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Deterministic lateral displacement �DLD� devices separate micrometer-scale particles in solution based on
their size using a laminar microfluidic flow in an array of obstacles. We investigate array geometries with
rational row-shift fractions in DLD devices by use of a simple model including both advection and diffusion.
Our model predicts multidirectional sorting modes that could be experimentally tested in high-throughput DLD
devices containing obstacles that are much smaller than the separation between obstacles.
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I. INTRODUCTION

Deterministic lateral displacement �DLD� is a mechanism
of particle separation that uses the laminar properties of mi-
crofluidic flows in a periodic array of posts to sort particles
based on size. This technique has been shown to differentiate
between micrometer-sized particles with a resolution in dia-
meter on the order of 20 nm. The basic sorting mechanism
has been described for the devices used experimentally: Par-
ticles smaller than a critical radius rc follow streamlines
through the array while larger particles are systematically
“bumped” laterally during each interaction with a post �1–3�.

Previous analysis of DLD sorting has focused on predict-
ing rc as a function of array parameters, typically the width
of the gap between posts and the shift of posts between rows.
Once basic hydrodynamics is included, theoretical calcula-
tions of rc agree with experimental results within about 5%
�2,4,5�. Inclusion of diffusion in DLD sorting has been de-
scribed using rough estimations �1–3�, and in more detailed
studies that incorporate both microfluidic advection and dif-
fusion to calculate rc under a range of experimental condi-
tions �5�.

Previous analysis of the geometry of the DLD array has
been limited to the following conventional case. In a given
row the center-to-center distance between the posts is de-
noted �, see Fig. 1. The subsequent row of posts is placed at
a distance �� downstream from the first row. Normally, � is
chosen to be unity, however this is not an essential require-
ment. The posts in this second row are displaced a distance
�1 /N�� along the row, where N traditionally has been an
integer. The ratio 1 /N is also denoted the row-shift fraction
�. In row number N+1 the posts have the same positions as
in the first row, and consequently the array is cyclic with
period N. Due to this periodicity of the array and the lami-
narity of the flow, the stream can naturally be divided into N
flow lanes, each carrying the same amount of fluid flux, and
each having a specific path through the device �1�.

For devices with the simple row-shift fraction �=1 /N and
disregarding particle diffusion, only one critical separation
size rc is introduced. Spherical particles with a radius smaller
than rc will move forward along the main flow direction
through the device, defining the angle �=0. However, par-
ticles with a radius larger than rc are forced by collisions
with the posts to move in a skew direction at an angle �
given by tan �=1 / ��N�. Taking diffusion into account the
transition from straight to skew motion takes place over a
finite range of particle sizes �1–3,5�.

In this paper we generalize the array geometry by study-
ing the effects of row-shift fractions different from that of the
conventional, simple �1 /N� array. We show in Sec. II that by
displacing consecutive rows by the rational fraction ��
= �M /N��, where M is an integer that is not a divisor of N,
two new separation modes appear, each associated with a
distinctive range of particle sizes and separation directions �.
Furthermore, to test experimental feasibility of the separation
modes, we introduce in Sec. III a model of the DLD system
reduced to its essential elements: Particle trajectories inter-
rupted by size-dependent interactions with a periodic array
of posts. Utilizing these simplifications, we investigate in
Sec. III the advection and diffusion of particles in the
M /N-array geometries, and discuss in Sec. IV possible ex-
perimental consequences of our DLD system.

In our model of the DLD system described in Sec. III we
reduce the posts to pointlike obstacles in a uniform flow.
This particular case is currently of interest to researchers
looking to apply DLD separation to high-throughput micro-
fluidic devices. Such a reduced post size decreases hydraulic
resistance and thus increases the liquid throughput for a
given pressure difference applied along the device. One
promising method to create such devices is to use arrays of
semiconductor nanowires �6� in a microfluidic channel.

II. BASIC THEORETICAL ANALYSIS

The introduction of a nonsimple row-shift fraction �
=M /N in the DLD system is first discussed in Sec. II A for
the specific case of M /N=3 /8, since all the separation
modes are present in that device geometry. Figure 1 shows
the principle of the fractionally displaced DLD array leading
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to multidirectional separation of particles of different sizes.
As was the case for the simple row-shift fraction 1 /N, the
rational row-shift fraction M /N also naturally leads to N
flow lanes, each carrying the same amount of fluid flux. In
this section, all particles are assumed to follow these flow
lanes unless bumped by an interaction with a post. However,
in contrast to the traditional DLD geometries, now the posts
are displaced M flow lanes instead of just a single flow lane
when passing from one row of posts to the next.

In Sec. II B we analyze this more general case of M /N
arrays, where the integer row-shift M and the integer array-
period N have no common divisors.

A. Specific row-shift fraction 3 Õ8

First we consider the explicit choice of parameters given
in Fig. 1, namely, a period N=8, and a row shift of M =3
lanes in the y direction ey, i.e., a row-shift fraction of �
=3 /8. The flow v is in the x direction ex. For simplicity, we
employ the most simple model where all flow lanes are as-
sumed to have the same width � /N, and where the particles
are not subject to Brownian motion. The analysis can
straightforwardly be extended to take the different widths of
the flow lanes �2� as well as diffusion �5� into account.

The analysis is most easily carried out by considering
spherical particles of increasing radius r. As the rows in Fig.
1 are shifted to the right, it is natural to choose the starting
point of a given particle to be directly to the right of a post,
placing the particle’s center in flow lane R=1, 2, 3, or 4
according to size.

For the smallest particles with r�� /N, labeled A in Fig.
1, we obtain a path corresponding to the familiar so-called
zigzag path defined in Ref. �1�. Due to the point-like nature
of our obstacles, the path is a straight line, indicated by the
dashed vertical line in Fig. 1. The path angle is �A
=arctan 0=0°.

For the next set of particles with � /N�r�2� /N �B+ in
Fig. 1�, we note that they are not affected significantly by
passing the second rows of posts. The displacement of
�M /N�� is larger than the size of the particle. By simple
inspection we find that the particles interact with a post in the
fourth row leading to a bump of one lane width to the right.
This bumping brings the particles back to a position just
right of a post, and we have identified a new separation
mode, B+. The direction of mode B+ can be characterized by
the integers

p = the number of rows after which the bumping pattern

repeats itself,and �1a�

q = the number of flow lanes that the particles are bumped

to the right while travelling through p rows. �1b�

Here, with p=3 and q=1 and the array parameters indicated
in Fig. 1, the path angle of mode B+ is found to be �B+
=arctan�1 / ���3�8��=2.4°. Here and in the following we
choose the aspect ratio �=1.

For the third set of particles with 2� /N�r�3� /N,
marked as B− in Fig. 1, we note that they collide with a
post in the second row and are bumped two lanes to the left.
After two rows, the particles are again bumped two lanes
to the left, and we have identified another new separation
mode, B−. Given this period p=2 bumping of q=−2 flow
lanes �where minus indicates displacement to the left�,
the path angle of mode B− is found to be �B−
=arctan�−2 / ���2�8��=−7.1°.

Finally, the fourth set of particles �with 3� /N�r� is con-
sidered, shown as the large light gray circle in Fig. 1. Since
3� /N equals the row-shift ��, these large particles collide
with a post in each row �p=1� where they are bumped q
=M =3 lanes to the right. This is the conventional maximal
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FIG. 1. An array of posts �marked by black dots� with period
N=8 and a shift of M =3 flow lanes per row, i.e., a row-shift frac-
tion �=3 /8=0.375. The flow v is directed along the x axis from top
to bottom. The dashed lines indicate the four possible separation
directions. First, the two well-known modes: The straight mode A
with �A=0° for particles of radius r with r� �1 /N�� �small dark
gray circles starting in flow lane R=1�, and the maximal displace-
ment mode C with �C=20° for �3 /N���r �large light gray circles
starting in flow lane R=4�. Additionally, the two separation modes:
One B+ towards the right with angle �B+

=2.4° for �1 /N���r
� �2 /N�� �small light gray circles starting in flow lane R=2�, and
another B− towards the left with angle �B−

=−7.1° for �2 /N���r
� �3 /N�� �large dark gray circles starting in flow lane R=3�. The
solid vertical lines indicate the flow lanes of width � /N, while a1

and a2 are the lattice vectors, and � is an aspect ratio.
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displacement mode C �1�. As a result, the path angle for
mode C here is found to be �C=arctan�3 / ���8��=20.6°.

B. General row-shift fractions M ÕN

In the general case of a DLD device with period N and a
row shift of M flow lanes, it is useful to introduce the floor
function �x� of x, which gives the largest integer smaller than
or equal to x, e.g., �8 /3�=2 and �10 /3�=3, and the ceiling
function �x� of x which gives the smallest integer larger than
or equal to x �see also the definitions given at Ref. �7��.

Using the notation in Fig. 1, the flow lane R occupied by
the center of the particles can be expressed in terms of the
particle radius r as R= �rN /��, so that R=1,2 ,3 , . . . , �N /2� for
0�r�� /2.

Two cases are straightforward to analyze. For small radii
with R=1, the particles will follow the streamlines without
any systematic net lateral displacement, i.e., a mode A in the
direction tA given by

tA = �ex, �2�

and forming the path angle �A with the x axis,

�A = 0, R = 1. �3�

For large radii with M �R� �N
2 �, the particles collide with the

posts and are bumped M flow lanes to the right in each row,
but they do not get stuck between the posts; this is mode C.
The path is directed along the direction tC given by

tC = �ex +
M

N
ey , �4�

and forming the path angle �C with the x axis,

�C = arctan� M

�N
�, M � R � �N

2
� . �5�

In a given M /N array, modes with larger sorting angles are
excluded because of the post spacing in the y direction: Par-
ticles with radius r�� /2 are unable to fit between the posts.

If the particles are small enough to pass the second row
without getting bumped to the right, but too large for mode
A, 1�R	M, their trajectories fall into one or two B modes.

As a particle is convected through the array, a post will
approach the particle from the left in steps of M flow-lanes
per row the particle advances, hence the use of modulus M
arithmetic in the following analysis.

If �N mod M��R	M the particle will hit the post with
its center to the left of this obstacle and will therefore enter
mode B− where it is displaced to the left with a period p−

= � N
M �. This is most readily seen by starting the analysis with

a particle position just left of a post. A particle with
�N mod M��R	 ��N−R+1� mod M� will bump left after
p−= � N

M � rows and will again be in a position just left of a
post. The small particle in mode B− of Fig. 2 is an example
of this behavior. Slightly larger particles with ��N−R
+1�mod M��R	M will bump right after p= �N−R+1

M � rows.
Since we are only considering particles with R	M, this dis-
placement will always be less than M flow lanes, and the

particle is therefore bound to bump left on the post in the
following row, i.e., after a total of p−= � N

M � rows. The large B−
mode particle in Fig. 2 is an example of this behavior.

The trajectories in mode B− have period p−= � N
M �. The

number q− of lanes bumped after passing these p− rows is
q−=Mp−−N�0. The path is directed along the direction tB−
given by
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FIG. 2. An array with period N=10 and a shift of M =3 flow
lanes per row, giving a row-shift fraction �=3 /10=0.3. The flow v
is directed along the x axis from top to bottom. Here there are three
sorting modes, delimited by two critical radii. Mode A for particles
of radius r with r�rc1= �1 /10�� �shown on the far left-hand side�,
and mode C, the maximal displacement mode for �3 /10��=rc2

�r� �1 /2�� �large light gray circles�. A mode B− displaces par-
ticles with rc1�r�rc2 towards the left �large dark gray and inter-
mediate, light gray circles�.
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tB−
= �p−ex +

q−

N
ey , �6a�

p− = � N

M � , �6b�

q− = Mp− − N � 0, �6c�

forming the path angle �B−
with the x axis,

�B−
= arctan� q

�p−N
� � 0. �7�

If 1�R	 �N mod M� the particle will enter mode B+

where it is displaced to the right with a period p+= �N+R
M �. To

realize this it is natural to start the analysis with the particle
just right of a post. Again, a post will approach the particle
from the left in steps of M lanes as the particle moves
through the array. A particle with 1�R	 � M

2 � will follow the
flow for p+= �N+R

M � rows and then bump right. If � M
2 ��R

	 �N mod M� the particle will bump left already in the sec-
ond row of posts. The particle is now in a position just left of
a post. However, since it is not large enough to follow the B−
path, it will bump right when it meets the post after p+

= �N+R
M � rows.
The trajectories in mode B+ have period p+= �N+R

M �. After
p+ rows the particles will get bumped q+ flow lanes to the
right given by q+=Mp+−N�0. The path is directed along
the direction tB+

given by

tB+
= �p+ex +

q+

N
ey , �8a�

p+ = �N + R

M � , �8b�

q+ = Mp+ − N � 0, �8c�

forming the path angle �B+
with the x axis,

�B+
= arctan� q+

�p+N
� � 0. �9�

In terms of the flow lane number R, the criteria for the
four different displacement modes can be summarized as fol-
lows:

mode A if R = 1, �10a�

mode B+ if 1 � R 	 �Nt mod M� , �10b�

mode B− if �Nt mod M� � R 	 M , �10c�

mode C if M � R 	 �N2 � . �10d�

Note that mode B+ vanishes if �N mod M�=1.

III. MODEL AND IMPLEMENTATION

The following model is established to numerically test the
sorting behavior of a particular M /N DLD array and take
into account the effect of particle diffusion on sorting behav-
ior, as discussed below. We treat the device as a periodic
array of zero-radius posts with the geometry shown in Fig. 2.
This N=10, M =3 geometry, with a row-shift fraction given
by �=3 /10, exhibits the three modes shown in Table I, in-
cluding a sorting mode, B−.

We assume the array to be infinitely deep so that the flow
field is two dimensional and independent of the z direction.
Consistent with the infinitesimal size of the posts, the liquid
flow through the device is assumed to be uniform with ve-
locity v=vex along the x axis. Thus, our model does not
describe Taylor-Aris dispersion, which in real systems with
finite-sized posts would be induced along the x direction by a
combination of transverse diffusion and transverse velocity
gradients �8�. The particles only interact with the posts
through a hard-wall repulsion and any effect of the particles
on fluid flow is neglected. The particle-post interaction ex-
cludes the center of a particle with radius r from a circular
region of the same radius around the point-sized post. In
addition to being moved by the fluid and interacting with the
posts, each particle has a diffusion coefficient D given by the
Einstein relation

D�r� =
kBT

6
�r
, �11�

where kBT is the thermal energy and � is the viscosity of the
solution. For the calculations below we have chosen the fol-
lowing experimentally relevant parameters: For water at
room temperature kBT�4�10−21 J and ��10−3 Pa s, and
for the geometry the post separation is �=10 �m and par-
ticle radii in the range 0.5 �m�r�4 �m. A final basic as-
sumption of our model is that all time dependence in our
model is implicitly given by the advective flow speed v. For
particles starting at the entrance of the device at x=0 the
time, t is given through its x coordinate as t=x /v. The model
therefore allows all the relevant dynamics of an ensemble of
many particles to be described by a continuous concentration
distribution c�x ,y� with some given initial distribution
c�0,y� at the entrance of the DLD device. Given c�0,y� the
time evolution of the distribution consists of calculating
c�
x ,y� after convection to x=
x. By following the evolu-
tion of c�x ,y� as the distribution interacts with posts and
responds to thermal forces, our model can identify the basic
modes of transport in an array of posts and the effect of
diffusion on this transport.

The initial distribution c�0,y� is given by a box distribu-
tion of width � �although a narrow distribution is used in Fig.
3 for visual clarity�, and the distribution c�
x ,y� is calcu-
lated from the previous distribution c�0,y� taking into ac-
count its interactions with the posts as well as the diffusion
equation. The entire distribution c�x ,y� is evaluated by iter-
ating the following procedure:

�1� Upon encountering a row of posts, the distribution for
particles of radius r is set to zero in regions with a distance
smaller than r to any post, and the corresponding number of
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particles is then added to the distribution in the adjacent
pixels to maintain the total number of particles �see Fig. 3�.

�2� The distribution c�x ,y� is subsequently evolved in ac-
cordance with the diffusion equation, with the diffusion co-
efficient given by Eq. �11�,

v
�c

�x
= D

�2c

�y2 , �12�

employing the implicit time t=x /v set by convection along
the x direction, and using the Fourier cosine transformation
in the transverse y direction as described below.

The computation uses a finite array of width w=10�, i.e.,
containing 10 posts, and the row separation is again taken to
be equal to the post separation, i.e., �=1. The array with
width w is discretized in y into nmax=104 pixels of size 
w
�
x with 
x=
w=w /nmax.

The discrete Fourier cosine transformation C�x ,kn� of the
distribution c�x ,y� then takes the form

C�x,kn� =
2 − �0,n

w
�

0

w

c�x, ỹ�cos�knỹ�dỹ , �13�

where kn is given by

kn =
2


w
n, n = 0,1,2, . . . ,nmax =

w


w
. �14�

By direct inspection we find the well-known result from the
y-dependent diffusion equation in Fourier space that, during
the time step 
t=
x /v, C�x ,kn� evolves into C�x+
x ,kn� as

C�x + 
x,kn� = C�x,kn�exp�− Dkn
2
x

v
� . �15�

By the inverse Fourier cosine transform we can therefore
write the distribution at row x+
x in terms of that at row x
as

TABLE I. List of separation radii r and angles � as a function of
the integer array parameters N, M, p, and q for �=1.

N M Mode
Particle radius in

units of lane width q / p
Separation angle
�=arctan �p /qN�

5 2 A 0�r�1 0 /1 0.0°

B− 1�r�2 −1 /2 −5.7°

C 2�r�2.5 2 /1 21.8°

7 2 A 0�r�1 0 /1 0.0°

B− 1�r�2 −1 /3 −2.7°

C 2�r�3.5 2 /1 15.9°

7 3 A 0�r�1 0 /1 0.0°

B− 1�r�3 −1 /2 −4.1°

C 3�r�3.5 3 /1 23.2°

8 3 A 0�r�1 0 /1 0.0°

B+ 1�r�2 1 /3 2.4°

B− 2�r�3 −2 /2 −7.1°

C 3�r�4.0 3 /1 20.6°

9 2 A 0�r�1 0 /1 0.0°

B− 1�r�2 −1 /4 −1.6°

C 2�r�4.5 2 /1 12.5°

9 4 A 0�r�1 0 /1 0.0°

B− 1�r�4 −1 /2 −3.2°

C 4�r�4.5 4 /1 24.0°

10 3 A 0�r�1 0 /1 0.0°

B− 1�r�3 −1 /3 −1.9°

C 3�r�5.0 3 /1 16.7°

11 2 A 0�r�1 0 /1 0.0°

B− 1�r�2 −1 /5 −1.0°

C 2�r�5.5 2 /1 10.3°

11 3 A 0�r�1 0 /1 0.0°

B+ 1�r�2 1 /4 1.3°

B− 2�r�3 −2 /3 −3.5°

C 3�r�5.5 3 /1 15.3°

11 4 A 0�r�1 0 /1 0.0°

B+ 1�r�3 1 /3 1.7°

B− 3�r�4 −3 /2 −7.8°

C 4�r�5.5 4 /1 20.0°

11 5 A 0�r�1 0 /1 0.0°

B− 1�r�5 −1 /2 −2.6°

C 5�r�5.5 5 /1 24.4°

12 5 A 0�r�1 0 /1 0.0°

B+ 1�r�2 1 /5 1.0°

B− 2�r�5 −2 /2 −4.8°

C 5�r�6.0 5 /1 22.6°

(a) (b)

v

B_ A C

B_ A

C

D = 0

e
ey

x

FIG. 3. �Color online� Composite image of numerically calcu-
lated spatial distributions for a device with N=10 and M =3. �a�
Results for D=0 for particles with radii r�rc1 �mode A�, rc1�r
	rc2 �mode B�, and r�rc2 �mode C�. �b� Particles, with the same
radii as in �a�, moving through the array with a flow speed of v
=100 �m /s, including the effect of diffusion. Broadening of all
distributions due to diffusion can be seen and particles in mode C
are sorted less efficiently. Initial spatial distributions here are the
same for all particle radii, and a narrow initial distribution is used
for visual clarity.
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c�x + 
x,y� = 	
n=0

nmax

C�x,kn�exp�− Dkn
2
x

v
�cos�kny� ,

�16�

which by construction automatically respects the boundary
condition that no particles can diffuse beyond the edges of
the array. The evolution of the distribution due to diffusion is
computed at each row of pixels after the effects of posts on
the distribution have been taken into account.

To elucidate the sorting mechanism in the absence of ther-
mal forces, calculations were also done with diffusion coef-
ficient D=0, in which case c�x ,y� evolves only according to
the interaction of the particles with the posts. Results of these
calculations are shown as D=0 in Fig. 4.

While c�x ,y� is the calculated distribution at a given time
and position in the array, the set of all c�x ,y� also represents
the steady-state distribution of a stream of particles entering
an array of obstacles and moving constantly through the ar-
ray, as seen in Fig. 3.

The calculations were done using Matlab on a personal
computer and a 64-bit dual processor workstation.

Results: Three transport modes in the 3 /10 array. The
existence of the sorting mode B−, as well as the two modes A
and C previously described in DLD literature are confirmed
by applying our numerical model to a range of particle sizes
advected through the 3 /10 array. As the particle distributions
move through the array, their trajectories form three modes
A, B, and C, according to two critical radii, rc1 and rc2, see
Fig. 3�a�. Our calculations reproduce the two known modes:
The “zigzag mode” A, in which there is no average displace-
ment from the direction of flow, and the “bumped mode” C,
in which particles are bumped laterally in every row. These
two modes are most clearly seen in Fig. 3�a�, where the

distributions are calculated without diffusion. In mode A,
where r	rc1= �1 /N��, particles may interact with the posts,
but no net lateral displacement is accomplished. Mode C is
characterized by a displacement equal to the shift �M /N��
for every row the particles pass through. In the mode B−,
particles of size rc1�r	rc2 interact with posts more fre-
quently than in mode A but less frequently than in mode C,
as described in Sec. II B. The 3 /10 array used here clearly
exhibits the lone B− mode shown in Table I for these array
parameters. It is important to note that mode B− vanishes in
the conventional case M =1, and all particles smaller than the
critical radius rc2 move along the direction of flow.

The directions tA and tC of the conventional modes A and
C are given directly by Eqs. �2� and �4� for �=1,

tA = ex, �17a�

tC = ex + 3
10ey , �17b�

while the direction tB−
of mode B− is found through the path

period p−= �N+R
M �= � 10+1

3 �=3 and the lane shift q−= p−M −N
=3�3−10=−1, and thus

tB−
= 3ex − 1

10ey . �17c�

The corresponding displacement angles become

�A = 0.0 ° , 0
�

10
� r � 1

�

10
, �18a�

�B−
= − 1.9 ° , 1

�

10
� r � 3

�

10
, �18b�

�C = 16.7 ° , 3
�

10
� r � 5

�

10
. �18c�

The array parameters used here can be translated into those
used in DLD literature �1–3�, simply by setting M =1.

Effect of diffusion on sorting. The effect of diffusion on
the sorting of particles is shown in Fig. 4. The angles shown
are measured between v and the lateral displacement of the
center of mass of the distribution for each particle size after
10 rows of posts for high and low flow speeds. We can esti-
mate speeds at which diffusion becomes negligible by com-
paring the time it takes a particle to be advected along the x
direction from one row to the next, � /v, to the time it takes
a particle to diffuse transversely in the y direction to reach a
position where it would be bumped, 2D / �r−rc2�2. For high
flow speeds,

v �
2D�

�r − rc2�2 , �19�

diffusion can be neglected, and the transitions between the
sorting modes are sharp, as seen in the D=0 case. Note that
this velocity diverges as the particle size approaches the criti-
cal radius rc2; in this limit the displacement needed for a
particle to change sorting directions goes to zero. Within the
spatial resolution of this work �1 pixel=10 nm�, the particles
closest in size to the critical radius will still be sensitive to
diffusion at flow velocities below 10 mm /s. As flow speeds
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FIG. 4. �Color online� Sorting angles � calculated for a device
with N=10 and M =3 as described in Sec. III with rc1=1 �m and
rc2=3 �m. The initial position corresponds to the center of mass of
the initial distribution between two posts and the final position cor-
responds to the center of mass after 10 rows. � is plotted here versus
particle radius r with �open circles� and without �filled circles� dif-
fusion with flow velocity v=10 �m /s. The negative sorting angles
for rc1�r�rc2 indicate the presence of mode B− for this array.
Inset shows the sorting angle � around r=rc2=3 �m for a range of
flow velocities �same y-axis range�. Diffusion blurs the sharp tran-
sition between the sorting modes, as discussed in Sec. IV B.
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decrease, particles have more time to diffuse transversely as
they move through the array, and the effects of thermal mo-
tion on sorting are seen more clearly. Transverse diffusion of
particles along the y direction tends to shift the center of
mass of the distribution c�x ,y� towards the midpoint between
posts. This means that particles with r�rc2

= 3�
10 are more

likely to be shifted to higher sorting angles. However, in the
regions between rows, diffusion allows particles to move
transversely away from the path that would normally be
“bumped” by a post, decreasing their sorting angle. These
two effects of diffusion are responsible for the smoothing of
the angle versus radius curves for slower flow speeds in Fig.
4. The calculated values for �B− are in good agreement with
the value predicted in Eq. �18a�, but for particles with r
�rc2

= 3�
10 , the finite width of the initial distribution and the

relatively short array size �10 rows� reduce the calculated
values for �C from the predicted value by about 15%. The
small variation in sorting angle with radius for modes B− and
C for D=0 in Fig. 4 is mainly the result of the two end points
used to define the angle being not exactly equivalent: The
position of the second, but not the first end point varies con-
tinuously with bead size, and so the presented angle varies
with bead size. Second, since the number of rows is not
divisible by the periodicity of mode B−, an additional small
error is introduced. These deviations should vanish for simu-
lations with larger numbers of rows.

IV. DISCUSSION

A. Sorting mode B and its relation
to kinetically locked-in transport

DLD devices have thus far been made with a fixed flow
direction and almost exclusively with M =1. However, in
theoretical work studying transport through periodic poten-
tial landscapes, the direction of the applied force is varied for
a fixed array geometry and the transport direction is calcu-
lated �9–12�. To calculate the correspondence between vary-
ing the array parameters M and N used here and changing
the flow direction in a fixed array as in �9–12� is cumber-
some, but for a range of flow directions near tB−

=3ex− 1
10ey,

the angles to the flow direction �B−
and �C vary as the flow

directions change, but the relative angle between them, �C
−�B−

, remains a constant defined by the array. The angle
between modes B− and C is insensitive to small changes in
flow direction for v near �in this case� 3ex− 1

10ey.
This insensitivity to flow direction is an example of a

plateau in a so-called devil’s staircase: Transport through a
two-dimensional �2D� periodic potential is independent of
the flow direction near small integer lattice vectors �9�. In
this case, the lattice vectors are a1= tC=ex+ �3 /10�ey and a2
=ey, and the two close-lying flow directions are tB−

=3ex

− 1
10ey =3a1−a2 and a1= tC.
The interplay between lattice directions and applied

forces has been documented extensively in the literature of
kinetically and statistically locked-in transport. Of interest in
the present context is that many numerical simulations of
trajectories through various two-dimensional periodic poten-

tials have been done to study these and other phenomena,
including sorting of particles �9–12�.

The interaction between posts and particles that we have
chosen simplifies DLD to a one-dimensional �1D� distribu-
tion that evolves in time. This allows the effects of diffusion
to be easily incorporated into our modeling of the dynamics
of the distribution of particles. Also, the particular interaction
between point-sized posts and finite-sized particles depends
only on particle size, an analysis that seems to be absent
from the literature.

B. Diffusion, detectability, and experimental possibilities

A clear difference between the results in Fig. 4, based on
zero-sized posts, and those reported in the literature, based
on finite-sized posts, is that the critical radius �defined as the
inflection point of the angle vs radius graph near r=rc�, de-
creases for lower flow velocities in Ref. �1�, whereas our
simulations show a critical radius that is essentially constant.
When particles have more time to diffuse laterally in re-
ported experimental data, ones that previously followed the
zigzag path follow something closer to mode C but not the
other way around. We have identified the difference in size
of the posts as the primary basis for the difference in sym-
metry. In the gap between the posts, only beads smaller than
rc can change modes �from A to C� whereas, beads larger
than rc cannot change modes because of steric hindrance.
Diffusion between posts is thus asymmetric. On the other
hand, between rows all beads can change modes equally well
so that the effect of diffusion is symmetric. This result is
most clearly seen in two cases: �i� With sufficiently large
posts and small spacing between rows, diffusion between
posts dominates leading to asymmetry, and �ii� with our
needlelike posts, instead diffusion between the rows domi-
nates, leading to symmetry between small and large particles.
In devices with large round posts such as those in Ref. �1�,
the flow streams are narrower in the gap between the posts
than in the region between the rows making the asymmetric
diffusion even more pronounced. The symmetry about rc2
shows that sorting in this model is robust against changes in
flow velocity.

As discussed in Sec. IV A, there is no difference between
modes A and B− when the flow is directed along the lattice
direction 3a1−a2, which is equivalent to a conventional array
with M =1 and N=3, instead of along ex. Also, while mode
B− for the 3 /10 array shown in Fig. 2 is directed away from
mode C, the mode B+ discussed in Sec. II A is deflected
away from v towards mode C. The absence of modes B− and
B+ in previous analyses of DLD experiments stems from the
use of tilted square arrays with flows chosen such that M
=1 or more general arrays that are still limited to simple row
shifts 1 /N. In these cases, modes A and B are the same: They
both go along the direction of flow. Interestingly, in their
paper �2�, Inglis et al. mention that they are studying simple
row-shift fractions �=1 /N, with N being an integer, but they
do not comment on the data points in their Fig. 2 that clearly
have ��1 /N.

Experimental detection of mode B requires that the distri-
butions of modes A and B must be spatially separated. The
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numerically calculated distributions shown in Fig. 5 exhibit
four qualitative regimes that could be observed in an experi-
ment to detect the presence of particle transport in mode B.

�a� At very high flow speeds, corresponding to D=0 in the
numerical data, the three modes are completely separated
because each distribution is very narrow. In this regime, ar-
bitrary spatial separation can be achieved simply by running
the particles through a longer array.

�b� At high intermediate flow speeds, the distributions
have widened due to diffusion, but modes A and B are
clearly distinguishable, despite some overlap.

�c� At low intermediate flow speeds, modes A and B over-
lap enough to prevent resolution of two separate distribu-
tions. This regime is relevant to DLD device design because
it would be experimentally observed as an anomalous, asym-
metric broadening of the distribution associated with the zig-
zag path.

�d� At low flow speeds, distributions from modes A and B
are completely overlapping and it may even be difficult to
differentiate them from mode C.

Experimental realization of the regime investigated in this
model would require arrays made with very small posts to

minimize hydrodynamic effects on particle trajectories. This
also corresponds to a reduction in hydrodynamic drag, which
is beneficial for researchers seeking to increase fluid through-
put of devices.

As can be seen in Fig. 3, the angle �B is small compared
to �C. In order to differentiate between particles traveling in
modes A and B, size dispersion of beads must be considered
in addition to broadening due to diffusion. Commercially
available polystyrene beads used in DLD experiments typi-
cally have size distributions with widths of less than �10%.
This then requires choosing particles whose size distributions
are separated by more than 10%, such as those shown in Fig.
5, or the use of a DLD array to create a sufficiently narrow
size distribution. If hydrodynamic effects or limitations on
flow velocity in a particular experiment prevent the sorting
mode from being completely resolved, it may still appear as
an asymmetric broadening of the distribution of seemingly
undeflected particles, as in Fig. 5.

In general, the separation angles for a given M /N array
can be made larger to the extent that the aspect ratio � can be
made smaller without risking clogging of the largest par-
ticles. By consulting Table I, it can be seen that the separa-
tion angle of the 3 /10 array is one of the smaller B angles,
and also, the 3 /8, 3 /11, 4 /11, and 5 /12 arrays offer both the
B+ and the B− modes.

V. CONCLUSIONS

We have identified sorting modes in a model of transport
through a DLD device characterized by row-shift fractions
M /N. Our simple model also reproduces key features of
DLD arrays, including sorting based on size and the blurring
of cutoffs between modes due to diffusion. Even if not com-
pletely resolved, the sorting mode has the potential to in-
crease spatial broadening of zigzag particle distributions. In
order to avoid this broadening, adjustable DLD arrays could
use variable spacing while maintaining a fixed M =1 geom-
etry, such as in Ref. �4�, or tune flow angles to exactly re-
produce the M =1 condition across a fixed obstacle array
using techniques such as in Ref. �13�. Our simulations indi-
cate that using needlelike posts decreases the shift in critical
size due to diffusion that has been observed in devices where
the post separation is on the same scale as the post diameter.
Furthermore, the use of more general array geometries and
simplified fluid dynamics links this work to the field of ki-
netically locked transport phenomena.
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FIG. 5. �Color online� Distributions of three particle sizes: r
=0.90 �dashed line�, 2.00 ��red�gray�, and 3.08 �m �black� after
transport through 10 rows of the N=10, M =3 array. The total num-
ber of particles is the same in each case and each initial distribution
�not shown� is a square distribution with a narrow width centered
on y=30 �m. �a� No diffusion. �b� With diffusion and v
=1000 �m /s. �c� With diffusion and v=100 �m /s. �d� With diffu-
sion and v=10 �m /s. Panel �b� shows a case where mode B− could
be detected experimentally. For the lower speed in panel �c�, modes
A and B− cannot be resolved, but the combined distribution is
broader than mode A alone. For the even lower speed in panel �d�
the distributions of particles in modes A and B− are each wider than
the separation between them and the two modes are completely
unresolvable.
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