these nine coefficients and are not easily separated. However,
for i = 0 (no heating), we find that Si

0c,0 = Si
c0,0 = Si

c0,1 = 2i
3 ,

listed in Appendix D, are the only coefficients contributing to
leading order in x0 if microstreaming is neglected and only
the radiation pressure is left. The force coefficients have been
split into the two components D0

n and D	T0
n , where D0

n are the
force coefficients for 	T0 = 0, and D	T0

n contains terms that
depend on 	T0 explicitly or implicitly through I (±)

n (r̂, t ). To
determine the the second-order coefficients Si

kl,n, we insert
p1 from Eqs. (29f), (33a), and (35) and v1 from Eqs. (29f)
and (29g) with the potentials from Eq. (32) and read off the
coefficients in front of each combination of the scattering
coefficients. To leading order in the small parameter x0,
only D0

0, D0
1, and D	T0

n contribute to F rad. Further, the only
leading-order contribution to D	T0

n arises from terms in S	T0
00,n

that scale with x2
0ac	T0. To leading order, we obtain

D	T0
n (t ) =

∫ ∞

1

(
1 − 1

r̂2

){
−2ac	T0x2

0 jn(x0r̂) jn+1(x0r̂)

+ i

r̂2
[I (+)

n (r̂, t ) + I (−)
n (r̂, t ) − I (+)

n+1(r̂, t )

− I (−)
n+1(r̂, t )]

}
dr̂

= 2acx2
0

∫ ∞

1
	T0

[
x0

(
r̂ − 1

3r̂

)(
j2
n (x0r̂) − j2

n+1(x0r̂)
)

−
(

1 − 1

r̂2

)
jn(x0r̂) jn+1(x0r̂)

]
dr̂, (50)

where Eq. (35b) and integration by parts were used to reach
the final expression. All the coefficients D	T0

n scale with
x2

0ac	T0, although they decrease in magnitude with n, and
one may need to evaluate many terms in the sum of Eq. (49)
to reach convergence. We note that D	T0

n does not depend
on the boundary-layer thickness δs, and thus it can cause
significant contributions to F rad, without entering the viscous
limit of δs � a. In Appendix D we list all the coefficients S0

ik,0

and S0
ik,1 needed to compute D0

0 and D0
1. The final expression

in the long-wavelength limit for F rad on a heated particle in
an incident standing pressure wave is

F rad = − ez πρ∞
0 Re

(
A0A∗

1D0
0 + 2

5
A1A∗

2D0
1

)

− ez3πρ∞
0

∞∑
n=0

n + 1

(2n + 1)(2n + 3)
Re

(
AnA∗

n+1D	T0
n

)
,

with D0
0 and D0

1 from Eq. (49b),

αsc,0
c,n for n = 0, 1, 2 from Eq. (40),

αsc
s,n for n = 1, 2 from Eq. (40),

S0
ik,n for n = 0, 1 from Appendix D,

D	T0
n from Eq. (50), and An from Eq. (42). (51)

Finally, using Eq. (24) we approximate D	T0
n in the limit

t → ∞ and find the following expression for 	T0,

	T0(r̂,∞) = 1

r̂
	T surf

0 . (52)

This result combined with Eq. (50) leads to the following
expression in leading order,

D	T0
n (∞) = π

(2n + 1)(2n + 3)
x2

0ac	T surf
0 . (53)

IV. RESULTS FOR A STANDING PLANE WAVE

Inserting An from Eq. (42) in Eq. (51), we obtain F rad from
a standing plane wave on a spherical particle of radius a to
leading order x3

0 = k3
0a3 or x2

0ac 	T0,

F rad = 4π�aca3k0Eac sin(2k0d ) ez, (54a)

Eac = 1

4
κ∞

s0 p2
a, (54b)

�ac(t ) = �0
ac + �	T0

ac (t ), (54c)

�0
ac = 3

2
x−3

0 Re
(
D0

0 − 2D0
1

)
, (54d)

�	T0
ac (t ) = 3

2
x−3

0

∞∑
n=0

(n + 1)Re
[
(−1)nD	T0

n (t )
]
, (54e)

where we have introduced the usual time-averaged acous-
tic energy density Eac and the acoustic contrast factor �ac

[1,2,9,10]. The latter is split as �ac = �0
ac + �	T0

ac (t ) into the
sum of an ambient-temperature term �0

ac with 	T0 = 0 and
a term �	T0

ac (t ) due to the particle heating 	T0 > 0. A main
feature is that heating through 	T0 may cause a sign reversal
of �ac, thus possibly reversing the direction of particle focus-
ing from pressure nodes to antinode, or vice versa. We obtain
the asymptotic limit �	T0

ac (∞) for long times of the acoustic
contrast-factor perturbation �	T0

ac (t ) by combining Eqs. (53)
and (54e),

�	T0
ac (∞) = 3π

8

ac	T surf
0

x0
. (55)

The time evolution of the acoustic contrast factor �ac(t ) is
found numerically by evaluating D	T0

n (t ) in Eq. (50), with
	T0(t ) from Eq. (24) for a polystyrene particle of radius
a = 1, 2, and 5 µm in the three different liquids (a) water, (b)
ethanol, and (c) oil. We have chosen the heat power density
P0 = 3	T surf

0 kth∞
0 a−2 such that the asymptotic surface tem-

perature increase becomes 	T surf
0 = 1 K. The values of the

power density P0 and the absorbed power Q̇ = 4π
3 a3P0 are

listed in Table I, and the material parameters are given in
Table II. The resulting �ac as a function of time is shown in
Fig. 2, where we have used the terms n � 15 in the sum of
Eq. (54e) to reach a satisfactory convergence.

For a polystyrene particle in water, we see in Fig. 2(a)
that for all three particle sizes the initial value of the acoustic
contrast factor is nearly the same, �ac(0) = 0.17. Even for the
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TABLE I. Power density P0 and absorbed power Q̇ for the nine
cases shown in Fig. 2: a polystyrene particle of radius a = 1, 2, and
5 µm in water, oil, and ethanol, respectively.

a Source Water Ethanol Oil Unit

1 µm P0 1800 500 500 GW m−3

2 µm P0 460 130 120 GW m−3

5 µm P0 73 20 20 GW m−3

1 µm Q̇ 7.7 2.1 2.1 μW
2 µm Q̇ 15 4.1 4.2 μW
5 µm Q̇ 38 11 10 μW

largest particle, a = 5 µm, the heating induces a 59% increase,
�ac(∞) = 0.27, and this effect increases to �ac(∞) = 0.41
(141% increase) and 0.64 (276% increase) as the particle
radius decreases to a = 2 and 1 µm, respectively.

For the two organic liquids ethanol and oil, we see a much
stronger effect in Figs. 2(b) and 2(c). First, we notice that
�ac(0) depends on the radius before the onset of the heat-
ing, a well-known effect due to the viscous boundary layer,
in line with the previous studies of Refs. [4–10,12]: As the
radius decreases, a = 5, 2, and 1 µm, we find the decreasing
values �ac(0) = 0.35, 0.34, and 0.28 for ethanol, and more
pronounced, and even with a sign change, the values �ac(0) =
0.09, −0.09, and −0.19 for oil. Second, we find that the heat-
ing of the particle induces even larger changes in the acoustic
contrast factor. For ethanol, heating leads to �ac(∞) = 0.22,
0.02, and −0.36 for a decreasing radius of a = 5, 2, and
1 µm, and correspondingly for oil, �ac(∞) = −0.03, −0.39,
and −0.80.

The observed heat-induced increase �	T0
ac (t ) in �ac for wa-

ter and the decrease for ethanol and oil is due to the opposite

TABLE II. Parameters at T ∞
0 = 300 K for water [17,29–31],

oil [22–24], ethanol [18,19,21], and polystyrene [10,25–27,32,33]
used in the examples in Fig. 2. We list the parameters necessary
to compute 	T0 from Eq. (24), the scattering coefficients αi,n from
Eq. (40), and the second-order coefficients Sik,n found in Appendix D.
Note that κs0 can be found from Eqs. (9) and (16) for a fluid and a
solid, respectively. Due to lack of data, we set ( ∂η

∂ρ
)ρ0

= 0 for oil and
ethanol.

Parameter Water Oil Ethanol Polystyrene Unit

c0, clo0 1502 1445 1138 2407 m s−1

ctr0 – – – 1154 m s−1

ρ0 996.6 922.6 784 1050 kg m−3

αp0 0.275 0.705 1.104 0.209 10−3 K−1

cp0 4181 2058.4 2445 1241 J (kg K)−1

kth
0 0.61 0.166 0.167 0.154 W (K m)−1

Dth
0 1.464 0.874 0.871 1.182 10−7 m2 s−1

γ0 1.012 1.15 1.19 1.04 –
η0 0.854 57.4 1.01 – mPa s

ηb
0 2.4 85.13 1.4 – mPa s

1
η0

∂η

∂T |0 −0.022 −0.044 −0.019 – K−1

1
η0

∂η

∂ρ
|0 −2.3 × 10−4 – – – m3 kg−1

ac, Eq. (29h) 1.7 −2.2 −3.0 – 10−3 K−1
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FIG. 2. The acoustic contrast factor �ac at frequency f = 1 MHz
plotted as function of time t for a polystyrene particle with radius a =
1, 2, or 5 µm heated to 	T surf

0 = 1 K in different liquids: (a) water
with tdiff

λ = 2.6 s, (b) ethanol with tdiff
λ = 2.5 s, and (c) oil with tdiff

λ =
4.0 s, where tdiff

λ = λ2/(6Dth
0 ) is the heat diffusion time across one

wavelength λ.

signs of the thermal sound-speed coefficient ac, Eq. (29h), of
the respective sound speeds c0. The effect is so large that we
predict a sign reversal in F rad for a polystyrene particle with
a = 1 µm in ethanol and a = 5 µm in oil. Further, �	T0

ac (t )
is established by bulk dynamics on a timescale of around
1 s, after which it is well approximated by Eq. (55). The
physical mechanism causing this change in F rad is the ensuing
heating of the bulk fluid by the heated particle that changes
the scattered waves defined in Eqs. (25)–(27), which in turn
induce the acoustic microstreaming 〈vsc

2 〉 that generates a drag
force on the particle, as sketched in Fig. 1.

More details of the physical mechanism causing the heat-
induced F rad are illustrated in Fig. 3 for the case of a
2-µm-radius polystyrene particle suspended in water, subject
to a 1-MHz standing plane ultrasound pressure wave, Eq. (41),
of amplitude pa = 0.1 MPa and phase shift k0d = 1

3π , and
heated to a surface temperature of 	T surf

0 = 1 K above the
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FIG. 3. Results for a polystyrene particle of radius a = 2 µm in
water in a standing plane wave at 1 MHz (wavelength λ = 1.5 mm)
and at T ∞

0 = 300 K. (a) The time evolution of the radial temperature
deviation 	T0(r̂, t ) in the fluid for 1 < r̂ < 5000 computed analyti-
cally (orange line) from Eq. (52) and numerically (red dashed line).
(b) A unit-vector plot of the direction of the microstreaming velocity
〈vsc

2 〉 and a color plot of its amplitude |〈vsc
2 〉| for 	T surf

0 = 0 K (left
half) and 	T surf

0 = 1 K (right half) computed numerically in COMSOL

MULTIPHYSICS.

ambient temperature of 300 K. The numerical results were
obtained in COMSOL MULTIPHYSICS [34] as described in the
Supplemental Material [16].

The time development of the temperature deviation
	T0(r̂, t ), Eq. (6), in the fluid from ambient temperature,
caused by heating of the particle, is plotted in Fig. 3(a).
The numerical results show that the analytical long-time-limit
expression (52) is a good approximation already after ∼1 ms.
This result constitutes a numerical validation of the model,
and it establishes the range of validity of the analytical ex-
pression Eq. (52) for 	T0(r̂, t ). Moreover, it is seen that after
∼10 s, 	T0 has developed into the stationary r̂−1 form in
the one-wavelength region r < λ. This timescale is the same
as the heat-diffusion timescale tdiff

λ = λ2/(6Dth ) observed in
Fig. 2 for �ac to reach its asymptotic value �	T0

ac (∞), Eq. (55).
The heat-induced change to the acoustic microstreaming

〈vsc
2 〉 around the particle is illustrated in Fig. 3(b). In general,

at zero heating, 〈vsc
2 〉 contains several multipole components,

as shown by the unit-vector plot on the left half of the fig-
ure (	T surf

0 = 0 K). Remarkably, the heating of the particle
results in a strong enhancement of a unidirectional (dipole)
component as shown in the right half of the figure (	T surf

0 =

1 K). It is this change in morphology of the microstream-
ing field 〈vsc

2 〉 that causes the heating-induced change of the
force coefficient D	T0

n in F rad, Eq. (51), and the corresponding
change �	T0

ac of the contrast factor, Eq. (54e). The amplitude
and direction of the unidirectional component in the mi-
crostreaming correlates with the amplitude and sign of �	T0

ac ,
exemplified by the nine examples plotted in Fig. 2.

A key assumption of our analysis is that the heated particle
does not execute a significant time-averaged motion, such that
the temperature field 	T0(r, t ) can develop in the surrounding
fluid from a stationary heat source. Since the heat-induced
perturbation in F rad is established on a timescale of around 1 s
(see Fig. 2), our analysis is primarily relevant for determining
the final equilibrium position of the heated particle. The dy-
namics of slowly moving particles may be described by the
theory; however, the description becomes increasingly inac-
curate in the transient phase the faster the particle is moving.
Regardless of such inaccuracies in the detailed dynamics, our
model has a robust prediction regarding whether the particle
migrates to a node (�ac > 0) or an antinode (�ac < 0) in the
pressure field as heating of the particle may change the sign of
�ac as seen for the 1-µm-radius polystyrene particle in ethanol
and the 5-µm-radius polystyrene particle in oil in Figs. 2(b)
and 2(c), respectively. The detailed dynamics only affects the
time it takes the particle to reach its temperature-dependent
equilibrium position. By combining particle heating with tun-
ing of the solute by introducing various solvents, other cases
of sign reversal in acoustophoresis may be obtained. One
example is to add iodixanol to an aqueous solution of particles
with an initial positive contrast factor to obtain a negative
contrast factor, the so-called medium-tuning technique [35].
Subsequently, a second sign reversal may be obtained by
heating the particle.

V. CONCLUSION

We have derived an analytical theory for the acoustic ra-
diation force F rad on a heated spherical solid particle in an
incident standing plane wave. The theory assumes that the
external or internal heating of the particle is low enough that
only small perturbations in the physical parameters of the
solid particle and the external fluid occur. Further, effects of
thermal convection are assumed negligible. In Sec. III A, we
analyze how the temperature increase 	T0 diffuses from the
heated particle into the surrounding fluid, and we derive the
analytical expression (24); in Sec. III B, we compute how an
incident pressure wave scatters on the boundary of the slightly
heated particle as well as on the entire heated region in the
bulk fluid surrounding the particle; and in Sec. III C, we derive
the main result of our work, the general expression (49a) for
F rad in terms of the force coefficients Di

n, Eq. (49b), as well as
the analytical expression (51) for F rad in the long-wavelength
limit. Furthermore, in relation to Eq. (50), we point out that the
heat-induced change D	T0

n in the force coefficient Dn does not
depend on the boundary-layer thickness δs, but instead on the
scattering induced by the long-range, 1/r-decaying thermal
changes in the bulk acoustic properties of the fluid. Conse-
quently, F rad can be greatly perturbed by particle heating even
for particles of large radius a � δs in the long-wavelength
limit a � λ.
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In Sec. IV, we analyze the changes to F rad in an incident
standing plane wave by studying numerically and analyti-
cally the changes �	T0

ac to the acoustic contrast factor due to
the temperature increase 	T0 caused by the heated particle.
We show in Fig. 2 that by heating a polystyrene particle
of radius a = 1, 2, and 5 µm suspended in water, ethanol,
or oil, significant quantitative (up to an order of magnitude)
and even qualitative changes (sign reversal) to the acoustic
contrast factor �ac occur. We point out that the opposite sign
in the observed heat-induced change �	T0

ac (t ) of �ac for water
and for the two organic liquids ethanol and oil is due to the
opposite signs of the thermal sound-speed coefficient ac [see
Eq. (29h) and Table II].

The crucial role of microstreaming 〈vsc
2 〉 in causing the ob-

served heat-induced changes in F rad is illustrated in Fig. 3(b).
The analysis shows how a unidirectional component in the
microstreaming is strongly enhanced by the heating of the

fluid surrounding the heated particle. The drag force resulting
from this microstreaming component is a main cause of the
resulting changes of the acoustic radiation force F rad.

We have extended the analytical theory of the acoustic ra-
diation force on a single spherical solid particle suspended in
a homogeneous Newtonian fluid to take into account heating
of the particle. Examples where particle heating may greatly
affect the force on the particle are explored. The heat-induced
change in the acoustic contrast factor found in this work
provides an additional control parameter for acoustofluidic
handling of suspended microparticles. We speculate that this
control may be obtained by optical methods such as ab-
sorbtion of laser light by dyed particles. We hope that the
presented analysis will inspire experimental efforts in the
field of microscale acoustofluidics trying to improve particle-
sorting, -separation, and -trapping techniques based on our
predictions.

APPENDIX A: APPROXIMATE TEMPERATURE PROFILE AROUND A UNIFORMLY HEATED SPHERE

The solution to the heat diffusion problem described in Sec. III A can be found in Ref. [28], and adapted to the notation used
in this work one has the following:

	T ′
0 (r̂, t ) = P0a2

3kth∞′
0

[
k̃th∞

0 + 1

2
(1 − r̂2) − 6

π r̂

√
1

ρ̃∞
0 c̃∞

p0k̃th∞
0

∫ ∞

0

e−ξ 2t/t th
d

ξ 2

[sin ξ − ξ cos ξ ] sin(ξ r̂)

[g(ξ )]2 + 1
ρ̃∞

0 c̃∞
p0 k̃th∞

0
ξ 2 sin2 ξ

dξ

]
, (A1a)

	T0(r̂, t ) = P0a2

3kth∞
0 r̂

[
1 − 6

π

∫ ∞

0

e−ξ 2t/t th
d

ξ 3
K (ξ, r̂)dξ

]
, (A1b)

K (ξ, r̂) = [sin ξ − ξ cos ξ ]

k̃th∞
0

√
1

ρ̃∞
0 c̃∞

p0 k̃th∞
0

ξ sin ξ cos
[√

D̃th∞
0 ξ (r̂ − 1)

] − g(ξ ) sin
[√

D̃th∞
0 ξ (r̂ − 1)

]
[g(ξ )]2 + 1

ρ̃∞
0 c̃∞

p0 k̃th∞
0

ξ 2 sin2 ξ
, (A1c)

g(ξ ) = [
1 − (

k̃th∞
0

)−1]
sin ξ − ξ cos ξ . (A1d)

For t � 5t th
d , the function e−ξ2t/t th

d

ξ 3 decays so rapidly that the integral in Eq. (A1b) is well approximated by using the leading order

in ξ of K (ξ, r̂), K (ξ, r̂) ≈ ξ 2

3 sin(
√

D̃th∞
0 ξ r̂), where we have kept in mind that ξ r̂ can still be large. Using

6

π

∫ ∞

0

e−ξ 2t/t th
d

3ξ
sin

(√
D̃th∞

0 ξ r̂
)
dξ = erf

(
xth

D r̂
)
, (A2)

we arrive at the result in Eq. (24).

APPENDIX B: DERIVATION OF THE HELMHOLTZ EQUATIONS (29)

Here we add some details about the derivation of Eq. (29). The assumptions of Eq. (6) are used, and terms of order |aq	T0|
are neglected compared to unity. Therefore, we approximate terms as

∇ · (q0g1) = q0∇ · g1 = q∞
0 (1 + aq	T0)∇ · g1 = q∞

0 ∇ · g1. (B1)

Further, we assume that the amplitudes of the scattered and incident fluid fields roughly follow the scaling found for the case of
an unheated particle known from previous work [3–6,9,10,12]. The validity of these assumptions is subsequently tested when
comparing the analytical expressions derived for psc

1 and vsc
1 against direct numerical results in the Supplemental Material [16].

With our simplifying assumptions, Eq. (27) yields

− iω

c∞2
0

2ac	T0 pin
1 + iω

c∞2
0

psc
1 = ρ∞

0 aρ	T0∇ · vin
1 + ρ∞

0 ∇ · vsc
1 , (B2a)

−iωρ∞
0 aρ	T0v

in
1 − iωρ∞

0 vsc
1 = η∞

0 aη	T0∇2vin
1 + (

ηb∞
0 ab

η + 1
3η∞

0 aη

)
	T0∇

(∇ · vin
1

)
+ η∞

0 ∇2vsc
1 + (

ηb∞
0 + 1

3η∞
0

)∇(∇ · vsc
1

) − ∇psc
1 . (B2b)
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Taking the divergence of Eq. (B2b), inserting it in Eq. (B2a), and using Eq. (28), we find that

∇2 psc
1 + ω2

c∞2
0

psc
1 − 2ac	T0

ω2

c∞2
0

pin
1 = (

ηb∞
0 ab

η + 4
3η∞

0 aη

)
	T0∇2∇2φin

1 + (
ηb∞

0 + 4
3η∞

0

)∇2∇2φsc
1 . (B3)

We know from previous work that φin
1 ≈ 1

iρ∞
0 ω

pin
1 in the long-wavelength limit. Further, ∇2φin

1 ∼ | ω2

c∞2
0

φin
1 |, and therefore

(ηb∞
0 ab

η + 4
3η∞

0 aη )	T0∇2∇2φin
1 ∼ |aq	T0�c

ω2

c∞2
0

pin
1 | � |aq	T0

ω2

c∞2
0

pin
1 |, where �c = (ηb∞

0 + 4
3η∞

0 )ωκ∞
s0 ∼ x2

0 � 1. Moreover, by

assuming that φsc
1 roughly scales as for the case of unheated particles, we also have that (ηb∞

0 + 4
3η∞

0 )∇2∇2φsc
1 ∼ | ω2

c∞2
0

�c psc
1 | �

| ω2

c∞2
0

psc
1 |. We only keep terms to leading order in the small parameters x0 and aq	T0 in our analysis, and the right-hand-side of

Eq. (B3) is neglected. Lastly, the term 2ac	T0
ω2

c∞2
0

pin
1 can, in fact, not be neglected compared to ω2

c∞2
0

psc
1 . For the case of an unheated

particle in the long-wavelength limit, psc
1 ∼ x0 pin

1 in the vicinity of the particle, and therefore 2ac	T0
ω2

c∞2
0

pin
1 ∼ | ω2

c∞2
0

ac	T0
x0

psc
1 |,

where ac	T0
x0

can have an amplitude comparable to unity within the framework of our theory. Thus, we find Eq. (29e) for the
scattered pressure field psc

1 .
Inserting Eq. (28) into Eq. (B2b), we also find that

∇[−iωρ∞
0 aρ	T0φ

in
1 − iωρ∞

0 φsc
1 − (

ηb∞
0 ab

η + 4
3η∞

0 aη

)
	T0∇2φin

1 − (
ηb∞

0 + 4
3η∞

0

)∇2φsc
1 + psc

1

]
= ∇ × (

η∞
0 ∇2ψsc

1 + iωρ∞
0 ψsc

1

)
. (B4)

We let the gradient part and the rotational part vanish separately, and from the rotational part we get Eq. (29c). By applying
the same scaling relations as above, the gradient part yields φsc

1 = 1
iωρ0

psc
1 − aρ	T0

iωρ∞
0

pin
1 , which yields Eq. (29g) by using Eqs. (6d)

and (28b).
The first-order equations (26) for the incident wave are those describing the standard case of a viscous adiabatic fluid at

constant ambient temperature. By neglecting the factor �c compared to unity when working in the long-wavelength limit, the
results of Eqs. (29d) and (29f) are the usual results found at a constant ambient zeroth-order temperature. When using the
approximation from Eq. (B1) in Eq. (17), we simply get the standard equations for adiabatic wave propagation in a solid.
By combining this with Eqs. (18) and (28c), the standard results in Eqs. (29a) and (29c) are found. Thus, the temperature
dependencies of the solid parameters are neglected in our analytical model.

APPENDIX C: PRESENTATION AND DISCUSSION OF CENTRAL EQUATIONS FROM OUR PREVIOUS WORK

The derivation of F rad in this paper refers to our previous work in Ref. [12], and here we replicate some of the key
equations from this work to aid the reader. Equations (17) in Ref. [12] are the governing equations for the general second-order
fields with no temperature deviations from ambient, 	T0 = 0. From this, the equations for the second-order scattered fields
adopted to the notation of this paper are

∇ · 〈
vsc

2

〉 = − 1

ρ∞
0

∇ · 〈ρ1v1〉nii, (C1a)

ν∞
0 ∇2〈vsc

2

〉 + (
νb∞

0 + 1

3
ν∞

0

)
∇(∇ · 〈

vsc
2

〉) − 1

ρ∞
0

∇〈
psc

2

〉 = ∇ ·
〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

. (C1b)

Equation (82) from Ref. [12] adapted to our present notation is

F rad = ρ∞
0

∮
∂�0

dS

{
ν∞

0

[
∂r

〈
vsc

2θ

〉 − 1

r

〈
vsc

2θ

〉 + 1

r
∂θ

〈
vsc

2r

〉]
eθ +

[
2ν∞

0 ∂r
〈
vsc

2r

〉 + (
νb∞

0 − 2

3
ν∞

0

)
∇ · 〈

vsc
2

〉 − 1

ρ∞
0

〈
psc

2

〉]
er

−
〈
v1v1 − ν1[∇v1 + (∇v1)T] −

[
νb

1 − 2

3
ν1

]
(∇ · v1)I

〉
nii

· er

}
. (C2)

When deriving expressions for 〈vsc
2 〉 and 〈psc

2 〉 in Ref. [12], we use the following expansions:

1

ρ∞
0

∇ · 〈ρ1v1〉nii =
∞∑

n=0

2n + 1

a2
μn(r̂)Pn(cos θ ), (C3a)

∇ ·
〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

= ν∞
0 (∇Q + ∇ × q). (C3b)
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In this work, we rewrite Eq. (44) using a similar procedure,

1

ρ∞
0 c∞2

0

∇ · 〈p1v1〉nii =
∞∑

n=0

2n + 1

a2
μn(r̂)Pn(cos θ ), (C4a)

∇ ·
〈
v1v1 − ν1[∇v1 + (∇v1)T] −

(
νb

1 − 2

3
ν1

)
(∇ · v1)I

〉
nii

+ aρ	T0∇ · 〈
vin

1 vin
1

〉 = ν∞
0 (∇Q + ∇ × q), (C4b)

and the derivation of F rad continues as detailed in Ref. [12], Secs. IV A, IV B, V A, and Appendix D.
Equation (84) in Ref. [12] states that F rad generally is written in the form F rad = F rad

11 + F rad
2,in, where F rad

11 mathematically is
constructed as quadratic combinations of scattering coefficients, whereas F rad

2,in is the drag force from the streaming generated by
the incident wave. We only consider incident planar standing waves here, where 〈vin

2 〉 ≈ 0 such that F rad
2,in ≈ 0, and therefore the

acoustic radiation force is written entirely in terms of quadratic combinations of scattering coefficients as in Eq. (49) (meaning
that F rad = F rad

11 in our present work). Equation (87) in Ref. [12] expresses F rad
11 in terms of products of first-order fields as in

Eq. (48), and it is included here for comparison:

F rad
11 = − ez3πρ∞

0

{
−a2ν∞

0

ρ∞
0

∫ ∞

1
dξ

∫ π

0
dθ cos θ sin θ∇ · 1

2
Re[ρ1v

∗
1]nii

+ a2
∫ ∞

1
dξ

∫ π

0
dθ sin θ (1 − ξ−2)

1

2
Re

[
er ·

(
v1v

∗
1 − ν1[∇v1 + (∇v1)T]∗ −

[
νb

1 − 2

3
ν1

]
(∇ · v∗

1 )I
)

· ez

+ 1

2
aξ

{
∇ ·

(
v1v

∗
1 − ν1[∇v1 + (∇v1)T]∗ −

[
νb

1 − 2

3
ν1

]
(∇ · v∗

1 )I
)}

· eθ sin θ

]
nii

+
∫ π

0
dθ

sin θ

2
Re

[
a3

x2
s

(
v1r∂rv

∗
1r + 1

r
v1θ ∂θv

∗
1r − 1

r
v1θv

∗
1θ

)
cos θ − a3

x2
s

(
v1r∂rv

∗
1θ + 1

r
v1θ ∂θv

∗
1θ − 1

r
v1rv

∗
1θ

)
sin θ

]
r̂=1

}
.

(C5)

APPENDIX D: THE SECOND-ORDER COEFFICIENTS Sik,n FOR A SOLID PARTICLE IN A FLUID

The 13 Sik,n coefficients that contribute to D0
n to leading order in x0 are stated: 7 coefficients for n = 0 and 6 for n = 1. For

the remaining 16 coefficients in modes n = 0 and n = 1, we only state their order in x0 here:

S00,0 = x3
0

3x2
s

, S00,1 = x3
0

3x2
s

, S0c,0 = 2i

3
, S0c,1 ∼ O(1), S0s,0 = −x2

0
2i(1 + B∞

c )

x2
s

e−xs , S0s,1 ∼ O
(
x3

0

)
,

Sc0,0 = 2i

3
, Sc0,1 = 2i

3
, Scc,0 = 6

x2
s x3

0

, Scc,1 = 135

x2
s x5

0

,

Scs,0 = 1

24x4
s x0

[(−x7
s + x6

s − 14x5
s + 18x4

s − 48x3
s − 96x2

s − 144xs − 144
)
e−xs + E1(xs)x6

s

(
x2

s + 12
)]

,

Scs,1 = − 3i

4x5
s x2

0

[(−x7
s + x6

s − 2x5
s + 6x4

s + 48x3
s + 168x2

s + 360xs + 360
)
e−xs + E1(xs)x8

s

]
,

Ss0,0 = 0, Ss0,1 = x2
0

6i

5x2
s

eixs , Ssc,0 = 0,

Ssc,1 = 1

32x4
s x3

0

[(
x10

s + 18x8
s

)
E1(−ixs) − (

x9
s i + 16ix7

s + x8
s − 12ix5

s + 12x6
s − 288ix3

s + 12x4
s + 4320ixs

+ 1728x2
s − 4320

)
eixs

]
, Sss,0 = 0,

Sss,1 = − i

2
xsE1(xs − ixs)

(
x2

s + 9
) + 1

x7
s

e(−1+i)xs

[
1

4
(−1 + i)x9

s + 1

4
x8

s + 1

2
(−5 + 4i)x7

s + 1

4
(9 + 3i)x6

s + 1

4
(9 + 57i)x5

s

+ 1

4
(−72 + 177i)x4

s + (−108 + 72i)x3
s − (270 + 18i)x2

s − 270(1 + i)xs − 270i

]
. (D1)

Here, we have used the exponential integral function defined as E1(x) = ∫ ∞
1 ξ−1e−xξ dξ .
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