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Abstract

The present thesis deals with fundamental aspects of mass-transport in the con-
text of nanofluidics. One of the goals is to obtain a fundamental understanding
of the working principles of nanofluidic mass-transport which can be applied in
a macroscopic setting. To this end, we have developed a model framework that
combines electrostatics, ionic transport, hydrodynamics, bulk solution equilib-
rium chemistry, and surface equilibrium chemistry. As detailed below, we use
our model framework to analyze and interpret nanofluidic experiments and for
theoretical predictions of novel nanofluidic phenomena.

First, we investigate how the surface dissociation constants and Stern layer
capacitance depend on the local environment in terms of surface coating. Thus,
we study the behavior of both bare and cyanosilane coated silica nanochannels
subjected to two independent experiments. One experiment is particularly in-
teresting because it relies on capillary filling, so it avoids the use of external
forcing such as electric fields. Basically, during the filling of nanochannels by
capillary action, the advancing electrolyte is titrated by deprotonation from the
surface. This is observed using the pH-sensitive fluorescent dye fluorescein. The
method relies on the large surface-to-volume ratio in the nanochannel and is thus
a great example of a novel nanofluidic technique. Additionally, these measure-
ments are complemented by current-monitoring in which an externally driven
electro-osmotic (EO) flow velocity is used to estimate the zeta potential of the
wall. Together, the two experiments provide independent data that are inter-
preted using our model framework. Solving the model self-consistently, while
adjusting the low-value surface dissociation constant and the Stern capacitance,
we obtain their dependence on the local surface condition in terms of surface
coating.

Second, we investigate the streaming current resulting from an applied pres-
sure difference in bare and surface-coated silica nanochannels. The channels have
a low aspect ratio. Thus, we develop an effective boundary condition for the
surface chemistry and apply our model in the 2-D cross section. Theoretically,
we use our model to investigate the effects of corners in nanochannels on the
electrochemical properties of the surface. As above, the streaming-current mea-
surements are supplemented by current-monitoring data, and our model predicts
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both streaming current and EO flow velocity using only parameters from the
literature. Moreover, over 48 hours there is a steady rise in the streaming cur-
rent which we ascribe to silica dissolution. Using our model, we estimate the
dissolution rate as a function of buffer type and surface condition.

Third, in bare silica nanochannels, our model predicts a hitherto unnoticed
minimum in the electrical conductance as the salt concentration decreases. Our
model predicts the behavior of the minimum in the conductance for different con-
ditions including CO2 content, supporting buffer type, and nanochannel height.
Notably, we find that the conductance minimum is mainly caused by hydronium
ions, and in our case almost exclusively due to carbonic acid generated from the
dissolution of CO2 from the atmosphere. We carry out delicate experiments and
measure the conductance of silica nanochannels as a function of decreasing salt
concentration. The measurements conform with the model prediction, both for
a pure salt buffer and a buffer with extra hydronium ions added, in this case
through HCl. In any case, the model prediction is supported by the appearance
of the conductance minimum in several independent studies in the literature.

Fourth, we use our model to predict a novel phenomenon called current-
induced membrane discharge (CIMD) to explain over-limiting current in ion-
exchange membranes. The model is based on dynamic surface charges in the
membrane in equilibrium with the buffer. However, here we take the next step and
consider strong out-of-equilibrium transport across the membrane. Our model
predicts large pH variations in the electrodialysis system that in turn lowers the
ion-selectivity of the membrane by protonation reactions. This opens up for sig-
nificant over-limiting current. We use our model to investigate the dependence
on reservoir concentration and pH. Even without fluid flow, CIMD predicts over-
limiting current and even a suppression of the extended space charge layer and
thus a suppression of the electro-osmotic instability. Future work will include
comparison with experimental data which is a delicate procedure that requires
much attention to the comparability between the conditions in the model and in
the experiment.

Finally, we make a small digression and study induced-charge electro-osmosis
(ICEO) and the validity of common EO slip formulae as a function of a finite
Debye screening length and the system geometry (here the metal-strip height).
The slip models are strictly only valid in the limit of a vanishing screening length.
Compared to a full boundary-layer resolving model, we show surprisingly large
deviations even for relatively thin screening layers. Both slip models are based on
the classical Helmholtz–Smoluchowski expression, and while one assumes a static
screening layer, the other takes surface conduction into account.



Resumé

Denne afhandling omhandler grundlæggende aspekter ved masse-transport i na-
nofluidik. Et af målene er at opnå en grundlæggende forståelse af de gældende
principper for nanofluidisk masse-transport, som så kan anvendes i makroskopiske
systemer. Til dette formål har vi udviklet en model der kombinerer elektrosta-
tik, ion transport, hydrodynamik, ligevægtskemi i opløsning og ligevægtskemi
på overflader. Som beskrevet nedenfor bruger vi vores model til at analysere og
fortolke nanofluidik eksperimenter og til at lave teoretiske forudsigelser af nye
nanofluidiske fænomener.

For det første undersøger vi hvordan ligevægtskonstanter og Stern-kapacitans
afhænger af det lokale overflademiljø i form af overfladebelægning. Vi studerer
både rene og cyanosilane-belagte silika nanokaneler i to uafhængige eksperimen-
ter. Et eksperiment er særligt interessant, idet det bygger på kapillærfyldning, så
brugen af eksterne drivfelter, såsom elektriske felter, undgås. Kort sagt bliver elek-
trolytten titreret af silika væggen under kapillærfyldningen. Vi observerer dette
ved at anvende et pH-følsomt fluorescerende farvestof kaldet fluorescein. Metoden
afhænger af det store overflade-til-volumen forhold i nanokanelen og er således
et godt eksempel på en nyskabende nanofluidisk teknik. Disse kapillærfyldninger
er derudover suppleret med strøm-overvågnings forsøg, hvori en eksternt drevet
elektro-osmotisk (EO) strømning anvendes til at estimere zeta potentialet på væg-
gen. Tilsammen giver de to eksperimenter uafhængig data, der fortolkes ved hjælp
af vores model. Modellen løses selv-konsistent, medens værdien af ligevægtskon-
stanten og Stern kapacitansen optimeres. Således får vi belyst disse parametres
afhængighed af den lokale tilstand på overfladen i form af overfladebelægning.

For det andet undersøger vi advektionsstrøm afledt af en påført trykforskel
i rene og overfladebelagte silika nanokaneler. Kanalerne har et forhold mellem
højde og bredde tæt på een. Vi har derfor udviklet en effektiv randbetingelse
for overfladekemien og anvendt vores model i det 2-dimensionelle tværsnit. Vi
bruger vores model til teoretisk at undersøge effekten af hjørner i nanokaneler på
de elektrokemiske overfladeegenskaber. Som ovenfor er de advektionsstrømmålin-
gerne suppleret med strøm-overvågnings forsøg og vores model forudsiger både
advektionsstrømmen og EO strømningen kun ved brug af parametre fra littera-
turen. Desuden er der i løbet af 48 timer en støt stigning i advektionsstrømmen,
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som vi tilskriver opløsning af silikaen. Ved brug af vores model estimerer vi op-
løsningshastigheden som funktion af elektrolyt art og overfladetilstand.

For det tredje forudsiger vores model i rene silika nanokaneler et hidtil upåag-
tet minimum i den elektriske konduktans med faldende salt koncentration. Vores
model forudsiger konduktansminimaets opførsel for forskellige forhold, herunder
CO2 indhold, elektrolyt art og højden af nanokanelen. Vi finder især at kon-
duktansminimaet hovedsageligt er forårsaget af hydronium-ionerne, og i vores
tilfælde næsten udelukkende på grund af kulsyren genereret fra opløsningen af
CO2 fra atmosfæren. Vi udfører fintfølende eksperimenter og måler konduktan-
sen i silika nanokanelerne som funktion af faldende salt koncentration. Målingerne
er i overensstemmelse med modellens forudsigelser, både for en ren salt elektro-
lyt og en elektrolyt med ekstra hydronium-ioner tilsat, i dette tilfælde gennem
HCI. I alle tilfælde er modellens forudsigelser understøttet af forekomsten af kon-
duktansminima i adskillige uafhængige undersøgelser i litteraturen.

For det fjerde bruger vi vores model til at forudsige et nyt fænomen kaldet
strøm-induceret membran udledning (CIMD) som forklaring på over-begrænsende
strøm i ionbyttermembraner. Modellen er baseret på dynamiske overfladeladnin-
ger i membranen i ligevægt med elektrolytten. Men her tager vi skridtet vide-
re og undersøger stærk ikke-ligevægt transport igennem membranen. Vores mo-
del forudsiger store pH-variationer i elektrodialysesystemet, der nedsætter ion-
selektiviteten af membranen via protoneringsreaktioner. Dette åbner membranen
op for betydelig over-begrænsende strøm. Vi bruger vores model til at undersøge
afhængigheden af reservoir koncentration og pH. Selv uden væskestrøm forudsi-
ger CIMD modellen over-begrænsende strøm og endda en undertrykkelse af det
forlængede rumladningslag og dermed en undertrykkelse af den elektro-osmotiske
ustabilitet. Det fremtidige arbejde vil omfatte sammenligning med eksperimen-
telle data, som er en delikat procedure, der kræver megen opmærksomhed med
henblik på sammenligneligheden mellem betingelserne i modellen og i eksperi-
mentet.

Endelig laver vi en lille sidebemærkning og studerer induceret-ladning elektro-
osmose (ICEO) og gyldigheden af almindelige EO glide-hastighedsudtryk som
funktion af en endelig Debye skærmningslængde og systemets geometri (her høj-
den af metal-strimmelen). Glide-hastighedmodellerne er strengt taget kun gyldi-
ge i den grænse hvor skærmningslængden går mod nul. Sammenlignet med en
grænselagsopløsende model viser vi overraskende store afvigelser, selv for relativt
tynde skærmningslag. Begge glide-hastighedsmodeller er baseret på det klassiske
Helmholtz–Smoluchowski udtryk, og medens den ene model antager et statisk
skærmningslag, tager den anden model overfladestrøm i betragtning.
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Chapter 1

Introduction

We give specific introductions to each chapter, thus the introduction below is of
a general character.

1.1 Nanofluidics and ion-selective membranes
The study of ionic species and charged surfaces has traditionally been done in
the context of colloids [1–4] and membrane science [5–7]. In relation to this, the
recent advent of micro- and nanofluidics has lead to precise control of the fluid-
confining micro-geometry along with a multitude of small-scale measurement and
detection techniques [8–15].

Some of the technologies that have enabled nanofluidics are the atomic force
microscope (AFM), the scanning tunneling microscope (STM), fluorescent mi-
croscopy, the electron, x-ray, and ion-beam lithographs, and new micromaching
techniques like soft lithography, nanoimprint lithography, injection molding, and
bottom-up assembly methods [10]. Thus, the field of colloid and membrane sci-
ence is experiencing a renaissance in the micro-nano-fluidic context. Figure 1.1
shows some of the classical scientific fields that are related to nanofluidics [10].

Excellent reviews of the diverse possibilities within nanofluidics are given
in Refs. [10, 16–21]. In particular, current research in nanofluidics include en-
ergy harvesting [22–28], surface-charge governed transport [29–35], entropic-trap
studies of proteins and DNA [36–42], pre-concentration, ion-enrichment and ion-
depletion, deionization, desalination, and water purification [43–53], non-linear
electrical nanofluidic elements e.g. diodes and rectifiers [54–65], separation of
ions, nanoparticles, and biomolecules [66–70], significant effects of fluid slip [71–
73], amplified pH effects [74–76], streaming current [77–79], capillary phenom-
ena [80, 81], ion-ion correlations [82], and biosensing and single-molecule studies
[83, 84].
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Figure 1.1: This thesis strives to expand the fundamental understanding of nanoflu-
idics which is related to many other scientific disciplines within physics, chemistry,
and biology such as membrane science, separation science, nanobioscience, soil science,
genetics, etc. Figure adapted from Eijkel et al. [10].

The prevalent extensive literature from fields like colloid and membrane sci-
ence is a huge advantage and provides an excellent basis for nanofluidics. How-
ever, at the same time, surprises must be expected due to the greater control and
detectability of nanofluidics. A challenge is therefore to test and expand upon
the previous knowledge using the novel and powerful possibilities of nanofluidics.

Especially the understanding of ion-selective membranes may benefit from
nanofluidic studies. Ion-selective membranes are used for many purposes includ-
ing ion-exchange and desalination [7, 85], electrophysiology [86], and fuel cells
[87, 88]. An ion-selective membrane can be viewed as a huge macroscopic bundle
of nanochannels, connected chaotically in parallel and series. More precisely, ion-
selective membranes are made up of networks of entangled polymers in between
which there is a microscopic pore space.

The similarities between ion-selective membranes and nanochannels are many.
One of the great potentials of nanofluidics is to use its controlled setting to obtain
a fundamental understanding of the working principles on the microscopic level.
This understanding can then be applied on the macroscopic level of the ion-
selective membrane. This is an advantage, in particular whenever a macroscopic
throughput is desirable as in e.g. desalination (water purification). It would
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be unfeasible to fabricate billions upon billions of fine nanochannels running in
parallel, but instead straight forward to use a macroscopic piece of ion-selective
membrane. Thus, this is exactly one of the main motivations for this thesis;
to obtain a fundamental understanding of the working principles of nanofluidic
mass-transport which can be applied in a macroscopic setting.

1.2 Outline of the thesis
The thesis is naturally build around my five research papers listed in Section 1.3.1.
However, in the dissertation I have rephrased the papers and given a combined
presentation emphasizing the connections between the various parts of my work.
The actual papers are enclosed in Chapters B to F. The chapter by chapter
contents are as follows.

Chapter 2: Basic theory We summarize the basic theory that constitute the
common denominator of our work. The topics covered include electrostatics, ionic
transport, electrochemical equilibrium, hydrodynamics, bulk solution chemistry,
and surface chemistry. Throughout the thesis we will refer back to this chapter
to avoid unnecessary repetition of the theory. However, where it serves a purpose
in terms of clarity we restate equations and expressions as needed.

Chapter 3: Numerical techniques The fields of nanofluidics and ion-selective
membranes consist of the coupling of several different physical phenomena, as
mentioned above. In terms of mathematical modeling, this leads to several cou-
pled and non-linear partial differential equations. To the degree it is feasible, we
always conduct analytical studies, but when they become intractable we resort to
numerical analysis. To this end we use the finite-element-method (FEM) software
COMSOL (version 3.5a) and the scientific software Matlab. Thus, in this chapter
we touch briefly upon the basic concepts of FEM and how it is implemented using
the weak form (the Galerkin method).

Chapter 4: Nanochannels: Surface-dependent thermodynamic con-
stants We apply our model of bulk and surface chemistry coupled via Boltz-
mann distributed ions. We do this in bare and cyanosilane coated nanochannels
and compare our model against two independent types of experiments. We ad-
just the low-value surface dissociation constant and the Stern layer capacitance
and obtain good agreement with the experimentally measured zeta potential and
capillary dark-to-bright length-ratio (interpretable as the surface charge density).

Chapter 5: Nanochannels: Streaming current and wall dissolution We
apply our model to 2D nanochannels where we model the surface chemistry by an
effective boundary condition along the perimeter of the channel cross-section. We
use the previously found values for the adjustable parameters and obtain good
agreement between the model and the experimentally measured zeta potential and



4 Introduction

streaming current. Thus verified, we use the model together with the measured
transient increase in streaming current over 48 hours to predict dissolution rates
in silica nanochannels.

Chapter 6: Nanochannels: Conductance and CO2 in dilute electrolytes
We use our model to predict a conductance minimum in nanochannels filled with
dilute electrolytes. Our model shows that hydronium is responsible for the mini-
mum, and further shows that dissolved carbonic acid from atmospheric CO2 plays
an essential role in this regard. We perform experiments that conform with the
model predictions. Furthermore, we point out several independent studies in the
literature where the conductance minimum has been experimentally measured.

Chapter 7: Membranes: Over-limiting current We apply our model
framework to ion-selective membranes and predict a new mechanism for over-
limiting current (OLC) called current-induced membrane discharge (CIMD). Our
model shows that OLC can be due to a chemically induced loss of ion-selectivity
even in the absence of fluid flow. Our model even predicts that the extended
space charge layer responsible for the electro-osmotic instability (EOI) is sup-
pressed. Thus, CIMD is a fundamentally new mechanism offering an alternative
explanation for OLC, and also predicts other important consequences such as the
loss of ion-selectivity of the membrane.

Chapter 8: ICEO: finite Debye-length effects We digress a bit from dy-
namic surface charge and look at the effect of a finite Debye length in induced-
charge electro-osmosis. We do this by comparing two common slip-velocity mod-
els to a full boundary-layer resolving model. The slip models are strictly only
valid in the limit of a vanishing Debye length and we show that they deviate
surprisingly much from the full model even at relatively thin screening layers.

Chapter 9: Conclusion and outlook We summarize our work and offer some
directions for future research.

1.3 Publications during the PhD studies
During my studies I have published four peer reviewed journal papers (a fifth
submitted) and two peer reviewed conference proceedings (a third and fourth
submitted), and I have presented my work at several international conferences.

1.3.1 Peer reviewed journal publications
• M. B. Andersen, M. van Soestbergen, A. Mani, H. Bruus, P. M. Biesheuvel,

and M. Z. Bazant, Current-induced membrane discharge (submitted to Phys
Rev Lett on 29 Feb 2012 http://arxiv.org/abs/1202.6448). Enclosed
in Chapter E.

http://arxiv.org/abs/1202.6448
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• M. B. Andersen, J. Frey, S. Pennathur, and H. Bruus, Surface-dependent
chemical equilibrium constants and capacitances in bare and 3-cyanopropyl-
dimethylchlorosilane coated silica nanochannels, J Colloid Interface Sci 353,
301 (2011). Enclosed in Chapter B.

• M. B. Andersen, H. Bruus, J. P. Bardhan, and S. Pennathur, Streaming
current and wall dissolution over 48 h in silica nanochannels, J Colloid
Interface Sci 360, 262 (2011). Enclosed in Chapter C.

• K. L. Jensen, J. T. Kristensen, A. M. Crumrine,M. B. Andersen, H. Bruus,
and S. Pennathur, Hydronium-dominated ion transport in carbon-dioxide-
saturated electrolytes at low salt concentrations in nanochannels, Phys Rev
E 83, 056307 (2011). Enclosed in Chapter D.

• M. M. Gregersen, M. B. Andersen, G. Soni, C. Meinhart, and H. Bruus,
Numerical analysis of finite debye-length effects in induced-charge electro-
osmosis, Phys Rev E 79, 066316 (2009). Enclosed in Chapter F.

1.3.2 Peer reviewed conference contributions
• M. B. Andersen, M. van Soestbergen, A. Mani, H. Bruus, P. M. Biesheuvel,

and M. Z. Bazant, Current-induced membrane discharge and over-limiting
current in ion-selective membranes, ICREA symposium 2012 “Nanofluidics,
Colloids, and Membranes”, Barcelona, Spain, 16-18 July 2012 (submitted).

• C. P. Nielsen, M. B. Andersen, and H. Bruus, Numerical method for
separating length scales in microchannels containing non-ideal ion-selec-
tive membranes and extended space-charge layers, ICREA symposium 2012
“Nanofluidics, Colloids, and Membranes”, Barcelona, Spain, 16-18 July
2012 (submitted).

• A. M. Crumrine, D. Shah, M. B. Andersen, H. Bruus, and S. Pennathur,
Nanofluidic carbon-dioxide sensor using nanoscale hydronium-dominated
ion transport theory, MEMS 2011, IEEE 24th International Conference on
MEMS, pp. 944-947 Cancun, Mexico, 23-27 January 2011.

• M. B. Andersen, J. Frey, S. Pennathur, and H. Bruus, Concentration
dependence of stern layer capacitances and surface equilibrium constants in
silica-based nanofluidic channels, µTAS 2010, The 14th international con-
ference on miniaturized systems for chemistry and life sciences, pp. 1409-
1411, Groningen, The Netherlands, 3-7 October 2010.

1.3.3 Other scientific contributions
• M. B. Andersen, H. Bruus, A. Mani, and M. Z. Bazant, Concentration

polarization and desalination in nanochannels: Effect of surface charge dy-
namics, 64th Annual Meeting of the American Physical Society’s Division
of Fluid Dynamics, Baltimore, Maryland, USA, 20-22 November 2011.
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• M. B. Andersen, H. Bruus, The effect of silane-coating on silica nano-
channels, Annual meeting of the Danish Physical Society, Nyborg Strand,
Denmark, 21-22 June 2011.

• M. B. Andersen, H. Bruus, J. Frey, and S. Pennathur, Electrochemical
surface properties of bare- and silanecoated silica nanochannels, 63rd Annual
Meeting of the American Physical Society’s Division of Fluid Dynamics,
Long Beach, California, USA, 21-23 November 2010.

• M. B. Andersen, J. Frey, S. Pennathur, and H. Bruus, Investigation of the
solid/liquid interface of coated silica nanochannels during capillary filling,
9th International Conference on Electrokinetic Phenomena, Turku, Finland,
6-10 June 2010.

• M. B. Andersen, and H. Bruus, Concentration polarization effects in
nanochannel induced-charge electro-osmosis, 62nd Annual Meeting of the
American Physical Society’s Division of Fluid Dynamics, Minneapolis, Min-
nesota, USA, 22-24 November 2009.

• M. B. Andersen, and H. Bruus, Numerical analysis of analyte transport
across un-biased electrodes in nanochannels, Gordon Research Conference
on the Physics and Chemistry of Microfluidics, Barga, Italy, 28 June-3 July
2009.

• M. B. Andersen, and H. Bruus, Theoretical analysis of electrokinetic ana-
lyte transport in nano-slits, Annual meeting of the Danish Physical Society
Nordic Meeting, Technical University of Denmark, Denmark, 16-18 June
2009.



Chapter 2

Basic theory

2.1 Notation
Due to traditions in the literature we use two notations for concentration: n
in units of m−3 and c in units of M = mol L−1. The relation between the two
notations is n = 1000NA c. Furthermore, for notational simplicity, when working
with the log of concentration pX = − log10 (cX/c
) and with acid dissociation
constants

KA = cAcH

cHAc

(pKA = − log10KA) (2.1)

we will often leave out the standard-state scaling factor c
 = 1M, unless noted
otherwise. We use the short-hand notation ∂

∂i
= ∂i for partial derivatives and

typeset vectors (tensors) in boldface. Occasionally, we will use the Einstein sum-
mation convention where summing over repeated indices is implied. For nota-
tional simplicity we use H+ instead of H3O+ as the chemical symbol for the
hydronium ion. Also, we refer to the hydronium ion H+ and the hydroxyl ion
OH− under one as “water ions”.

2.2 Electrostatics
Electrodynamic phenomena are described by Maxwell’s equations where we ne-
glect magnetic effects and thus deal with a purely electrostatic problem. This is
described by the Poisson equation which relates the electrostatic potential φ to
the electrical space charge density ρel [14, 89, 90],

−∇ · (ε∇φ) = ρel, (2.2)

in which ε = εrε0 is the dielectric permittivity. εr is the relative permittivity
and ε0 = 8.854× 10−12 Fm−1 is the vacuum permittivity. The electrical charge
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density is related to the sum of all ion concentrations ni,

ρel = e
∑

i

Zini, (2.3)

where e = 1.602× 10−19 C is the elementary charge and Zi is the valence of ion
i. The electric field E is defined as the negative gradient of the electrostatic
potential E = −∇φ and the ionic strength I of the electrolyte is defined as

I = 1
2
∑

i

Z2
i ni. (2.4)

We undertake a dimensional analysis of the Poisson equation by scaling posi-
tion with the characteristic length L, electric potential with the thermal voltage
VT = kBT/e (≈ 25.7mV at 25 ◦C), and concentration with the bulk ionic strength
Ib (“bulk” explained below). We assume a constant dielectric permittivity in the
domain of interest and get (a tilde denotes a dimensionless quantity)

(
λD

L

)2

∇̃2φ̃ = −
∑

i

Ziñi (2.5)

where
λD =

√
εkBT

2 e2Ib
(2.6)

is the Debye screening length in which kB = 1.381× 10−23 JK−1 is the Boltz-
mann constant, and T is the temperature. For a binary Z :Z electrolyte of bulk
concentration nb the ionic strength reduces to Ib = Z2nb and the Debye length
to λD =

√
εkBT/ [2 (Ze)2nb].

We are interested in aqueous (monovalent) electrolytes at standard laboratory
conditions for which we can write the screening length as λD ≈ (cb/M)−

1
2×0.3 nm

(note the use of cb indicating that the unit of concentration is M) and thus for a
typical electrolyte concentration of 10−2 M the Debye length is λD ≈ 3 nm.

For microsystems with a typical length scale L in the range 103 nm to 106 nm
the factor (λD/L)2 multiplying the Laplacian in Eq. (2.5) becomes very small,
on the order of 10−6 to 10−3, in any case much smaller than unity. Thus, the
left-hand-side in Eq. (2.5) is close to zero and the electroneutrality condition
becomes

N∑

i=1
Zini = 0. (2.7)

However, in thin sheaths, or boundary layers, close to interfaces and bound-
aries the so-called electric double layer (EDL) may form. This electrically charged
layer decays over a distance given by the Debye length λD and the EDL is therefore
especially significant in micro- and nanofluidics. Thus, the term “bulk” is refer-
ring to the region (immediately) outside the EDL (in an asymptotic sense). The
EDL relates to many important phenomena including ion selectivity [5–7, 91],
streaming potential, electroviscous effect, EO flow, electrophoresis [14, 92, 93],
and ICEO [94].
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2.3 Ionic transport
The equation expressing mass conservation of the ionic species is [93, 95]

∂ni
∂t

+ ∇ · J i = Ri, (2.8)

in which J i is the flux and Ri is the production term. We deal with the production
term later. Generally, the flux is related to the average ion velocity ui,

J i = niui. (2.9)

The multicomponent diffusion equation relates the average ion velocity to the
driving force and the friction with other ions [95, 96],

ni∇µ̄i = kBT
∑

j

ninj
ntotDij

(uj − ui) , (2.10)

where µ̄i is the electrochemical potential, ntot is the sum of all concentrations
(including the solvent), and Dij is a diffusion coefficient describing the interac-
tion of species i and j. The electrochemical potential consists of entropic and
electrostatic energies [14, 93, 95],

µ̄i = µ

i + kBT ln ai + Zieφ, (2.11)

where µ

i is a standard-state reference energy and ai is the activity. The activity

relates to the concentration through the activity coefficient γi, ai = γici/c
, in
which c
 = 1M is a standard-state reference concentration [97].

We are interested in ideal solutions (implying dilute solutions) whereby we
can approximate the activity coefficient with unity, γi = 1. In this case ion-
ion interactions vanish whereby the expression for the flux simplifies and it is
possible to identify three terms: diffusion, electromigration, and advection. The
flux-expression is also known as the Nernst–Planck equation [14, 93, 95],

J i = Di

(
−∇ni −

Zi
VT
ni∇φ

)
+ niv, (2.12)

where Di is the diffusion coefficient and v is the solvent velocity.
We find the electrical current density iel carried by the ions by multiplying J i

with the ionic charge and summing,

iel = e
∑

i

ZiJ i. (2.13)

In the special case where the contribution to the current from diffusion and ad-
vection is negligible we obtain Ohm’s law,

iel = σelE, (2.14)
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where

σel = e
∑

i

Ziµini (2.15)

is the electrical conductivity and we have used the Einstein equation [98],

µi = Zi
Di

VT
, (2.16)

to relate the ionic mobility µi (at infinite dilution) to the diffusivity.
We carry out a dimensional analysis by scaling length with L, concentration

with ni,b, fluid velocity with v0, time with the unsteady time-scale τ , produc-
tion with ni,b/τreac,i (τreac,i being the characteristic reaction time) and Eq. (2.8)
becomes

Pei St
∂ñi
∂t̃

+ ∇̃ ·
(
−∇̃ñi − Ziñi∇̃φ̃+ Pei ñiṽ

)
= Dai R̃i, (2.17)

where Pei = v0L/Di is the Péclet number (mass transport by advection to mass
transport by diffusion), St = L/(v0τ) is the Strouhal number (the flow time scale
to the unsteady time scale), and Dai = L2/(Diτreac,i) is the Damköhler number
(characteristic time for diffusion to the characteristic reaction time for chemical
reaction).

Typically, microsystems have a length scale L . 10−5 m, flows with velocity
scale v0 . 10−4 ms−1, and ions with diffusion coefficient D ∼ 10−9 m2 s−1. In
this case Pe . 1, where Pe ∼ 1 indicates that advection could be significant and
Pe� 1 indicates that advection is negligible. Also, for long time scales (steady-
state) τ → ∞, the Strouhal number vanishes St → 0 whereby we can neglect
the unsteady term. Moreover, in quasi-equilibrium chemistry the reactions occur
instantaneously corresponding to a short reaction time τreac,i → 0 and thus a large
Damköhler number Da→∞. This limit leads to the condition Ri = 0 which we
use in Section 2.6 where we discuss the chemistry in more detail.

2.4 Electrochemical equilibrium
With no fluid flow (or a low Péclet number Pe � 1) and the system at elec-
trochemical equilibrium (uniform electrochemical potential) the flux is zero and
diffusion must balance electromigration whereby Eq. (2.12) leads to the Boltz-
mann distribution of the ions,

ni = ni,b exp
[
−Zi(φ− φb)

VT

]
, (2.18)

where ni,b and φb are reference (bulk) levels for the concentration and electric
potential, respectively. When φ = φb then ni = ni,b. We apply the Boltzmann
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distribution in the Poisson equation Eq. (2.2) and obtain the Poisson–Boltzmann
equation,

∇2φ = −e
ε

∑

i

Zini,b exp
[
−Zi(φ− φb)

VT

]
. (2.19)

In the special case of a planer wall with surface normal along the z-coordinate
we can integrate Eq. (2.19) once to obtain
(

dφ
dz

)2

= 2kBT

ε

∑

i

ni,b

{
exp

[
−Zi(φ− φb)

VT

]
− exp

[
−Zi(φ

∗ − φb)
VT

]}
, (2.20)

where φ∗ is the reference potential where dφ/dz = 0.
Immediately at the charged wall bounding the electrolyte, at the plane of

viscous shear (also called the slip-plane), we define the zeta potential ζ relative
to φb. The surface charge density σ is related to the normal derivative of the
potential [14, 89, 90],

−σ
ε

= n ·∇φ, (2.21)

and we have the freedom to define φb = φ∗. Then, Eq. (2.20) becomes the
Grahame equation [3, 99],

σ2 = 2 εkBT
∑

i

ni,b

[
exp

(
−Ziζ
VT

)
− 1

]
, (2.22)

which for a binary Z:Z electrolyte simplifies to

σ = ε

λD

2VT

Z
sinh

(
Zζ

2VT

)
, (2.23)

which in the Debye–Hückel limit of small surface potentials Zζ/(2VT)� 1 sim-
plifies to σ = ζ ε/λD.

For a binary Z :Z electrolyte we rewrite Eq. (2.20) [assuming z > 0 and thus
sgn(dφ/dz) = − sgn(φ)] [4],

dφ
dz = − 2

Z

VT

λD
sinh

(
Zφ

2VT

)
, (2.24)

which we integrate to obtain the Gouy–Chapman solution [14],

φ = 4VT

Z
tanh−1

[
tanh

(
Zζ

4VT

)
exp

(
− z

λD

)]
, (2.25)

which in the Debye–Hückel limit of small surface potentials Zζ/(4VT)� 1 sim-
plifies to φ = ζ exp (−z/λD). We apply this result in Eq. (2.18) which upon
expansion yields n± = nb [1∓ Zζ exp (−z/λD) /VT].
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2.5 Hydrodynamics
The equation for mass conservation of the fluid is [14, 93]

∂ρm

∂t
+ ∇ · (ρmv) = 0, (2.26)

where ρm is the mass density of the fluid. For incompressible fluids the mass
density following a fluid particle is constant, Dρm/Dt = 0, (D/Dt = ∂/∂t+v ·∇
is the material derivative) and the equation for conservation of mass becomes

∇ · v = 0. (2.27)

The equations for the conservation of momentum are the Navier–Stokes equa-
tions [14, 93, 100],

ρm
Dvi
Dt

= −∂ip+ ∂jσij + fi, (2.28)

where the indices run over the three spatial coordinates x, y, and z. Moreover, p
is the pressure,

σij = η [∂jvi + ∂ivj − (β − 1) δij∂kvk] (2.29)

is the viscous stress tensor, fi is a force density, β is a dimensionless viscosity
ratio, and δij is the Kronecker delta. β relates to effects of compressibility. The
force density fi could be due to gravity ρmgi, buoyancy (∂ρm/∂T ) ∆T gi, and
electrical stresses ∂jTij, where

Tij = ε

{
EiEj −

1
2

[
1− ρm

ε

(
∂ε

∂ρm

)

T

]
EkEk δij

}
(2.30)

is the Maxwell stress tensor. We take the divergence of the Maxwell stress tensor
and write out the three resulting terms: the Coulomb force ρelEi, the dielectric
force −1

2EkEk∂iε, and the electrostriction 1
2∂i [ρm (∂ε/∂ρm)T EkEk] [101–103].

For single-phase incompressible Newtonian fluids at isothermal conditions,
and no gradients in the electrical permittivity, the viscous stress tensor reduces
to

σij = η (∂jvi + ∂ivj) , (2.31)
and the Navier–Stokes equations become [14]

ρm
Dv

Dt
= −∇p+ η∇2v + ρelE. (2.32)

To further reduce the equations we undertake a dimensional analysis by scaling
position with L, velocity with the electrokinetic velocity scale v0 = εV 2

T/(ηL),
pressure with p0 = ε (VT/L)2 and time with τ . We rewrite the electric force
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density term ρelE = ε∇2φ∇φ, and scale the electrical potential with the thermal
voltage VT. Thus, the scaled Navier–Stokes equations become

Re

[
St

∂ṽ

∂t̃
+
(
ṽ · ∇̃

)
ṽ

]
= −∇̃p̃+ ∇̃2ṽ + ∇̃2φ̃∇̃φ̃, (2.33)

in which Re = v0L/ν is the Reynolds number (inertial force to viscous force)
[14, 93]. The kinematic viscosity ν = η/ρm has unit of m2 s−1 whereby it resembles
a “diffusion coefficient” for momentum.

Typically, aqueous solutions in microsystems have ν ∼ 10−6 m2 s−1, a length
scale L . 10−5 m, and a velocity scale v0 . 10−4 ms−1. In this case Re . 10−3,
and for long time scales (steady-state) τ →∞ the Stouhal number vanishes St→
0. Hence, the left-hand-side in Eq. (2.33) is negligible. Re-dimensionalization
then yields the most general form of the Navier–Stokes equations used in this
thesis,

0 = −∇p+ η∇2v + ρelE, (2.34)

also known as the Stokes equations.

2.5.1 Helmholtz–Smoluchowski slip
We assume an electric field Ex, tangential to a charged surface, acting on the
charge density in the equilibrium EDL (with associated equilibrium potential φeq),
thereby giving rise to a tangential velocity vx. Furthermore, we assume λD/L�
1 and that tangential pressure gradients are negligible, and Stokes equations
Eq. (2.34) simplify to a balance between tangential viscous and electrical stresses,
0 = η∂2

zvx − εEx∂2
zφeq (z being the surface-normal coordinate). This equation is

readily integrated subject to the no-slip condition vx(z = 0) = 0 and the condition
that vx remains finite for all z. The resulting tangential velocity,

vx = εζ(φ/ζ − 1)Ex/η, (2.35)

approaches the limiting Helmholtz–Smoluchowski velocity vhs asymptotically as
z →∞ (on the “inner” scale of λD),

vhs = −εζ
η
Ex. (2.36)

Seen from the “outer” macroscopic scale the surface appears to have a slip velocity
of vhs.

2.6 Bulk solution chemistry
We summarize the review of equilibrium chemistry for microfluidic electrokinetics
by Persat et al. [97, 104, 105]. We define pH in terms of the activity of the
hydronium ion, pH ≡ − log10 aH, which for dilute solutions simplifies to

pH ≡ − log10
cH

c

. (2.37)
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We remind that the H+- and OH− ions are referred to under one as “water ions”.
We describe the chemistry of the water ions, and any additional ions in the

electrolyte, by the proton dissociation reaction,

HA + H2O fA−−⇀↽−−
bA

A− + H3O+, (2.38)

where HA is the undissociated molecule, H20 is the water molecule, A− is the
dissociated molecule, and fA and bA are the forward and backward reaction rate
constants, respectively. If the rate constants are large in the sense of a small
reaction time scale τreac,A � 1, and thus a large Damköhler number Da � 1
(cf. Section 2.3), then the reaction will be maintained at equilibrium and the
production term vanishes,

RA = fAaHAaH2O − bAaAaH = 0. (2.39)

This leads to the condition of chemical equilibrium and the definition of the acid
dissociation constant KA,

aAaH

aHAaH2O
= fA

bA
= KA. (2.40)

KA is also referred to as “equilibrium constant” and is also given as pKA =
− log10KA. For ideal solutions the activity of the water molecule is constant and
defined to be unity, aH2O ≡ 1, and Eq. (2.40) simplifies to

KA = cAcH

cHAc

. (2.41)

In general, the dissociation constant depends on ionic strength and temperature,
but we neglect such effects unless noted otherwise.

In particular, for the water ions the reaction Eq. (2.38) is known as self-
ionization and is always present in aqueous electrolytes,

H2O + H2O fw−⇀↽−
bw

OH− + H3O+, (2.42)

where the subscript “w” refers to “water ions”. The equilibrium condition becomes

cOHcH

c2



= fw

bw
= Kw, (2.43)

in which Kw = 10−14 at 25 ◦C. For notational simplicity we omit c
 in what
follows.

Aside from the self-ionization, dissociation reactions can be introduced pur-
posefully e.g. through a buffer to control the pH (especially relevant in biological
work). The reactions can also appear unintentionally e.g. due to the absorbtion of
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CO2 from the atmosphere which is subsequently transformed into carbonic acid
H2CO3 (more about this in Chapter 6).

We want to write all chemical reactions as acid dissociations (i.e. with a H+

on the right-hand-side of the chemical reaction) since this facilitates a straight-
forward and general mathematical treatment (explained below).

In this regard, we account for base reactions, BOH
 B+ +OH−, by rewriting
them to acidic form,

B+ + 1
2H2(g) 
 B + H+. (2.44)

Moreover, we account for the presence of a chemically inert salt by the addition
of the corresponding amount of acid and base i.e. 1mM of KCL is modeled as
1mM of HCl and 1mM of KOH, and 1mM Na2HPO4 is modeled as 2mM NaOH
and 1mM H3PO4.

It is convenient with a systematic scheme for the complex situation where
the electrolyte consists of multiple ionic species correlating to each other through
acid dissociation reactions. We introduce the concept of a chemical “family”
X containing the reactions XZ 
 XZ−1 + H+, Z = nX + 1, nX + 2, nX, . . . , pX,
where nX and pX is the minimum and maximum valence, respectively. As an
example, the family of phosphoric acid X=H3PO4 consists of the four members
X3− = PO3−

4 , X2− = HPO2−
4 , X− = H2PO−4 , and X0 = H3PO4. Using the general

notation, all the dissociation reactions within a family are

XpX 
 XpX−1 + H+, KX,pX−1, (2.45a)
XpX−1 
 XpX−2 + H+, KX,pX−2, (2.45b)

. . . (2.45c)
XnX+1 
 XnX + H+, KX,nX ., (2.45d)

while chemical equilibrium for each individual reaction is

KX,Z = cX,ZcH

cX,Z+1
, (2.46)

and mass conservation for the entire family is

cX =
pX∑

Z=nX

cX,Z , (2.47)

where cX is the total (analytical) concentration of the family.
For electroneutral conditions (see also Section 2.2) the total charge from all

ionic species must vanish,

∑

X

pX∑

Z=nX

ZcX,Z + cH −
Kw

cH
= 0, (2.48)
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where cH is taken out of the sum due to its special significance. Note the notation:
the outer sum runs over the chemical families while the inner sum runs over the
valences within each family.

Within each chemical family it is possible to relate the concentration of each
charge state Z to that of the neutral state and that of the hydronium ion,

KX,0KX,1KX,2 . . . KX,Z−1 = cX,0

cX,1

cX,1

cX,2
. . .

cX,Z−1

cX,Z
cZH (2.49a)

= cX,0

cX,Z
cZH, (2.49b)

which we rewrite in terms of cX,Z ,

cX,Z = cX,0LX,Zc
Z
H, (2.50)

where

LX,Z =





−1∏

Z′=Z
KX,Z′ Z < 0

1 Z = 0
Z−1∏

Z′=0
K−1

X,Z′ Z > 0

. (2.51)

Furthermore, applying Eq. (2.50) in the family mass conservation Eq. (2.47) yields
cX,0, which upon reinsertion in Eq. (2.50) leads to

cX,Z = cX gX,Z , (2.52)

in which

gX,Z = LX,Zc
Z
H




pX∑

Z=nX

LX,Zc
Z
H



−1

. (2.53)

We apply Eq. (2.52) in the electroneutrality condition Eq. (2.48) and obtain an
algebraic equation for cH,

∑

X

pX∑

Z=nX

ZcX gX,Z + cH −
Kw

cH
= 0. (2.54)

This equation can be solved for cH e.g. numerically in an iterative process.
Once the hydronium-ion concentration is determined, the concentration of

all other ionic species are given by Eq. (2.52). We note that Eq. (2.54) can
be rewritten to polynomial form and solved efficiently as shown by Persat et al.
[97]. In Chapter A.3 we include their Matlab “ITPCalculator” script (available
at http://microfluidics.stanford.edu) with slight modifications according
to our implementation.

http://microfluidics.stanford.edu
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2.6.1 Ionic transport and chemical equilibrium
Below we summarize how to account for transport of ionic species in chemical
equilibrium. For each chemical family the assumption of a large Damköhler num-
ber reduces the pX − nX = NX ionic transport equations Eq. (2.8) to NX − 1
conditions of chemical equilibrium Eq. (2.41), to which the condition of mass
conservation is added in order to balance the number of unknowns with the num-
ber of equations. An exception to this scheme is the water ions; cOH is given
in terms of cH by the water self-ionization equilibrium Eq. (2.43) and cH by the
electroneutrality condition Eq. (2.54).

However, during transport, the concentrations are no longer uniform in space.
We find the effective flux equations that take chemical equilibrium into account
by utilizing that the total production ∑pX

Z=nX
RZ within a family must vanish

[104, 106–108]. An exception to this rule is the water ions, more about that
below. Thus, we sum the individual transport equations in Eq. (2.8) within each
family and obtain the effective transport equation for the analytical concentration
nX without production term,

∂nX

∂t
+ ∇ · [−∇ (DXnX)− µXnX∇φ+ nXv] = 0, (2.55)

where the effective diffusivity DX and effective mobility µX are given as [107, 108]

DX =
pX∑

Z=nX

gX,ZDX,Z , µX =
pX∑

Z=nX

gX,ZµX,Z . (2.56)

The electrical potential constitutes a new variable in the system and requires an
accompanying equation.

If the transport occurs without generation of electrical space charge then the
water ions are determined by the electroneutrality condition Eq. (2.54), and the
electrical potential is determined by conservation of the total current as shown
in Bercovici et al. [107].

If the transport happens with generation of electrical space charge, as in
electrodialysis systems at over-limiting current Chapter 7, then the water ions
are determined by an effective flux equation as shown in Section 7.2.1.3, and
the electrical potential is determined by the Poisson equation Eq. (2.2). This
is the case in Chapter 7 where we study over-limiting current in ion-selective
membranes.

2.7 Surface chemistry
Below we summarize selected parts of the theory of surface chemistry [4]. We
start by presenting one of the simplest surface chemistry models, the “two-layer
model”, which introduces acid dissociation reactions on the surface. Next, we
extend this to the “four-layer model” which introduces adsorption of metal ions
onto the charged surface groups, so-called site-binding.
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Figure 2.1: Sketch of the two-layer surface chemistry model.

2.7.1 Two-layer model
We assume the surface consists of surface groups which are either charge neutral
MOH, negatively charged MO−, or positively charged MOH+

2 , see Fig. 2.1. These
surface groups are in an acid dissociation equilibrium with the hydronium ion
H+

0 at the 0-plane (the plane of the mean position of the hydronium ion when
reacting),

MOH 
 MO− + H+
0 , (2.57a)

MOH+
2 
 MOH + H+

0 , (2.57b)

described in equilibrium by

KMO = ΓMOcH,0

ΓMOH
, (2.58a)

KMOH2 = ΓMOHcH,0

ΓMOH2

, (2.58b)

where Ki is the dissociation constant and Γi is the surface concentration of group
i. For silica pKSiO ≈ 6.8 [109] and pKSiOH2

≈ −1.9 [110], indicating that for
neutral pH ≈ 7 the amount of positively charged surface groups is negligible and
Eq. (2.57b) can be ignored. However, if the pH is sufficiently low this approxi-
mation is not valid and Eq. (2.57b) needs to be considered.

The local concentration of ion i at the surface j-plane is related to its bulk
counterpart through the Boltzmann factor,

ci,j = ci,b exp
(
−Zi

φj − φb

VT

)
. (2.59)
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In the case of the hydronium ion this leads to,

cH,0 = cH,b exp
(
−φ0 − φb

VT

)
. (2.60)

When the surface concentration of positive and negative groups are equal,
ΓMO = ΓMOH2

, the surface is said to be at the “point of zero charge” (PZC). At
this condition we get from Eq. (2.58) that the pH at the 0-plane is the average
of the dissociation constants,

pH0,pzc =
pKMO + pKMOH2

2 . (2.61)

Using the Boltzmann relation in Eq. (2.60) the pH in the bulk at the PZC becomes

pHb,pzc = pH0,pzc + φ0 − φb

VT
log10(e), (2.62)

where log10(e) ≈ 0.43. For a characteristic value of φ0 − φb ≈ −100mV the
correction in the bulk to pH0,pzc is −2 units.

The total amount of surface sites Γtot is conserved,

ΓMOH + ΓMO + ΓMOH2
= Γtot, (2.63)

which we rewrite using Eq. (2.58),

ΓMOH = Γtot

(
1 + KMO

cH,0
+ cH,0

KMOH2

)−1

. (2.64)

The surface charge density σ0 at the 0-plane is related to the surface concen-
tration of charged surface groups,

σ0 = e
(
ΓMOH2

− ΓMO
)

= e

(
cH,0

KMOH2

− KMO

cH,0

)
ΓMOH. (2.65)

We assume zero charge between the 0- and d-plane which thus act as capacitor
plates, and the potential difference between the planes is linearly related to the
surface charge density through the Stern capacitance [3, 4, 14, 93, 95],

Cs (φ0 − φd) = σ0. (2.66)

Any charge imbalance will be canceled quickly by the mobile ions and we
thus require electroneutrality between the surface 0-plane and the diffuse layer
d-plane,

σ0 + σd = 0. (2.67)

Using Eqs. (2.60), (2.64), and (2.65) together with Grahame’s equation Eq. (2.22)
(where σ = −σd and ζ = φd), the two equations Eqs. (2.66) and (2.67) are closed
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Figure 2.2: Sketch of the four-layer surface chemistry model.

in terms of the two surface potentials φ0 and φd, and thus constitute the two-layer
model.

Unfortunately, the system is rarely analytically tractable due to the many
non-linear terms and a numerical solution is therefore often required. As is often
seen in the literature we express the surface charge density in terms of the surface
concentrations,

σ0 = eΓtot

(
cH,0

KMOH2

− KMO

cH,0

)(
1 + KMO

cH,0
+ cH,0

KMOH2

)−1

. (2.68)

We note that the two-layer model couples to the local bulk electrolyte concen-
trations ci,b through the Boltzmann factors in Eq. (2.60) and through Grahame’s
equation Eq. (2.22).

2.7.2 Four-layer model
We expand the two-layer model to additionally take into account site-binding
i.e. the electrostatic adsorption of charged monovalent (metal) ions onto charged
surface groups of opposite charge sign [111–114], see Fig. 2.2.

The negatively charged surface groups are in equilibrium with the cations C+
c

at the c-plane (the plane of the mean position of the cations when binding) and
the positively charged surface groups with the anions A−a at the a-plane (the plane
of the mean position of the anions when binding),

MO−C+ 
 MO− + C+
c , (2.69a)

MOH+
2 A− 
 MOH+

2 + A−a . (2.69b)
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These reactions are described by the equilibrium equations

KMOC = ΓMOcC,c

ΓMOC
, (2.70a)

KMOH2A =
ΓMOH2

cA,a

ΓMOH2A
. (2.70b)

The concentration of cations cC,c at the c-plane and anions cA,a at the a-
plane are related to their bulk counterparts, cC,b and cA,b, though the Boltzmann
relation Eq. (2.59) and the surface potential at the c-plane φc and at the a-plane
φa,

cC,c = cC,b exp
(
−φc − φb

VT

)
, (2.71a)

cA,a = cA,b exp
(
φa − φb

VT

)
. (2.71b)

Conservation of the five types of surface sites becomes
ΓMOH + ΓMO + ΓMOH2

+ ΓMOC + ΓMOH2A = Γtot, (2.72)
which we rewrite using the equilibrium conditions Eqs. (2.58) and (2.70),

ΓMOH = Γtot

(
1 + KMO

cH,0
+ cH,0

KMOH2

+ KMO

cH,0

cC,c

KMOC
+ cH,0

KMOH2

cA,a

KMOH2A

)−1

. (2.73)

The surface charge density at the 0-plane has additional contributions from the
positive and negative parts of the site-binding complexes MO−C+ and MOH+

2 A−.
The surface charge density at the c-plane σc and a-plane σa are related to the
surface concentration of MO−C+ and MOH+

2 A−, respectively,

σ0 = e
(
ΓMOH2

− ΓMO + ΓMOH2A − ΓMOC
)

= e

(
cH,0

KMOH2

− KMO

cH,0
+ cH,0

KMOH2

cA,a

KMOH2A
− KMO

cH,0

cC,c

KMOC

)
ΓMOH, (2.74a)

σc = eΓMOC

= e
KMO

cH,0

cC,c

KMOC
ΓMOH, (2.74b)

σa = −eΓMOH2A

= −e cH,0

KMOH2

cA,a

KMOH2A
ΓMOH. (2.74c)

The Stern capacitor model Eq. (2.66) is expanded using the zero-charge-
between-planes assumption to include the c- and a-plane, thus introducing the
capacitances C1 (between the 0- and c-plane), C2 (between the c- and a-plane),
and C3 (between the a- and d-plane),

C1 (φ0 − φc) = σ0, (2.75a)
C2 (φc − φa) = − (σa + σd) , (2.75b)
C3 (φa − φd) = −σd. (2.75c)
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The electroneutrality condition Eq. (2.67) is extended by the c- and a-plane
surface charge densities,

σ0 + σc + σa + σd = 0. (2.76)

Using Eqs. (2.60), (2.71), (2.73), and (2.74) together with Grahame’s equation
Eq. (2.22) (where σ = −σd and ζ = φd), the four equations Eqs. (2.75) and (2.76)
are closed with respect to the four surface potentials φ0, φc, φa, and φd, and thus
constitute the four-layer model.

As already mentioned, the equations are rarely analytically tractable due to
the many non-linear terms and are therefore often solved numerically. As in
Eq. (2.68) we use the electroneutrality condition to express the (total) surface
charge density in terms of the surface concentrations,

−σd =σ0 + σc + σa

=eΓtot

(
cH,0

KMOH2

− KMO

cH,0

)
×

(
1 + KMO

cH,0
+ cH,0

KMOH2

+ KMO

cH,0

cC,c

KMOC
+ cH,0

KMOH2

cA,a

KMOH2A

)−1

. (2.77)

Finally, we mention that there exist many possible extensions of the two-
and four-layer models. More planes of adsorption and different types of surface
complexes can be introduced . It is also known that the presence of a divalent ion
D2− can change the sign of the surface charge density through the site-binding
reaction [115–117],

MOH+
2 D2− 
 MOH+

2 + D2−
d , (2.78)

which shifts the surface charge density from positive to negative. Surfactants
might also influence the surface chemistry and in chapters 4 and 5 we include
such a molecule (cyanosilane) in our analysis.



Chapter 3

Numerical techniques

The field of nanofluidics is a multiphysics coupling of electrostatics, electrochem-
ical transport of multiple ionic species, and fluid dynamics. The corresponding
mathematical framework consists of many coupled and non-linear partial differ-
ential equations and non-trivial boundary conditions. We analyze this both by
analytical and numerical means.

For the numerical analysis we resort to the FEM software COMSOL (version
3.5a) and the programming environment software Matlab. Using such programs
allows us to focus more on the actual physics than the numerics.

Below we give a short introduction to the finite element method and illustrate
basic parts of its usage [118–120]. We do not go into detail about the exact
numerical solution procedures, as that is outside our scope.

3.1 The finite element method
The finite element method has several advantages compared to other numeri-
cal schemes including: (i) applicability to any field problem, (ii) little geometric

Figure 3.1: A conceptual breakdown of the FEM analysis. Adapted form Fish and
Belytschko [119].
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Figure 3.2: A finite element basis function in a finite element mesh. Adapted from
Olesen [121].

restriction on the computational domain (curved boundaries etc.), (iii) little re-
striction on the boundary conditions, (iv) little restriction on material properties
(may even vary within elements), (v) problems described by different mathemat-
ical equations can be combined, (vi) easy to mesh and re-mesh as required by the
problem.

In some numerical methods, e.g. the finite difference scheme, it is possible to
write down the algebraic equations directly from the partial differential equations.
This is not the case in FEM where additional steps are needed. As shown in
Fig. 3.1 we conceptually break down the finite element analysis in four parts [119]:
the strong form, the weak form, approximation of functions, and the discrete
equations.

Once the method to obtain the discrete equations is understood the actual
FEM analysis is carried out in five steps [119]: (i) preprocessing/meshing (subdi-
vision of the domain into finite elements), (ii) formulating the equations for the
elements, (iii) assembling the full system of equations from the element equations,
(iv) solving the equations, and (v) postprocessing. Below we present an excerpt
from our work in Ref. [79] about the FEM weak form implementation in COMSOL.

3.2 The weak form in COMSOL

3.2.1 Introduction: mesh and test functions

The most common partial differential equations in theoretical physics has the
form of the divergence of some generalized flux equal to a generalized source
term. As the flux is often the gradient of some generalized driving potentials, we
end up with the classical second-order partial differential equations.

In the FEM scheme, these equations are solved by introducing a mesh on the
computational domain Ω with a finite number M of elements m = 1, 2, 3, ...,M .
Each element is assigned a test function φ̃m (which is also a basis function, thus
the Galerkin method), which differs from zero only in that particular element,
see Fig. 3.2. A given field φ(r) is represented by a linear combination of basis



3.2 The weak form in COMSOL 25

functions with coefficients φm,

φ(r) =
M∑

m=1
φmφ̃m(r) (3.1)

In the weak form, a given differential equation in the continuous space is
transformed into M equations, one for each coefficient φm, by multiplying it by
each of the test functions, integrating over the domain, and demanding that all
integrals should be zero. In the following we illustrate the method with specific
examples.

3.2.2 The Poisson equation in weak form
As example, we consider the Poisson equation, given in strong form in Eq. (2.2),
which in weak form becomesˆ

Ω
φ̃m(r) {∇ · [ε∇φ(r)] + ρel(r)} dV = 0, m = 1, 2, . . . ,M. (3.2)

Here dV is the volume integration element. For brevity, we suppress in the
following the test function index m as well as the spatial coordinate r.

It turns out to be advantageous to transform the second order derivatives into
first order. Thus, we use Gauss’s theorem to integrate by parts Eq. (3.2),ˆ

∂Ω
φ̃n · (ε∇φ) da−

ˆ
Ω

[(
∇φ̃

)
· (ε∇φ)− φ̃ ρel

]
dV = 0, (3.3)

where da is the surface integration element with outward normal vector n. In
COMSOL the integrals for each test function is carried out automatically, and the
answer is stored in a large matrix, where each entry corresponds to a contribution
from a specific part of the domain or the boundary.

3.2.3 Boundary conditions
The coefficient to φ̃ on the boundary is seen from Eq. (3.3) to be the normal
derivative n · (ε∇φ). One therefore imposes a given Neumann condition n ·
(ε∇φ) = N(r) on the boundary by substitution of the term,ˆ

∂Ω
φ̃ N(r) da−

ˆ
Ω

[(
∇φ̃

)
· (ε∇φ)− φ̃ ρel

]
dV = 0. (3.4)

It is more tricky to impose a Dirichlet condition φ = D(r) on the boundary.
In this case the normal derivative on the boundary is free to vary such that
the imposed Dirichlet boundary condition indeed is fulfilled. This case therefore
requires the introduction of an auxiliary field f(r) on the boundary, the so-called
Lagrange multiplier, together with its associated test function f̃(r), and one
writesˆ

∂Ω

{
φ̃f + f̃ [D(r)− φ]

}
da−

ˆ
Ω

[(
∇φ̃

)
· (ε∇φ)− φ̃ ρel

]
dV = 0. (3.5)
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Figure 3.3: Mesh convergence test showing the convergence of the streaming current
Ip as the number of elements is increased. Adapted from our paper [79].

In this formulation, the test function f̃ of the Lagrange multiplier only exists on
the boundary, and therefore its coefficient [D(r)−φ] is forced to be zero for any
converged solution of the problem. On the other hand, the coefficient f(r) to
the potential test function φ̃ is a dependent variable, which through ∇φ̃ couples
to the terms of the volume integral. Since this coefficient is also the normal
derivative of the potential, we find that it has been determined as n · [ε∇φ] = f
for a converged solution.

COMSOL is set up for implementing partial differential equations in the weak
form given by Eqs. (3.4) and (3.5): A volume integral containing (i) the gradient
of the test functions, which relates to the divergence of the flux or the Laplace
term in Eq. (3.2), and (ii) a term containing the test functions, which relates
to source terms in (3.2), and finally (iii) a boundary integral containing test
functions, which relates to the boundary conditions, and perhaps also a term
containing a Lagrange multiplier test function f̃ .

COMSOL has a build-in automated mesh generator which provides the user with
complete control of the mesh including how fine the mesh should be and in which
parts of the domain. It is always important to be critical towards numerical
results and we perform different checks including mesh convergence tests.

As an example, Fig. 3.3 shows the convergence of the streaming current with
increasing number of elements in the finite element mesh (related to the work in
Chapter 5). In our numerical simulations we therefore make sure to use meshes
with a sufficiently high amount of elements to resolve the problem to within the
necessary accuracy.



Chapter 4
Nanochannels: Surface-dependent

thermodynamic constants

This study was carried out together with Professor Sumita Pennathur and her
student Jared Frey, UC Santa Barbara. The following is my personal presentation
of our work in Chapter B where additional details may be found.

4.1 Introduction
Theory of electrokinetic phenomena in micro- and nanofluidics is particularly suc-
cessful in describing systems with electrolytes of few and inert ions (like aqueous
KCl solutions) and constant surface charge or surface potential at the wall. How-
ever, it is less successful in describing more complex systems [19, 21, 122, 123].
Especially the understanding of fundamental properties of the solid-liquid inter-
action needs to be improved. In relation to this, a complicating factor when
measuring the fundamental properties in micro- and nanofluidic systems is the
disturbance induced by the applied field. For example, measurements of the
surface-charge governed conductance across ion-selective media (see Chapter D)
can be affected by the appearance of ion-concentration polarization.

Here, we make use of a novel method, originally shown by Janssen et al. [74],
that relies on capillary filling and thus avoids the use of externally applied fields.
Moreover, the method is unique to nanofluidics because it relies on the large
surface-to-volume ratio. The method is fairly simple and constitute an excellent
platform for the assessments of the electrochemical properties of surfaces such as
silicon dioxide.

We extend the previous investigation using our unified model which couples
the equilibrium chemistry of the bulk and the surface through Boltzmann dis-
tributed ions. Furthermore, we investigate both bare and surface-coated nano-
channels.
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Figure 4.1: Sketch of the solid-liquid interface showing the five surface complexes
and the three interfacial planes with associated surface charge σi and surface potential
φi i = 0, c, d. Figure adapted from our paper [76].

4.2 Model
We consider long and flat nanochannels with non-overlapping screening layers
and use a 1D description of the solid-liquid interface, see Fig. 4.1.

4.2.1 Surface chemistry
The electrolyte consists of aqueous potassium phosphate salt KH2PO4. The sil-
ica nanochannel has negative surface charge leading us to neglect anion surface
adsorption, but to still account for potassium cation adsorption and the forma-
tion of the surface complex SiO−K+. Hence, we employ a simplified version of
the four-layer model presented in Section 2.7.2 called the triple-layer model. The
absence of adsorption of anions effectively corresponds to the limit where the
dissociation constant for anion adsorbtion goes to infinity,

KSiOH2A →∞, (4.1)

whereby the surface concentration of the SiOH+
2 A− group goes to zero,

ΓSiOH2A → 0. (4.2)

Thus, for the surface chemistry we consider the silanol dissociation reactions,

SiOH+
2 
 SiOH + H+

0 , (4.3a)
SiOH 
 SiO− + H+

0 , (4.3b)
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Figure 4.2: Coating reaction between a cyanosilane molecule and a silanol surface
group and the additional product HCl. Adapted from Gelest [124].

and the site-binding reaction between the negative silanol groups and the positive
potassium cation,

SiO−K+
 SiO− + K+
c . (4.4)

The three surface reactions above are described by the dissociation constants
pKSiOH2

, pKSiO, and pKSiOK, respectively.
The triple-layer model contains only two surface capacitances between the

three charged surface planes,

C1 (φ0 − φc) = σ0, (4.5a)
C2 (φc − φd) = −σd. (4.5b)

With these modifications to the four-layer model in Section 2.7.2 the surface
chemistry of the triple-layer model is described in the limit of zero anion adsorp-
tion [Eqs. (4.1) and (4.2)] by the capacitor relations Eq. (4.5), the surface charge
densities Eq. (2.74), the Boltzmann distributions Eqs. (2.71a) and (2.60), and the
electroneutrality condition Eq. (2.76).

Additionally, we coat the channels with 3-cyanopropyldimethylchlorosilane
(cyanosilane) which binds to the neutral silanol group SiOH as shown in Fig. 4.2.
We incorporate this molecule in the model by adjusting the total number of
surface sites Γtot. This is a reasonable approach as we know from other studies
[125, 126] that cyanosilane forms a fully wettable, slightly hydrophilic, stable
monolayer on the surface where it occupies ≈ 25 % of the sites.

Due to the presence of the cyanosilane molecule we do not assume that the
surface capacitances C1 and C2 and the surface dissociation constant pKSiOH2

are
constant but allow them to vary with the surface composition (bare or coated).

4.2.2 Bulk solution chemistry
For the bulk chemistry we employ the theory in Section 2.6 in the form of
Eq. (2.54) implemented in a Matlab using a modified version of the ITPCal-
culator script [97, 105], see Chapter A.3. The electroneutrality assumption is
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Table 4.1: List of the chemical family X, the valence Z, the reaction, the dissociation
constant pKX,Z , the diffusion constant DX,Z , and the electrophoretic mobility µX,Z .
Table adapted from our paper [76].

X Z Reaction pKa
X,Z Db

X,Z µb
X,Z

[10−9 m2

s ] [10−9 m2

s V ]

H3PO4 −1 H3PO4 
 H2PO−
4 +H+ 2.15 0.959 −37.3

−2 H2PO−
4 
 HPO2−

4 +H+ 7.21 0.759 −59.1
−3 HPO2−

4 
 PO3−
4 +H+ 12.33 0.824 −96.2

C20H12O5 1 C20H10O5H+
3 
 C20H10O5H2 +H+ 2.22c 0.57d 22.0d

−1 C20H10O5H2 
 C20H10O5H− +H+ 4.34c 0.64e −25.0e

−2 C20H10O5H− 
 C20H10O2−
5 +H+ 6.68c 0.502e −39.5e

KOH 1 K+ + 1
2H2(g) 
 K +H+ 14.0 1.96 76.2

NaOH 1 Na+ + 1
2H2(g) 
 Na +H+ 14.0 1.33 51.9

H2O 1 9.311f 362.4f

−1 H2O 
 OH− +H+ 14.0 5.273f −205.2f

SiOH 1 SiOH+
2 
 SiOH +H+

0 −1.9g

−1 SiOH 
 SiO− +H+
0 6.8g

SiOK −1 SiO−K+ 
 SiO− +K+
c −0.06g

aFor acids pKX,Z values are at infinite dilution and at 25 ◦C from Persat et al. [97] unless
otherwise stated. bDX,Z values and µX,Z (signed) values at infinite dilution at 25 ◦C from Lide
[127] unless otherwise stated. cpKA values at infinite dilution and at 25 ◦C from Smith et al.
[128]. cEstimate. eµX,Z values from Persat et al. [97] with DX,Z values calculated from these
using DX,Z = µX,ZkBT/(Ze). fHere Z = 1 represents H+ and Z = −1 represents OH−. gFor
bare silica: SiOH [109, 110] and SiOK [129].

valid since we solve for the ion concentration in the large reservoirs and the ions
are Boltzmann distributed. Furthermore, the screening layer is on the order of
1 nm which is negligible compared to the nanochannel height on the order of
150 nm.

We consider in the bulk the presence of phosphoric acid (the buffer)

H3PO4 
 H2PO−4 + H+, (4.6a)
H2PO4 
 HPO2−

4 + H+, (4.6b)
HPO4 
 PO3−

4 + H+, (4.6c)

of fluorescein (the dye)

C20H10O5H+
3 
 C20H10O5H2 + H+, (4.7a)

C20H10O5H2 
 C20H10O5H− + H+, (4.7b)
C20H10O5H− 
 C20H10O2−

5 + H+, (4.7c)



4.3 Experiments 31

of potassium hydroxide and sodium hydroxide

K+ + 1
2H2(g) 
 K + H+, (4.8a)

Na+ + 1
2H2(g) 
 Na + H+, (4.8b)

and of water ions

H2O
 OH− + H+. (4.9)

The dissociation constant for all reactions along with the diffusivity and mo-
bility for all ionic species are summarized in Table 4.1.

4.3 Experiments
4.3.1 Chemicals
In short, the potassium phosphate KH2PO4 electrolyte of concentration 10mM,
30mM, 50mM, 100mM and 383mM was titrated to pH 7.2 using a 1 M potas-
sium hydroxide KOH solution to ensure similar conditions for the pH-sensitive
fluorescein molecule. The relatively high buffer concentration results in a small
Debye screening length in the range 0.3 nm to 2 nm.

Figure 4.3 shows that the only fluorescent charge state Z = −2 of fluorescein
is dominant above pH 6 to 7 and negligible below pH 5 to 6. To validate the pH-
dependence of the fluorescent effects we used as control marker the pH-insensitive
fluorescent molecule Alexa Fluor 488. Standard experimental precautions were
taken to ensure reproducible experiments. Details are given in our paper [76]
enclosed in Chapter B.

4.3.2 Experimental setup and procedure
The sketch in Fig. 4.4 and the photo in Fig. A.3 shows the inverted epifluorescent
microscopy setup used for recoding the capillary filling. In short, a mercury
(Hg) arc lamp emitted light which was filtered to 488 nm and focused onto the
chip using a 10× objective. The remitted light was focused back through the
10× objective and through a 532 nm filter before it was finally focused by a
0.5× demagnifying lens into the CCD camera which recorded the images onto a
computer.

Platinum wires were used for electrical connection to the reservoirs (not rele-
vant during the capillary filling experiments).

4.3.3 Design and fabrication
The chip design followed that in Refs. [130, 131] while the fabrication follows
that by Pennathur et al. [66]. Figure A.1(a) shows the chip design of 12 parallel
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Figure 4.3: The dependence of the
concentration of the charge states Z =
−2,−1, 0, and 1 of the Fluorescein
molecule on the supporting buffer pH.
Only Z = −2 is fluorescent with an opti-
cal emission wavelength at 521 nm. Figure
adapted from our paper [76].

Figure 4.4: Sketch of the inverted mi-
croscopy setup showing the mercury lamp
(Hg), the excitation filter (Ex) the 10×
objective, the sample, the emission filter
(Em), the 0.5× demagnifier, and the CCD
camera. Figures adapted from our paper
[76].

nanochannels of depth 115 nm, 145 nm and 195 nm (depending on the wafer pro-
duction batch), of length 5 cm, and of width 5 µm, 10 µm, 15 µm, 20 µm, 30 µm
and 40 µm (two channels of each width), with etched ruler markings in increments
of 100 µm along the channels. Both ends of the nanochannels were connected to
1.6 µm deep inlet microchannels measuring 2 mm by 5 mm which were further
connected to circular inlet reservoirs of the same depth and with a diameter of
5mm.

4.3.4 Surface coating and cleaning
In approximately half of the experiments we used surface coated channels. The
coating molecule was 3-cyanopropyldimethylcholorsilane and the exact coating
and cleaning procedures are given in our paper [76].

In short, the nanochannels were coated by drying them on a hotplate after
which they were filled by capillary action with 0.1M cyanosilane in an acetonitrile
solution. After the initial filling the solution were driven through the channels
by EO flow and subsequently stored overnight in the same solution. Finally, the
channels were rinsed and stored in ethanol solution.

4.3.5 Surface characterization
We studied the effect of surface coating using AFM measurements in the inlet
reservoirs on bare and coated chips and found the surface roughness to be 0.3 nm
and 0.7 nm, respectively [see Fig. A.1(b)].
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sion (black curve), and the theoretical pre-
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Figure 4.6: Determination of the zeta
potential by transient measurement of the
current Iel to get the electro-osmotic flow
flushing time ∆t across the nanochannels
[132]. The sketch shows the experimental
setup. Figure adapted from our paper [76].

By depositing 10 µL of de-ionized water on bare and coated silica glass slides
we measured a contact angle of 32° and 75°, respectively [see Fig. A.1(c) and (d)].

4.3.6 Kohlrausch buffer characterization
We characterized the buffer by measuring its electrical conductivity σel, given
theoretically in Eq. (2.15) in the limit of infinite dilution.

The empirical square-root law of Kohlrausch states that for concentrated elec-
trolytes (though not too concentrated) the molar conductivity σel/I depends
linearly on the square root of the ionic strength I. Figure 4.5 shows such a
Kohlrausch plot for our electrolyte along with the theoretical result at infinite
dilution. For the four lowest values of the ionic strength Kohlrausch’s law holds,
and when extrapolated to zero (infinite dilution) there is good agreement with
the theoretical result.

We note that for dilute solutions of strong electrolytes the Debye–Hückel–
Onsager theory makes it possible to derive the square root law by taking ion-ion
interactions into account.

4.3.7 Zeta potential by current-monitoring
We measured the zeta potential ζ in the channels using the current-monitoring
technique described by Sze et al. [132].

First, we introduced into the channels the buffer with a concentration slightly
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Figure 4.7: The dependence of the zeta potential ζ on the ionic strength I in bare
(dashed curves and open circles, blue color) and cyanosilane coated (full curves filled
squares, red color) nanochannels, either measured (symbols) or predicted (curves), for
the “Case 1” [panel(a)] and “Case 2” [panel(b)]. Figure adapted from our paper [76].

lower than the target concentration. We applied an electric field ∆V/L along
the channels and measured the resulting electrical current Iel over time until it
stabilized.

Then, we depleted the reservoir upstream of the channels and filled it with the
buffer of the target concentration and applied the electric field. The measured
current increased in time, as shown in Fig. 4.6, due to the displacement of the
low-conductivity buffer by the high (the displacement being due to advection by
the EO flow). When all of the low-conductivity buffer had left the channels the
current stabilized at a new higher level.

We then estimated the electro-osmotic flow velocity as the length of the chan-
nels L by the time ∆t for displacement and equated that to the Helmholtz–
Smoluchowski expression Eq. (2.36) to obtain the zeta potential,

ζ = L

∆t

(
ε

η

∆V
L

)−1

. (4.10)

We identify the zeta potential with the surface potential at the d-plane, i.e.
ζ = φd.

Figure 4.7 shows that the measured (symbols) zeta potential decreases in
magnitude with increasing ionic strength, in agreement with the literature [133].
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Figure 4.8: (a) Top-down image of the capillary filling in three nanochannels showing
(i) strong signal in the reservoir, (ii) strong signal in the high-pH bright zone, (iii) low
signal in the low-pH dark zone, and (iv) no signal in the air-filled zone. (b) Side-view
sketch of the image in (a). Figure adapted from our paper [76].

The two panels show the same experimental data but two different theoretical
results (curves) for the two cases “Case 1” and “Case 2”, respectively. Case 1 and
Case 2 are explained below.

For now, we note that the agreement between the experimental data and the
theory is better in Case 2.

4.3.8 Capillary filling
The balance of surface tension and gravity leads to the capillary length lcap =√
γ/(ρg), in which γ is the surface tension (for clean water at 25 ◦C the surface

tension with air is γ ≈ 72mNm−1 leading to a capillary length of lcap ≈ 2mm).
Furthermore, a contact angle θ below 90° (hydrophilic) leads to a curved

meniscus and a Young–Laplace pressure drop pulling the electrolyte into the
flat high-aspect ratio nanochannel of height h and width w. As the electrolyte
advances into the channel the hydraulic resistance increases and the length L of
the liquid column becomes proportional to the square root of time,

L =
√
γ h cos θ

3 η t, (4.11)

which is the Washburn relation [134].
Janssen et al. [74] originally showed the following phenomenon. We added a

small amount of the pH-sensitive dye fluorescein to the electrolyte and observed
during the capillary filling a bisection of the advancing electrolyte into a fluores-
cent zone near the entrance and a non-fluorescent zone near the meniscus front,
see Fig. 4.8. The transition in the fluorescent signal between the two zones was
remarkably sharp and only became diffuse at later times into the experiment.
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Figure 4.9: Cartoon of the capillary filling process showing the equilibrium zones
bright (BZ), dark (DZ), and air-filled (Air), and the non-equilibrium slice (NS).

The explanation is that the silica surface deprotonates (releases protons) into
the solution thereby lowering the pH below the point where the fluorescent signal
is quenched.

The nanochannel can be thought of as divided into three distinct equilib-
rium zones and one thin non-equilibrium cross-sectional slice, see Fig. 4.9. One
equilibrium zone is the air-filled zone (Air) ahead of the advancing electrolyte
column with an electrically neutral surface consisting almost exclusively of the
silanol group SiOH. Another equilibrium zone is in the dark zone (DZ) of the
electrolyte with the same electrically neutral surface as in the air-filled zone and
thus with pHpzc in the electrolyte. The final equilibrium zone is in the fluorescent
bright zone (BZ) where a considerable fraction of the surface is deprotonated and
consists of the negatively charged silanol group SiO−. Squeezed between the fluo-
rescent bright and dark equilibrium zones is a thin cross-sectional non-equilibrium
slice (NS) where deprotonation occurs.

During the transient capillary filling we continuously measured the lengths of
the bright fluorescent Lfl and dark Ld zones. Figure 4.10 shows that the Washburn
square-root-of-time law holds for the combined length Lfl + Ld as well as for the
individual lengths Lfl and Ld. Combined with the sharp bright-dark transition
this confirms that advection dominates in the axial direction while diffusion across
the small height is fast enough together with rapid chemical reactions to ensure
height-wise equilibrium (c.f. the thinness of the non-equilibrium slice). Moreover,
the ratio Ld/Lfl is constant in time during the capillary filling.
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Figure 4.10: Experimental data (not all data points shown) showing the position of
the meniscus Lfl + Ld and of the fluorescent front Lfl against the square root of time√
t, showing linear Washburn correlation. Figure adapted from our paper [76].

We can relate Ld/Lfl to the surface charge in the following manner. The
amount per area Γrel

H of protons that has been released from the surface is related
to the total amount N rel

H of protons released by the surface area 2 (w + h)Lfl in
the fluorescent bright zone of the electrolyte column,

N rel
H = 2 (w + h)LflΓrel

H . (4.12)

At the same time, the amount Nabs
H of protons absorbed by the volume whLd

of the electrolyte in the dark zone is related to the concentration Bs of protons
needed to titrate the electrolyte from pHb to pHpzc,

Nabs
H = whLdBs, (4.13)

in which

Bs =
∑

X

pX∑

Z=nX

Z
(
cpzc

X,Z − cb
X,Z

)
. (4.14)

The amount of protons released must equal the amount absorbed which leads to
the expression

Γrel
H = Bs

h

2 (1 + h/w)
Ld

Lfl
. (4.15)

Finally, as the initial dry surface consists almost exclusively of the neutral silanol
group SiOH the surface charge at the 0-plane must arise due to the release of pro-
tons, σ0 = −eΓrel

H , which leads to a relation between the experimentally measured
length ratio Ld/Lfl and the theoretically determined surface charge σ0,

Ld

Lfl
= −2 (1 + h/w)

eBsh
σ0. (4.16)
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Table 4.2: Case 1: using C2 = 0.20Fm−2 from the literature for both bare and
coated surfaces. Case 2: varying C2 with surface composition. Also shown are the
fitted values of C1 and pKSiOH2

and the calculated values of R2, Cs, and pHpzc. Table
adapted from our paper [76].

Case Surface Set Fitted Calculated

C2 (Fm−2) C1 (Fm−2) pKSiOH2
R2 Cs (Fm−2) pHpzc

1 bare 0.20 0.69 −1.03 0.81 0.16 2.9
1 coated 0.20 15.47 −0.54 0.40 0.20 3.1

2 bare 0.80 0.77 −1.61 0.80 0.39 2.6
2 coated 0.15 13.47 −0.29 0.40 0.15 3.3

4.3.9 Parametric model investigation
Using Eqs. (4.14) and (4.16) we investigate the response of the variables Ld/Lfl,
φd, σ0, and σd on the ionic strength and on the parameters C1, C2, pKSiOK,
pKSiOH2

, pKSiO, and Γtot, see Fig. A.5. We note that C1 and pKSiOH2
have the

largest impact on Ld/Lfl while C2 has the largest impact on φd. Consequently,
below where we fit the model to the experimental data we use C1, C2 and pKSiOH2
as adjustable parameters.

4.4 Results
We fit the model to the length ratio Ld/Lfl from 43 individual capillary filling
experiments by varying the surface capacitance C1 and the surface dissociation
constant pKSiOH2

. We take other parameters from the literature with those re-
lated to chemistry given in Table 4.1 and others being the total site density for
the bare surface Γtot = 4.6× 1018 m−2 [135] (thus Γtot = 3.45m−2 for the coated
surface), εr = 78 , and T = 25 ◦C.

Furthermore, we make the distinction of two cases regarding the surface ca-
pacitance C2. Case 1 is when C2 is taken to be 0.2Fm−2, irrespective of the
surface condition [129]. However, even though Case 1 leads to good agreement
in terms of Ld/Lfl it reproduces the zeta potential poorly, see Fig. 4.7(a). Thus,
we introduce Case 2 where we remedy the φd/ζ mismatch by varying C2 with
the surface composition leading to Cbare

2 = 0.8Fm−2 for the bare surface and
Ccoated

2 = 0.15Fm−2 for the coated surface.
Table 4.2 summarizes the results for the two cases and states explicitly the

goodness-of-fit parameter R2, the total Stern layer capacitance Cs = (C−1
1 +

C−1
2 )−1, and pHpzc [note that pHpzc through Eq. (2.61) relates to the dissociation

constant pKSiOH2
]. In the following we focus on the results obtained using Case

2.
Figure 4.11 shows that the length ratio Ld/Lfl decreases with ionic strength I

and increases from the bare to the coated surface. For the coated surface there is
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Figure 4.11: The dependence of the dark-to-fluorescent length ratio Ld/Lfl on the
ionic strength I in bare (dashed curves and open circles, blue color) and cyanosilane
coated (full curves filled squares, red color) nanochannels, either measured (symbols)
or predicted (curves), for “Case 2”. Figure adapted from our paper [76].

a larger spread in the measurements (symbols) reflecting that those experiments
were more difficult to perform.

The decreasing trend of Ld/Lfl with I relates to Eq. (4.16) and the fact that
the titration concentration Bs increases faster with ionic strength than σ0 (see
Fig. 4.12).

It is more surprising that Ld/Lfl increases in the coated channels. The naive
expectation is that the decrease in surface sites Γtot through Eq. (2.77) leads to
a smaller surface charge and thus by Eq. (4.16) to a smaller Ld/Lfl.

In bare channels we find a dissociation constant pKSiOH2
= −1.61 and a Stern

capacitance Cs = 0.39Fm−2 corresponding fairly well with the literature values
of −1.9 [110, 136] and 0.17Fm−2 [129]. The difference may be due to the use
of different types of electrolytes as pointed out in Refs. [137, 138]. Our results
therefore suggest that the presence of cyanosilane on the surface increases both
the capacitance C1 (from 0.77Fm−2 to 13.47Fm−2) and the dissociation constant
pKSiOH2

(from −1.61 to −0.29).
We use our model Case 2 results to further interpret the electrochemical prop-

erties of the solid-liquid interface. Figure 4.12 shows the dependence of the surface
potentials and surface charge densities on the ionic strength (a similar figure for
Case 1 is given in Fig. A.2).

Panel (a) reveals that the large increase in C1 leads to a smaller potential
difference between the 0- and c-plane. Furthermore, the 0-plane potential φ0 is
almost independent of both the ionic strength and the surface condition.

Panel (b) shows large increases in the magnitude of σ0 and σc with both ionic
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Figure 4.12: The dependence of the potential φi (top panel) and surface charge
density σi (bottom panel) on the ionic strength I in bare (dashed curves and open
symbols) and cyanosilane coated (full curves filled symbols) nanochannels for parame-
ters corresponding to Case 2. The inset in the bottom panel is a zoom to better show
σd. Figure adapted from our paper [76].

strength and surface coating. The inset is a zoom on the diffuse-layer surface
charge density σd and reveals that it varies little with the ionic strength and
drops with surface coating. The predicted diffuse-layer surface charge density
in bare channels σd ≈ 20mCm−2 compares reasonably well with the 25mCm−2

found by Schoch et al. [139], but is somewhat lower than the 60mCm−2 found
by Stein et al. [29]. The discrepancy might be due to the use of different types of
electrolytes [137, 138].

Figure 4.13 shows that in bare channels (dashed lines, open symbols) there
is little variation in the surface concentrations Γi with ionic strength. This is
in contrast to the coated channels (full lines, filled symbols) where the surface
concentration of the neutral silanol group SiOH decreases and that of the metal
complex SiOK increases, both significantly. This implies that in coated channels
almost all deprotonated silanol groups SiO− adsorb a cation K+ to form the metal
complex SiOK.
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Figure 4.13: The dependence of the surface concentration Γi on ionic strength I in
bare (dashed curves and open symbols) and cyanosilane coated (full curves and filled
symbols) channels for parameters corresponding to “Case 2”. Figure adapted from our
paper [76].

Furthermore, the insets show that the surface concentration of positive silanol
groups SiOH+

2 is significantly larger in coated channels (though still small) and
that the surface concentration of negative silanol groups SiO− varies little with
ionic strength and drops with surface coating.

In conclusion, we have investigated the solid-liquid interface in bare and
cyanosilane coated silica nanochannels. Our model combines the equilibrium
chemistry of the surface and the bulk. The experiments were two-fold consist-
ing of capillary filling and current-monitoring. The capillary filling experiments
utilized the novel technique by Janssen et al. [74] relying on the transient depro-
tonation of the silica surface and avoiding the use of any external driving fields.
We fit our model to the experimental data and find that the surface capacitances
C1 and C2 and the surface dissociation constant pKSiOH2

depend on the surface
condition (either bare or coated). Our model allows us to investigate and predict
the electrochemical composition of the solid-liquid interface which can aid in the
design of nanofluidic systems.

Future work in this direction could investigate the influence of varying the pH
and of other surface coatings.
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Chapter 5
Nanochannels: Streaming current

and wall dissolution

This study was carried out together with Professor Sumita Pennathur, UC Santa
Barbara, and Jaydeep P. Bardhan, Rush University Medical Center. The follow-
ing is my personal presentation of our work in Chapter C where additional details
may be found.

5.1 Introduction
Silica is abundant and widely used for micro- and nanofabrication, partly due
to its properties and its history as the material of choice in the semi-conductor
industry. There is evidence that silica dissolves at small, but finite, dissolution
rates when in contact with aqueous solutions [140–143]. The order of magnitude
of this dissolution rate, around 0.01 nmmin−1 or 5 µmyear−1, suggests that it is
of significance in nanoscale structures.

Consequently, it is important to investigate ways, e.g. by surface coating, to
prohibit the dissolution to ensure long-term stability and functionality of nanoflu-
idic systems. Here, we study the dissolution effect by measuring over 48 h the
increase in the streaming current at constant applied pressure. We consider nano-
channels ranging from low to high aspect-ratio, with or without surface coating,
and filled with different types of electrolytes.

In relation to dissolution in nanoscale structures, it is interesting to investi-
gate the response of the surface chemistry in small asymmetric geometries such
as nanochannels. Such channels are now readily fabricated [144–147]. Surface
chemistry models have primarily been applied in effective 1D models, either at
parallel plates or cylindrical pores, without corner effects. Using our model, we
set out to investigate the influence of corners on the surface chemistry and the
ensuing effect on the electrokinetics in the channel cross-section.
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Figure 5.1: Sketch of the solid-liquid interface illustrating (a) a KCl solution in
contact with a bare surface, and (b) a borate buffer in contact with a cyanosilane
coated surface. Figure adapted from our paper [79].

5.2 Model
We consider long straight nanochannels connecting two large bulk reservoirs. We
assume uniformity along the axial direction of the channel and the model ge-
ometry reduces to the channel cross section. Figure 5.1 shows the solid-liquid
interface depicting in panel (a) a bare silica surface in contact with a KCl elec-
trolyte and in panel (b) a cyanosilane coated surface in contact with a Borate
electrolyte.

5.2.1 Surface chemistry
For the local surface chemistry we employ the two-layer model in Section 2.7.1
where we, due to the relatively high pH, only account for the neutral SiOH and
negative SiO− silanol surface groups through the reaction

SiOH
 SiO− + H+
0 . (5.1)

We do this by letting the dissociation constant for SiOH+
2 in Eq. (2.68) tend to

infinity KSiOH2
→∞ and obtain for the 0-plane surface charge density,

σ0 = −eΓtot
KSiO

cH,0

(
1 + KSiO

cH,0

)−1

. (5.2)
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We substitute from the Boltzmann distribution for the hydronium ion Eq. (2.60)
and the Stern capacitor relation in Eq. (2.66) to obtain,

σ0 = −eΓtot

[
1 + cH,b

KSiO
exp

(
φd −

σ0

Cs

)]−1
. (5.3)

We use the standard boundary condition Eq. (2.21) relating the normal derivative
of the potential to the surface charge density [14, 89, 90],

σ0 = −εn ·∇φ. (5.4)

Inserting this condition in Eq. (5.3) leads to a mixed non-linear boundary con-
dition for the potential φd and its normal derivative n ·∇φ at the shear plane
(d-plane) of the nanochannel. This effective boundary condition accounts for the
surface chemistry of the two-layer model.

As in the previous study in Chapter 4 we account for the surface coating of
cyanosilane by reducing the total number of available sites Γtot with 25 %.

We do not account for adsorption of metal cations onto the negative silanol
groups which is reasonable since we use solutions of relatively low salt concentra-
tions, 1 mM and 10 mM.

5.2.2 Bulk solution chemistry
Inside the 2D domain we solve the general Poisson–Boltzmann equation Eq. (2.19)
using as input the bulk (reservoir) concentrations of the ionic species. The solu-
tion leads to the distribution of the electrical space charge density ρel = ρel(y, z)
in the channel cross-section.

The bulk concentrations are found through the solution of the electroneutral-
ity condition in Eq. (2.54) using a modified version of the Matlab script ITPCal-
culator in Chapter A.3 [97, 105]. The electroneutrality condition is valid since we
solve for the ion concentrations in the large reservoir and the ions are Boltzmann
distributed.

In the bulk we consider the presence of borate,

B(OH)3 + H2O
 B(OH)−4 + H+, (5.5)

of carbonic acid (from the dissolution of atmospheric carbon dioxide CO2, more
details in Chapter 6),

H2CO3 
 HCO−3 + H+, (5.6a)
HCO−3 
 CO2−

3 + H+, (5.6b)

of potassium hydroxide and sodium hydroxide,

K+ + 1
2H2(g) 
 K + H+, (5.7a)

Na+ + 1
2H2(g) 
 Na + H+, (5.7b)
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Table 5.1: List of the chemical family X, the valence Z, the reaction, and the disso-
ciation constant pKX,Z . Table adapted from our paper [79].

X Z Reaction pKX,Z
a

B(OH)3 1 B(OH)3 + H2O 
 B(OH)−
4 +H+ 9.24

H2CO3 −1 H2CO3 
 HCO−
3 +H+ 6.35

−2 HCO−
3 
 CO2−

3 +H+ 10.33
KOH 1 K+ + 1

2H2(g) 
 K +H+ 14.00
NaOH 1 Na+ + 1

2H2(g) 
 Na +H+ 14.00
HCl −1 HCl 
 Cl− +H+ −7.00
H2O −1 H2O 
 OH− +H+ 14.00

SiOH −1 SiOH 
 SiO− +H+
0 6.6± 0.6b

a From Ref. [105] at 25 ◦C unless mentioned otherwise.
b From Refs. [35, 74, 109, 112, 129, 148], uncertainty estimated.

of hydrochloric acid,

HCl
 Cl−+H+, (5.8)

and of water ions,

H2O
 OH− + H+. (5.9)

The dissociation constant for all reactions are summarized in Table 5.1.

5.2.3 Hydrodynamics
Regarding the streaming current, we employ the Stokes equation for the axial
pressure-driven velocity vp where we assume that the applied pressure difference
∆p leads to a constant (negative) pressure gradient along the length L of the
channel. Neglecting electroviscous effects the Stokes equation Eq. (2.34) becomes

∇2vp = −∆p
ηL

, (5.10)

to be solved in the 2D channel cross-section.
Regarding the EO flow, we again employ the Stokes equation to find the axial

EO velocity veo where we assume that the applied potential difference ∆V leads to
a constant axial electric field. Neglecting pressure gradients the Stokes equation
Eq. (2.34) becomes

∇2veo = −ρel(y, z)
∆V
ηL

, (5.11)

in which ρel is the charge density found as described above in Section 5.2.2.
For both the pressure-driven and EO flow velocities we employ the no-slip

condition at the surface of shear (d-surface),

vp = veo = 0, at the d-surface. (5.12)
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Figure 5.2: Color plots (blue=zero, red=maximum) in the channel cross-section
of the calculated electrical potential φ, axial component of the EO flow velocity veo,
and axial component of the pressure driven flow velocity vp, in (a) the experimentally
shallowest channel [w/(2h) = 27, h/λD = 2], and (b) the experimentally tallest channel
[w/(2h) = 0.5, h/λD = 106]. Figure adapted from our paper [79].

5.2.4 EO flow velocity and streaming current
To facilitate comparison between theory and measurement we calculate the area-
average of the EO flow velocity 〈veo〉Ω and the pressure-driven streaming current
Ip in the channel cross-section of width w and height 2h,

〈veo〉Ω = 1
hw

ˆ h

0

ˆ w

0
veo dydz, (5.13a)

Ip = 2
ˆ h

0

ˆ w

0
ρelvp dydz. (5.13b)

We non-dimensionalize the problem (details in our paper [79]) and identify
two important dimensionless groups: the width-to-height aspect ratio w/(2h)
and the half-height-to-screening-length h/λD.

We use the symmetry that all field variables have even symmetry around
the two lines bisecting the channel cross-section. This leads to the symmetry
boundary conditions

n ·∇φ = 0, (5.14a)
n ·∇vp = 0, (5.14b)
n ·∇veo = 0, (5.14c)

along the symmetry lines indicated in Fig. 5.2 (dashed lines). The figure also
shows the calculated electrical potential, EO flow velocity, and the pressure-
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Table 5.2: Basic physical parameters used in our model. Table adapted from our
paper [79].

Quantity Symbol Value Unit

Temperature T 296 K
Viscosity, electrolyte solution η 930 µPa s
Permittivity, electrolyte solution ε 691 pFm−1

Length of nanochannel L 20 mm
Stern capacitance, bare silicaa Cs 0.3 Fm−2

Stern capacitance, coated silicab Cs 0.2 Fm−2

Surface site density, bare silicac Γtot 5.0 nm−2

Surface site density, coated silicad Γtot 3.8 nm−2

a From Ref. [77]. b From Refs. [35, 76, 149]. c From Refs. [35, 111, 112, 129, 149].
d From Ref. [125].

driven flow velocity in a low [panel (a), w/(2h) = 0.5, h/λD = 106] and a high
[panel (b), w/(2h) = 27, h/λD = 2] aspect-ratio channel.

To prevent numerical instabilities and to mimic the actual fabrication we
round the corners of the channel by a 1-nm-radius quarter circle. We use the
parameter values given in Table 5.2 similar to those determined in our previous
work in Chapter 4.

5.2.5 The effect of corners
We investigate the effects of corners and side walls by comparing our full 2D
model results with those from a similar 1D model. The 1D model is taken along
the height-wise line bisecting the channel. Thus, the agreement between the 1D
and 2D model is expected to be best far from the side walls, in the middle of the
channel, and to become better with increasing aspect ratio w/(2h).

Put another way, the 1D model applies constant surface potential and surface
charge along the perimeter of the channel whereas the 2D model allows variations
e.g. at the corners due to curvature effects. We introduce the relative difference
δ between the 1D and 2D model,

δ = f1D − f2D

f2D
. (5.15)

Regarding the chemical effects, Fig. 5.3 shows for the particular value of the
aspect ratio w/(2h) = 27 and the dimensionless screening length h/λD = 2
(motivated by our experimental channels) that the relative 1D-2D deviation along
the channel perimeter is generally small except in the corners. There, the 1D
potential is ≈ 25 % higher (thick red line) and the 1D surface charge density
≈ 30 % lower (thin blue line).

The inset shows that for w/(2h) = 5 and h/λD = 0.5 the deviation is signif-
icant over a larger part of the perimeter, but with smaller fluctuations: ≈ 20 %
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Figure 5.3: The deviation δ in φd (thick
red curve) and σd (thin blue curve) along
the perimeter of the channel cross-section
for aspect ratio w/(2h) = 27 and screen-
ing length h/λD = 2. Inset: w/(2h) = 5
and h/λD = 0.5. Figure adapted from our
paper [79].

Figure 5.4: The dependence of the de-
viation δ in Ip and 〈ueo〉 (black curves),
φd (red curves), and σ0 (blue curves) on
the aspect ratio w/(2h) of the channel for
three screening lengths h/λD = 0.5, 2, and
13. Figure adapted from our paper [79].

higher in the potential and ≈ 20 % lower in the surface charge density. It is note-
worthy that the magnitude of the deviation, when going around a corner, peaks
on either side of the midpoint of the corner.

Regarding the effect of the side walls, Fig. 5.4 shows that the 1D-2D deviation
in the streaming current and EO flow velocity is nearly identical and inversely
proportional to the aspect ratio. We can understand this for thin screening layers
λD/h � 1 and along flat parts of the perimeter where the flow vp = vp(n) and
space charge density ρel = ρel(n) only varies along the wall normal direction n.
A Taylor expansion of the flow near the wall (equal to the flow in the thin EDL)
yields vp(n) = nn ·∇vp. We introduce In =

´∞
0 ρeln dn and express the area

integral in Eq. (5.13b) as an integral along the perimeter and an integral normal
to the perimeter,

Ip =
ˆ

Ω
ρelvp dA ≈

ˆ
∂Ω

ˆ ∞
0

ρelnn ·∇vp dnds (5.16a)

= In

ˆ
∂Ω
n ·∇vp ds = In

ˆ
Ω
−∇2vp dA (5.16b)

= 2hw In
∆p
ηL

. (5.16c)

This shows that in limit where the screening length goes to zero λD/h → 0 the
1D and 2D approaches are identical. Any deviation must thus come from a break
with the assumption of thin screening layers or a flat surface.

Regarding the assumption of a flat surface (assuming thin screening layers),
clearly, as the aspect ratio w/(2h) increases so does the part of the perimeter
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Table 5.3: List of the nanochannel number #, width w, height 2h, and aspect
ratio w/(2h). Also, the dimensionless (inverse) screening length h/λD, along with the
theoretical 1D-2D deviation δ (the last two parameters for both 1 mM KCl and 10 mM
borate electrolyte). Table adapted from our paper [79].

# w ±∆w 2h±∆h w/(2h) 1 mM KCl 10 mM borate

[nm] [nm] aspect h/λD δ [%] h/λD δ [%]

1 1043± 100 38.6± 0.6 27.0 2.0 1.0 10 0.3
2 1090± 100 68.8± 0.8 15.0 3.6 1.3 16 0.3
3 1113± 100 82.5± 0.5 13.5 4.3 1.3 19 0.3
4 1118± 100 103± 0.6 10.9 5.4 1.4 24 0.3
5 1021± 100 251± 0.8 4.1 13 1.6 59 0.4
6 1099± 100 561± 1.0 2.0 29 1.6 131 0.3
7 1181± 100 1047± 2.0 1.1 55 1.5 245 0.3
8 1067± 100 2032± 2.0 0.5 106 1.7 475 0.4

that can be considered flat and we thus recover that the deviation is inversely
proportional to w/(2h).

Regarding the assumption of thin screening layers, this is more complicated
and we simply note that the deviation increases with λD/h as shown in Fig. 5.4.
The insets in Fig. 5.4 show the deviation in the average along the perimeter of the
potential 〈φd〉∂Ω =

´
∂Ω φd ds and the surface charge density 〈σ0〉∂Ω =

´
∂Ω σ0 ds.

5.3 Experiments
In short, we performed experiments on fused-silica nanochannels of eight different
aspect ratios, with either bare or cyanosilane-coated walls, and filled with either
a 1 mM KCl electrolyte or a 10 mM borate electrolyte. Below is a summary of
the experimental process, more details may be found in our paper [79].

5.3.1 Fabrication and electrolyte
The nanochannels were made in fused-silica using conventional MEMS processing
techniques. The exact steps and guidelines are reported elsewhere [66]. In short,
reactive-ion etch was used to fabricate the channels of length L = 20mm, width
w = 1.0 µm ± 0.1 µm, and with eight different heights varying from 40 nm to
2000 nm as shown in Table 5.3.

The channel heights were measured by profilometer, AFM, and/or SEM. The
AFM measurements showed a roughness of less than 0.2 nm RMS. Each wafer
had 6-12 channels (depending on yield) and the channels were connected to two
2-mm-diamter reservoirs, see Fig. 5.5(a).

The lid was made by drilling via holes in a second silica wafer and was sealed to
the channel wafer using a thermal diffusion bonding process [66]. We coated one
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(a)

(b)

(c)

Electrolyte d = 2 mm

z

x
2h

L = 20 mm

Regulator Computer

Keithley 2410
Sourcemeter

Keithley 6517A
Electrometer

Regulator

Chipholder

Figure 5.5: Sketch of (a) side view of the geometry, (b) the experimental setup, and
(c) the chip-holder with electrical and hydraulic connections. Figure adapted from our
paper [79].

channel from each wafer with cyanosilane (3-cyanopropyldimethylchlorosilane) as
described in Section 4.3.4, but using a solution of 1 M cyanosilane.

The 1 mM KCl buffer was prepared by dissolving KCl pellets in deionized
water and the 10 mM sodium borate buffer (Na2B4O7 · 10 H2O) was prepared by
dissolving NaOH pellets into borax solution, titrating until pH 9.2, and finally
diluting to 10 mM.

5.3.2 Setup
We made a custom-built, high-pressure chipholder with electrical and fluidic con-
nections to the nanochannels, Fig. 5.5(b) and (c). Electrical connections were
made using silver/silver-chloride (Ag/AgCl) electrodes inserted into the channel
reservoirs. Stainless steel tubes were soldered directly into the chipholder and
in combination with precision o-rings provided fluidic access to the reservoirs.
A high-impedance electrometer, controlled by Labview, measured the streaming
current.

Furthermore, a home-built Faraday cage was used to shield the entire setup.
The applied pressure was controlled via two high-pressure single-stage regulators
capable of regulating the pressure between 0 and 40 MPa (≈ 6000 psi). The pres-
sure was monitored with a high-precision pressure transducer. A source meter,
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Figure 5.6: Determination of the mean EO flow velocity 〈vexp
eo 〉 by transiently moni-

toring the (ohmic) electrical current Iel during 60 minutes and extracting the displace-
ment time ∆t. Figure adapted from our paper [79].

controlled by Labview, both powered the transducer and recorded the output.

5.3.3 Procedure
The channels were initially filled with deionized water by capillary action and
subjected to 3 kPa pressure difference to confirm a stable streaming current.

Next, we performed current monitoring according to the method of Sze et al.
[132] and as described in Section 4.3.7. However, instead of the zeta potential we
use the EO flow velocity

〈vexp
eo 〉 = L

∆t (5.17)

as our measure. Figure 5.6 shows typical data from a current monitoring experi-
ment.

Then, we applied a pressure drop ∆p = 8MPa for a period of 48 h. The
pressure was sampled once per second while the resulting streaming current was
sampled ≈ 4.5 times per second (16000 times per hour). For each channel height,
experiments were done on bare channels filled with 1 mM KCl, on bare channels
filled with 10 mM borate, and on cyanosilane coated channels filled with 10 mM
borate. Typical raw data of measured pressure ∆p(t) and measured streaming
current Ip(t) are shown in Fig. 5.7.

We verify that the increase in streaming current is statistically indepen-
dent from the variation in pressure by fitting them to the expressions Ip(t) =
[∂Ip/∂t]meas t + Ip(0) and ∆p(t) = (∂∆p/∂t) t + ∆p(0). From the fit we obtain
the four parameters [∂Ip/∂t]meas, Ip(0), ∂∆p/∂t, ∆p(0) along with their 95 %
confidence intervals. Based on this we find the relative change in pressure and
streaming current over the 48 h for condition #1,

∂∆p
∂t

∆t
∆p(0) = (0.2± 0.2)× 10−4, (5.18a)

[
∂Ip

∂t

]

meas

∆t
Ip(0) = (153.4± 1.0)× 10−4, (5.18b)
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Figure 5.7: Raw data measured over
48 h for experimental condition #1 (see Ta-
ble 5.3) of (a) the applied pressure difference
∆p and (b) the resulting streaming current
Ip. Panel (c) and (d) show the same as in
panel (a) and (b) but for condition #7. Fig-
ure adapted from our paper [79].

Figure 5.8: The dependence of the
streaming current Ip on the channel
height h for three different combinations
of buffer and channel surface. Insets in
(b) and (c) show the relative difference
to that in (a). Figure adapted from our
paper [79].

and for condition #7,

∂∆p
∂t

∆t
∆p(0) = (−0.1± 0.4)× 10−4, (5.19a)

[
∂Ip

∂t

]

meas

∆t
Ip(0) = (33.1± 2.3)× 10−4. (5.19b)

Thus, since the relative change in the streaming current is two to three orders
of magnitude larger than the relative change in the pressure, we conclude that
the increase in Ip(t) is statistically independent from the variation in ∆p(t).

We represent the streaming current from each experiment by its value at time
zero Ip = Ip(0). We note that the relative uncertainty in the streaming current
∆Ip(0)/Ip(0) is ≈ 5×10−5 for condition #1 and ≈ 1×10−4 for condition #7. Fig-
ure 5.8 shows that these experimentally founded uncertainties are much smaller
than the resulting uncertainty in the theoretical model when assuming a ≈ 10 %
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Table 5.4: Experimental 〈vexp
eo 〉Ω and theoretical 〈vtheo

eo 〉Ω area-averaged EO flow
velocity for the three combinations of surface condition and buffer.

1 mM KCl, bare 10 mM Borate, bare 10 mM Borate, coated

〈vexp
eo 〉Ω (µm s−1) 7.0± 0.4 8.3± 0.4 7.0± 0.4

〈vtheo
eo 〉Ω (µm s−1) 5.6± 1.8 8.4± 0.8 7.0± 0.7

variation in the surface dissociation constant pKSiO = 6.6± 0.6 (indicated by the
non-solid curves).

5.4 Results
5.4.1 Streaming current
Figure 5.8 shows that the measured (symbols) and model predicted (full curves)
streaming current increases with the channel height 2h. Furthermore, for the
three different combinations of surface condition and buffer type there is good
agreement to within the estimated uncertainty (non-solid curves) between experi-
ment and model using the literature values for the model parameters in Table 5.2.

The uncertainty (non-solid curves) is based on a ≈ 10 % variation in the sur-
face dissociation constant pKSiO = 6.6±0.6 estimated by comparing independent
reports from the literature [35, 74, 109, 129, 148, 150].

The insets in Fig. 5.8(b) and (c) show the experimentally measured streaming
current

(
Ibb

p − Ip
)
/Ibb

p relative to that in panel (a), the bare channel with borate
buffer, denoted Ibb

p .
The inset in panel (b) shows that the streaming current is reduced by ≈

20 % for all heights in agreement with the model assumption that the number
of surface sites is reduced by 25 % by surface coating from Γtot = 5.0 nm−2 to
Γtot = 3.8 nm−2.

The inset in panel (c) shows that the reduction in streaming current is again
fairly constant at ≈ 20 % at high channel heights for non-overlapping screening
layers h/λD & 5, but that the reduction increases with the screening layer overlap
for h/λD . 5 for low channel heights.

5.4.2 Electro-osmotic velocity
Independent of the streaming current measurements we determined the exper-
imental 〈vexp

eo 〉Ω [Eq. (5.17)] and theoretical 〈vtheo
eo 〉Ω [Eq. (5.13a)] area-averaged

EO flow velocity in the tallest channel (channel #8 in Table 5.3) for the three
different combinations of surface condition and electrolyte type, see Table 5.4.

The uncertainty in the theoretical prediction is again due to the estimated ≈
10 % variation in the surface dissociation constant pKSiO while the experimental
uncertainty is due to the ≈ 10 % variation in the channel width (see Table 5.3).
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Figure 5.9: Proposed mechanism of silica dissolution in the presence of OH−. Figure
adapted from page 63 in Iler [151].

The agreement within the uncertainties between the model predictions and the
experimental measurements further corroborates our analysis.

5.4.3 Dissolution rates
Having verified the model and the experiments for the forward problem, i.e. the
determination streaming current and EO flow, we turn to the inverse problem of
predicting dissolution rates based on the increase in streaming current over 48 h.

Silica dissolution in contact with an aqueous electrolyte is in Iler [151, page
64] reported to occur at a rate on the order of 0.01mgm−2 h−1, and suggested to
be due to the reaction shown in Fig. 5.9. The density of fused-silica is 2203 kgm−3

which we use to express the dissolution rate in different units,

1mgm−2 h−1 ≈ 0.4539 nmh−1 = 1.26× 10−13 ms−1, (5.20)

and

1m s−1 = 7.93× 1012 mgm−2 h−1. (5.21)

We assume that the rise [∂Ip/∂t]meas in streaming current over time shown in
Fig. 5.7 is due to dissolution of silica. The dissolution leads to increases in the
cross-sectional area which in turn increases the streaming current. Moreover, we
assume that products from the dissolution reaction makes a negligible contribu-
tion to the streaming current and that the dissolution occurs uniformly in the
cross-section.

A thin dissolved layer of silica of thickness δl leads to a small change δA =
2 (w+ 2h) δl in the cross-sectional area A which in turn results in a small change
δIp in the streaming current. We use Eq. (5.13b) to estimate this sensitivity
[∂Ip/∂l]calc in our theoretical model,

[
∂Ip

∂l

]

calc
= ∂Ip

∂A

∂A

∂l
≈ 1
∂l

[Ip (A+ δA)− Ip(A)] , (5.22)
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Figure 5.10: The dependence of the predicted silica dissolution rate dm/dt on the
channel height 2h for three different combinations of buffer and channel surface. Figure
adapted from our paper [79].

where we use ∂l = 0.01h.
The dissolution rate is given in terms of the measured rate of change [∂Ip/∂t]meas

divided by the calculated sensitivity [∂Ip/∂l]calc,

dm
dt = 7.93× 1012 mg

m2h
s
m ×

[
∂Ip

∂t

]

meas
×
[
∂Ip

∂l

]−1

calc
. (5.23)

Figure 5.10 shows that order of magnitude of the predicted dissolution rates
agrees with Iler [151]. Furthermore, also in agreement with previous studies, the
dissolution rate increases with ionic strength and pH (going from the dot-dashed
red curve to the full black curve). We also note that the dissolution rate in the
coated channel fluctuates around zero in accordance with the expectation.

It is noteworthy that the dissolution rate increases with decreasing height
until 2h ≈ 100 nm below which it appears to drop. This may indicate that the
dissolution rate is catalyzed by the screening layer interaction until the critical
height 2h ≈ 100 nm where the rate limiting step becomes the removal of chemical
products from the dissolution reaction.

Finally, the maximum dissolution rate ≈ 0.045mgm−2 h−1 corresponds to ≈
0.02 nmh−1 whereby 1 nm of silica is dissolved in roughly 2 days or approximately
175 nm in one year. We have not performed direct measurements on the chips
before and after dissolution and this would be an obvious next step.

In conclusion, we have proposed a theoretical model which shows that in
the corners of nanochannels there exist curvature effects which leads to local
perturbations in the surface potential and the surface charge density. In relation
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to this, we have shown that the effect of sidewalls on the streaming current is
inversely proportional to the aspect ratio and we have further shown this in
combination with screening layer interaction.

We have also used our model to predict measured streaming currents and EO
flow velocities in channels of varying height and of three different combinations
of surface coating and electrolyte.

Finally, using the measured increase in streaming current over 48 h, verified to
be statistically independent of the pressure variations, we predict silica dissolution
rates and how they vary with surface coating, buffer composition, and screening
layer interaction.

Future work in this direction could investigate geometries of different size and
shape, the effect of varying the flow rate to affect the removal of products from
the dissolution reaction, and additional different buffers of varying ionic strength
and pH.
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Chapter 6
Nanochannels: Conductance and

CO2 of dilute electrolytes

This study was carried out together with Professor Sumita Pennathur and her
student Andrew Michael Crumrine, UC Santa Barbara. Moreover, it was done
together with Kristian Lund Jensen and Jesper Toft Kristensen, DTU, whom I
co-advised on their Bachelor thesis. The following is my personal presentation of
our work in Chapter D where additional details may be found.

6.1 Introduction
Stein et al. [29] showed that at low salt concentrations the electrical conductance
in nanochannels is approximately constant at a value set by the surface charge.
Other studies have revealed the same phenomenon [30, 33, 34, 139, 152, 153].

In a flat nanochannel of heightH the surface charge density σ leads to a screen-
ing charge of height-averaged concentration ρ = 2σ/(ZeH) [154]. For a surface
charge density of 10mCm−2 and a height of 100 nm this leads to ρ ≈ 2× 10−3 M.
Hence, we expect the conductance to scale with the salt concentration above ρ
and to be set by ρ below.

In almost all studies the surface charge density is assumed to be constant,
independent of the salt concentration and the pH. However, as we have shown in
Chapters 4 and 5 the surface charge density is rarely constant but varies with the
electrolyte properties and even with the position on curved parts of the surface.

In relation to this, the hydronium ion is important and even more so since at-
mospheric carbon dioxide CO2 dissolves into aqueous electrolytes. This increases
the H+ concentration in deionized water from pH 7 (cH = 10−7 M) to approx-
imately pH 5.7 (cH ≈ 2× 10−6 M). As the mobility of aqueous H+ is a factor
of 5 times higher than some of the most mobile salt ions we expect that H+

dominates the electrical conduction of electrolytes at salt concentrations below
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Table 6.1: Independent literature studies showing experimental evidence of the con-
ductance minimum and our calculation of δ [defined in Eq. (6.18)] of its relative size.
Adapted from our paper [35].

Reference Fig. Year δ Model

[29] Stein et al. 3 (2004) 1.06 Const
[152] Karnik et al. 3 (2005) 1.38 Const
[139] Schoch et al. 3 (2005) 1.19 Const
[155] Cheng 2.9 (2008) 1.27 Const
[33] Martins et al. 3 (2009) 1.68 Const
[34] Duan et al. 3 (2010) 1.25 Dissoc

This work 6(a) (2010) 1.18 Dissoc

10−5 M. Furthermore, the H+ ion in particular has a complex interaction with
the surface charge.

As shown below, our main result is that the conductance does not monoton-
ically converge to its low-salt limit, but has a minimum at salt concentrations
around 10−5 M to 10−4 M. We quantify this minimum by the parameter δ defined
in Eq. (6.18), and show in Table 6.1 that the minimum has appeared in several
independent experimental studies.

We therefore set out to investigate the effect on the conductance in nanochan-
nels when the surface charge is governed self-consistently by chemical reactions
cf. our model framework in Chapter 2.

6.2 Model
We consider a long, straight and flat nanochannel connecting two large bulk reser-
voirs. We assume uniformity along the axial direction and the model geometry
reduces to the 1D parallel plates. Figure 6.1 shows the solid-liquid interface.

6.2.1 Surface chemistry
We apply the two-layer model in Section 2.7.1 and thus accounting for the surface
dissociation reactions

SiOH+
2 
 SiOH + H+

0 , (6.1)
SiOH 
 SiO− + H+

0 . (6.2)

However, we do not account for adsorption of metal cations onto the negative
silanol groups which is reasonable since we are mainly concerned with the behavior
at low salt concentrations.
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Figure 6.1: Sketch of the solid-liquid interface showing the surface groups SiOH,
SiOH+

2 , and SiO−, the Stern layer and Stern capacitance Cs, and the ions in the diffuse
layer and in the bulk. Figure adapted from our paper [35].

6.2.2 Bulk solution chemistry
We have special focus in this study on the significance of carbonic acid H2CO3
from the dissolution of carbon dioxide CO2 from the atmosphere. Hence, we start
by giving details regarding the dissolution.

The CO2/H2CO3 dissociation process is described using the equilibrium reac-
tions

CO2(aq) + H2O(aq) 
 H2CO3(aq)


 HCO−3(aq) + H+
(aq), pKH2CO3,−1, (6.3a)

HCO−3(aq) 
 CO2−
3(aq) + H+

(aq), pKH2CO3,−2, (6.3b)

where the additional subindex (aq) indicates that the species is dissolved in the
aqueous electrolyte. As shown by Harned and Davis [156], the difference in the
free energy in the first reaction step in Eq. (6.3a) is zero which means that the
dissociation of H2CO3(aq) is directly related to CO2(aq). Thus, the dissociation
constant pKH2CO3,−1 relates to the entire two-step process in Eq. (6.3a) and not
alone to the second single-step reaction.

The dissolved CO2(aq) and gaseous CO2(g) carbon dioxide are in equilibrium
across the liquid-air surface,

CO2(g) 
 CO2(aq). (6.4)

Henry’s law relates the partial pressure pCO2(g)
of CO2(g) to the concentration
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cCO2(aq)
of CO2(aq),

cCO2(aq)
= HCO2

pCO2(g)
, (6.5)

where the Henry coefficient HCO2
= 3.9× 10−2 Matm−1 at 20 ◦C for carbon diox-

ide [156]. The partial pressure of carbon dioxide in the atmosphere is pCO2(g)
=

390 ppmv = 3× 10−4 atm [157] which leads to a concentration of dissolved carbon
dioxide, and thus carbonic acid, of cH2CO3(aq)

= cCO2(aq)
= 15× 10−6 M. This in

turn leads to pH 5.7.
Since the dissolution occurs at the air-liquid surface it takes a certain equi-

libration time before the complete volume of deionized water reaches pH 5.7.
We use such small volumes that this equilibration time is very short and we can
assume that the electrolyte is fully saturated with CO2.

Finally, as in the previous studies, the bulk concentrations are found through
the solution of the electroneutrality condition in Eq. (2.54) using a modified
version of the Matlab script ITPCalculator in Chapter A.3 [97, 105]. The elec-
troneutrality condition is valid since we solve for the ion concentration in the
large reservoirs and the ions are Boltzmann distributed.

In the bulk we consider the presence of carbonic acid
H2CO3 
 HCO−3 + H+, (6.6a)
HCO−3 
 CO2−

3 + H+, (6.6b)
of potassium hydroxide,

K+ + 1
2H2(g) 
 K + H+, (6.7)

of hydrochloric acid,
HCl
 Cl−+H+, (6.8)

and of water ions,
H2O
 OH− + H+. (6.9)

The dissociation constant for all reactions along with the mobility for all ionic
species are summarized in Table 6.2.

6.2.3 Ion-ion effects
We correct for ion-ion interactions, which becomes significant at high ionic strength
I, using Pitt’s equation for a Z :Z electrolyte,

µ∗i = µi − (µ0Zi + 0.23Z2
i µi)

√
I

1 + aB
√
I
, (6.10)

where µ∗i is the corrected mobility. Furthermore, µ0 = 3.1× 10−8 m2 V−1 s−1 is
a constant mobility factor, B = 0.33Å−1 M− 1

2 is an ion-ion interaction constant,
and a is the effective radius of the ion in solution [105]. We use KCl solutions for
which we take a = 3Å [158].
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Table 6.2: List of the chemical family X, the valence Z, the reaction, the dissociation
constant pKX,Z , and the electrophoretic mobility µX,Z . Table adapted from our paper
[35].

X Z Reaction pKX,Z µX,Z

[10−9 m2

s V ]

H2CO3 −1 H2CO3 
 HCO−
3 +H+ 6.35a −46.1a

−2 HCO−
3 
 CO2−

3 +H+ 10.33a −71.8a

KOH 1 K+ + 1
2H2(g) 
 K +H+ 14.00a 76.2b

HCl −1 HCl 
 Cl− +H+ −7.00a −79.1b

H2O 1 362.4c

−1 H2O 
 OH− +H+ 14.00a −205.2d

SiOH 1 SiOH+
2 
 SiOH +H+

0 −1.90e

−1 SiOH 
 SiO− +H+
0 6.56f

aFrom Ref. [105], infinite dilution at 25 ◦C. bFrom Ref. [127], infinite dilution at 25 ◦C.
cRepresents H+. dRepresents OH−. eFrom Ref. [110]. fFrom this work.

6.2.4 Entrance effects and ion-selectivity
The ion-selectivity of a nanochannel increases as the ion concentration is lowered
due to increasing overlap of the screening layers inside the channel and hence
increasing electrostatic attraction of the counter-ions and repulsion of the co-
ions. Due to the high ion-selectivity, the ions deplete and enrich on either side of
the channel when they are forced to move, e.g. by an electric field. The resulting
current will therefore approach asymptotically a limiting current Ilim as the ion
concentrations in the depletion zone tend towards zero (more about this effect in
Chapter 7).

Yossifon et al. [54] derived an expression for the limiting current for nano-slit
channels which takes the field-focusing effect from the bulk reservoir into the flat
channel entrance into account,

Ilim = 2π eAD cref

Lref

[
ln
(
Lref

H

)]−1 (η + 1
η − 1

)
, (6.11)

in which A is the cross-sectional area, cref is the reference concentration in the
reservoir, Lref is the reference length from the “bulk” to the entrance, H = 2h is
the channel height, and η = I+/I− is a measure of the selectivity of the channel
in terms of the current carried by the cation (counter-ion) I+ and anion (co-ion)
I−.

A posteriori, we estimate the limiting current in our system and list it in
Table 6.3 for the lowest concentrations used in our experimental study. Also
shown in the table are the ionic strength I, the degree of screening layer overlap
λD/h, the mid-channel potential φm, and the measure of ion selectivity η.

The current has been below 0.2 nA in all of our experiments which is seen
to be at least five times below the lowest estimate of the limiting current in
Table 6.3. We therefore believe the measured conductance corresponds to the



64 Nanochannels: Conductance and CO2 of dilute electrolytes

Table 6.3: The experimentally used KCl salt concentration cKCl, and calculated
ionic strength I, degree of screening layer overlap λD/h, mid-channel potential φm, and
estimated limiting current Ilim. Adapted from our paper [35].

cKCl I λD/h −φm/VT Ilim
[µM] [nA]

0.0 2.1 1.27 3.32 1.1
0.1 2.2 1.24 3.28 1.1
0.3 2.4 1.19 3.22 1.2
1.0 3.1 1.05 3.01 1.6
3.0 5.1 0.82 2.61 2.6
10.0 12.1 0.53 1.90 6.3
25.0 27.1 0.35 1.23 16.0
50.0 52.1 0.26 0.73 41.8

intrinsic nanochannel conductance. Furthermore, by reversing the direction of
the current we verified the absence of current rectification effects.

6.2.5 Nanochannel conductance
We find the intrinsic conductance of the nanochannel by considering the in-
tegrated ionic mobility in the nanochannel cross-section. In essence, we solve
the 1D Poisson–Boltzmann equation Eq. (2.19) in the channel cross-section self-
consistently coupled to the chemical boundary condition.

The electrical current Iel is found by integrating the current density in Eq. (2.13)
over the cross-section Iel = w

´ H
0 i dz. Concentration gradients are negligible

and the current density is given by a migration term imig = σelE (Ohm’s law,
E = ∆V/L) and an advection term iadv = ρelv. Thus, the conductance Gmig =
Imig/∆V due to migration becomes

Gmig = w

∆V

ˆ H

0
imig dz = w

L

ˆ H

0
σel dz

= e
w

L

∑

i

Ziµ
∗
ini,b

ˆ H

0
e−Ziφ/VT dz, (6.12)

while we use the expression for the EO velocity in Eq. (2.35) to find the conduc-
tance Gadv due to advection,

Gadv = w

∆V

ˆ H

0
iadv dz = w

∆V

ˆ H

0
ρel vx dz

= e
w

L

ε

η

ˆ H

0

(∑

i

Zini,be
−Ziφ/VT

)
(φ− φd) dz. (6.13)

Added together, the total conductance G becomes

G = Gmig +Gadv. (6.14)
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Table 6.4: Model parameters. Adapted from our paper [35].

Parameter symbol value

Height H = 2h 165 nm
Width w 8.3 µm
Length L 12.0 mm
Surface site density Γtot 5 nm−2

Stern capacitance Cs 0.2 Fm2

Viscosity of water η 1.0 mPa s
Permittivity of water ε 690 pFm−1

Temperature T 298 K

Due to symmetry we use the condition ∂zφ = 0 at the middle of the channel
and only consider half of the 1D channel cross section in the actual calculations.

6.3 Results
6.3.1 Theoretical results
6.3.1.1 Solution of the coupled equations

We mention two ways to solve the model equations.
In the first method, as in Section 5.2, we express the chemical surface equations

as a mixed non-linear boundary condition for the Poisson–Boltzmann equation.
Thus, the surface charge is given by Eq. (2.68),

σ0 = eΓtot

(
cH,0

KMOH2

− KMO

cH,0

)(
1 + KMO

cH,0
+ cH,0

KMOH2

)−1

, (6.15)

in which the hydronium-ion concentration at the 0-plane is related through its
Boltzmann factor and the Stern capacitor relation Eq. (2.66) to its bulk value,

cH,0 = cH,b exp
[
− 1
VT

(
σ0

Cs
+ φd

)]
. (6.16)

Again, using that the surface charge is related to the derivative of the potential
in the surface normal nz direction,

σ0 = −ε nz ∂zφ, (6.17)

we obtain by substitution of Eqs. (6.16) and (6.17) into Eq. (6.15) a mixed non-
linear boundary condition for the electrical potential.

However, since the problem at hand is 1D and the above boundary condition
is extremely non-linear (it may or may not be implementable in the solution
routine), another method is a segregated process where the surface equations and
the Poisson–Boltzmann equation are solved separately and iteratively. In relation
to this, one approach is:



66 Nanochannels: Conductance and CO2 of dilute electrolytes

Figure 6.2: (a) Log-log plot of the dependence of the predicted nanochannel conduc-
tance G on the buffer KCl concentration cKCl with indications of four regimes: plateau,
valley, departure, and bulk. (b) The same as in panel (a) but in a semi-log plot to better
illustrate the conductance minimum in the valley. (c) Semi-log plot of the dependence
of σ0 (left axis) and ζ (right axis) on cKCl. Figure adapted from our paper [35].

• Initialization: Calculate ionic concentrations in the bulk and assume
φm = 0 to calculate the channel pH.

• Loop: Solve the surface chemistry equations to obtain φd, then solve the
Poisson–Boltzmann equation to obtain a new updated φm, then update the
channel pH.

• Test: Repeat the loop until φm has converged.

Using either of the above two methods, after convergence we obtain the potential
in the channel to be used in Eqs.(6.12)–(6.14) for the calculation of the conduc-
tance.

We use the parameters listed in Table 6.4 where the channel height, width,
and length are chosen to correspond to the experimental work and the surface site
density and Stern capacitance are chosen to correspond to the literature values
used previously in Chapters 4 and 5.

6.3.1.2 Nanochannel conductance

We calculate the nanochannel conductance for salt concentrations ranging from
the very dilute regime 10−7 M to the concentrated regime 10−1 M. Figure 6.2(a)
shows the resulting nanochannel conductance. Based on this curve we identify
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Figure 6.3: Log-log plot of the dependence of the nanochannel conductance G on the
buffer KCl concentration cKCl showing the base state G0 (full black curve) subjected
to: no CO2 (dashed red curve), lower counter-ion (cation) mobility (dot-dashed blue
curve), lower channel height (dot-dot-dashed green curve), scaling by a factor (dotted
black curve). The inset is a semi-log plot to better illustrate the behavior around the
conductance minimum. Figure adapted from our paper [35].

four concentration intervals, going from high concentration to low: (i) the bulk,
(ii) the departure, (ii) the valley, and (iv) the plateau. We stress that the con-
ductance minimum is one of the main theoretical predictions by our model.

To quantify the “depth” of the minimum we define the parameter δ as the ratio
of the largest conductance Gmax on the low-concentration side of the minimum
to the conductance Gmin at the minimum,

δ = Gmax

Gmin
. (6.18)

As already mentioned, the conductance minimum appears in several indepen-
dent experimental studies, which we have compiled in Table 6.1, in which δ ranges
from 1.06 to 1.68. For the minimum in Fig. 6.2 we calculate δ = 1.42.

The minimum can be difficult to appreciate in the log-log plot and we there-
fore plot in Fig. 6.2(b) the same conductance curve in a semi-log plot with the
conductance on the linear axis whereby the minimum becomes visually much
clearer.

Figure 6.2(c) shows the model predicted variation in the surface charge den-
sity and zeta potential (φd) with salt concentration. Contrary to the common
assumption, the surface charge density is not constant, but has a sigmoid shape
and saturates at a small value (≈ −1mCm−2) for low cKCl and at a high value
(≈ 12mCm−2) for high cKCl.
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In Fig. 6.3 we perform a parametric study of our model by varying the carbon
dioxide concentration, the counter-ion mobility, and the channel height.

The significance of atmospheric carbon dioxide is illustrated when we remove
it from the model (dashed red curve, cCO2

= 0) whereby the conductance increases
significantly for intermediate salt concentrations in the range 10−5 M to 10−3 M,
by a factor of ≈ 2 to 3, and the conductance minimum shifts towards a lower
concentration around ≈ 10−7 M. In this case, the shape of the conductance curve
resembles poorly that seen in any of the experimental studies which would agree
with them having been carried out at atmospheric conditions.

Regarding the change of counter-ion mobility we substitute KCl with LiCl
(dot-dashed blue curve) as the mobility of Li+ is 0.53 times that of K+. We note
three changes in the conductance: (i) For high salt concentration in the range
10−3 M to 10−1 M the conductance drops by a factor of ≈ 0.75 consistent with
the lower LiCl salt conductivity. (ii) For very low salt concentration in the range
10−7 M to 10−6 M the conductance is at the same level as for KCl confirming that
hydronium ion dominate in this regime. (iii) For intermediate salt concentration
in the range 10−6 M to 10−3 M the position occurs at a higher concentration and
its magnitude is increased from δ ≈ 1.42 to δ ≈ 1.77 which is consistent with the
lower mobility of the counter-ion.

Regarding the change of the nanochannel height we reduce it by a factor of
0.18 to 30 nm (dot-dot-dashed green curve) and note two changes: (i) For high
salt concentration in the range 10−3 M to 10−1 M the conductance is lower by a
factor of 0.18 consistent with the reduced height. (ii) For low salt concentration
in the range 10−7 M to 10−5 M the conductance is only lower by a factor 0.6
due to more strongly overlapping screening layers. That is, the higher degree
of overlap has lead to a relatively higher average concentration of ions in the
channel at the smaller height. To appreciate this effect more clearly, we have
added a simple scaling by 0.18 (dotted black curve) of the base curve which is
seen to be coincident with the dot-dot-dashed curve at high concentrations, but
smaller by approximately a factor 0.3 for low concentrations.

Below we describe the experimental work carried out to confirm the predicted
non-monotonic conductance behavior.

6.3.2 Experimental results

Figure 6.4(a) shows a sketch of the experimental setup. We used fused-silica
nanochannels 165 nm high, 8.3 µm wide, and 12 mm long, connected at both
ends to circular reservoirs 1.5 mm in diameter and 0.5 mm deep.

The nanochannels were filled with KCl solutions of concentration in the range
10−7 M to 10−1 M, and furthermore with solutions of the same KCl concentration
and with 5× 10−5 M HCl added.
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Figure 6.4: (a) Sketch of the experimental setup. (b) Experimental data showing the
measured current Iel versus the sample number N at different applied voltages. Inset
is a zoom. Figure adapted from our paper [35].

6.3.2.1 Bulk conductance

We measured the bulk conductivity of the salt solutions to validate the bulk
agreement between measurements and model. Figure 6.5(a) shows the bulk con-
ductivity for the KCl solution without HCl. The ion-ion correction at high con-
centration ≈ 1M is just visible on the model curves (black). The dotted curve
shows the predicted conductivity if only KCl ions are accounted for.

The full curve accounts for KCl, water H2O, and carbon dioxide H2CO3 and
starts to level off around cKCl ≈ 10−5 M as expected cf. the discussion in the
introduction Section 6.1. The inset shows a relative deviation X between model
and experiment within 10 %.

Figure 6.5(b) shows the conductivity after the addition of 5× 10−5 M HCl
which shifts the dilute-limit plateau upwards. In this case the relative deviation is
within 20 %. Thus, we have good agreement in the bulk conductivity between our
model and experiments which leads us to consider the nanochannel conductance.
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Figure 6.5: (a) Log-log plot of the dependence of the electrical conductivity σel in
the bulk of the buffer on the buffer KCl concentration cKCl showing the measured data
(red circles) and the model prediction (black curves). The inset shows the relative
deviation X between the experimental data the model. (b) As in panel (a) but with
the addition of HCl. Figure adapted from our paper [35].
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Figure 6.6: (a) Log-log plot of the dependence of the nanochannel conductance G
on the buffer KCl concentration cKCl showing the measured data (red circles) and the
model prediction (black curves). The inset is a semi-log plot to better appreciate the
conductance minimum. (b) As in panel (a) but with the addition of HCl. Figure
adapted from our paper [35].

6.3.2.2 Nanochannel conductance

The nanochannel conductance was measured by rinsing the channels thoroughly
with deionized water using EO flow. Five voltages were applied, each one for a
duration of ≈ 40 s, leading to current data as shown in Fig. 6.4(b). Furthermore,
for concentrations lower than 10−5 M, we covered the system with a Faraday cage
to limit external interference.

Figure 6.6(a) shows the measured (circles) and calculated (curves) nanochan-
nel conductance for various KCl concentrations. The surface dissociation constant
was found to be pKSiO = 6.56± 0.06 after adjustment to optimize the agreement
between theory and data. This value agrees well with our previous studies and
the literature [129].
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Notably, the model predicts a conductance minimum with δ = 1.42. The
experimental data is not conclusive but does indicate a minimum. The data
point at the lowest concentration is furthest off the curve which agrees with the
extreme sensitivity at this low concentration. We note that previous models that
assume constant surface charge does not predict the non-monotonic behavior of
the conductance curve [29, 33, 139, 152].

We then added HCl to the solution to further verify the model. As shown
in Fig. 6.6(b) the conductance minimum disappears in the model (the surface
dissociation constant adjusts to pKSiO = 6.91 ± 0.10 for the best fit). Again,
the experimental data is not completely conclusive but conforms with the model
prediction of the absence of a conductance minimum.

Finally, as a control experiment we measured the pH and conductance in
CO2-oversaturated KCl solutions by immersion in dry ice vapor (dry ice is frozen
carbon dioxide). In this case, the pH dropped by ≈ 20 % and the conductance
increased by ≈ 30 % (data not shown) in accordance with our expectations. Still,
it remains to carry out more well-controlled experiments with accurate control of
the CO2 in the local atmosphere.

We note that electrolysis does not affect the measurement. First, we estimate
the pH change in the reservoir to be 7.7× 10−4 s−1, using a similar approach
as in Persat et al. [97]. Second, we estimate the volumetric flow rate during
experiments to be ≈ 4× 10−15 m3 s−1 which is small compared to the volume of
the reservoir of ≈ 10−9 m3. Third, the carbonic acid H2CO3 acts as a buffer.
Finally, we renewed the reservoirs every 3 min.

In conclusion, our model takes into account the all chemical equilibria in
the bulk electrolyte and at the surface and the full Poisson–Boltzmann equation.
Notably, our model predicts the conductance of nanochannels across a wide range
of concentrations.

For common conditions, here a KCl electrolyte solution containing carbonic
acid from dissolved atmospheric carbon dioxide in silica nanochannels, the model
predicts a non-monotonic conductance curve, contrary to previous models assum-
ing constant surface charge, with a distinct conductance minimum for intermedi-
ate concentration in the range 10−5 M to 10−4 M. Here, specifically, the minimum
is a factor 0.7 lower than the limiting value at low concentrations.

This minimum has appeared in other independent experimental studies in the
literature but has gone unnoticed. The conductance minimum is important where
sensitive measurements of the nanochannel conductance is required.

We also performed experimental measurements to verify the model predic-
tions. Although not entirely conclusive, the experimental data conforms with the
model predictions.

Future work in this direction could carry out more well-controlled experiments
in terms of controlling the CO2 content in the local atmosphere. As a natural
extension to our previous work the effect of surface coatings could be studied, as
well as the use of different types of electrolytes, in particular LiCl is interesting
due to its more pronounced conductance minimum.



Chapter 7

Membranes: Over-limiting current

This study was carried out together with Professor Martin Z. Bazant, MIT, Pro-
fessor Ali Mani, Stanford University, Doctor P. Maarten Biesheuvel, Wageningen
University, and Doctor Michiel van Soestbergen, Eindhoven University of Tech-
nology. The following is my personal presentation of our work in Chapter E where
additional details may be found.

7.1 Introduction
Ion transport through ion-selective media, such as membranes and nanochannels,
plays a major role in ion-exchange and desalination [7, 85], electrophysiology [86],
fuel cells [87, 88], and lab-on-a-chip devices [17, 18, 45, 46, 159]. A major challenge
is the theoretical understanding of over-limiting current (OLC) exceeding the
classical diffusion limit [160].

There exist many aspects of OLC including electro-osmotic instability (EOI)
[46, 54, 54, 122, 161–167], surface morphology [168–170], surface conduction [48,
49, 51, 154, 171, 172], water splitting [173–179], the Kharkats effect [180], catalysis
by surface groups [181–184], and direct conduction through the space-charge layer
[185–190]. Nikonenko et al. [191] have given a review of mechanisms for OLC.

The archetypical picture involves an ideally ion-selective boundary that only
allows one charge-type of ion, the counter-ion, to pass, and is impenetrable to the
other charge-type of ion, the co-ion. This boundary is in contact with mobile ions
in, say, a symmetric Z :Z electrolyte, which has a constant concentration c0 some
distance L away. Then, a forcing, for example an electrical field E, makes the
counter-ions move into the boundary and the co-ions away from the boundary.
Since the co-ions are not replenished at the boundary they deplete there, and
the counter-ions also deplete “shadowing” the co-ion due to the constraint of
electroneutrality. For not too high a forcing, after a transient equilibration, the
steady-state co-ion electromigration flux DZ c dφ̃/dx away from the boundary
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Figure 7.1: The 1D model system of an ion-selective membrane sandwiched between
well-stirred electrolyte reservoirs and with a sub-milimeter thin stagnant diffusion layer
(SDL) on the membrane surface.

is balanced by an opposite diffusional flux D dc/dx towards the boundary. The
resulting steady-state concentration of both ions drops linearly from the reservoir
to the boundary. The flux j of the counter-ion determines the concentration
c0 − j (2D/L)−1 right next to the boundary. Clearly, there is a critical flux,
called the limiting flux jlim = 2D c0/L [160], at which the concentration at the
boundary becomes zero. The limiting flux is a singularity in the sense that
the resistance of the systems grows towards infinity as the concentration drops
towards zero. Thus, the classical theory predicts that the flux through the system
approaches the limiting flux asymptotically and does not go above it.

Even though the “paradox” of currents above the limiting flux has existed
for more than half a century a complete unified understanding is still lacking. It
has appeared that EOI probably plays an important role and EOI vortices have
been observed in experiments [54, 166, 167], but a clear one-to-one comparison
between EOI theory and experimental observations is still lacking. It is therefore
unclear to which degree EOI can explain OLC.

Here, we propose a new mechanism called current-induced membrane dis-
charge (CIMD). It is a chemical mechanism coupling the ionization degree of the
membrane, and hence its ion-selectivity, to the local properties of the electrolyte
in terms of pH and concentration. We show that as the current approaches the
limiting flux large pH changes appear that lowers the ionization degree of the
membrane and thus “opens up the membrane” for OLC.

7.2 Model
We consider the prototypical electrodialysis system sketched in Fig. 7.1, where
an ion-selective membrane of width Lmem is sandwiched between two electrolyte
solutions. Some distance away from the membrane the electrolyte solution is well-
stirred and assumed to have constant bulk properties. There is a zone of width
Lsdl in the electrolyte close to the membrane surface where stirring is unable to
maintain bulk properties called the stagnant diffusion layer (SDL).

The electrolyte consists of cations (+) and anions (−) as well as hydronium
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ions (H+) and hydroxyl ions (OH−). In this study, we use upper-case notation
for dimensional quantities and lower-case notation for non-dimensional quantities.
Note that the upper-case version of the Greek letter ρ is P . If a given quantity
does not appear in non-dimensional form we use its default letter-case notation.
Additionally, we introduce the function f = f(A,B) which equals A in the SDLs
and B in the membrane,

f(A,B) =



A in the SDLs,
B in the membrane.

(7.1)

The membrane consists of a network of entangled polymers in between which
there is a void volume Vvoid constituting the pores. The electrolyte is only able
to access these open pores whereas the electric field penetrates all parts of the
membrane i.e. it penetrates the entire volume Vtotal of the membrane. We define
concentration and ionic flux with respect to the open pore space and we denote
the porosity of the membrane εp,

εp = Vvoid

Vtotal
. (7.2)

We take into account the combined effect of porosity and tortuosity on ionic
transport through the hindrance factor kp which can be theoretically related to
the porosity, kp = (d− 1) εp/(d− εp), in which d is the dimensionality. However,
this expression for kp underestimates the experimentally measured values and we
therefore base kp on the experimental data given by Elattar et al. [192].

The macroscopic electrical permittivity εmem in the membrane can be esti-
mated as a weighted average of that εsdl of the electrolyte and that εmat of the
solid matrix. We assume linear dielectrics εj = εr,jε0, in which εr,j is the relative
permittivity of media j.

The empirical Lichteneker–Rother relation relates the macroscopic permittiv-
ity of the membrane to that of the electrolyte and to the porosity εmem = ε1/βp εsdl,
where β ≈ 0.5 [193], and thus does not take the microscopic permittivity of
the solid matrix into account. In this regard, the theoretically founded Hashin–
Shtrikman theory takes the microscopic permittivity of all three phases into ac-
count, and the macroscopic permittivity of the membrane becomes

εmem = 〈ε〉 − (εsdl − εmat)2 εp(1− εp)
〈ε̃〉+ εsdl(d− 1) . (7.3)

The bracket expressions are defined in the following way, 〈ε〉 = εpεsdl+(1−εp)εmat
and 〈ε̃〉 = (1− εp)εsdl + εpεmat. If d = 3, εp = 0.4, εr,sdl = 78 and εr,mat = 4 then
εr,mem ≈ 27.
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7.2.1 Governing Equations
7.2.1.1 Chemical origin of charge formation in the membrane

We assume that the pores of the membrane are sufficiently small and average all
variables across the cross-section. The electrical background charge density in
the membrane depends on the local hydronium-ion concentration. This assump-
tion is based on chemical equilibrium between the mobile hydronium ions in the
electrolyte solution and the ionizable surface groups in the membrane, similar to
the titration phenomenon during capillary filling of nanochannels in Chapter 4.

We consider a simplified version of the two-layer model in Section 2.7.1 where
the surface is the polymer backbone. Furthermore, the surface groups on the
polymer backbone is assume to interact with the solution through a single disso-
ciation reaction.

Examples of such dissociation equilibria are in the case of cation-selective
membranes containing negatively charged sulfonate or carboxylate surface groups,

P−SO3H 
 P−SO−3 + H+, (7.4a)
P−COOH
 P−COO− + H+, (7.4b)

and in the case of anion-selective membranes containing positively charged pri-
mary, secondary, or tertiary amine surface groups,

P−NH+
3 
 P−NH2 + H+, (7.5a)

P−−NH+
2 
 P−−NH + H+, (7.5b)

P−−−NH+ 
 P−−−N + H+. (7.5c)

We use a general notation accounting for both positive charge sign θ = 1 and
negative charge sign θ = −1 of the surface groups whereby the above dissociation
equilibria can be compactly written as

RH(θ+1)/2 
 R(θ−1)/2 + H+, (7.6)

where RH(θ+1)/2 and R(θ−1)/2, θ = −1 and 1, are surface groups in the membrane
with charge denoted by the exponent, (θ+1)/2 or (θ−1)/2. For clarity, we write
out explicitly the above equilibria,

RH � R− + H+, θ = −1 (cation-selective), (7.7a)
RH+ � R + H+, θ = 1 (anion-selective). (7.7b)

As discussed in Section 2.6 the equilibrium reaction Eq. (7.6) is described by the
equation,

Kmem = CR(θ−1)/2CH

CRH(θ+1)/2
, (7.8)
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whereKmem is the equilibrium constant and Ci is the smeared-out volume-average
concentration of species i.

In relation to this, mass conservation of the surface groups are given by

Cmem = CRH(θ+1)/2 + CR(θ−1)/2 , (7.9)

where Cmen is the total smeared-out volume-average concentration of surface
groups in the membrane.

The ionization degree α of the membrane is defined as the fraction of the
surface groups that are charged. Using Eqs. (7.8) and (7.9) the ionization degree
can be expressed as the classical Langmuir-type adsorption isotherm in terms of
the local proton concentration,

α =

1 +

(
Kmem

CH

)θ

−1

=
[
1 + 10θ(pH−pKmem)

]−1
, (7.10)

where the α = 1 and 0 corresponds to complete or zero ionization of the mem-
brane, respectively.

The electrical space charge density Pmem due to the immobile charged surface
groups in the membrane relates to the charge sign θ of the surface groups and
the ionization degree α,

Pmem = θ α eCmem f (0, εp) , (7.11)

where the function f(0, εp) ensures that Pmem = 0 outside the membrane and
that Cmem is scaled by εp inside the membrane. The scaling is necessary because
Cmem is defined with respect to the total volume.

7.2.1.2 Ion transport and electrostatics

We neglect advection and the transport of ionic species is due to diffusion and
electromigration alone. Hence, we employ the 1D steady-state version of the ionic
mass conservation Eq. (2.8) and the Poisson equation Eq. (2.2),

dJi
dX = Ri, i = +,−,H,OH, (7.12a)

− d
dX

[
f(εsdl, εmem) dΦ

dX

]
= Pion + Pmem, (7.12b)

where Pion is the electrical space charge density due to the mobile ionic species
and the function f(εsdl, εmem) accounts for the permittivity being εsdl outside the
membrane and εmem inside the membrane.

The ionic flux, given by the Nernst–Planck equation Eq. (2.12), becomes

J± = f(1, kp)D±
(
− dC±

dX ∓ ZC±
VT

dΦ
dX

)
, (7.13)
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where D± is the diffusivity and Z the valence of the binary, but not necessarily
symmetric, electrolyte. The function f(1, kp) accounts for the scaling of the flux
by unity outside the membrane and by the ionic hindrance factor kp inside the
membrane.

Furthermore, we assume that the cation and anion are chemically inert,

R± = 0, (7.14)

and we stress that we account for the chemical water self-ionization reaction as
shown below.

The ionic charge density is given in terms of the four ionic species,

Pion = f(1, εp)e (ZC+ − ZC− + CH − COH) , (7.15)

where the function f(1, εp) accounts for the scaling of the concentration by unity
outside the membrane and by εp inside the membrane.

7.2.1.3 Special considerations concerning transport of H+ and OH−

The transport of H+- and OH− ions (water ions) is complicated by the fact that
these ions are chemically active in the water self-ionization reaction Eq. (2.42),

H2O + H2O fw−⇀↽−
bw

OH− + H3O+, (7.16)

where fw = 2.7× 10−5 s−1 is the water forward reaction rate constant and bw =
1.5 × 1011 M−1 s−1 ≈ 2.5 × 10−16 m3 s−1 is the water backward reaction rate
constant. As mentioned in Section 2.6.1, a way to reduce the mathematical
complexity of the governing equations is to utilize the chemical equilibrium. In
that spirit, we follow van Soestbergen [194] and introduce the diffusivity weighted
sum Cw and difference Pw of the concentrations of the water ions,

Cw = DHCH +DOHCOH

Dw
, (7.17a)

Pw = DHCH −DOHCOH

Dw
, (7.17b)

with corresponding reverse mapping,

CH = 1
2
Dw

DH

(
Cw + Pw

)
, (7.18a)

COH = 1
2
Dw

DOH

(
Cw − Pw

)
, (7.18b)

where Dw = (DHDOH) 1
2 is the geometric mean of the H+ and OH− diffusivities.

The production terms for the water ions are the same and denoted Rw,

Rw = RH = ROH = fwC
2
H2O − bwCHCOH. (7.19)
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We introduce the sum Jv = JH + JOH and difference Jw = JH − JOH of the
water ion fluxes,

Jv = f(1, kp)Dw
(
− dCw

dX −
Pw

VT

dΦ
dX

)
, (7.20a)

Jw = f(1, kp)Dw
(
− dPw

dX −
Cw

VT

dΦ
dX

)
, (7.20b)

which together with Cw, Pw, and Rw lead to the reformulated ionic conservation
equations,

dJv

dX = 2 bw

[
Kw −

C2
w − P 2

w
4

]
, (7.21a)

dJw

dX = 0. (7.21b)

We scale the Pw and Cw concentrations by
√
Kw, length by L, and thus the

Jv and Jw flux by
√
KwDw/L and obtain the dimensionless equations,

djv
dx = Da

[
1− c2

w − ρ2
w

4

]
, (7.22a)

djw
dx = 0, (7.22b)

where Da = τdiff/τreac = 2 bw
√
KwL

2/Dw is the Damköhler number, see also
Eq. (2.17), in which τreac = 1/(

√
Kwbw) is the reaction time scale and τdiff =

L2/Dw is the diffusion time scale. We note that DH = 9.312 × 10−9 m2 s−1

and DOH = 5.260 × 10−9 m2 s−1 and hence Dw = 7.000 × 10−9 m2 s−1 whereby
τreac ≈ 70 µs. This suggests that for ionic transport of H+ and OH− ions driven
by gradients with a length scale L�

[
Dw/(2

√
Kwbw)

]1/2 ≈ 176 nm the diffusion
time is much longer than the reaction time, or Da� 1, and the left-hand-side in
Eq. (7.22a) is negligible leading to the relation set by the right-hand-side,

C2
w − P 2

w = 4Kw, (7.23)

which is the classical water self-ionization equilibrium condition, also expressible
in the more familiar form, CHCOH = Kw [see Eq. (2.43)].

Due to its definition the concentration sum Cw ≥ 0 is non-negative and can be
expressed by Eq. (7.23) unambiguously in terms of the concentration difference
Pw,

Cw = [4Kw + Pw]
1
2 , (7.24)

whereby ionic mass conservation of the water ions is given by

Jw = f(1, kp)Dw

[
−dPw

dX −
1
VT

(
4Kw + P 2

w

) 1
2 dΦ

dX

]
, (7.25a)

dJw

dX = 0. (7.25b)



80 Membranes: Over-limiting current

We note that it is not straight forward to change variable from Pw to Cw
in Eq. (7.25) since Pw can be both negative and positive and it is difficult to
unambiguously determine the sign of Pw in Eq. (7.23).

For simplicity, we assume that the water self-ionization reaction is in equilib-
rium in all parts of the domain even though the presence of the small screening
length λD ∼ O(nm) hints that there could be local points where the reaction is
brought out of equilibrium. The assumption of water self-ionization equilibrium is
also compromised since in Eq. (7.22) the small parameter (1/Da) multiplies onto
the highest derivative which indicates the possibility of formation of boundary
layers, which is even more likely to occur in the present system since it contains
phase boundaries in contrast to systems just dealing with free unbounded so-
lution. A proper treatment would involve singular perturbation theory but for
simplicity we leave this for future work. In our computational results we check the
validity of the water self-ionization equilibrium assumption in Eq. (7.23) a poste-
riori by comparing against Da locally the numerical value of the left-hand-side
in Eq. (7.22a).

7.2.1.4 Boundary conditions

At the reservoir-SDL interfaces at X1 and X4, see Fig. 7.1, we assume fixed pH
equal to pHres corresponding to CH = Cres

H and COH = Kw/C
res
H in which

Cres
H = 10−pHres . (7.26)

In terms of the concentration difference Pw this becomes

Pw(X1) = Pw(X4)=
(
DHC

res
H −DOH

Kw

Cres
H

)
D−1

w . (7.27)

Electroneutrality then dictates that any H+/OH− charge imbalance be com-
pensated by the salt ions. Hence, we perturb the cation and anion concentrations
around the reservoir concentration Cres to obtain electroneutrality in the reser-
voirs,

C+(X1) = C+(X4) = Cres + 1
Z

Kw

Cres
H
, (7.28)

C−(X1) = C−(X4) = Cres + 1
Z
Cres

H . (7.29)

The electrostatic potential is grounded in the left reservoir and biased to the
potential ∆V in the right reservoir,

Φ(X1) = 0, Φ(X4) = ∆V. (7.30)
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7.2.1.5 Non-dimensionalization

Governing equations We introduce the following non-dimensional quantities,

j± = J±

(
2D±

Cres

Lsdl

)−1
, x = X

Lsdl
, c± = C±

Cres
, (7.31a)

jw = Jw

(
Dw

√
Kw

Lsdl

)−1

, φ = Φ
VT
, ρw = Pw√

Kw
, (7.31b)

whereby mass conservation of all ionic species in Eq. (7.12a) is compactly written
as

dji
dx = 0, i = +,−,w, (7.32a)

j± = f(1, kp)
2

(
−dc±

dx ∓ Zc±
dφ
dx

)
, (7.32b)

jw = f(1, kp)
{
−dρw

dx −
[
4 + ρ2

w

] 1
2 dφ

dx

}
. (7.32c)

The relations in Eqs. (7.17) and (7.18) become in terms of the dimensionless
variables

cw =
[
4 + ρ2

w

] 1
2 , (7.33a)

ρw = DHcH −DOHcOH

Dw
, (7.33b)

cH = Dw

DH




ρw

2 +
[
1 +

(
ρw

2

)2
] 1

2


 , (7.33c)

cOH = Dw

DOH



−

ρw

2 +
[
1 +

(
ρw

2

)2
] 1

2


 . (7.33d)

Furthermore, we introduce the non-dimensionalized charge densities ρion and
ρmem,

ρion = Pion

ZeCres
= f(1, εp)

[
c+ − c− + δw(cH − cOH)

]
, (7.34a)

ρmem = Pmem

eCmem
= f(0, εp) 2 θα

β
, (7.34b)

where

β = 2Z Cres

Cmem
(7.35)

is the reservoir-salt-to-membrane concentration ratio and

δw =
√
Kw

ZCres
(7.36)
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is the water-ion-to-reservoir-salt concentration ratio.
Non-dimensionalization of the Poisson equation Eq. (7.12b) yields

−2Zλ d
dx

[
f
(

1, εmem

εsdl

) dφ
dx

]
= ρion + ρmem, (7.37)

where

λ = λD

Lsdl
(7.38)

is the dimensionless screening length. The Debye screening length is defined in
Eq. (2.6) and here specifically given as

λD =
√

εsdlkBT

2(Ze)2Cres
. (7.39)

Typically, λ, β, and δw are all small quantities; 10−6 . λ . 10−3, 10−6 . β .
10−1, and 10−6 . δw . 10−3.

Boundary conditions At the bulk-SDL interfaces at x1 and x4 we have cH =
cres

H and cOH = 1/cres
H , in which

cres
H = 10−pHres

1√
Kw

. (7.40)

We introduce the reservoir concentration sum ρres
w ,

ρres
w =

(
DHc

res
H −

DOH

cres
H

)
D−1

w . (7.41)

The boundary conditions for the water ions and salt ions become

ρw(x1) = ρw(x4) = ρres
w , (7.42a)

c+(x1) = c+(x4) = 1 + δw

cres
H
, (7.42b)

c−(x1) = c−(x4) = 1 + δwc
res
H , (7.42c)

while for the electrostatic potential,

φ(x1) = 0, φ(x4) = ∆v, (7.43)

in which

∆v = ∆V
VT

. (7.44)
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7.3 Analytical results assuming electroneutral-
ity jc < 1

Below, in the analytical analysis, we assume electroneutrality to leading order in
both the diffusion layers and in the membrane. Hence, the analysis is not valid
for over-limiting conditions and we use it instead to illustrate the fundamental
behavior of the water ions. The results obtained here is useful to understand and
corroborate the numerical results.

The EDL at the SDL-membrane interface is assumed to be in quasi-equilibrium
and is therefore modeled using the Donnan jump condition. Furthermore, we as-
sume the charge from salt ions is everywhere much larger than the charge from
water ions such that the problem decouples.

The leading problem then concerns the salt ions and the electric potential and
is decoupled from the water ions. The perturbative problem concerns the water
ions and is solved after the fact subject to the electric potential as determined by
the salt ions.

We do not assume that the membrane is perfectly selective i.e. we allow for a
non-zero co-ion current.

7.3.1 Solution to the leading problem; salt ions c± and
electrical potential φ

7.3.1.1 Reformulation of the governing equations

We recall that the dimensionless Nernst–Planck flux expressions for the salt ions
are

2 j+

f(1, kp) = −dc+

dx − Zc+
dφ
dx, (7.45a)

2 j−
f(1, kp) = −dc−

dx + Zc−
dφ
dx. (7.45b)

Electroneutrality between the salt ions and the membrane surface groups leads
by Eqs. (7.34) and (7.37) to the relation

0 = c+ − c− + 2 θα
β
f(0, 1). (7.46)

Next, we introduce the dimensionless salt concentration c and the dimension-
less flux expressions jc and jq,

c = 1
2 (c+ + c−) , (7.47a)

jc = j+ + j−, (7.47b)
jq = j+ − j−, (7.47c)
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and we reformulate the dimensionless Nernst–Planck equations Eq. (7.45) to
jc

f(1, kp) = − dc
dx + f(0, 1)Zθ α

β

dφ
dx, (7.48a)

jq
f(1, kp) = −Zcdφ

dx. (7.48b)

7.3.1.2 Salt and electrical potential in the SDLs

In the two SDLs there is no hindrance of the ions f(1, kp) = 1 and no membrane
background charge f(0, 1) = 0, and Eq. (7.48) reduces to

jc = − dc
dx, (7.49a)

jq = −Zcdφ
dx. (7.49b)

These equations are readily integrated in the left and right SDLs subject to the
boundary conditions in Section 7.2.1.5 which to leading order become

c(x1) = c(x4)= 1, (7.50)

and

φ(x1) = 0, φ(x4) = ∆v. (7.51)

Thus, to leading order, in the SDLs the salt ions and the electrical potential are

c = 1− jc(x− xi), i = 1, 4, (7.52a)

φ = 1
Z

jq
jc

ln
[
1− jc(x− xi)

]
+ φ(xi), i = 1, 4, (7.52b)

where the solution for i = 1 pertains to the left SDL and that for i = 4 pertains
to the right SDL.

This is the classical result of a linearly varying salt concentration profile and
a potential that diverges at the left SDL-membrane interface x = x2 when the
flux approaches the limiting value jc → 1. If the membrane were assumed to be
perfectly selective then from Eq. (7.47) |jc| = |jq|. However, we do not assume
that the membrane is ideal.

7.3.1.3 Salt and electrical potential matching at the SDL-membrane
interfaces

The thinness of the dimensionless screening length in Eq. (7.37) leads to quasi-
equilibrium across the SDL-membrane interface. We find the potential difference,
the Donnan potential ∆φD,i, across the interface by utilizing constant electro-
chemical potentials and electroneutrality in the membrane,

∆φD,i = 1
Z

sinh−1
[
α

β

θ

c(xsdl
i )

]
, i = 2, 3, (7.53)
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where the point xsdl
i is on the SDL side of the interface at x = xi immediately

outside the electric double layer. Hence, the matching conditions at the SDL-
membrane interfaces are

c(xmem
i ) = c(xsdl

i ) cosh [Z∆φD,i] = c(xsdl
i )



1 +

[
α

β

1
c(xsdl

i )

]2




1
2

, i = 2, 3,

(7.54a)
φ(xmem

i ) = φ(xsdl
i ) + ∆φD,i, i = 2, 3,

(7.54b)

where xmem
i is located inside the membrane and in the same way as xsdl

i described
above. The necessary specific values of the solution in the SDLs at x = xsdl

i are
by Eq. (7.52)

c(xsdl
2 ) = 1− jc, c(xsdl

3 ) = 1 + jc, (7.55a)

φ(xsdl
2 ) = 1

Z

jq
jc

ln
(
1− jc

)
, φ(xsdl

3 ) = 1
Z

jq
jc

ln
(
1 + jc

)
+ ∆v. (7.55b)

7.3.1.4 Salt and electrical potential in the membrane interior

For notational reasons we rearrange Eq. (7.48),

A2 = − dc
dx + A2

A1

1
c
, (7.56a)

dφ
dx = θ

Z

β

α

A2

A1

1
c
, (7.56b)

in which the variables A1 and A2 are

A1 = −θβ
α

jc
jq
, (7.57a)

A2 = jc
kp
. (7.57b)

Integration of Eq. (7.56a) subject to the boundary condition that at x = xmem
3

the concentration is c(xmem
3 ) yields

c(x) = 1
A1

(
1 +W

{[
A1c(xmem

3 )− 1
]
e−A1A2(x−lmem)+[A1c(xmem

3 )−1]
})

, (7.58a)

φ(x) = φ(xmem
3 ) + 1

Z

jq
jc

ln
[

A1c(x)− 1
A1c(xmem

3 )− 1

]
(7.58b)

= φ(xmem
3 )− θ

Z

β

α
[c(xmem

3 )− c(x)− A2 (x− lmem)] , (7.58c)

where W (x) is the Lambert W function defined by the equation x = W (x)eW (x)

and lmem = Lmem/Lsdl is the dimensionless membrane thickness.
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To close the system in terms of the two remaining unknowns, jc and jq, we
evaluate the solution in Eq. (7.58) at x = xmem

2 and apply the matching conditions
in Eq. (7.54) to obtain

c(xmem
2 ) = 1

A1

(
1 +W

([
A1c(xmem

3 )− 1
]
eA1A2lmem+[A1c(xmem

3 )−1]
))

, (7.59a)

φ(xmem
2 ) = φ(xmem

3 ) + 1
Z

jq
jc

ln
[
A1c(xmem

2 )− 1
A1c(xmem

3 )− 1

]
. (7.59b)

These are two coupled algebraic equations for the determination of jc and jq.
For notational reasons we introduce the variable κ and the functions K− =

K−(jc) and K+ = K+(jc),

κ = θ
jq
jc
, (7.60a)

K− =


1 +

[
β

α
(1− jc)

]2




1
2

, (7.60b)

K+ =


1 +

[
β

α
(1 + jc)

]2




1
2

, (7.60c)

Furthermore, we introduce the functions F1 = F1 (jc, κ) and F2 = F2 (jc, κ) and
reformulate Eqs. (7.59) to obtain

F1 (jc, κ) = κ ln
(
κ+K−
κ+K+

)
+ 1
γ

β

α
jc +K+ −K− = 0,

(7.61a)

F2 (jc, κ) = κ ln
(
κ+K−
κ+K+

)
+ 2 (κ− 1) tanh−1(jc) + θZ∆v + ln

(
1 +K+

1 +K−

)
= 0,

(7.61b)

in which γ = kp/lmem is the “accumulated” ionic hindrance along the width of
the membrane. We combine these equations to obtain an equation for κ in terms
of jc alone,

κ = κ(jc) = 1− 1
2 tanh−1(jc)

{
θZ∆v +

[
ln
(

1 +K+

1 +K−

)
+K− −K+

]
− 1
γ

β

α
jc

}
.

(7.62a)

This relation can be used in either of the Eqs. (7.61) to obtain a single transcen-
dental equation for the unknown jc. We use the first equation,

F1 [jc, κ(jc)] = 0, (7.63)

which we can solve numerically in Matlab as a parametric function of ∆v.
The solution of Eq. (7.63) leads to the current response to an applied potential

difference for arbitrary values of the membrane charge density ρmem. In the limit
where the membrane charge density remains large the transcendental equation
simplifies as shown below.
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7.3.1.5 Simplified results for large membrane charge α/β � 1

In the limit of a large membrane charge density α/β � 1 three of the terms in
Eq. (7.61) simplify,

κ ln
(
κ+K−
κ+K+

)
= − 2κ

1 + κ

(
β

α

)2

jc, (7.64a)

K+ −K− = 2
(
β

α

)2

jc, (7.64b)

ln
(

1 +K+

1 +K−

)
=
(
β

α

)2

jc, (7.64c)

whereby Eq. (7.61a) leads to the relation

κ = −
(

1 + 2 γ β
α

)
, (7.65)

whereby Eq. (7.61b) yields to first order in γβ/α the simplified transcendental
equation for jc,

4
(

1 + γ
β

α

)
tanh−1(jc) + 1

γ

β

α
jc − θZ∆v = 0. (7.66)

The other variable jq is then given by Eq. (7.65),

jq = −θ jc
(

1 + 2 γ β
α

)
. (7.67)

We note that to zeroth order in γα/β we recover the classical result for a
perfectly selective membrane,

jc = tanh
(
θ
Z∆v

4

)
. (7.68)

The solution for jc and jq leads by Eqs. (7.52) and (7.58) to the determination
of the concentration c and the electrical potential φ in the entire system. We
next use this solution, in particular for the electrical potential, to solve for the
distribution of the water ions throughout the system.

We expand Eq. (7.66) in the limit of small voltage and current and obtain the
linear current-voltage relation

jc = ∆v
φ0
, (7.69)

where the scaling factor φ0 is

φ0 = θ
4
Z

[
1 +

(
γ + 1

4 γ

)
β

α

]
. (7.70)
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7.3.2 Solution to the perturbative problem; H+- and OH−
ions

We assume that the charge density due to water ions is small relative to the
charge density due to salt ions, Z(C+ − C−) � CH − COH. Hence, we assume
that the salt concentration and the electrical potential are undisturbed to leading
order by the presence of the water ions. We reiterate that the combined problem
thus decouples into that of the salt and the electric potential and that of the
water ions, where the solution of the former serves as input to that of the latter.

We follow the same approach as for the salt-potential problem by integrating
the transport equation for ρw in the SDLs and in the membrane and subsequently
determine the integration constant and jw by matching at the SDL-membrane
interfaces. We assume that the water ions are in quasi-equilibrium across the
SDL-membrane interface.

The high non-linearity of the flux expression for ρw in Eq. (7.32c) makes a full,
closed form, analytic solution intractable and we therefore perform a linearization.

7.3.2.1 H+- and OH− ions in the SDLs for small currents jc � 1

In the SDLs we assume that the deviation in the water charge from its equilibrium
value is small (ρw − ρres

w )2/4� 1 whereby we limit our analysis to small currents
jc � 1. We then approximate the original non-linear transport equation (7.32c)
with the linearized version,

jw = −dρw

dx − ρ0
dφ
dx, (7.71)

where

ρ0 =
[
4 + (ρres

w )2
] 1

2

(7.72)

is a constant. The gradient of the electrical potential is assumed to be independent
of the water ions and determined solely by the salt ions by Eq. (7.52),

dφ
dx = −jq

Z
[1− jc (x− xi)]−1 . (7.73)

We integrate Eq. (7.71) and use the boundary condition that ρw = ρres
w at x1

and x4 and obtain

ρw = ρres
w − jw(x− xi)−

ρ0

Z

jq
jc

ln [1− jc (x− xi)] , i = 1, 4, (7.74)

where we reiterate that the solution for i = 1 pertains to the left SDL and that
for i = 4 pertains to the right SDL. We note the values,

ρw(xsdl
2 ) = ρres

w − jw −
ρ0

Z

jq
jc

ln [1− jc] , (7.75a)

ρw(xsdl
3 ) = ρres

w + jw −
ρ0

Z

jq
jc

ln [1 + jc] , (7.75b)

used below when we match at the SDL-membrane interface.
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7.3.2.2 H+- and OH− ions in the membrane interior

Due to the relatively high membrane charge, we expect ρw to have a large absolute
value |ρw/2| � 1 in the membrane. Furthermore, the sign of ρw must be positive
in cation-selective (θ = −1) membranes and negative in anion-selective (θ = 1)
membranes. Thus, the absolute value of ρw can be written as |ρw| = −θρw. We
use this in the linearization of the flux expression for ρw in Eq. (7.32c),

jw

kp
= −dρw

dx + θρw
dφ
dx. (7.76)

Again, the electrical potential gradient is assumed independent of ρw and
determined solely by the salt ions. It turns out that the general form of the
solution to Eq. (7.76) is

ρw = eθ[φ(x)−φ(x0)]
{
ρw(x0)− jw

kp

ˆ x

x0

e−θ[φ(ξ)−φ(x0)] dξ
}
. (7.77)

7.3.2.3 H+- and OH− ion matching at the solution-membrane inter-
faces

As mentioned in Section 2.4, at equilibrium the flux is zero and the resulting bal-
ance between diffusion and electromigration, found by integration of Eq. (7.32c),
yields the condition

ρw = 2 sinh (A− φ) , (7.78)

where A is an integration constant. Using as reference points xsdl
i right outside

the EDL at the SDL-membrane interface we obtain the matching condition for
the water charge,

Ai = sinh−1
[
ρw(xsdl

i )
2

]
, i = 2, 3, (7.79a)

ρw(xmem
i ) = 2 sinh (Ai −∆φD,i) , i = 2, 3. (7.79b)

Matching at the left and right interface allow us to determine in Eq. (7.77)
both the integration constant ρw(x0) and the flux jw. We choose x0 = xmem

3 and
get

ρw = eθ[φ(x)−φ(xmem
3 )]

{
ρw(xmem

3 )− jw

kp

ˆ x

xmem
3

e−θ[φ(ξ)−φ(xmem
3 )] dξ

}
. (7.80)

We close the system by matching at the left SDL-membrane interface x = xmem
2 ,

−ρw(xmem
2 ) + eθ[φ(xmem

2 )−φ(xmem
3 )]

{
ρw(xmem

3 )− jw

kp

ˆ xmem
2

xmem
3

e−θ[φ(ξ)−φ(xmem
3 )] dξ

}
= 0.

(7.81)

Given the electrical potential from the salt-potential problem the solution of
Eq. (7.81) determines together with jc and jq the flux jw and by Eqs. (7.74) and
(7.80) the distribution of ρw, and thus cH, in the entire system.
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7.3.2.4 Simplified results for large membrane charge α/β � 1

In the case of a large membrane charge α/β � 1 we expand Eq. (7.48a),

dx = θ
Z

kp

α

β

1
jc

dφ, (7.82)

which leads to the potential difference across the inside of the membrane ∆φmem =
φ(xmem

3 )− φ(xmem
2 ),

∆φmem = θ

Z

β

α

jc
γ
. (7.83a)

This potential difference ∆φmem is small whereby we approximate the integral in
Eq. (7.81),

ˆ xmem
2

xmem
3

e−θ[φ(ξ)−φ(xmem
3 )] dξ = lmem. (7.84)

All together, Eq. (7.81) simplifies to

ρw(xmem
3 )− ρw(xmem

2 ) exp
(
θ

Z

β

α

jc
γ

)
+ jw

γ
= 0. (7.85)

In the limits of a large membrane charge density α/β � 1 and for small
currents jc � 1 this equation determines jw. ρw(xmem

i ) is given by Eqs. (7.79)
and (7.75). This leads by Eqs. (7.74) and (7.80) to the distribution of ρw, and
thus cH, in the entire system.

7.3.3 The semi-analytical model: solving the coupled sys-
tem with dynamic membrane charge

The salt-potential and water-ion systems are coupled through the membrane ion-
ization degree α in Eq. (7.10). For simplicity, we consider the large membrane
charge limit α/β � 1 in which the ionization degree is approximately constant
across the membrane. The same applies to the hydronium-ion concentration
in the membrane which can be found by Eq. (7.33c) using a simple average
ρw = [ρw(xmem

3 ) + ρw(xmem
2 )] /2 for the water charge in the membrane. Thus, in

our semi-analytical model, to take into account the dynamic membrane charge, we
solve self-consistently the coupled system of equations consisting of Eqs. (7.10),
(7.66), and (7.85).
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7.3.4 I-V curve and conductance for large membrane charge
α/β � 1

Using Eq. (7.47) we express the cation j+ and anion j− flux in terms of jc and
jq,

j+ = 1
2 (jc + jq) , (7.86a)

j− = 1
2 (jc − jq) . (7.86b)

In the limit of a large membrane charge this simplifies by Eq. (7.67) to

j+ = 1
2

[
1− θ

(
1 + 2 γ β

α

)]
jc, (7.87a)

j− = 1
2

[
1 + θ

(
1 + 2 γ β

α

)]
jc. (7.87b)

The total current Jtot in the system is defined as

Jtot = Z (J+ − J−) + Jw. (7.88)

We reformulate this expression using the scaling relations in Eq. (7.31),

Jtot

Jlim
= jc


1 + 2 γ β

α

(
1− θD+ −D−

D+ +D−

)−1

+ J ref

w
Jlim

jw, (7.89)

where the limiting current Jlim, the (signed) counter-ion diffusivity D−θ, and the
reference water-ion flux are defined as

Jlim = 2ZD−θ
Cres

Lsdl
, (7.90a)

D−θ = 1
2 [D+ (1− θ)−D− (1 + θ)] , (7.90b)

J ref
w = Dw

√
Kw

Lsdl
. (7.90c)

Even though Eq. (7.89) is derived on the assumption of electroneutrality and
a large membrane charge density it does hint to the existence of over-limiting cur-
rent. Note that by Eq. (7.62a) [or Eq. (7.68)] jc → 1 as θ∆v →∞. The first term
in Eq. (7.89) is the classical term where the current approaches asymptotically
its classical limiting value Jlim. The second term is due to the non-ideality of the
membrane, i.e. that the membrane allows a finite concentration of co-ions inside
it. Thus, the limiting current is higher than the classical value. But not only
that, the second term is inversely proportional to the ionization degree α which
means that the term grows when α drops. And α drops due to current-induced pH
changes in the membrane. This constitutes a main part of the explanation for the
current-induced membrane discharge mechanism. The third term in Eq. (7.89) is
the current due to water ions which is more difficult to predict.
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Figure 7.2: (a) The electrical potential φ in the membrane and the two SDLs for
∆v/φ0 = 0 (dotted curve) and ∆v/φ0 = 8 (full curve). (b) As in panel (a) but for the
salt anion (counter-ion) concentration c− and the salt cation (co-ion) concentration c+.
(c) As in panel (a) but for the hydroxyl-ion concentration cOH and the hydronium-ion
concentration cH. Figure adapted from our paper [195].

7.4 Numerical results for over-limiting current
We proceed with a full numerical solution of the governing equations for dynamic
membrane charge Eq. (7.10), for ionic mass conservation of four ionic species
(cation, anion, hydronium ion, hydroxyl ion) Eq. (7.32), and for electrostatics
Eq. (7.37).

These equations are subject to the boundary conditions for the salt ions and
the water ions Eq. (7.42) and for the electrostatic potential Eq. (7.43). Numer-
ical results show that for symmetric transport properties of the salt- and water
ions the CIMD effect is the same in both cation-selective and anion-selective
membranes. Thus, we focus on one type of membrane, here an anion-selective
membrane (θ = 1).

In our simulations we choose the following typical values for our set of basis
parameters: Cmem = 5M, pKmem = 9.5, Lmem = Lsdl = 100 µm, εr,sdl = 78,
εr,mem = 29, εp = 0.4, kp = 0.02 [192], Z = 1, D+ = 1.3× 10−9 m2 s−1 and
D− = 2.0× 10−9 m2 s−1 (corresponding to NaCl), DH = 9.3× 10−9 m2 s−1, and
DOH = 5.3× 10−9 m2 s−1. We also use pHres = 7 and β = 2Cres/Cmem = 0.02,
unless otherwise noted.

Figure 7.2 shows the distribution of the electrical potential, the cation and
anion concentration, and the water ion concentrations, for an applied potential
difference of ∆v/φ0 = 0 and 8 [here φ0 is defined using α = 1 in Eq. (7.70)].

For ∆v/φ0 = 0 we recognize the higher potential in the membrane due to
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Figure 7.3: The dependence of the pH on the applied voltage difference ∆φ at the left
SDL-membrane interface (a), in the membrane (b), and at the right SDL-membrane
interface (c), predicted by the full model (full blue curves) and the semi-analytical
model (dashed red curves). Figure adapted from our paper [195].

the Donnan potential jump at the membrane-SDL interfaces. In relation to this,
the concentration of the cation is lowered and that of the anion raised in the
membrane, while the same is true for the hydronium and hydroxyl ions.

For ∆v/φ0 = 8 (over-limiting regime) we note how a large part of the voltage
is dropped at the left membrane-SDL interface. This is related to the concen-
tration polarization across the membrane, with a strong ion depletion at the left
membrane-SDL interface and a moderate enrichment at the right interface. More-
over, due to the membrane discharge, the “gap” between the cation and anion
concentration levels in the membrane is diminished.

Finally, and perhaps most notably, the hydronium ion displays extreme be-
havior. In the left and right SDL cH is raised and lowered by a factor of 103,
respectively. Moreover, in the membrane cH is lowered, contrary to the increase
in c+. The existence of these pH variations across the domain has been observed
experimentally in similar systems [176, 196–198].

We verify the current-induced pH variations by comparing in Fig. 7.3 the
predictions from the semi-analytical model in Section 7.3.3 and the full numer-
ical model. We compare the pH at three positions: in both SDLs at the SDL-
membrane interface right outside the equilibrium EDL [panels (a) and (c)] and in
the middle of the membrane [panel (b)]. For the chosen parameters the pH vari-
ation across the membrane is small and therefore well-represented by the value
at the middle.

We note good agreement between the models for ∆v/φ0 . 1 which corre-
sponds the electroneutral regime of validity of the semi-analytical model. Both
models predict the pH to drop in the left SDL and to increase in the membrane
and the right SDL.

For voltages ∆v/φ0 > 1 the largest discrepancy between the two models occurs
in the left SDL which agrees with the fact that the electroneutrality assumption
is most strongly violated there in the ion depletion zone.

Thus, we have verified the agreement between the semi-analytical and full nu-
merical models and move on to consider further predictions by the full numerical
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Figure 7.4: The dependence on the applied voltage difference ∆φ of (a) the ionization
degree α, (b) the cation (co-ion) current J+, (c) the total current Jtot, and (d) the water
ion current Jw, for three values of the concentration ratio β = 2Cres/Cmem = 0.004,
0.02, and 0.04, and for three values of the reservoir pH, pHres = 5.5, 7, and 8.5. In
panel (a) and (c) additionally show results from the M1, M2, and M4 models. Figure
adapted from our paper [195].

model.
In Fig. 7.4 is shown predictions by the full numerical CIMD model for two

combinations of parameter values: (i) a reservoir pHres of 7 and varying concen-
tration ratio β = 0.004, 0.02, and 0.04, and (ii) the concentration ratio β = 0.02
and a varying pHres of 5.5, 7, and 8.5. Furthermore, for comparison, we also show
results from three other models. The classical model M1, used in all prior work
on EOI [163–167], makes three assumptions (i) the co-ion concentration c+ = 0
is zero in the membrane, (ii) zero concentration cH = cOH = 0 of the water ions
everywhere in the system, and (iii) the ionization degree of the membrane α = 1
is unity for all conditions. The two remaining intermediate models include the
co-ion in the membrane, still assume constant α = 1 for all conditions, and either
exclude (M2) or include (M4) water ions, i.e. take 2 or 4 ions into account in the
membrane, respectively.

Figure 7.4(a) shows the strong decrease in the ionization degree of the mem-
brane with increasing voltage. For a pH of 7 there is an initial sharp decrease
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Figure 7.5: (a) The dependence of the electrical space charge density ρions on the
distanceX∗ = X−X2 from the membrane in the ion-depleted zone. (b) The dependence
of the transverse electro-osmotic mobility µeo on the total current Jtot. Figure adapted
from our paper [195].

in α up to ∆v/φ0 ≈ 5 above which the slope levels off. Notably, for β = 0.02
the initial decrease becomes less strong with increasing pHres. For any of the
three values of pHres, the ionization degree becomes equal to that of pHres = 7 for
voltages ∆v/φ0 & 3 suggesting that the reservoir pHres has little influence in the
over-limiting regime. The black dotted line shows the constant ionization α = 1
of the M1, M2, and M4 models.

Similar trends are seen in Fig. 7.4(b) where the co-ion (cation) flux becomes
increasingly significant with voltage, here ∆v/φ0 = 7 yields J+/Jtot ≈ 0.05. The
insignificance of pHres on the over-limiting regime is further verified.

Figure 7.4(c) shows most clearly the over-limiting current predicted by the
CIMD model. The relative magnitude of the over-limiting current increases with
increasing concentration ratio β. For all β = 0.004, 0.02, and 0.04 is shown the
classical current saturation at the limiting current predicted by the M1 model.
Furthermore, for β = 0.04 is shown that no other model than the CIMD predicts
significant over-limiting current.

Finally, Fig. 7.4(d) shows the relative contribution to the total current from
the water ions. Perhaps most important is the fact that this contribution is
insignificant in relation to the strong over-limiting currents for β = 0.02 and
0.04. However, for β = 0.004 the relative contribution becomes significant, but
also in this case the over-limiting current is small.

Moreover, Fig. 7.5 illustrates how CIMD can further explain over-limiting cur-
rent at the expense of the importance of EOI. Figure 7.5(a) shows the space charge
density in the local region of ion depletion at the left SDL-membrane interface.
For currents in the over-limiting regime all the models M1, M2, and M4 predict a



96 Membranes: Over-limiting current

space charge layer extending away from the membrane surface. The classical M1
model even predicts the strongest space charge layer for the slightly over-limiting
current Jtot/Jlim = 1.01. Contrary, even for the larger current Jtot/Jlim = 1.03
the CIMD model does not predict the extended space charge layer. Thus, this
shows that the formation of the space charge layer that drives EOI is suppressed
in the CIMD model.

The suppression of EOI is further illustrated in Fig. 7.5(b) where the trans-
verse EO mobility µeo/µeo,0 (our measure of the propensity of EOI) is seen to
diverge at the limiting current Jtot/Jlim = 1 for all the models M1, M2, and M4,
but remains finite in the CIMD model. The transverse electro-osmotic mobility
is equal to the first moment of the charge density in the left SDL, or equivalently,
to the potential drop across the left SDL,

µeo

µeo,0
= 1
εsdlVT

ˆ X1

X2

X Pion dX = φ(x1)− φ(x2), (7.91)

and is a measure of the propensity of EOI to develop.
In conclusion, we have theoretically demonstrated that CIMD can lead to

over-limiting current through aqueous ion-selective membranes. This results from
a loss of ion-selectivity due to (de-)protonation of the membrane surface groups
coupled to ion transport and water self-ionization. The loss of ion-selectivity is un-
wanted in electrodialysis but could be exploited in current-assisted ion exchange
or pH control. Further, CIMD suppresses the formation of the space charge layer
and thereby the propensity of EOI to develop. Thus, models considering fluid
flow and EOI should include CIMD.



Chapter 8

ICEO: finite Debye-length effects

This study was carried out together with Professor Carl Meinhart and his student
Doctor Gaurav Soni, UC Santa Barbara. The following is my personal presenta-
tion of our work in Chapter F where additional details may be found.

8.1 Introduction
Induced-charge electro-osmosis (ICEO) experienced a “revival” in the year 2004
with the work of Bazant and Squires [94, 103] who pointed out the great po-
tential of the phenomenon in microfluidic systems. Before then, electrokinetic
phenomena were mainly known in the context of colloids [2]. In microfluidics,
electrokinetic phenomena can be used as a means of pumping, mixing, and con-
trolling, even locally, the fluid or suspended particles.

In this context ICEO is particularly interesting because the generated flow
does not depend on the direction of the driving electric field; it scales with the
square of the electric field strength E2. Thus, it is possible to use alternating
currents and avoid some of the drawbacks of using direct current such as electro-
dialysis. While there has been good qualitative agreement between theoretically
predicted and experimentally observed ICEO flows, the quantitative agreement
has been poor [123, 199–201].

ICEO resembles ordinary EO flow in the sense that an electric field acts on
the diffuse charge in the electrolyte at an interface. Only, in ICEO, the charge is
induced by the electric field itself. The induced charge arises around polarizable
objects, such as metal structures, which remain equipotentials and ends up with
induced screening layers that are positively and negatively charged on either side
of the object in the direction of the external field. The electric field that induces
the charge also acts upon it and forces the ions to move by electromigration. This
in turn drags the liquid along by viscous friction and the ICEO flow arises.

The dipole-like structure of the induced electric screening layers means that
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the flow typically consists of counter-rotating flow rolls. Furthermore, contrary
to a wall with fixed chemical charges and surface potentials equal to typically
a few times the thermal voltages, the induced charge in ICEO can be driven
to even higher zeta potentials. Thus, ICEO easily leads to strongly non-linear
electrokinetic phenomena.

The extent λD of the induced screening layer is often much smaller than the
scale a of the polarized object and the Helmholtz–Smoluchowski slip velocity
Eq. (2.36) can be applied, but is strictly only valid in the limit where the screening
layer is infinitely thin λD/a → 0. For typical electrolyte concentrations the
screening length is on the order of 10 nm while the extent of typical microfluidic
objects are on the order of 10 µm which leads to a ratio of λD/a ≈ 10−3.

Through our numerical work we noticed for small screening layers λD/a� 1 a
surprisingly large deviation between predicted ICEO flows from a full resolution
of the boundary layer and from the slip velocity approximation. We therefore set
out to investigate this discrepancy in more detail. We define a linear slip (LS)
model that ignores dynamics in the EDL. Moreover, we define a non-linear slip
(NLS) model that takes into account surface conduction in the EDL. The LS and
NLS models are compared against a full resolution of the EDL boundary layer,
the so-called full non-linear (FN) model.

8.2 Model
Figure 8.1 shows our model system which consists of an electrolyte-filled chamber,
translationally invariant in the y-direction, and square of side length 2L in the xz-
plane. A flat ideally polarizable object (or “metal strip”) of width 2 a and height
h sits at the bottom-mid of the chamber. The left and right domain boundaries
are ideal electrodes with an applied potential difference of 2V0 between them.
The remaining walls are electrically insulating. We consider steady-state and the
ICEO flow consists of two counter-rotating flow rolls above the metal strip, see
Fig. 8.1.

The electrolyte consists of two monovalent and chemically inert salt ions of
concentrations c+ (cations) and c− (anions). The ions have the same diffusion
coefficient D. The electrolyte has relative electric permittivity εr, viscosity η, and
mass density ρm.

8.2.1 Governing equations
8.2.1.1 Full non-linear (FN) model

For the two ionic species we employ the steady-state ionic conservation equation
Eq. (2.8) without production term in which the flux is given by the Nernst–Planck
equation Eq. (2.12). For the electrical potential we use the Poisson equation
Eq. (2.2) where the electrical space charge density is given as ρel = e(n+ −
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Figure 8.1: The 2D rectangular model domain of side length 2L and with external
electrodes (thick lines) applying a potential difference of 2V0 across the un-biased elec-
trode (bottom mid) of width 2 a and height h. Figure adapted from our paper [202].

n−). Finally, mass conservation of the fluid is given by the continuity equation
Eq. (2.27) and momentum conservation in the fluid is described by the steady-
state Navier–Stokes equation Eq. (2.32) in which we stress that we retain the
electrical (Coulomb) body force density. Figure 8.2(a) shows the dimensionless
equations and boundary conditions and indicates that we take advantage of the
symmetry by only considering the right half of the domain.

Dimensionless form The induced zeta potential on the metal strip has ex-
trema on either side and we estimate their magnitude as ζ0 = V0 a/L. From this,
we define a dimensionless zeta potential

α = ζ0

VT
= a

L

V0

VT
(8.1)

which is a measure of the non-linearity in the induced screening layer. Small
α � 1 corresponds to the Debye–Hückel limit and larger α & 1 corresponds to
the non-linear regime.

We define a characteristic velocity v0 based on the Helmholtz–Smoluchowski
expression using ζ0 as the characteristic zeta potential,

v0 = εζ0

η

V0

L
. (8.2)



100 ICEO: finite Debye-length effects

Figure 8.2: The dimensionfull governing equations and boundary conditions. Figure
adapted from our paper [202].

Furthermore, we use the following as characteristic scales: the geometric half-
length a of the metal strip, the bulk ion concentration c0, the thermal voltage VT =
kBT/e, and the pressure scale p0 = ηv0/a. Using these scales the dimensionless
variables (denoted by a tilde) become

r̃ = r

a
, c̃± = c±

c0
, φ̃ = φ

VT
, ṽ = v

v0
, p̃ = p

p0
. (8.3)

We exploit the left-right symmetry in the problem by defining the salt con-
centration c = (c+ + c−)/2 and the charge concentration ρ = (c+ − c−)/2 with
corresponding flux densities J c = (J+ + J−)/2 and Jρ = (J+ − J−)/2. The
dimensionless form of the governing equations become for the ionic species,

∇̃ · J̃ c = ∇̃ · J̃ρ = 0, (8.4a)
J̃ c = −ρ̃∇̃φ̃− ∇̃c̃+ Pe c̃ ṽ, (8.4b)
J̃ρ = −c̃∇̃φ̃− ∇̃ρ̃+ Pe ρ̃ ṽ, (8.4c)

Pe = v0a

D
, (8.4d)

for the electrical potential,

∇̃2φ̃ = − ρ̃
ε2
, (8.5)

and for the velocity field,

∇̃ · ṽ = 0, (8.6a)

Re
(
ṽ · ∇̃

)
ṽ = −∇̃p̃+ ∇̃2ṽ − ρ̃

ε2 α2 ∇̃φ̃, (8.6b)

Re = ρmv0a

η
. (8.6c)

The small dimensionless parameter ε = λD/a expresses the relative thickness of
the screening layer to the extent of the metal strip.
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Boundary conditions We use the symmetry around the line x = 0 and con-
sider only the right half (0 < x < L) of the domain. On the metal strip the
boundary is impenetrable to ions, the potential is constant (zero due to symme-
try), and the fluid velocity is zero,

n · J̃ c = 0, n · J̃ρ = 0, φ̃ = 0, ṽ = 0. (8.7)

On the solid walls the boundary is impenetrable to ions and electrically insulating,
and the fluid velocity is zero,

n · J̃ c = 0, n · J̃ρ = 0, n · ∇̃φ̃ = 0, ṽ = 0. (8.8)

On the driving electrodes the ion concentrations are fixed to that in the bulk, the
potential is set externally, and the fluid velocity is zero,

c̃ = 1, ρ̃ = 0, φ̃ = V0

VT
= α

L

a
, ṽ = 0. (8.9)

Finally, the symmetries on the x = 0 boundary are even in the salt concentration,
odd in the charge concentration, odd in the potential, and even in the fluid
velocity field (no normal flow and no tangential stress),

n · J̃ c = 0, ρ = 0, φ̃ = 0, n · ṽ = 0, t · σ · n = 0, (8.10)

where t is the tangential vector and sigma is the viscous stress tensor Eq. (2.31).
To numerically handle the strong non-linearity at high applied voltages we

implement a reformulated version of the equations as shown in Section A.2.1.

8.2.1.2 Slip velocity models

Above we formulated the equations and boundary conditions for the full-nonlinear
(FN) model in which the screening layer is fully resolved. The slip-models below
have the advantage that the thin screening layer is modeled through effective
boundary conditions. The slip-models employed here have in common the use
of the standard Helmholtz–Smoluchowski velocity Eq. (2.36) and the assumption
of a charge neutral bulk with uniform concentration. This simplifies the govern-
ing equations in that ionic transport is trivial, the Poisson equation reduces to
the Laplace equation, and the electrical body force in the Navier–Stokes equa-
tions vanishes. The simplified equations for the electrical potential and the fluid
velocity field become

∇̃2φ = 0, (8.11a)
Re

(
ṽ · ∇̃

)
ṽ = −∇̃p̃+ ∇̃2ṽ, (8.11b)

together with the continuity equation Eq. (8.6a).
We know from the symmetry of the problem that the “real” potential of the

metal strip, below the boundary layer, is zero, whereby the induced zeta potential
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is the negative of the electrical potential on the boundary ζ = −φ. This is used
in the Helmholtz–Smoluchowski expression.

The problem has decoupled to a one-way coupling through the slip-condition
from the electrostatic problem to the hydrodynamic problem. This has the advan-
tage that the electrostatic problem can be solved independently and subsequently
used to evaluate the hydrodynamic problem. The dimensionless Helmholtz–
Smoluchowski slip condition on the metal strip is

ṽhs = 1
α2 φ̃ ∂x̃φ̃. (8.12)

Linear slip (LS) model The linear slip (LS) model assumes that the charge in
the screening layer on the metal strip is in static equilibrium and thus without flux
of charge normal to the boundary layer. This leads to the insulation condition,

n · ∇̃φ̃ = 0. (8.13)

Non-linear slip (NLS) model The non-linear slip (NLS) model takes into
account dynamics of the induced charge on the metal strip. The dynamics in the
screening layer also sets up gradients in the salt concentration [203, 204], but we
neglect this chemi-osmotic effect here and leave it for future work.

In steady-state the surface divergence in the tangential surface current σel,s∂xφ
inside the screening layer is balanced by a normal current σel∂zφ from the bulk,

0 = n · (σel∇φ) + ∇s · (σel,s∇sφ) , (8.14)

where σel,s is the surface conductivity and ∇s is the surface derivative (here equal
to ∂x).

The surface conductivity for a binary symmetric Z :Z electrolyte relates to the
screening length, the bulk conductivity, and the zeta potential [3],

σel,s = 4λDσel(1 +m) sinh2
(
Zeζ

4 kBT

)
, (8.15)

in which the relative contribution of electro-osmotic-to-ohmic conduction is given
by the dimensionless group

m = 2 ε

ηD

(
kBT

Ze

)2

, (8.16)

where in this case m ≈ 0.46.
The dimensionless form of the current balance in Eq. (8.14) becomes

0 = n ·
(
∇̃φ̃

)
+ ∇̃s ·

(
Du ∇̃sφ̃

)
, (8.17)

where

Du = σel,s

σ a
= 4 ε (1 +m) sinh2

(
Zeζ

4 kBT

)
(8.18)
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is the Dukhin (or Bikerman) number that indicates the relative importance of
surface conduction.

Furthermore, since Eq. (8.17) is a differential equation to be solved on the
metal-strip boundary it needs to be accompanied by boundary conditions. To
this end, we assume that the surface current at the edges of the metal strip at
x = ±a is zero,

Du∂x̃φ̃ = 0, (8.19)

which is a reasonable as explained by Khair et al. [204].
For details regarding the numerical implementation using the weak form, see

Section A.2.2.

8.3 Results
Our analysis is based on the three dimensionless parameters

ε = λD

a
, α = a

L

V0

VT
, β = h

a
, (8.20)

which relate to the screening length λD, the applied voltage difference V0, and
the metal-strip height h, respectively. To quantify the strength of the ICEO flow
we use the kinetic energy

Ekin = 1
2ρm

ˆ
Ω
v2 dxdz, (8.21)

as this measure is numerically well suited.

8.3.1 Zero height of the metal strip β = 0
We consider the electrode with zero height β = 0 in which case the kinetic energy
ELS

kin in the linear-slip (LS) model is independent of the screening length.
The kinetic energy in the three models is shown relative to ELS

kin in Fig. 8.3
and to EFN

kin in Fig. 8.4 as a function of the (inverse) screening length 1/ε for
applied voltages in the linear α = 0.05 , weakly non-linear α = 0.5, and strongly
non-linear α = 5 regime.

In the linear voltage regime α = 0.05 the LS and NLS models overestimate the
FN model by approximately the same factor for all screening lengths. Notably,
even in this regime and for a relatively thin screening layer 1/ε = 102 the LS and
NLS models still overestimate the kinetic energy by approximately a factor 1.2
(or 20 %). It takes a screening layer thinner than ε = 10−3 to have the LS and
NLS models agree within a factor 1.01 (or 1 %) of the FN model.

In the weakly non-linear voltage regime α = 0.5 the NLS model starts to
improve toward the FN model for thick screening layers ε > 10−2. Still, for thin
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Figure 8.3: The dependence of the
ICEO flow kinetic energy Ekin on the
inverse screening length 1/ε = a/λD
for three different applied voltages α =
aV0/(LVT) = 0.05, 0.5, and 5. Figure
adapted from our paper [202].

Figure 8.4: As in Fig. 8.3 but for the rela-
tive deviation in Ekin to that in the full non-
linear (FN) model. Figure adapted from
our paper [202].

screening layers ε < 10−2 the conclusions are more or less the same as for the
linear voltage regime.

In the strongly non-linear voltage regime α = 5 the FN model did not con-
verge for the thinnest screening layers ε < 10−3. In this case, the LS model over-
estimates considerably more than the NLS model compared to the FN model,
especially for thick screening layers 10−1 < ε < 100. Quite remarkably, for thick
screening layers, the LS model overestimates by a factor 10 to 103, whereas the
NLS model has improved to only overestimate by approximately a factor 2. For
the relatively thin screening layer ε = 10−2 the LS model overestimates by ap-
proximately a factor 3 (or 300 %) and the NLS model by a factor 1.4 (or 40 %).

Figure 8.5 shows the same data as above, the kinetic energy predicted by the
LS and NLS models relative to that predicted by the FN model, as a function of
the applied dimensionless voltage α.

For voltages in the linear regime α < 0.5 the overestimate by the LS and
NLS models is approximately the same for all screening lengths. Again, notably,
for the relatively thin screening layer ε = 0.01 the overestimate is by a factor of
approximately 1.2 (or 20 %).

For voltages in the weakly non-linear and non-linear regimes α > 0.5 the
overestimate by the LS model increases rapidly with the voltage, and, remarkably,
apparently even faster so for thinner screening layers. The NLS overestimate
shows the same behavior for thin screening layers, and, notably, actually starts
to improve with voltage for thick screening layers.

The overestimates by the LS and NLS models are surprisingly large. For a
typical dimensionfull screening length of λD = 10 nm the dimensionless screening
length of ε = 102 corresponds to a metal-strip width of 2 µm comparable to
Refs. [199, 205, 206].
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Figure 8.5: As in Fig. 8.3 but for the de-
pendence on the voltage α for the screening
lengths ε = 0.0018, 0.01, and 0.1. Figure
adapted from our paper [202].

Figure 8.6: The dependence of
EFN

kin (ε, β)/EFN
kin (ε = 0, β = 0) on the in-

verse Debye length 1/ε for four different
electrode heights β = h/a = 0, 0.001,
0.01, and 0.1 for applied voltage α = 0.1.
EFN

kin (ε = 0, β = 0) is taken as ELS
kin(β = 0).

Figure adapted from our paper [202].

8.3.2 Finite height of the metal strip β > 0
Above we studied how the finite thickness of the screening layer leads to a sur-
prisingly large overestimate by common ICEO slip-velocity models. It is also
of interest to investigate how the finite thickness of the metal strip affects the
predicted ICEO flow. Experimentally, a metal strip can be fabricated by evapora-
tion techniques and it typically has a thickness on the order of 20 nm to 200 nm.
Relative to a metal-strip width of a ≈ 2 µm this leads to a dimensionless height
in the range of 10−2 < β < 10−1.

Figure 8.6 shows the relative kinetic energy EFN
kin (ε, β)/EFN

kin (ε = 0, β = 0) as a
function of the screening layer thickness for four metal-strip heights and for linear
voltage α = 0.1. Note that the kinetic energy for zero metal-strip height and an
infinitely thin screening layer corresponds to the LS model EFN

kin (ε = 0, β = 0) =
ELS

kin(β = 0). For zero height β = 0 the curve corresponds to those in Fig. 8.3.
For relatively small heights of the metal strip 10−3 < β < 10−2 the flow

becomes slightly weaker for thick screening layers ε > 10−2 and slightly stronger
for thin screening layers ε < 10−2.

For a relatively high metal strip β = 0.1 the flow is enhanced by approximately
a factor 5 for all screening lengths. We speculate that this enhancement may be
due to an increased electric field strength around the curved corner of the raised
metal strip as compared to the flat metal strip.

In conclusion, we have investigated the accuracy of two common electro-
osmotic slip velocity models in the context of ICEO. The slip models assume
an infinitely thin screening layer and we compare them in terms of the kinetic
energy in the flow to a numerical simulation fully resolving the boundary layer.
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As a function of the screening layer thickness and the applied voltage, we show
to which degree the slip models agrees with the full model.

The overestimation of the energy is surprisingly large in the linear voltage
regime for both models. For the linear voltage α = 0.05 the overestimation is
20 % for the relatively thin screening layer thickness λD/a = 10−2. The advanced
slip model takes surface conduction into account and performs better for higher
voltages where it even improves in the limit of thick screening layers. Still, for
thick screening layers and high voltages the linear slip model overestimates the
full model by a factor of 10 to 103.

Finally, we show that the effect of including a finite height of the metal strip
is a general amplification of the flow compared to a metal strip of zero height.



Chapter 9

Conclusion and outlook

Conclusion
We have successfully applied our model framework to different phenomena in
nanofluidics and ion-selective membranes. Our model framework consists of the
coupling of electrostatics, ionic transport, hydrodynamics, bulk solution equilib-
rium chemistry, and surface equilibrium chemistry.

First, we applied our model in bare and cyanosilane coated nanochannels,
and compared against two independent types of experiments. We adjusted the
low-value surface dissociation constant and the Stern layer capacitance, and we
obtained good agreement with the experimentally measured zeta potential and
capillary dark-to-bright length-ratio (interpretable as the surface charge density).

Second, we applied the model to 2D nanochannels and modeled the surface
chemistry by an effective boundary condition along the perimeter of the channel
cross-section. We used the previously found values for the adjustable parame-
ters, and obtained good agreement between the model and the experimentally
measured zeta potential and streaming current. In addition, we used the model
together with transient measurements of increasing streaming current to predict
dissolution rates in silica nanochannels.

Third, we used our model to predict a conductance minimum in nanochannels
filled with dilute electrolytes. Our model shows that hydronium is responsible
for the minimum, and it also shows that dissolved carbonic acid from atmo-
spheric CO2 plays an essential role in this regard. We performed experiments
that conformed with the model predictions. Furthermore, we showed that the
conductance minimum has been experimentally measured in several independent
studies in the literature.

Fourth, we applied our model framework to ion-selective membranes, and pre-
dicted a new mechanism for over-limiting current called current-induced mem-
brane discharge (CIMD). Our model shows that over-limiting currents can be due
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to a chemically induced loss of ion-selectivity even in the absence of fluid flow.
Our model even predicts that the extended space charge layer responsible for the
electro-osmotic instability is suppressed. CIMD is a novel and strong alternative
to the interpretation of over-limiting currents.

Finally, we digressed a bit from dynamic surface charge, and looked at the
effect of a finite Debye length in induced-charge electro-osmosis. We did this by
comparing two common slip-velocity models to a full boundary-layer resolving
model. The slip models are strictly only correct in the limit of a vanishing Debye
length, and we showed surprisingly large deviations to the full model even at
relatively thin screening layers.

All together, we have tested our model framework against diverse nanofluidic
phenomena. Our unified model framework has thus proved itself valuable and
should be developed and tested further. Specifically, our model has shown the
importance of considering the coupling of electrostatics, ionic transport, hydrody-
namics, bulk solution equilibrium chemistry, and surface equilibrium chemistry.

The combination of unified models with well-controlled experiments makes a
huge potential for discovering and explaining fundamental phenomena in nanoflu-
idics and its related scientific disciplines.

Outlook
In relation to over-limiting current through ion-selective membranes, we are cur-
rently pursuing a 1D model in which we account for the presence of microchannel
walls outside the membrane. This corresponds to have a porous media with large
pores, such as a porous frit, in connection with the fine porous membrane. With
dynamic surface charge, the model will be able to test the recent prediction of
over-limiting current due to microchannel surface charge conduction in this type
of system [154].

Moreover, we are planning to expand the 1D model to 2D to allow for non-
laminar fluid flow in the channel. We expect that as the microchannel height
increases, advection will start to become significant in the local region of ion-
depletion next to the membrane. For this to be numerically feasible, we have
developed a 1D-2D scheme where only the ion-depleted low-concentration thick-
screening-layer part of the microchannel is modeled in 2D. Thus, the scheme
dynamically and self-consistently determines the 1D-2D domain boundary.

It is also interesting to look at the transient response of dynamic charge sys-
tems. We have implicitly touched upon this in Chapter 4 in the transient setting
of capillary filling. However, in that work, the small transverse direction in the
cross-section of the channel leads to instant equilibrium. Instead, it would be in-
teresting to investigate the time scale for steady-state to occur and the transient
effect of (de-)protonation in the membrane. If the time scale for steady-state is
very long, this could lead to interesting transient effects such as the desalination
shocks observed in similar systems [48, 49, 51, 172].

Moreover, another possibility is to make a combined study of the over-limiting
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current in Chapter 7, the surface transport in nanochannels in Chapter 6, and the
multispecies transport at chemical equilibrium described in Section 2.6.1. This
would allow for a detailed investigation of the effect of absorbed CO2 in complex
electrodialysis systems with ion-depletion and strong pH variations.
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Appendix A

Main text appendices

A.1 Nanochannels: Surface-dependent thermo-
dynamic constants

(a) Nanochannel chip; mask design (top)
and photo (bottom).

(b) Example of AFM measured surface
roughness in the reservoir on a cyanosi-
lane coated chip.

(c) Example of DI water on bare silica
slide.

(d) Example of DI water on cyanosilane
coated silica slide.

Figure A.1: Figures adapted from our paper [76].
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Figure A.2: As in Fig. 4.12 but using the parameters for the case “Case 1”. Figure
adapted from our paper [76].

Figure A.3: Photo of the experimen-
tal setup described in Chapter 4 show-
ing the microscope with CCD camera at-
tached into its left side and the electri-
cal connections for the chip going into a
white, protective box placed on the top
stage with optical access from below (in-
verted microscopy). Figure adapted from
our paper [76].

Figure A.4: Benchmark of the model
described in Chapter 4 against that of
Janssen et al. [74] showing that our model
(blue circles) reproduces the result of the
Janssen model (red squares) when simpli-
fied to the Janssen-model and fitted to the
same experimental data (black crosses).
Figure adapted from our paper [76].
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Figure A.5: Parametric study of the dependence of Ld/Lfl, φd, σ0, and σd (top “row”) on the ionic strength I
and variations in C1, C2, pKSiOK, pKSiOH2

, pKSiO, and Γtot (leftmost “column”) around the base state {1Fm−2,
0.2Fm−2 ,−0.06, −1.9, 6.8, 4.6m−2} in the model described in Chapter 4. Figures adapted from our paper [76].
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Figure A.6: The dimensionless governing equations and boundary conditions. Figure
adapted from our paper [202].

A.2 ICEO: finite Debye-length effects
A.2.1 Strongly non-linear regime
At large driving voltages there is strong depletion of the ions on the metal strip
with the concentration being very small which is a problem numerically due to
round-off errors. We overcome this issue by transforming logarithmically the
concentrations to new (computational) fields c̄± using the relations

c̄± = log
(
c±
c0

)
, (A.1a)

c± = c0 exp (c̄±) . (A.1b)

Again, to exploit the symmetry we define the fields c̄ = c̄++c̄− and ρ̄ = c̄+−c̄−
and the transformed equations become

∇̃2c̄ = Pe ṽ · ∇̃c̄− 1
2

[(
∇̃c̄

)2
+
(
∇̃ρ̄

)2
]
− ∇̃φ̃ · ∇̃ρ̄, (A.2a)

∇̃2
(
ρ̄+ 2 φ̃

)
= Pe ṽ · ∇̃ρ̄− ∇̃c̄ · ∇̃ρ̄− ∇̃φ̃ · ∇̃c̄, (A.2b)

∇̃2φ̃ = − 1
ε2

exp
(
c̄

2

)
sinh

(
ρ̄

2

)
, (A.2c)

Re
(
ṽ · ∇̃

)
ṽ = −∇̃p̃+ ∇̃2ṽ − 1

ε2α2 exp
(
c̄

2

)
sinh

(
ρ̄

2

)
∇̃φ̃, (A.2d)

while the continuity equation (8.6a) remains the same. The transformed equa-
tions and boundary conditions are summarized in A.6.

A.2.2 Weak-form implementation
We implement the reformulated equations (A.2) using second order Lagrange
elements for all field variables, except the pressure for which we use first order
Lagrange elements.
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The Helmholtz–Smoluchowski slip condition is a one-way coupling from the
electrical potential to the fluid velocity. Numerically, we account for the one-way
coupling by making an asymmetric implementation where the reaction force is
applied entirely to the fluid field test function. One way to do this is to explicitly
introduce the reaction force, here the tangential viscous stress, on the metal strip
as Lagrange multipliers fi,

fi = σijnj. (A.3)

We follow the strong-to-weak reformulation procedure in Section 3.2 and ob-
tain for the Navier–Stokes equation after moving the divergence of the viscous
stress tensor to the boundary (here tilde refers to test functions)

ˆ
∂Ω
ṽiσijnj ds. (A.4)

We then introduce the Lagrange multiplier in Eq. (A.3) on the part of the
boundary ∂Ωms that constitute the metal strip and obtain

ˆ
∂Ωms

ṽiσijnj ds =
ˆ
∂Ωms

[
ṽifi + f̃i (vi − vhs,i)

]
ds, (A.5)

which illustrates the weak form implementation of the Helmholtz–Smoluchowski
slip boundary condition.

The implementation of the current-balance condition in Eq. (8.17) ni∂iφ =
−∂s (Du∂sφ) is done by considering the metal-strip boundary after the divergence
of the electric field has been moved from the bulk to the boundary

ˆ
∂Ωms

φ̃ni∂iφ ds = −
ˆ
∂Ωms

φ̃ ∂s (Du∂sφ) ds

= −[φ̃ Du ∂sφ]x=+a
x=−a +

ˆ
∂Ωms

(
∂sφ̃

)
(Du∂sφ) ds, (A.6)

where it is straight forward to employ the condition of zero tangential current at
the edge in Eq. (8.19).

We made sure the numerical simulation were sufficiently converged using a
mesh adaptation routing. This routine calculates the problem several times for
the same parameters, each time refining the mesh based on an error estimate such
that regions with the highest error are refined the most.
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Figure A.7: The finite element mesh in
the right half of the chamber used for nu-
merical simulation.

Figure A.8: The convergence of the ki-
netic energy in the chamber with increas-
ing degrees of freedom (DOFs).

Figure A.7 shows the mesh after some iterations of the mesh adaptation rou-
tine. Note the very fine mesh on the metal strip and especially around its corner.
Figure A.8 shows the convergence of the kinetic energy with increasing degrees of
freedom (DOFs). We quantify relative differences down to 10−3 and we therefore
made sure that all solutions were converged to within 10−5. All simulations ended
with more than 106 DOFs.

A.3 Matlab scripts
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−−
−−
−−
−−
−−
−−
−−
−

27 28
%
D
e
f
i
n
e
c
o
n
s
t
a
n
t
s

29
F
=
9
.
6
5
E
4
;
%
F
a
r
a
d
a
y
'
s
c
o
n
s
t
.
[
C
/
m
o
l
]

30
R
m
u
=
8
.
3
1
;
%
U
n
i
v
e
r
s
a
l
g
a
s
c
o
n
s
t
.
[
J
/
m
o
l
*
K
]

31
T
e
m
p
=
2
9
5
;
%
T
e
m
p
e
r
a
t
u
r
e
[
K
]

32
K
w
=
1
E
−
1
4
;
%
W
a
t
e
r
e
q
u
i
l
i
b
r
i
u
m
c
o
n
s
t
a
n
t

33
m
u
H
=
3
6
2
E−

9 /
F
;
%
M
o
b
i
l
i
t
y
o
f
H
y
d
r
o
n
i
u
m

%
[
m
^
2
/
s
*
V
]
/
F
−−

>
[
m
o
l
*
s
/
K
g
]

34
m
u
O
H
=
2
0
5
E−

9 /
F
;
%
M
o
b
i
l
i
t
y
o
f
H
y
d
r
o
x
i
d
e

%
[
m
^
2
/
s
*
V
]
/
F
−−

>
[
m
o
l
*
s
/
K
g
]

35
m
e
t
2
l
i
t
=
1
0
0
0
;

36 37
%
C
a
l
l
E
q
u
i
l
i
b
r
i
u
m
S
o
l
u
t
i
o
n
r
o
u
t
i
n
e
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38

[
c
H
,
z
M
a
t
,
m
u
M
a
t
,
m
u
M
a
t
2
,
m
u
E
f
f
V
e
c
,
c
i
z
M
a
t
]
=
S
o
l
v
e
E
q
u
i
l
i
b
r
i
u
m
(
I
N
P
,
c
T
o
t
)
;

39
p
H
=
−
l
o
g
1
0
(
c
H
)
;
%
o
u
t
p
u
t
p
H

40 41
%
l
o
o
p
o
n
a
l
l
s
p
e
c
i
e
s

42
f
o
r
i
j
=
1
:
s
i
z
e
(
c
i
z
M
a
t
,
1
)

43
%
C
r
e
a
t
e
v
e
c
t
o
r
t
o
b
e
d
i
s
p
l
a
y
e
d

44
D
i
s
p
V
e
c
(
1
:
2
:
2
*
s
i
z
e
(
c
i
z
M
a
t
,
2
)−

1
)
=
z
M
a
t
(
i
j
,
:
)
;
%
E
v
e
r
y
o
d
d
e
n
t
r
y
w
i
l
l
s
h
o
w
t
h
e
v
a
l
e
n
c
e

45
D
i
s
p
V
e
c
(
2
:
2
:
2
*
s
i
z
e
(
c
i
z
M
a
t
,
2
)
)
=
c
i
z
M
a
t
(
i
j
,
:
)
;
%
E
v
e
r
y
e
v
e
n
e
n
t
r
y
w
i
l
l
s
h
o
w
t
h
e
c
o
n
c
e
n
t
r
a
t
i
o
n
.
.
.

c
o
r
r
e
s
p
o
n
d
i
n
g
t
o
t
h
e
v
a
l
e
n
c
e

46
e
n
d
%
f
o
r
i
j

47 48
I
s
=
s
u
m
(
d
i
a
g
(
z
M
a
t
.
^
2
*
c
i
z
M
a
t
'
)
)
;
%
i
o
n
i
c
s
t
r
e
n
g
t
h

49
I
s
=
(
I
s
+
c
H
+
K
w
/
c
H
)
/
2
;
%
a
d
d
c
o
n
t
r
i
b
u
t
i
o
n
f
r
o
m
p
r
o
t
o
n
s
a
n
d
h
y
d
r
o
x
i
d
e
i
o
n
s

50 51
%
c
a
l
c
u
l
a
t
e
c
o
n
d
u
c
t
i
v
i
t
y
b
a
s
e
d
o
n
i
o
n
i
c
m
o
b
i
l
i
t
i
e
s

52
s
i
g
m
a
=
0
;

53
f
o
r
i
i
=
1
:
s
i
z
e
(
c
i
z
M
a
t
,
1
)

54
s
i
g
m
a
=
s
i
g
m
a
+
s
u
m
(
a
b
s
(
z
M
a
t
(
i
i
,
:
)
)
.
*
m
u
M
a
t
2
(
i
i
,
:
)
.
*
c
i
z
M
a
t
(
i
i
,
:
)
*
m
e
t
2
l
i
t
)
*
F
;

55
e
n
d
%
f
o
r
i
i

56 57
%−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−

58
f
u
n
c
t
i
o
n
[
c
H
,
z
M
a
t
,
m
u
M
a
t
,
m
u
M
a
t
2
,
m
u
E
f
f
V
e
c
,
c
i
z
M
a
t
]
=
S
o
l
v
e
E
q
u
i
l
i
b
r
i
u
m
(
I
N
P
,
c
T
o
t
)

59
g
l
o
b
a
l
F
R
m
u
N
s
p
e
c
i
e
s
T
e
m
p
K
w

60 61
%
I
N
P
U
T
:
I
N
P
−

S
t
r
u
c
t
u
r
e
,
C
o
n
t
a
i
n
i
n
g
t
h
e
v
a
l
e
n
c
e
,
m
o
b
i
l
i
t
y
a
n
d
p
K
a
o
f
e
a
c
h
s
p
e
c
i
e
s

62
%

c
T
o
t
−

V
e
c
o
t
r
,
c
o
n
t
a
i
n
i
n
g
t
h
e
c
o
n
c
e
n
t
r
a
t
i
o
n
[
m
o
l
/
l
i
t
]
o
f
e
a
c
h
s
p
e
c
i
e
s

63
%
O
U
T
P
U
T
:
c
H
−

S
c
a
l
a
r
,
c
o
n
c
e
n
t
r
a
t
i
o
n
o
f
h
y
d
r
o
n
i
u
m
i
o
n
s

(
p
H
=
−
l
o
g
1
0
(
c
H
)
)

64
%

z
M
a
t
−

M
a
t
r
i
x
,
e
v
e
r
y
r
o
w
c
o
r
r
e
s
p
o
n
d
s
t
o
a
d
i
f
r
e
r
n
t
s
p
e
c
i
e
s
a
n
d
c
o
n
t
a
i
n
s
v
a
l
e
n
c
e
.
.
.

v
a
l
u
e
s
f
o
r
t
h
a
t
s
p
e
c
i
e
s

65
%

m
u
M
a
t
−

M
a
t
r
i
x
,
e
v
e
r
y
r
o
w
c
o
r
r
e
s
p
o
n
d
s
t
o
a
d
i
f
r
e
r
n
t
s
p
e
c
i
e
s
a
n
d
c
o
n
t
a
i
n
s
m
o
b
i
l
i
t
y
.
.
.

v
a
l
u
e
s
f
o
r
t
h
a
t
s
p
e
c
i
e
s

66
%

m
u
E
f
f
−

V
e
c
t
o
r
,
e
f
f
e
c
t
i
v
e
m
o
b
i
l
i
t
y
v
a
l
u
e
s
f
o
r
a
l
l
s
p
e
c
i
e
s

67
%

c
i
z
C
u
b
e
−

M
a
t
r
i
x
,
c
o
n
c
e
n
t
r
a
t
i
o
n
v
a
l
u
e
s
.
E
v
e
r
y
r
o
w
c
o
r
r
e
p
o
n
d
s
t
o
a
d
i
f
f
e
r
e
n
t
s
p
e
c
i
e
s
.

68
%

e
v
e
r
y
c
o
l
u
m
n
s
c
o
r
r
e
s
p
o
n
d
s
t
o
a
d
i
f
f
e
r
n
t
v
a
l
e
n
c
e
w
i
t
h
i
n
t
h
a
t
s
p
e
c
i
e
s
.

69 70
N
s
p
e
c
i
e
s
=
s
i
z
e
(
I
N
P
,
1
)
;

71 72
%
P
R
E
P
A
R
E
L
M
a
t
r
i
x

73
%−
−−
−−
−−
−−
−−
−−
−−
−−
−

74
%
C
a
l
c
u
l
a
t
e
t
h
e
n
u
m
b
e
r
o
f
c
o
l
u
m
n
s
r
e
q
u
i
r
e
d
f
o
r
t
h
e
m
a
t
r
i
x
.

75
%
t
h
i
s
i
s
d
e
t
e
r
m
i
n
e
d
b
y
t
h
e
m
a
x
i
m
u
m
v
a
l
u
e
o
f
(
p
_
i
−

n
_
i
)
f
o
r
a
l
l
s
p
e
c
i
e
s

76
%
p
_
i
−

n
_
i
=
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
m
o
s
t
p
o
s
i
t
i
v
e
a
n
d
m
o
s
t
n
e
g
a
t
i
v
e
v
a
l
e
n
c
e
.

77
M
a
x
C
o
l=
−
I
n
f
;

78
f
o
r
j
=
1
:
s
i
z
e
(
I
N
P
,
1
)

79
M
a
x
C
o
l
=
m
a
x
(
[
M
a
x
C
o
l
,
m
a
x
(
I
N
P
{
j
}
(
1
:
3
:
e
n
d
)
)−
m
i
n
(
I
N
P
{
j
}
(
1
:
3
:
e
n
d
)
)
+
1
]
)
;

80
e
n
d

81
%
I
n
i
t
i
a
l
i
z
e
m
a
t
r
i
c
e
s
t
o
z
e
r
o

82
L
M
a
t
=
z
e
r
o
s
(
s
i
z
e
(
I
N
P
,
1
)
,
M
a
x
C
o
l
)
;

83
z
M
a
t
=
L
M
a
t
;
m
u
M
a
t
=
L
M
a
t
;
m
u
M
a
t
2
=
L
M
a
t
;
K
a
M
a
t
=
L
M
a
t
;
D
M
a
t
=
L
M
a
t
;

84 85
%
L
o
o
p
o
n
s
p
e
c
i
e
s

86
f
o
r
j
=
1
:
N
s
p
e
c
i
e
s

87
z
L
i
s
t
=
I
N
P
{
j
}
(
1
:
3
:
e
n
d
)
;
%
G
e
t
l
i
s
t
o
f
v
a
l
e
n
c
e
s

88
m
u
L
i
s
t
=
I
N
P
{
j
}
(
2
:
3
:
e
n
d
)
.
/
(
F
*
a
b
s
(
z
L
i
s
t
)
)
;
%
G
e
t
l
i
s
t
o
f
n
o
r
m
a
l
i
z
e
d
m
o
b
i
l
i
t
i
e
s

89
m
u
L
i
s
t
2
=
I
N
P
{
j
}
(
2
:
3
:
e
n
d
)
;
%
G
e
t
n
o
r
m
a
l
m
o
b
i
l
i
t
i
e
s

90
p
K
a
L
i
s
t
=
I
N
P
{
j
}
(
3
:
3
:
e
n
d
)
;
%
G
e
t
l
i
s
t
o
f
p
K
a

91
K
a
L
i
s
t
=
1
0
.
^
(−

p
K
a
L
i
s
t
)
;
%
C
r
e
a
t
e
l
i
s
t
o
f
K
a

92
D
L
i
s
t
=
R
m
u
*
T
e
m
p
*
m
u
L
i
s
t
;
%
C
r
e
a
l
e
l
i
s
t
o
f
d
i
f
f
u
s
i
v
i
t
i
e
s
u
s
i
n
g
N
e
r
n
s
t−
E
i
n
s
t
e
i
n
r
e
l
a
t
i
o
n

93 94
[
z
L
i
s
t
,
I
n
d
e
x
]
=
s
o
r
t
(
z
L
i
s
t
)
;
%
S
o
r
t
t
h
e
v
a
l
e
n
c
e
i
n
i
n
c
r
e
a
s
i
n
g
o
r
d
e
r
,
a
n
d
g
e
t
i
n
d
i
c
e
s

95
K
a
L
i
s
t
=
K
a
L
i
s
t
(
I
n
d
e
x
)
;
%
U
s
e
i
n
d
i
c
e
s
t
o
s
o
r
t
t
h
e
o
t
h
e
r
l
i
s
t
i
n
a
c
o
n
s
i
s
t
e
n
t
o
r
d
e
r

96
m
u
L
i
s
t
=
m
u
L
i
s
t
(
I
n
d
e
x
)
;

97
m
u
L
i
s
t
2
=
m
u
L
i
s
t
2
(
I
n
d
e
x
)
;

98
D
L
i
s
t
=
D
L
i
s
t
(
I
n
d
e
x
)
;

99 10
0

I
p
1
=
f
i
n
d
(
z
L
i
s
t
=
=
1
)
;

I
m
1
=
f
i
n
d
(
z
L
i
s
t
=
=−

1
)
;
%
F
i
n
d
i
n
d
i
c
e
s
w
h
e
r
e
t
h
e
v
a
l
e
n
c
e
v
a
l
u
e
i
s
+
1

.
.
.

a
n
d
−
1
(
a
t
l
e
a
s
t
o
n
e
o
f
t
h
e
s
e
v
a
l
e
n
c
e
s
m
u
s
t
a
l
w
a
y
s
f
o
r
a
n
y
s
p
e
c
i
e
s
u
s
e
d
)
.

10
1

z
L
i
s
t

=
[
z
L
i
s
t
(
1
:
I
m
1
)
,
0
,
z
L
i
s
t
(
I
p
1
:
e
n
d
)
]
;
%
A
d
d
t
h
e
n
e
u
t
r
a
l
s
t
a
t
e
t
o
t
h
e
l
i
s
t
o
f
v
a
l
e
n
c
e
,
.
.
.

b
e
t
w
e
e
n
n
e
g
a
t
i
v
e
a
n
d
p
o
s
i
t
i
v
e
v
a
l
u
e
s

10
2

m
u
L
i
s
t
=
[
m
u
L
i
s
t
(
1
:
I
m
1
)
,
0
,
m
u
L
i
s
t
(
I
p
1
:
e
n
d
)
]
;
%
A
d
d
t
h
e
v
a
l
u
e
o
f
m
o
b
i
l
i
t
y
c
o
r
r
e
s
p
o
n
d
i
n
g
t
o
.
.
.

t
h
e
n
e
u
t
r
a
l
s
t
a
t
e
(
z
e
r
o
)

10
3

m
u
L
i
s
t
2
=
[
m
u
L
i
s
t
2
(
1
:
I
m
1
)
,
0
,
m
u
L
i
s
t
2
(
I
p
1
:
e
n
d
)
]
;
%
A
d
d
t
h
e
v
a
l
u
e
o
f
m
o
b
i
l
i
t
y
c
o
r
r
e
s
p
o
n
d
i
n
g
t
o
.
.
.

t
h
e
n
e
u
t
r
a
l
s
t
a
t
e
(
z
e
r
o
)

10
4

D
L
i
s
t

=
[
D
L
i
s
t
(
1
:
I
m
1
)
,
m
e
a
n
(
D
L
i
s
t
)
,
D
L
i
s
t
(
I
p
1
:
e
n
d
)
]
;
%
A
s
s
i
g
n
t
h
e
n
e
u
t
r
a
l
s
t
a
t
e
a
.
.
.

d
i
f
f
u
s
i
v
i
t
y
w
h
i
c
h
i
s
t
h
e
a
v
e
r
a
g
e
o
f
a
l
l
o
t
h
e
r
d
i
f
f
u
s
i
v
i
t
i
e
s

10
5

K
a
L
i
s
t
=
[
K
a
L
i
s
t
(
1
:
I
m
1
)
,
1
,
K
a
L
i
s
t
(
I
p
1
:
e
n
d
)
]
;
%
1
a
d
d
e
d
t
o
t
h
e
l
i
s
t
o
f
K
a
v
a
l
u
e
s
f
o
r
m
a
t
h
.
.
.

r
e
a
s
o
n
s
(
s
e
e
f
o
r
m
u
l
a
t
i
o
n
f
o
r
'
L
'
m
a
t
r
i
x
)

10
6

10
7

z
M
a
t
(
j
,
1
:
l
e
n
g
t
h
(
z
L
i
s
t
)
)
=
z
L
i
s
t
;
%
P
u
t
a
l
l
l
i
s
t
s
i
n
t
o
c
o
r
r
e
s
p
o
n
d
i
n
g
m
a
t
r
i
c
e
s
.

10
8

m
u
M
a
t
(
j
,
1
:
l
e
n
g
t
h
(
m
u
L
i
s
t
)
)
=
m
u
L
i
s
t
;
%
E
a
c
h
r
o
w
i
n
t
h
e
m
a
t
r
i
x
c
o
r
r
e
s
p
o
n
d
s
t
o
a
d
i
f
f
e
r
e
n
t
s
p
e
c
i
e
s

10
9

m
u
M
a
t
2
(
j
,
1
:
l
e
n
g
t
h
(
m
u
L
i
s
t
2
)
)
=
m
u
L
i
s
t
2
;
%
E
a
c
h
r
o
w
i
n
t
h
e
m
a
t
r
i
x
c
o
r
r
e
s
p
o
n
d
s
t
o
a
d
i
f
f
e
r
e
n
t
.
.
.

s
p
e
c
i
e
s

11
0

K
a
M
a
t
(
j
,
1
:
l
e
n
g
t
h
(
K
a
L
i
s
t
)
)
=
K
a
L
i
s
t
;

11
1

D
M
a
t
(
j
,
1
:
l
e
n
g
t
h
(
D
L
i
s
t
)
)
=
D
L
i
s
t
;

11
2

11
3

z
L
i
s
t
A
r
r
a
n
g
e
d
{
j
}
=
z
L
i
s
t
;

11
4

%
G
e
t
m
i
n
i
m
u
m
a
n
d
m
a
x
i
m
u
m
v
a
l
e
n
c
e
s
f
o
r
t
h
i
s
s
p
e
c
i
e
s

11
5

%
a
n
d
c
o
n
s
t
r
u
c
t
t
h
e
m
a
t
r
i
x
L

11
6

n
j
=
m
i
n
(
z
L
i
s
t
)
;

p
j
=
m
a
x
(
z
L
i
s
t
)
;

11
7

f
o
r
z
=
z
L
i
s
t

11
8

i
f
z
<
0

11
9

L
M
a
t
(
j
,
z−
n
j
+
1
)
=
p
r
o
d
(
K
a
L
i
s
t
(
z−
n
j
+
1
:−

n
j
)
)
;

12
0

e
l
s
e
i
f
z
>
0

12
1

L
M
a
t
(
j
,
z−
n
j
+
1
)
=
1
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a b s t r a c t

We present a combined theoretical and experimental analysis of the solid–liquid interface of fused-silica
nanofabricated channels with and without a hydrophilic 3-cyanopropyldimethylchlorosilane (cyanosi-
lane) coating. We develop a model that relaxes the assumption that the surface parameters C1, C2, and
pK+ are constant and independent of surface composition. Our theoretical model consists of three parts:
(i) a chemical equilibrium model of the bare or coated wall, (ii) a chemical equilibrium model of the buf-
fered bulk electrolyte, and (iii) a self-consistent Gouy–Chapman–Stern triple-layer model of the electro-
chemical double layer coupling these two equilibrium models. To validate our model, we used both pH-
sensitive dye-based capillary filling experiments as well as electro-osmotic current-monitoring measure-
ments. Using our model we predict the dependence of f potential, surface charge density, and capillary
filling length ratio on ionic strength for different surface compositions, which can be difficult to achieve
otherwise.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Understanding silica surfaces is important especially in the field
of micro- and nanofluidics due to the emerging applications in
pharmaceuticals, environmental health and safety, and bioanalyti-
cal systems [1–3]. Additionally, silica surfaces are scientifically of
great interest, displaying rich phenomena because of the coupling
of surface chemistry, electrokinetics, and fluid dynamics bridging
molecular and continuum macroscopic length scales. As a result,
new properties are observed which are not present in the bulk,
e.g. vastly increased viscosity near solid surfaces, changes in ther-
modynamic properties, and changes in chemical reactivity at the
liquid–solid interface [4,5]. The solid–liquid interface is therefore
a subject of general interest; it is here where most of the unique
inherent physics of nanofluidic systems is found.

Recently, due to the advances in nanofabrication technology,
there has been an increasing number of experimental studies of
the solid–liquid interface using nanochannels [6–11]. Though
much work has been dedicated towards understanding how the
electric double layer influences the flow of electrolytes at the nano-
scale [12–14], there are still large quantitative discrepancies be-
tween theoretical modeling and experimental observations
[5,15]. One of the complicating factors with studying nanofluidic

transport processes is the influence from external forces typically
used to drive transport at the nanoscale [2,4,5]. Therefore, capillary
filling is an ideal platform to study intrinsic electrochemical reac-
tions between the channel surface and the advancing electrolyte
[9,16–18].

Janssen and co-workers [9] investigated the deprotonation in
silica nanochannels during capillary filling. The authors used the
pH-sensitive fluorescent dye fluorescein as an indicator of the local
pH of the electrolyte in the channel during the transient capillary
filling. Two regions were observed: (i) one region closest to the
nanochannel entrance of full fluorescence signal and hence with
the original pH (above the point of fluorescent quenching), and
(ii) a dark region closest to the meniscus of no fluorescence signal
and therefore with a pH equal to that of the point of zero charge
pHpzc of the surface (below the point of fluorescent quenching).
The ratio of the extent of these two regions combined with knowl-
edge of the composition of the buffer indicated the amount of pro-
tons that were released from the wall, which was found to be in the
range 0.1–1 protons per nm2. These values were then fitted to a
theoretical model as a function of ionic strength and bulk pH, using
electrolytes with different amounts of KCl and Tris–HCl buffer.
Good agreement between theory and experiment was found by fit-
ting a Stern-layer capacitance of 2.3 F m�2.

Although this capillary filling study has provided valuable in-
sight regarding the solid–liquid interface of bare silica, different
surface coatings have yet to be investigated, and a general theoret-
ical model of the interface is still missing. Therefore the aim of this

0021-9797/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcis.2010.09.025
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work is to extend the current model to allow surface-related
parameters, such as Stern-layer capacitance Cs and the surface
equilibrium pKa constants to vary with the composition of the
solid–liquid interface as sketched in Fig. 1. We quantify these
dependencies combining an extended version of current theoreti-
cal modeling and capillary filling experiments in bare and coated
silica nanochannels.

The paper is organized as follows: in Section 2 we present a
description of our solid–liquid interface model. Next, we introduce
the equations that define the model. In Section 3 we list the chem-
icals used in our study and present the design, fabrication, and
characterization of the silica nanochannels. In Section 4 we de-
scribe the experimental setup and the experiments performed to
validate our model, as well as the determination of the parameters
used as input in our model. In Section 5 we show the results of our
combined experimental and theoretical investigation. Finally, in
Sections 6 and 7 we discuss our findings and summarize our
conclusions.

2. Theoretical modeling

The basis of our theoretical model is the Gouy–Chapman–Stern
theory [19,9] combined with the more elaborate triple-layer model
[20–23] of the solid–liquid interface. This complexity of modeling
is necessary to simultaneously describe the observations for bare
and cyanosilane-coated silica nanochannels. Our theoretical model
involves three elements: (i) chemical equilibrium of the bulk elec-
trolyte in terms of ionic concentrations and equilibrium pKa con-
stants [24]; (ii) electrochemical equilibrium of the proton and
metal adsorption at the surface in terms of electrostatics, concen-
tration of adsorption sites and ions, and equilibrium pKa constants
[20,21,23]; and (iii) electrochemical coupling between bulk and
surface in terms of the Poisson–Boltzmann equation. An important
point in our work is that we let the surface capacitances and the

surface pKa constants vary self-consistently with the chemical
composition of the wall.

2.1. Schematic description of the model

We model the solid-electrolyte interface as consisting of three
different interfacial layers, as sketched in Fig. 1. All quantities have
been averaged on planes parallel to the silica wall, which is as-
sumed flat on the microscopic length scale. The parameters of
our model are listed in Table 1.

The first interfacial layer (subscript 0) closest to the wall con-
sists of surface silanol sites being either neutral SiOH, deproto-
nated SiO�, or protonated SiOHþ2 , which together give rise to a
surface charge density r0. The electric potential here is denoted /0.

The second interfacial layer (subscript b) is comprised of ad-
sorbed metallic cations, K+ in this particular study. These cations
produce a surface charge density rb at the plane defined by their
mean position when adsorbed onto SiO�. The electric potential
here is denoted /b. Adsorption of anions is neglected because the
bulk pH values studied in this work are always higher than pHpzc.

The third interfacial layer (subscript d) is the diffuse layer of
mobile ions screening the surface charge densities r0 and rb over
a distance given by the Debye–Hückel screening length kD, which
in this work ranges from approximately 0.3–2 nm. When integrat-
ing the charge density of the diffuse layer along the direction per-
pendicular to the interface, a resulting surface charge density rd

Fig. 1. Sketch of the solid-electrolyte interface showing the atoms/ions as hard
spheres of sizes proportional to their hydrated or covalent radii (see Supporting
information Sec. S2). To the left are the five possible surface site complexes: (i)
SiOH, (ii) SiOK, (iii) SiOHþ2 , (iv) SiC6H12NSi (cyanosilane), and (v) SiO�. In between
the solid SiO2-wall and the charge neutral bulk there are three interfacial layers
with the following surface charges: r0, the layer containing the reactive surface
groups; rb, the layer containing adsorbed K+ and cyanosilanes; and rd, the diffuse
screening layer. Also indicated on the figure is a graph of the electric potential /
(red full curve) and the three interfacial potentials /0, /b, and /d. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Input and output parameters used in our model.

Quantity Symbol Unit

Input parameters, literature
Viscosity g Pa s
Surface tension c N m�1

Relative permittivity, electrolyte er = 78
Ionic valences z
Chemical family X
Chemical family member (ion) Xz

Valence minimum/maximum nX/pX

Equilibrium constants for bulk pKX,z

Diffusion constants D m2 s�1

Electrophoretic mobilities l m2 s�1V�1

Total surface site density Ctot nm�2

pK�: SiOH� SiO� þ Hþ0 pK�
pKK: SiO� þ Kþb � SiOK pKK

Input parameters, measured
Channel dimensions h,w,L m
Contact angle h
Temperature T K
Fluorescent, dark zone-length Lfl, Ld m
Meniscus position Lfl + Ld m
Applied potential difference DV V
Conductivity rel S m�1

pH of bulk pHb

Input parameters, fitting
Inner-layer Stern capacitance C1 F m�2

Outer-layer Stern capacitance C2 F m�2

pK+: SiOHþ2 � SiOHþ Hþ0 pK+

Output variables, bulk
Bulk concentrations

Molarity cX,z M
Number density nX,z m�3

Ionic strength I M
Debye–Hückel screening length kD m
Titration concentration of H+ Bs M

Output variables, surface
pH of point of zero charge pHpzc

Electric potentials /0, /b, /d V
Surface charge densities r0, rb, rd C m�2

Surface site densities CSiO� , CSiOH m�2

CSiOHþ2
, CK m�2
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and corresponding potential drop /d are obtained. The electrical
potential is defined to be zero outside the diffuse part of the double
layer.

2.2. Bulk electrolyte chemistry

The equilibrium composition of the electrolyte is calculated
using the scheme presented by Persat and co-workers [24]. This
scheme builds on mass conservation, electroneutrality, and chem-
ical equilibrium theory, and it unifies the entire system of equa-
tions for a given buffer in a systematic way that facilitates
efficient numerical implementation. In our implementation of the
scheme, X denotes a family of chemical species, with Xz being a
particular member having valence charge z. Denoting the mini-
mum and maximum valences within a family by nX and pX, respec-
tively, the chemical equilibrium reactions for the family X are

XpX
�XpX�1 þHþ; pKX;pX�1; ð1aÞ

XpX�1
�XpX�2 þHþ; pKX;pX�2; ð1bÞ

. . .

XnXþ1
�XnX þHþ; pKX;nX ; ð1cÞ

where each pKX,z is an equilibrium constant. For instance, for phos-
phoric acid the family is X0 ¼ H3PO4; X�1 ¼ H2PO1�

4 ; X�2 ¼ HPO2�
4 ,

and X�3 ¼ PO3�
4 with pX = 0 and nX = �3. In terms of ionic concentra-

tions in the bulk, each pKX,z can be expressed as

pKX;z ¼ �log10
cX;zcH

cX;zþ1cref

� �
; ð2Þ

where cX,z is the concentration of species X in valence state z, cH is
the concentration of protons, and cref = 1 M is a reference
concentration.

Mass conservation within each family implies that

cX ¼
XpX

z¼nX

cX;z; ð3Þ

where cX equals the total analytical concentration, and electroneu-
trality requires

X
X

XpX

z¼nX

zcX;z ¼ 0: ð4Þ

Note that this expression is only valid outside the diffuse layer. Fi-
nally, the important auto-dissociation reaction of water is

H2O� OH� þHþ; pKw ¼ 14; ð5Þ

and bases are formally modeled as deprotonation reactions, e.g. the
base XOH is assigned the reaction [24]

Xþ þ 1
2

H2;g � XþHþ; ð6Þ

with the pKa assigned to be 14 to ensure that the equilibrium state
is complete dissociation. The addition of a salt is modeled as the
addition of the equivalent amounts of corresponding acid and base.
For example, the salt KH2PO4 is modeled as the addition of the base
KOH and the acid H3PO4. The actual chemicals used in our experi-
ments (see Section 3) are modeled as: (i) phosphoric acid, (ii) dihy-
drogen fluorescein, (iii) potassium hydroxide, and (iv) sodium
hydroxide, as listed in Table 2.

From Eqs. (2)–(4) an equation for the concentration of protons
cH can be derived and solved through numerical iteration using
the Matlab script developed in the group of Santiago [24]. Conse-
quently, knowing the pH value a priori, the ionic concentrations
cX,z can be calculated directly. This enables us to find the bulk

concentration of protons Bs required for the titration from the ini-
tial pH in the bulk pHb to pHpzc as

Bs ¼
X

X

XpX

z¼nX

z cpzc
X;z � cb

X;z

� �
: ð7Þ

This quantity is necessary for relating the experimentally observed
capillary filling length ratios to the model.

Finally, the bulk electrolyte is characterized by the ionic
strength I and the electrical conductivity rel,

I ¼ 1
2

X
X

XpX

z¼nX

z2cX;z; ð8aÞ

rel ¼ e
X

X

XpX

z¼nX

zlX;znX;z; ð8bÞ

where nX,z = 103 L m�3 NA cX,z is the bulk ion number concentration
(m�3), NA being the Avogadro constant. Parameter values used in
our model are listed in Table 2.

2.3. Surface chemistry

The equations for the surface chemistry involve surface reac-
tions, surface sites, site densities, and surface equilibrium con-
stants. Here we summarize the well established surface chemical
equilibrium model involving singly coordinated surface silanol
sites [29,30,20,21]

SiOHþ2 � SiOHþHþ0 ; pKþ; ð9aÞ
SiOH� SiO� þHþ0 ; pK�; ð9bÞ

where SiOHþ2 , SiOH, and SiO� are the protonated, neutral, and
deprotonated surface hydroxyl groups, Hþ0 is a proton in solution

Table 2
List of chemical families X used in this work, including formulae, valences z,
equilibrium constants pKX,z, diffusion constants DX,z, and electrophoretic mobilities
lX,z. For z > 0 and z < 0 the pKX,z value pertains to the reaction z� z � 1 and z� z + 1,
respectively.

X Formula z pKX,z
a DX;z

b (10�9 m2/s) lX;z
b (10�9 T�1)

Phosphoric
acid H3PO4 0

�1 2.15 0.959 �37.3
�2 7.21 0.759 �59.1
�3 12.33 0.824 �96.2

Fluoresein C20H12O5 1 2.22c 0.57d 22.0d

0
�1 4.34c 0.64e �25.0e

�2 6.68c 0.502e �39.5e

Potassium
hydroxide KOH 1 14.0 1.96 76.2

0
Sodium
hydroxide NaOH 1 14.0 1.33 51.9

0
Water H2O 0 9.311f 362.4f

�1 14.0 5.273f �205.2f

Silanol SiOH 1 �1.9g

0
�1 6.8g

Ion pair SiOK 0
�1 �0.06g

a For acids pKa values are at infinite dilution and at 25 �C from Ref. [24] unless
otherwise stated.

b DX,z values and lX,z values at infinite dilution at 25�C from Ref. [25] unless
otherwise stated.

c pKa values at infinite dilution and at 25 �C from Ref. [26].
d Estimate.
e lX,z values from Ref. [24] with DX,z values calculated from these using

DX,z = lX,zkBT/(ze).
f Here z = 0 represents H+ and z = �1 represents OH�.
g For bare silica: SiOH [27,28] and SiOK [23].
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at the 0-plane, and pK± the equilibrium constants, which for bare
silica are pK+ = �1.9 [27] and pK� = 6.8 ± 0.2 [28]. The adsorption
of cations onto negative surface hydroxyl groups can be described
by a similar equilibrium reaction [30,20,21]

SiO� þ Kþb � SiOK; pKK; ð10Þ

where Kþb is the cation in solution at the b-plane and where
pKK = �0.06 ± 0.30 [23]. Note that SiOK is an ion pair, giving rise
to one negative charge (SiO�) in the 0-plane and one positive charge
(K+) in the b-plane. The point of zero charge pHpzc used for the eval-
uation of Bs in Eq. (7) is then given as

pHpzc ¼
1
2
ðpKþ þ pK�Þ: ð11Þ

The appearance of pK+ in this relation implies, together with Eq. (7),
that we must keep Eq. (9a), a reaction which under normal condi-
tions can be neglected [31]. The equilibrium equations for Eqs.
(9a), (9b) and (10) are

pKþ ¼ �log10
CSiOHcH;0

CSiOHþ2
cref

 !
; ð12Þ

pK� ¼ �log10
CSiO�cH;0

CSiOHcref

� �
; ð13Þ

pKK ¼ �log10
CKcref

CSiO�cK;b

� �
; ð14Þ

where CSiOH; CSiOHþ2
, and CSiO� are the site densities of the neutral,

positive, and negative surface silanol groups, respectively. CK is
the site density of ion pairs of a negative surface site and a cation,
and cH,0 and cK,b are the concentrations of protons and cations at
the 0- and b-plane, respectively. The total available density of sites
is constant, and for silica surfaces reported to be Ctot = 4.6 � 1018

m�2 [32]. In our model Ctot is

Ctot ¼ CSiOH þ CSiO� þ CSiOHþ2
þ CK: ð13Þ

Silane coating is modeled by decreasing Ctot, see Section 5.

2.4. Electrical equations and bulk/surface coupling

The bulk and surface are coupled through equations involving
electrical potentials, ionic concentrations, surface charge densities,
and surface capacitances. For the two inner layers the equations
relating surface charge densities to site densities are

r0 ¼ eðCSiOHþ2
� CSiO� � CKÞ; ð14aÞ

rb ¼ eCK; ð14bÞ

whereas the surface charge density rd of the diffuse layer is linked
to /d through Grahame’s equation [33]

rd ¼ �sgnð/dÞ 2ere0kBT
X

X

XpX

z¼nX

nX;z e�
ze/d
kBT � 1

� �" #1
2

: ð15Þ

Due to electroneutrality the surface charge densities are related by
the constraint

r0 þ rb þ rd ¼ 0: ð16Þ

Assuming charge-independent dielectric permittivities and no free
charges in between the surface layers, the electric displacement
field between the surface planes can be found using Gauss’s law.
Integrating this from the 0- to the b-plane and from the b- to the
d-plane yields,

/b � /0 ¼ �
r0

C1
; ð17aÞ

/d � /b ¼
rd

C2
; ð17bÞ

where C1 is the inner and C2 the outer layer capacitance (F m�2),
which are important surface dependent parameters in our model.
These capacitances are coupled in series and relate to the Stern-
layer capacitance Cs as 1/Cs = 1/C1 + 1/C2.

Using the dilute assumption to neglect higher order effects, the
electrochemical potential consists of a purely entropic and a purely
electric term, leading to Boltzmann distributed concentrations. The
proton (cation) concentration cH,0 (cK,b) at the 0-plane (b-plane)
and in the bulk cH (cK) are thus related by

cH;0 ¼ cH exp � e/0

kBT

� �
; ð18aÞ

cK;b ¼ cK exp �
e/b

kBT

� �
: ð18bÞ

For use in the subsequent numerical fitting we combine Eqs. (12)–
(18) to obtain

CK ¼
Ctot þ rd

e

1þ cH;0
cK;b

10pK� þ 2 cref
cH;0

� �
10pKK

; ð19aÞ

CSiOH ¼
Ctot þ rd

e � CK

1þ 2 cref
cH;0

10�pK�
; ð19bÞ

CSiOHþ2
¼ CSiO� �

rd

e
: ð19cÞ

Eqs. (1)–(19) define our model, which can be characterized as a tri-
ple layer version of the Gouy–Chapman–Stern model. A list summa-
rizing the input and output parameters of the model is given in
Table 1.

3. Materials and methods

3.1. Chemicals

The ionic solutions used in our experiments were potassium
phosphate (KH2PO4) based solutions with pKa = 7.21 (Fisher Scien-
tific P285-500). Buffer concentrations of 10, 30, 50, 100, and
383 mM were prepared by mixing KH2PO4 powder with deionized
(DI) water and titrated to the desired pH value using 1 M KOH. The
fluorescent analytes used in our experiments were 0.01 mM pH-
sensitive sodium fluorescein (Riedel-de Haen) and 0.01 mM pH-
insensitive Alexa Fluor 488 (Invitrogen). Prior to use, bulk pH
and conductivities were measured (Oakto, Inc) and all solutions
were filtered using 0.2 lm PTFE syringe filters (Nalgene). Solutions
were stored at 4 �C covered by aluminum foil to prevent contami-
nation and photo bleaching. Directly prior to experiments, buffers
were heated to ambient room temperature and re-mixed with a
vortexer (Dencille Scientific Inc.). These precautions ensured that
both the fluorescent dye maintained constant emission properties
and the solutions were well preserved.

3.2. Design and fabrication of silica nanochannels

The design of the nanochannels followed that of Tas et al. [17]
and Persson et al. [34]. Nanochannels were fabricated using
fused-silica wafers at the UCSB nanofabrication facility with con-
ventional MEMS processing techniques [14] based on mask design
sets from DTU Nanotech [34]. The design of the channels consisted
of pairwise parallel inlet/outlet microwells, each 2 mm � 5 mm
rounded with 5-mm-diameter caps and etched to a depth of
1.6 lm. The pairs of reservoir wells were connected by 12 parallel
nanochannels of length L = 5 cm, with etched ruler markings in
increments of 100 lm. Widths w varied from 5 to 40 lm, with
depths h on different chips of either 115, 145, or 195 nm (within
± 3 nm). Fig. 2b shows the inlet of a nanochannel during capillary
filling (see Supporting information Sec. S1).
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3.3. Surface coating and cleaning

To change the surface properties and characteristics of the silica
nanochannels, we chose to coat the channel after fabrication with a
liquid-phase silane. 3-Cyanopropyldimethylchlorosilane (cyanosi-
lane, Gelest Inc.) was chosen because it has been shown to form
a fully wettable, slightly hydrophilic, stable lipid monolayer on
glass [35], and was straightforward to coat after bonding without
changing any of the channel dimensions or introducing any vari-
ability in the channel fabrication process. The coating process is
known to replace �25% of negative charge sites with a neutral cya-
nosilane group [36] (see Fig. 1).

Immediately after fabrication and dicing, all devices were pre-
cleaned using 0.2 lm-filtered DI water driven through the nano-
channels by electro-osmosis (EO). Platinum wires, inserted into
the inlet/outlet microwells and fixed by scotch tape, served as
EO-electrodes. The EO-flushing was powered by an electric field
of 5000 V/m delivered by a source meter (Keithley 2410, sampling
frequency of 100/min), and the associated electric current was
monitored using a high impedance electrometer (Keithley 6517,
sampling frequency of 400/min) controlled using custom LabVIEW
software and analyzed with Matlab.

The initial DI-water EO-flushing ran for 60 min, while monitor-
ing that the current remained stable at the range of �1 pA, after a
short transient period of �1–2 min. The EO-flushing was contin-
ued using 0.1 M KOH for 15 min, and finally proceeded by a sec-
ond 60 min EO-flushing with DI water. At this point, the devices
were either stored in DI water or treated with the cyanosilane
coating.

The devices to be coated were dried on a hotplate at 150 �C for
30 min, after which they were filled using capillary forces with a
solution of 0.1 M cyanosilane in 0.2 lm filtered acetonitrile (Fisher
Scientific). The filled nanochannels were then EO-flushed with the
cyanosilane solution for approximately 30 min. The whole device
was then incubated in cyanosilane solution overnight (�12 h) to
allow the silane groups to attached themselves to the channel
walls (see Supporting information Sec. S4). After this surface mod-
ification was completed, the devices were rinsed with copious
amounts of filtered ethanol, EO-flushed with pure acetonitrile for
1 h, and EO-flushed with DI water for approximately 30 min until
the electrical current stabilized. The coated channels were stored
wet in filtered ethanol to preserve the coating and prevent degra-
dation [37].

3.4. Surface characterization

The roughness of both uncoated and coated channel walls were
characterized using standard AFM techniques and found to be
approximately 0.3 nm and 0.7 nm, respectively (see Supporting
information Sec. S1). Contact angle measurements were experi-
mentally found by depositing 10 lL of DI water onto each surface,
and imaging the water droplets at the contact interface (see Sup-
porting information Sec. S1). The contact angle of the uncoated
and coated surfaces was found to be 32� and 75�, respectively, in
good agreement with previously reported values [38,39]. An inter-
ferometer (Wyko NT1100) was used to image the microwell and
entrance to the nanochannels (see Supporting information Sec.
S1). Further characterization of the surfaces was performed using
the current monitoring method, described in more detail in Section
4.2.

4. Experimental setup and procedure

4.1. Optical and electrical setup

Recordings of the propagating buffer in our filling experiments
were performed using an inverted epifluorescent microscope
(Olympus IX70) and automated stage (Prior Proscan II) controlled
via custom LabVIEW software (LabVIEW V8.6). Images were cap-
tured using a back illuminated EMCCD camera (Andor iXon +) with
a 200 ms exposure time using a 10� objective (Olympus UPlanFL
10 � 2, NA = 0.3) with a 0.5� demagnifying lens (U-TV0.5xC-3) as
seen in Fig. 2a. A stationary halogen lamp was used to illuminate
the fluid front, whereas an aligned and focused mercury arc lamp
(Olympus U-RFL-T) filtered with a 488 nm excitation and 532 nm
emission FITC filter cube (Chroma Technology 31001FITC/RSGFP/
Fluo 3/DiO Acradine Orange(+DNA)) was used to illuminate the
fluorescent front. Electric fields for channel cleaning and buffer
characterization were generated across the nanofluidic channels
by a Keithley multimeter (Model 2410), and currents were re-
corded in series with a Keithley electrometer (Model 6517) con-
nected to platinum wire electrodes placed within each fluid
reservoir of the device. A schematic of this electrical setup is shown
in the inset of Fig. 3a (see Supporting information Sec. S1).

4.2. Current monitoring

Both the conductivity and the f potential were measured by
current monitoring techniques following Ref. [40]. One reservoir
was initially filled with an electrolyte of concentration 0.9 c*,
where c* was a predefined target concentration. A voltage drop
was applied between the inlet and outlet well to drive an EO flow.
After about 15 min the current was stabilized, indicating complete
filling in the nanochannel by the 0.9 c* electrolyte. Then all

(a) (d)

(b)

(c)

Fig. 2. (a) Block diagram showing the experimental setup (detailed in Section 4.1)
comprising of sample, optics, mercury lamp, and EMCCD camera. (b) Image at the
beginning of the capillary filling of the 30 mM KH2PO4 buffer seeded with 0.01 mM
fluorescein into three of the twelve parallel nanochannels. Four regions can be seen:
(i) inlet well with fluorescent buffer, (ii) fluorescent buffer in nanochannel region of
length Lfl, (iii) dark buffer in nanochannel region of length Ld, (iv) black air-filled
part of the nanochannel. (c) A schematic side view of one of the nanochannels of
height h from panel (b) defining the lengths Lfl and Ld as well as the corresponding
pH conditions; pHb in the fluorescent regions (i) and (ii), and pHpzc in the dark point
of zero charge region (iii). (d) Experimental capillary filling data for a bare
nanochannel showing the meniscus position Lfl + Ld (points and dashed line) and Lfl

(points and full line) versus the square root of time t (see Section 4.3). The first data
point (black square) corresponds to the image in panel (b).
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electrolyte was removed from the inlet well and replaced with
electrolyte of concentration c*. The current was monitored over
time, with typical results shown in Fig. 3a. Measurements were
performed for every concentration c* used in the capillary filling
experiments (10, 30, 50, 100, and 383 mM) at two different electric
field strengths (6 kV/m and 12 kV/m). Voltage and current were
supplied and monitored using the equipment described in Section
3.3. For determination of the f potential, the filling speed L/Dt is set
equal to the Helmholtz–Smoluchowski velocity (ef/g)DV/L [41],

f ¼ gL2

eDVDt
: ð20Þ

Table 3, Fig. 3b and c shows measured f potential for both bare and
coated channels of length L at all concentrations used in this study.
Also shown are theoretically fitted curves for /d described in
Section 5.

We also characterized the electrical properties of the system by
measuring the conductivity rel versus ionic strength I, see Table 3.
This was done using both a conductivity meter and simultaneous
current and voltage measurements. The Kohlrausch plot in Fig. 4
of rel/I versus I shows good agreement (3%) between the measured
conductivity extrapolated to zero ionic strength and the theoretical
dilute limit.

4.3. Capillary filling experiments

In our experiments, we filled both bare and cyanosilane-coated
silica nanochannels with KH2PO4 buffers of concentrations in the
range 10–383 mM mixed with a 0.01 mM tracer dye, either pH-
sensitive fluorescein or pH-insensitive Alexa Fluor 488 (see Section
3.1). During filling, the advancing electrolyte meniscus (Lfl + Ld) and
the fluorescence front (Lfl) were recorded optically as shown in
Fig. 2 using the equipment described in Section 4.1. A list of the
performed experiments is given in Table 4, and the exact procedure
is detailed below.

A given nanochannel was removed from its wet storage and
optically examined for defects and clogs. Next we flushed the chan-
nel using EO-flow for 30 min until the current stabilized to around
1 pA, which is a typical indication that the channel is not contam-
inated. All the liquid was evaporated from the channel by placing
the chip on a hotplate at 300 �C for 30 min before it was placed
on the automated microscope stage where it was aligned and
focused relative to the EMCCD camera. We then pipetted the buffer
solution into the inlet microwell and recorded videos of the prop-
agation of the meniscus using the experimental setup described in
Section 4.1. To capture the entire filling process, which lasts less
than 5 min, the automated stage was centered to five different
positions and the filling fronts were recorded as they passed the
field of view. An experimental video is provided in the Supporting
information. Fig. 2d shows a typical experimental data set

(a)

(b)

(c)

Fig. 3. (a) Raw data showing electrical current Iel versus time t in an EO-flow
measurement. Initial buffer concentration is 9 mM. At t = 80 s the buffer in the inlet
well is replaced by a 10 mM buffer. At t = 340 s the 10 mM solution has filled the
channel completely. The f potential is determined by Eq. (20) with Dt = 340 � 80 s.
Inset shows schematic of the experimental setup including the sourcemeter
(Keithley 2410) and the electrometer (Keithley 6517), see Section 4.2. (b) Lin-log
plot of measured f potential for bare (blue empty circles) and coated (red filled
squares) as function of ionic strength I. Curves are theoretical predictions of the
diffuse layer potential /d for bare (blue dashed) and coated (red full) channels for
case 1, Table 5, where C2 = 0.2 F m�2. (c) As panel (b) except that the theoretical
predictions are for case 2, Table 5, where the values of C2 are 0.8 F m�2 and 0.15 F
m�2 for bare and coated channels, respectively. Note the improved agreement
between theory and experiment going from case 1 to case 2. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 3
Calculated ionic strength I from Eq. (8a), measured f potential for bare and coated
channels, and measured electrical conductivity rmeas

el divided by I. From the fit in Fig. 4
we find rmeas

el =I ¼ 9:1 S m�1 M�1 in the limit I ? 0, while using Eq. (8b) in the same
limit gives rcalc

el =I ¼ 9:36 S m�1 M�1, deviating less than 3%.

I (M) 0.024 0.055 0.103 0.186 0.823

fbare (mV) �47 �48 �32 �31 � 12
fcoat (mV) �29 �24 �21 �16 � 7
rmeas

el =I ((S/m)/M) 7.083 7.909 5.728 5.000 5.033

Fig. 4. Kohlrausch plot: the measured electrical conductivity rel divided by ionic
strength I versus

ffiffi
I
p

. The highest ionic strength data point clearly deviates from the
Kohlrausch law and has thus been excluded from the fit. Extrapolation of the fit to
I = 0 deviates only 3% from the theoretically predicted value at infinite dilution
(black circle), see Eq. (8b).
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demonstrating that both the fluoresent signal and the meniscus
follows the Washburn relation Eq. (21). Once the channel was com-
pletely filled, we EO-flushed the channel with DI water until the
current decreased to a stable level of about 1 pA. The channel
was then stored wet.

4.4. Extraction of parameters by capillary filling

The filling dynamics of cylindrical capillaries was first described
by Washburn [42] and later applied to rectangular nanochannels of
low height-to-width aspect ratio by others [17,34]. For the latter
systems, relevant to this study, the time-dependent position
L(t) = Lfl + Ld of the electrolyte meniscus is

LðtÞ ¼ Lfl þ Ld ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ch cos h

3g
t

s
; ð21Þ

where c is the electrolyte/air surface tension, h the contact angle, h
the height of the nanochannel, and g the viscosity of the electrolyte.

As the electrolyte containing the tracer dye fluorescein fills the
nanochannel there is a region in the front of the liquid column
without fluorescent signal, as shown in Fig. 2. Fluorescein is a
pH-sensitive dye and therefore one might speculate that the
quenching is due to a change in pH in this zone stemming from
deprotonation of the silica surface silanol sites as described in
Ref. [9]. This assumption is further corroborated by the fact that
none of our control experiments containing pH-insensitive Alexa
Fluor dye showed a region without fluorescent signal (data not
shown). To evaluate the surface properties using the observed dark
zone we assume that: (i) the pH is constant within each of the two
regions in the liquid column, (ii) the pH in the dark region equals
the value pHpzc of the point of zero charge, and (iii) the pH in the
fluorescent region is that of the bulk pHb. With these assumptions
one can estimate the amount of protons Nads

Hþ necessary to bring the
volume of buffer in the dark region from pHb to pHpzc. This amount
must equal the volume whLd of the dark region multiplied by the
concentration of protons Bs necessary to titrate from pHb to pHpzc

Nads
Hþ ¼ whLdBs; ð22Þ

where Bs is calculated using the theory described in Section 2.2.
Note that ionic concentrations may not be constant across the nano-
channel due to the influence of the electrical double layer, but for
our high concentration systems the change in ionic concentration
over the entire volume of the channel does not change by more than
5% from the bulk.

The release of protons from the channel walls can be estimated
using the assumption that all the wall deprotonation occurs at the

interface between the dark and fluorescent regions. It then follows
that by multiplying the amount per area ðCHþ Þ of protons released
by the channel wall, by the surface area in the fluorescent region of
the channel, the amount of protons released into the dark region is

Nrel
Hþ ¼ 2ðwþ hÞLflCHþ : ð23Þ

Equating Nads
Hþ and Nrel

Hþ yields CHþ in terms of the experimentally
measured lengths of the fluorescent and dark zones

CHþ ¼ Bs
h

2ð1þ h=wÞ
Ld

Lfl
: ð24Þ

Assuming that all the sites on the channel wall prior to contact with
the electrolyte are SiOH, the amount of deprotonation per area is gi-
ven by the surface charge density of the innermost layer as
CHþ ¼ �r0=e; e being the elementary charge. Combining this with
Eq. (24) we obtain the following relation between the experimen-
tally observed length ratio and the theoretically calculated surface
charge density,

Ld

Lfl
¼ �2ð1þ h=wÞ

eBsh
r0: ð25Þ

4.5. Numerical fitting procedure

We use the experimentally observed length ratios Ld/Lfl to fit C1

and pK+. Below we outline the fitting procedure implemented in
Matlab (see Supporting information Sec. S3) [43]. The number of
independent variables is reduced to two and in the actual compu-
tation the equations are non-dimensionalized to obtain higher
numerical accuracy.

1. Calculate the electrolyte ionic concentrations cX,z and the ionic
strength I for the observed Ld/Lfl-ratio for each of the five exper-
imental conditions {cbuf}i = 1,. . .,5 of Table 4 using the bulk theory
in Section 2.2.

2. Use the output from the bulk theory as input for the surface
chemistry and bulk/surface coupling equations from Sections
2.3 and 2.4 as outlined below. Repeat until convergence.
(a) Estimate and update the fitting parameters C1 and pK+.
(b) Update pHpzc using Eq. (11).
(c) Update {Bs}i = 1,. . .,5 from Eq. (7).
(d) For each Ld/Lfl-ratio give initial guess for /0 and /d and solve

the surface equation system:
i. rd from Eq. (15).

ii. /b from Eq. (17b).
iii. cH,0 and cK,b from Eqs. (18).
iv. CK from Eq. (19a).
v. rb and CSiOH from Eqs. (14b) and (19b).

vi. r0 and CSiO� from Eqs. (16) and (13).
vii. CSiOHþ2

from Eq. (19c).
viii. Check if Eqs. (12) and (17a) are converged and update /0

and /d accordingly.

(e) Output obtained upon convergence.
(f) Use Eq. (25) to update the calculated length ratios {Ld/

Lfl}i = 1,. . .,5. Compare these calculated length ratios against
those measured. If not converged go back to 2.

3. Analyze parameters and produce goodness-of-fit values R2,
plots etc.

5. Results

Fig. 5 shows length ratio Ld/Lfl as function of ionic strength I
measured (symbols) and fitted theoretically (curves) for bare
surfaces (blue, open symbols and dashed curve) and for coated

Table 4
List of the 43 capillary filling experiments, specifying the phosphate buffer concen-
tration cbuf in mM, the pH of the buffer, type of the 0.01 mM dye (F: fluorescein of
charge �2, A: Alexa Fluor of charge 0), type of surface (B: bare, C: cyanosilane coated),
and channel height h.

# cbuf pH Dye Surf h (nm)

1–3 10 7.2 F B 145, 145, 145
4–6 30 7.1 F B 124, 124, 115
7–12 50 7.3 F B 142, 142, 145, 145, 142, 142
13–19 100 7.2 F B 145, 145, 145, 145, 142, 142, 142
20–23 383 7.2 F B 115, 115, 115, 115
24–26 10 7.2 F C 142, 142, 145
27–32 30 7.1 F C 124, 124, 115, 124, 124, 115
33–35 50 7.3 F C 142, 142, 142
36–38 100 7.2 F C 195, 115, 115
39 383 7.2 F C 115
40 10 7.2 A B 142
41 100 7.2 A B 142
42 10 7.2 A C 115
43 100 7.2 A C 115
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surfaces (red, filled symbols and full curve). Here, the parameters
kept constant are pK� = 6.8 [28] and pKK = �0.06 [23]. For the
coated channels we assume that 25% of the surface sites have a
cyanosilane molecule attached [36], which reduces the surface site
density Ctot from the bare value of 4.6 nm�2 to 3.45 nm�2. In the
literature the value of C2 is often taken to be C2 = 0.2 F m�2 [23]
(denoted case 1). This value of C2 did not explain the observed
trends for different surfaces, and in fact, no other single fixed value
could do so. We therefore allow C2 to be surface dependent. Opti-
mization led to the values Cbare

2 ¼ 0:8 F m�2 and Ccoated
2 ¼

0:15 F m�2 which we denote case 2 in the following discussion.
Parameters that are fitted are C1 and pK+, and a list of parameter
values for cases 1 and 2 are summarized in Table 5.

In both cases pK�, pKK, and Ctot are parameters taken from lit-
erature [28,23,32]. In case 1, we fix the outer capacitance C2 for
both the bare and coated surfaces to the value 0.2 F m�2 often
quoted in literature [20,22,44,23]. Choosing this value of constant
C2 led to fitted and calculated parameters with a decent R2 value
(see Table 5) but showed poor agreement with f potential experi-
mental data. In fact, Fig. 3b shows theoretical trends which are ex-
actly opposite of measured data, where the coated channels are
estimated theoretically to have higher f potential values than the
bare, a trend that is not observed experimentally. In case 2 we rem-
edy this discrepancy by optimizing C2 to not only match the Ld/Lfl

experimental values in Fig. 5, but also the f potential values in
Fig. 3c. Here, we note the improved match between the calculated
/d and measured f potential for both bare and coated data. Figs. 6
and 7 show potentials and surface charge densities for both cases.
However, given the better fit of case 2 the remainder of our
discussion is focused on this case.

Fig. 7a shows the surface potential /0, the metal layer potential
/b, and the diffuse layer potential /d for the bare and coated chan-
nels versus ionic strength as sketched in Fig. 1. As expected, the

Fig. 5. Plot of the experimentally measured (symbols) and theoretically fitted
(curves) length ratio Ld/Lfl as function of ionic strength I for the bare surfaces (blue,
open symbols and dashed curve) and coated surfaces (red, filled symbols and full
curve) with parameters corresponding to case 2 as given in Table 5. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 5
Two cases of setting the outer Stern capacitance C2. Case 1: using the literature value
0.20 F m�2 for both bare (B) and coated (C) surfaces. Case 2: changing C2 to obtain
match between calculated /d and measured f, see panel (b) and (c) in Fig. 3. Also
shown are fitted and calculated parameters from Fig. 5, while other set parameters
are pK� = 6.8, pKK = �0.06, and Ctot = 4.6 nm�2 (bare) and Ctot = 3.45 nm�2 (coated).

Case Set C2 (F/m2) Fitted Calculated

C1 (F/m2) pK+ R2 Cs (F/m2) pHpzc

1 B 0.20 0.69 �1.03 0.81 0.16 2.9
1 C 0.20 15.47 �0.54 0.40 0.20 3.1
2 B 0.80 0.77 �1.61 0.80 0.39 2.6
2 C 0.15 13.47 �0.29 0.40 0.15 3.3

(a)

(b)

Fig. 6. Case 1: calculated potentials / and surface charge densities r plotted versus
ionic strength I for bare channels (open symbols and dashed curves) and coated
channels (filled symbols and full curves). Each point represents the average over
channel heights (see Table 4) while curves are for fixed h = 135 nm. In this case 1
C2 = 0.2 F m�2, while other parameters are given in Table 5. (a) Calculated /0 (blue
circles), /b (red triangles), and /d (green squares). The arrows indicate shifting of
curves going from bare to coated channels. (b) Calculated r0 (blue circles), rb (red
triangles), and rd (green squares). The inset is a zoom on the diffuse layer surface
charge density rd. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

(b)

(a)

Fig. 7. Case 2: same as in Fig. 6 except that the parameters are: C2 = 0.80 F m�2

(bare) and C2 = 0.15 F m�2 (coated) as listed in Table 5.
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values of the potentials increase from the surface layer to the metal
layer to the diffuse layer. Next, we note that the metal potential /b

is much lower for coated channels than for bare channels, while
the surface potential /0 and the diffuse potential /d remain almost
the same. In all cases, we note that the metal and diffuse potentials
increase with ionic strength whereas the surface potential for the
bare channel decreases slightly.

For cases 1 and 2, respectively, Figs. 6 and 7b show the surface
charge densities at the surface, metal and diffuse layer. Here, we
note that the charge density at the surface decreases with ionic
strength, whereas the charge density at the metal layer increases
with ionic strength, both more pronounced for the coated surface
than for the bare.

By comparing Figs. 6 and 7 we note that changes in C2 primarily
affect the diffuse layer potential /d and charge density rd. Different
values of C2 for the bare and coated surfaces will therefore not af-
fect much the final outcome of the fitting procedure in terms of the
other variables such as the surface charge density r0. This is the
reason that the R2 is essentially the same for both cases as seen
in Table 5. These observations speak in favor of using the values
of C2 in case 2 in Table 5.

6. Discussion

There is a clear trend of the capillary filling length ratio Ld/Lfl

decreasing with increasing ionic strength. We can explain this
through Eq. (25), where we describe the length ratio as a function
of the surface charge density r0 and the proton concentration Bs

needed to lower the pH of the buffer front to pHpzc. Since the
length ratio decreases we conclude that Bs increases faster than
r0 decreases. Bs is mainly influenced by the pHpzc = (pK+ + pK�)/2
and thus by pK+.

To achieve the most reliable fit with the data, we investigated
the influence of C1, C2, pKK, pK+, pK�, and Ctot by varying each
parameter individually around some chosen reference value (see
Supporting information Sec. S5). Here we summarize the observed
sensitivity of each parameter. First, changing C1 raises and lowers
the values of Ld/Lfl without significantly affecting the shape of the
curve. Given the fact that the bare and coated experimental data
curves follow the same shape, this strongly suggests that C1

changes with surface type. Next we notice that C2, pKK, pK�, and
Ctot have a negligible effect on the Ld/Lfl curve, which indicates that
these parameters are most likely constant and can be determined
from literature values. However, as mentioned in the previous sec-
tion, we notice that varying C2 has a strong influence on the f po-
tential, which is consistent with the assumption that it only affects
/d and rd. Finally, we note that varying pK+ has a strong influence
on the value of Ld/Lfl at low concentrations but very little effect at
high concentrations. Indeed, this is what we observe in our exper-
imental data and therefore this suggests that pK+ must be varied
with surface composition. Furthermore, because pK+ couples into
Bs through pHpzc it should have an influence on Ld/Lfl. In conclusion,
C1 and pK+ are our obvious choices for parameters to be fit.

The literature value of pK+ = �1.9 [27] for the bare silica surface
is close to the value of �1.61 theoretically determined for the bare
channel when using the case 2 capacitance value of C2 = 0.80 F
m�2. For case 1 (C2 = 0.20 F m�2) the model calculates a higher va-
lue (pK+ = �1.03) which lends further support for case 2. For the
coated channels pK+ = �0.54 (case 1) and pK+ = �0.29 (case 2). Gi-
ven the strong evidence for case 2 parameters we believe that
pK+ = �0.29 should be the value used in the future for cyanosi-
lane-coated silica surfaces. However, we emphasize that this value
is contingent upon the experimental conditions used in our study.
For example, when comparing values of C1 with Wang et al. [23]
we find slightly different values which most likely can be attrib-
uted to the fact that we used different electrolytes.

Examining the trends seen in Fig. 7 we note that the surface po-
tential /0 varies less than 10% over the range of ionic strength used
in this study, which validates a constant surface potential model in
both bare and coated channels given our experimental conditions.
Next, we note that the metal potential /b and diffuse layer poten-
tial /d significantly increase with increasing ionic strength, which
is consistent with trends reported in literature [23]. Consistent
with case 2, we hypothesize that the amount of metal ions that
can adsorb onto the surface is highly dependent on the composi-
tion of the surface. Moreover, because Cbare

1 � 0:7 F m�2 is much
lower than Ccoated

1 � 14 F m�2 this hypothesis is further justified
since /bare

b is much higher than /coated
b .

Finally, the surface charge density r0 of the coated channels de-
creases more rapidly than that of the bare channels also due to the
fact that C1 is much higher for the coated channels. This again indi-
cates that more metal ions can adsorb to the surface without
changing the potential. Because rb = �(r0 + rd), rb increases with
increasing ionic strength faster in the coated channels than in the
bare channels. We note that rd is relatively constant with ionic
strength and surface coating providing justification to use the
Grahame Eq. (15) to solve for diffuse layer potentials [30]. Using
our optimized values of C2, Fig. 3c shows that rd for the bare chan-
nel is higher than the coated channel, matching experimental
trends (data not shown). We note that rd is lower than the
60 mC m�2 quoted in literature for fused silica nanochannels [45]
but similar to the 25 mC m�2 quoted for amorphous silica nano-
channels [46]. Stein et al. [45] used the neutral CH3 head group
doctodecyltrichlorosilane as surface coating and found a decrease
in the surface charge density, consistent with our curves in the in-
set in Fig. 7b. However, in both Refs. [45,46] aqueous KCl was used
as the electrolyte in contrast to our KH2PO4, and as discussed in
Refs. [47,48] the different co-ions may lead to different actual val-
ues of rd.

We can also use our model to examine the surface site densities
Ci. Fig. 8 shows Ci for bare (open symbols and dashed curves) and
coated (filled symbols and full curves) channels using case 2
parameters. The amount of adsorbed cations (K+) is significant
for the coated channels especially at high ionic strengths when
compared to the bare channels. This is consistent with the result
of C1 being much higher for the coated channels than for the bare
channel. Furthermore, a sensitivity analysis of the effect of Ctot

shows that changing the amount of sites available at the wall does
not change the results shown in Fig. 7 (see Supporting information
Sec. S5). Therefore, our results will be relatively accurate despite

Fig. 8. The surface site densities Ci for bare channels (open symbols and dashed
curves) and coated channels (filled symbols and full curves) for case 2. The four
surface site densities are CSiOH (blue circles), CSiO� (purple diamonds), CSiOHþ2

(green
triangles), and CSiOK (red squares). The insets are magnifications of the low-density
sites CSiO� and CSiOHþ2

. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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the experimental uncertainty of Ctot after coating with
cyanosilane.

Throughout our experiments, we have assumed that the flou-
rescein quenches exactly at pHpzc. This is a reasonable assumption
as flourescein is known to quench at pH values below 5 [49,50],
and our model predicts pHpzc < 5 in all cases (see Table 5 and Sup-
porting information Sec. S6).

To date, it has been difficult or almost impossible to use a model
to predict experimental data mainly due to difficulties in modeling
the Stern layer [15]. Here, we show that by just changing C1, C2, and
pK+ while using literature values for all other surface parameters,
we can find f potential values that almost exactly match experi-
mentally determined values for both bare and cyanosilane-coated
silica nanochannels. We believe our model will be important to
predict experimentally observed phenomena, for example, geolog-
ical studies have shown that silica is known to dissolve in the pres-
ence of an electrolyte [51]. This dissolution process, although
negligible in microfluidic systems, may become important at the
nanoscale. Therefore, having a model which can predict the change
of channel size with the measured experimental values may prove
to be of utility to the field. We are currently pursuing such uses of
the model.

7. Conclusion

In this work, we presented a combined theoretical and experi-
mental analysis of the solid–liquid interface of fused-silica nano-
fabricated channels with and without hydrophilic 3-
Cyanopropyldimethlychlorosilane coating. Our theoretical model
couples chemical equilibrium theory of both the surface and the
bulk buffer with a self-consistent extended Gouy–Chapman–Stern
model of the electrochemical triple layer. We use the model to
optimize the surface parameters given both experimental capillary
filling data and electro-osmotic current-monitoring data, which al-
lows for analysis of surface parameters both with and without the
influence of applied external fields. Our model shows that the
important fitting parameters are the capacitance C1 between the
silica layer and the metal ion layer, as well as the pK+ constant. Fur-
thermore, we find that changing the capacitance C2 between the
metal ion layer and the diffuse layer with surface composition re-
sults in more accurate fits of experimentally determined f poten-
tial values. This model is of value to predict experimentally
observed phenomena in nanofluidic systems.
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a b s t r a c t

We present theoretical and experimental studies of the streaming current induced by a pressure-driven
flow in long, straight, electrolyte-filled nanochannels. The theoretical work builds on our recent one-
dimensional model of electro-osmotic and capillary flow, which self-consistently treats both the ion con-
centration profiles, via the nonlinear Poisson–Boltzmann equation, and the chemical reactions in the bulk
electrolyte and at the solid–liquid interface. We extend this model to two dimensions and validate it
against experimental data for electro-osmosis and pressure-driven flows, using eight 1-lm-wide nano-
channels of heights varying from 40 nm to 2000 nm. We furthermore vary the electrolyte composition
using KCl and borate salts, and the wall coating using 3-cyanopropyldimethylchlorosilane. We find good
agreement between prediction and experiment using literature values for all parameters of the model,
i.e., chemical reaction constants and Stern-layer capacitances. Finally, by combining model predictions
with measurements over 48 h of the streaming currents, we develop a method to estimate the dissolution
rate of the silica walls, typically around 0.01 mg/m2/h, equal to 45 pm/h or 40 nm/yr, under controlled
experimental conditions.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Advances in nanofabrication technology promise to allow the
emergence of nanofluidic devices as enabling technologies in a di-
verse set of emerging applications, including pharmaceuticals,
environmental health and safety, and bioanalytical systems. Nano-
scale coupling of surface chemistry, electrokinetics, and fluid
dynamics provides a rich set of phenomena not available in larger
devices, which in turn allow nanofluidic systems to offer novel
functional capabilities. To fully exploit the potential of nanoflui-
dics, a detailed understanding of electrokinetic phenomena is thus
required including the distributions of ions in electrical double lay-
ers, surface charge effects, and electric potential effects on the fluid
[1–5].

Because fused silica is one of the most prevalent materials used
to fabricate nanochannels, its behavior in electrolyte solutions is
particularly important and has received much specialized atten-
tion. Two important aspects pertaining to the use of silica for nano-
systems are deterioration due to dissolution [6–9] and the effects
induced by corners in channels where a full 2D modeling of the
channel cross section is necessary rather than the usual planar
1D approximation [10–13].

Regarding the dissolution rate, it is important to determine
whether dissolution of silica is significant when it is used to con-
fine electrolytes in nanometer-sized channels. For example, Greene
et al. [9] studied the dissolution rates in systems of electrolytes in
nanometer-sized confinement under pressure between quartz
(SiO2) and mica. They found that the dissolution rate of quartz ini-
tially is 1–4 nm/min and that this drops over several hours to a
constant rate around 0.01 nm/min or 5 lm/yr. Such rates might
influence the long-term stability and operability of silica nanoflui-
dic devices, and devising ways to inhibit such dissolution phenom-
ena, by surface coatings [14], is therefore important.

Regarding 2D corner effects in pressure-driven flows in nano-
meter-sized geometries, some studies involved complex or poorly
defined networks of nanochannels, such as those found in porous
glass [15], columns packed with latex beads [16], and sandstone
cores [17], while other studies on desalination [18–20] and energy
conversion [15,21–24] involved geometries where simpler 1D
models sufficed. In the latter studies, streaming currents were
measured in individual rectangular silica nanochannels as func-
tions of varying pressure, channel height, as well as salt concentra-
tion. Good agreement was obtained between measurements and
predictions from different 1D models for the electrostatic proper-
ties of the surface, including chemical-equilibrium models. The
1D planar-wall chemical-equilibrium model has proved successful
in several other studies [25–28]. Recently, we extended the chem-
ical-equilibrium model to allow surface-related parameters, such
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as Stern-layer capacitance Cs and the surface equilibrium pKa con-
stants, to vary with the composition of the solid-liquid interface
and validated it experimentally by both capillary filling methods
and electrokinetic current monitoring [14,29]. However, as rectan-
gular nanochannels with low aspect ratios are now readily fabri-
cated and operated with significant overlap of the electric double
layer, as in this work and by others [10–13], it is relevant to study
how the presence of side walls and corners affects the electrokinet-
ics of chemical-equilibrium models.

The structure of the paper is as follows. We present our theoret-
ical 2D model in Section 2 and describe its numerical implementa-
tion along with a theoretical 1D–2D modeling comparison in
Section 3. In contrast to our previous work [14,29], this model con-
tains no adjustable parameters. We validate our model by compar-
ing predicted values of electro-osmotic flow velocity and of
streaming currents to those measured in eight different bare and
cyanosilane-coated nanochannels with depths ranging nominally
between 40 nm and 2000 nm. The experimental setup and proce-
dure are described in Section 4, while the theoretical and experi-
mental results are presented and discussed in Section 5. At the
end of Section 5, we combine model prediction with 48 h of
streaming current measurements to estimate the dissolution rate
of the silica walls under controlled experimental conditions. We
end with concluding remarks in Section 6.

2. Theory

Theoretical modeling of ionic transport in nanochannels is tra-
ditionally based on three components: the Gouy–Chapman–Stern
model of electrostatic screening, a position-independent boundary
condition at the wall (either given potential, given surface charge,
or equilibrium deprotonation reactions [25–28,30,31,14,29]), and
continuum fluid dynamics equations [32,33,21–24,34,5,29]. In
the present work, we extend the prior chemical-equilibrium mod-
eling by allowing the surface charge, potential and pH (the concen-
tration of the hydronium ion H+) to vary with position along the
surface through a full 2D modeling of the channel cross section.
The bulk pH is a function of the composition of the electrolyte,
and the entire bulk chemistry is modeled using chemical-equilib-
rium acid–base reactions described in Section 2.1; the physical
parameters used in our model are listed in Table 1. After solving
the nonlinear electrostatic Poisson–Boltzmann equation in the full
2D cross-sectional geometry, we determine the electro-osmotic
flow or the streaming current arising in the system by applying
an external electrical potential drop or a pressure drop along the
channel, respectively.

Our extended 2D electrokinetic chemical-equilibrium model
thus consists of four parts: (i) chemical reactions in the bulk, which
determine the concentrations of the ions in our electrolyte
½Hþ; OH�;HCO�3 ;CO2�

3 ;Kþ;Cl�; Naþ;BðOHÞ�4 �, (ii) chemical reac-

tions at the surface, which determine the electric potential and
charge of the bare or coated silica surface, (iii) the 2D Poisson–
Boltzmann equation for the electrical potential combining the first
two parts, and (iv) the 2D Stokes equation including external force
densities from the externally applied drop along the channel in
pressure or electrical potential. We solve parts (i)–(iii) self-consis-
tently and then insert the resulting distributions of charged species
in part (iv) to calculate the flow velocity and the current density.
The silica wall is sketched in Fig. 1.

2.1. Bulk chemistry

As in our previous work [14,29], we calculate all bulk ionic con-
centrations of the reservoirs using the method of ‘‘chemical fami-
lies’’ [39,40]. Briefly, this approach provides a simple, yet
powerful means to manage the book-keeping associated with
modeling multiple protonatable species. For example, the chemical
family for H2CO3 has three members: the fully protonated H2CO3

(valence 0), the singly deprotonated HCO�3 (valence �1), and the
doubly deprotonated HCO�2

3 (valence �2). We define the limits
for the valence zX of a chemical family X as nX 6 zX 6 pX, so here
nX = �2 and pX = 0. The chemical families relevant for this work,
the associated dissociation reactions, and the reaction constants
pKX,zX

are listed in Table 2. We next employ two assumptions about
the bulk solutions in the reservoirs: the total concentration ctot

X of
every chemical family is known, and the bulk solution is homoge-
neous and electrically neutral. This allows us to calculate the bulk
concentrations cb

X;zX
from the equations

KX;zX cb
X;zXþ1 ¼ cb

X;zX
cb

H; dissociation reactions; ð1aÞ
XpX

zX¼nX

cb
X;zX
¼ ctot

X ; conservation of mass; ð1bÞ
X
X;zX

zXcb
X;zX
¼ 0; charge neutrality; ð1cÞ

Table 1
Basic physical parameters used in our model.

Quantity Symbol Value Unit

Temperature T 296 K
Viscosity, electrolyte solution g 930 lPa s
Permittivity, electrolyte solution e 691 pF m�1

Length of nanochannel L 20 mm
Stern capacitance, bare silicaa Cs 0.3 F m�2

Stern capacitance, coated silicab Cs 0.2 F m�2

Surface site density, bare silica c C 5.0 nm�2

Surface site density, coated silica d C 3.8 nm�2

a From Ref. [21].
b From Refs. [35,14,29].
c From Refs. [35–37,27,29].
d From Ref. [38].

(a)

(b)

Fig. 1. (a) Sketch of a silica wall (brown) and its Stern layer (blue), with surface
capacitance Cs, in contact with an aqueous KCl solution. The four regions of main
interest are identified as: the silica wall, the immobile Stern layer, the diffusive
layer, and the bulk. The dashed vertical line denoted ‘‘o-plane’’ is where the bound
surface charge ro resides, while the dashed black line denoted ‘‘d-plane’’ marks the
beginning of the diffuse, mobile layer, a layer stretching from the d-plane to the
bulk, and in which a mobile screening charge per area rd = �ro resides. The
electrical potential at the o- and d-plane is denoted /o and /d, respectively. (b)
Same as panel (a) except now for an electrolyte containing sodium borate ions. Also
indicated is a surface coating of cyanosilane Si(CH2)5CN molecules. Cs is constant
along the surface, while ro and /o vary. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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where cb
H is the bulk concentration of hydronium ions. Note that the

index zX includes neither H+ nor OH� for any family X, except for
water where zX includes both H+ and OH�. A more detailed account
of the reactions is given in the Supplementary information.

Once the bulk concentrations cb
X;zX

are known, two parameters
characterizing the electrolyte can be determined: the ionic
strength cI and the Debye screening length kD,

cI ¼
1
2

X
X;zX

ðzXÞ2cb
X;zX

; ð2aÞ

kD ¼
�kBT
2e2cI

� �1
2

: ð2bÞ

The two ionic strengths used in this work are cI = 1 mM and 20 mM,
for which kD � 10 nm and 2 nm, respectively.

2.2. Surface chemistry

In Fig. 1 is shown a sketch of the interface between the silica
wall and the electrolyte. We model the solid/liquid interface in
three parts [14]: the silanol surface (the ‘‘o-surface’’ with surface
charge ro and potential /o), the electrically charged, diffusive
screening layer (extending a few times the Debye length kD from
the ‘‘d-surface’’ and having space charge per area rd and zeta po-
tential /d), and the immobile Stern layer in between having capac-
itance per unit area Cs. For bare silica surfaces, we use
Cs = 0.3 F m�2 [21], and for cyanosilane-coated silica, we use
Cs = 0.2 F m�2 consistent with Ref. [14].

For the pH range relevant in this work, deprotonation of silica is
the only important surface reaction, making SiOH and SiO� the
only significant surface groups, and the corresponding equilibrium
equation is,

SiOH� SiO� þHþo ; ð3aÞ
10�pKCSiOH ¼ CSiO�co

H; ð3bÞ

where Hþo is a hydronium ion at the o-surface, Ci is the surface site
density of surface group i, co

H is the concentration of hydronium ions
at the o-surface, and pK = 6.6 ± 0.6 [42,25,31,43,27,29], see Table 2.
The sum of the site densities equals the known total site density C
[36,37,35,27,29,38],

CSiOH þ CSiO� ¼ C ¼ 5:0 nm�2; bare silica;
3:8 nm�2; coated silica;

(
ð4Þ

and the surface charge is given by the site density of negative sur-
face groups as

ro ¼ �eCSiO� : ð5Þ

Assuming a Boltzmann distribution of ions, we obtain

co
H ¼ cb

H exp � e
kBT

/o

� �
; ð6Þ

and the usual linear capacitor model of the immobile Stern layer
becomes

Csð/o � /dÞ ¼ ro: ð7Þ

Finally, the diffuse-layer potential /d can be expressed in terms of
the surface charge ro [25] by combining Eqs. (3b)–(7)

/dðroÞ ¼
kBT

e
ln

�ro

eCþ ro

� �
� pHb � pK

log10ðeÞ

� �
� ro

Cs
; ð8Þ

where pHb = �log10(cb
H/1 M). This equation constitutes a nonlinear

mixed boundary condition for the 2D Poisson–Boltzmann equation
described in the following section.

2.3. Electrohydrodynamics in the 2D channel cross section

Much work in nanochannels has involved very large width-to-
height ratios making a 1D approximation valid. However, for smal-
ler aspect ratios, this approximation breaks down and a full 2D
treatment of the channel cross section should at least be checked.
Here, we set out to investigate the model predictions from such a
2D treatment using the chemical-equilibrium surface charge mod-
el of the previous section. For the experimental systems of interest
in this work, the aspect ratio of the rectangular nanochannels
ranges from 27 to 0.5, and in some cases involve overlapping or
nearly overlapping electrical double layers, see Section 4. We verify
our theoretical model by comparing the predictions with two inde-
pendent sets of measurements: electro-osmotically driven flow
and pressure-generated streaming currents.

For a straight nanochannel of length L along the x-axis, width w
along the y-axis, and height 2h along the z-axis, the domain of
interest is the 2D cross-sectional geometry of the nanochannel par-
allel to the yz-plane. The electrohydrodynamics of the electrolyte is
governed by the Poisson–Boltzmann equation of the electric poten-
tial /(y,z) coupled to the Stokes equation of the axial velocity field
u(y,z). The electric potential obeys the Poisson equation

��r2/ðy; zÞ ¼ qelðy; zÞ; ð9Þ

where qel is the electric charge density, which for Boltzmann-
distributed ions is given by

qelðy; zÞ ¼ e
X

X

XpX

zX¼nX

zXcb
X;zX
ðy; zÞ exp � zXe/ðy; zÞ

kBT

� �
: ð10Þ

Together, Eqs. (9) and (10) form the Poisson–Boltzmann equation.
The nonlinear, mixed boundary condition for / is

n � $/ ¼ �1
�
roð/dÞ; at the d-surface; ð11Þ

where n is the surface normal vector pointing into the electrolyte.
Together with Eq. (8) this constitutes a mixed nonlinear boundary
condition which can be neatly implemented using the weak form,
finite element modeling formalism in COMSOL as described in the
Supplementary information.

The Reynolds number for the flow of the electrolyte in the long,
straight nanochannel is much smaller than unity, so the velocity

Table 2
List of the chemical families X used in this work together with charge states zX, the
associated reaction schemes, and reaction constants pKX,zX

= �log10(KX,zX/1 M). Note
that the pKX,zX

values are for dissociation processes. The silanol family involves
surface reactions, while all other families involve bulk reactions.

Chemical family X zX Reaction scheme (dissociation) pKX,zX

Potassium 0 KOH –
hydroxide +1 KOH �K+ + OH� 14.00 a

Sodium 0 NaOH –
hydroxide +1 NaOH �Na+ + OH� 14.00 a

Hydrochloric 0 HCl –
acid �1 HCl �Cl� + H+ �7.00 a

Boric 0 HB(OH)4 –
acid +1 HB(OH)4 �BðOHÞ�4 þ Hþ 9.24 a

Carbonic 0 H2CO3 –
acid �1 H2CO3 � HCO�3 þHþ 6.35a

�2 HCO�3 �CO2�
3 þHþ 10.33a

Water 0 H2O
±1b H2O � OH� + H+ 14.00

Silanol 0 SiOH –
�1 SiOH � SiO� + H+ 6.6

±0.6 c

a From Ref. [41] at 25 �C.
b For sum over OH� and H+ ions see the remark after Eq. (1c).
c From Refs. [42,25,31,43,27,29].
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field is governed by the Stokes equation with a body-force density.
From symmetry considerations, it follows that only the axial veloc-
ity component is non-zero and depends only on the transverse
coordinates. In this work, the flow is either purely electro-osmoti-
cally driven or purely pressure driven, and the resulting velocity
field is denoted ueo and up, respectively. The Stokes equation for
the two cases becomes

r2ueoðy; zÞ ¼ �qelðy; zÞ
DV
gL

; ð12aÞ

r2upðy; zÞ ¼ �
Dp
gL

; ð12bÞ

where we have assumed that the gradients along x in the electric
potential and in the pressure, due to the applied potential difference
DV and applied pressure difference Dp, respectively, are constant.
For both velocity fields, the usual no-slip boundary condition ap-
plies at the wall (the d-surface)

ueo ¼ up ¼ 0; at the d-surface: ð13Þ

Note that in our model the electric and hydrodynamic fields / and u
are only coupled in the electro-osmotic case, Eq. (12a).

Once the electric charge density qel(y,z), the electro-osmotically
driven velocity field ueo(y,z), and the pressure-driven flow velocity
up(y,z) have been determined, the area-averaged electro-osmotic
flow velocity hueo i and the streaming current Ip can be found as

hueoi ¼
1

hw

Z w

0
dy

Z h

0
dz ueoðy; zÞ; ð14aÞ

Ip ¼ 2
Z w

0
dy

Z h

0
dz qelðy; zÞupðy; zÞ: ð14bÞ

2.4. Non-dimensionalization

To facilitate our numerical implementation, we non-dimension-
alize our equations. We introduce the thermal voltage /T, the
velocity scale uo, the capacitance scale Co, and the streaming cur-
rent scale Io

p

/T ¼
kBT

e
; uo ¼

k2
DDp
gL

; ð15aÞ

Co ¼
e2C
kBT

; Io
p ¼ ecI

k4
DDp
gL

: ð15bÞ

Grouping quantities with dimension of length r = {y,z,h,w}, we de-
fine our dimensionless quantities, denoted by a tilde, as

~r ¼ r
kD
; ~u ¼ u

uo
; eC s ¼

Cs

C o
; eCdl ¼

Cdl

Co
; ð16aÞ

~/d ¼
/d

/T
; ~ro ¼

ro

eC
; ~qel ¼

qel

ecI
; eIp ¼

Ip

Io
p
; ð16bÞ

where Cdl = �/kD is the low-voltage diffuse-layer capacitance. As we
are especially interested in the effects occurring when the electric
double-layers overlap, kD is chosen as normalization for the length
scales. The non-dimensionalized governing equations become

~r2 ~/ð~y;~zÞ ¼ �1
2

~qelð~y;~zÞ; ð17aÞ
~r2~ueoð~y;~zÞ ¼ �v~qelð~y;~zÞ; ð17bÞ
~r2~upð~y;~zÞ ¼ �1; ð17cÞ

where v = cIeDV/Dp is the dimensionless electrohydrodynamic cou-
pling constant. The corresponding dimensionless boundary condi-
tions at the d-surface are

~/d ¼ ln
�~ro

1þ ~ro

� �
� pHb � pK

log10ðeÞ
�

~roeC s

; ð18aÞ

n � ~$~/ ¼ �
~roeCdl

; ð18bÞ

~ueo ¼ ~up ¼ 0: ð18cÞ

The non-dimensionalized area-averaged electro-osmotic velocity
and streaming current eIp become

h~ueoi ¼
1

~h ~w

Z ~w

0
d~y

Z ~h

0
d~z ~ueoð~y;~zÞ; ð19aÞ

eIp ¼ 2
Z ~w

0
d~y

Z ~h

0
d~z ~qelð~y;~zÞ~upð~y;~zÞ: ð19bÞ

3. Numerical simulation

Numerical simulations are performed using the finite-element-
method software COMSOL combined with Matlab by implementing
in 2D the dimensionless coupled equations of Section 2.4. The
nonlinear, mixed boundary condition Eqs. (18a) and (18b) for the
electrostatic problem is conveniently implemented using the meth-
od of Lagrange multipliers as described in the Supplementary
information.

Due to the two symmetry lines of the rectangular cross section,
we only consider the lower left quarter of the channel cross sec-
tion. At the symmetry lines, we apply standard symmetry bound-
ary conditions

n � ~$~/ ¼ 0; ð20aÞ
n � ~$~ueo ¼ 0; ð20bÞ
n � ~$~up ¼ 0: ð20cÞ

To avoid numerical convergence problems near the corners of the
cross section and to mimic fabrication resolution, we represent
the corners by 1-nm-radius quarter circles.

The simulation accuracy has been checked in several ways. For
very large aspect ratios, the 2D results agree well with those ob-

Table 3
The cross-sectional geometry of the eight different 20-mm-long channels used in experiments: average width w (±standard deviation Dw), average height 2h (±standard
deviation Dh), aspect ratio w/(2h), dimensionless channel half-height ~h ¼ h=kD, and relative deviation in the streaming current between 1D and 2D modeling d1D,2D. ~h and d1D,2D

are listed for the 1 mM KCl solution (pH 5.6 and kD = 10 nm) and for the 10 mM borate buffer (pH 9.24 and kD = 2 nm).

# w ± Dw (nm) width 2h ± Dh (nm) height w/(2h) aspect ratio ~h KCl 1 mM d1D,2D KCl (%) ~h borate 10 mM d1D,2D borate (%)

1 1043 ± 100 38.6 ± 0.6 27.0 2.0 1.0 10 0.3
2 1090 ± 100 68.8 ± 0.8 15.0 3.6 1.3 16 0.3
3 1113 ± 100 82.5 ± 0.5 13.5 4.3 1.3 19 0.3
4 1118 ± 100 103 ± 0.6 10.9 5.4 1.4 24 0.3
5 1021 ± 100 251 ± 0.8 4.1 13 1.6 59 0.4
6 1099 ± 100 561 ± 1.0 2.0 29 1.6 131 0.3
7 1181 ± 100 1047 ± 2.0 1.1 55 1.5 245 0.3
8 1067 ± 100 2032 ± 2.0 0.5 106 1.7 475 0.4
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tained by a standard 1D method from the literature (data not
shown). In addition, mesh convergence tests have been performed
and show good convergence properties; an example is given in the
Supplementary information of a plot of the calculated streaming
current Ip as a function of the number of finite elements. Adequate
convergence is achieved when employing more than a few thou-
sand elements. Finally, by direct substitution of the computed
solution, we have verified that the nonlinear, mixed boundary con-
dition Eqs. (18a) and (18b) is obeyed. All tests we have performed
support the claim that our predicted currents should be accurate to
a relative error of 10�4 or better.

Qualitative color plots of calculated ~/ð~y;~zÞ; ~ueoð~y;~zÞ, and ~upð~y;~zÞ
are shown in Fig. 2 for the nanochannel cross sections having the
largest and smallest aspect ratio, w/(2h) = 27 in panel (a) and 0.5
in panel (b), respectively. Parameters correspond to the case of
an aqueous 1 mM KCl solution (pH 5.6 and kD ’ 10 nm) in bare sil-
ica channels (Cs = 0.3 F m�2, C = 5.0 nm�2, and pK = 6.6). In the
shallow channel, panel (a), corresponding to channel #1 in Table 3
with w/(2h) = 27 and ~h ¼ 2, all three fields ~/; ~ueo, and ~up, depend
only on the z-coordinate except for the small edge region; thus, a
1D approximation is valid. In contrast, for smaller aspect ratio,
see panel (b), corresponding to channel #8 in Table 3 with w/
(2h) = 0.5 and ~h ¼ 106, only ~/ and ~ueo can locally be approximated
by a 1D model, whereas this is clearly not the case for the pressure-
driven velocity field ~up.

Furthermore, using our 2D model, we find that employing
either constant-potential or constant-surface-charge boundary
conditions is not accurate for small aspect-ratio channels. For the
smallest channel height, ~h ¼ 2:0, we plot in Fig. 3a the relative
deviation for quantity f

d1D;2D ¼
f1D � f2D

f2D
; ð21Þ

of the locally varying value from the 2D model to that from a corre-
sponding 1D model for the zeta potential /d (thick red curve) and

the surface charge ro (thin blue curve) along the normalized arc-
length s of the d- and o-surfaces. This clearly shows the dependence
of these variables on the position along the boundary of the 2D
cross section: near the corners, the value of the potential increases
about 25% and the surface charge drops about 30%. The inset in
Fig. 3a shows the case with a higher degree of double-layer overlap,
~h ¼ 0:5, and with smaller aspect ratio w/(2h) = 5. Comparing the in-
set with the figure, it is clear that as the double-layer overlap be-
comes larger and the aspect ratio smaller 2D corner effects
becomes increasingly significant as compared to a 1D model. We
can therefore conclude that significant changes can be induced at
corners in 2D domains in the chemical-equilibrium model. We
now turn to look at how the combined effects from the equilibrium
model and the presence of side-walls due to finite aspect-ratio
geometries influence the difference between 1D and 2D modeling.

In Fig. 3b is shown a log-log plot of the relative deviation d1D,2D of
the value from the 2D model of the area-averaged electro-osmotic
velocity hueoi ¼

R
X ueoðy; zÞdA (black), the streaming current Ip

(black), the surface-averaged zeta-potential
R
@X /dds (inset, red),

and the surface-averaged surface-charge
R
@X r ods (inset, blue) to

the corresponding values from a 1D model as a function of the as-
pect ratio w/(2h). Three different cases are shown: strong double-

(a)

(b)

Fig. 3. The effect of corners calculated in 2D. (a) Relative deviation between the
locally varying value from the 2D model and the constant value from a 1D model of
the zeta potential /d (thick red curve) and surface charge ro (thin blue curve) versus
the normalized arc-length along the d- and o-surface for channel #1 in Table 3 with
1 mM KCl, ~h ¼ 2 and w/(2h) = 27. The inset shows the case of ~h ¼ 0:5 and w/(2h) = 5.
(b) Relative deviation of the value from the 2D model of the area-averaged electro-
osmotic velocity hueoi (black), the streaming current Ip (black), the surface-average
of /d (inset, blue), and the surface-average of ro (inset, red) to the corresponding
values from a 1D model versus the aspect ratio w/(2h) for ~h ¼ 0:5 (full curves), ~h ¼ 2
(dashed curves) and ~h ¼ 13 (dotted curves). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

(a)

(b)

Fig. 2. Color plots (blue = zero, red = maximum) of calculated electric potential
~/ð~y;~zÞ, electro-osmotic flow velocity ~u eoð~y;~zÞ, and pressure-driven flow velocity
~upð~y;~zÞ in the lower left corner of the rectangular nanochannel cross section. Full
lines are the silica walls, while dashed lines are symmetry lines. Parameters
correspond to the case of an aqueous 1 mM KCl solution (pH 5.6 and kD ’ 10 nm) in
bare silica channels (Cs = 0.3 F m�2, C = 5.0 nm�2, and pK = 6.6). (a) The shallowest
channel used in our study; channel #1 in Table 3 with w/(2h) = 27 and ~h ¼ 2. (b) The
tallest channel used in our study; channel #8 in Table 3 with w/(2h) = 0.5 and
~h ¼ 106. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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layer overlap, ~h ¼ 0:5 (full curves), moderate overlap, ~h ¼ 2:0
(dashed curves, corresponding to channel #1 in Table 3), and no
overlap, ~h ¼ 13 (dotted curves, corresponding to channel #5 in
Table 3). Large deviations are observed for the streaming current
in channels with aspect ratio close to unity: d1D,2D = 56% for
~h ¼ 0:5, 38% for ~h ¼ 2 and 7% for ~h ¼ 13. We also note that as the
aspect ratio increases, the relative deviation becomes smaller with
a slope close to �1 in the log-log plot indicating that the relative
deviation is inversely proportional to the aspect ratio. It is remark-
able that the relative deviations for the area-averaged electro-os-
motic flow velocity and the streaming current are nearly identical
and that they therefore cannot be distinguished in Fig. 3b.

To obtain a significant deviation d1D,2D between the 1D and 2D
models, the corner regions must be significant, and thus the aspect
ratio must be low (2h � w) and the double layers must overlap
ð~h � 1Þ. Theoretically, this follows from the observations that the
electrokinetic effects are governed by the smallest length scale kD

and the 2D dependence of the velocity field is unimportant: for a
smooth, cusp-less surface we denote the local normal and tangen-
tial coordinates relative to the surface by m and s, respectively.
Away from the corners, we have qel(m,s) � qel(m), which decays
on the small scale kD. Hence, by a Taylor expansion of the velocity
around the no-slip value at the boundary, we obtain
qelðmÞupðm; sÞ � qelðmÞmn � $up. Neglecting corner effects (an error
of the order 1=~h) and introducing Jqel

¼
R1

0 mqelðmÞdm, the streaming
current can therefore be written as

Ip ¼
Z

X
qelupdmds � Jqel

Z
@X

n � $upds ¼ Jqel

Z
X
�r2upda

¼ Jqel

Dp
gL

hw; ð22Þ

which gives the same result in 1D and in 2D. If the 1D approxima-
tion involves neglecting the entire edge region, we expect
d1D,2D � 2h/w as seen in Fig. 3. If only the corner regions (of size
kD) are neglected, we expect d1D;2D � 1=~h. From Table 3 for the 1-
mM KCl solution, we expect channels #1–4 to have d1D,2D [ 1%
due to 2h/w [ 1%, channels #6–8 to have d1D,2D [ 3% due to
1=~h K 3%, and channel #4 to have d1D,2D � 7% due to 1=~h � 7%.
The actual values are d1D,2D < 2%. The deviations for the 10-mM bo-
rate are expected to be even lower as ~h is lower, and we see that
d1D,2D < 0.4%. Although for the parameters set by our experimental
channels there is not a significant difference between 1D and 2D
modeling, Fig. 3 shows for which parameters this in fact is the case.

4. Experimental

The theoretical model presented above is tested against stream-
ing current and electro-osmosis experiments performed on eight
different in-house fabricated silica nanochannels, with either bare
or cyanosilane-coated walls, and with two different electrolytes, a
1 mM KCl solution and a 10 mM borate solution.

4.1. Device fabrication and electrolytes

We fabricated nanochannel devices in fused-silica wafers
(Hoya, model 4W55-325-15C) using conventional MEMS process-
ing techniques. The fabrication protocol was originally developed
at the Stanford Nanofabrication Facility (SNF), and detailed fabrica-
tion steps and guidelines for fabricating nanochannel devices are
reported elsewhere [44]. Briefly, standard photolithography was
used with very short etching processes to yield channels with
micrometer lateral features and nanometer depths. In this particu-
lar study, we used a reactive ion etcher to fabricate straight aniso-
tropic channels of length L = 20 mm with rectangular cross

sections of width w = (1.0 ± 0.1) lm and with eight different
heights 2h varying nominally from 40 nm to 2000 nm, as outlined
in Table 3. Prior to bonding the channel heights 2h were measured
using a profilometer, AFM, and/or SEM at three different locations
(2 mm, 4 mm, and 6 mm) along the channel, and as verified by
AFM the channels showed a roughness of less than 0.2 nm rms.
Each wafer resulted in 6–12 channels at the desired height,
depending on yield (50–100%). The channels were connected to
two 2-mm-diameter reservoirs designed to serve as filters and sup-
port structures, as well as to minimize dead volume in the channel,
Fig. 4a.

To fabricate the wafer lid, we drilled via holes in a second, fused
silica wafer. To create the enclosed nanochannel device, we perma-
nently sealed the channel wafer and lid wafer using a thermal dif-
fusion bonding process [44]. Additionally, as also described in Ref.
[14], we coated one channel from each wafer with cyano-silane (3-
cyanopropyldimethylchlorosilane, Gelest, Inc.) to minimize
adsorption of analyte and inhibit silica dissolution at the channel
surface. The coatings were applied by filling the channels with a
1 M solution of cyano-silane in acetonitrile and leaving the solu-
tion in the channels for 12 h, which is expected to saturate the
available negatively charged sites (’25% of all silanol groups) with
a neutral head group [38]. The channels were then rinsed and im-
mersed in ethanol to prevent polymer formation during storage.

In this study, we used 1 mM KCl solutions prepared by dissolv-
ing KCl pellets (EMD chemicals) in deionized water, as well as
10 mM sodium borate buffer (Na2B4O7�10H2O) prepared by dis-
solving NaOH pellets (Sigma, Inc.) into Borax solution (Sigma,
inc), titrating until the desired pH (9.2) was achieved, and finally
diluting to 10 mM. The bulk conductivity and pH of the prepared
solutions were periodically measured to make sure that variations
(due to temperature and humidity) did not exceed 5% of the origi-
nal value. All solutions were filtered with 0.2-lm syringe filters

(a)

(b)

(c)

Fig. 4. (a) Side-view sketch of a nanofluidic channel used in our study. Channel
lengths are typically (20 ± 1) mm, with inlet and exit diameters of 2 mm. Channel
heights 2h vary from (38.6 ± 0.6) nm to (2032 ± 2) nm. KCl or borate buffers were
the working electrolytes; channels were fabricated from fused silica, with one set
coated with cyanosilane. (b) Experimental setup schematic depicting flow path of
electrolyte during streaming current measurements. A high-pressure tank (rated to
6000 psi) is regulated down to the desired pressure of 8 MPa through two
regulators. A sourcemeter is used in combination with a pressure transducer to
electronically record pressure. A 1-fA-sensitivity electrometer is used to measure
streaming currents through a custom-built chipholder. (c) Close-up sketch of the
chipholder.
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prior to use, (Nalgene, Inc.). Buffer exchanges were performed in a
systematic fashion to avoid introducing bubbles or particulate
matter into the channels.

4.2. Experimental setup

Electrical and fluidic connections to the nanochannels were
made via a custom-built, high-pressure chipholder, Fig. 4b and c.
Electrical connections were established by inserting silver-silver
chloride (Ag/AgCl) electrodes through the top piece of the chip-
holder into the channel reservoirs. We soldered stainless steel tub-
ing directly into the chipholder and established fluidic connections
between the chipholder and channel reservoirs with precision O-
rings (Applerubber, Inc.). A high-impedance electrometer (Keithley
6517) controlled by Labview was used to measure the streaming
current (sampling frequency of 400/min) across the nanochannel.
We also fabricated a home-built Faraday cage to shield the entire
setup from electromagnetic radiation. We controlled the applied
pressure using two high-pressure single-stage regulators that
could regulate pressure between 0 and 40 MPa (�6000 psi), and
monitored the pressure with a high-precision pressure transducer
(Kobold Instruments, KPK050002121). A source meter (Keithley
2410) controlled by Labview was used to both power the trans-
ducer and record the output (sampling frequency of 95/min).

4.3. Experimental procedure

Upon first use, the channel is filled with filtered deionized water
via capillary action. After initial filling, the channel is examined un-
der an epifluorescent microscope (Olympus IX70) fitted with a 40
X water immersion objective (N.A. 0.95) to ensure there are no
bubbles within the channel. Then, we apply a pressure drop of
3 kPa along the channel to remove any unseen air bubbles and to
achieve a stable streaming current. Once a stable current is estab-
lished, the device is removed from the experimental setup, fluid
from the wells is removed and the well is flushed five times with
a pipettor, and the appropriate solution is placed in both wells.

Next, we perform current monitoring, following techniques of
Sze [45], to determine the average experimental electro-osmotic
velocity uexp

eo
� �

of the system. Briefly, as in Ref. [14], one reservoir
is filled with a background electrolyte with a concentration 0.9c�

of the target concentration c�. Then, we raise the voltage of that
well from zero to DV (relative to the other well that remains
grounded) to allow for constant electro-osmotic flow to fill the
channel with the electrolyte of concentration 0.9c�. After applying
the voltage, the system is allowed to equilibrate for about 15 min.
Finally, all liquid is removed from the well that still contains deion-
ized water and replaced with electrolyte of concentration c�. Volt-
age is applied with the opposite polarity and the current was
monitored over time, as shown in Fig. 5a as the c� concentration
gradually replaces the 0.9c� concentration in the nanochannel.
Voltages are applied and current is monitored using a digital mul-
timeter (Model 2410, Keithley) controlled with LabView. Platinum
wires served as electrodes. Finally, uexp

eo
� �

is determined as

uexp
eo

� �
¼ L

Dt
; ð23Þ

where Dt is the time it took the c� concentration to traverse the
channel length L. Because the current monitoring procedure does
not require an applied pressure gradient, and occurs in less than
1 h, we assumed negligible dissolution of the walls during this time
period.

Once the channels are filled with their respective solutions
and initial current measurements are taken, a pressure drop
Dp = 8 MPa is applied for a period of 48 h and sampled every sec-

ond, while the resulting streaming current Ip is sampled at a rate
of 16,000 measurements per hour. For each channel height, we
performed experiments on bare silica channels with 1 mM KCl,
bare silica channels with 10 mM borate, and cyanosilane-coated
channels with 10 mM borate buffer. The number of channels
used per experiment varied from 1 to 4 depending on the fabri-
cation yield. Typical raw data of Dp(t) and Ip(t) are shown in
Fig. 5 for measurements on 1 mM KCl in channel #1 [panel
(b–c)] and #7 [panel (d–e)], respectively. To verify that the pres-
sure remains constant while the current increases over time, we
fit the pressure and streaming current data using the expression
Dp(t) = (@Dp/@t) t + Dp(0) and Ip(t) = [@Ip/@t]meast + Ip(0), respec-
tively, via the build-in Matlab function nlinfit. Besides the fitting
parameters @Dp/@t, Dp(0), [@Ip/@t]meas and Ip(0) the function also
gives their associated uncertainties based on 95% confidence
intervals. Using this information we note that for the representa-
tive cases in Fig. 5 the relative change of pressure and current
over the measurement period Dt = 48 h is for channel #1

@Dp
@t

Dt
Dpð0Þ ¼ ð0:2� 0:2Þ � 10�4; ð24aÞ

@Ip

@t

� �
meas

Dt
Ipð0Þ

¼ ð153:4� 1:0Þ � 10�4; ð24bÞ

and for channel #7

(a)

(b)

(c)

(d)

(e)

Fig. 5. (a) Typical raw data (green points) from an electro-osmotic flow filling
experiment showing the current Ieo versus time t, as well as fitting lines (blue). (b)
Measured applied pressure drop Dp (green points) versus time over a 48-h time
period for 1 mM KCl solution (pH 5.6 and kD = 10 nm) in channel #1 (for clarity only
	2000 out of 172,800 data points are shown). Also shown is the fitting line (blue)
from which the slope @Dp/@t with associated uncertainty is determined. (c) The
measured streaming current Ip (green points) resulting from the applied pressure
drop in panel (b) versus time (for clarity only 	2000 out of 768,000 data points are
shown). From the fitting line (blue), the slope [@Ip/@t]meas and initial current Ip(0)
with associated uncertainties are determined. (d–e) The same as panels (b) and (c)
but for channel #7. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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@Dp
@t

Dt
Dpð0Þ ¼ ð�0:1� 0:4Þ � 10�4; ð25aÞ

@Ip

@t

� �
meas

Dt
Ipð0Þ

¼ ð33:1� 2:3Þ � 10�4; ð25bÞ

Hence, since the relative change in the current is two to three orders
of magnitude larger than that of the pressure, we rule out that any
systematic change in Dp(t) could be responsible for the rise in Ip(t).

Finally, we take the streaming current for a given experimental
condition to be Ip = Ip(0) in the aforementioned fit as the channels
have their nominal height at t = 0. The experimental uncertainty,
from e.g. pressure fluctuations and noise from the electrometer,
can then be estimated from the 95% confidence interval half-width
DIp(0). For the experimental conditions in Fig. 5, the relative uncer-
tainty DIp(0)/Ip(0) of the streaming current is 	5 � 10�5 for chan-
nel #1 and 	1 � 10�4 for channel #7. In Fig. 6 we plot Ip versus
height h for three different cases. The experimental uncertainty
DIp(0)/Ip(0) of order 	10�4 is negligible in comparison to the
uncertainty from the 10% variation in the surface pK-value, which
is indicated by the non-solid curves.

5. Results and discussion

5.1. The electro-osmotic velocity

Using the procedure described in Section 4.3, the average elec-
tro-osmotic flow velocity huexp

eo i, Eq. (23), was determined for the

tallest nanochannel, #8 in Table 3, for bare silica walls with
1 mM KCl and with 10 mM borate, and for coated silica walls with
10 mM borate. The theoretically predicted electro-osmotic flow
velocity huthr

eo i was determined using Eq. (19a), and the results
including uncertainties are

1 mM KCl; bare

uexp
eo

� �
¼ ð7:0� 0:4Þ lm

s
; huthr

eo i ¼ ð5:6� 1:8Þ lm
s
; ð26aÞ

10 mM borate; bare

uexp
eo

� �
¼ ð8:3� 0:4Þ lm

s
; huthr

eo i ¼ ð8:4� 0:8Þ lm
s
; ð26bÞ

10 mM borate; coated

uexp
eo

� �
¼ ð7:0� 0:4Þ lm

s
; huthr

eo i ¼ ð7:0� 0:7Þ lm
s
: ð26cÞ

In all three cases, the agreement between theory and experiment is
good and within the given experimental and theoretical uncertain-
ties. The relative deviations are of the order of 10%. The theoretical
uncertainties are dominated by the assignment of pK as shown in
Table 2, while the experimental ones are mainly due to the width
measurements, see Table 2. The theoretical values are based on
the full 2D model and account for relative deviations of ueo from
the flat-wall value, as shown in Fig. 3b

5.2. The streaming current

Results for the streaming current are shown in Fig. 6 as log-log
plots of measurements (symbols) and theoretical predictions (full
black curve, 2D model) of streaming current Ip versus channel
height 2h for the three different conditions tested: 1 mM KCl in
bare channels (open red circles), 10 mM borate in bare channels
(filled red circles), and 10 mM borate buffer in cyanosilane-coated
channels (open blue squares). There are no adjustable parameters,
and the agreement between theory and experiment is good, within
10%.

We find that the two parameters that have the largest influence
on the uncertainty in the 2D modeling are the channel width and
the surface pK-value. In Table 3 is given an estimate of the error
in the width of the channel of 10%. An equivalent 10% uncertainty
in the pK-value is estimated based on literature values
[42,25,31,43,27,29]. We find that of the two parameters the pK-va-
lue (pK = 6.6 ± 0.6, Table 2) dominates the resulting uncertainty in
the 2D model. We therefore find the error bounds by calculating Ip

using pK = 6.0 (dash-dotted lines) and 7.2 (dashed lines), respec-
tively. For the experimental uncertainty, and as discussed in
Section 4.3, the 95% confidence interval half-width DIp(0) for the
fitted streaming current Ip = Ip(0) typically yield a relative uncer-
tainty DIp(0)/Ip(0) 	 10�4, which is negligible in comparison with
that from the pK-variation discussed earlier and not discernable
in Fig. 6. Finally, based on the above uncertainties, we see from
Fig. 6 that the measured data points lie within the error curves.

The insets of Fig. 6b and c show the experimental data plotted
relative to the data from borate in bare channels. These plots high-
light the behavior of our systems with coated channels as well as
with a lower concentration buffer. First, it can be seen that the
streaming current decreases by about 20% when the number of
available surface sites is reduced by surface coating, going from
10 mM bare borate (C = 5.0 nm�2) to the 10 mM coated borate
(C = 3.8 nm�2). This reduction in streaming current is fairly con-
stant across channel heights, which is consistent with the assump-
tion that only the surface charge density is different. However,
when comparing the streaming current from the 10 mM bare bo-
rate channel to the 1 mM bare KCl channel, we note that the
streaming current reduction is larger at lower channel heights. This
is due to the fact that the double layers are strongly overlapping in

(a)

(b)

(c)

Fig. 6. Log–log plots of measured (symbols) and predicted (full lines, 2D model
with pK = 6.6) streaming current Ip versus channel height 2h for: (a) 10 mM borate
in bare channels (open red circles), (b) 10 mM borate in cyanosilane coated
channels (filled red circles), and (c) 1 mM KCl in bare channels (open blue squares).
Estimated theoretical error bounds are found using pK = 6.0 (dash-dotted lines) and
pK = 7.2 (dashed lines). The relative experimental error is negligible, of order 10�4

as discussed in Section 4.3, and therefore undiscernable in the plot. The insets of
panel (b) and (c) show the relative deviation of the same experimental data Ip from
those of the 10 mM borate bare silica channel, Ibb

p . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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this regime (whereas with 10 mM borate the double layers are still
non-overlapping), which clearly reduces the streaming current.

Having verified the accuracy of the model for the forward prob-
lem, i.e., predicting streaming currents in the nanochannels of
interest, we next turn to the inverse problem of estimating disso-
lution rates given extended time-sensitive streaming current
measurements.

5.3. Method for determining dissolution rates

In geological systems, it has been found that saline solutions
flowing through porous silicates dissolve the solid matrix at a rate
of approximately 0.01 mg/m2/h [46]. Given that the density of
fused silica is 2203 kg/m3, we obtain

1
mg

m2h
	 0:4539

nm
h
¼ 1:26� 10�13 m

s
; ð27aÞ

or conversely

1
m
s
¼ 7:93� 1012 mg

m2h
: ð27bÞ

The mechanism of silica dissolution is complex and not yet well
understood, but one mechanism for the dissolution discussed in
the literature [46] is shown in Fig. 7.

Here, we propose a method for determining dissolution rates
under controlled experimental conditions using our model and
experimental data. Referring back to Fig. 5b and c, we note that
although the applied pressure drop remains constant over a period
of 48 h, the streaming current steadily rises. This fact, together
with the following three assumptions, forms the basis of the meth-
od: (i) all changes in current are due solely to dissolution of the
wall, aided by the continuous renewal of fresh buffer by the axial
flow; (ii) ionized silanol radicals are few and highly unstable and
thus do not contribute to the current; (iii) spatial variations in
the dissolution rate are averaged out over the entire surface of
the channel.

To calculate dissolution rates, we use Eq. (14b) to obtain a
numerical estimate for the change dIp in the streaming current as
a function of the change dA = 2(w + h) d‘ in the cross-sectional area
A, in terms of the (small) thickness d‘ of the dissolved layer,

@Ip

@‘

� �
calc
¼ @Ip

@A
@A
@‘
� 1

d‘
IpðAþ dAÞ � IpðAÞ
� 	

; ð28Þ

where we choose d‘ = 0.01h. Combining this with the experimen-
tally measured rate of change [@Ip/@t]meas of the streaming current,
Fig. 5c, yields the dissolution rate dm/dt per unit area (in units of
mg/m2/h) as,

dm
dt
¼ 7:93� 1012 mg

m2h
s
m
� @Ip

@t

� �
meas
� @Ip

@‘

� ��1

calc
: ð29Þ

In the Supplementary information, we list the numerical values of
[@Ip/@t]meas, [@Ip/@l]calc, and dm/dt for each experimental condition.

The theoretically predicted dissolution rates based on measured
[@Ip/@t]meas for our experimental nanochannel system are shown
in Fig. 8. We note that the estimated rates are on the same order
of magnitude as previous results in the field of geological systems
[46], which allows us to believe that our method is viable for silica
dissolution studies. Furthermore, also in agreement with earlier
findings [9], the dissolution rate increases as pH and ionic strength
increase going from 1 mM KCl (pH 5.6) to 10 mM borate (pH 9.2) in
bare silica channels. Other studies have pointed out that electric
double-layer interaction in un-confined geometries increases the
dissolution rates [9]. This we also see in our calculations, as the dis-
solution rate increases when the double layers start to overlap as
the channel half-height h is decreased. A final point that corrobo-
rates our model is the prediction of a negligible dissolution rate
(fluctuates around zero) for the cyanosilane-coated channel, a
well-known feature from other studies [38,47,48].

On top of this, we can use our model for novel studies of silica
dissolution, for example the influence of extreme confinement.
From Fig. 8 we note that the increase in dissolution rate starts ear-
lier for 1 mM KCl than 10 mM borate as channel height decreases,
indicating that this may be due to electric double layer effects.
However, because the peak is roughly at the same height for both
cases, diffusion-limited dissolution may be the dominating physics
at small channel heights. This is in line with a common viewpoint
about dissolution, which holds that charges such as OH� near the
wall catalyze de-polymerization and that the newly dissolved sila-
nol radicals diffuse away from the surface.

In general, using our method of hours-long streaming current
measurements will enable systematic studies of the mechanism
underlying dissolution of silica in a number of controlled experi-
ments: The channel geometry can be varied from the case of thin
non-overlapping double layers in very tall microchannels to that
of strongly overlapping double layers at extreme confinement in
very shallow nanochannels. Diffusion limited dissolution rates
and the effect of continuous renewal of buffer can be studied
through varying the imposed pressure-driven electrolyte flow.
The chemical conditions can be varied through the detailed com-
position and ionic strength of the buffer as well as the coating con-
ditions of the surface. The small size of micro- and nanofluidic
systems facilitates accurate temperature control. These advantages
suggest that our method may be useful for future studies of silica
dissolution.

Fig. 7. One proposed mechanism for silica dissolution presented in, and image
adapted from, Ref. [46].

Fig. 8. Predicted silica dissolution rate dm/dt vs. channel height 2h based, via Eq.
(29), on measured [@Ip/@t]meas and calculated [@Ip/@l]calc (numerical values are given
in the Supplementary information). The three curves are for: 1 mM KCl in bare
channel (dash-dotted red curve), 10 mM borate in bare channel (full black curve),
and 10 mM borate in cyanosilane-coated channel (dashed blue curve). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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6. Conclusion

We have advanced the capabilities of our chemical-equilibrium
electrokinetic model to account for pressure-driven flows and full
2D cross-sectional geometries without adjustable parameters.
These advances have been validated against experimental results
on eight bare and cyanosilane-coated silica nanochannels of
heights between 40 nm and 2000 nm for 1 mM KCl solutions and
10 mM borate buffers. Numerical predictions, based on a finite-
element-method implementation of our model, of the electro-
osmotic velocities and streaming currents exhibit good agreement
with measured data, and we have determined when the 2D model
is necessary to employ. Finally, by combining model predictions
with measurements over 48 h of the streaming currents, we have
developed a method to estimate the dissolution rate of the silica
walls, typically around 0.01 mg/m2/h, under controlled experimen-
tal conditions.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jcis.2011.04.011.
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Nanochannel ion transport is known to be governed by surface charge at low ionic concentrations. In this paper,
we show that this surface charge is typically dominated by hydronium ions arising from dissolution of ambient
atmospheric carbon dioxide. Taking the hydronium ions into account, we model the nanochannel conductance
at low salt concentrations and identify a conductance minimum before saturation at a value independent
of salt concentration in the dilute limit. Via the Poisson–Boltzmann equation, our model self-consistently
couples chemical-equilibrium dissociation models of the silica wall and of the electrolyte bulk, parametrized
by the dissociation reaction constants. Experimental data with aqueous KCl solutions in 165-nm-high silica
nanochannels are described well by our model, both with and without extra hydronium from added HCl.

DOI: 10.1103/PhysRevE.83.056307 PACS number(s): 47.57.jd, 47.61.−k, 66.10.−x, 82.65.+r

I. INTRODUCTION

Nanofluidics and specifically, ion transport through ar-
tificial nanochannels, are important for both fundamental
scientific studies and for practical biomolecular and energy-
based applications [1–3]. Of particular interest is the intricate
interplay among surface chemistry, electrokinetics, and fluid
dynamics spanning over molecular and continuum macro-
scopic length scales [4,5]. It has been demonstrated that
the electrokinetic properties at this scale have enabled a
range of innovations including those for chemical sensing
and bioanalytics [6–12], energy harvesting systems, [13–18],
and nanofluidic ion transport [19–26], including enrichment,
depletion, and rectification effects [27–32].

For many of these applications, characterizing and un-
derstanding the conduction properties of electrolyte-filled
nanochannels at low salt concentrations (<10−3 M) is impor-
tant, and this raises the question of the role of hydronium ions.
It is well known that, under standard conditions, the dissolution
of ambient atmospheric carbon dioxide in de-ionized (DI)
water leads to the formation of carbonic acid, which, upon
reaching chemical equilibrium with the water, gives rise to an
inherent concentration of hydronium ions of ∼10−6 M corre-
sponding to pH 5.7. Because hydronium has a uniquely high
mobility, a factor of ∼5 higher than common salt ions, in bulk
solutions, it is found that hydronium ions begin to dominate
the electrical conductivity when the salt concentration is lower
than ∼5 × 10−6 M. Furthermore, hydronium is also known
to interact with the confining walls of the electrolyte. For
oxide walls, most prominently silica, numerous studies have
shown how hydronium affects the electrical properties of the
wall-electrolyte interface and leads to a wall surface charge
that depends on salt concentration [33–44] including our own
recent study [26]. Finally, at sufficiently low salt concentration,
this surface charge is found to dominate the conductance
of electrolyte-filled nanochannels [8,11,19,24,27,28,32,45].
Given these facts, it is remarkable that the role of hydronium
ions is largely unexplored in the literature on nanochannel
conductance at low salt concentrations in unbuffered solutions.

TABLE I. Experimental observations of a nanochannel conduc-
tance minimum at low salt concentration: List of reference, figure
number, year, magnitude δ of the minimum Eq. (21), and the applied
surface-charge model (Const and Dissoc refer to constant surface-
charge and chemical-equilibrium dissociation models, respectively).
All studies involve silica nanochannels and aqueous KCl solutions,
except Stein et al., who used a 50%/50% mixture of isopropanol and
an appropriately diluted KCl : TRIS (100 : 1) solution.

References Figure Year δ Model

[19] Stein et al. 3 (2004) 1.06 Const
[28] Karnik et al. 3 (2005) 1.38 Const
[45] Schoch and Renaud 3 (2005) 1.19 Const
[46] Cheng 2.9 (2008) 1.27 Const
[24] Martins et al. 3 (2009) 1.68 Const
[32] Duan et al. 3 (2010) 1.25 Dissoc

This paper - (2010) 1.18 Dissoc

The main goal of this paper is to provide such an analysis
mainly in terms of theoretical modeling, but also supported
by our own experimental validation. Among the dozens of
papers published on nanochannel conductance, we have only
found a single very recent paper dealing directly with similar
modeling [32].

Another motivation for our paper is to explain the ap-
pearance of a minimum in the nanochannel conductance as
a function of salt concentration, which several groups have
observed, but not noticed, see Table I. The minimum, which
cannot be explained by depletion effects near the entrances,
as this would lead to a decreased conductance at the lowest
salt concentration, is found to occur for salt concentrations
∼5 × 10−6 M, the above-mentioned crossover from salt to
hydronium-dominated conductance. The main result of our
analysis is that our model predicts such a minimum due to the
presence of inherent hydronium ions.

056307-11539-3755/2011/83(5)/056307(10) ©2011 American Physical Society
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II. MODEL

We consider a long straight nanochannel connecting two
large bulk reservoirs. Traditionally, theoretical modeling of
ionic transport in such systems is based on the Gouy–
Chapman–Stern theory of electrostatic screening by the mobile
co- and counterions in an aqueous salt solution of a wall
with constant surface charge, coupled to the continuum
fluid dynamics equations and, thus, forming the Poisson–
Nernst–Planck transport equations [47]. This results in a
monotonic decreasing nanochannel conductance as a function
of decreasing salt concentration that levels off at a plateau in
the dilute limit, as shown in Refs. [19,24,28,45,46] of Table I
as well as in Refs. [8,11,27] and summarized by Fig. 8 in a
recent review paper [2]. However, this is in contrast to the
observed nonmonotonic conductance graphs with a minimum,
and therefore, we choose to base our analysis on the other
well-known class of modeling, where the surface charge is
governed dynamically by chemical reaction constants of the
proton dissociation processes in the bulk electrolyte and at the
wall [26,32–44].

Building on our own recently published work [26], we
extend these previous buffer/wall dissociation models to low
concentration unbuffered electrolyte systems by the addition
of two crucial features: First, we account for hydronium ions
(here denoted as H+ for brevity) from autoprotolysis of water
and from dissociated carbonic acid induced by dissolution of
ambient atmospheric carbon dioxide; and second, we calculate
the surface charge from a self-consistent electrostatic coupling
between hydronium dissociation models of the silanol groups
at the wall and of all the bulk constituents, parametrized
by the associated dissociation constants. Our model consists
of three parts: (i) bulk dissociation reactions determining
the concentrations of the involved H+, OH−, HCO−

3 , CO2−
3 ,

K+, and Cl− ions in the reservoirs, (ii) surface reactions
determining the potential and charge of the nanochannel
surface, and (iii) the Poisson–Boltzmann equation for the
electrical potential coupling the first two parts.

Specifically, following Refs. [26,33–44], we model the
solid/liquid interface as the layered structure shown in Fig. 1.
The innermost plane is the silanol surface at the o plane with
surface charge σo and potential φo. Next is the immobile Stern
layer situated between the o plane and the d plane and having
the capacitance Cs [F/m2]. Following the Stern layer is the
electrically charged diffusive screening layer extending from
the d plane a few times the Debye screening length λD to the
bulk and having surface charge σd and ζ potential φd. The last
layer is the charge-neutral bulk of the reservoirs.

A. Bulk chemistry of the reservoirs

All bulk ionic concentrations in the reservoirs are calculated
using the method of chemical families presented in Ref. [48]
and supplemented by an open-source MATLAB-code buffer
calculator [49]. For this paper, the carbonic acid family H2CO3

with charge states z = 0, − 1, and −2 is of particular interest,

H2CO3 ⇀↽ HCO−
3 + H+, pKHCO−

3
= 6.35, (1a)

HCO−
3

⇀↽ CO2−
3 + H+, pKCO2−

3
= 10.33. (1b)

FIG. 1. (Color online) Model of a silica surface (dark brown)
contacting an aqueous solution of KCl (white). At the bottom, the
four regions of our model have been identified: the silica wall, the
immobile Stern layer (light blue), the diffusive layer, and the bulk.
The dashed line denoted as the o plane is where the bound surface
charge σo resides, while the dashed line denoted as the d plane marks
the beginning of the diffuse mobile layer, a layer stretching from the
d plane to the bulk, and in which a mobile screening charge σd = −σo

resides. Cs is the (Stern) capacitance of the immobile layer. The
potentials at the o and d planes are denoted as φo and φd, respectively.

For DI water with a saturated concentration of carbonic acid
of 11.8 μM at 25 ◦C [50], pH = 5.68, in agreement with our
own experimental measurements. Likewise, the salt KCl is
represented by the potassium hydroxide family KOH, with
charge states z = 0 and +1, together with the hydrochloric
acid family HCl with charge states z = 0 and −1. A list of all
involved chemical families taken into account in our model is
shown in Table II.

When the total concentration c
tot
X of each chemical family

in a given aqueous solution is known, the equilibrium
reactions listed in Table II can be solved with respect to the
bulk concentration c

b
X,zX

of each family member using the
buffer calculator code [49]. This calculational scheme takes
dissociation equilibrium, conservation of mass, and charge
neutrality into account,

KX,zXc
b
X,zX+1 = c

b
X,zX

c
b
H, dissociation reactions, (2a)∑

zX

c
b
X,zX

= c
tot
X , conservation of mass, (2b)

∑
X,zX

zXc
b
X,zX

= 0, charge neutrality. (2c)

As Eqs. (2) describe the bulk ionic composition in the
reservoirs, charge neutrality is a good approximation.

Once the bulk concentrations c
b
X,zX

are known, three param-
eters characterizing the bulk electrolyte can be determined: the
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TABLE II. List of the chemical families X used in this paper
together with the associated reaction schemes, charge states zX, re-
action constants pKX,zX = − log10 (KX,zX/1 M), and electrophoretic
mobilities μ

b
X,zX

. Note that the pKX,zX values are always associated
with dissociation processes.

Chemical Reaction scheme μ
b
X,zX

family X zX (dissociation) pKX,zX [10−9/T]

Carbonic 0 H2CO3 0.0
acid −1 H2CO3 ⇀↽ HCO−

3 + H+ 6.35a −46.1a

−2 HCO−
3

⇀↽ CO2−
3 + H+ 10.33a −71.8a

Potassium 0 KOH 0.0
hydroxide +1 KOH ⇀↽ K+ + OH− 14.00a 76.2b

Hydrochloric 0 HCl 0.0
acid −1 HCl ⇀↽ Cl− + H+ −7.00a −79.1b

Water 0 H2O 362.4c

−1 H2O ⇀↽ OH− + H+ 14.00a −205.2c

Silanol 0 SiOH
−1 SiOH ⇀↽ SiO− + H+ 6.56d

+1 SiOH2
+ ⇀↽ SiOH + H+ −1.90e

aFrom Ref. [52], infinite dilution at 25 ◦C.
bFrom Ref. [53], infinite dilution at 25 ◦C.
cHere, z = 0 represents H+, and z = −1 represents OH−.
dFrom this paper.
eFrom Ref. [38].

ionic strength cI , the dilute-limit electric conductivity σ
o
el, and

the Debye screening length λD,

cI = 1

2

∑
X,zX

z
2
Xc

b
X,zX

, (3a)

σ
o
el = e

∑
X,zX

zXμ
b
X,zX

c
b
X,zX

, (3b)

λD =
[

εkBT

2e2cI

]1/2

. (3c)

At ionic strengths above 1 mM, the dilute-limit elec-
trophoretic mobility μ

b
X,zX

in Eq. (3b) is inaccurate, and we
correct it using the Pitts equation, which, for a 1 : 1 electrolyte
in water at 25 ◦C, takes the form [52]

μ
∗b
X,zX

= μ
b
X,zX

− (
AzX + 0.23|zXzX,ci|μb

X,zX

) √
cI

1 + aB
√

cI

,

(4)

where μ
∗b
X,zX

is the mobility corrected for nonzero ionic
strength, A = 3.1 × 10−8 m2 V−1 s−1 is a constant, zX,ci is the

valence of the counterion, B = 0.33 Å
−1

M−1/2 is a constant,
and a is an effective atomic radius [52]. In this paper, the
conductivity in the high ionic strength regime is dominated
by K+ and Cl− ions, for which a = 3 Å [54], and therefore,
we approximate the electrolyte as binary. We can then use
these two corrected mobilities for K+ and Cl− in Eq. (3b) to
improve the accuracy of our calculated electrical conductivity
in the high ionic strength regime.

B. Nanochannel electrostatics

Near the walls in any given electrolyte system, charge
transfer processes occur between the electrolyte and the
wall, leading to a nonzero electric potential φ(r). Defining
φ to be zero in the bulk reservoirs, and assuming that the
ionic concentrations are small enough to neglect interionic
correlations, the concentration cX,zX

of the ions as a function of
position r in charge state zX of family X can be written in terms
of the bulk concentration c

b
X,zX

multiplied by a Boltzmann
distribution factor as

cX,zX
(r) = c

b
X,zX

exp

[
−zXeφ(r)

kBT

]
, (5)

where we take the electric potential to be zero in the reservoirs.
It simplifies the analysis if we nondimensionalize electric
potentials and concentrations by introducing kBT /e as the
scale for the electric potentials and cI as the scale for the
concentrations. The dimensionless fields, denoted by a tilde,
become

φ̃ = e

kBT
φ, c̃X,zX

= 1

cI

cX,zX
. (6)

Henceforth, the electric charge density can be written as
ρel = ecI

∑
X,zX

zXc̃X,zX
, which together with Eq. (5) leads

to the Poisson–Boltzmann equation for the dimensionless
potential φ̃,

∇2φ̃ = − eρel

εkBT
= − 1

2λ
2
D

∑
X,zX

zXc̃
b
X,zX

e−zXφ̃ . (7)

For a symmetric binary electrolyte, this reduces to the well-
known simple form ∇2φ̃ = sinh (φ̃)/λ2

D.

C. Nanochannel surface chemistry

The total surface density of charge-active silanol sites at
the wall is denoted as �tot [m−2]. In our model, we take
the three charge states z = 0, − 1, and +1 into account,
for SiOH, SiO−, and SiOH2

+, respectively, as well as the
two associated hydronium dissociation processes listed under
silanol in Table II. These surface charge states have the
densities �o, �−, and �+, respectively, and it is natural to
nondimensionalize them relative to �tot to obtain

�̃o = 1

�tot
�o, �̃− = 1

�tot
�−, �̃+ = 1

�tot
�+, (8)

with the obvious normalization condition

�̃o + �̃− + �̃+ = 1. (9)

The hydronium dissociation processes at the wall involve the
concentration c

o
H of the hydronium ions at the o plane, which,

through the Boltzmann distribution, is related to the bulk
concentration c

b
H. Consequently, the dimensional dissociation

constants K± for the two surface processes as well as their
nondimensionalized counterparts K̃± = K±/c

b
H become

K− = �−
�o

c
b
He−(e/kBT )φo , K̃− = �̃−

�̃o

e−φ̃o , (10a)

K+ = �o

�+
c

b
He−(e/kBT )φo , K̃+ = �̃o

�̃+
e−φ̃o . (10b)
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The physical pK values pK± = − log10 (K±/1 M) are listed
in Table II. The surface charge σo and its nondimensionalized
counterpart σ̃o normalized by e�tot are

σo = e(�+ − �−), σ̃o = �̃+ − �̃−. (11)

Finally, by straightforward algebra combining Eqs. (9)–(11),
we eliminate �̃o, �̃+, and �̃− and obtain an expression of σ̃o

in terms of φ̃o and K̃±,

σ̃o(φ̃o) = e−2φ̃o − K̃+K̃−
e−2φ̃o + K̃+e−φ̃o + K̃+K̃−

. (12)

D. Relating the surface to the bulk

The above surface and bulk ionic concentrations can
be coupled by the Poisson–Boltzmann equation. Whereas,
hydronium ions can diffuse to the o plane, other ions may
not penetrate past the d plane, forming the immobile Stern
layer depicted in Fig. 1.

Following the Gouy–Chapman–Stern model, we introduce
the Stern capacitance Cs [F/m2] (nondimensionalized as C̃s).
It enters in an assumed linear relation between the voltage drop
φo − φd across the immobile layer and the surface charge σo,

φo − φd = σo

Cs

, φ̃o − φ̃d = σ̃o

C̃s

, C̃s = kBT

e2�tot
Cs.

(13)

The boundary conditions at the surface for the Poisson–
Boltzmann equation (7) involve the surface charge σ̃o through
Eqs. (12) and (13), and they become both nonlinear and mixed,

n · ∇φ̃ = 1

λDq̃I

σ̃o(φ̃), at the d plane, (14a)

q̃I =
√

2εkBT cI

e�tot
. (14b)

Here, we have introduced the surface normal n and the
nondimensionalized bulk charge area density q̃I .

In the special case where the curvature effects of the
boundary can be neglected, e.g., the tangential derivatives
∇2

t φ̃ in ∇2φ̃ are much smaller than the normal-direction
derivatives ∂2

nφ̃, the Poisson–Boltzmann equation (7) can be
integrated once. The standard trick is to multiply the equation
by ∂ nφ̃, and then to use that (∂ nφ̃) ∂2

nφ̃ = ∂ n[(∂ nφ̃)2]/2 and
−zX(∂ nφ̃) exp (−zXφ̃) = ∂ n[exp (−zXφ̃)]. The result, known
as Grahame’s equation [55], is

(σ̃o)2 = q̃2
I

∑
X,zX

c̃
b
X,zX

[e−zXφ̃d − e−zXφ̃m ], (15)

where φ̃m is the potential at the midpoint between opposite
walls in the normal direction. In this simplified case, Eqs. (12),
(13), and (15) form a self-consistent set of algebraic equations
for the determination of σ̃o, φ̃o, and φ̃d. This algebraic
approach, in particular, can be employed for flat plane-parallel
channels of a very large width-to-height aspect ratio, since
in this case, the curvature effects only play a role for the
vanishingly small region at the edges of the channel cross
section.

E. Entrance effects and permselectivity

For low salt concentration, the electric double layers of
opposite walls of the nanochannel begin to overlap. Coun-
terions are attracted to the nanochannel, while coions are
expelled, and the nanochannel becomes permselective to the
counterions. At each entrance of the nanochannel, the ionic
densities have to attain their respective bulk values. This is
achieved by displacing ions across the entrance, resulting in
an ionic screening layer of width λD outside the entrance
and uncompensated wall charges in the nanochannel, thus,
creating oppositely pointing electric dipoles at each entrance
and spawning the Donnan potential [2]. For low currents (the
linear regime), no additional dissipation is created by this
process: The potential drop experienced when passing into
the nanochannel through one dipole region is canceled by the
potential gain when leaving the nanochannel through the other
dipole region.

The linear regime breaks down when a certain critical
current Ic, the so-called limiting current, is reached. In the limit
of low flow velocities, Ic can be estimated by the classic Levich
theory [2,56,57] corrected by the logarithmic flux-focusing
factor [31],

Ic = π

ln
(Lo

2h

)
(

η + 1

η − 1

)
2eAresD

cI

Lo

, (16)

where Lo is the distance from the nanochannel entrance to the
electrode in the reservoir, 2h is the height of the nanochannel,
η = I+/I− is the ratio of counterion and coion currents, e is the
elementary charge, Ares is the reservoir cross-sectional area,
D is the ionic diffusivity, and cI is the ionic strength of the
solution in the reservoir.

For currents above Ic, a finite-sized polarization concen-
tration region with nearly zero ion concentration develops in
front of the anode-side entrance of the nanochannel, and there
will be a significant voltage drop across this region. When this
happens, the measured conductance G of the system drops, and
this more strongly for lower reservoir concentration, in stark
contrast to the increased G observed on the low concentration
side of the conductance minimum given by δ in Table I and
Eq. (21).

In Table III, we list the estimates for the limiting current
Ic for the low concentration (ctot

KCl < 0.1 mM) data points in
Sec. IV B. In our experiments described in Sec. IV, we have

TABLE III. Estimates based on Eq. (16) of the limiting current Ic

for data points in Sec. IV B with c
tot
KCl < 0.1 mM. Ares = 1.5 mm ×

0.5 mm, Lo = 0.75 mm, and D = 6 × 10−9 m2/s.

c
tot
KCl cI Ic

[μM] [μM] λD/h −φ̃m η [nA]

0.0 2.1 1.27 3.32 759 1.1
0.1 2.2 1.24 3.28 707 1.1
0.3 2.4 1.19 3.22 619 1.2
1.0 3.1 1.05 3.01 413 1.6
3.0 5.1 0.82 2.61 186 2.6
10.0 12.1 0.53 1.90 44 6.3
25.0 27.1 0.35 1.23 12 16.0
50.0 52.1 0.26 0.73 4 41.8
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made sure that all our measurements were performed in the
linear regime by using currents below 0.2 nA, i.e., at least
a factor of 5 below the estimated limiting current Ic. There-
fore, the measured conductance is the intrinsic nanochannel
conductance. Furthermore, by reversing the polarity, we have
checked that no current rectification did take place (data not
shown).

F. Nanochannel conductance

Operating under conditions where the entrance effects are
negligible, the electrical conductance G of an aqueous-filled
nanochannel is found as G = I/�V by applying a known
voltage drop �V and measuring the resulting current I . The
electromigrative contribution Gmig = Imig/�V to G is found
by integrating over the sum of the conductivities for the
chemical families X. The external applied voltage also gives
rise to an axial electric field �V/L driving an axial electro-
osmotic flow v(y,z) and resulting in an advective current Iadv

with the corresponding contribution, Gadv = Iadv/�V , to the
conductance. The flow is found by solving the steady-state
Navier-Stokes equation with an electrical body force in a
rectangular channel [58]. For high-aspect-ratio rectangular
channels (height 2h much smaller than width w), only the
vertical z direction matters, and the explicit expression for the
total conductance, G = Gmig + Gadv, is well approximated by

G = 2ew

L

∑
X,zX

zXμ
∗b
X,zX

c
b
X,zX

∫ 0

−h

e−zXφ̃(z) dz

+ 2εkBT w

ηL

∑
X,zX

zXc
b
X,zX

∫ 0

−h

[φ̃(z) − φ̃d]e−zXφ̃(z) dz. (17)

For zero internal potential (φ̃ = 0), the effects of the wall
disappear, and we obtain the bulk conductivity σ

b
el as

σ
b
el = e

∑
X,zX

zXμ
∗b
X,zX

c
b
X,zX

. (18)

III. NUMERICAL ONE-DIMENSIONAL ANALYSIS

In the following numerical analysis, we consider the case of
a channel aligned with the x axis and with a rectangular cross
section in the yz plane of height 2h and width w such that −h <

z < h and 0 < y < w, mimicking our experimental system
described in Sec. IV. The width-to-height aspect ratio in this
case is large, w � 2h so that we can apply a one-dimensional
(1D) approximation, where the side walls at y = 0 and y = w

can be neglected, and only the top and bottom walls at z = ±h

play a role.

A. The numerical algorithm

The first part of our numerical scheme is using the buffer
calculator [49] based on Eq. (2) to determine the bulk
concentrations c

b
X,zX

for a given solution of the ions H+,
OH−, HCO−

3 , CO2−
3 , K+, and Cl−. We then consider the

self-consistent solution of Eqs. (12), (13), and (15), which,
in this case, takes the form

σ̃o = C̃s(φ̃o − φ̃d), (19a)

σ̃o = e−2φ̃o − K̃−K̃+
K̃−K̃+ + K̃+e−φ̃o + e−2φ̃o

, (19b)

(σ̃o)2 = q̃2
I

∑
X,zX

c̃
b
X,zX

[e−zXφ̃d − e−zXφ̃m ], (19c)

together with the 1D Poisson–Boltzmann equation for planar
walls including boundary conditions at the wall, z = −h, and
at the center of the channel, z = 0,

∂2
z φ̃ = − 1

2λ
2
D

∑
X,zX

zXc̃
b
X,zX

e−zXφ̃ , (20a)

φ̃(−h) = φ̃d, ∂ zφ̃ (0) = 0. (20b)

We implement and solve the problem using MATLAB (Math-
works, Inc.) using the following self-consistent iteration
algorithm:

Initialization: Calculate pH = − log10 (cb
H) and ionic

concentrations c̃
b
X,zX

in the bulk using the buffer calculator
[49] Eq. (2), and assume φ̃m = 0.
Loop: Solve Eq. (19) for σ̃o, φ̃o, and φ̃d, then solve Eq. (20)
for φ̃, and finally obtain φ̃m = φ̃(0).
Test: Repeat the loop until φ̃m has converged.

Once converged, the algorithm provides the potential φ̃(z) to
be used in Eq. (17) for calculating the conductance G. This
algorithm, which self-consistently couples the CO2-induced
hydronium, surface, and bulk reactions, as well as nonlinear
electrokinetics of the double layer, is the first main theoretical
result of this paper.

B. Prediction of the conductance minimum

The second theoretical result is the model prediction that the
conductance G of a nanochannel depends nonmonotonically
on the KCl concentration c

tot
KCl = c

b
K+ = c

b
Cl− in the reservoirs.

The nanochannel parameters listed in Table IV are chosen
to correspond to our experimental validation presented in
Sec. IV, and the simulation results are displayed in Fig. 2.
Consistent with literature, the modeled conductance of the
nanochannel follows a linear relation as does measured bulk
conductance at high salt concentrations. Furthermore, the
modeled conductance reaches a plateau in the infinite-dilution
limit, similar to that found by Refs. [19,24,28,45]. However, as
indicated in the log-log plot of Fig. 2(a) by the labels Plateau,
Valley, Departure, and Bulk, we find, in contrast to these
previous model studies, but in line with Ref. [32] where it went

TABLE IV. List of the nanochannel parameters used in the model
calculation of the nanochannel conductance, Fig. 2.

Parameter Symbol Value

Height 2h 165 nm
Width w 8.3 μm
Length L 12.0 mm
Surface site density �tot 5 nm−2

Stern capacitance Cs 0.2 F m−2

Viscosity of water η 1.0 mPa s
Permittivity of water ε 690 pF m−1

Temperature T 298 K
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FIG. 2. (Color online) Theoretical predictions for the nanochan-
nel conductance G Eq. (17) vs KCl concentration c

tot
KCl in the reservoirs

for the system described in Table IV and Sec. IV. (a) Log-log plot
of G vs c

tot
KCl taking KCl, dissolved CO2, and hydronium ions (full

line) into account, and bulk conductance taking only KCl into account
(dashed line). Four conductance regimes are marked: bulk, departure,
valley (minimum conductance), and plateau. (b) The nonmonotonic
conductance from panel (a) in a lin-log plot. (c) The c

tot
KCl dependence

of the ζ potential ζ = φd and the surface charge σo.

un-noticed, that our model predicts a nonmonotonic behavior:
A minimum conductance (the valley) is obtained before
reaching the plateau. This conductance minimum positioned
at ctot

KCl = 10 μM is more clearly pronounced in the lin-log plot
of Fig. 2(b). We quantify the magnitude of the conductance
minimum as the ratio δ of the largest conductance Gmax on
the low concentration side of the minimum and the minimum
conductance Gmin,

δ = Gmax

Gmin
. (21)

For the KCl-based Fig. 2(b), we calculate δKCl = 1.42.
In Fig. 2(c), we show how the calculated ζ potential φd and

surface charge σo vary with salt concentration, trends that have
been previously observed theoretically and have been validated
experimentally [26,44]. Moreover, as the magnitude of the
ζ potential is small for our model system, |ζ | < 120 mV ≈
5kBT /e, we have justified our neglecting of ionic crowding
effects near the surface [59], and we gain confidence in our
model results.

C. Characterization of the conductance minimum

Further results of our model showing nonmonotonic con-
ductance vs the reservoir salt concentration c

tot
KCl are presented

in Fig. 3, where parameters of the problem are varied one by
one, relative to those of Fig. 2, which here and in the following
are denoted Go (full black curve). In particular, when CO2 is
not included in our model (dashed red curve), the conductance
changes by up to a factor of 2 relative to Go. Additionally,
without CO2, the position of the conductance minimum shifts

FIG. 3. (Color online) Theoretical prediction for the nanochannel
conductance G Eq. (17) vs c

tot
KCl in the reservoirs for the parameters of

Fig. 2 (Go, full black curve) and for variations from that: removal
of CO2 (c∗

CO2
= 0, dashed red curve), decreased mobility of the

counterions (μ∗ = 0.53μK+ = μLi+ , dot-dashed blue curve), and
decreased nanochannel height (h∗ = 0.18h, dot-dot-dashed green
curve). Also shown is a scaled curve (G∗ = 0.18Go, dotted black
curve) for aid in comparison to the reduction of nanochannel height.
The inset shows the nonmonotonic conductance in a lin-log plot,
which enhances the predicted features.

from c
tot
KCl ≈ 10 μM down to ≈ 0.4 μM governed solely by

autoprotolysis of water, again showing the importance of CO2-
induced hydronium ions for the appearance of nonmonotonic
conductance.

In Fig. 3, we also plot G of a solution with a lower
ion mobility. Specifically, we substitute KCl with LiCl (dot-
dashed blue curve), thereby reducing the counterion mobility
by a factor of 0.53 from μK+ = 76.2 × 10−9 m2 (V s)−1

to μ∗ = μLi+ = 40.1 × 10−9 m2 (V s)−1. Mobility reduction
implies that: (i) In the high c

tot
KCl regime ∼10−3−10−1 M, the

conductance is lower by a factor of ∼0.75 consistent with the
lower bulk conductivity of the LiCl electrolyte. (ii) In the very
dilute c

tot
KCl regime ∼10−7−10−6 M, the conductance plateau

reaches the same conductance value as KCl, again verifying
that nanochannel conductance in this regime is dominated by
the contribution from CO2-induced hydronium. (iii) In the
intermediate c

tot
KCl regime ∼10−6−10−3 M, the conductance

curve has a different shape: The position of the minimum is
shifted to a higher value of salt concentration, c

tot
KCl = 20 μM,

and its magnitude is increased from δKCl = 1.42 to δLiCl =
1.77. This enhancement of the conductance minimum for the
lower-mobility counterion Li+ is consistent with the intake
of counterions and the expulsion of coions in nanochannels
with overlapping electric double layers, a situation where the
counterions dominate the conductance.

We also show the dependence of nanochannel height on
the predominance of a nonmonotonic conductance at low
concentrations in Fig. 3. Specifically, we reduce the height
of the nanochannel by a factor of 0.18 to 2h∗ = 30 nm
(dot-dot-dashed green curve), corresponding to the silica
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nanochannels of Ref. [60]. Again, we note that: (i) In the high
c

tot
KCl regime ∼10−3−10−1 M, the conductance is lower by a

factor of ∼0.18 consistent with the reduced cross-sectional
area. (ii) In the intermediate c

tot
KCl regime ∼10−5−10−3 M, the

conductance curve has a more linear slope and, therefore, a
wide regime of minimum conductance. (iii) In the very dilute
c

tot
KCl regime ∼10−7−10−5 M, the conductance is lower only

by a factor of ∼0.6 and not by the aforementioned factor of
0.18. This relatively higher conductance in smaller channels
at low concentrations is due to overlapping electric double
layers. For a binary symmetric electrolyte, the conductivity
in the electric double layer σ

DL
el will be higher than the bulk

conductivity if the ζ potential is larger than the thermal voltage
ζ > kBT /(ze) simply due to an increased ionic concentration.
This is indeed the case in our nanochannels, especially at
low concentrations, as seen in Fig. 2(c). Hence, in our
nanochannels, as the concentration is lowered, the conductivity
in the channel gradually changes from σ

b
el to σ

DL
el concurrently

with the electric double layer overlap. The smaller the channel
dimensions, the greater the overlap, and, thus, the higher
the average conductivity at a given low concentration. Note
that, for aid in comparing this low-height curve with the
nominal conductance curve, we also have plotted the scaled
version G∗ = 0.18Go (dotted black curve) of the original
curve.

These theoretical model predictions must now be verified
experimentally. To date, log-log plots of conductance vs salt
concentration in unbuffered solutions do not readily show
the conductance valley, but much of this may be because
such a valley is difficult to discern in a log-log plot, as
shown in Figs. 2 and 3. However, as listed in Table I, we
have found six examples in the literature of an observed
(but un-noticed) conductance minimum. To provide further
experimental validation of our theoretical predictions, we
performed a set of conductance measurements on silica
nanochannels described in Sec. IV, varying just one parameter,
namely, the hydronium concentration through the addition of
HCl, to show that not only does this valley exist, but also
our model predicts the behavior of the valley accurately when
other ions are added to the system.

IV. EXPERIMENTAL VALIDATION

To test our theoretical predictions, we performed experi-
ments in both bulk solutions and fused-silica nanochannels
fabricated in-house at the University of California, Santa Bar-
bara [26]. The nanochannels (165-nm high, 8.3-μm wide, and
12-mm long) were equipped with 1.5-mm-diameter reservoirs
of depth 0.5 mm and mounted as shown in Fig. 4(a). We
prepared 0.2-μm-filtered KCl concentrations c

tot
KCl = 0.0001,

0.0003, 0.001, 0.003, 0.01, 0.025, 0.05, 0.1, 0.5, 1, 5, 10, and
100 mM and another set with 50 μM hydrochloric acid added
at the same KCl concentrations and at the additional values
c

tot
KCl = 0.02, 0.2, 0.6, and 50 mM.

A. Measured bulk conductance

To validate the bulk conductance part of our model, we
conducted bulk measurements using a standard technique: The
prepared solutions were pipetted into the sample chamber of

FIG. 4. (Color online) Experimental measurement of current I

in silica nanochannels of dimensions h × w × L = 165 nm ×
8.3 μm × 12 mm. (a) Our setup. For each experiment, the
voltage �V (from a Keithley 2410) was applied for 5–10 min to
allow I to equilibrate (monitored by a high-sensitive electrometer,
Keithley 6517). (b) Raw data (dots) of I vs sample number N for the
five values of �V indicated. The inset shows detailed variation of
I vs N at 8 samples/s.

a commercial pH and conductivity meter (Oakton, Inc), and
readouts of the pH and conductivity values were performed
after allowing for equilibration to have taken place. These
measurements were performed periodically on the prepared
solutions to make sure that variations due to temperature and
humidity did not exceed 5% of the original value. All solutions
were filtered with 0.2-μm PTFE syringe filters prior to use.

Figure 5(a) shows the measured bulk conductivity for the
KCl solutions used in our study, together with two model
calculations of σ

b
el based on Eq. (18) and Table II without any

additional adjustable parameters: one (full line) taking into
account all ions (H+, OH−, HCO−

3 , CO2−
3 , K+, Cl−), the other

(dashed line) only including the salt (K+, Cl−). Both measure-
ments and model calculations show the expected monotonic
decrease as a function of the bulk KCl concentration c

tot
KCl

with a crossover to a constant value at c
tot
KCl ≈ 5 × 10−6 M.

The inset shows a scatter of the measurements relative to
the model with errors within 13%, which, thus, constitutes
an estimate of the experimental uncertainty in our paper.
To further test the model, we added 50-μM HCl to our
KCl solutions; experimental results and model calculation are
shown in Fig. 5(b), with the inset indicating the deviation of
measurements relative to the model to be within 16%.

B. Measured nanochannel conductance

The nanochannel conductance was measured as follows.
After electrokinetically rinsing each channel thoroughly with
DI water three times, we applied five voltages to the system
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FIG. 5. (Color online) (a) Conductivity σ
b
el vs KCl concentration

c
tot
KCl for bulk measurements (σ meas

el , open red circles) and model
calculations for both the full model with KCl, H2CO3, and H2O (σ mod

el ,
full line) and for a partial model with only KCl (dashed line). Model
calculations are based on Eq. (18) and Table II without any additional
adjustable parameters. The inset shows the relative deviation X =
(σ meas

el − σ mod
el )/σ mod

el (open blue circles) of the measurements from
the model. (b) Same as panel (a) with the addition of 50-μM HCl.

(100, 200, 300, 400, and 500 V) in succession, each one lasting
approximately 40 s. Raw data are shown in Fig. 4(b). To ensure
consistent and repeatable data, if the trial did not yield four or
five results that were within 10% of each other, we assumed
an unsteady current reading, corroded electrodes, external
interference, or poor channel preparation, and discarded the
data. Solution exchanges were performed in a systematic
fashion to avoid introducing bubbles or particulate matter into
the channels.

Moreover, for concentrations below 10 μM, we covered the
system with a Faraday cage to limit measurement noise. After
each day of experiments, we flushed the reservoirs multiple
times with DI water to prevent a buildup of salt deposits on
the channel during its time in storage, and then stored the chip
in a dry Eppendorf tube housed in a nitrogen container. We
note that electrolysis does not affect the current measurements
in our system: Conservatively, we estimate the pH change
of the reservoir to be 7.7 × 10−4 s−1 [48]; next, we find the

FIG. 6. (Color online) Log-log plot of measured nanochannel
conductance G vs KCl concentration c

tot
KCl (red circles) and curve

fits based on Eq. (17) using the logarithmic variables log10 (G) and
log10 (ctot

KCl) for model electrolytes of various compositions (full and
dashed curves) employing the parameters of Tables II and IV. (a) No
HCl added: Fitting to a model including KCl, H2O, and H2CO3 (full
curve) yields pK− = 6.56 ± 0.06. Also shown is a model calculation
including only KCl (dashed line). (b) As before but with 50 μM of
HCl added: Fitting to a model including KCl, HCl, H2O, and H2CO3

(full curve) yields pK− = 6.91 ± 0.10. The insets are lin-log plots of
the respective low salt concentration regions.

volumetric flow rate to be 4 × 10−15 m3/s; furthermore, the
absorption of CO2 in the reservoir gives rise to H2CO3, which
acts as a buffer and would further prevent pH changes, and
finally, we replenished the reservoirs every 3 min.

Due to a significant electro-osmotic flow velocity in our
165-nm-high nanochannels, we do not encounter the hour-long
equilibration time for conductance measurements encountered
in 2-nm-high nanochannels [32].

The most significant contribution of our model is predicting
the nanochannel conductance, which is shown together with
experimental measurements in Fig. 6. Panel (a) shows results
for KCl solutions between infinite dilution (DI water) and
100 mM. Using pK− as the only fitting parameter, and using
log10 (ctot

KCl) and log10 (G) as variables to ensure an even
weighting between low and high concentration values, we
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obtain the fit shown for pK− = 6.56 ± 0.06, corresponding
well to the literature value of 6.64 [44]. The inset expands
on the low salt concentration region and shows the measured
conductance minimum and the theoretical fitting curve. The
lowest concentration point is furthest off this curve, but it is
also the one most prone to error. Previous models assuming
constant surface charge give the plateau but no valley [19,24,
28,45], while relaxing this assumption taking surface chemical
reactions into account leads to a monotonically decreasing
conductance [61]. Notably, the experimental data of previous
studies listed in Table I, have shown the same conductance
behavior as our model and data, supporting our claim that the
inclusion of hydronium ions in our model is consistent with a
broad range of experimental results. In all of these references,
the experimentally measured conductance has a minimum that
the applied models do not capture. Furthermore, the minimum
is located at KCl concentrations around 10−5−10−4 M that is
consistent with our model predictions.

Another way to validate the predictions of our model is
to add an extra amount of hydronium ions. The conductance
valley is due to the concentration of K+ and Cl− dropping
below that of H+ and HCO3

− together with the fact that the
Debye length and ζ potential increase for decreasing ionic
strength (Fig. 2). Therefore, as in Fig. 5, we can test the
model by adding HCl and can observe the change in the
conductance curve. The result in Fig. 6(b) shows no valley
in both experiment and model. The fit now gives pK− = 6.91,
indicating that surface reactions are pH dependent.

Finally, as a control experiment, we measured the change
in pH and conductance of nanochannels substituting CO2-
saturated by CO2-oversaturated KCl solutions generated by
dry ice vapors. In this case, pH dropped by 22%, and G

increased by 27% (data not shown). Clearly, it would be
desirable to design experiments with a more controlled content
of CO2 in the atmosphere to further investigate its influence
on nanochannel conductance, but this is beyond the scope of
this current paper.

V. CONCLUSION

In this paper, we have extended a recent self-consistent the-
oretical model of nanochannel ion transport [26] to unbuffered
solutions with low salt concentration by taking hydronium
ions into account, induced by carbonic acid arising from
dissolved CO2 from the atmosphere, through the explicit
addition of H+ and HCO−

3 in our coupled solution/wall
chemical-equilibrium dissociation scheme. Using this model,
we have predicted the hydronium dependence of the elec-
trical conductance of electrolyte-filled nanochannels, and, in
particular, we have identified a conductance minimum in the
low salt concentration regime as a function of the reservoir
salt concentration c

tot
KCl. We studied the dependence of the

conductance minimum theoretically and have predicted that
its magnitude would be reduced dramatically in a CO2-poor
atmosphere and significantly enhanced using low-mobility
counterions.

Our theoretical prediction of the conductance minimum is
supported by several independent experimental observations
in the literature. Furthermore, to validate our theoretical
predictions, we have successfully compared our model with
direct experimental conductance measurements on a wide
range of KCl concentrations with and without the addition of a
specific extra amount of hydronium ions from HCl in 165-nm-
high silica nanochannels. A more thorough experimental study
is underway to fully characterize the nanochannel conductance
minimum at low salt concentrations and CO2-dissolution
controlled hydronium concentrations.

Our modeling and experimental results indicate the pos-
sibility for developing a sensitive nanochannel-based car-
bon dioxide sensor. To this end, an in-depth experimental
study must be performed in a tightly regulated atmosphere.
Combining such measurements with our model could be
used to determine which parameter values lead to the most
pronounced conductance minimum and what consequences
this may have for using nanochannels for unique gas
sensors.
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Possible mechanisms for over-limiting current (OLC) through aqueous ion-exchange membranes
(exceeding diffusion limitation) have been debated for half a century. Flows consistent with electro-
osmotic instability (EOI) have recently been observed in microfluidic experiments, but the existing
theory neglects chemical effects and remains to be quantitatively tested. Here, we show that charge
regulation and water self-ionization can lead to OLC by “current-induced membrane discharge”
(CIMD), even in the absence of fluid flow. Salt depletion leads to a large electric field which expels
water co-ions, causing the membrane to discharge and lose its selectivity. Since salt co-ions and water
ions contribute to OLC, CIMD interferes with electrodialysis (salt counter-ion removal) but could
be exploited for current-assisted ion exchange and pH control. CIMD also suppresses the extended
space charge that leads to EOI, so it should be reconsidered in both models and experiments on
OLC.

PACS numbers: 47.57.jd, 87.16.dp, 82.45.Mp, 82.33.Ln

Selective ion transport across charged, water-filled
membranes plays a major role in ion exchange and desali-
nation [1, 2], electrophysiology [3], fuel cells [4, 5], and
lab-on-a-chip devices [6–10], but is not yet fully under-
stood. A long-standing open question has been to explain
experimentally observed overlimiting current (OLC), ex-
ceeding classical diffusion limitation [11]. Possible mech-
anisms include electroosmotic instability (EOI) and wa-
ter splitting in the bulk solution [12, 13], as well as sur-
face conduction and electro-osmotic flow in microchan-
nels [14]. Vortices consistent with EOI have recently been
observed under OLC conditions [7, 15, 16], although the
theory of Rubinstein and Zaltzman [17–19] remains to
be tested quantitatively. The water splitting mechanism,
either catalyzed by membrane surface groups or through
the second Wien effect, has not yet been conclusively tied
to OLC [13, 20–23].

In this Letter, we propose a chemical mechanism for
OLC, “current-induced membrane discharge” (CIMD),
resulting from membrane (de)protonation and water self-
ionization, even in the absence of fluid flow. The ampho-
teric nature of the charge of ion-exchange membranes
(i.e. sensitivity to pH and other stimuli) is well known
[5, 24–29], but not the response to a large applied cur-
rent. The basic physics of CIMD is illustrated in Fig. 1
for an anion-exchange membrane. During OLC, a large
electric field develops on the upstream, salt-depleted side
of the membrane, which expels H+ and attracts OH−,
causing the membrane to deprotonate and lose selectiv-

FIG. 1. [Color online] Basic physics of CIMD, illustrated
by numerical solutions of Eqs. (2), (5), and (6) for an an-
ion exchange membrane between two stagnant diffusion lay-
ers (SDL) for (a) electrostatic potential and concentrations of
(b) cations c+ and anions c− and (c) protons cH and hydroxyl
ions cOH.

ity, thereby allowing salt co-ions to pass and producing
large pH gradients. The upstream solution becomes more
acidic (low pH), while the downstream, salt-enriched so-
lution and the membrane become more basic (high pH).

The local charge of an aqueous membrane strongly de-
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pends on the local pH. In our examples below, we con-
sider an anion-exchange membrane with fixed surface
groups of volumetric concentration cmem, which selec-
tively allows negatively charged anions (counter-ions) to
pass, while blocking cations (co-ions) [30]. Depending
on pH ≈ p[H] = − log10(cH), where cH is the proton
concentration (H+ or H3O+) in M, the membrane can
“discharge” (deprotonate):

RH+ K
↼−−⇁ R + H+. (1)

The ratio of product to reactant concentrations in equi-
librium is the dissociation constant K in M (pK =
− log10 K). Assuming a classical Langmuir adsorption
isotherm [24–28, 31, 32], the ionization degree of the
membrane,

α =
(

1 + K

cH

)−1
=
(
1 + 10pH−pK

)−1
, (2)

relates its charge concentration α cmem to pH and pK.
(For a cation-exchange membrane, the power is pK−pH.)
To describe the local pH, we cannot assume Boltzmann
equilibrium with an external reservoir. Instead, we
consider ion transport coupled to membrane discharge
Eq. (1) and water self-ionization,

H2O Kw↼−−−−⇁ OH− + H+, (3)

with dissociation constant

Kw = cHcOH (4)

where Kw = 10−14 M2 at T = 25 ◦C. Although kinetics
can be included [5, 20–22, 33], the reactions (1) and (3)
are typically fast, so we assume local quasi-equilibrium.

We now develop a membrane model (seemingly the
first) including all of these effects: (i) transport of
four ionic species, including co-ions and water ions (H+

and OH−) along with majority anions, (ii) water self-
ionization, and (iii) pH-dependent membrane charge. We
consider the prototypical 1D electrodialysis geometry in
Fig. 1, consisting of a planar ion-selective membrane of
thickness Lmem between two well-stirred reservoir com-
partments of salt ion concentration cres and pH of pHres.
We adopt the simplest and most commonly used model of
diffusion limitation [11], in which ion concentrations vary
across “stagnant diffusion layers” (SDL) of thickness Lsdl
(of the order 10–100 µm) between the reservoirs and the
membrane, e.g. representing convection-diffusion bound-
ary layers or stagnant gel films.

Ionic diffusion, electromigration and reactions are de-
scribed by four Nernst-Planck equations. Following
Refs. [24, 25, 34], we combine the Nernst–Planck equa-
tions for H+ and OH− using Eq. (4) to eliminate the re-
action terms and relate the water-ion current density Jw
to the water-ion variable cw = (DHcH − DOHcOH)/Dw,

in which Dw =
√
DHDOH is the geometric mean of the

free H+ and OH− diffusivities. We thus arrive at the fol-
lowing set of coupled, nonlinear, differential equations to
be solved in both SDLs and the membrane [34]:

dJi

dx = 0, i = +,−,w, (5a)

J± = ∓frD±
(dc±

dx ± c±
dφ
dx

)
, (5b)

Jw = −frDw

(dcw
dx +

[
4Kw + c2

w
] 1

2 dφ
dx

)
, (5c)

where Ji is the ionic current density of species i and fr
is a hindrance factor accounting for porosity, tortuosity
and constriction (fr = 1 in the SDLs). Here, φ is the
dimensionless mean electrostatic potential scaled to the
thermal voltage VT = kBT/e = 25.7 mV and satisfying
Poisson’s equation

d2φ

dx2 = −4πλB (ρions + ρmem) , (6)

where λB = e2/(4πεr,jε0kBT ) is the Bjerrum length,
and ρions = ε (c+ − c− + cH − cOH) and ρmem = α ε cmem
are charge densities due to the ions and the immobilized
charges in the membrane, respectively. The porosity ε
of the membrane appears because concentrations ci are
defined with respect to the interstitial, not total, volume
(ε = 1 in the SDLs). In our simulations below, we choose
the following typical parameters: cmem = 5 M, pK = 9.5,
Lmem = Lsdl = 100 µm, εr,sdl = 78, εr,mem = 29,
ε = 0.4, fr = 0.02 [35], D+ = 1.3 × 10−9 m2 s−1

and D− = 2.0 × 10−9 m2 s−1 (corresponding to NaCl),
DH = 9.3× 10−9 m2 s−1, and DOH = 5.3× 10−9 m2 s−1.
We also use pHres = 7 and β = 2 cres/cmem = 0.02, un-
less otherwise noted. The voltage difference across the
system is ∆φ. At the reservoir/SDL boundaries we set
c± = cres and relate cw to pHres.

In spite of neglecting fluid flow, the model still predicts
OLC, as shown in Fig. 1. The classical ion concentration
polarization phenomenon is apparent in panel (b) with
salt depletion where counter-ions (anions) enter (x = x2)
and enrichment where they leave (x = x3). Within the
membrane, however, anion depletion and cation (co-ion)
enrichment reveal a significant loss of selectivity due to
CIMD. At the same time, panel (c) shows large, order-of-
magnitude variations in cH, “mirrored” by cOH in equilib-
rium Eq. (4), with proton enrichment (acidity) in the left
SDL and proton depletion (basicity) in both the mem-
brane and the right SDL. The existence of such pH vari-
ations has been confirmed experimentally in similar sys-
tems [36–39].

Motivated by this observation, we analyze the pH
gradients perturbatively in the full CIMD model. We
consider under-limiting currents, assume thin, quasi-
equilibrium double layers (Donnan approximation) at the
SDL/membrane interfaces, and solve the leading-order
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problem for c+, c− and φ with small perturbations in cH
and cOH, valid when (cH − cOH)/(c+ − c−) � 1. The
resulting semi-analytical model (to be described in detail
elsewhere) suffices to predict CIMD (variations of mem-
brane charge with local pH) via Eq. (2). Numerical cal-
culations show that pH and α are nearly constant across
the membrane, so the water charge density is averaged
between positions x2 and x3 (see below) to calculate the
membrane charge and midplane pH [Fig. 2(b)] to be used
in Eq. (2) to calculate α.

The final result for the most general model including
membrane discharge, arbitrary values for pHres and cres,
and the possibility that all diffusion coefficients are dif-
ferent, consists of Eq. (2) together with the set of al-
gebraic equations below (see the Supplemental Material
for details). First, we introduce the dimensionless salt
flux variable jsalt = (J− − J+ D−/D+)/Jlim, in which
Jlim = −2D−cres/Lsdl is the “classical” limiting current
density [11], and obtain the salt current-voltage relation,

∆φ = 4 tanh−1 (jsalt) + jsalt
γ

β

α
, (7)

in which γ = fr/lmem, where lmem = Lmem/Lsdl
is the membrane-to-SDL width ratio. The first
term describes concentration polarization in the SDLs,
while the second is the Ohmic response of the mem-
brane. Next, we introduce the dimensionless wa-
ter ion flux jw = Jw Lsdl/(Dw

√
Kw) and water

ion variable ρw = cw/
√
Kw and obtain the follow-

ing equations, ρw(xmem
3 ) − ρw(xmem

2 ) exp[jsalt β/(γ α)] +
jw/γ = 0, sinh−1[ρw(xmem

i )/2] = sinh−1 [ρw(xsdl
i )/2

]
−

sinh−1(α/[β (1∓jsalt)]), and ρw(xsdl
i ) = ρres

w ∓ jw +ρ0[1+
2 γ β/α] ln(1 ∓ jsalt), (where in these expressions i = 2
and 3 corresponds to − and +, respectively). Here, ρres

w is
related to pHres and ρ0 = [4 + (ρres

w )2] 1
2 . Note that xmem

i

and xsdl
i refer to positions on either side of the equilibrium

electric double layer at the membrane-SDL interfaces. In
the limit of an infinite membrane charge β/α → 0 the
solution to the leading order problem [Eq. (7)] is simply
the “classical” result [40], jsalt = tanh (∆φ/4). We find
the characteristic voltage factor φ0 by expanding Eq. (7)
for small jsalt � 1 and obtain jsalt = ∆φ/φ0 in which
φ0 = 4 + β/γ assuming constant α = 1.

Results of the semi-analytical model are compared
with full numerical calculations in Fig. 2, which shows
good agreement in the expected range of validity
∆φ/φ0 . 1. The pH appears to converge towards a
limiting value for ∆φ → ∞, and the jump in this lim-
iting pH-value between the left SDL and the membrane
is huge, here about 5 pH units at the highest values of ∆φ
considered. We note that the deviation between the an-
alytical and numerical solution is largest in the left SDL
where electroneutrality is most strongly violated. This
comparative analysis constitutes a validation of our nu-
merics and provides further support for our conclusions

FIG. 2. [Color online] Predicted pH variations from the full
numerical model, compared to the semi-analytical approxima-
tion, as a function of the applied voltage (a) in the left SDL,
just next to the membrane, (b) at the membrane midplane,
and (c) in the right SDL, next to the membrane.

FIG. 3. [Color online] Comparison of the classical M1 model
(only counterions in the membrane) with the full CMID model
(label “pH” refers to pHres). (a) Membrane ionization degree
α. (b) co-ion current J+. (c) Total current Jtot. (d) Water
ion current Jw.

regarding the role of pH as controlling the ionic transport
properties of ion-selective membranes.

We now turn to a numerical analysis of the CIMD
model Eqs. (2)–(6). For comparison, we also solve the
classical model M1 used in all prior work on EOI [15–19]
in which (i) c− = 0 in the membrane, (ii) cH = cOH = 0
everywhere, and (iii) α = 1 for all conditions. We also
solve two intermediate models which include co-ions in
the membrane with α = 1 and either exclude (M2) or in-
clude (M4) water ions, i.e. taking 2 or 4 ions into account
in the membrane, respectively. The total current density
is Jtot = J+ + J− + Jw.
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Figure 3(a) shows the significant decrease in the ioniza-
tion degree α predicted by the CIMD model, in contrast
to the constant α = 1 in the M1 model. Moreover, α de-
creases with decreasing β (due to increasing Donnan po-
tential) and decreases with pHres (due to decreasing cH in
the membrane). A striking, and yet unexplained predic-
tion is that for pHres larger than 7 the ionization degree
is almost constant until the curve hits that for pHres = 7
after which the curves follow each other. In general we
find beyond a few times φ0 that reservoir pH has a very
small influence on membrane charge, fluxes and currents
(see also Fig. 3(b)-(d)). Figure 3(b) shows the signifi-
cant increase of co-ion flux J+, thus loss of membrane
selectivity, with increasing voltage, as predicted by the
CIMD model, for all values of pH and β, while Fig. 3(d)
shows likewise the increase in current density Jw due to
water ions. Still, these contributions do not sum to the
increased current during OLC, as shown in Fig. 3(c), the
difference being due to increased counter-ion flux J−.

Although the current-voltage relation in CIMD is quite
complicated, our simulations and analysis suggest two
general trends: (i) OLC increases with reservoir salt con-
centration, roughly as β0.65 for the parameters of Fig. 3;
(ii) OLC is nearly independent of reservoir pH, in spite
of the large pH gradients produced across the membrane.

Finally, we analyze the possible effect of CIMD on EOI.
In the classical M1 model, non-equilibrium space charge
forms at the limiting current [40–43], and its growing
separation from the membrane reduces viscous resistance
to electro-osmotic flow and destabilizes the fluid [17–
19]. As a measure of the propensity to develop EOI we
use the transverse (Helmholtz–Smoluchowski) electroos-
motic mobility µeo/µeo,0 at the left SDL-reservoir edge,
which is equal to the first moment of the charge density,
−4πλB

∫ x2
x1
x ρions dx, or the dimensionless potential dif-

ference across the left SDL, φ(x1)− φ(x2).
Figure 4(a) shows that slightly above the limiting cur-

rent (Jtot/Jlim = 1.01) the M1 model already predicts a
very significant extended space charge layer (the “shoul-
der” maximum in ρions/ρions,0 = (λD Lsdl/φ0) d2φ/dx2

several hundred Debye lengths from the membrane),
whereas for an even higher current (Jtot/Jlim = 1.03),
using the more realistic CIMD model, the extension of
this layer is still very minor. The two intermediate mod-
els lie in between. Figure 4(b) shows how the transverse
electroosmotic mobility is predicted by the M1 model to
diverge at the limiting current. This divergence is signif-
icantly reduced only by the full CIMD model including
simultaneously co-ion access, water ion transport, wa-
ter splitting, and membrane discharge. We note that a
proper analysis of EOI would be more involved, since here
we have simply focused on the transverse electroosmotic
mobility as a way of illustrating the suppression of EOI
due to CIMD.

In conclusion, we have theoretically demonstrated
that OLC through aqueous ion-exchange membranes

FIG. 4. [Color online] Comparison of three fixed-charge mem-
brane models Mn having n = 1, 2, or 4 mobile ionic species
and the CIMD model for (a) charge density ρions versus dis-
tance x∗ from the membrane scaled to the reservoir Debye
length λD, and (b) electroosmotic mobility µeo as function of
total current Jtot.

can result from CIMD, or loss ion selectivity due to
(de-)protonation coupled to ion transport and water self-
ionization. The appearance of OLC carried partially
by salt co-ions and water ions reduces separation effi-
ciency in electrodialysis, but the associated large pH gra-
dients and membrane discharge could be exploited for
current-assisted ion exchange or pH control. CIMD also
suppresses the non-equilibrium space charge responsible
for EOI and thus should be considered in both models
and experiments on OLC with fluid flow. Although we
have developed the theory for ion-exchange membranes
in aqueous solutions, CIMD could occur in any nanoflu-
idic system with an electrolyte whose ions regulate the
surface charge.
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For a microchamber filled with a binary electrolyte and containing a flat unbiased center electrode at one
wall, we employ three numerical models to study the strength of the resulting induced-charge electro-osmotic
�ICEO� flow rolls: �i� a full nonlinear continuum model resolving the double layer, �ii� a linear slip-velocity
model not resolving the double layer and without tangential charge transport inside this layer, and �iii� a
nonlinear slip-velocity model extending the linear model by including the tangential charge transport inside the
double layer. We show that, compared to the full model, the slip-velocity models significantly overestimate the
ICEO flow. This provides a partial explanation of the quantitative discrepancy between observed and calculated
ICEO velocities reported in the literature. The discrepancy increases significantly for increasing Debye length
relative to the electrode size, i.e., for nanofluidic systems. However, even for electrode dimensions in the
micrometer range, the discrepancies in velocity due to the finite Debye length can be more than 10% for an
electrode of zero height and more than 100% for electrode heights comparable to the Debye length.
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I. INTRODUCTION

Within the last decade the interest in electrokinetic phe-
nomena in general and induced-charge electro-osmosis
�ICEO� in particular has increased significantly as the field of
lab-on-a-chip technology has developed. Previously, the re-
search in ICEO has primarily been conducted in the context
of colloids, where experimental and theoretical studies have
been carried out on the electric double layer and induced
dipole moments around spheres in electric fields, as reviewed
by Dukhin �1� and Murtsovkin �2�. In microfluidic systems,
electrokinetically driven fluid motion has been used for fluid
manipulation, e.g., mixing and pumping. From a microfabri-
cation perspective planar electrodes are easy to fabricate and
relatively easy to integrate in existing systems. For this rea-
son much research has been focused on the motion of fluids
above planar electrodes. ac electrokinetic micropumps based
on ac electro-osmosis have been thoroughly investigated as a
possible pumping and mixing device. Experimental observa-
tions and theoretical models were initially reported around
year 2000 �3–6�, and further investigations and theoretical
extensions of the models have been published by numerous
groups since �7–12�. Recently, ICEO flows around inert po-
larizable objects have been observed and investigated theo-
retically �13–18�. For a thorough historical review of re-
search leading up to these results, we refer the reader to
Squires et al. �13� and references therein.

In spite of the growing interest in the literature, not all
aspects of the flow-generating mechanisms have been ex-
plained so far. While qualitative agreement is seen between
theory and experiment, quantitative agreement is often lack-
ing as reported by Gregersen et al. �11�, Harnett et al. �16�,
and Soni et al. �19�. Specifically, the latter experiments show
two-order-of-magnitude lower velocity scales when com-
pared to velocities predicted by linear slip-velocity �LS�
simulations �see Sec. IV A�. A nonlinear slip-velocity �NLS�
model �see Sec. IV B� captures more �but not all� of the

relevant physics and agrees to within approximately one or-
der of magnitude with the experimental data. In the present
work we seek to illuminate some of the possible reasons
underlying these observed discrepancies.

ICEO flow is generated when an external electric field
polarizes an object in an electrolytic solution. Counter ions
in the electrolyte screen out the induced dipole, having a
potential difference � relative to the bulk electrolyte, by
forming an electric double layer of width �D at the surface of
the object. The ions in the diffuse part of the double layer
then electromigrate in the external electric field and drag the
entire liquid by viscous forces. At the outer surface of the
double layer a resulting effective slip velocity vslip is thus
established. Many numerical models of ICEO problems ex-
ploit this characteristic by applying the so-called Helmholtz-
Smoluchowski slip condition on the velocity field at the elec-
trode surface �20–24�. Generally, the slip-condition based
model remains valid as long as

�D

ac
exp� Ze�

2kBT
� � 1, �1�

where kBT / �Ze� is the thermal voltage and ac denotes the
radius of curvature of the surface �13�. The slip-velocity con-
dition may be applied when the double layer is infinitely thin
compared to the geometrical length scale of the object; how-
ever, for planar electrodes, condition �1� is not well defined.
In the present work we investigate to what extent the slip
condition remains valid.

Squires et al. �13� have presented an analytical solution to
the ICEO flow problem around a metallic cylinder with ra-
dius ac using a linear slip-velocity model in the two-
dimensional �2D� plane perpendicular to the cylinder axis.
In this model with its infinitely thin double layer, the sur-
rounding electrolyte is charge neutral, and hence the strength
of the ICEO flow can be defined solely in terms of the
hydrodynamic stress tensor �, as the mechanical power
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Pmech=��r�=ac
n̂ ·� ·vslipda exerted on the electrolyte by the

tangential slip velocity vslip=ueot̂, where n̂ and t̂ is the nor-
mal and tangential vectors to the cylinder surface, respec-
tively. In steady flow, this power is equal to the total kinetic-
energy dissipation Pkin= 1

2�	ac��r���iv j +� jvi�2dr of the
resulting quadrupolar velocity field in the electrolyte.

When comparing the results for the strength of the ICEO
flow around the cylinder obtained by the analytical model
with those obtained by a numerical solution of the full equa-
tion system, where the double layer is fully resolved, we
have noted significant discrepancies. These discrepancies,
which are described in the following, have become the pri-
mary motivation for the study presented in this paper.

First, in the full double-layer resolving simulation we de-
termined the value Pmech

� �R0�=��r�=R0
n̂ ·� ·vda of the me-

chanical input power, where R0 is the radius of a cylinder
surface placed coaxially with the metallic cylinder. Then, as
expected due to the electrical forces acting on the net charge
in the double layer, we found that Pmech

� �R0� varied substan-
tially as long as the integration cylinder surface was inside
the double layer. For R0
ac+6�D the mechanical input
power stabilized at a certain value. However, this value is
significantly lower than the analytical value while the dis-
crepancy decreased for decreasing values of �D. Remarkably,
even for a quite thin Debye layer, �D=0.01ac, the value of
the full numerical simulation was about 40% lower than the
analytical value. Clearly, the analytical model overestimates
the ICEO effect, and the double-layer width must be ex-
tremely thin before the simple analytical model agrees well
with the full model.

A partial explanation of the quantitative failure of the ana-
lytical slip-velocity model is the radial dependence of the
tangential field E� combined with the spatial extent of the
charge density �el of the double layer. In the Debye-Hückel
approximation E� and �el around the metallic cylinder of ra-
dius ac become

E��r,�� = E0�1 +
ac

2

r2 − 2
ac

r

K1� r

�D
�

K1� ac

�D
�
sin � , �2a�

�el�r,�� = 2
	E0ac

�D
2

K1� r

�D
�

K1� ac

�D
� cos � , �2b�

where K1 is the decaying modified Bessel function of order
1. The slowly varying part of E� is given by E0�1
+ �ac /r�2�sin �. For very thin double layers it is well approxi-
mated by the r-independent expression 2E0 sin �, while for
wider double layers, the screening charges sample the de-
crease in E� as a function of the distance from the cylinder.
Also tangential hydrodynamic and osmotic-pressure gradi-
ents developing in the double layer may contribute to the
lower ICEO strength when taking the finite width of the
double layer into account.

In this work we analyze quantitatively the impact of a
finite Debye length on the kinetic energy of the flow rolls
generated by ICEO for three different models: �i� the full
nonlinear �FN� electrokinetic model with a fully resolved
double layer, �ii� the LS model, where electrostatics and hy-
drodynamics are completely decoupled, and �iii� a NLS
model including the double layer charging through Ohmic
currents from the bulk electrolyte and the surface conduction
in the Debye layer. The latter two models are only strictly
valid for infinitely thin double layers, and we emphasize that
the aim of our analysis is to determine the errors introduced
by these models neglecting the finite width of the double
layers compared to the full nonlinear model resolving the
double layer. We do not seek to provide a more accurate
description of the physics in terms of extending the modeling
by adding, say, the Stern layer �not present in the model� or
the steric effects of finite-sized ions �not taken into account�.

II. MODEL SYSTEM

To keep our analysis simple, we consider a single unbi-
ased metallic electrode in a uniform external electric field.
The electrode of width 2a and height h is placed at the bot-
tom center, −a�x�a and z=0, of a square 2L
2L domain
in the xz plane filled with an electrolyte, see Fig. 1. The
system is unbounded and translational invariant in the per-
pendicular y direction. The uniform electric field, parallel to
the surface of the center electrode, is provided by biasing the
driving electrodes placed at the edges x= �L with the dc
voltages �V0, respectively. This antisymmetry in the bias
voltage ensures that the constant potential of the center elec-
trode is zero. A double layer, or a Debye screening layer, is
induced above the center electrode, and an ICEO flow is

2L

L

a

h

x

z

Electrode

+V0 −V0

FIG. 1. A sketch of the square 2L
2L electrolytic microcham-
ber in the xz plane. The external voltage �V0 is applied to the two
electrodes �thick black lines� at x= �L, respectively. It induces two
counter-rotating flow rolls �curved black arrows� by electro-osmosis
over the unbiased metallic center electrode of length 2a and height
h placed at the bottom wall around �x ,z�= �0,0�. The spatial extent
of the flow rolls is represented by the streamline plot �thin black
curves� drawn as equidistant contours of the flow rate. The inset is
a zoom in on the right half, 0�x�a, of the unbiased center elec-
trode and the nearby streamlines.
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generated consisting of two counter-rotating flow rolls. Elec-
tric insulating walls at z=0 �for �x��a� and at z=2L confine
the domain in the z direction. The symmetry of the system
around x=0 is exploited in the numerical calculations.

III. FN MODEL

We follow the usual continuum approach to the electroki-
netic modeling of the electrolytic microchamber and treat
only steady-state problems. For simplicity we consider a
symmetric binary electrolyte, where the positive and nega-
tive ions with concentrations c+ and c−, respectively, have the
same diffusivity D and charge number Z. Using the ideal-gas
model for the ions, an ion is affected by the sum of an elec-
trical and an osmotic force given by F�= 
Ze��
− �kBT /c���c�. Here e is the elementary charge, T is the
absolute temperature, and kB is Boltzmann’s constant. As-
suming a complete force balance between each ion and the
surrounding electrolyte, the resulting body force density
fion=�i=�ciFi, appearing in the Navier-Stokes equation for
the electrolyte due to the forces acting on the ions, is

fion = − Ze�c+ − c−� � � − kBT � �c+ + c−� . �3�

As the second term is a gradient, namely, the gradient of the
osmotic pressure of the ions, it can in the Navier-Stokes
equation be absorbed into the pressure gradient �p=�pdyn
+�pos, which is the gradient of the sum of hydrodynamic
pressure and the osmotic pressure. Only the electric force is
then kept as an explicit body force.

A. Bulk equations

Neglecting bulk reactions in the electrolyte, the ionic
transport is governed by the particle conservation

� · J� = 0, �4�

where J� is the flux density of the two ionic species. Assum-
ing the electrolytic solution to be dilute, the ion flux densities
are governed by the Nernst-Planck equation

J� = − D��c� +
�Ze

kBT
c� � �� + c�v , �5�

where the first term expresses ionic diffusion and the second
term expresses ionic electromigration due to the electrostatic
potential �. The last term expresses the convective transport
of ions by the fluid velocity field v.

The electrostatic potential is determined by the charge
density �el=Ze�c+−c−� through Poisson’s equation

� · �	 � �� = − �el, �6�

where � is the fluid permittivity, which is assumed constant.
The fluid velocity field v and pressure field p are governed
by the continuity equation and the Navier-Stokes equation
for incompressible fluids,

� · v = 0, �7a�

�m�v · ��v = − �p + ��2v − �el � � , �7b�

where �m and � are the fluid mass density and viscosity,
respectively, both assumed constant.

B. Dimensionless form

To simplify the numerical implementation, the governing
equations are rewritten in dimensionless form, as summa-
rized in Fig. 2, using the characteristic parameters of the
system: the geometric half length a of the electrode, the ionic
concentration c0 of the bulk electrolyte, and the thermal volt-
age �0=kBT / �Ze�. The characteristic zeta potential � of the
center electrode, i.e., its induced voltage, is given as the volt-
age drop along half of the electrode, �= �a /L�V0, and we
introduce the dimensionless zeta potential � as ����0, or
�= �aV0� / �L�0�. The characteristic velocity u0 is chosen as
the Helmholtz-Smoluchowski slip velocity induced by the
local electric field E=� /a, and finally the pressure scale is set
by the characteristic microfluidic pressure scale p0=�u0 /a.
In summary,

∂zc = 0, vx = vz = 0
∂zρ = 0, ∂zφ = 0

∂zc = 0, vx = vz = 0
∂zρ = 0, φ = 0

c = 1, vx = vz = 0
ρ = 0, φ = −α

L
a

∂zc = 0, vx = vz = 0
∂zρ = 0, ∂zφ = 0

vx = 0, ∂xvz = 0
φ = 0, ∂xc = 0
ρ = 0

p = 0
∂jvj = 0

Re vj∂jvi = ∂jσij − 1
ε2α2 ρ ∂iφ

∂
2
j φ = − 1

ε2 ρ

∂j(∂jc + ρ∂jφ) = P é vj∂jc

∂j(∂jρ + c∂jφ) = P é vj∂jρ

x

z

0−L L
0

2L

FIG. 2. The governing equations �without box� and boundary conditions �with boxes, arrows point to specific boundaries� in dimension-
less form �the tilde is omitted for clarity� for the entire quadratic 2L
2L domain �not shown in correct aspect ratio� bisected into two
symmetric halves. Only the right half �x�0� of the domain is included in the simulations. The boundaries are the surface of the unbiased
center electrode �black rectangle�, the solid insulating walls �dark gray lines�, the external electrode �black line�, and the symmetry line
�dashed black line�.
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�0 =
kBT

Ze
, u0 =

��

�

�

a
=

��0
2

�a
�2, p0 =

�u0

a
. �8�

The new dimensionless variables �denoted by a tilde� thus
become

r̃ =
r

a
, c̃i =

ci

c0
, �̃ =

�

�0
, ṽ =

v
u0

, p̃ =
p

p0
. �9�

To exploit the symmetry of the system and the binary elec-
trolyte, the governing equations are reformulated in terms of
the average ion concentration c��c++c−� /2 and half the
charge density ���c+−c−� /2. Correspondingly, the average
ion flux density Jc= �J++J−� /2 and half the current density
J�= �J+−J−� /2 are introduced. Thus, the resulting full system
of coupled nonlinear equations takes the following form for
the ionic fields

�̃ · J̃c = �̃ · J̃� = 0, �10a�

J̃c = − �̃�̃�̃ − �̃c̃ + Pe c̃ṽ , �10b�

J̃� = − c̃�̃�̃ − �̃�̃ + Pe �̃ṽ , �10c�

Pe =
u0a

D
, �10d�

while the electric potential obeys

�̃2�̃ = −
1

	2 �̃ , �11�

and finally the fluid fields satisfy

�̃ · ṽ = 0, �12a�

Re�ṽ · �̃�ṽ = − �̃p̃ + �̃2ṽ −
�̃

	2�2�̃�̃ , �12b�

Re =
�u0a

�
. �12c�

Here the small dimensionless parameter 	=�D /a has been
introduced, where �D is the Debye length,

	 =
�D

a
=

1

a
� �kBT

2�Ze�2c0
. �13�

We note that the dimensionless form of the osmotic force,

the second term in Eq. �3�, is f̃ion
os =−�1 /	2�2�� c̃.

C. Boundary conditions

We exploit the symmetry around x=0 and consider only
the right half �0�x�L� of the domain, see Fig. 2. As bound-
ary conditions on the driving electrode, we take both ion
concentrations to be constant and equal to the bulk charge
neutral concentration. Correspondingly, the charge density is
set to zero. Consequently, we ignore all dynamics taking

place on the driving electrode and simply treat it as an equi-
potential surface with the value V0. We set a no-slip condi-
tion for the fluid velocity, and thus at x=L we have

c̃ = 1, �̃ = 0, �̃ =
V0

�0
= �

L

a
, ṽ = 0 . �14�

On the symmetry axis �x=0� the potential and the charge
density must be zero due to the antisymmetry of the applied
potential. Moreover, there is neither a fluid flux nor a net ion
flux in the normal direction and the shear stresses vanish. So
at x=0 we have

�̃ = 0, n̂ · J̃c = 0, �̃ = 0, �15a�

t̂ · �̃ · n̂ = 0, n̂ · ṽ = 0, �15b�

where the stress tensor is ���ik=−p�ik+���iuk+�kui�, and n̂
and t̂ are the normal and tangential unit vectors, respectively,
which in two dimensions, contrary to three dimensions, are
uniquely defined. The constant potential on the unbiased me-
tallic electrode is zero due to symmetry, and on the electrode
surface we apply a no-slip condition on the fluid velocity and
no-current condition in the normal direction. So on the elec-
trode surface we have

n̂ · J̃c = 0, n̂ · J̃� = 0, �̃ = 0, ṽ = 0 . �16�

On the solid insulating walls there are no fluxes in the nor-
mal direction, the normal component of the electric field
vanishes, and there are no slip on the fluid velocity,

n̂ · J̃c = 0, n̂ · J̃� = 0, n̂ · ��̃ = 0, ṽ = 0 . �17�

A complete overview of the governing equations and bound-
ary conditions is given in Fig. 2.

D. Strongly nonlinear regime

At high values of the induced � potential, the concentra-
tions of counter- and co-ions acquire very large and very
small values, respectively, near the center electrode. Numeri-
cally this is problematic. The concentration ratio becomes
extremely large and the vanishingly small concentration of
co-ions is comparable to the round-off error and may even
become negative. However, this numerical problem can be
circumvented by working with the logarithms �marked by a
breve accent� of the concentration fields, c̆�=log�c� /c0�. By
inserting

c� = c0 exp�c̆�� �18�

in governing equations �5�, �6�, and �7b�, a new equivalent
set of governing equations is derived. The symmetry is ex-
ploited by defining the symmetric c̆= c̆++ c̆− and antisymmet-
ric �̆= c̆+− c̆− combinations of the logarithmic fields, and the
corresponding formulation of the governing equations is

�̃2c̆ = Pe ṽ · �̃c̆ −
��̃c̆�2 + ��̃�̆�2

2
− �̃�̃ · �̃�̆ , �19a�

�̃2��̆ + 2�̃� = Pe ṽ · �̃�̆ − �̃c̆ · �̃�̆ − �̃�̃ · �̃�̆ , �19b�
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�̃2�̃ = −
1

	2ec̆/2 sinh� �̆

2
� , �19c�

Re�ṽ · �̃�ṽ = − �̃p̃ + �̃2ṽ −
1

	2�2ec̆/2 sinh� �̆

2
��̃�̃ ,

�19d�

while the continuity equation remains the same as in Eq.
�12a�. The governing equations and boundary conditions for
the logarithmic fields �breve notation� are summarized in
Fig. 3. This transformation serves to help linearize solutions
of the dependent variables, c̆ and �̆, at the expense of intro-
ducing more nonlinearity into the governing equations.

IV. SLIP-VELOCITY MODELS

The numerical calculation of ICEO flows in microfluidic
systems is generally connected with computational limita-
tions due to the large difference of the inherent length scales.
Typically, the Debye length is much smaller than the geomet-
ric length scale, �D�a, making it difficult to resolve both the
dynamics of the Debye layer and the entire microscale ge-
ometry with the available computer capacity. Therefore, it is
customary to use slip-velocity models, where it is assumed
that the electrodes are screened completely by the Debye
layer leaving the bulk electrolyte charge neutral. The dynam-
ics of the Debye layer is modeled separately and applied to
the bulk fluid velocity through an effective so-called
Helmholtz-Smoluchowski slip-velocity condition at the elec-
trode surface,

vHS = −
�

�
�E� , �20�

where � is the zeta potential at the electrode surface, and E�

is the electric field parallel to the surface. Regardless of the
modeled dynamics in the double layer the slip-velocity mod-
els are only strictly valid in the limit of infinitely thin double
layers �D�a.

A. LS model

The double-layer screening of the electrodes leaves the
bulk electrolyte charge neutral, and hence the governing

equations only include the potential �, the pressure field p,
and the flow velocity field v. In dimensionless form they
become

�̃2�̃ = 0, �21a�

Re�ṽ · �̃�ṽ = − �̃p̃ + �̃2ṽ , �21b�

�̃ · ṽ = 0. �21c�

The electrostatic problem is solved independently of the
hydrodynamics, and the potential is used to calculate the
effective slip velocity applied to the fluid at the unbiased
electrode surface. The boundary conditions of the potential
and fluid velocity are equivalent to the conditions applied to
the full nonlinear system, except at the surface of the unbi-
ased electrode. Here, the normal component of the electric
field vanishes, and the effective slip velocity of the fluid is
calculated from the electrostatic potential using �=−� and

E� =−��t̂ · �̃��̃�t̂,

n̂ · ��̃ = 0, �22a�

ṽHS =
1

�2 �̃��t̂ · �̃��̃�t̂ . �22b�

This represents the simplest possible so-called linear slip-
velocity model; a model that is widely applied as a starting
point for numerical simulations of actual microfluidic sys-
tems �20,21�. In this simple model all the dynamics of the
double layer has been neglected, an assumption known to be
problematic when the voltage across the electrode exceeds
the thermal voltage.

B. NLS model

The linear slip-velocity model can be improved by taking
into account the nonlinear charge dynamics of the double
layer. This is done in the so-called nonlinear slip-velocity
model, where, although still treated as being infinitely thin,
the double layer has a nontrivial charge dynamics with cur-
rents from the bulk in the normal direction and currents
flowing tangential to the electrode inside the double layer.

∂z c̆ = 0, vx = vz = 0
∂zρ̆ = 0, ∂zφ = 0

∂z c̆ = 0, vx = vz = 0
∂zρ̆ + 2∂zφ = 0, φ = 0

c̆ = 0, vx = vz = 0
ρ̆ = 0, φ = −α

L
a

∂z c̆ = 0, vx = vz = 0
∂zρ̆ = 0, ∂zφ = 0

vx = 0, ∂xvz = 0
φ = 0, ∂xc̆ = 0
ρ̆ = 0, ∂xρ̆ + 2∂xφ = 0

p = 0
∂jvj = 0

Re vj∂jvi = ∂jσij − 1
ε2α2 e

c̆/2 sinh( ρ̆
2 ) ∂iφ

∂
2
j φ = − 1

ε2 e
c̆/2 sinh( ρ̆

2 )

−∂
2
j c̆ + P é vj∂j c̆ = 1

2

[
(∂j c̆)2 + (∂j ρ̆)2

]
+ (∂jφ)(∂j ρ̆)

−∂
2
j (ρ̆ + 2φ) = (∂j c̆)(∂j ρ̆) + (∂jφ)(∂j c̆) − P é vj∂j ρ̆

x

z

0−L L
0

2L

FIG. 3. The governing equations �without box� and boundary conditions �with boxes� in dimensionless form �the tilde is omitted� using
the logarithmic concentrations �denoted by a breve� of Eq. �18�. Otherwise the figure is identical to Fig. 2.

NUMERICAL ANALYSIS OF FINITE DEBYE-LENGTH… PHYSICAL REVIEW E 79, 066316 �2009�

066316-5



For simplicity we assume in the present nonlinear model that
the neutral salt concentration c0 is uniform. This assumption
breaks down at high zeta potentials, where surface transport
of ionic species can set up gradients in the salt concentra-
tions leading to chemiosmotic flow. In future more complete
studies of double-layer charge dynamics, these effects should
be included.

The charging of the double layer by the Ohmic bulk cur-
rent is assumed to happen in quasiequilibrium characterized
by a nonlinear differential capacitance Cdl given by the
Gouy-Chapmann model, Cdl=� cosh�ze� / �2kBT�� /�D, which
in the low-voltage linear Debye-Hückel regime reduces to
Cdl=� /�D. Ignoring the Stern layer, the zeta potential is di-
rectly proportional to the bulk potential right outside the
double layer, �=−�.

The current along the electrode inside the Debye layer is
described by a 2D surface conductance �s, which for a bi-
nary symmetric electrolyte is given by �1�

�s = 4�D��1 + m�sinh2� Ze�

4kBT
� , �23�

where � is the bulk three-dimensional conductivity and

m = 2
�

�D
� kBT

Ze
�2

�24�

is a dimensionless parameter indicating the relative contribu-
tion of electro-osmosis to surface conduction. In steady state
the conservation of charge then yields �25�

0 = n̂ · �� � �� + �s · ��s�s�� , �25�

where the operator �s= t̂�t̂ ·�� is the gradient in the tangen-
tial direction of the surface.

Given the length scale a of the electrode, the strength of
the surface conductance can by characterized by the dimen-
sionless Dukhin number Du defined by

Du =
�s

a�
=

4�D

a
�1 + m�sinh2�Ze�

kBT
� . �26�

Conservation of charge then takes the dimensionless form

0 = n̂ · ��̃�̃� + �̃s · �Du�̃s · �̃� , �27�

and this effective boundary condition for the potential on the
flat electrode constitutes a one-dimensional �1D� partial dif-
ferential equation and as such needs accompanying boundary
conditions. As a boundary condition the surface flux is as-
sumed to be zero at the edges of the electrode,

�s�t̂ · ����x=�a = 0, �28�

which is well suited for the weak formulation we employ in
our numerical simulation as seen in Eq. �34�.

V. NUMERICS IN COMSOL

The numerical calculations are performed using the com-
mercial finite-element-method software COMSOL with
second-order Lagrange elements for all the fields except the
pressure, for which first-order elements suffice. We have ap-

plied the so-called weak formulation mainly to be able to
control the coupling between the bulk equations and the
boundary constraints, such as Eqs. �22b� and �25�, in the
implementation of the slip-velocity models in script form.

The Helmholtz-Smoluchowski slip condition poses a nu-
merical challenge because it is a Dirichlet condition includ-
ing not one but up to three variables, for which we want a
one-directional coupling from the electrostatic field � to the
hydrodynamic fields v and p. We use the weak formulation
to unambiguously enforce the boundary condition with the
explicit introduction of the required hydrodynamic reaction
force f on the unbiased electrode

f = � · n̂ . �29�

The x and z components of Navier-Stokes equation are mul-
tiplied with test functions ux and uz, respectively, and subse-
quently integrated over the whole domain �. Partial integra-
tion is then used to move the stress tensor contribution to the
boundaries ��,

0 = �
��

ui�ijnjds − �
�

��� jui��ij + uiBi�da , �30�

where Bi=Re�v j� j�vi+���i�� / �	2�2�. The boundary integral
on the unbiased electrode ��ue is rewritten as

�
��ue

ui�ijnjds = �
��ue

�uif i + Fi�vi − vHS,i��ds , �31�

where Fi are the test functions belonging to the components
f i of the reaction force f. These test functions are used to
enforce the Helmholtz-Smoluchowski slip boundary condi-
tion consistently. This formulation is used for both slip-
velocity models.

In the nonlinear slip-velocity model, the Laplace equation
�21a� is multiplied with the electrostatic test function �, and
partially integrated to get a boundary term and a bulk term

0 = �
��

���i��nids − �
�

��i����i��da . �32�

The boundary integration term on the electrode is simplified
by substitution of Eq. �25�, which results in

�
��ue

���i��nids = − �
��ue

��t̂i�i�Du t̂ j� j���ds . �33�

Again, the resulting boundary integral is partially integrated,
which gives us explicit access to the end points of the unbi-
ased electrode. This is necessary for applying the boundary
conditions on this 1D electrode,

�
��ue

��t̂i�i�Du t̂ j� j���ds = ��Du�t̂i�i���x=−a
x=+a

− �
��ue

�t̂i�i��Du�t̂ j� j��ds ,

�34�

The no-flux boundary condition can be explicitly included
with this formulation. Note that in both slip-velocity models
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the zeta potential is given by the potential just outside the
Debye layer, �=−�, and it is therefore not necessary to in-
clude it as a separate variable.

The accuracy and the mesh dependence of the simulation
have been investigated as follows. The comparison between
the three models quantifies relative differences of orders
down to 10−3, and the convergence of the numerical results is
ensured in the following way. COMSOL has a build-in adap-
tive mesh generation technique that is able to refine a given
mesh so as to minimize the error in the solution. The adap-
tive mesh generator increases the mesh density in the imme-
diate region around the electrode to capture the dynamics of
the ICEO in the most optimal way under the constraint of a
maximum number of degrees of freedom �DOFs�. For a
given set of physical parameters, the problem is solved each
time by increasing the number of DOFs and comparing con-
secutive solutions. As a convergence criterium we demand
that the standard deviation of the kinetic energy relative to
the mean value should be less than a given threshold value
typically chosen to be around 10−5. All of the simulations
ended with more than 106 DOFs, and the ICEO flow is there-
fore sufficiently resolved even for the thinnest double layers
in our study for which 	=10−4.

VI. RESULTS

Our comparison of the three numerical models is prima-
rily focused on variations in the three dimensionless param-
eters 	, �, and � relating to the Debye length �D, the applied
voltage V0, and the height h of the electrode, respectively,

	 =
�D

a
, � =

aV0

L�0
, � =

h

a
. �35�

As mentioned in Sec. I, the strength of the generated ICEO
flow can be measured as the mechanical power input Pmech
exerted on the electrolyte by the slip velocity just outside the
Debye layer or equivalently by the kinetic-energy dissipation
Pkin in the bulk of the electrolyte. However, both these meth-
ods suffer from numerical inaccuracies due to the depen-
dence of both the position of the integration path and of the
less accurately determined velocity gradients in the stress
tensor �. To obtain a numerically more stable and accurate
measure, we have chosen in the following analysis to char-
acterize the strength of the ICEO flow by the kinetic energy
Ekin of the induced flow field v,

Ekin =
1

2
�m�

�

v2dxdz , �36�

which depends on the velocity field and not its gradients, and
which furthermore is a bulk integral of good numerical sta-
bility.

A. Zero height of the unbiased center electrode

We assume the height h of the unbiased center electrode
to be zero, i.e., �=0, while varying the Debye length and the
applied voltage through the parameters 	 and �. We note that
linear slip-velocity model equations �21� and �22� are inde-

pendent of the dimensionless Debye length 	. It is therefore
natural to use the kinetic energy Ekin

LS of this model as a
normalization factor.

In the lin-log plot of Fig. 4 we show the kinetic energy
Ekin

NLS and Ekin
FN normalized by Ekin

LS as a function of the inverse
Debye length 1 /	 for three different values of the applied
voltage, �=0.05, 0.5, and 5, ranging from the linear to the
strongly nonlinear voltage regime.

We first note that in the limit of vanishing Debye length
�to the right in the graph� all models converge toward the
same value for all values of the applied voltage �. For small
values of � the advanced slip-velocity model Ekin

NLS is fairly
close to the linear slip-velocity model Ekin

LS, but as � in-
creases, it requires smaller and smaller values of 	 to obtain
the same results in the two models. In the linear regime �
=0.05 a deviation less than 5% is obtained already for 	
�1. In the nonlinear regime �=0.5 the same deviation re-
quires 	�10−2 while in the strongly nonlinear regime 	
�10−4 is needed to obtain a deviation lower than 5%.

In contrast, it is noted how the more realistic full model
Ekin

FN deviates strongly from Ekin
LS for most of the displayed

values of 	 and �. To obtain a relative deviation less than 5%
in the linear ��=0.05� and nonlinear ��=0.5� regimes, a
minute Debye length of 	�10−3 is required, and in the
strongly nonlinear regime the 5% level is not reached at all.

The deviations are surprisingly large. The Debye length in
typical electrokinetic experiments is �D=30 nm. For a value
of 	=0.01 this corresponds to an electrode of width 2

3 �m=6 �m, comparable to those used in Refs.
�7,10,11�. In Fig. 4 we see that, for �=5, corresponding to a
moderate voltage drop of 0.26 V across the electrode, the
linear slip-velocity model overestimates the ICEO strength
by a factor 1 /0.4=2.5. The nonlinear slip model does a better
job. For the same parameters it only overestimates the ICEO
strength by a factor 0.5 /0.4=1.2.

For more detailed comparisons between the three models,
the data of Fig. 4 are plotted in a different way in Fig. 5.
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FIG. 4. The total induced kinetic energy Ekin
NLS �gray dashed� and
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FN �black� for the nonlinear slip-velocity model and the full
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LS �horizontal black line� of the

linear slip-velocity model as a function of dimensionless inverse
Debye length 1 /	. Each are shown for three values of the dimen-
sionless applied voltage �=0.05, 0.5, and 5. The value of 	 de-
creases from 1 to 10−4 going from left to right.
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Here the overestimates �Ekin
LS /Ekin

FN�−1 and �Ekin
NLS /Ekin

FN�−1 of
the two slip-velocity models relative to the more correct full
model are plotted in a log-log plot as a function of the in-
verse Debye length 1 /	 for three different values of the ap-
plied voltage. It is clearly seen how the relative deviation
decreases proportional to 	 as 	 approaches zero.

Finally, in Fig. 6 the relative deviations �Ekin
LS /Ekin

FN�−1 and
�Ekin

NLS /Ekin
FN�−1 are plotted versus the voltage � in a log-log

plot. For any value of the applied voltage �, both slip-
velocity models overestimates by more than 100% for large
Debye lengths 	=10−1 and by more than 10% for 	=10−2.
For the minute Debye length �D=1.8
10−3 the overesti-
mates are about 3% in the linear and weakly nonlinear re-
gime ��1; however, as we enter the strongly nonlinear re-
gime with �=5 the overestimation increases to a level above
10%.

B. Finite height of the unbiased electrode

Compared to the full numerical model, the slip-velocity
models are convenient to use but even for small Debye

lengths, say �D=0.01a, they are prone to significant quanti-
tative errors as shown above. Similarly, it is of relevance to
study how the height of the unbiased electrode influences the
strength of the ICEO flow rolls. In experiments the thinnest
electrodes are made by evaporation techniques. The resulting
electrode heights are of the order of 50–200 nm, which rela-
tive to the typical electrode widths a
5 �m results in di-
mensionless heights 10−3���10−1.

In Fig. 7 is shown the results for the numerical calculation
of the kinetic energy Ekin

FN�	 ,�� using the full numerical
model. The dependence on the kinetic energy of the dimen-
sionless Debye length 	=�D /a and the dimensionless elec-
trode height �=h /a is measured relative to the value
Ekin

FN�	 ,�� of the infinitely small Debye length for an elec-
trode of zero height. For small values of the height no major
deviations are seen. The curve for �=0 and �=0.001 are
close. As the height is increased to �=10−2 we note that the
strength of the ICEO is increased by 20–25 % as ��	. This
tendency is even stronger pronounced for the higher elec-
trode �=10−1. Here the ICEO strength is increased by ap-
proximately 400% for a large range of Debye lengths. We
speculate that this strong � dependence may be due to the
fact that there is an increased electric field in the region of
high curvature of the raised electrode as compared to the flat
electrode.

C. Thermodynamic efficiency of the ICEO system

Conventional electro-osmosis is known to have a low
thermodynamic efficiency defined as the delivered mechani-
cal pumping power relative to the total power delivered by
the driving voltage. Typical efficiencies are of the order of
1% �26� while in special cases an efficiency of 5.6% has
been reported �27�. In the following we provide estimates
and numerical calculations of the corresponding thermody-
namic efficiency of the ICEO system.

The applied voltage drop 2V0=2E0L across the system in
the x direction is written as the average electrical field E0
times the length 2L while the electrical current is given by
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I=WH�E0, where W and H is the width and height in the y
and z directions, respectively, and �=D� /�D

2 =� /�D is the
conductivity written in terms of the Debye time �D=�D

2 /D.
The total power consumption to run the ICEO system is thus

Ptot = 2V0I =
4

�D
�1

2
�E0

2�LWH . �37�

This expression can be interpreted as the total energy,
1
2�E0

2LWH, stored in the average electrical field of the system
with volume LWH multiplied by the characteristic electroki-
netic rate 4 /�D.

The velocity-gradient part of the hydrodynamic stress ten-
sor is denoted �̃, i.e., ��̃�ij =���iv j +� jvi�. In terms of �̃, the
kinetic-energy dissipation Pkin necessary to sustain the
steady-state flow rolls is given by Pkin= W

2�	0
Ldx	0

Hdz Tr��̃2�.
In the following estimate we work in the Debye-Hückel limit
for an electrode of length 2a, where the induced zeta poten-
tial is given by �ind=aE0 and the radius of each flow roll is
approximately a. In this limit the electro-osmotic slip veloc-
ity ueo and the typical size of the velocity gradient ��iv j� are

ueo =
��ind

�
E0 =

�a

�
E0

2, �38a�

��iv j� 

ueo

a
=

�

�
E0

2. �38b�

Thus, since the typical area covered by each flow roll is �a2,
we obtain the following estimate of Pkin,

Pkin 
 2
W

2�
�a24��

ueo

a
�2

= 8
�E0

2

�
�1

2
�E0�2

�a2W . �39�

Here the power dissipation can be interpreted as the energy
of the electrical field in the volume �a2W occupied by each
flow roll multiplied by an ICEO rate given by the electric
energy density �E0

2 divided by the rate of viscous energy
dissipation per volume given by �.

The thermodynamic efficiency can now be calculated as
the ratio Pkin / Ptot using Eqs. �37� and �39�,

Pkin

Ptot



2�a2

LH

�E0
2

�/�D

 2.4 
 10−8. �40�

This efficiency is the product of the ratio between the vol-
umes of the flow rolls and the entire volume multiplied, and
the ratio of the electric energy density in the viscous energy

density � /�D. The value is found using L=H=15a
=0.15 mm, E0=2.5 kV /m, and �D=20 nm, which is in
agreement with the conventional efficiencies for conven-
tional electro-osmotic systems quoted above.

VII. CONCLUSION

We have shown that the ICEO velocities calculated using
the simple zero-width models significantly overestimates
those calculated in more realistic models taking the finite
size of the Debye screening length into account. This may
provide a partial explanation of the observed quantitative
discrepancy between observed and calculated ICEO veloci-
ties. The discrepancy increases substantially for increasing 	,
i.e., in nanofluidic systems.

Even larger deviations of the ICEO strength is calculated
in the full numerical model when a small but finite height of
the unbiased electrode is taken into account.

A partial explanation of the quantitative failure of the ana-
lytical slip-velocity model is the decrease in the tangential
electric field as a function of the distance to the surface of the
polarized ICEO object combined with the spatial extent of
the charge density of the double layer. Also tangential hydro-
dynamic and osmotic-pressure gradients developing inside
the double layer may contribute to the lowering ICEO
strength when taking the finite width of the double layer into
account. The latter may be related to the modification of the
classical Helmholtz-Smoluchowski expression of the slip ve-
locity obtained by adding a term proportional to the gradient
of the salt concentration c �28�.

Our work shows that for systems with a small but nonzero
Debye length of 0.001–0.01 times the size of the electrode,
and even when the Debye-Hückel approximation is valid, a
poor quantitative agreement between experiments and model
calculations must be expected when applying the linear slip-
velocity model based on a zero Debye length. It is advised to
employ the full numerical model of ICEO, when comparing
simulations with experiments.
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