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iAbstrat
The results in this thesis are part of the work arried out during the author's dotoral stud-ies. The PhD projet has been funded partly by the Danish National Researh Foundation(grant no. 74) through the Center for Fluid Dynamis, and partly by the Department ofMiro- and Nanotehnology at the Tehnial University of Denmark. The overall title forthe PhD projet is Osmotially driven �ow in miro�uidi systems and their relation tosugar transport in plants. The work has onsisted of several smaller projets fousing ontheory, and to some extend experiments, with osmotially driven �ows as the predominanttheme. This thesis ontains seleted parts of the results obtained. Other parts of the workhave been published in peer-reviewed journals or presented at onferenes, see Se. 1.2.The study of osmotially driven �ows is motivated by phenomena observed in plantswhih have highly e�ient vasular system that failitates the transport of �uid and nutri-ents between distal parts of the organism. In this PhD projet the author and o-workers1have studied one of these vasular system, the phloem, whih is responsible for the distri-bution of sugar produed by photosynthesis and signaling moleules sereted in response toexternal or internal stimuli between distal parts of the plant. The phloem an be broadlyomparable to a ombination of the blood irulatory- and nervous systems found in an-imals, and it has long been debated whih mehanism drives the transloation proess.Sine Ernst Münh's work in the 1930s it has been known that osmosis plays a very im-portant role, but it is still largely unknown whether this mehanism an aount for therates of transloation observed in plants.To get a fundamental understanding of osmotially driven �ows, we have onduteda thorough theoretial study of these. This, oupled with a series of simple experiments,has allowed us to gain a new, quantitative, understanding of the transport proess thatours in plants. The experiments were arried out in a miro�uidi system. To mimithe situation in plants where the osmoti interation ours aross ell membranes, weused a system where two hannels (2.7 cm long, 200 µm wide and 50 − 200 µm deep)were separated by a ellulose membrane. One hannel was �lled half way with an aqueoussugar solution, while the other hannel was ompletely �lled with water. Due to osmosiswater moves from the water �lled hannel into the sugar-�lled region and thereby pushesthe sugar forwards. We have shown that the experiments, within a reasonable degree ofauray, follow the preditions of the Münh theory.With the understanding obtained from the above mentioned experiments, we havestudied the main topi of this thesis: Theoretial aspets of osmotially driven �ows.Although the basi equations have been known for at least half a entury, there is asurprisingly poor understanding of the orrelation between, say, a tree's height and thespeed at whih sugar is moving in phloem due to the osmoti �ow proess. To answer1See the list of publiations, Se. 1.2, and the introdution to eah hapter.



iithis and related questions, we have studied fundamental properties of osmotially driven�ows, and have developed a simple model whih we believe provides a reasonably auratequantitative desription of the transport proess in the phloem. The model provides abasi understanding of the �ow as a funtion of the parameters in the problem and is ableto reprodue experimental data from in vivo measurements made on plants.An interesting predition of the model is that the osmotially driven Münh �ow meh-anism has a maximum in transloation veloity for a speial value of the radius. Theexistene of suh a maximum is quite easy to understand: the osmoti �ow takes plaeaross the ell surfae and is therefore more e�etive in terms of the axial veloity for thin-ner tubes where the surfae-to-volume ratio is larger. Very thin tubes, on the other hand,o�er high visous resistane to the �ow, and thus there is an optimum radius where theosmoti pump is e�etive and the resistane not too large. We have derived an analytialexpression for this radius whih takes the form of an allometri saling law relating theoptimum radius of the phloem ells ac to the length of the stem and the size of the leaf l1.We thus �nd that at the radius a3c ∝ l1l2, the osmoti �ow mehanism yields the fastestpossible transloation veloity. We have ompared this predition to plant data and havefound good agreement between observations and our result for a group of plants varyingseveral orders of magnitude in size. This �nding suggests that the physial onstraintsimposed by the optimality of the Münh �ow mehanism has played a signi�ant role inthe evolution of the phloem vasular system of plants.



iiiResumé
Resultaterne i denne afhandling er udarbejdet i løbet af forfatterens ph.d.-studier. Ph.d.-projektet er dels �nanieret af et af Danmarks Grundforskningsfond støttet projekt, Centerfor Fluid Dynamik (bevilling no. 74), og dels af Institut for Mikro- og Nanoteknologi vedDanmarks Tekniske Universitet. Den overordnede titel for ph.d.-projektet er Osmotiskdrevne strømninger i mikro�uide systemer og deres relation til sukkertransport i planter.Arbejdet har bestået af �ere mindre projekter med fokus på teori, og i nogen grad eksperi-menter, med osmotisk drevne strømninger som det gennemgående tema. I den foreliggendeafhandling gennemgås dele af de i løbet af projektet opnåede resultater. Andre dele af ar-bejdet er blevet publieret i fagfællebedømte tidskrifter eller præsenteret ved konferener,se afsnit 1.2.Studiet af osmotisk drevne strømninger er motiveret af fænomener observeret i planter,der har meget e�ektive karsystemer, som sørger for at transportere væske, signal- ognæringssto�er. I dette ph.d.-projekt har forfatteren og samarbejdspartnere2 studeret detene af disse karsystemer, det såkaldte phloem, som sørger for at bringe signalsto�er ogdet sukker, der produeres gennem bladenes fotosyntese ned til rødderne eller ud til nyeskud. Phloemet kan i store træk sammenlignes med en kombination af dyrs blodkredsløbs-og nervesystem, og det har længe været debatteret, hvad der driver sådanne strømninger.Siden Ernst Münhs arbejde i 1930'erne har det været kendt, at osmotiske trykforskellespiller en meget vigtig rolle, men man ved stadig ikke, hvor stor en del af strømningerne,som kan forklares på denne måde. For at få en grundlænggende forståelse af osmotiskdrevne strømninger har vi foretaget et grundigt teoretisk studie af disse. Det har, sam-men med en række simple eksperimenter, givet os en ny forståelse for transportproesseni planter.Eksperimenterne er foretaget på mikro�uide systemer. For at efterligne situationeni planter, hvor den osmotiske vekselvirkning sker over ellemenbraner, har vi brugt etsystem, hvor to kanaler (2.7 cm lange, 200 µm bredde og 50 − 200 µm dybe) er adskiltaf en ellulosemembran. Den ene kanal fyldes halvt med en vandig sukkeropløsning, halvtmed vand og den anden helt op med vand. Pga. osmose trænger vand fra den ene kanal indi den anden og skubber således sukkeropløsningen fremad. Vi har vist, at eksperimenternemed rimelig nøjagtighed følger Münh-teoriens forudsigelser.Med disse eksperimenter i bagagen har vi studeret hovedemnet i denne afhandling:Teoretiske aspekter af osmotisk drevne strømninger. Selv om de grundlæggende ligningerhar været kendt i mere end et halvt århundrede, er der en forbavsende ringe forståelsefor sammenhængen mellem f.eks. et træs højde og den hastighed, hvormed sukkersto�erbevæger sig i phloemet. For at besvare dette og relaterede spørgsmål har vi studeret defundamentale egenskaber ved osmotisk drevne strømninger. Vi har således udviklet en sim-2Se publikationslisten, afsnit 1.2, samt introduktionen til de enkelte kapitler.



ivpel model, som beskriver transportproessen i phloemet. Modellen giver en grundlæggendeforståelse af strømningerne som funktion af de relevante parametre, og den er i stand tilat reproduere eksperimentelle data fra in-vivo målinger på planter.Modellen kommer desuden med mange interessante forudsigelser. En af dem er, at denosmotisk drevne strømningsmekanisme har den højeste e�ektivitet for en speiel radiusaf phloem-karene. Grunden til dette et, at den osmotiske strømning foregår via karenesover�ade, og at den derfor er mere e�ektiv, jo mindre radius i karene er. På den anden sidebliver den viskøse strømningsmodstand meget stor for små kar, og altså er der en særligkarradius, hvor disse to e�ekter er i balane, og hastigheden er størst mulig. Vi har udledt etanalytisk udtryk for denne radius, der relaterer ellernes radius ac til bladest størrelse l1 ogstammens længde l2: a3c ∝ l1l2. Vi �nder god overensstemmelse mellem denne forudsigelseog data fra en stor gruppe planter, der varierer i længde over �ere størrelsesordener. Detteresultat tyder på, at de fysiske begrænsninger i Münh-mekanismen har spillet en væsentligrolle i udviklingen af planters phloem-kar system.
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Chapter 1IntrodutionOsmosis is the passage of water from a region of high water onentration to a region oflow water onentration through a semipermeable membrane. Sienti� interest in thesubjet started in the middle of the eighteenth entury with the disovery of osmosis byAbbé Jean-Antoine Nollet. It was soon realized that osmosis plays an important role inthe transport of water in and out ells, and with the theoretial framework put in plaeby van't Ho� in the 1880s, the fundamental understanding of the phenomena was greatlyimproved [69℄.One area of biology where osmotially driven �ows turned out to be of partiular im-portane is in plants. At the beginning of the twentieth entury Ernst Münh publishedhis now famous monograph �Die Sto�bewegungen in der P�anze� [49℄. He proposed thatlong-distane transport of sugar in plants is driven by osmosis and that it ours in amiro�uidi pipe network of ells spanning the entire length of the plant. His work re-vealed a wealth of phenomena of unantiipated omplexity related to the �uid mehanisof osmotially driven �ows that ontinue to pose intriguing questions today.Münh's idea, illustrated in Fig. 1.1, was simple: In the leaves, sugar produed byphotosynthesis is sereted into a network of ylindrial ells known as the phloem. Due toosmosis, the high onentration of sugar inside the phloem reates a �ow of water aross thesemipermeable ell membrane. This in turn displae the liquid and sugar already presentforwards, thereby reating a bulk �ow of sugar from soure to sink. At the sugar sink, e.g.the root, a fruit or other plaes of growth and storage, removal of sugar from the phloemauses the water to leave the ells sine the osmoti driving fore is no longer present.The fundamental questions that arise from this hypothesis are e.g. how muh sugar anbe transported in this way? How fast an it move? What ontrols the rate of transport?How does the osmoti mehanism a�et the struture of the plant? Is osmosis su�ientto aount for the rates of transloation observed in plants? Ultimately these questionsare all related to plant growth and are therefore of great both fundamental and pratialimportane.The main fous in this thesis is put on a theoretial analysis of the �uid mehanisof osmotially driven �ows, aimed at answering some of the questions posed above. Toput the theoretial results in a biologial ontext, the author has worked losely with1



2 Introdution
Source
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Water
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Phloem
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Figure 1.1: Shemati sketh of sugar transloation in plants aording to the Münh hy-pothesis. In the soure leaves, sugar (blak dots) produed by photosynthesis is seretedinto a network of ylindrial ells known as the phloem. Due to osmosis, the high on-entration of sugar reates a �ow of water aross the semipermeable ell membrane fromthe surrounding tissue (solid arrows) into the phloem. This in turn displae the waterand sugar (dashed arrows) already present forwards, thereby reating a bulk �ow fromsugar soure to sugar sink. At the sink, e.g. the root, a fruit or other plaes of growthand storage, removal of sugar from the phloem auses the water to leave the ells sinethe osmoti driving fore is no longer present. The loading and unloading proesses areindiated by urved arrows. Adapted from [29℄, Fig. 1.



Outline of the thesis 3researhers performing in-vivo experiments on plants. This, together with a series of simple,biomimiking miro�uidi experiments, have enabled us to gain a new understanding ofthe transloation proesses that our in plants.1.1 Outline of the thesisThis thesis onsists of 9 hapters. The bulk of the material presented has been published inthe papers listed in Se. 1.2. At the beginning of eah hapter, a brief overview highlightingthe ontributions made by the author of the present thesis is given along with a list ofrelevant ollaborators.A list of the titles and a brief outline of the subjets treated is given below.
• Chapter 2: Osmotially driven �ows in living and arti�ial systems Thishapter provides an introdution to osmotially driven �ows in arti�ial and livingsystems. Sine the motivation for studying these �ows omes primarily from phe-nomena observed in the phloem vasular system of plants, the basi priniples ofplant vasular biology are summarized. We disuss a number of experimental studieshave been made on osmotially driven �ows in arti�ial systems, some of whih havesigni�ant tehnologial appliations.
• Chapter 3: Fluid mehanis of osmotially driven �ows We introdue thebasi onepts of osmosis and the relevant equations of motion for liquid and solutetransport in osmotially driven �ows. From these we derive an analytial solution forthe osmoti �ow and onentration problem in a ylindrial tube whih leads diretlyto the one-dimensional equations of motion ommonly used in the phloem transportliterature. We disuss how these equations are applied in the literature to modeltransport proesses in plants, and onsider some of the harateristi properties ofthe models. Finally, we disuss some of the neessary assumptions for the equationsof motion to be appliable.
• Chapter 4: Hydrauli resistane of sieve plates In hapter 3 we derived one-dimensional equations of motion for osmotially driven �ows in ylindrial tubes withsemipermeable walls. The transloation pathway found in plants does not, however,simply onstitute one, long, ontinuous ylindrial tube. Rather, it onsists of indi-vidual ells separated by sieve plates the presene whih may ontribute signi�antlyto the overall hydrauli resistane of the transloation pathway. In this hapter wethus onsider the e�et of sieve plates on the �ow inside the phloem sieve tubes. Weshow that the presene of the plates impose a signi�ant amount of additional dragon the �ow.
• Chapter 5: Mathematial analysis of the equations of motion In this hap-ter we study analytial and numerial solutions to the steady-state one-dimensionalequations of motion derived in hapter 3. The equations are analyzed in a modelonsisting of 3 zones: a loading zone, a transloation zone and an unloading zoneeah representing di�erent parts of the plant. We solve the equations of motion using



4 Introdution�rst a simple hydrauli resistor model and seond a full analytial solution valid inthe limit of very small and very large tube radii.
• Chapter 6: Optimality of the Münh mehanism In this hapter we apply theresults of the 3-zone model introdued hapter 5 to transloation in plants. We beginby showing that the model is likely to be a onise representation of the proessesthat our in plants by omparing experimental data to the preditions of the model.Then, we onsider an interesting onsequene of our results: The osmoti pumpingmehanism has a maximum in transloation veloity for a speial, optimal, value ofthe phloem sieve tube radius ac. We derive an expression for ac whih takes theform of an allometri saling law. At this partiular value of the radius the Münhmehanism is optimized for rapid transloation of sugars in the phloem. We showthat a large group of plants follow the preditions of the saling law.
• Chapter 7: Miro�uidi experiments Inspired by the biomimiking experimentsof Münh, Eshrih et al., and Lang disussed in hapter 2 the author and o-workersdeided to design and fabriate miro�uidi devies apable of biomimiking theproesses that our in the phloem vasular system of plants using hannel dimensionthat approah those found in plants. This hapter is a desription of the experiments,presented in the form of unabridged version of the paper [28℄.
• Chapter 8: Self-onsistent unstirred layers in osmotially driven �ows Theone-dimensional equations of motion analyzed in hapters 3�6 were derived underthe assumption that the onentration is well-mixed aross the ross-setion of thetube. This approximation is valid if the radial transport of solute moleules due todi�usion is muh faster than the transport due to advetion. In this hapter we studyexatly when this ondition is ful�lled in an idealized system.
• Chapter 9: Conlusion and outlookWe present onluding remarks on our workon osmotially driven �ows and give some diretions for future researh.1.2 Publiations during the PhD projetPapers in peer reviewed journals1. K. H. Jensen, J. Lee, T. Bohr, H. Bruus, N. M. Holbrook and M. A. ZwieniekiOptimality of the Münh mehanism for transloation of sugars in plantsJournal of The Royal Soiety InterfaeDOI: 10.1098/rsif.2010.0578 (2011) [29℄ (0 itations as of 31 January 2011).2. K. H. Jensen, T. Bohr, and H. BruusSelf-onsistent unstirred layers in osmotially driven �owsJournal of Fluid Mehanis, Volume 662, p. 197-208 (2010) [27℄ (0 itations).3. K. H. Jensen, E. Rio, R. Hansen, C. Clanet and T. BohrOsmotially driven pipe �ows and their relation to sugar transport in plantsJournal of Fluid Mehanis, Volume 636, p. 371-396 (2009) [30℄ (2 itations).



Publiations during the PhD projet 54. K. H. Jensen, J. Lee, T. Bohr, and H. BruusOsmotially driven �ows in mirohannels separated by a semipermeable membraneLab Chip 9, 2093-2099 (2009) [28℄ (4 itations).5. K. H. Jensen, M.N. Alam, B. Sherer, A. Lambreht and N.A. MortensenSlow-light enhaned light-matter interations with appliations to gas sensingOptis Communiations, Volume 281, Issue 21, p. 5335-5339 (2008) [31℄ (5 itations)First author onferene ontributions1. K.H. Jensen, J. Lee, T. Bohr, J. Lee, N. M. Holbrook, M. Zwienieki, Optimality ofthe Münh hypothesis for transloation of sugars in plants, International Confereneon Plant Vasular Biology 2010, Colombus, USA. (2010)2. K.H. Jensen, T. Bohr and H. Bruus, Conentration boundary layers in osmoti mem-brane transport proesses, Annual Meeting of the APS Division of Fluid Dynamis,Minneapolis, USA, Paper MF.00002. Bull. Amer. Phys. So. 54 (19) (2009).3. K.H. Jensen, T. Bohr and H. Bruus, Osmotially driven �ows in mirohannels andtheir relation to sugar transport in plants, 1st Nordi Meeting in Physis, Copen-hagen, Paper BF.4 (2009).
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Chapter 2Osmotially driven �ows in livingand arti�ial systemsThe present hapter provides an introdution to osmotially driven �ows in arti�ial andliving systems. Sine the motivation for studying these �ows omes primarily from phe-nomena observed in the phloem sugar transport system of plants, the basi priniples ofplant vasular biology are summarized. The introdued onepts are thoroughly desribedin the literature (see e.g. [12, 85, 73, 79, 23, 36℄) and onstitute the motivation for thework presented in this thesis. The subjet will be presented as seen through the eyes of aphysiist, and is not intended to be a omplete review of the researh �eld of plant vas-ular biology. What follows should however be a su�iently omplete desription of theproesses that takes plae in plants to allow for a simple quantitative desription of theproess.We end by disussing a number of experimental studies have been made on osmotiallydriven �ows in arti�ial systems, some of whih have signi�ant tehnologial appliations.For the biologially inlined reader it will be useful to know that throughout this thesiswe are mainly onerned with transport proesses that our in angiosperms and thatmany of the geometri and hydrauli onsideration are made with this lass of plants inmind. This is of speial importane in the disussion of sieve pores whih are assumed to beopen [37, 48℄. This is not the ase in gymnosperms 1 where the sieve pores are oluded byendoplasmi retiulum membrane omplexes [68℄, and onsequently the hydrauli resistanemay be signi�antly higher.2.1 Osmotially driven �ows in living systemsFlows driven by osmosis are abundant in nature, the prime example being the �ow of wateraross ell walls in virtually all living reatures. Here, osmosis failitates the transport of1Gymnosperms are haraterized by having naked seeds, while the seeds of angiosperms are enlosedduring pollination. The most abundant group of gymnosperms are onifers (e.g. pine trees) while an-giosperms inlude all �owering plants. [73℄ 7



8 Osmotially driven �ows in living and arti�ial systemswater aross the plasma membrane either diretly aross the lipid bi-layer, or via membranetransport proteins suh as aquaporins [17, 64℄.While �ow in and out of single ells have been studied extensively in the literature,the most interesting example, from a �uid mehanist's' point of view, of an osmotiallydriven �ow is found in plants. Here, a network of ylindrial ells, known as the phloem,are responsible for transporting sugar from the leaves to plaes of growth or storage. Inthese ells, it is believed, osmosis reates a bulk �ow of water, sugars, hormones, andsignaling moleules over many tens of meters direted from soure to sink in aordanewith the basi needs of the plant [73℄. This proess, however, is not well understood onthe quantitative level sine diret measurements of transloation rates and driving foresare extremely di�ult to make [53, 37, 36℄.2.2 Vasular transport in plantsTerrestrial plants faes serious hallenges if they are to survive on land. The key to survivaland suessful reprodution is the ability to aquire and retain a su�ient amount of waterand nutrients for the plant to grow. In response to this, plants have developed roots andleaves. Roots provide mehanial stability and absorb water and nutrients from the soilwhile leaves absorb light and exhange gases with the atmosphere. As the plant grows,these two organs beome inreasingly separated in spae and hene the time for responsesto environmental stimuli to propagate is inreased. This makes the distribution of water,nutrients, photosyntheti produts and signaling moleules by passive means di�ult. Itis in response to this hallenge that plants have developed long-distane vasular transportsystems that allow the shoot and the root to exhange material and information in anelaborate and highly e�ient way.The vasular system of plants is made up of two parts: The phloem2 and the xylem3.Both the phloem and the xylem are made up of ylindrial ells lying end-to-end in amiro�uidi network spanning the entire length of the plant. The elements of phloemand xylem run in parallel to eah other and are almost always found in lose proximity,separated only by a few ells, as shown in Figs. 2.1 and 2.2. The two tissue types aredisussed in detail below, and harateristi physial parameters are listed in table 2.1.2.2.1 The xylemThe primary role of the xylem is to ondut water and nutrients from the roots to the restof the plant [51℄. The xylem onsists of water-�lled, ylindrial ells typially 100 µm inradius and with lengths ranging from 1 mm to several cm [85℄. The ells are joined togetherat the ends to form a network running along the entire length of the plant. The mehanismdriving �ow in the xylem is believed to be evaporation from the leaves through stomatapores whih open and lose in response to hanging onditions, suh as light intensity,humidity, and CO2 onentration in the atmosphere [73, 88℄. This mehanism drives a2The word phloem is derived the lassial Greek word for bark, phloios.3The word xylem is derived from the lassial Greek word for wood, xylon.
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Figure 2.1: Shemati sketh of the phloem and xylem vasular systems found in plants.(a) In the leaf, the vasular tissue onsisting of the phloem (dark gray) and xylem (lightgray) is found in veins running parallel to the leaf surfae loated near the enter of theross setion. (b-) In the stem and roots, the vasular tissue is found lose to the surfaein either a ontinuous ring or in bundles. The xylem typially lies loser to the interior ofthe stem than the phloem as shown in (b1). Between the xylem and phloem is a meristemalled the vasular ambium. This tissue divides o� ells that will be beome additionalxylem and phloem as the plant grows. The ylindrial nature of the ells is illustrated in(b2), see also Fig. 2.2. The transloation pattern is indiated by the arrows. Water (solidarrows) is absorbed from the ground and moves towards the leaves driven by evaporation.Sugar (dashed arrows) is produed in the leaves and moves to plaes of growth or storagee.g. immature leaves, fruits or roots.
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Figure 2.2: Sanning eletron mirosope (SEM) images of the phloem tissue of Curubitamaxima (squash), a plant whih has very large (50 µm in diameter) but otherwise repre-sentative phloem sieve tube elements. (a) Horizontal ross-setion of the vasular tissue(see Fig. 2.1(b1)) showing the phloem and xylem tissues. The position of a few of thesieve tube elements is indiated by the arrows. (b) Vertial ross setion the phloem tissueshowing the ylindrial nature of the sieve tube elements lying end to end. Individual sievetubes are separated by sieve plates indiated by the arrows. () Frontal view of a sieveplate. About 50% of the plate are is overed by open sieve pores. (d) Side view of a sieveplate. SEM images ourtesy of M. Knoblauh and D. L. Mullendore [48℄. Reprodued withpermission.



Vasular transport in plants 11Table 2.1: Charateristi physial parameters relevant to vasular transloation proessesin plants. Cell sizes refer to phloem sieve tube elements and xylem vessel elements.Parameter Phloem (P) Xylem (X) RefereneCell radius 10 µm 100 µm [48, 29℄(P), [85℄(X)Cell length 100 µm− 1 mm 1 mm− 1 cm [48℄(P), [85℄(X)Flow veloity 1 m/h = 0.28 mm/s 10 m/h = 2.8 mm/s [48, 29℄(P) [85℄(X)Pressure 1 MPa −1 MPa [82℄ (P) [85℄(X)Sugar onentration 0.1 M− 1 M ∼ 0 M [73, 82℄ (P), [85℄(X)Dry weight sugar transport 2.8× 10−3 kg/(s m2) [12℄ (P)Liquid visosity 2× 10−3 Pa s 1× 10−3 Pa s [79℄ (P), [73℄ (X)Membrane permeability 5× 10−14 m/(s Pa) [79℄ (P)�ow with speeds of the order 10 m/h = 2.8 mm/s and the evaporation from the leavesauses the water olumn in the xylem to be under tension, with indued negative pressuresof the order −1 MPa [85℄.2.2.2 The phloemThe phloem is responsible for transloating the produts of photosynthesis (i.e. sugars)from plaes of prodution, suh as mature leaves, to plaes of growth or storage, suh asimmature leaves, fruits or roots. Besides sugar, signaling moleules are also transported inthe phloem.The phloem onsists of several di�erent types of ells: Sieve tube elements, in whihthe transloation of sugar takes plae, ompanion ells that helps to regulate the metaboliativities of the sieve tube elements, phloem �bres that gives the plant mehanial strength,and phloem parenhyma whih ats as storage [73℄. As shown in Fig. 2.2(b), the sieve tubeelements are ylindrial ells typially measuring 10 µm in radius and about 100 µm inlength [80, 48℄. They over about 20 % of the area of the phloem [12℄ and ontain ahighly onentrated sugar solution (0.1 M− 1 M) as well as smaller amounts of signalingmoleules, amino aids, proteins and a number of minerals [73℄. The high sugar ontentmeans that the ells are under positive pressure, sometimes as high as 2.5 MPa [82℄.The sieve tube elements are joined together end-to-end forming a network runningalong the entire length of the plant. During early stages of sieve tube element development,plasmodesmata in the end walls of adjaent immature sieve tube elements are onvertedinto sieve pores usually a few ∼ 1 µm in diameter as shown in Fig. 2.2()-(d). When thesieve elements reahes maturity, these pores over ∼ 50% of the end wall area and formwhat is known as a sieve plate. The pores allow the transloation stream to pass relativelyfreely between adjaent sieve elements, making the sieve tube a ontinuous pathway [48℄.The primary role of the sieve plates is believed to be a defensive mehanism, sealing o�the sieve elements by logging the pores if the ell is mehanially damaged or heated.Thereby the plant prevents the valuable sugary ontent of the sieve elements from leaking[37℄.



12 Osmotially driven �ows in living and arti�ial systemsAs we shall see in hapter 4, the presene of sieve pores signi�antly inreases thehydrauli resistane of the phloem sieve tube transloation pathway.2.3 Transloation in the phloemLong-distane transport of sugar in the phloem sieve tubes is an experimentally establishedfat [36℄. The proess, however, is not well understood on the quantitative level sine diretmeasurements of transloation rates and driving fores are extremely di�ult to make[53, 37, 36℄. The fundamental problem is that the phloem is very sensitive to disturbanes,easing �ow when subjeted to slight mehanial or thermal perturbations [37℄.Early measurements of the rate of sugar transport in the phloem was onduted byweighing fruits at di�erent instanes in time. Using this tehnique, dry weight mass transferrate of the order 1 g/(h cm2) = 2.8 × 10−3 kg/s per m2 of phloem area was found [12℄.The problem with this type of experiment is that the only reliably measured quantity isthe inrease in dry weight per unit time. To get the atual transloation veloity one mustmake assumptions regarding the onentration of the sugar solution and the area frationof the phloem in whih the transport is taking plae. To resolve this problem, moreaurate measurement tehniques using radioative dye traers emerged have sine beenused extensively, see [12℄ and referenes therein. More reently, nulear magneti resonaneimaging has been used to measure phloem �ow veloities [48, 89℄ although both dye andradioative traers remain in use to this day [37, 29℄. All the above mentioned tehniques�nd typial �ow veloity in the sieve tube elements of the order 1 m/h = 0.28 mm/s, anorder of magnitude slower than in the xylem. This veloity, with a sugar onentration of
1 M, gives a dry weight transfer rate of 0.1 kg/s of m2 phloem sieve tube area, onsistentwith largest observed rate (5 g/(h cm2) = 0.014 kg/s per m2 of total phloem area [12℄)sine the sieve tubes over only about 20% of the total phloem area.2.3.1 Mehanisms driving the �owTo aount for the rates of transport observed in the phloem, several di�erent drivingmehanisms have been proposed. We will disuss moleular di�usion and osmosis in detailbelow, but for a thorough analysis of other mehanisms whih has been proposed, e.g.atin �lament driven streaming and eletro osmosis, see the review by MaRobbie [44℄.Moleular di�usionOne of the �rst mehanisms suggest to be responsible for transport in the phloem wasmoleular di�usion. This hypothesis had many supporters, among them Julius Sahs, oneof the leading plant physiologists of the 19th entury [26℄. The supporters of this theoryenvisaged that the transport of sugar was driven by a di�usive �ux set up by the gradient inonentration between the sugar loading and unloading regions in the plant. Quantitativealulations by De Vries published in 1885 showed, however, that this proess is muh tooslow to aount for the observed rates of transport [35℄.



Transloation in the phloem 13Following De Vries's alulations, Münh argues in [49℄ that the mass transfer due todi�usion an be estimated in the following way: In steady state the mass of sugar di�usingper unit time dm
dt due to a di�erene in onentration ∆c between two ends of a pipe ofross setion area A and length l is
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l
, (2.1)where M is the molar mass and D is the di�usion onstant. For a surose solution with

M = 0.342 kg/mol, ∆c = 1 M, D = 5 × 10−10 m2/s [4℄ and a pipe of length l = 1 m we�nd that
(

1

A

dm

dt

)

Diff

= 1.7 × 10−7 kg/(m2 s), (2.2)whih is four orders of magnitude smaller than the observed rate of mass transport. Thisalulation shows that di�usion alone annot aount for the observed long distane trans-port of sugar in plants [49, 12℄.OsmosisThe most widely aepted explanation of transloation in the phloem dates bak to the1920s where the German sientist Ernst Münh proposed that the �ow is passive and isdriven by di�erenes in osmoti pressure between sugar soures and sinks [49, 36℄. Osmosisis the tendeny of water to move aross a semipermeable membrane from a region lowsolute onentration to a region of high onentration (see Se. 3.2 and App. C). Theosmoti pressure Π said to be driving the �ow is diretly proportional to the di�erene inonentration ∆c aross the membrane
Π = RT∆c, (2.3)where R is the gas onstant and T is the temperature. With the sugar onentrations listedin table 2.1, we �nd Π = 0.2− 2 MPa.Münh envisaged a mass �ow in the phloem sieve elements driven by an osmoti pressuregradient set up in the hannel by the seretion (loading) of sugar into the sieve elements atthe soure leaves and the removal (unloading) of sugar in the soure tissue, e.g. roots, fruitsor other regions of growth and storage as illustrated in Fig. 1.1. The high onentrationof sugar in the soure region would reate a �ow aross a semipermeable membrane intothe phloem ells driven by osmosis. This would in turn displae the liquid already presentdownwards, thereby reating a bulk �ow from soure to sink. At the sink, removal ofsugar from the phloem tissue would ause the water to leave the ells sine the osmotidriving fore is no longer present. The Münh hypothesis is also known as the pressure�ow hypothesis [13℄ while the resulting �ow is known as an osmotially driven pressure�ow [80℄, an osmotially driven volume �ow [16℄ or simply an osmotially driven �ow.A simple quantitative analysis of the Münh mehanism to estimate the �ow veloitiesone would expet to �nd an be made in the following way. Consider the ylindrial sieve



14 Osmotially driven �ows in living and arti�ial systemstube elements lying end to end inside the plant. If they have a total length l and radius a,the volume Q �owing aross the membrane surfae per unit time is
Q = 2πalLpΠ = 2πalLpRT∆c, (2.4)where Lp is the permeability of the membrane. The ross setion area of the tube is

A = πa2, so the harateristi osmoti veloity uosm inside the tube is
uosm =

Q

A
=

2

a
lLpRT∆c = σlLpRT∆c. (2.5)Here, σ is the surfae to volume ratio of the tube

σ =
S

A
=

2πal

πa2l
=

2

a
, (2.6)a ruial parameter in determining the �ow veloity inside the tube. When σ is large, i.e.when the radius a is small, the �ow veloities an beome very large. Using the parametervalues

l = 1 m, a = 10−5 m, Lp = 5× 10−14 m/(s Pa), and RT∆c = 1 MPa,we �nd that
uosm = 10−2 m/s. (2.7)This number is two orders of magnitude larger than the observed �ow veloity (2.8 ×

10−4 m/s), but not unreasonable sine the analysis does not take into aount the visousresistane of the �uid moving inside the narrow tube. We will derive a formula takingthe visosity into aount in hapter 5, and show in hapter 6 that it agrees well withexperimental data.2.3.2 Interation between the transloation proesses in the phloem andthe xylemIn the Münh hypothesis, the water entering the phloem due to osmosis omes from thesurrounding tissue and thus ultimately from the xylem. Sine the two tissues are separatedonly by a few ells and the hydrostati pressure di�erene between them is measured in
MPa (see Tab. 2.1), it is an open question how important the diret interation betweenthe �ow in the phloem and the xylem is [24℄. In a reent experiment, Windt et al. setout to investigate this by simultaneously measuring �ow veloities in phloem and xylemof four di�erent speies under alternating day and night onditions [89℄. As shown inFig. 2.3, they demonstrated that the �ow in the two tissues are largely independent, andthat while the �ow in the xylem exhibited large diurnal variations, the �ow in the phloemis approximately onstant throughout the day. Sine large variations in xylem �ow veloityimplies large variations in pressure, we onlude on the basis of these experiments that thediret oupling between the �ow in the phloem and in the xylem is in general weak, andthat we therefore may treat the two systems separately.
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Figure 2.3: Transloation veloities measured as a funtion of time in the xylem (leftolumn) and the phloem (right olumn) of four di�erent speies as indiated above theplots. The volume �ow (losed symbols) and average linear veloity (open symbols) weremeasured using MRI over the ourse of 2 to 4 days. Blak and white bars on the ordinateaxis indiate day and night onditions. The transloation veloities measured in the xylemshows a strong dependene on these onditions, with high veloities observed during theday and low veloities during the night. Exept for poplar, the veloities observed in thephloem are largely independent of the day/night onditions. From [89℄, Figs. 6 and 9.Reprodued with permission.



16 Osmotially driven �ows in living and arti�ial systems
(a) (b) (c)Munch (1920s) Eschrich/Lang (1970s) Jensen (2000s)

Water reservoir

Membrane

Sugar

Water flux

Membrane
tube

Microfluidic chip

Figure 2.4: Shematis of three generations of biomimiking phloem transport experiments.(a) Ernst Münh [49℄, (b) Eshrih et al. and Lang [16, 40℄, and () the author of the presentthesis, Jensen [28℄. See Se. 2.4 for a desription eah individual experimental setup.2.4 Osmotially driven �ows in arti�ial systemsMotivated primarily by osmotially driven �ow in the phloem vasular system of plants,a number of experimental studies have been onduted using arti�ial �phloem ells� tostudy the fundamental physial proesses [49, 16, 40, 55, 30, 28, 29℄. These experiments,illustrated in Fig. 2.4 fall into three ategories, historially and oneptually.1920s: The work of Ernst MünhSome of the �rst osmoti experiments related to transloation in plants were ondutedby Ernst Münh in the 1920s [49℄ . His setup, shown in Fig. 2.4(a), onsisted of tworound-bottom �asks onneted by a tube. Part of the surfae of the �asks was overed bya semipermeable membrane. As he introdued sugar solutions of di�erent onentrationinto the two �ask and submerged them in a water bath, he observed a �ow from the �askof high onentration to the �ask of low onentration. He then went on to argue that,physially speaking, the plant onstitutes a network of suh onneted osmoti parts, fromwhih it would follows that osmoti �ow also ours sine �same auses have same e�ets�([49℄, p. 37, translation by Knoblauh & Peters [36℄).1970s: The work of Walter Eshrih et al. and Alexander LangA serious shortoming of Münh's experiments is that the osmoti interation takes plaeonly in what orresponds to the loading and unloading regions, and not along the transloa-tion region (i.e. the stem) as is the ase in plants. In an attempt to investigate osmotially



Tehnologial appliations of osmotially driven �ows 17driven �ows in the transloation region, Eshrih et al. build experiments in the early1970s to investigate the transient dynamis of a moving sugar front inside a ylindrialmembrane tube [16℄. Their setup, shown in Fig. 2.4(b), onsisted of a long membrane tube
∼ 1 cm in diameter �tted inside a water-�lled glass tube. At the beginning of the experi-ment, a sugar solution was introdued into one end of the tube, whih was then losed atboth ends. The movement of the sugar front was subsequently observed for di�erent sugaronentrations. They observed that the more onentrated the surose solution, the fasterthe front traveled. They also found that the veloity of the sugar front deayed exponen-tially in time as the front approahed the far end of the tube. These experiments werelater re�ned by the author of the present thesis during his master studies [30℄(See App. E,p. 131 for details) to allow for a better quantitative omparison between experiment andtheory.Following Eshrih et al., Alexander Lang [40℄ build experiments to study steady-stateosmotially driven �ows. His setup, onsisted again of a long, cm-sized, membrane tubesubmerged in a water bath. At one end a surose solution was introdued at a steadyrate, and at the other end the tube was open at atmospheri pressure. At regular intervalsalong the membrane tube, several measurement stations were plaed that enabled him tomeasure the loal sugar onentration and pressure. He demonstrated that osmosis ouldreate onsiderable bulk �ows in narrow tubes, onsistent with the Münh hypothesis.2000s: Jensen et al.While the experiments of Eshrih et al. and Lang were a major step forward in under-standing the proesses that drive transloation in plants, they still have the fundamentalproblem that the harateristi length-sale (i.e. tube diameter) are many orders of mag-nitude larger than what is observed in plants. Sine osmosis is a surfae phenomena innature, this means that the ratio of surfae to volume σ (f. Eq. (2.6)) whih ontrols theaxial �ow veloity is muh smaller in plants than in the experiments. Experiments withhannel radii in the relevant µm range have been possible sine the early 2000s with theadvent of modern miro�uidi fabriation tehniques [10℄.In 2009-2011 the author and o-workers onduted a systemati survey of osmotiallydriven �ows at the mirometre sale with osmoti interation along the whole length ofthe miro�uidi hannel [28, 29℄. The experiments, whih are skethed in Fig. 2.4() anddesribed in greater detail in hapter 7, studied osmotially driven �ows in 200 µm wideand 50− 200 µm deep mirohannels, thus approahing the length-sales found in plants.2.5 Tehnologial appliations of osmotially driven �owsOsmotially driven �ows have found numerous tehnologial appliations that falls intotwo ategories: liquid handling and energy prodution.In the 1970s, Theeuwes pioneered a pill-based osmoti delivery system for drugs [76℄.In its simplest form, the system is onstruted by oating an osmotially ative solid drugwith a semipermeable membrane. This membrane ontains an ori�e through whih thedissolved drug is dispensed one the pill is submerged in water. The rate of delivery is



18 Osmotially driven �ows in living and arti�ial systemsontrolled by the water permeation harateristis of the semipermeable membrane sur-rounding the drug and the osmoti properties of the drug [76℄.In 2009, the worlds �rst osmoti power plant began operations near Oslo, Norway. Thepower plant is loated near the mouth of a river and uses the osmoti pressure di�erenebetween freshwater and the salty seawater to generate an osmoti pressure whih drivesa turbine. The plant is apable of produing 3 W per m2 membrane area, a numberwhih is ontinually inreasing. The global potential of osmoti power is estimated to be
1500 T W h, equivalent to 50% of the total power prodution in the European Union [72℄.2.6 ConlusionIn this hapter we have given an introdution to the motivation behind the topi studiedin the present PhD thesis: transloation of sugars and signaling moleules in the phloemvasular system of plants.In the following hapters, we will try to get an fundamental understanding of how theseosmotially driven �ows work. We will then attempt to answer fundamental questions suhas how fast the sugar an move in plants using the osmoti pump? What ontrols the rateof transport? How does the osmoti mehanism a�et the struture of the plant? Is osmosissu�ient to aount for the rates of transloation observed in plants?



Chapter 3Fluid mehanis of osmotiallydriven �owsFrom the proesses ourring in plants, we now move on to a physial desription ofosmotially driven �ows. In this hapter we thus �rst introdue the basi onepts ofosmosis and the relevant equations of motion for liquid and solute transport. From these wederive an analytial solution for the osmoti �ow and onentration problem in a ylindrialtube whih leads diretly to the one-dimensional transport equations ommonly used inthe phloem transport literature [79℄. We �nally disuss how these equations are applied tosugar transport in plants.Most of the material presented an be found in the �uid mehanis and phloem translo-ation literature, but the derivation of the one-dimensional equation of motion for �uidtransport in osmotially driven �ows diretly from an analytial solution to the Navier-Stokes equation is due to the author and has yet to be published. This also applies to thederivation of the one-dimensional equation of motion for sugar transport. The disussionof the harateristi properties of zone models given in Se. 3.8 and Fig. 3.5 is due tothe author. It was instrumental in obtaining the analytial solution to the equations ofmotion published in [29℄ and derived in Chapter 5. The term �Münh number� for thenon-dimensional number Mü (see Se. 3.5.5) was �rst introdued in [30℄ and was oined bythe author and Tomas Bohr.3.1 BakgroundWith the advent of radioative traer experiments, the need for a quantitative desriptionof the osmotially driven �ow desribed by the Münh hypothesis beame apparent inthe 1950s (see [25℄ and referenes therein). One of the �rst to formulate the equationsof motion in form of di�erential equations was Horwitz [25℄, who in 1958 investigated thetheoretial bakground of radioative traer propagation observed in plants. His derivation(see Appendix B) rested on simple onservation priniples and ontains no detailed analysisof the �uid mehanis of osmotially driven �ows.In the present hapter, we will derive Horwitz's equations of motion based on the ther-19



20 Fluid mehanis of osmotially driven �ows
Region 2 Region 1

Membrane

c = c2
p = p2

c = c1
p = p1jw

Figure 3.1: Sketh of the osmoti �ow proess. A semipermeable membrane (dashed line)separates two regions whih ontains aqueous solutions of a solute at onentrations c1and c2 (proportional to the density of the blak dots) and hydrostati pressures p1 and p2respetively. Osmosis and hydrostati pressure drives a �ow of water (arrows) aross themembrane at a rate jw given by Eq. (3.6).[10℄modynamis of osmosis, the Navier-Stokes equation for �uid motion, and the onvetion-di�usion equation for solute transport.3.2 OsmosisOsmosis is the movement of water aross a semipermeable membrane driven by a di�erenein hemial potential. It is important in many biologial systems sine virtually all biolog-ial membranes are semipermeable. In many ases these membranes are impermeable tolarge moleules, suh as sugars, while permeable to water and small unharged solutes [4℄.3.2.1 Non-equilibrium thermodynamisThe proess of osmosis an best be desribed by the formalism of non-equilibrium thermo-dynamis [67℄. As disussed in Appendix C, we thus onsider a linear phenomenologialrelation between a thermodynami �ux j′n and the orresponding onjugate fore ξn

j′n = Lnnξn. (3.1)Here, Lnn is a proportionality onstant with the unit of ondutane. The driving fore ξnis related to the di�erene in hemial potential ∆µn of the substane n between di�erentregions of the system
ξn = ∆µn. (3.2)



Osmosis 21Eqns. (3.1)-(3.2) are valid lose to equilibrium and Ohm's law of urrent �ow, Fourier'slaw of heat �ow, and Fik's law of di�usion are all familiar examples of Eq. (3.1).It an be shown that the relation between the rate of internal entropy prodution ∂ts,the absolute temperature T, and the fores and �uxes is given by
T∂ts = j′nξn. (3.3)The quantity T∂ts is known as the power dissipation funtion and is a measure of thetendeny of the non-equilibrium proess to proeed.3.2.2 Osmotially driven �ow aross a semipermeable membraneIn the present disussion we onsider the situation skethed in Fig. 3.1. An ideal semiperme-able membrane separates two regions at pressures p1 and p2 whih ontains dilute aqueoussolutions of a solute at onentrations c1 and c2. The membrane is permeable to water,but not to the solute. If the onentrations are low, the di�erene in hemial potential ofthe water ∆µw aross the membrane is given by

∆µw = v̄w (p2 − p1)− v̄wRT (c2 − c1) , (3.4)where v̄w is the molar volume of water. We then have from Eq. (3.1) that the �ux of watermoleules j′w is
j′w = Lwwv̄w (RT (c1 − c2)− (p1 − p2)) . (3.5)The volume of water jw �owing aross the membrane per unit area is then

jw =
j′wv̄w
A = Lp (RT (c1 − c2)− (p1 − p2)) , (3.6)where A is the area of the membrane and Lp =

Lww v̄2w
A is the permeability of the membrane,a material parameter that depends on the thikness of the membrane, the pore size, andthe visosity of the liquid. The general ase where the membrane is permeable to the soluteis disussed in Appendix C but will not be treated in the main text.Osmoti pressureIf the system is is equilibrium, i.e. if jw = 0, we �nd that the di�erene in pressure betweenthe two sides of the membrane is

p1 − p2 = RT(c1 − c2) = Π (3.7)where Π = RT(c1 − c2) is know as the osmoti pressure.Entropy prodution and visous power dissipationThe volume �ux driven by osmoti and hydrostati pressures is diretly related to theentropy prodution through Eq. (3.3)
T∂ts = j′wξw = ALp (RT (c1 − c2)− (p1 − p2))

2 , (3.8)We immediately reognize this expression as the rate at whih power is dissipated by the�ow due to visous frition inside the membrane.



22 Fluid mehanis of osmotially driven �ows3.3 Equations of motion for osmotially driven �owsInspired by the geometry of the sieve tube elements disussed in Chapter 2, we now onsiderthe motion of water and a solute (sugar) inside a long ylindrial tube of radius a as shownin Fig. 3.3. The tube is submerged in a reservoir of water at onstant pressure p2 andonstant onentration c2. For simpliity, we assume that the �ow and onentration �eldsare rotationally symmetri suh that the veloity u(r, x) and solute onentration c1(r, x)does not depend on the azimuthal position. The solute is moving due to the motion ofthe liquid and moleular di�usion. The wall of the tube is made from a semipermeablematerial (a membrane) of permeability Lp that allows water but not the solute to pass.Sugar is loaded/removed from the tube at a rate υ by an ative mehanism deoupled fromthe osmoti pumping. For simpliity, we assume that υ is a funtion of the axial oordinate
x only.3.3.1 Boundary onditions imposed by osmosisThe presene of the membrane failitates a �ow of water driven by osmoti and hydrostatipressure di�erenes aross the wall. This ours at a rate given by Eq. (3.6) whih imposesa boundary ondition on the normal veloity omponent n ·u at the membrane interfae

n ·u = jw = Lp(RTc− p), for r = a. (3.9)Here we have used the notation p = p1−p2, and c = c1−c2, and assume that n is a normalvetor pointing into the tube. Additionally, the tangential veloity omponent is subjetto the no-slip ondition at the membrane interfae
u− (n ·u)n = 0, for r = a. (3.10)Finally, we require that no solute moleules move aross the membrane

n · (−D∇c+ cu) = 0, for r = a, (3.11)where D is the di�usivity of the solute.3.3.2 Equations of motion governing �uid �owThe motion of an inompressible Newtonian liquid is governed by the Navier-Stokes equa-tion [10℄
ρ (∂tu+ (u · ∇)u) = −∇p+ η∇2u, (3.12)where t is time, ρ is the liquid density, η is the liquid visosity, and the e�et of gravity isinluded in the pressure. Sine the liquid is inompressible, onservation of volume requiresthe solution to ful�ll the ontinuity equation

∇ ·u = 0. (3.13)
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r

x

r = a

Membrane of
permeability Lp

Velocity u(x, r)

Concentration c1(x, r)
Pressure p1(x, r)

Water flux jwSugar flux υ

Reservoir
c2 p2

(a)

(b)

Figure 3.2: Sketh of the geometry used when deriving the equations of motion for osmot-ially driven �ows. (a) An inompressible liquid (e.g. water) is moving inside a ylindrialtube of radius a with veloity u (arrows). The tube is submerged in a reservoir of waterat onstant pressure p2 and onstant onentration c2. A solute of onentration c1 isdissolved in the liquid and is moving due to the motion of the liquid and moleular di�u-sion. The tube is submerged in a large reservoir (gray region) and has a walls made froma semipermeable membrane (dashed line) with permeability Lp that allow the liquid butnot the solute to pass. (b) Closeup of the situation at the membrane (dashed line). Thepresene of the membrane failitates a �ow of water driven by osmoti and hydrostatipressure di�erenes aross the wall. This ours at a rate jw, given by Eq. (3.6), indiatedby the solid arrow at the membrane interfae (See Fig. 3.1). Sugar is loaded/removed fromthe tube at a rate υ by a mehanism deoupled from the osmoti pumping indiated bythe dashed arrow. The osmotially driven �ow aross the membrane aelerates the liquidas it moves along the tube as indiated by the growing size of the arrows in (a).



24 Fluid mehanis of osmotially driven �owsIn ylindrial oordinates these equations are
ρ (∂tux + ur∂rux + ux∂xux) = −∂xp+ η

(

∂2
xux +

∂rux
r

+ ∂2
rux

)

, (3.14)
ρ (∂tur + ur∂rur + ux∂xur) = −∂rp+ η

(

∂2
xur +

∂rur
r

+ ∂2
rur −

ur
r2

)

, (3.15)
∂xux +

ur
r

+ ∂rur = 0, (3.16)where the veloity u = (ux, ur). The boundary onditions are
ur = −jw for r = a, (3.17)
ux = 0 for r = a. (3.18)3.3.3 Equations of motion governing solute transportThe equation of motion for solute transport is the onvetion-di�usion equation [10℄
∂tc+ u · ∇c = D∇2c+ υ. (3.19)In ylindrial oordinates this is

∂tc+ ur∂rc+ ux∂xc = D

(

1

r
∂r (r∂rc) + ∂2

xc

)

+ υ. (3.20)The osmoti boundary ondition given in Eq. (3.11) is
−D∂rc+ cur = 0 for r = a. (3.21)3.4 Solution of the oupled onentration-�ow problemIn order to obtain a full understanding of the oupled motion of water and the soluteone needs to solve Eqns. (3.12) (3.13), and (3.19) with the appropriate osmoti boundaryondition in Eqns. (3.9)-(3.11). Due to the oupling of the �ow and onentration �eldsthrough the boundary onditions this is a formidable mathematial problem whih hasonly been takled analytially in a few speial ases [59, 60, 56, 57, 58, 3, 27℄. We we willdisuss this in detail in Chapter 8, but for now we proeed by putting the equations ofmotion on non-dimensional form and applying the onditions relevant to plants.3.5 Non-dimensional formulation of the equations of motionTo simplify the mathematial treatment of the equations of motion we use non-dimensionalvariables. Sine the osmotially driven �ow ontains two harateristi veloity sales, the



Non-dimensional formulation of the equations of motion 25axial veloity u∗x and the radial veloity u∗r , and two harateristi length sales, the tubelength l and the tube radius a, we will non-dimensionalize in the following way
c = c∗C ′, (3.22)

ux = u∗xUX = 2LpRTc
∗ l

a
UX , (3.23)

ur = u∗rUR = 2LpRTc
∗UR =

a

L
u∗xUR, (3.24)

t = t∗T =
l

u∗x
T =

a

2LpRTc∗
T, (3.25)

x = lX, (3.26)
r = aR, (3.27)
p = p∗P = RTc∗P, (3.28)
υ = c∗

2LpRTc
∗

a
Υ, (3.29)

jw = 2LpRTc
∗Jw. (3.30)Here, c∗ is the harateristi onentration found in the tube.3.5.1 Non-dimensional equations of motion for �uid motionUsing these variables, the equations of motion for the �uid motion are

H1 (∂TUX + UR∂RUX + UX∂XUX) = −H3∂XP +

(

∂2
XUX +H4

∂RUX

R
+H4∂

2
RUX

)

, (3.31)
H2 (∂TUR + UR∂RUR + UX∂RUR) = −H3∂RP +

(

1

H4
∂2
XUR +

∂RUR

R
+ ∂2

RUR − UR

R2

)

,(3.32)
∂XUX +

UR

R
+ ∂RUR = 0. (3.33)Here the four non-dimensional groups are
H1 =

ρu∗xa

η
=

2ρLpRTc
∗l

η
, (3.34)

H2 =
ρu∗ra

η
=

2ρLpRTc
∗a

η
, (3.35)

H3 =
a

2Lpη
, (3.36)

H4 =

(

l

a

)2

. (3.37)
H1 and H2 are the axial and radial Reynolds numbers whih determine the relative im-portane of visous and inertial fores. The importane of H3 and the aspet ratio H4 will



26 Fluid mehanis of osmotially driven �owsbeome lear in Se. 3.5.5. Using the harateristi values relevant to plants [79℄
L = 1 m, a = 10−5 m, Lp = 5× 10−14 m/(s Pa), η = 2× 10−3 Pa s,

ρ = 103 kg/m3 and RTc∗ = 1 MPawe �nd that
H1 = 5× 10−2, (3.38)
H2 = 5× 10−7, (3.39)
H3 = 5× 1010, (3.40)
H4 = 1× 1010. (3.41)In this limit, the equations of motion simplify to

∂XP =
2Lpηl

2

a3

(

∂RUX

R
+ ∂2

RUX

)

, (3.42)
∂RP = 0, (3.43)

∂XUX +
UR

R
+ ∂RUR = 0. (3.44)The �ow boundary onditions are
UR = −JW , for R = 1, (3.45)
UX = 0, for R = 1, (3.46)while the membrane transport equation is
Jw(X) =

1

2
(C(X, 1)− P ) . (3.47)We note that the system of equations (3.42)-(3.44) orresponds to the Stokes equations inthe lubriation limit [5, 3℄.3.5.2 Non-dimensional equation of motion for solute transportIn non-dimensional variables, the equation of motion for solute transport is

∂TC
′ + UR∂RC

′ + UX∂XC ′ = H5

(

1

R
∂R
(

R∂RC
′)+

1

H4
∂2
XC ′

)

+Υ. (3.48)
H4 is the aspet ratio given in Eq. (3.37) and H5 is an inverse Pélet number

H5 =
D

u∗ra
=

D

2LpRTc∗a
= 5× 102, (3.49)with D = 5 × 10−10 m2/s (Surose, [4℄). At this point it is tempting to follow Aldis [3℄and keep only terms of order H5 in Eq. (3.48)

1

R
∂R
(

R∂RC
′) = 0. (3.50)



Non-dimensional formulation of the equations of motion 27This must imply that C ′ = C ′
0(X) if we require that C ′(R = 0) is �nite. Upon reinsertionin Eq. (3.48), this however yields that
∂TC

′ + UX∂XC ′ =
H5

H4
∂2
XC +Υ (3.51)where that the radial di�usion term has now vanished and is learly not the determiningfator.A more proper way of treating Eq. (3.48) is to onsider the radial average of thetransport equation, whih is relevant sine we are primarily interested in the axial transportof solute. Using the braket notation

〈f(X)〉 = 2

∫ 1

0
f(X,R)R dR, (3.52)for the radial average of f we �nd from Eq. (3.48) that

∂T 〈C ′〉+ ∂X
(

〈C ′UX〉
)

=
H5

H4
∂2
X〈C ′〉+Υ. (3.53)Here we have used the osmoti boundary ondition

−H5∂RC
′ + C ′UR = 0, for R = 1, (3.54)and the divergene equation (3.44) to anel the radial di�usion terms. Note that 〈Υ〉 = Υsine the loading rate is independent of R by assumption. Sine H5

H4
= 5 × 10−8 we ansafely disregard axial di�usion. Additionally, as we shall see in Chapter 8, the radialonentration distribution is nearly uniform at these low Pélet numbers. This allows usto write 〈C ′UX〉 = 〈C ′〉〈UX〉 suh that

∂T 〈C ′〉+ ∂X
(

〈C ′〉〈UX〉
)

= Υ. (3.55)With the notation C = 〈C ′〉 and U = 〈UX〉 this beomes
∂TC + ∂X (CU) = Υ. (3.56)3.5.3 Summary of the non-dimensional equations of motionIn summary, the non-dimensional equations of motion are
∂XP =

2Lpηl
2

a3

(

∂RUX

R
+ ∂2

RUX

)

, (3.57)
∂RP = 0, (3.58)

∂XUX +
UR

R
+ ∂RUR = 0, (3.59)

∂TC + ∂X(CU) = Υ, (3.60)The boundary onditions are
UR = −Jw = −1

2
(C − P ) , for R = 1, (3.61)

UX = 0, for R = 1. (3.62)



28 Fluid mehanis of osmotially driven �ows3.5.4 Analytial solution of the �ow problemFollowing Aldis [3℄ we notie that the �ow problem an be solved using a squeeze �owpro�le
UX(X,R) = 2(1−R2)Θ(X), (3.63)
UR(X,R) = Jw(X)

(

R3 − 2R
)

, (3.64)as illustrated in Fig. 3.3. Here, the quantity Θ(X) is given by
Θ(X) = Θ0 + 2

∫ X

X0

Jw(X
′) dX ′ = 〈UX〉 = U(X), (3.65)and an be though of as an osmoti piston veloity. The onstant Θ0 and the lower limit

X0 on the integral takes into aount the situation where only part of the tube is overedby the membrane whih starts at X = X0 with a �ow pro�le UX(X0, R) = 2(1 − R2)Θ0.The veloity �eld given by Eqns. (3.63) and (3.64) ful�lls the boundary onditions, theontinuity equation and the pressure ompatibility ondition
∇×∇2U = 0, (3.66)whih sine the �ow is rotationally symmetri orresponds to

∂X∂RP − ∂R∂XP = 0. (3.67)Note that the solution given in Eqns. (3.63) and (3.64) does not in general ful�ll the fullNavier-Stokes equation (Eqns. (3.31)-(3.32)) or even the Stokes equation (Eqns. (3.31)-(3.32) with the left hand side put equal to zero).We are now able to alulate the relation between the axial pressure gradient ∂XP andthe radially averaged axial �ow veloity U(X)

∂XP = −16Lpηl
2

a3
U(X) = −8H4

H3
U(X) = Mü U(X). (3.68)The formula is ompletely analogous to that found in onventional pipe �ows, exept forthe fat that the axial �ow veloity U(X) is a funtion of the axial oordinate X. Thenon-dimensional Münh number Mü given byMü =

16Lpηl
2

a3
, (3.69)is disussed in Se. 3.5.5 below.3.5.5 The Münh numberThe non-dimensional number Mü in Eq. (3.68) is known as the Münh number [30, 29℄.It that haraterizes the relative importane of hydrauli resistane along the tube to the
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Figure 3.3: Charateristi properties of the osmotially driven pipe �ow solution given inEqns. (3.63) and (3.64). (a) Cross setion plot in a vertial plane showing the veloity �eld
U(X,R) = (UX , UR) (arrows) at various position along the tube in arbitrary units. (b)Same as in (a), but showing a loseup of the �ow near the membrane interfae (dashedline). () Axial �ow veloity UX plotted as a funtion of radius R at the axial positions
X indiated below the graphs. (d) Radial �ow veloity UR plotted as a funtion of radius
R. In () and (d), X0 = Θ0 = 0 and JW (X) = 1. Note that sine Jw does not dependon X, the radial veloity UR shown in () is onstant as we move along the tube. This isgenerally not the ase.



30 Fluid mehanis of osmotially driven �owsresistane aross the membrane:Mü =
8H4

H3
=

Axial �ow resistaneMembrane �ow resistane =
8ηl
πa4

1
2πalLp

(3.70)
=

16Lpηl
2

a3
. (3.71)The Münh number is a funtion of the length of the tube l, the tube radius a, themembrane permeability Lp, and the liquid visosity η. The produt of the two latterparameters itself set a new length sale related to the properties of the membrane asdisussed below. Using the values l = 1 m, a = 10 µm, Lp = 5 × 10−14 m/(Pa s), and

η = 2 × 10−3 Pas we �nd that Mü = 1.6. The magnitude of the Münh number variesgreatly among di�erent plant speies with typial values between 1 and 103 [29℄.The length-sale LpηThe produt Lpη present in e.g. Eq. (3.71) has the dimension of length. Using the repre-sentative values given above, we �nd that it is of the order
Lpη = 10−16 m. (3.72)A possible physial interpretation of this length is that it is related to the pore size in thesemipermeable membrane. If we onsider N pores of hydrodynami radius κ and length

ǫ in a membrane of area A the volume �ow Q aross a membrane subjeted to a pressuredi�erene ∆p is
Q =

πκ4

8ηǫ
N∆p. (3.73)The number of pores N is taken to be proportional to A

πκ2

N = φ
A

πκ2
, (3.74)where φ is the overing fration. Using Eq. (3.74) we an write

Q = Aφ
κ2

8ηǫ
∆p. (3.75)From this formula, we identify the number φ κ2

8ηǫ as the permeability Lp. This means thatthe produt Lpη is related to the mirosopi length sales in the following way
Lpη = φ

κ2

8ǫ
. (3.76)At present, the author has no exat knowledge of the magnitude the parameters φ, κ and

ǫ for the membranes found in phloem ells. If, however, we assume that the hydrodynamipore size is, say, κ = 0.1 nm, the thikness of the membrane is ǫ = 100 nm, and that thepores over 1% of the surfae area of the membrane, we �nd that φκ2

8ǫ = 1.3 × 10−16 m, avalue onsistent with Eq. (3.72).



One-dimensional formulation of the equations of motion 313.6 One-dimensional formulation of the equations of motionWith the results derived in the previous setions, we an now present equations of motionfor the average axial veloity U , the average pressure P , and the average onentration C.If we di�erentiate both sides of Eq. (3.65) we �nd that
∂XU = C − P. (3.77)With the result derived in Eq. (3.68) that ∂XP = −Mü U , this an be written as

∂2
XU = ∂xC +Mü U, (3.78)The equation of motion for the solute is
∂TC + ∂X(CU) = Υ (3.79)Eqns. (3.78) and (3.79) onstitutes the phloem transport equations used in the literature(see e.g. [79℄). As we have seen in Se. 3.5.4, they represent exat solutions to the equationsof motion under appropriate assumptions. In dimensional units, they are

∂2
xu =

2Lp

a

(

RT∂xc+
8η

a2
u

)

, (3.80)
∂tc+ ∂x (cu) = υ, (3.81)whih, as shown in Appendix B, are the same equations that Horwitz derived in his 1958paper [25℄.3.7 Appliation of the equations of motion to transloationproesses in plantsWe now move on to a disussion of how the equations of motion derived in the previoussetions are applied to the proesses that our in plants as disussed in Chapter 2.The equations of motion given in Eqns. (3.78)-(3.79) have been applied to transloationin the phloem and further analyzed by a large number of workers. Due to the omplexityof the equation system, the general approah has been to use numerial methods to solvethe problem for a spei� set of parameters. For a very thorough review see Thompsonand Holbrook [79℄ and related work in [80, 80, 81, 77, 23, 78℄. It is, however, beyond thesope of this thesis to over all aspet of these models in detail. Instead, we shall proeedby disussing some of the harateristi properties of the models.3.7.1 An introdution to zone modelsCommon to the majority of models found in the literature is that they onsider the plant asbeing split into a number of zones eah representing di�erent parts of the plant. Typially,three zones are used: A loading zone (the leaf), a transloation zone (the stem), andan unloading zone (the root) as skethed in Fig. 3.4. In the loading zone sugar is �rst
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Figure 3.4: Sketh of a zone model for transloation in the phloem. In zone models, wethink of the plant as being split into a number of zones representing di�erent parts of theplant. In this ase 3 zones are used: A loading zone (the leaf, 0 < x < x1), a transloationzone (the stem, x1 < x < x2), and an unloading zone (the root, x2 < x < x3). Inthe loading zone sugar is �rst sereted into the phloem tube. Driven by the osmotiallygenerated �ow, it then enters the transloation zone where no transport of sugar arossthe membrane takes plae. Finally, it reahes the unloading zone where it is removed fromthe phloem. See also Fig. 1.1, p. 2. Adapted from [29℄, Fig. 1.sereted into the phloem tube by a loading mehanism. Pushed forward by the osmotiallygenerated �ow, it then enters the transloation zone where no transport of sugar arossthe membrane takes plae. Finally, it reahes the unloading zone where it is removed fromthe phloem. Between the di�erent zones boundary onditions requiring ontinuity of therelevant physial quantities: veloity, onentration and pressure et. are imposed.In the literature, the transloation zone is always represented by a semipermeable mem-brane tube overing, say, the interval x1 ≤ x ≤ x2 as shown in Fig. 3.4. The mathematialrepresentation of the loading and unloading zones are found in two fundamentally di�er-ent forms. The �rst, and most ommon, introdued by Christy and Ferrier [13℄, uses aloading zone overing the interval 0 ≤ x ≤ x1 an and unloading zone overing the interval
x2 ≤ x ≤ x3 as shown in Fig. 3.4. The length of the loading and unloading zones areusually equal and at x = 0 and x = x3, the veloity is zero In eah of the zones the loadingfuntion υ is hosen appropriately among a number of di�erent andidates (see Se. B.2.1 ,p. 121 for examples). The seond formulation, used by e.g. Pikard and Abraham-Shrauner[61℄ and Thompson and Holbrook [80℄, uses point soures/sinks loated at the entrane(x = x1) and exit (x = x2) of the transloation zone. At these points, the injetion rate ofthe onentration c and the veloity u are spei�ed.
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ū

x

u

(a)

L
o
a
d
in
g

T
ra
n
sl
o
ca
ti
o
n

U
n
lo
a
d
in
g

0 x1 x2 x3
0
c∗3

c∗2

c∗

x
c

(b)

Figure 3.5: Charateristis properties of the veloity u and onentration c derived fromnumerial solution of zone models. (a) Veloity u (solid line) plotted as a funtion of axialposition x. The harateristi average transloation veloity in the transloation zone ū isindiated by the dashed line. (b) Conentration c (solid line) plotted as a funtion of axialposition x. The onentrations in the loading zone c∗, at the end of the transloation zone
c∗2 and at the end of the unloading zone c∗3 are indiated by dashed lines. See details inSe. 3.7.2.3.7.2 Charateristis properties of zone modelsHaving disussed the di�erent mathematial models used to desribe phloem transport isuseful to step bak and onsider a few qualitative properties of the solutions that emergefrom these models. Due to the omplexity of the equations of motion given in Eqns. (3.80)-(3.81) oupled with the loading funtion υ, these are typially solved using numerialmethods in steady state (i.e. ∂tc = 0) [79℄. Largely independent of the hoie of loadingfuntion υ, the onentration c follows the pattern shown in Fig. 3.5(b). In the loading zone
c is nearly onstant at a level, say, c = c∗. In the transloation zone, the onentration islowered as we move along the x-axis. This happens beause the sugar solution is ontinuallydiluted by the in�ux of water aross the membrane due to osmosis. In the unloading zonethe onentration deays from an initial level c∗2, determined by the �ow in the transloationzone, to a level c∗3 muh smaller than both c∗2 and c∗ at the end of the unloading zone.The funtional form of the deay depends on the dynamis of the �ow problem, but inmany ases it approximately linear [84, 70, 79℄. In the loading and unloading zones, wean therefore approximate the onentration by

c(x) ≃
{

c∗ in the loading zone (0 ≤ x ≤ x1),
c∗2

(

1− x−x2
x3−x2

) in the unloading zone (x2 ≤ x ≤ x3). (3.82)



34 Fluid mehanis of osmotially driven �owsThe veloity follows the pattern shown in Fig. 3.5(a). In the loading zone, it rapidlyinreases due to the osmoti in�ux aross the ell surfae in the leaf. As we move alongthe transloation zone the veloity ontinues to inrease as more and more water enterthe transloation stream, although at a muh slower pae than in the loading zone. Wedenote the harateristi veloity in the transloation zone ū. In the unloading zone, watergradually exits the ells before the veloity reahes zero at the end of the unloading zone.From numerial solutions suh as the one skethed in Fig. 3.5, quantitative informationabout the transloation proess for a spei� set of parameters (e.g. tube radius a, visosity
η, loading funtion υ et.) an be derived. One an, e.g., dedue how fast and how muhsugar an be transported from one end of the plant to the other for a spei� set ofparameters. Due to the very large number of parameters in the problem, however, oneannot in general determine the dependene of, say, the mean transloation speed, on theparameters in the without performing a very large set of simulations.In Chapter 5 we take advantage of the simple form of the onentration pro�le givenin Eq. 3.82 to determine analytial solutions that provide a thorough understanding of thedependene of the �ow pattern on the parameters in the problem.3.7.3 Common assumptions used in mathematial phloem transportmodelsIn the previous setions, we have presented the zone model framework in whih Horwitz'sequation of motion (Eqns. (3.80)-(3.81)) are applied to transloation proesses in plants.It is a widely debated issue whether this representation is at all meaningful in the sensethat it provides an aurate desription of the proesses that our in plants. In a reentreview paper, Knoblauh and Peters [36℄ writes thatWhile there is no shortage of mathematial formalizations of various aspetsof phloem transport. . . , the question remains whether any suh theoretialdesription mirrors physial reality in a biologially meaningful way an onlybe deided empirially. ([36℄, p. 1442)At this point it is therefore useful to onsider the assumptions neessary for the Horwitzzone model framework to be an aurate representation of the proesses that our inplant. A few of the most widely used assumptions are listed below (in itali) along with adisussion of their appliability.1. The membrane is permeable to water but perfetly impermeable to sugar. The as-sumption that the membrane is ideal is generally regarded as valid [51, 73℄, althoughallowing for a sugar-permeable membrane does a�et the �ow, see Appendix C. As wewill disuss in Chapter 8, the onentration and �ow patterns lose to the membraneare, even in the impermeable ase, very ompliated. See e.g. [15℄.2. The membrane is rigid. The assumption that the membrane is rigid implies that theradius a of the ells are onstant and thus independent of the intraellular pressure

p. Thompson and Holbrook investigated the e�et of inluding this by allowing the



Appliation of the equations of motion to transloation proesses in plants 35radius to vary as a ∝ a0 exp(p − p0). They found that it was of � little biologialsigni�ane� ([79℄, p. 435).3. The osmoti pressure is a linear funtion of the onentration. At low onentrations,the osmoti pressure of surose is proportional to the onentration [47℄. At higheronentrations, one must take into aount the non-linearity of the osmoti pressure.At c = 1 M, this orresponds to a ∼ 10% inrease in the osmoti pressure [79℄.4. The visosity of the liquid does not depend on the sugar onentration. At low onen-trations, the visosity of the liquid is approximately linear in the sugar onentrationand the typial visosity is ∼ 2 × 10−3 Pas. At higher onentration, the visosityinreases exponentially, signi�antly inreasing the hydrauli resistane [7, 79℄.5. The volume of the sugar dissolved in water is negligible. The partial molar volumeof surose dissolved in water is 2.2× 10−4 m3/mol. A 1 M aqueous solution will thushave a volume ∼ 20% larger than if the volume of the surose were negleted. Notinluding this e�et leads to an underestimation of the �ow veloity [79℄.6. The veloity �eld, the onentration, and the pressure are essentially one-dimensionaland an eah be modelled using a single omponent. These assumptions were dis-ussed in Se. 3.5, and are widely regarded as being valid [79℄.7. There is no interation between the phloem and the xylem. As disussed in Se. 2.3.2,experiments have shown that in many speies the interation between the �ow in thephloem and in the xylem does not appear to be signi�ant [89℄. Several theoretialworkers, however, have laimed otherwise. See e.g. [24℄.8. The onentration of sugar in the tissue surrounding the phloem does not dependon the axial position This is equivalent to stating that the onentration c2 in thereservoir surrounding the phloem (Fig. 3.1) is onstant. Generally, the argument forthe validity of this assumption is that the sugar onentration in the xylem is verylow [38℄. Other adjaent ells may, however, ontain signi�ant amounts of sugar[73℄ something whih may also lead to a hange in the pressure inside the sieve tubes[82℄.9. The presene of sieve plates does not a�et the �ow. Sieve plates are perforatedstrutures that separate adjaent phloem sieve tube elements. Sine only ∼ 50% oftheir area is open they are bound to impose drag on the �ow. It has been speulatedthat the drag is in fat very large [80℄, but a thorough analysis of the �uid mehanisof this problem has not been undertaken so far. In Chapter 4 we study this problemin detail.10. The phloem an be modeled as a olletion of individual phloem tubes spanning theentire length of the plant. There is no interation between two parallel phloem tubes.This assumption is almost ertainly not valid, sine it is well known that �ow be-tween adjaent sieve tube elements an our [73℄. On the other hand, the di�ulty



36 Fluid mehanis of osmotially driven �owsin evaluating the quantitative importane of this assumption is that the networkstruture of the phloem is still largely unknown [36℄.It is far from obvious that the assumptions listed above will not have a signi�antin�uene on the appliability of the results predited by the models. Some attempts havebeen made to resolve this by studying models that take some of the e�ets desribed aboveinto aount, see e.g. [13, 84, 79, 24℄. It is, however, still very di�ult to asses whihassumptions have the greatest in�uene on the �ow.To resolve this, one must take one small step at a time. In the following hapter,we thus investigate the e�et of the presene of sieve plates on the �ow. We do this notbeause it is neessarily the most important assumption, but beause it amenable to asimple physial analysis.We end by noting that all the above mentioned assumptions pose questions for futureresearh. Among them, the author �nds that assumption 10 is of partiular interest sinethe network struture of the phloem and its in�uene on the �ow has not yet been fullyunderstood [36℄.3.8 ConlusionIn this hapter, we have studied the �uid mehanis of osmotially driven �ows. We haveseen that the motion of a solution of water and sugar moving inside the a ylindrial tubewith semipermeable walls an be desribed by two non-dimensional partial di�erentialequations for the average axial veloity U and onentration C:
∂2
XU = ∂xC +Mü U, (3.83)

∂TC + ∂X(CU) = Υ. (3.84)The equations depends on a single non-dimensional number MüMü =
16Lpηl

2

a3
, (3.85)whih haraterizes the relative importane of hydrauli resistane along the tube to resis-tane aross the membrane. These equations were derived diretly from an approximatedanalytial solution of the Navier-Stokes equation. The validity of this solution dependson the relative size of the non-dimensional groups H1, H2, H3, H4 and H5 as disussed inSe. 3.5.1 and 3.5.2.We have further disussed how the equations of motion for osmotially driven �ows areapplied to phloem transport in the literature. We have presented some of the harater-isti results that ome out of these models, and have found that many of these models,although quantitatively di�erent, display many of the same qualitative features. Of par-tiular importane is the realization that most models yields onentration and veloitypro�les similar to those shown in Fig. 3.4. This permits us to desribe the onentration ina very simple manner in the loading and unloading zones, f. Eq. (3.82), thus simplifyingthe mathematial treatment of the equations of motion signi�antly.



Conlusion 37Further, we have disussed some of the neessary assumptions for the equations ofmotion to be a relevant physial representation of the proesses that our in plants. Thequalitative and quantitative e�ets of many of these on the transloation proess are stillunresolved, and pose signi�ant questions for future researh in the �eld.
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Chapter 4The e�et of sieve plates on thehydrauli resistane of the phloemtransloation pathwayIn Chapter 3 we derived one-dimensional equations of motion for osmotially driven �owsin ylindrial semipermeable tubes. By looking at Fig. 2.2(b)-(d) on page 10 it quiklybeomes apparent that the phloem sieve tube elements put together do not simply onsti-tute one, long, ontinuous ylindrial tube. Rather, it onsists of individual ells separatedby sieve plates the presene of whih may ontribute signi�antly to the overall hydrauliresistane of the transloation pathwayNo proper �uid mehanial analysis of this problem has been published so far, in partdue to the lak of reliable anatomial data on the struture of the sieve plates. Suh datahas been made available reently by Mullendore et al. [48℄ and the author is in great depthto Daniel Mullendore and Mihale Knoblauh (Washington State University) for makingthese available to the present study. In this hapter we thus onsider the e�et of sieveplates on the �ow inside the phloem sieve tubes. We show that the presene of the platesimpose a signi�ant amount of additional drag on the liquid.The analysis of the hydrauli resistane of sieve plates presented in this hapter is dueto the author and onstitutes work in progress. A manusript written in ollaboration withDaniel Mullendore, Mihael Knoblauh, Noel Mihele Holbrook, Tomas Bohr and HenrikBruus is urrently under preparation for submission to a peer-reviewed journal.4.1 Introdution to sieve platesIn the previous hapter, we saw that the equations of motion for the �ow of water andsugar through the phloem depends on the non-dimensional Münh number MüMü =
Axial �ow resistaneMembrane �ow resistane =

R
RM

=
16Lpηl

2

a3
, (4.1)39
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Figure 4.1: Sketh of the phloem sieve tube element geometry. (a) Adjaent sieve tubeelements of length ℓ and radius a are separated by thin sieve plates of length ℓp perforatedby small holes with radius ap known as sieve pores. (b) End view of a sieve plate. SeeFig. 4.2 for examples of sieve plate strutures found in plants.where R is the axial and RM is the membrane hydrauli resistane of the phloem respe-tively.As skethed in Fig. 4.1, adjaent phloem ells are separated by thin sieve plates perfo-rated by small holes known as sieve pores. The plates are believed to impose a signi�antamount of drag [80℄ thus leading to an inrease in R and Mü. Using a novel visualizationmethod Mullendore et al. [48℄ reently investigated the detailed struture of ell walls andsieve plates using sanning eletron mirosopy as shown in Fig. 4.2. Using their data, weare able to quantify this inrease in resistane.4.2 Charateristi properties of the �ow inside sieve tube el-ementsThe data given in Table 4.1, olleted by Mullendore et al. [48℄ and Thompson andHolbrook [80℄, shows that the sieve tube elements has a radius a of about 10 µm and alength ℓ of 0.1− 1 mm. Eah sieve plate has 50− 400 approximately irular pores evenlydistributed to over ∼ 50% of the plate area. The mean radius of the pores āp vary from
0.1−2.5 µm and the radii of the individual pores are normally distributed with a standarddeviation σp of about 0.25āp. The thikness of the plate ℓp is omparable in size to theradius of the pores.To haraterize the �ow inside the sieve tube element, we onsider �rst the situationin the sieve tube lumen, i.e. far away from the sieve plate. The lumen Reynolds number
Rel is given by

Rel =
ρula

η
, (4.2)where ul is the harateristi �ow veloity inside the ell lumen. From Table 2.1, p. 11, we�nd that ul ≃ 2.8 × 10−4 m/s. With a = 10−5 m, η = 2 × 10−3 and ρ = 103 kg/m3 wehave that

Rel = 1.4 × 10−3. (4.3)
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(a) (b)
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10µm 20µm

Figure 4.2: Sanning eletron mirosope (SEM) images of sieve plates. (a) Curubitamaxima (Squash). (b) Phyllostahys nuda (Bamboo). () Phaseolus vulgaris (Green bean).(d) Riinus ommunis (Castor bean). On average, about 50% of the sieve plate area isovered by open pores. SEM images ourtesy of M. Knoblauh and D. L. Mullendore [48℄.Reprodued with permission.



42 Hydrauli resistane of sieve platesTable 4.1: Sieve tube element data from [48℄(1-5) and [80℄(6-19). Sieve tube radius a, sievetube element length ℓ average pore radius āp, pore thikness ℓp, and number of pores perplate Np.No. Speies a [µm] ℓ [µm] āp [µm] ℓp [µm] Np1 Cuurbita maxima 25.65 ± 2.97 341± 77 2.54± 0.86 1.27 ± 0.29 54.8 ± 11.92 Phaseolus vulgaris 10.13 ± 1.13 140± 38 0.73± 0.24 0.43 ± 0.11 95.4 ± 31.73 Solanum lyopersium 10.70 ± 1.40 130± 90 0.61± 0.15 0.52 ± 0.12 121.3 ± 30.04 Riinus ommunis 16.22 ± 1.60 255± 122 0.52± 0.14 0.24 ± 0.05 371.9 ± 79.05 Phyllostahys nuda 11.60 ± 1.00 1052± 244 0.61± 0.13 0.39 ± 0.10 105.6 ± 12.76 Pinus strobus 10.9 1580 0.35 2.5 7207 Festua arundinaea 3 100 0.3 0.5 338 Beta vulgaris 5 200 0.1 0.4 12509 Glyine max (petiole) 4.2 125 0.35 1.1 5810 Glyine max (stem) 6.6 156 0.6 1.2 8111 Glyine max (root) 5.1 137 0.5 1.0 6012 Gossypium barbadense 11 210 0.5 1.0 16013 Sabal palmetto 18 700 0.95 0.5 28714 Yua �aida 10 460 0.26 0.4 174615 Robinia pseudoaaia 10 180 1.25 0.5 2116 Tilia ameriana 15 350 0.6 0.8 62517 Ulmus ameriana 18 190 2.0 1.0 5018 Cuurbita melopepo 40 250 2.4 0.5 12019 Vitis vinifera 18 500 0.7 3.5 661For the �ow lose to a sieve plate we use the plate Reynolds number Rep

Rep =
ρupap
η

. (4.4)Here, ap is the radius of the pores and up is the �ow veloity inside the pores. If the poresover 50% of the plate area, up is twie as large as the lumen veloity, i.e. up = 2ul. Ifthe pore radius ap is, say, 10 times smaller than the ell radius a, we �nd that the poreReynolds number Rep is
Rep = 2.8 × 10−4. (4.5)Both Reynolds numbers Rel and Rep are su�iently small that we may treat the �ow insidethe ells as Stokes �ow. This orresponds to ignoring the left-hand side of the Navier-StokesEqns. (3.14)-(3.15), an approximation whih simpli�es the problem onsiderably.4.2.1 Previous work on Stokes �ow through small poresA large number of workers have studied Stokes �ow through small pores both experimen-tally and theoretially. Using an elegant experiment, Johansen [34℄ found that for Rep ≤ 30the �ow lose to a pore is left-right symmetri and laminar1. He also found that the lengthof the region upstream a�eted by the presene of the pore is very short, and roughly equalto the pore diameter 2ap.1In fat, it remains laminar until Rep ≃ 103 but symmetry is broken above Rep = 30.



Hydrauli resistane of sieve tubes 43Theoretially, low Reynolds number �ow through pores have been studied extensivelyfor very short pores [66, 65, 20, 33, 86℄ and for pores of �nite length [14℄. Most relevantto the present disussion is the work of Dagan et al. who showed in [14℄ that to within anauray of 1% the resistane of a single pore Rp,1 of �nite length ℓp in an in�nite planeis given by
Rp,1 =

8ηℓp
πa4p

+
3η

a3p
. (4.6)The �rst term on the right-hand side is the well-know formula for the resistane of aylindrial pipe. The seond term represents the resistane of a pore in an in�nitely thinplate and was �rst derived for a irular pore by Sampson [66℄ and later generalized toother shapes by Rosoe [65℄ and Hasimoto [20℄.In plants, the sieve plate and pores are embedded in a larger irular tube. The e�etof the surrounding pipe walls on the resistane of the pore was studied by Jeong [33℄and shown to be negligible as long as ap

a ≤ 0.3. The e�et of neighboring pores wasinvestigated semi-analytially by Wang [86℄ who showed that the resistane di�ered onlyby a few perent from that found in Eq. (4.6) for overing frations less than ≤ 50%.4.2.2 Numerial simulation of the �ow lose to a sieve platesTo test the appliability of the results found in the literature we have onduted numerialsimulations of the �ow through sieve plates. Using omsol 3.5a, a ommerial omputa-tional �uid dynamis software pakage, we have alulated numerial approximations tothe �ow in the Stokes �ow approximation using a 3-D version of the �nite-element solverused in [27℄, see Chapter 8. The proedure for importing the atual sieve plate struturesinto the simulation workspae is shown in Fig. 4.3. After a areful meshing proedure anda thorough onvergene analysis we �nd �ow patterns similar to those shown in Fig. 4.4.An important qualitative feature of the �ow is that it is relatively undisturbed until a veryshort distane from the plate. This distane is of the order 2āp, the mean diameter of thepores, in good agreement with the results found by Johansen [34℄. Close to the plate the�ow is disturbed by the presene of the plate and the �uid must hange diretion in orderto pass through the pores. This phenomena gives rise to the Sampson-term 3η
a3p

in Eq. (4.6).4.3 Hydrauli resistane of sieve tubesWe shall now proeed to alulate the hydrauli resistane of a single sieve tube elementwhih onsists of two parts: A ell lumen and a sieve plate as shown in Fig. 4.1. Whenalulating the hydrauli resistane of the tube Rt, we thus onsider two resistanes atingin series
Rt = Rl +Rp, (4.7)where Rl is the resistane of the ell lumen and Rp is the resistane of the sieve plate.
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Figure 4.3: Proedure for preparing numerial simulations of �ow through sieve plates. In(a), a SEM image of a sieve plate found in Curubita maxima is shown. From [48℄, salebar 20µm. In (b), a front view of the extrated pore struture is shown. In (), the platehas been plae inside a 3-D ylindrial tube, ready for use in omsol 3.5a. The results ofthe simulation an be found in Fig. 4.4.4.3.1 Hydrauli resistane of the ell lumenFor a ylindrial ell of length ℓ and radius r, the hydrauli resistane is given by [10℄
Rl =

8ηℓ

πr4
. (4.8)4.3.2 Hydrauli resistane of the sieve plateIn the literature, several di�erent methods for alulating the resistane of a sieve plateshave been proposed [80, 48℄. Generally, the idea is to onsider the plate as a olletion ofindividual pores ating in parallel. This gives a hydrauli resistane of

Rp =





Np
∑

i=1

R−1
P,i





−1

, (4.9)where RP,i is the hydrauli resistane of eah individual pore. Thompson and Holbrook[80℄ suggests that one uses
RT

p,i =
8ηℓp
πā4p

+
3η

ā3p
. (4.10)This takes into aount both terms found by Dagan et al. in Eq. (4.6) but uses themean value of the pore radius āp rather than taking the sum over the individual pores, anapproah used, presumably beause only the mean value of pore radii was not known atthe time.Having measured the sizes of 104 individual pores, the summation approah was usedreently by Mullendore [48℄ who suggested that the resistane of eah individual pore RP,i
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() x = −0.36 (d) x = −0.13

(e) x = −0.07 (f) x = 0.025

Figure 4.4: Numerial simulation of �ow lose to a Curubita maxima sieve plate. Theliquid is moving from left to right. (a)-(f) Contour plot of the magnitude of the �owveloity (red fast, blue slow in arbitrary units) at the positions indiated above the plots.The pores start at x = 0 and have a typial diameter of 0.1 in these units. The �ow pro�lein (a) and (b) is the well known paraboli pro�le found in pressure driven pipe �ows. Closeto the sieve plate ()-(f), the �ow is disturbed by the presene of the plate and the �uidmust hange diretion in order to pass through the pores (f).



46 Hydrauli resistane of sieve platesould be written as
RM

p,i =
8ηℓp
πa4p,i

(4.11)suh that the sum in Eq. (4.9) is taken over the individual pores of di�ering radii. Comparedto Eq. (4.6) this, however, only takes into aount the �rst term in Dagans formula.Taking both e�ets into aount, we propose that a more aurate way of alulating
RP,i is to use

Rp,i =
8ηℓp
πa4p,i

+
3η

a3p,i
. (4.12)To get an idea of the quantitative di�erene between Eqns. (4.10), (4.11) and (4.12) weonsider the data given in Appendix D. Here the radii of the pores from the Curubitamaxima sieve plate shown in Fig. 4.2(a) are given. We �nd that

RT
p = 6.14 × 1012 Pa s/m3, (4.13)

RM
p = 7.49 × 1011 Pa s/m3, (4.14)
Rp = 4.21 × 1012 Pa s/m3, (4.15)alulated with η = 2× 10−3 Pa s. We observe that both RT

p and RM
p di�er signi�antlyfrom Rp, being that they are 1.5 times larger and 5 times smaller than Rp respetively.4.3.3 Hydrauli resistane of the sieve tube systemWith the results derived in Eqns. (4.8) and (4.12) we have for the total tube resistane Rtthat

Rt =
8ηℓ

πa4
+





Np
∑

i=1

(

8ηℓp
πa4p,i

+
3η

a3p,i

)−1




−1

. (4.16)An important observation is that with the knowledge that the pore radii are normallydistributed with mean āp and standard deviation σp we an approximated this by
Rt ≃

8ηl

πa4
+

(

Np

∫ ∞

0
p(ap)

(

8ηlp
πa4p

+
3η

a3p

)−1

dap

)−1

, (4.17)where p(ap) is normal probability density funtion
p(ap) =

1
√

2πσ2
p

exp

(

−(āp − ap)
2

2σ2
p

)

. (4.18)For the data given in Appendix D, the expression in Eq. (4.17) gives Rp = 4.12 ×
1012 Pa s/m3, very lose to the value in Eq. (4.15).



On the relationship between lumen and plate resistane 474.4 On the relationship between lumen and plate resistaneHaving established Eq. (4.17) as an approximate expression for the resistane of the sievetube, we an now apply it to the data in Table 4.1. To best interpret the results, wealulate the lumen and plate parts separately and ompare their magnitudes. In Fig. 4.5,the sieve plate resistane Rp is plotted as a funtion of the lumen resistane Rl. Bothwere alulated from Eq. (4.17) using data from table 4.1 and under the assumption that
η = 2× 10−3 Pa s. For data points 6�19 we assume that σp = 0.25āp.By looking at the plot, we observe what appears to be a linear relation between thetwo, i.e. Rp ∝ Rl. A least squares regression [75℄ gives

RP = (2.54 ± 0.42)RL, (4.19)with a orrelation oe�ient of rc = 0.78While the trend of the plot in Fig. 4.5 is lear, it isobvious that many e�ets are in�uening the relation between plate and lumen resistane.As an example it is interesting to onsider, say, plant no. 13 whih is Sabal palmetto, apalm tree that lies some distane from the RP = 2.54RL line. In this plant the sieve tubesare found inside the stem, rather than right under the bark whih is usually the ase intrees, and are thus mehanially proteted against insets and other predators [22℄. Thismay in part explain why it has suh a relatively low plate resistane.One may, however, speulate that Eq. (4.19) points in the diretion of the existene ofa general allometri saling law for the sieve plate resistane. Suh a law is known to existfor the xylem, where strutures similar to sieve plates also separate adjaent vasular ells.Sperry et al. found that RP ≃ RL [71℄. The reasoning behind this is, in simple terms thatthe relation RP ≃ RL minimizes the hydrauli resistane of the xylem. At present, thistype of argument does not seem to be appliable to the phloem.4.4.1 E�etive hydrauli resistaneAs a onsequene of Eq. (4.19) we onlude that the hydrauli resistane of the phloemtransloation pathway is signi�antly inreased by the presene of the sieve plates. Onaverage, the resistane is 3.5 times higher than the lumen resistane.
Rt = RL +RP = 3.5RL = 3.5

8ηℓ

πa4
. (4.20)We an thus think of the visosity as being 3.5 times higher due to the presene of thesieve plates. Writing ηeff = 3.5η we �nd that

Rt =
8ηeffℓ

πa4
. (4.21)This inrease in e�etive visosity means that the Münh number given in Eq. (4.1) ise�etively 3.5 times larger sine it should inlude the e�et of the added visosity. Fromnow on we thus write Mü =

16LpηeffL
2

a3
. (4.22)
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Figure 4.5: Comparative analysis of end wall resistivity in phloem sieve tubes. The sieveplate resistane RP is plotted as a funtion of the lumen resistane RL alulated fromEq. (4.17) using the data in Table 4.1. For data points 6−19, we assume that σp = 0.25āp.A least squares regression gives RP = (2.54 ± 0.42)RL with rc = 0.78.



Conlusion 494.5 ConlusionI this hapter, we have studied the e�et of sieve plates on the hydrauli resistane of thephloem transloation pathway. We have derived an analytial expression for the resistanebased on fat that the �ow ours at low Reynolds numbers and that the pore radii arenormally distributed.Using published data on the struture of sieve plates, we have found an approximatelylinear relationship between the plate Rp and lumen Rl resistane: RP = (2.54± 0.42)RL.This implies that the presene of sieve plates inreases the hydrauli resistane of the entiresieve tube element by a fator of ∼ 3.5. In the ontext of the one-dimensional equationsof motion derived in Chap. 3 we inlude this e�et by introduing an e�etive visosity
ηeff = 3.5η into the Münh number f. Eq. (4.22).
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Chapter 5Mathematial analysis of theequations of motionIn this hapter we study analytial and numerial solutions to the steady-state one-dimensional equations of motion derived in Chapter 3. The equations are analyzed ina zone model using �rst a simple hydrauli resistor model and seond a full analytialsolution in the limits Mü ≪ 1 and Mü ≫ 1. The dependene of the average axialtransloation veloity Ū on the parameters in the problem is determined in the form of anapproximate analytial expression for the full range of Mü numbers.The solutions to the equations of motion was derived by the author in ollaborationwith Tomas Bohr and Henrik Bruus. A ondensed version of the derivation was publishedin [29℄. Additional tehnial details of the analytial solution proedure an be found inAppendix A.A detailed treatment of time dependent osmoti �ows was published in [30℄ (see Ap-pendix E) and will not be overed in the main text.5.1 The 3�zone model5.1.1 Formulation of the 3�zone modelIn this hapter we think of the plant as being split into three zones as shown in Fig. 3.4,p. 32. Spei�ally we use a loading zone (zone 1, 0 < x < x1) of length l1, a transloationzone (zone 2, x1 < x < x2) of length l2 and an unloading zone (zone 3, x2 < x < x3) oflength l3. We use the boundary onditions u(0) = u(x3) = 0 and require that the veloityand its �rst derivative with respet to x is ontinuous aross all internal boundaries. ByEq. (3.77), p. 31, this assumption implies that the pressure p and onentration c is alsoontinuous aross the internal boundaries. Further, we assume that the onentration can be written as
c(x) ≃

{

c∗ in zone 1 (0 < x < x1),
c∗2

(

1− x−x2
x3−x2

) in zone 3 (x2 < x < x3), (5.1)51



52 Mathematial analysis of the equations of motionwhere c∗ is the harateristi onentration found in the loading zone and c∗2 is the on-entration at the entrane to the unloading zone. The equations of motion were derivedin Chapter 3 and are give by
∂2
xu =

2Lp

a

(

RT∂xc+
8ηeff
a2

u

)

, (5.2)
∂x(cu) = υ (5.3)The loading υ rate is not expliitly spei�ed, but assumed to lead to onentration pro�lesof the form given in Eq. (5.1). Note that we now use the e�etive visosity ηeff introduedin Chapter 4 to take the e�et of sieve plates into aount.To be able to ompare the results of this model to veloity measurements made onplants we de�ne the average transloation veloity ū to be the mean value of the veloityin the transloation zone as

ū =
1

x2 − x1

∫ x2

x1

u(x) dx. (5.4)The goal of the following mathematial analysis will be to determine this veloity as afuntion of the parameters in the problem.5.1.2 A simpli�ed mathematial treatmentBefore we move on to a rigorous mathematial treatment of the model, we will try todesribed the �ow in a simple manner, so as to get an idea of what kind of results weshould expet from the full model. Let us therefore onsider the phloem transloationpathway as a series of hydrauli resistanes (see e.g. [10℄) that the water has to overomein order to move from soure to sink. The three resistanes are
R1 =

1

2πal1Lp
+

8ηeff l1
πa4

≃ 1

2πal1Lp
, (5.5)

R2 =
8ηeff l2
πa4

, (5.6)
R3 =

1

2πal3Lp
+

8ηeff l3
πa4

≃ 1

2πal3Lp
. (5.7)Here, we approximate the resistane in the loading and unloading zones R1 and R3 bythe hydrauli resistane assoiated with moving aross the membrane and disregard theresistane of the �ow along the tube1. If we assume for simpliity that l1 = l3, the totalresistane is simply the sum of the three resistanes (5.5)�(5.7)

R = R1 +R2 +R3 =
1

πal1Lp
+

8ηeff l2
πa4

(5.8)1The resistane along the (un)loading zone is typially two orders of magnitude smaller than the resis-tane aross the membrane



The 3�zone model 53The �ow is driven by the osmoti pressure RTc∗ so the average �ow veloity ū an bewritten as
ū =

1

πa2
RTc∗

R (5.9)
=

1

πa2

(

1

πal1Lp
+

8ηeff l2
πa4

)−1

RTc∗ (5.10)
=

(

a2l1Lp

a3 + 8ηeffLpl1l2

)

RTc∗ (5.11)As a quik hek, we an ompare this veloity to the one found in Eq. (2.7) (p. 14) whihwas alulated without taking the visous resistane (Eq. 5.6) into aount. There, wefound a harateristi osmoti veloity of 10−2 m/s, two orders of magnitude larger thanthe observed veloity of 2.8× 10−4 m/s. Using the parameters
l1 = 0.1 m, l2 = 1 m, a = 10−5 m, Lp = 5× 10−14 m/(s Pa), and RTc∗ = 1 MPa,we �nd from Eq. (5.11) that

ū = 3.9 × 10−4 m/s, (5.12)in good agreement with the experiments. In non-dimensional units (see Se. 3.5, p. 24)with the axial length sale l hosen to be the length of the transloation zone i.e. l = l2we �nd that the average axial veloity Ū an be written as
Ū =

(

1
2
L1

+Mü ) , (5.13)suh that for large values of Mü
Ū ≃ 1Mü , (5.14)while for small values of Mü,
Ū ≃ L1

2
. (5.15)5.1.3 Non-dimensional formulation of the equations of motionTo simplify the mathematial treatment of the full model, we use non-dimensional variables.As outlined above, we employ the saling used in Se. 3.5 with the axial length sale

L hosen to be the length of the transloation zone l = l2. In these units we have aloading zone (zone 1, 0 < X < X1) of length L1 = l1/l2, a transloation zone (zone 2,
X1 < X < X2) of length L2 = l2/l2 = 1 and an unloading zone (zone 3, X2 < X < X3) oflength L3 = l3/l2. Sine the equations of motion are di�erent in eah of the zones, we willuse subsripts. The veloity in the loading zone is denoted U1, in the transloation zone
U2 and in the unloading zone U3. Similar subsripts are used for the onentration C.In steady state, the governing equation for the veloity U in all three zones is

∂2
XUi = ∂xCi +Mü Ui, (5.16)



54 Mathematial analysis of the equations of motionwhere i = 1, 2, 3. The onentration C is governed by
C1 = 1 (5.17)

∂x (U2C2) = 0 (5.18)
C3 = C2(X2)

(

1− X −X2

X3 −X2

)

. (5.19)The boundary onditions require ontinuity of the veloity U and its �rst derivative withrespet to X

U1(0) = 0, (5.20)
U2(X1) = U1(X1), (5.21)

∂XU2(X1) = ∂XU1(X1), (5.22)
U3(X2) = U2(X2), (5.23)

∂XU3(X2) = ∂XU2(X2), (5.24)
U3(X3) = 0. (5.25)The onservation equation (5.18) implies that for any two positions in the transloationzone interval Xa,Xb ∈ [X1,X2] we have that

U2(Xa)C2(Xa) = U2(Xb)C2(Xb). (5.26)In partiular, sine C2(X1) = C1(X1) = 1, we have that
U2(X2)C2(X2) = U2(X1). (5.27)This means that we an eliminate C from the equations of motion entirely and get

∂2
XU1 = Mü U1, (5.28)

∂2
XU2 = −U1(X1)

U2
2

∂XU2 +Mü U2, (5.29)
∂2
XU3 = − U2(X1)

U2(X2)(X3 −X2)
+Mü U3, (5.30)To determine C upon solving this system of equations, we simply use Eqns. (5.17), (5.26)and (5.19). In non-dimensional units, the mean veloity in the transloation zone is

Ū =

∫ X2

X1

U2 dX, (5.31)sine X2 −X1 = 1.



Analytial solution of the 3�zone model 555.2 Analytial solution of the 3�zone modelA general, losed form solution of Eqns. (5.28)-(5.30) is not urrently available. It is,however, possible to solve the problem analytially in the in the limits Mü ≪ 1 andMü ≫ 1. In the following, we will give a brief summary of the solutions whih dependon the Münh number Mü, the size of the loading zone L1 and the ratio ω = L3
L1
. Theproblem is solved for all ω, but with speial emphasis on the ase ω = 1 ommonly used inthe literature. Please refer to Appendix A for a thorough analysis the solution proedure.5.2.1 Solution for Mü ≪ 1In the limit Mü ≪ 1 the equations of motion are

∂2
XU1 = 0, (5.32)

∂2
XU2 = −U1(X1)

U2
2

∂XU2, (5.33)
∂2
XU3 = − U2(X1)

U2(X2)(X3 −X2)
. (5.34)We write the solution in domains 1 and 3 as

U1(X) = B1X +B2, (5.35)
U3(X) = −1

2

U2(X1)

U2(X2)

1

(X3 −X2)
(X −X3)

2 +B3(X −X3) +B4. (5.36)For U2, only the inverse funtion X(U2) is available expliitly
X(U2) =

U1(X1)

B5

[

U2

U1(X1)
− 1

B5
log

(

1 + B5U2
U1(X1)

1 +B5

)]

+B6. (5.37)To ful�ll the boundary onditions we �nd that the onstants B1, B2, . . . , B6 are given by
B1 =

1

ω

(

1 + ω −
√
1 + 2ω

)

, (5.38)
B2 = 0, (5.39)
B3 =

1

ω

(

1−
√
1 + 2ω

)

, (5.40)
B4 = 0, (5.41)
B5 =

1

ω

(

1−
√
1 + 2ω

)

, (5.42)
B6 =

L1ω√
1 + 2ω − 1

, (5.43)and that U2(X2) = 1
2L1(1 − B1)ω. We ompare this analytial solution to numerialsolutions of the full equation system in Se. 5.4.



56 Mathematial analysis of the equations of motionThe mean transloation veloity in the transloation zone Ū is
Ū =

1

2

(√
1 + 2ω − 1

)

L1 −
(

4 + 6ω − ω2 +
√
1 + 2ω

(

ω2 − 4− 2ω
)

8ω

)

L2
1. (5.44)In most ases the prefator of seond order term (in L1) is very small. For ω = 1 we �ndthat

Ū =

√
3− 1

2
L1 −

9− 5
√
3

8
L2
1 ≃ 0.36L1 − 0.043L2

1. (5.45)It is often the ase in plants that L1 ≪ 1, so we an safely use
Ū ≃

√
3− 1

2
L1, (5.46)as an estimate for Ū . Apart from a small numerial di�erene in the prefator (√3− 1 ≃

0.732 vs. 1), this is in good agreement with the result found in Eq. (5.15) using the resistormodel.5.2.2 Solution for Mü ≫ 1In the limit Mü ≫ 1 the equations of motion are
∂2
XU1 = Mü U1, (5.47)

∂2
XU2 = −U1(X1)

U2
2

∂XU2 +Mü U2, (5.48)
∂2
XU3 = − U2(X1)

U2(X2)(X3 −X2)
+Mü U3, (5.49)In the loading and unloading zones the solutions are

U1(X) = A1 sinh
√Mü X +A2 cosh

√Mü X, (5.50)
U3(X) = A3 sinh

√Mü (X −X2) +A4 cosh
√Mü (X −X2) +

KMü , (5.51)where K = U2(X1)
U2(X2)(X3−X2)

and A2 = 0 sine U1(0) = 0. For U2, we have that
U2(X) =

U1(X1)
√

1− 2Mü U1(X1)(X −X1)
. (5.52)With the solution given in Eq. (5.52), we an now determine the onstants A3 and A4and K = U2(X1)

U2(X2)(X3−X2)
. The only free parameter is A1 whih has to be determined suhthat U3(X3) = 0. Using the omputer algebra system Mathematia 7.0.0, we do this asexplained in Appendix A.2. The expressions are generally ompliated funtions of Mü ,

X1, X2 and X3. For ω = 1, we e.g. �nd that A1 is given by
A1=

Mü (4+X1) coth[Mü∗]−sh[Mü∗](4Mü +sh[Mü∗]√Mü 3/2X1 sinh[Mü∗]2(Mü∗ cosh[Mü∗]2−4 sinh[Mü∗]+2 sinh[2Mü∗]))
4Mü 2(2+X1) cosh[Mü∗]−2(4Mü 2+Mü 3/2X1 sinh[Mü∗]) ,(5.53)



Solution summary for ω = 1 57where Mü∗ =
√MüX1. We ompare this analytial solution to numerial solutions of thefull equation system in Se. 5.4.In spite of the omplexity of the analytial expression for the Ai's, the mean translo-ation veloity in the transloation zone Ū an be approximated by a simple funtion ofMü. We thus �nd that

Ū ≃ 1Mü (5.54)as long as Mü (X3 − X2) ≫ 1. One again, this is in good agreement with the resistormodel result given in Eq. (5.14).5.3 Solution summary for ω = 1In the speial ase ω = 1 we have for the average transloation veloity Ū that
Ū =

{√
3−1
2 L1 if Mü ≪ 1,
1Mü if Mü ≫ 1.Inspired by Eq. (5.13) we therefore write

Ū ≃ 1
2

(
√
3−1)L1

+Mü , (5.55)or in dimensional units
ū ≃





a2l1Lp

a3√
3−1

+ 8ηeffLpl1l2



RTc∗. (5.56)We ompare this predition to numerial solutions of the full equation system in Se. 5.4.The dependene of ū on the parameters in the problem is disussed in detail in Se. 6.3,p. 64. From Eq. (5.56), we an further alulate the harateristi time t0 it takes for asugar moleule to traverse the transloation zone
t0 =

l2
ū

=
l2

(

a3√
3−1

+ 8ηeffLpl1l2

)

a2l1Lp

1

RTc∗
. (5.57)When l2 beomes very large we reover the result obtained numerially by Thompson andHolbrook [79℄ that t0 ∝ l22.5.4 Comparison between numerial and analytial solutions5.4.1 Numerial solutions of the 3�zone modelTo evaluate the auray of the analytial solutions presented above, we have solvedEqns. (5.28)-(5.30) numerially. We have used matlab's ode45-routine whih uses aRunge-Kutta (4,5) solver [63℄. The equations are solved using a shooting method from
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Mü = 100

0 X1 X2 X3
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

X

U

(a)

Numerics
Analytics
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Figure 5.1: Comparison between numerial and analytial solutions of the 3�zone model.(a), (), and (e): Numerial (irles) and analytial (lines) solutions for veloity U plottedas a funtion of axial position X. (b), (d), and (f): Numerial (irles) and analytial(lines) solutions for onentration C plotted as a funtion of axial position X. The valuesof Münh number Mü used are indiated next to the points. Parameters used are (a) and(b): X1 = 0.3, X2 = 1.3, and X3 = 1.6. () and (d): X1 = 0.1, X2 = 1.1, and X3 = 1.4.(e) and (f): X1 = 1, X2 = 2, and X3 = 3. Note the logarithmi oordinate axis in (e).
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Figure 5.2: Comparison between numerial and analytial solutions of the 3-zone model.Numerially omputed dimensional mean transloation veloities ū (points) plotted as afuntion of radius a for a plant with a stem length l2 = 1 m. The leaf and root sizesare l1 = l3 = 0.05 m (irles), l1 = l3 = 0.1 m (squares), and l1 = l3 = 0.25 m (stars).The solid lines shows the veloity predited by Eq. (5.56). Parameters used are Lp =
5× 10−14 m/(Pa s), RTc∗ = 1 MPa, and ηeff = 7× 10−3 Pa s.left to right with the initial onditions U1(0) = 0 and ∂XU1(0) = 1 . To ful�ll the bound-ary ondition at X3, the numerial proedure varies ∂XU1(0) until the solution ful�lls theondition U3(X3) = 0. After a thorough onvergene test we obtain solutions similar tothose shown in Fig. 5.1.5.4.2 Comparison between numerial and analytial solutionsUsing the numerial proedure outlined in Se. 5.4.1, we have solved Eqns. (5.28)-(5.30)numerially. The results are shown in Fig. 5.1 where the numerial solutions for the veloity
U and onentration C are ompared with the analytial results obtained in the Mü ≪ 1and Mü ≫ 1 limits. We generally �nd very good agreement between the two. The reasonfor the disrepany between the analytial and numerial solution for the onentration Cfor Mü = 100 is that the analytial solution for large Mü does not ful�ll the ondition
∂XU2(X1) = ∂XU1(X1) exatly.To evaluate the auray of the expression for the mean dimensional transloation ve-loity ū given in Eq. (5.56), we have ompared it to the results of the numerial simulation.To obtain the dimensional veloity from the non-dimensional solutions we use

ū = u∗xŪ =
2l2LpRTc

∗

a
Ū , (5.58)f. the saling proedure disussed in Se. 3.5, p. 24. Fig. 5.2 shows the numerially



60 Mathematial analysis of the equations of motionomputed dimensional mean transloation veloity ū plotted as a funtion of radius a fora plant with a stem length l2 = 1 m, and three di�erent leaf/root sizes. We generally �ndgood qualitative and quantitative agreement between the numerial simulations and theanalytial result. The agreement is espeially good (to within ∼ 10%) when the leaf isshort ompared to the stem, i.e. when L1 = l1
l2
is small. We �nd equally good agreementbetween numeris and theory for plants with other stem lengths. We note the existene of amaximum in the dimensional transloation veloity whih we disuss in detail in Chapter 6.5.5 Conlusion and SummaryIn this hapter, we have studied analytial and numerial solutions of the one-dimensionalequations of motion in the 3-zone model. We have analysed the problem using �rst asimple hydrauli resistor model and seond a full analytial solution in the limits Mü ≪ 1and Mü ≫ 1. The analytial solutions obtained gives a full understanding of the �owand onentration pro�les as a funtion of axial position in the two limits. The solutionsdepend on three non-dimensional numbers: The Münh number Mü, the relative size of theloading and transloation zone L1 =

l1
l2
, and the relative size of the loading and unloadingzone ω = l3

l1
. To evaluate the auray of the analytial solutions, we have solved theequations of motion numerially. We have found good agreement between theory andnumeris. From the analytial solutions, we have derived an analytial expression for theaverage axial transloation veloity ū as a funtions of the parameters in the problem, f.Eq. (5.56).



Chapter 6Optimality of the Münh mehanismIn this hapter we apply the results of the theoretial analysis of osmotially driven �owsobtained in Chapters 3, 4 and 5 to transloation proesses in plants. We begin by showingthat the 3-zone model is able to reprodue transloation veloity measurements made onplants, and that it therefore gives us a basi understanding of how the veloity sales asa funtions of the parameters in the problem. We then onsider an interesting preditionof the model; that the osmoti Münh �ow mehanism has a maximum in transloationveloity for a partiular value of the phloem sieve tube radius ac. We derive an expressionfor ac whih takes the form of an allometri saling law, and show that a large groupof plants follow this predition. Finally, we disuss the impliations for the Lang relayhypothesis and for the feasibility of the osmoti �ow mehanism for long distane transportin plants. The author believes that the results presented in this hapter onstitutes the mostsigni�ant ontribution to the phloem transloation literature obtained over the ourse ofthe PhD projet.The theoretial analysis of the optimality of the Münh mehanism was made by theauthor during and after a visit to the lab of Noel Mihele Holbrook and Maiej Zwie-nieki at Harvard University in 2008. It was published in [29℄1 (see Appendix F) in apaper written in ollaboration with Tomas Bohr, Jinkee Lee, Henrik Bruus, Noel MiheleHolbrook and Maiej Zwienieki. Maiej Zwienieki performed the in-vivo phloem �owveloity measurements referred to in the text.6.1 Introdution to optimality and allometri saling lawsPlants display a remarkable variety of di�erent strutures and vary by many order ofmagnitude in size. Despite this inredible diversity and omplexity, many fundamentalbiologial proesses show a striking simpliity when viewed as a funtion of size, by whatis know as allometri saling laws. The laws desribe how biologial parameters vary1The saling analysis presented here di�ers slightly from that given in [29℄. To avoid lengthy mathemat-ial disussions and the use of numerial solutions in the omparison with experimental data the authorhas hosen Eq. (5.11), p. 53, as the starting point for the disussion. This means that the expression forthe ritial radius ac derived here di�ers from that found in [29℄ by a fator 21/3 whih is easily absorbedby the geometri fator G, f. Eq. (6.7). 61



62 Optimality of the Münh mehanismwith sale, regardless of the otherwise large qualitative di�erenes among of the speiesbeing onsidered. These saling laws emerge from underlying physial mehanisms thatare independent of the spei� speies, but whih impose ertain onstraints on the systemas a whole as a result of seletion pressure for a spei� property [87, 52℄.As we have seen in Chapter 2, the phloem tissue of plants is responsible for the distri-bution of sugar and hormonal and signaling moleules. On the biologial motivation forexamining the optimality of the Münh mehanism, the author and ollaborators write in[29℄ that...phloem distributes hormonal and signaling moleules that allow for the in-tegration of distal parts in lieu of a designated nervous system [43, 83℄. Thisadditional signalling task ould result in seletion pressure to optimize translo-ation veloity by providing plants with the ability to respond rapidly to envi-ronmental perturbations [46℄. ([29℄, p. 1)The question we pose in the following is whether an allometri saling analysis an beapplied to transloation in the phloem. If we assume that the �ow inside plants is drivenaording to the Münh hypothesis, what onsequenes does it have for the relation be-tween, say, the size of the leaf, the length of the stem and the radius of the phloem tubesif we assume that plants are optimized for rapid transloation in the phloem?To make progress on this we will use the results derived in Chapter 5.6.2 Comparison between the 3-zone model and plant veloitymeasurementsThe equations of motion derived in Chapter 3 and analyzed in Chapter 5 have been shownby several authors to aurately desribe osmotially driven �ows in arti�ial systems[16, 40, 30, 28, 29℄, see also Chapter 7.To shown that they are a relevant desription of the proesses that our in plants,we must make an assessment of to what extend the theory is able to reprodue empirialdata. Quoting one again Knoblauh and Peters [36℄:While there is no shortage of mathematial formalizations of various aspetsof phloem transport. . . , the question remains whether any suh theoretialdesription mirrors physial reality in a biologially meaningful way an onlybe deided empirially. ([36℄, p. 1442)One suh empirial omparison an be made by onsidering the harateristi �ow veloity
ū for the 3-zone model derived in Chapter 5 (Eq. (5.11), p. 53). The expression for ū hasthe form

ū ≃





a2l1Lp

a3√
3−1

+ 8Lpηeff l1l2



Π (6.1)and thus relates the transloation veloity to harateristi physial properties of the plantand the available osmoti driving pressure RTc∗ = Π.
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Figure 6.1: Comparison between plant veloity measurements and theory. (a) Measured�ow veloity uexp (blak dots) plotted as a funtion of the sieve tube radius a for the 7di�erent speies listed in Table 6.1. Also shown is the veloity ū predited by Eq. (6.1)(open irles onneted by dashed lines) plotted for Π = 0.1 MPa− 0.5 MPa as indiatedon the right. (b) Measured �ow veloity uexp (blak dots) plotted as a funtion of the stemlength l2. Also shown is the veloity ū predited by Eq. (6.1) (open irles onneted bydashed lines) plotted for Π = 0.1 MPa − 0.5 MPa as indiated on the right. Throughout,
Lp = 5× 10−14 m/(Pa s) and ηeff = 7× 10−3 Pa s was used.



64 Optimality of the Münh mehanismA data set whih allows for diret omparison with Eq. (6.1) is given in Table 6.1, p. 75.Here, experimental data obtained from in-vivo phloem �ow veloity measurements made on7 di�erent speies are listed along with values of the relevant physial parameters2. Whenomparing the experimental data to the predition of Eq. (6.1), we will treat the membranepermeability Lp and the liquid visosity ηeff as onstants. We make this assumption basedon a thorough study by Thompson and Holbrook [79℄. They found that representativevalues are Lp = 5× 10−14 m/(Pa s) and η = 2× 10−3 Pa s, suh that ηeff = 7× 10−3 Pa s.Charateristi values of the osmoti pressure are Π = 0.2 MPa − 2 MPa, obtained fromthe sugar onentrations listed in Table 2.1, p. 11.A omparison between the veloity predited by Eq. (6.1) and the measured valueslisted in Table 6.1 is shown in Fig. 6.2. In (a), the veloity is plotted as a funtion ofthe radius a of the sieve tubes, while (b) shows the veloity plotted as a funtion of thestem length l2. The predition of the veloity ū given in Eq. (6.1) is shown as openirles onneted by dashed lines as guides to the eye. We observe a good qualitative andquantitative agreement between the predition of Eq. (6.1) and the experimental data forthe urves with Π = 0.1 MPa − 0.5 MPa. Although these value of the osmoti pressure
Π are at the low end of the spetrum, we note that the fator Π entering into Eq. (6.1)represents the di�erene in osmoti pressure between the root and the leaf, a numberwhih an be signi�antly lower than the values found by simply onsidering the sugaronentration as pointed out by Turgeon [82℄.6.3 Optimality of the Münh mehanismWe now move on to an allometri saling analysis of transloation in the phloem. Tomake progress on this, we must �rst onvine ourselves that a maximum in transloationveloity is imposed by the Münh osmoti �ow mehanism. We begin by onsidering thedependene of the transloation veloity ū given in Eq. (6.1) on the sieve tube radius a,the leaf size l1 and the stem size l2. With 2 of the 3 parameters kept onstant, ū behavesas illustrated in Fig. 6.2. The veloity grows asymptotially as a funtion of the leaf size
l1 to the value

ū(l1 → ∞) =
a2

8ηl2
Π, (6.2)and deays as 1

l2
when the stem length beomes very large. When the stem is very shortwe �nd that

ū(l2 → 0) =
(√

3− 1
) l1Lp

a
Π. (6.3)While the veloity ū has no maximum points as a funtion of l1 and l2 > 0, it does have anextrema as a funtion of the radius a, at the value a = ac as indiated in Fig. 6.2(). Asskethed in Fig. 6.3(a), the existene of suh a maximum in transloation veloity is quite2We note that the stem length of these plants are l2 ∼ 1 m and that the values of the ratio L1 = l1

l2
liein the range 0.05− 0.25. We an therefore expet that Eq. (6.1) gives a reasonably aurate estimate of ūfrom the 3-zone mode f. the disussion in Se. 5.4.2, p. 59. For plants with muh larger values of L1 oneneeds to solve the 3-zone model numerially in eah individual ase. The author and o-workers used thisapproah in [29℄.
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ū
/
ū
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Figure 6.2: Plots showing the asymptoti behavior of the veloity ū given in Eq. (6.1) asa funtion of a, l1, and l2. (a) Plot of ū/ū(l1 → ∞) as a funtion of the leaf size l1 foronstant a and l2. As l1 → ∞, ū approahes a2

8ηl2
Π. (b) Plot of ū/ū(l2 → 0) as a funtionof stem length l2 for onstant a and l2. As l2 → 0, ū approahes (√3− 1

) l1Lp

a Π. () Plotof ū as a funtion of radius a for onstant l1 and l2. At the ritial radius a = ac, theveloity ū has an maximum point (indiated by the blak dot) given by Eq. (6.5). Thevalue of a = ac at whih this ours is given in Eq. (6.4).
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Figure 6.3: Optimized veloity for osmotially driven �ows. (a) Heuristi argument forexistene of a maximum in transloation veloity for osmotially driven �ows. The �owveloity ū (open irles) is plotted as a funtion of the tube radius a. The osmoti drivetakes plae aross the tube surfae and the veloity therefore grows as the the surfae-to-volume ratio σ = 2
a inreases, i.e. when the radius dereases. Very thin tubes, on the otherhand, o�er high visous resistane to the �ow; and thus there is an optimum radius acand veloity ū(ac) at the intersetion between the dashed lines, where the osmoti pump ismost e�etive and the resistane not too large. (b) Example of numerially omputed meantransloation veloity ū (dots) as a funtion of radius a alulated from the 3-zone modelshowing the existene of a maximum in transloation veloity. The solid line shows theveloity predited by Eq. (6.1). Close to the maximum of the solid urve, at a = 7.5 µm,the transition between the two types of �ow ours and the veloity is at a maximum. Thisis onsistent with the numerial simulations whih yields ac ≃ 8.0 µm as indiated on theordinate axis. Parameters used are Lp = 5 × 10−14 m/(Pa s), l1 = l3 = 0.1 m, l2 = 1 m,

Π = 1 MPa, and ηeff = 7× 10−3 Pa s. We also �nd good agreement between numeris andtheory for other values of l1 and l2.



Optimality of the Münh mehanism 67easy to understand: the osmoti �ow takes plae aross the ell surfae and is thereforemore e�etive in terms of the axial veloity for thinner tubes where the surfae-to-volumeratio σ = 2
a is larger. Very thin tubes, on the other hand, o�er high visous resistane tothe �ow, and thus there is an optimum radius ac, where the osmoti pump is e�etive andthe resistane not too large.To estimate the radius at whih this maximum ours, we use the expression forthe mean transloation veloity ū given in Eq. (6.1) This veloity is plotted as a fun-tion of the phloem sieve tube radius a in Fig. 6.3(b), along with the results of nu-merial simulation of the 3-zone model. In aordane with the numerial result, thesolid urve shows a maximum whih we an alulate by onsidering the nominator of

∂aū = 2al1Lp

(

a3√
3−1

+ 8ηLpl1l2

)

− 3√
3−1

a4l1Lp. The veloity has a maximum when this iszero, i.e. when
a3 = a3c = 16(

√
3− 1)Lpηeff l1l2. (6.4)As shown in Fig. 6.3(b) the numerially determined value of the optimized radius (ac =

8 µm in this partiular example) lies very lose to that predited by Eq. (6.4), ac = 7.5 µm.From Eqns. (6.1) and (6.4), we may further alulate the veloity ū(ac) at the ritialradius
ū(ac) =

a2c
24ηeff l2

Π =
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)1/3

3

(Lpl1)
2/3

(ηeff l2)
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Π. (6.5)Thus an inrease in leaf size (with �xed stem size) will lead to an inrease in the veloity
ū(ac), while an inrease in stem size (with �xed leaf size) will lead to a derease. We thusassume that these external length sales are set by other biologial onstraints suh as theost of building, supporting and maintaining photosyntheti surfaes.It is also interesting to onsider the harateristi transit time t0(ac) for a sugar moleuleto traverse the transloation zone
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=

3
(

2−
√
3
)1/3

η
1/3
eff

(Lpl1)
2/3

l
4/3
2

Π
. (6.6)We observe that the transit time t0 at the ritial radius grows as l4/32 , signi�antly slowerthan the dependene t0 ∝ l22 found numerially by Thompson and Holbrook [79℄ in thenon-optimized ase of very large l2.6.3.1 Allometri saling law for the optimality of the Münh mehanismIn summary, we have that the expression for the ritial radius ac given in Eq. (6.4) preditsa saling relation of the form

a3c = GLpηeff l1l2, (6.7)where G = 16(
√
3 − 1) ≃ 10 is a geometri fator3. If plants are optimized for rapidtransloation in the phloem, we expet to �nd that they have appropriate ombinations of3We notie that in terms of the non-dimensional parameters Mü and L1, the saling relation given inEq. (6.7) orresponds to Mü = 16

G
1
L1

.



68 Optimality of the Münh mehanismthe four length sales: a, Lpηeff , l1, and l2. This predition thus relates physis ourringat length sales spanning more than 10 orders of magnitude: from the moleular sale� through the length sale Lpηeff whih is losely related to the hydrodynami pore-sizeof transport proteins � to the long-distane transloation sale whih spans many 10s ofmeters.6.4 Comparison with plant dataTable 6.2, p. 76, list values of phloem sieve tube radius a, leaf size l1 and stem length l2for 19 di�erent speies from [29℄. The data is represented visually in Fig. 6.4, and showthe general trend that large plants tend to have large sieve tube and large leaves.To test the saling relation given in Eq. (6.7) the produt l1l2 is potted as a funtionof sieve tube radius a in Fig. 6.4(d) and again in Fig. 6.5 where the individual speiesare labeled by numbers referring to Table 6.2. A visual inspetion of Fig. 6.5 reveals thatthe data points lie lose to the predited saling exponent of 3 (solid line). By methodof least squares �tting we will now determine the statistial estimate of the exponent andprefator.6.4.1 Determining the saling exponentWhen examining the data given in Table 6.2 we onsider saling relations of the form
aα = βl1l2, (6.8)one again treating Lp and ηeff as onstants. To determine the onstants α and β =

GLpηeff , it is onvenient to onsider instead the logarithm of this equation
α log a = log β + log l1l2, (6.9)whih with ξ = log a, ζ = log l1l2 and B = − log β beomes

ζ = αξ +B. (6.10)A least squares �t [75℄ yields
αls = 2.58 ± 0.25, (6.11)quite lose to the predited saling α = 3 with a orrelation oe�ient of rc = 0.93 asreported by the author and o-workers in [29℄. The standard least squares orrelationmethod, however, does not take into aount the unertainty on both sets of variables, i.e.the error on the radius a and on the produt l1l2. A more appropriate method is thereforea Model II least squares ubi regression analysis (see [52℄ p. 328 and [90℄ p. 1083). Usingthat tehnique, we �nd
αls = 3.32 ± 0.37, (6.12)onsistent with the α = 3 predition. Generally, the least squares method obtains thelowest value for the saling exponent whereas Model II type regressions provides an upper
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Figure 6.4: Visual representation of the plant data given in Table 6.2. (a) Leaf length l1plotted as a funtion of sieve tube radius a. (b) Stem length l2 plotted as a funtion ofsieve tube radius a. () Stem length l2 plotted as a funtion of leaf length l1. (d) Produtof leaf and stem length l1l2 plotted as a funtion of sieve tube radius a.
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Figure 6.5: Comparison between the predited saling law a3 ∝ l1l2 and the plant datagiven in Table 6.2. Log-log plot of measured l1l2 as a funtion of measured radius a (blakdots). The predition of Eq. (6.7) (A, solid line, slope 3.00), Eq. (6.12) (B, dashed line,slope 3.32), and Eq. (6.11) (C, dotted line, slope 2.58) are also shown. The numbers nextto the points indiated the speies as listed in Table 6.2.



Disussion 71limit on α [52℄. Figure 6.5 shows a omparison between the experimental data and theexponents derived from the regression analysis.In summary we �nd good agreement between the predited saling relation and theexperimental data on plants ranging in sieve tube radius a from a = 1 µm (Tradesantiavirginiana, no. 12) to a = 40 µm (Cuurbita malepo, no. 10) and stem length l2 from
l2 = 0.1 m (Tradesantia virginiana, no. 12) to l2 = 40 m (Robinia pseudoaaia, no. 5).We note that a number of plants lie quite far from the predited saling. Two suh pointsare Cuurbita malepo (no. 10), and Sabal palmetto (no. 3). The major di�erene betweenCuurbita malepo the rest of the data set is presumably that it has very large sieve tubes,muh like the Cuurbita maxima shown in Fig. 2.2, p. 10. On the other hand, the phloemof Sabal palmetto is loated further inside the stem than what is usually the ase. Asdisussed in Chapter 4, this also makes a di�erene for the hydrauli resistane of the sieveplates.6.4.2 Determining the saling prefatorData from the literature suggest that the saling prefator β = GLpηeff ≃ 3.5 × 10−15 msine G ≃ 10, Lp = 5 × 10−14 m/(Pa s), and ηeff = 7 × 10−3 Pa s. It an be determinedfrom the data in Table 6.2 under the assumption that α = 3 by a least squares �t to
a3 = βl1l2. This yields

βls = (1.74 ± 1.30) × 10−15m, (6.13)whih is in the same order of magnitude as predited by the literature data.6.5 DisussionIn a disussion of the saling analysis presented above the author and ollaborators writein [29℄ thatPlants, whih span tens of metres and proliferate in hundreds of ubi metresof soil and air, experiene diverse and often rapid �utuations in environmentalonditions. To respond to suh environmental heterogeneity requires the rapiddistribution of both energy and information in the form of hemial signalsto enhane plant produtivity and ompetitiveness. The phloem provides un-interrupted oupling between most distal parts of all plants and links plants'multibranhed dendriti struture into a single funtional miro�uidi system[6℄. Conordane between our theoretial model, studies of osmotially driven�ow in syntheti phloem, and measurements of �ow and geometri propertiesmade on real plants gives on�dene in the Münh theory of phloem �ow andsuggests that plants are optimized for rapid transloation of sugar, therebygaining a ompetitive edge in terms of their ability to respond rapidly to en-vironmental stimuli. Our analysis provides a general saling law for phloemdimensions that maximizes transloation veloity, suggesting that evolutionaryseletion on the e�ay of signal transdution has shaped the struture andfuntion of this supraellular transport pathway. ([29℄, p. 7)



72 Optimality of the Münh mehanismThe author thus believes that the physial onstraints imposed by the optimality of theMünh mehanism has played an important role in the evolution of the phloem vasularsystem of plants. If we aept this hypothesis, we are able to shed new light on a numberof onjetures found in the phloem literature.6.5.1 Lang's relay hypothesisOne suh onjeture is known as Lang's Hypothesis. In 1979, Alexander Lang [41℄ proposedthat in order to maximize the rate of transport of sugar, the phloem transloation pathwaymight be split into a number of separate ompartments. He writes thatthe phloem is envisaged as omprising a series of `funtion units' of perhapsa few entimeters to several meters in length, eah unit onsisting of a �le ofsieve elements disposed end to end, the units having a short length of overlapbetween one and the next. ([41℄, p. 142)Lang ontinues to desribe how, in this short overlapping region, sugar is atively trans-ferred between the two funtional units whih are otherwise physially separate, thus notallowing for a �ow of liquid from one unit to the next. This onept is illustrated in Fig.6.6, where the �ow is from top to bottom, and the number in eah box represents the sugaronentration. Lang estimates that about 2 % of the sugar is onsumed by the reloadingproess at eah reloading zone, but that this an lead to an inrease of a fator of 10 in therate of transport and that is is thus worth the extra expense in terms of the sugar lost.There is, however, no lear experimental evidene for the existene of the relay zonesproposed by Lang (see e.g. [50℄). The hypothesis is none the less still widely ited as amethod that plants may use for aelerating the rate of phloem transport [36℄. Using thesaling analysis developed in the previous setions, we an evaluate the e�ieny of the�ow aording to Lang's hypothesis. If we let l2 be the length of the funtional unit and l1be the length of overlap between two adjaent units, the situation is ompletely analogousto the 3-zone model. If the �ow is optimized aording to the Münh mehanism, we thusexpet to �nd that the radius ac of the sieve tube in the funtional unit is
ac = (GLpηeff l2l1)

1/3. (6.14)Lang provides no estimates of the size of the unit other than those given in the quoteabove. For a tree we may take a unit length of l2 = 1 m and an overlapping region oflength, say, l1 = 0.05 m. This gives an optimum radius of
ac = 5.6 µm, (6.15)alulated with G = 10, Lp = 5 × 10−14 m/(Pa s) and η = 7 × 10−3 Pas. Trees, however,typially have radii in the range 10− 20 µm, 2-4 times larger than predited by Eq. (6.15)(see Table 6.2). For ac to be equal to 10 µm, one must hoose the overlapping length

l1 = 0.35 m suh that a total of 70% of adjaent funtional units are overlapping. If suhlarge overlapping regions exists they should be easy to observe.From this analysis we onlude that we �nd no evidene in Fig. 6.5 to support Lang'srelay hypothesis.
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Figure 6.6: Lang's relay hypothesis. The phloem is envisaged as omprising a series offuntion units (indiated by the X) of perhaps a few entimeters to several meters inlength, eah unit onsisting of a �le of sieve elements disposed end to end, the unitshaving a short length of over-lab between one and the next. In this short overlappingregion, sugar is atively transferred between the two funtional units whih are otherwisephysially separate, thus not allowing for a �ow of liquid from one unit to the next. The�ow is from top to bottom, and the number in eah box represents the sugar onentration.From [41℄, Fig. 1. Reprodued with permission.



74 Optimality of the Münh mehanism6.5.2 Is osmosis adequate for transloation in tall trees?The question whether osmotially driven transloation is adequate to aount for the ratesof transport observed in tall trees is still an open question. Without some form of ativelyaided transport (suh as the Lang relay mehanism disussed above), there is generalagreement that osmosis is insu�ient [82, 36℄. This view has been promoted by the authorof the present thesis himself in [30℄. The argument put forward is that the hydrauliresistane of a 100 m tall tree is muh to large to overome for osmosis alone, and that �owrates would therefore be unreasonably slow. This is espeially pronouned in gymnospermswhere the hydrauli resistane of the sieve plates may be muh larger than that found inthe angiosperms studied in Chapter 4, see e.g. [68℄.It is therefore somewhat surprising that the trees found in Table 6.2 (speies 3, 4, 5,6, and 8) all fall reasonably lose to the a3 ∝ l1l2 line in Fig. 6.5. If we use Eq. (6.1) toestimate the veloity ū we �nd that they lie in the range from 16 × 10−6 m/s (Robiniapseudoaaia) to 100×10−6 m/s (Sabal palmetto) and thus fall within the range of veloi-ties measured on muh smaller plants, f. Table 6.1. The lone gymnosperm, Pinus strobus,has a predited veloity of 40 × 10−6 m/s, although on must not forget that Eq. (6.1)was derived assuming that the sieve pores are open. These veloities were alulated with
Lp = 5× 10−14 m/(Pa s), ηeff = 7× 10−3 Pa s and RTc∗ = 0.5 MPa, the highest value ofthe osmoti pressure onsistent with our �ndings in Fig. 6.2.We further note that at the optimum radius, the harateristi transit time t0 salesas t0(ac) ∝ l

4/3
2 (f. Eq. (6.6)) in ontrast to the non-optimized result t0 ∝ l22 found byThompson and Holbrook in [79℄. Tall trees may therefore have signi�antly shorter osmotitransit times than previously believed. For Sabal palmetto, we thus �nd from Eq. (6.6) that

t0(ac) ≃ 31 h, while for Robinia pseudoaaia t0(ac) = 516 h. The very large t0 foundfor Robinia pseudoaaia may re�et the fat that we have hosen the size of the lea�ets,whih are about 3 cm long, and not the size of the ompound leaf whih an grow up to,say, 25 cm in length. With l2 = 25 cm we �nd that t0(ac) ≃ 126 h whih still a signi�antamount of time.From these observations it is still an open question whether the osmoti pumping issu�ient to aount for phloem transloation in tall trees. More experimental data, and inpartiular veloity measurements made in tall trees orrelated with measurements of leafand stem sizes, is needed.6.6 ConlusionIn this hapter we have applied the results of the 3-zone model introdued in Chapter 5to transloation in the phloem. We have shown that the model is a fair desription of theproesses that our in plants by omparing experimental veloity data to the results ofthe model with good results. An interesting predition of the model is that the osmotipumping mehanism has a maximum in transloation veloity for a speial, optimal, valueof the phloem sieve tube radius ac. The expression for ac has the form of an allometrisaling law
aα = GLpηeff l1l2. (6.16)



Conlusion 75Table 6.1: Experimental data for phloem sieve tube radius a, leaf size l1, stem length
l2 and �ow veloity uexp. The unertainties indiate standard errors on measurements.Data from [29℄, see Appendix F. The measurement tehnique used to obtain the veloityvalues is disussed in said paper. Measurement (7-9) were made after the submission ofthe manusript and are not inluded in [29℄.No. Speies a [µm℄ l2 [m℄ l1 [m℄ uexp [µm/s℄1 Glyine max 3.7± 1.0 0.40 ± 0.08 0.10 ± 0.02 145 ± 462 Tradasantia virginiana 1.2± 0.4 0.10 ± 0.02 0.020 ± 0.004 4.13 ± 1.643 Cuumis sativus 6.3± 1.4 0.60 ± 0.12 0.10 ± 0.02 149 ± 544 Cuurbita maxima 12.3 ± 2.7 4.0 ± 0.8 0.20 ± 0.04 62.9 ± 48.45 Cuurbita maxima 16.6 ± 2.6 4.0 ± 0.8 0.20 ± 0.04 48.2 ± 29.36 Solanum lyopersium 5.2± 0.8 0.40 ± 0.08 0.10 ± 0.02 162 ± 487 Populus balsamifera 1.8± 0.8 1.0 ± 0.5 0.10 ± 0.01 37.7 ± 24.58 Gnetum gnemon 2.1± 0.6 1.0 ± 0.5 0.10 ± 0.01 19.1 ± 6.99 Gossypium hirstum 1.5± 0.3 1.0 ± 0.5 0.10 ± 0.01 9.62 ± 4.70The saling exponent α has been determined from a statistial analysis of experimentaldata from 19 plant speies by least squares regression αls = 2.58 ± 0.25 and least squaresubi regression αls = 3.32 ± 0.37. Both values are lose to the exponent α = 3 derivedunder the assumption that the transloation veloity is at a maximum. This analysis thusprovides a general saling law for phloem dimensions that maximizes the transloationveloity, suggesting that evolutionary seletion on e�ay of sugar transport and signaltransdution has shaped the struture and funtion of this transport pathway. This is aremarkable result, sine it relates strutures in plants spanning up to 10 orders of magnitudein size from the length of the stem l2, measured in meters, to the size of the pores in themembrane, measured in nanometers, through the length Lpηeff .
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Table 6.2: Experimental data for phloem sieve tube radius a, leaf size l1 and stem size
l2. The unertainties indiate standard errors on measurements. Data from [29℄, seeAppendix F.No. Speies a [µm℄ l2 [m℄ l1 [m℄1 Beta vulgaris 5.0± 1.0 0.3 ± 0.06 0.10 ± 0.022 Yua �aida 10.0 ± 2.0 1.0 ± 0.2 0.5± 0.13 Sabal palmetto 16.5 ± 1.7 20± 4 0.5± 0.14 Tilia ameriana 15.0 ± 1.5 20± 4 0.10 ± 0.025 Robinia pseudoaaia 10.0 ± 1.0 40± 8 0.030 ± 0.0066 Vitis vinifera 18.0 ± 4.0 20± 4 0.10 ± 0.027 Gossypium bardadense 11.0 ± 2.2 1.5 ± 0.3 0.15 ± 0.038 Pinus strobus 10.9 ± 1.0 20± 4 0.10 ± 0.029 Festua arundinaea 3.0± 0.6 0.30 ± 0.06 0.05 ± 0.0110 Cuurbita malepo 40.0 ± 8.0 7.0 ± 1.4 0.30 ± 0.0611 Glyine max 3.7± 1.0 0.40 ± 0.08 0.10 ± 0.0212 Tradasantia virginiana 1.2± 0.4 0.10 ± 0.02 0.020 ± 0.00413 Cuumis sativus 6.3± 1.4 0.60 ± 0.12 0.10 ± 0.0214 Cuurbita maxima 12.3 ± 2.7 4.0 ± 0.8 0.20 ± 0.0415 Cuurbita maxima 16.6 ± 2.6 4.0 ± 0.8 0.20 ± 0.0416 Solanum lyopersium 5.2± 0.8 0.40 ± 0.08 0.10 ± 0.0217 Anaylus purethrum 2.1± 0.6 0.30 ± 0.06 0.010 ± 0.00218 Ebalium elaterium 15.0 ± 3.0 3.0 ± 0.6 0.20 ± 0.0419 Eragostis plana 3.0± 0.6 0.2 ± 0.04 0.10 ± 0.0220 Heraleum mantegazzianum 9.0± 1.8 2.0 ± 0.4 0.20 ± 0.04



Chapter 7Miro�uidi experimentsThroughout the PhD projet, the author has found great soures of inspiration and insightin the experiments onduted by Münh, Eshrih et al., and Lang disussed in Se. 2.4,p. 16. Realizing, however, the fundamental shortoming of these experiments � that theywere onduted at length sales far from those found in plants � prompted the author andadvisors Henrik Bruus and Tomas Bohr to ondut experiments aimed at using hanneldimension that approahed those found in the plants.The following paper, [28℄, presented unabridged in Se. 7.1�7.8 desribes our experimen-tal study of osmotially driven �ows in miro�uidi hannels separated by a semipermeablemembrane. To stay true to the original manusript the notation in the present hapterdi�ers slightly from that found in Chapters 1-6. Please refer to Table 7.1, p. 91, for alist of symbols. The design, fabriation and testing of the miro�uidi devies was arriedout by the author at the Tehnial University of Denmark. The experiments and part ofthe theoretial analysis was onduted at Harvard University in ollaboration with JinkeeLee during a visit in the lab of Noel Mihele Holbrook. See further aknowledgements inSe. 7.8.While it is di�ult to determine the long-term impat of the results presented, thepaper has been well reieved in the plant vasular biology ommunity. Knoblauh andPeters [37℄ writes thatPhloem-inspired arti�ial miro�uidis systems suh as that of Jensen et al.(2009) provide an extremely powerful approah to the empirial testing ofmathematial and other hypotheses of phloem transport. To date, the planttransport ommunity has not yet onneted to the engineers in the lab-on-a-hip �eld, but we expet that in the near future, �miro-Münh-models� willin�uene the way we think about the phloem on the oneptual level in a similarway as Münh's original models did 80 years ago. ([36℄, p. 1442)and ends their paper by stating thatWe expet that over the next deade or so, arti�ial miro�uidis systems,designed as strutural analogs of natural sieve tubes (Jensen et al. 2009), willmature into indispensible and versatile tools in our e�orts to make the phloemless of a mirale and more of a mehanism. ([36℄, p. 1448)77



78 Miro�uidi ExperimentsStart of paperK. H. Jensen, J. Lee, T. Bohr and H. BruusOsmotially driven �ows in mirohannels separated by a semipermeable membraneLab on a Chip 9(14), pp. 2093�2099 (2009)7.1 AbstratWe have fabriated lab-on-a-hip systems with mirohannels separated by integratedmembranes allowing for osmotially driven miro�ows. We have investigated these �owsexperimentally by studying the dynamis and struture of the front of a sugar solutiontraveling in 200µm wide and 50 − 200µm deep mirohannels. We �nd that the sugarfront travels with onstant speed, and that this speed is proportional to the onentrationof the sugar solution and inversely proportional to the depth of the hannel. We propose atheoretial model, whih, in the limit of low axial �ow resistane, predits that the sugarfront indeed should travel with a onstant veloity. The model also predits an inverserelationship between the depth of the hannel and the speed, and a linear relation be-tween the sugar onentration and the speed. We thus �nd good qualitative agreementbetween the experimental results and the preditions of the model. Our motivation forstudying osmotially driven miro�ows is that they are believed to be responsible for thetransloation of sugar in plants through the phloem sieve element ells. Also, we sug-gest that osmoti elements an at as on-hip integrated pumps with no movable parts inlab-on-a-hip systems.7.2 IntrodutionOsmotially driven �ows are believed to be responsible for the transloation of sugar inplants, a proess that takes plae in the phloem sieve element ells [73℄. These ells forma miro-�uidi network whih spans the entire length of the plant measuring from 10 µmin diameter in small plants to 100 µm in diameter in large trees [73℄. The mehanismdriving these �ows is believed to be the osmoti pressures that build up relative to theneighboring water-�lled tissue in response to loading and unloading of sugar into andout of the phloem ells in di�erent parts of the plant [73℄. This mehanism, olletivelyalled the pressure-�ow hypothesis, is muh more e�ient than di�usion, sine the osmotipressure di�erene aused by a di�erene in sugar onentration reates a bulk �ow diretedfrom large onentrations to small onentrations, in aordane with the basi needs ofthe plant.Experimental veri�ation of �ow rates in living plants is di�ult [37℄, and the experi-mental evidene from arti�ial systems baking the pressure-�ow hypothesis is sare and



Experimental setup 79onsists solely of results obtained with entimetri sized setups [16, 40, 30℄. However,many theoretial and numerial studies of the sugar transloation in plants have used thepressure-�ow hypothesis [79, 80, 24℄ with good results. To verify that these results are in-deed valid, we believe that it is of fundamental importane to ondut a systemati surveyof osmotially driven �ows at the mirometer sale. Finally, osmoti �ows in mirohannelsan at as migration enhaners [1℄ or as mirosale on-hip pumps with no movable parts.Examples of previous o�-hip osmoti pumps are the devie developed by by Park et al. [55℄and the osmoti pills developed by Shire Laboratories and pioneered by F. Theeuwes [76℄.Also, there is a diret analogy between osmotially driven �ows powered by onentrationgradients, and eletroosmotially driven �ows in eletrolytes [9, 19℄ powered by eletrialpotential gradients.7.3 Experimental setup7.3.1 Chip design and fabriationTo study osmotially driven �ows in mirohannels, we have designed and fabriated amiro�uidi system onsisting of two layers of 1.5 mm thik polymethyl metharylate(PMMA) separated by a semipermeable membrane (Spetra/Por Bioteh Cellulose Esterdialysis membrane, MWCO 3.5 kDa, thikness ∼ 40µm), as skethed in Fig. 8.2(a)-(d).Channels of length 27 mm, width 200 µm and depth 50 − 200µm were milled in the twoPMMA layers by use of a MiniMill/Pro3 milling mahine [18, 11℄. The top hannel ontainspartly the sugar solution, and partly pure water, while the bottom hannel always ontainsonly pure water. To failitate the prodution of a steep onentration gradient by ross-�ows, a 200 µm wide ross-hannel was milled in the upper PMMA layer perpendiularto and bi-seting the main hannel. Inlets were produed by drilling 800 µm diameterholes through the wafer and inserting brass tubes into these. By removing the surroundingmaterial, the hannel walls in both the top and bottom layers aquired a height of 100µmand a width of 150µm. After assembly, the two PMMA layers were positioned suh thatthe main hannels in either layer were faing eah other. Thus, when lamping the twolayers together using two 30mm paper lamps, the membrane ated as a seal, stoppingany undesired leaks from the hannels as long as the applied pressure did not exeedapproximately 1 bar.7.3.2 Measurement setup and proeduresIn our setup, the osmoti pressure pushes water from the lower hannel, through themembrane, and into the sugar-rih part of the upper hannel. This displaes the solutionalong the upper hannel thus generating a �ow there, as shown in Fig. 7.2. To measurethis �ow inside the upper hannel, partile and dye traking were used. In both ases inlets1, 2, 3 and 5 (see Fig. 8.2) were onneted via silione tubing (inner diameter 0.5 mm) todisposable syringes. Syringes 2, 3 and 5 was �lled with demineralised water and syringe 1was �lled with a solution of sugar (surose or dextran (mol. weight: 17.5 kDa, Sigma-Aldrigde, type D4624)) and 5 % volume red dye (Flahsmann Sandinavia, Red Fruit
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Figure 7.1: (a) Piture of the top part (upside down) of the hip showing the elevatedhannel and the four brass inlet tubes (pointing down). The rosses in the four orners wereused for alignment. (b) Shematis of the two PMMA layers (gray) showing the elevatedhannels (white) faing eah other. All six inlet positions (blak dots) are marked, butfor larity only two brass tubes are shown. () Piture of the fully assembled setup. (d)Shemati ross-setion loseup of the two PMMA layers (gray) lamped together with thesemipermeable membrane (dark gray) in between. The sugar in the upper hannel (blakdots) and the water in�ux J from the lower hannel (arrow) are also marked. (e1)-(e4)Valve settings (irles) and ross-�ow �ushing proedure (arrows) for reating a sharp frontin the top hannel between the sugar/dye solution (dark gray) and the pure water (white).See details in the text.
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1 µm polystyrene beads (Sigma Aldrigde, L9650-1ML, density 1050 kg/m3) in the partiletraking experiments. Inlets 4 and 6 were onneted to the same water bath to minimizethe hydrostati pressure di�erene between the two sides of the membrane. The liquidheight in the water bath was arefully aligned to the top hannel to avoid any di�erene inliquid height that might have resulted in a �ow in the opposite diretion. When ondutingboth dye traking and partile traking experiments, the initialization proedure shown inFig. 8.2(e1)-(e4) was used: First (e1), inlet valves 1, 2 and 3 were opened and all hannelswere �ushed thoroughly with pure water (white) to remove any air bubbles and otherimpurities. Seond (e2), after losing inlets 2 and 3 a sugar solution (dark gray) wasinjeted through inlet 1 �lling the main hannel in the upper layer. Third (e3), inlet 1 waslosed and water was arefully pumped through inlet 2 to produe a sharp onentrationfront at the ross, as shown in Fig. 8.2(e4) and 7.3(b).Sugar front motion reorded by dye trakingThe motion of the sugar front in the upper hannel was reorded by taking pitures ofthe hannel in 10 s intervals using a Leia MZ 16 mirosope. This yielded images asthose displayed in Fig. 7.3(a), learly showing a front (marked by arrows) of the sugar/dyesolution moving along the hannel. To obtain the position λ(t) of the sugar front as afuntion of time t, the distane from the initial front position λ0 to the urrent position
λ(t) was measured using ImageJ software. The position of the sugar front was taken to beat the end of the highly saturated dark region. In this way, the position of the front ouldbe measured at eah time step with an auray of ±200 µm. As veri�ed in earlier works[16, 30℄, we assumed that the sugar and dye traveled together, whih is reasonable sinethe Pélet number is P é ∼ 10 (see Setion 7.5). Experiments with dye alone were arriedout. These showed, that the osmoti pumping due to the dye moleules was negligible. We
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Figure 7.3: (a): Images showing the sugar front moving in the 200µm×200µm hannel.The time between eah image is 50 s. The arrows indiate the position of the sugar frontas it moves down along the hannel. (b): Closeup of the ross juntion just after a sharpsugar/water interfae has been reated.only applied the dye traking method on the 200 µm deep hannel, sine the 100 µm and
50 µm deep hannels were too shallow for su�ient sattering of red light by the solutionto get a lear view of the front.Sugar front motion reorded by use of partile trakingThe �ow veloity inside the upper hannel was reorded by traking the motion of 1 µmbeads in the water 3 mm ahead of the initial sugar front position. Images were reordedevery 200−1000 ms for up to 400 s using a Unibrain Fire-i400 1394 digital amera attahedto a Nikon Diaphot mirosope with the foal plane at h/2 and a foal depth of approxi-mately 10 µm. Sedimentation times for the partiles were 1800 s for the 200 µm hanneland 450 s for the 50 µm hannel. Sine only the �rst 150 s were used when determining thefront veloity, this did not interfere with our measurements. At the point of observation,well ahead of the front, the �ow behaved as if it were pressure driven (see the insert inFig. 7.5) and the standard laminar �ow pro�le [10℄ was used to determine the average �owveloity.



Experimental results 837.4 Experimental results7.4.1 Dye trakingFigure 7.4 shows the position of the sugar front in the 200 µm deep hannel as a funtionof time obtained by dye traking. The data sets orrespond to di�erent onentrationsof surose and dextran as indiated in the legends. Initially, the sugar front moves withonstant speed, but then it gradually dereases, more so for low than high onentrations.The solid blak lines are linear �ts for the �rst 100 s giving the initial veloity of thefront. As a funtion of time the front smears out over a region of growing width wf . InFig. 7.4() wf is plotted vs. time for the 10.1 mM dextran experiment along with a �t to
wf = (2Dt)1/2 showing that the sugar front broadens by moleular di�usion. Here, D isthe moleular di�usion onstant.7.4.2 Partile trakingFigure 7.5 shows the veloity as a funtion of time obtained by partile traking in a
200µm×200µm hannel. For the �rst 150 s the veloity is approximately onstant afterwhih it starts dereasing as the sugar front passes the point of observation. We interpretthe mean value of the initial plateau of the veloity graph as the speed of the sugarfront. Figs. 7.6(a) and (b) shows the veloity of the sugar front as a funtion of dextranonentration and of hannel depth obtained in this way.7.5 Theoretial analysisWhen modeling the �ow inside the hannel, we use an approah similar to that of Eshrihet al. [16℄. They introdued a 1D model with no axial �ow resistane and zero di�usivityin a setting very similar to ours. To formalize this, we onsider the two most importantnon-dimensional numbers in the experiments: the Münh number M [30℄ and the Péletnumber P é [10℄. These numbers haraterize the ratio of axial to membrane �ow resistaneand axially onvetive to di�usive �uxes respetively. In our experiments

M =
wLLpαRTc
wh3

ηL αRTc
=

ηL2Lp

h3
∼ 10−6, (7.1)and

P é =
wfu

D
∼ 10. (7.2)Here η is the visosity (typially 1.5 mPa s), wf is the width of the sugar front (typially

500 µm), and D the moleular di�usivity of sugar (typially 10−10 m2s−1 for surose andthe dye and 10−11 m2s−1 for dextran)7.5.1 Equation of motionSine M ≪ 1 and Pe ≫ 1, we shall neglet the axial �ow resistane and the di�usion ofthe sugar in our analysis. In this way, let λ(t) denote the position of the sugar/dye front
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Figure 7.4: Measured position λ of the sugar front as a funtion of time t in the
200µm×200µm hannel for various onentrations of (a) surose and (b) dextran. Thesolid blak lines are linear �ts for 0 s< t < 100 s. The dashed lines are �ts to Eq. (7.13).() The width wf of the sugar front as a funtion of time for the 10.1 mM dextran ex-periment. The dashed blak line is a �t to (2Dt)1/2 with D = 1.7 × 10−9m2 s−1, 5 timeslarger than the value given in Tabel 7.1. This, however, is in good agreement with Taylordispersion theory [74, 42℄, sine Pé≃ 15.
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Figure 7.5: The average �ow veloity u in the 200 µm deep hannel as a funtion of time
t measured 3 mm ahead of the initial front position. At tc ≃ 150 s (indiated by thearrow), the sugar front begins to reah the observation point, and the veloity dereasesrapidly. For t > tc, the veloity was not determined aurately. The insert shows a typialveloity pro�le U(y, h/2) in the enter plane aross the 200µm×200µm hannel obtainedby partile traking. The solid blak line is a �t to the veloity pro�le for a retangularhannel used when obtaining the average �ow veloity.in the upper hannel, and let V denote the volume behind the front. The �ux J of wateraross the membrane from the lower to the upper hannel, see Fig. 8.2(d), is given by

J = Lp (∆p+∆Π) ≃ LpαRTc, (7.3)where Lp is the membrane permeability, ∆p the hydrostati and ∆Π the osmoti pressuredi�erene aross the membrane. In our experiments ∆p = 0, and from the van 't Ho�relation follows ∆Π ≃ αRTc, where α is the osmoti non-ideality oe�ient, R is the gasonstant, T is the absolute temperature, and c is the onentration of sugar moleules.Sine the onentration is independent of x behind the front and zero ahead of it, J is alsoindependent of x. By the onservation of sugar this allows us to a �rst approximation towrite the onentration as
c(x, t) =

{

c0
λ0
λ(t) x ≤ λ(t),

0 x ≥ λ(t).
(7.4)Moreover, the rate of hange of the expanding volume V behind the front an be related
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Figure 7.6: Front veloity u obtained by partile traking. (a) The veloity u plottedagainst dextran onentration c0. The dashed lines are �ts to c provided as guides to theeye. (b) The veloity u plotted against hannel depth h. The dashed lines are �ts to 1/hprovided as guides to the eye.to J as
dV

dt
= w

∫ L

0
J(x)dx

= wLpαRTc0
λ0

λ(t)

∫ λ(t)

0
dx

= wλ0LpαRTc0. (7.5)However, we also have that
dV

dt
= hw

dλ(t)

dt
, (7.6)whih implies together with Eq. (7.5) that

λ(t) = λ0 +
λ0

h
LpαRTc0t = λ0 + ut, (7.7)where the veloity u of the front is given by

u =
λ0

h
LpαRTc0. (7.8)
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0Figure 7.7: The time evolution of the sugar onentration pro�le given by Eq. (7.4). Thegray regions represents the sugar lost from the observed region by di�usion, see Eq. (7.9).7.5.2 Corretions to the equation of motionIn the previous setion, we onsidered the motion of a sharp sugar front, as given bythe stepwise onentration pro�le in Eq. (7.4), and found that this moved with onstantveloity. However, as an be seen in Fig. 7.4(a,b) the front veloity gradually dereases.To explain this, we onsider two e�ets. First, we observe that in Fig. 7.3(a) there exists aregion of growing size separating the sugar/dye-�lled region from the region of pure water.Even though the sugar and the dye di�use at di�erent rates, we shall assume that some ofthe sugar also lies ahead of the visible front. Sine the sugar in this region is loated aheadof the front, the osmoti pumping in the observed volume behind the front is lowered, thusslowing down the motion of the observed front. Seond, we note that sugar leaking arossthe membrane also lowers the osmoti pumping behind the front. This e�et should beespeially pronouned for surose, sine its moleular weight is smaller than the ut-o� ofthe membrane. Common to these two e�ets is, however, that they are driven by di�usion.In the �rst ase, sugar di�uses from the pumping region to a region ahead of the frontand in the seond it di�uses aross the membrane. The nature of these two e�ets makesthem impossible to distinguish from one another. Lumping them together as one di�usionproess haraterized by an e�etive di�usion onstant δ, we may rewrite Eq. (7.4) as

c(x, t) =

{

c0
λ0

λ(t)+ℓD
x ≤ λ(t),

0 x ≥ λ(t).
(7.9)where ℓD = (2δt)1/2. Here δ is a �tting parameter whih has the dimension of a di�usionoe�ient and whih inludes both of the e�ets mentioned above. In this way, the amountof sugar lost from the observed volume by di�usion is ∆c ≃ c0 (2δt)

1/2, as indiated inFig. 7.7.Using Eqs. (7.5) and (7.6) the time derivative of λ beomes
dλ

dt
=

LpαRTc0λ0

h

λ

λ+ ℓD
. (7.10)



88 Miro�uidi ExperimentsResaling using λ = sλ0 and t = τ λ0
u , we get that
ds

dτ
=

s

s+
(

τ
P ég

)1/2
, (7.11)where we have introdued the global Pélet number related to the loss of sugar by di�usion,

P ég =
2λ2

0LpαRTc0
δh

=
2λ0

δ
u. (7.12)Given the experimental onditions, P ég is typially of the order 101 − 102. Thus, for

(

τ
P ég

)1/2
≪ 1, Eq. (7.11) an be solved by an expansion,

s = s0 + τ

(

1− 2

3s0

(

τ

P ég

)1/2

+O
[(

τ

P ég

)]

)

. (7.13)We have made numerial simulations of the full 1-D oupled veloity-onentration equa-tion system for the speial ase of di�usion ahead of the front. Our results show, thatthe simple model in Eq. (7.13) aptures the essential dynamis of the motion of the sugarfront. The dashed lines in Figs. 7.4(a) and (b) are �ts to Eq. (7.13), with values of δvarying between 2× 10−7 m2 s−1 and 4× 10−9 m2 s−1, showing good qualitative agreementbetween theory and experiment. However, sine we have not traked the sugars diretly,these annot immediately be ompared with the values for surose (D = 4.6×10−10 m2/s)and dextran (D = 7.0 × 10−11 m2/s). To ompletely resolve this issue, experiments witheg. �uoresently tagged sugar moleules where the onentration on both sides of themembrane is measured are needed.7.6 Disussion7.6.1 Comparison of theory and experimentTo ompare the experimental data with theory, we have in Fig. 7.8 plotted the empiriallyobtained veloities uexp against those predited by Eq. (7.8). For nearly all the dextran andsurose experiments we see a good agreement between experiment and theory, althoughEq. (7.8) systematially overestimates the expeted veloities.We interpret the quantitative disagreement as an indiation of a dereasing sugar on-entration in the top hannel due to di�usion of sugar into the membrane as well as thepresene of a low-onentration boundary layer near the membrane, a so-alled unstirredlayer [58℄.7.6.2 Osmoti pumps in lab-on-a-hip systemsDepending on the spei� appliation, �ows in lab-on-a-hip systems are onventionallydriven by either syringe pumps or by using more advaned tehniques suh as o�-hip
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Figure 7.8: The experimental values of the front veloity uexp plotted against the theoretialresults utheory from Eq. (7.8).osmoti pumps [55℄, eletronially ontrolled pressure devies, eletro-osmoti pumps [2℄,evaporation pumps [54℄, or apillary pumps [8℄. Most of these tehniques involves the in-tegration of either movable parts or ompliated eletronis into the lab-on-a-hip devie.As an appliation of our design and fabriation method, we suggest the use of integratedosmoti pumps in lab-on-a-hip systems. This ould be done by integrating in the deviea region where the hannel is in ontat through a membrane with a large reservoir on-taining an osmotially ative agent. By using a su�iently large reservoir, say 1 m3, anda 100µm×100µm hannel with a �ow rate of 100µm/s it would take more than 10 days toredue the reservoir onentration by 50% and thus dereasing the pumping rate by 50%.We emphasize that suh osmoti pumping would be ompletely steady, even at very low�ow rates.7.7 ConlusionsWe have studied osmotially driven, transient �ows in 200 µm wide and 50 − 200 µmdeep mirohannels separated by a semipermeable membrane integrated in a miro�uidiPMMA hip. These �ows are generated by the in�ux of water from the lower hannelontaining pure water, through the semipermeable membrane, into the large sugar on-entration plaed in one end of the top hannel. We have observed that the sugar frontin the top hannel travels with onstant speed, and that this speed is proportional to theonentration of the sugar solution and inversely proportional to the depth of the hannel.We propose a theoretial model, whih, in the limit of low axial �ow resistane, preditsthat the sugar front should travel with a onstant veloity. The model also predits an



90 Miro�uidi Experimentsinverse relationship between the depth of the hannel and the speed and a linear relationbetween the sugar onentration and the speed. We ompare theory and experiment withgood qualitative agreement, although the detailed mehanism behind the deeleration ofthe �ow is still unknown. Finally, we suggest that on-hip osmoti elements an potentiallyat as pumps with no movable parts in lab-on-a-hip systems.7.8 AknowledgementsIt is a pleasure to thank Emmanuelle Rio, Christophe Clanet, Frederik Bundgaard, JanKafka and Oliver Geshke for assistane and advie on hip design and manufaturing.We also thank Alexander Shulz, Mihele Holbrook, Maiej Zwienieki and Howard Stonefor many useful disussions of the biologial and phyial aspets of osmotially driven�ows. This work was supported by the Danish National Researh Foundation, Grant No.74 and by the Materials Researh Siene and Engineering Center at Harvard University.End of paperK. H. Jensen, J. Lee, T. Bohr and H. BruusOsmotially driven �ows in mirohannels separated by a semipermeable membraneLab on a Chip 9(14), pp. 2093�2099 (2009)
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Table 7.1: List of parameters in alphabeti order after the symbol.Parameter Symbol Value and/or unitSugar onentration c mol/LInitial onentration c0 mol/LDi�usive onentration loss ∆c mol/LDi�usion onstant D m2/sSurose, see Ref. [4℄ D 4.6× 10−10 m2/sDextran, see Ref. [30℄ D 7.0× 10−11 m2/sDye, see Ref. [4℄ D 3.4× 10−10 m2/sHeight of hannel h 50, 100, 200 µmHeight of reservoir hr 200 µmFlux aross membrane J m/sLength of hannel L 27 mmMembrane permeability Lp 1.8 pm/(Pa s)Di�usion length lD mMünh number MHydrostati pressure p PaPélet number, loal PéPélet number, global PégGas onstant R 8310PaL/(Kmol)Position of sugar front sAbsolute temperature T KTime t s
x-veloity of sugar front U m/sMean x-veloity of sugar front u m/sVolume behind sugar front V m3Width of hannel w 200 µmWidth of sugar front wf mCartesian oordinates x, y, z mOsmoti oe�ients:Dextran (T = 293K) α 41, see Ref. [30℄Surose (T = 293K) α 1, see Ref. [47℄Fitting parameter δ m2/sVisosity η Pa sPosition of sugar front λ mPosition of initial sugar front λ0 13.5 mmOsmoti pressure Π Pa
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Chapter 8Self-onsistent unstirred layers inosmotially driven �owsThe one-dimensional equations of motion analyzed in Chapters 3-6 where derived underthe assumption that the onentration is well-mixed aross the ross-setion of the tube.This approximation is valid if the radial transport of solute moleules due to di�usion ismuh faster than the transport due to advetion. To quantify exatly when this onditionis ful�lled, one generally needs to solve the oupled onentration-osmoti �ow problem.Sine this question is relevant to a number of industrial membrane transport problems(suh as desalination) it has been analyzed by a number of workers. One of the mainontributors is T. J. Pedley who in a series of papers published in the late 1970s and early1980s solved the oupled problem in a number di�erent geometries [59, 60, 56, 57, 58℄. Hissolutions quantify to what degree the solution is well-mixed, but only in situations wherethe osmoti �ow aross the membrane is a small perturbation to a muh larger, externallydriven, bulk veloity omponent. This situation is relevant to many industrial appliation,where e.g. an external stirring mehanism is present, but not to plants where osmosis itselfdrives the bulk �ow.The author, Tomas Bohr, and Henrik Bruus thus deided to look for analytial solutionsof the self-onsistent problem i.e. the problem where osmosis itself is driving the bulk �ow.We studied the �ow between parallel plates beause the �ow �eld was already known inthe literature, and thus allowed for a simple analysis of the onentration part of problem.This hange in geometry, of ourse, makes the appliability of our results to plants di�ultto aess. However, sine we show that all geometries behave nearly the same under aproper resaling, we believe that the low value of the radial Pélet number found in plants(Pe ≃ 0.01, f. Eq. (3.49), p. 26) implies that the onentration is well mixed aross thetube ross-setion.The following paper, [27℄, presented unabridged in Se. 8.1�8.7, desribes our theoretialanalysis of parallel plate problem. The author onduted all of the numerial simulationsand most of the theoretial analysis. To stay true to the published manusript the notationdi�ers slightly from that found in Chapters 1�6. Please refer to Table 8.1, p. 108, for a listof parameters. 93



94 Self-onsistent unstirred layers in osmotially driven �owsStart of paperK. H. Jensen, T. Bohr and H. BruusSelf-onsistent unstirred layers in osmotially driven �owsJournal of Fluid Mehanis 662, pp. 197�208 (2010)8.1 AbstratIt has long been reognized, that the osmoti transport harateristis of membranes maybe strongly in�uened by the presene of unstirred onentration boundary layers adjaentto the membrane. Previous experimental as well as theoretial works have mainly fousedon the ase where the solutions on both sides of the membrane remain well-mixed dueto an external stirring mehanism. We investigate the e�ets of onentration boundarylayers on the e�ieny of osmoti pumping proesses in the absene of external stirringi.e. when all advetion is provided by the osmosis itself. This ase is relevant in thestudy of intraellular �ows, e.g. in plants. For suh systems, we show that no well-de�nedboundary layer thikness exists and that the redution in onentration an be estimatedby a surprisingly simple mathematial relation aross a wide range of geometries and Péletnumbers. Osmosis, boundary layers, biologial �ows.8.2 IntrodutionOsmoti transport harateristis of membranes are strongly in�uened by the presene ofunstirred onentration boundary layers adjaent to the membrane [58℄. As �rst demon-strated by Dainty [15℄, these boundary layers lead to a derease in the e�ieny of theosmoti pumping proess. To see this, onsider an ideal semipermeable membrane (i.e. amembrane permeable to solvent moleules but impermeable to solute moleules) separat-ing two solutions of the same solute at di�erent bulk onentrations, say zero and unity,as shown in Fig. 8.1(a). If there were no transport of solvent aross the membrane, theseonentrations would persist all the way to the membrane. However, if there is a �ux Jof solvent due to osmosis aross the membrane from the region of low onentration (saythe left side) to the region of high onentration, the solutes will be pushed away from themembrane on the high-onentration side of the membrane. As a result, the onentrationof solute in the viinity of the membrane on the high-onentration side will be lower. Theonentration di�erene between the two sides of the membrane is thus dereased, and thisin turn redues the magnitude of the osmotially driven �ux J , whih in the absene ofhydrostati pressure di�erenes aross the membrane is given by
J = γ, (8.1)
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Figure 8.1: (a) Sketh of solute onentration distributions on either side of a semiperme-able membrane separating two well-stirred solutions of the same solute at di�erent bulkonentrations c = 0 (left side) and c = 1 (right side). Beause of the transport of solventaross the membrane due to osmosis (skethed by the arrows) from left to right, there willbe a tendeny for the onentration γ of solute in ontat with the membrane to be lowerthan unity just on the right side of the membrane. Sine the �ux of solvent J is propor-tional to the di�erene in onentration, we have that J = γ. (b) Numerially omputedmembrane onentration γN as a funtion of the Pélet number Pe for the parallel plategeometry (irles) shown in Fig. 8.2(a). Also shown are the expressions given by Eq. (8.10)(solid) and Eq. (8.17) (dashed). See Se. 3 for details.



96 Self-onsistent unstirred layers in osmotially driven �owsaording to the standard equations of non-equilibrium thermodynamis [39℄. Here, J isthe volume �ux pr. area pr. unit time, γ is the solute onentration immediately to theright (high onentration side) of the membrane, and both quantities are non-dimensionalas desribed in Se. 8.3.1.A large number of papers has presented both experiments (see e.g. [62℄) and theory (seee.g. [59, 56, 57, 58℄ and [3℄) for the situation desribed above. Most of these workers havefoused on the ase where the solution on both sides of the membrane remain well-stirredsuh that a well de�ned boundary layer exists. For a number of di�erent geometries, thethikness of the boundary layer has been determined as a funtion of systems parametersand the funtional dependene on the osmoti pumping e�ieny γ has be found.A major limitation of the above theoretial and experimental work is, however, thatit is onerned only with situations in whih the solutions on both sides of the membraneremain well-mixed due to an external stirring mehanism. In nearly all ases, it is assumedthat the �ow generated by osmosis through Eq. (8.1) is negligible in determining the bulk�ow, and only of signi�ane lose to the membrane.The goal of the present work is to examine theoretially the situation in whih theadveting bulk �ow is itself driven by Eq. (8.1) and no external stirring is present. Animportant example, the one that inspired this work, is the �ow in phloem ells of plants,where the osmoti pressure di�erenes are believed to be responsible for the �ow of thesugar solutions (the so-alled Münh mehanism, see e.g. [79℄, [30℄). In the present paper,we ompute the onentration and �ow pro�les for various simple geometries. For thesesystems, we will show that no loalized boundary layer exists, and seond that the drop inonentration γ an be alulated by a simple mathematial relation valid aross a widerange of geometries and Pélet numbers.8.3 Governing equations and geometriesIn the analysis of the problem desribe above, we shall onsider steady osmotially driven�ows on�ned between two in�nite parallel plates at low Reynolds numbers. We thus on-sider systems suh as those skethed in Fig. 8.2(a)-(), and explained further in Se. 8.3.3,in whih a solute of onentration c is di�using and being adveted by a veloity �eld u,arising due to an osmoti �ow aross a membrane (indiated by dashed lines).8.3.1 Non-dimensional variablesTo simplify the mathematial expressions we are using non-dimensional variables through-out this paper. The expliit salings are: Lengths are given by the plate-to-plate distane
h, onentrations are in units of the harateristi onentration c0, veloities are givenby the harateristi osmoti veloity u0 = LpRTc0, where Lp is the permeability of themembrane, R is the molar gas onstant, and T is the absolute temperature. Moreover,pressure is given in terms of shear-stress pressure p0 = ηu0/h.The Reynolds number is given by Re = ρu0h/η ≪ 1, so we treat only Stokes �ow inthis paper. The Pélet number is given by Pe = u0h/D, where D is the di�usivity of thesolute. In most ases we assume that Re ≪ 1 while Pe is �nite whih implies that the



Governing equations and geometries 97Shmidt number Sc = η
ρD is very large. This is onsistent with the situation in plantsells, where the Shmidt number is of order 104.8.3.2 Steady state equations of motion - Stokes �owThe equations of motion governing the veloity �eld u = (u, v) and pressure �eld p are theStokes equation and the ontinuity equation

∇p = ∇2u, (8.2)
∇ ·u = 0. (8.3)The equation governing the onentration �eld is

u · ∇c =
1Pe∇2c. (8.4)The veloity boundary ondition at the membrane interfae Ω, is that the normal veloityomponent n ·u is given by

n ·u(x, y) = c(x, y), for (x, y) ∈ Ω. (8.5)The onentration boundary ondition is that the normal omponent of the solute �uxaross the membrane must be zero, ie.
1Pen · ∇c(x, y) + n ·u(x, y)c(x, y) = 0, for (x, y) ∈ Ω. (8.6)Solutions to Eqns. (8.2)-(8.6) for arbitrary geometries are not readily available. Thus inSe. 8.4 we study full numerial solutions to our problem, and from the observed behaviorof these we establish and verify approximate analytial solutions in Se. 8.5.8.3.3 GeometriesWe onsider the three geometries shown in Fig. 8.2. Outside the indiated membranes asolution of onentration c = 0 is present. First, in (a), left-right symmetri �ow betweentwo parallel plates separated a non-dimensional distane of 1 is analyzed. At the the upperplate, a soure region of length 2ℓm is kept at a onstant onentration c = 1. On the lowerplate, faing the onstant onentration zone, is a membrane (indiated by the dashed line)also of length 2ℓm. Seond, in (b), up-down symmetri �ow between two parallel plates(separated by a distane 1) with a solid-wall soure region (c = 1) at a right angle to themembrane is onsidered. The length of the membrane zone is ℓ(b)m , and the distane fromthe soure region to the membrane region is H. Finally, in (), left-right and up-downsymmetri �ow around a solid ylinder of radius r is embedded exatly half way betweentwo plates (separated by a distane 1) is onsidered. At the surfae of the ylinder is asoure region (c = 1). The length of the membrane zone is ℓ(c)m . At the ylinder surfae weimpose a no-slip boundary ondition.In the following, we will investigate geometry (a) analytially and numerially, whilegeometries (b) and () will only be onsidered numerially.
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m = 2 at a right angle to the onentration soure. The distane between thetwo zones are H = 2. () A ylinder of radius r = 1

4 , embedded exatly half way betweenthe two plates. At the surfae of the ylinder the onentration is kept onstant at c = 1.The length of the membrane zone is ℓ(c)m = 2 and H = 1
4 . In (a)-(), numerially omputedonentration ontours (see (d)) are shown (Plotted for Pe′ = 10, see Se. 5). The veloity�eld is indiated by the arrows. (d) Contour sale bar for the onentration ontour plotsin (a)-().



Numerial results for the left-right symmetri parallel plate problem 998.4 Numerial results for the left-right symmetri parallelplate problemThe steady-state behavior of the systems shown in Fig. 8.2 was solved using the numerialmethods desribed in Appendix 8.8. The �gure shows typial onentration and veloitypro�les obtained in this way. Varying the Pélet number Pe , a number of suh simulationswere made and the following qualitative observations were made.In geometry (a), for Pe ≪ 1, the onentration in the membrane zone (0 < x < ℓm)hardly varies at all along the x-diretion, and the variation along the y-diretion is linear.This is illustrated in Fig. 8.3 whih shows ross-setions taken along the y-diretion at fourdi�erent x values. For x > ℓm the onentration is �at, having been smoothed by di�usion.Near x = ℓm a transition takes plae between the linear onentration gradient and the �atonentration plateau near the outlet. This is illustrated in Fig. 8.4 where ross-setionstaken along the x diretion are shown.To quantify the e�ieny of the osmoti pumping proess, we alulate the mean on-entration at the membrane γ as a funtion of the Pélet number Pe, plotted in Fig. 8.1(b).For small values of Pe , γ tends to the inlet onentration c = 1. This is reasonable sineany depletion of the membrane onentration would be ounterated by the strong di�u-sion. For larger values of Pe, equilibrium between di�usive and advetive fores leads tovalues of γ < 1 thus reduing the e�ieny of the osmoti pump.One further observation is, that as shown in Fig. 8.3 (e)-(f), the veloity �eld u = (u, v)is well desribed by a squeeze �ow [10℄
u(x, y) = 6xy(1− y)γ, (8.7a)
v(x, y) = y2(2y − 3)γ. (8.7b)Despite of the rihness found in the numerial solutions illustrated in Figs. 8.2, 8.3,8.4 and 8.1(b), the system an be desribed theoretially using a few simple assumptionsregarding the �ow and veloity �eld at very low Pélet numbers. From there, the solutionsan be extended using perturbation methods to be valid aross a wider range of parametervalues.8.5 Theory for the left-right symmetri parallel plate prob-lemInspired by the qualitative results disussed above, we will begin by modeling the onen-tration pro�le of Fig. 8.2(a) using that for Pe ≪ 1 onentration pro�le is linear in themembrane zone. Near the outlet, the onentration pro�le is �attened by di�usion and theresulting onentration value is simply the mean of the values at the soure region and atthe membrane:

c(x, y) =

{

1− (1− γ)y, for x < ℓm,
1
2(1 + γ), for x > ℓm.

(8.8)
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Figure 8.3: (a)-(d) Numerially omputed onentration pro�les c (irles) plotted against
y for di�erent values of x (as indiated above the plots) and the Pélet number Pe (asindiated next to the data points). All plots were obtained for the geometry in Fig. 8.2(a)with ℓm = 1. Also shown are the expressions given by Eq. (8.8) (solid lines) and Eq. (8.16)(dashed lines). (f)-(e) Numerially omputed veloity pro�les uN (irles) and vN (dots)plotted against y for di�erent values of the Pélet number Pe (as indiated next to thedata points). Also shown are the veloity pro�les given by Eqns. (8.7a) and (8.7b) for uand v respetively The solid lines are plotted with γ obtained from Eq. (8.10) while thedashed lines uses γ(1) from Eq. (8.17).
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Figure 8.4: Numerially omputed onentration pro�les c (irles) plotted against x fordi�erent values of y (as indiated next to the plots) and the Pélet number Pe (as indiatedabove the plots). All plots were obtained with ℓm = 1. Also shown is the expressions givenby the solution to Eq. (8.18) (solid lines).To estimate the onentration at the membrane γ we use the boundary ondition (8.6),
1Pe ∂yc = −γ2. (8.9)With Eq. (8.8) this leads to

γ =

√
1 + 4Pe− 1

2Pe
, (8.10)an expression whih does not, exept for the length sale h in the Pélet number, dependon the spei� geometry. Fig. 8.1(b) shows the numerial results ompared with Eqns.(8.8) and (8.10).8.5.1 A detailed look at the onentration pro�le for x < ℓmFor Pe ≥ 1, the assumption of a linear onentration pro�le given in Eq. (8.8) is no longervalid. To determine a more aurate onentration distribution in the membrane zone weonsider the equation governing the onentration �eld

∂2
xc+ ∂2

yc = Pe(u∂xc+ v∂yc
)

. (8.11)Starting with the result from Eq. (8.8), we will expand the solution of Eq. (8.11) in powersof Pe as c = c(0) + Pec(1) + Pe2c(2) + . . ., with
c(0) = 1− (1− γ)y. (8.12)



102 Self-onsistent unstirred layers in osmotially driven �owsTo �rst order in Pe the governing equation beomes
∂2
xc

(1) + ∂2
yc

(1) = u∂xc
(0) + v∂yc

(0). (8.13)The boundary onditions are that c = 1 on the top boundary and that c = γ on themembrane. We will assume that the terms ∂2
xc

(1) and u∂xc
(0) are small ompared to ∂2

yc
(1)and v∂yc

(0). We further use, that the veloity �eld u = (u, v) an be desribed by a squeeze�ow. Inserting c(0), we get that
∂2
yc

(1) = v∂yc
(0) = γy2 (2y − 3)

[

− (1− γ)
]

= −αy2(2y − 3), (8.14a)where α = γ(1− γ). Finally, c(1) beomes
c(1) = − α

20

(

2y5 − 5y4 + 3y
)

. (8.15)Thus, to �rst order in Pe, the onentration distribution is
c(x, y) = 1− (1− γ)y − αPe

20

(

2y5 − 5y4 + 3y
)

. (8.16)The orresponding orretion to γ alulated from the membrane boundary ondition inEq. (8.9) is
γ(1) =

√

49
400Pe2 + 33

10Pe + 1− 1− 7
20Pe

13
10Pe , (8.17)whih is shown as the dashed line in Fig. 8.1(b) To ompare Eqns. (8.16) and (8.17) with ournumerial simulations, Fig. 8.3 shows numerially obtained onentration pro�les plottedas a funtion of y along with Eq. (8.16) for x = 0, 0.25, 0.5 and x = 1.8.5.2 A detailed look at the onentration pro�le for x > ℓmFor x > ℓm we shall assume, that the �ow is parallel to the x-axis, suh that the equationof motion is now

∂2
xc+ ∂2

yc = Pe u∂xc, (8.18)where u is a now paraboli veloity pro�le u = 6γy(1 − y)ℓm and v = 0. As c is even in
y we expand it in a osine-series c(x, y) = c0 +

∑∞
n=1 cn(x) cos(nπy) and the equation forthe oe�ients cn(x) has the form ∂2

xcn−n2π2cn−
∑∞

m=1A
nm∂xcm = 0, where the matrixelements Anm are given in Appendix 8.9. Trunating to the lowest two orders (n,m = 1, 2)we searh for the exponentially deaying solutions ci(x) = c0i exp(λix) satisfying

(λ2
1 −A11λ1 − π2)(λ2

2 −A22λ2 − 4π2) = 0, (8.19)with negative values of λ1 and λ2. The most important eigenvalue is the one with thesmallest absolute value sine it will determine the asymptoti deay. It seems likely thatthis eigenvalue is assoiated to the lowest modes and thus it should be given as
λ∗ =

1

2

(

A11 −
√

(A11)2 + 4π2
)

. (8.20)



Results from other geometries 103In the limit Pe ≪ 1, we �nd that λ∗ ≃ −π. Taking the �rst order result (8.17), we �nd
Peγ(1) → 20/7 for Pe ≫ 1, whih implies that A11 = 20

7 ℓm
(

1− 3/π2
). As long as ℓm isnot too large (i.e. when A11 ≪ 2π) we one again obtain λ∗ ≃ −π. If on the other hand

A11 ≫ 2π, we �nd that λ∗ → 7π4ℓm/(20(π
2 − 3)) ≈ −4.96ℓm.For ℓm = 1 and Pe = (0.1, 1, 10, 100) we �nd numerially among the �rst 10 eigenvalues

λ∗
N = (−3.11,−2.93,−2.47,−1.88) while Eq. (8.20), with Eq. (8.17) used for alulating

γ, gives λ∗ = (−3.11,−2.95,−2.58,−2.38), only di�ering signi�antly at the fourth eigen-value.8.6 Results from other geometriesTo test the validity of Eq. (8.10) for geometries other than Fig. 8.2(a), for whih it wasoriginally derived, we show in Fig. 8.5 numerially obtained values of the mean membraneonentration γN plotted against Pe for the geometries found in Fig. 8.2 (b) and (). InFig. 8.5(a) γN is plotted against the usual Pélet number while in (b) it is plotted againstthe resaled Pélet number Pe ′ = Hhu0
D

, (8.21)where H is the minimum distane between the membrane and the onstant onentrationzone in units of the plate-to-plate distane h, as indiated in Fig. 8.2 (b) and (). Asis learly seen, the data ollapse is signi�ant when using Pe′. The result obtained inEq. (8.17), while only valid for geometry (a), is shown for omparison.The fat the data ollapse even for geometry (b) is surprising, sine there the gradientfrom the soure region to the membrane region is along the x-diretion and thereforeEqns. (8.4)-(8.6), whih even to lowest order in Pe onstitute a highly nonlinear problem,do not diretly redue to Eq. 8.9. We interpret the data ollapse as being due to the fatthat the onentration gradient in the x-diretion indues a gradient of equal size in adiretion normal to the membrane, in this ase the y-diretion. This an be seen diretlyin Fig. 8.6 where the onentration x-derivative ∂xc is onstant (−0.33 in this ase) inthe region separating the soure and membrane zones, and equal to the y-derivative of theonentration ∂yc at the membrane interfae.This shows that the relative orientation of the soure and membrane regions does notplay a large role in determining the �ow. This however is hardly surprising sine one wouldnot expet e.g. a hange in orientation of the membrane to strongly in�uene the in�ow ata given onentration, at least when the non-dimensional separation distane H is muhlarger than unity. The mathematial reason is presumably that the onentration �eld tolowest order in Pe satis�es the Laplae equation (Eq. (8.4) with u = 0) and thus that theintegral of (∇c)2 over the domain is minimal, favouring solutions where the size of theonentration gradient is nearly onstant.
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Figure 8.5: (a) Numerially omputed mean membrane onentration γN as a funtion ofthe Pélet number Pe = hu0
D for the three geometries of Fig. 2. For geometry {a} plotof γ(a)N for H = 1 (irles); for geometry {b} plot of γ(b)N for H between 1/2 and 5/2 and
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r = 1/4 (diamonds). The urves show the predition given by Eq. (8.10) (solid urve) andEq. (8.17) (dashed urve). (b) As in panel (a) exept now γN is shown as a funtion of themodi�ed Pélet number Pe ′ = HPe = Hhu0
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2 and Pe′ = 10. Thesolid blak line indiates ∂xc = −0.33 . The onentration soure is at x = 0 and themembrane starts at x = 2. (b) Cross-setion plot of the onentration c (blak irles) andthe onentration y-derivative ∂yc (open irles) plotted along the solid white line shownin the inset for the same parameters as in (a). The solid blak line indiates ∂yc = −0.33,the value at the membrane (y = 0).8.7 ConlusionIn this paper, we have studied new solutions to osmotially driven �ow problems, wherethe distribution and �uxes of solutes and liquid have generated self-onsistent �ow andonentration patterns. We have presented a general analytial solution method, andhave applied this method to a spei� example, obtaining detailed knowledge of the �ow-and onentration �elds in the parallel plate geometry (.f. Fig. 8.2(a)). This geometryhas also been studied numerially, and we �nd good agreement between our analytialsolution method and the numeris. Further, we have studied two topologially di�erentgeometries numerially varying the governing parameter, the Pélet number, by eight ordersof magnitude. Using a saled Pélet number, we obtain a data ollapse over all eight ordersof magnitude. This shows, that the while the detailed nature of the solutions depend onthe geometry in question, f. Fig. 8.2(a)-(), the osmoti pumping e�ieny is largelyindependent of the geometry, as long as the orret length sale for the problem is hosen.This work was supported by the Danish National Researh Foundation, Grant No. 74.8.8 Numerial methodsThe problem posed by Eqns. (8.2)-(8.6) was solved using the ommerial �nite element(FEM) software pakage COMSOLMultiphysis 3.4. See e.g. [32℄ for a detailed disussion
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8.9 Solution of the di�usion-advetion eigenvalue problemThe matrix elements Anm in Se. 8.5.2 are
Anm = 2β

∫ 1

0
cos(nπy) cos(mπy)y(1 − y) dy =







−2β
(1+(−1)m+n)(m2+n2)

(m2−n2)2π2
for n 6= m,

2β
12

(

1− 3
n2π2

) for n = m,(8.22)



Solution of the di�usion-advetion eigenvalue problem 107where β = 6Pe γℓm. Note, that Anm = 0 for odd values of n+m. The eigenvalue problembeomes the diagonalization of the matrix
M =























0 1 0 0 0 0 · · ·
12π2 A11 0 0 0 A13 · · ·
0 0 0 1 0 0 · · ·
0 0 22π2 A22 0 0 · · ·
0 0 0 0 0 1 · · ·
0 A31 0 0 32π2 A33 · · ·... ... ... ... ... ... . . .























, (8.23)
from whih the oe�ients cn an be determined to obtain the solution to Eq. (8.18).Fig. 8.4 shows the results for N = 20, Pe = 0.1 and Pe = 100 plotted together withthe orresponding numerial solutions. Aross the whole range of Pe values, we �nd goodagreement with the numerial results. End of paperK. H. Jensen, T. Bohr and H. BruusSelf-onsistent unstirred layers in osmotially driven �owsJournal of Fluid Mehanis 662, pp. 197�208 (2010)
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Table 8.1: List of parameters in alphabeti order after the symbol.Parameter Symbol Value and/or unitMatrix element AnmConentration Charateristi onentration c0 mol/LDi�usivity D m2/sMini. dist. from membrane to onstant on. zone HPlate-to-plate distane h mMembrane permeability Lp m/(Pa s)Length of membrane zone ℓmNormal vetor nPressure pPelet number PeGas onstant R 8.31 J/(K mol) [4℄Radius of ylinder rReynolds number ReShmidt number ScTemperature T KOsmoti veloity u0 m/sVeloity �eld u = (u, v)Cartesian oordinates x, yConentration at membrane interfae γVisosity η Pa sMatrix eigenvalue λnDensity ρ kg/m3Membrane interfae Ω



Chapter 9Conlusion and outlookConlusionThe present thesis has been devoted to a theoretial investigation of osmotially driven�ows in miro�uidi systems and their relation to sugar transport in plants. We haveanalyzed the �uid mehanis of these �ows to shed new light on the quantitative andqualitative properties of the transloation proess that our in the phloem vasular systemof plants.Using a simple model framework, where we think of the plant as onsisting of a leaf, astem and a root zone, we have found new analytial solutions to the equations of motion.These allow us to fully haraterize the dependene of the �ow speed on the parametersof the problem suh as leaf size, stem length, and phloem sieve tube radius. We haveompared the results of the model to in-vivo measurements made on 7 di�erent plantspeies with good results.An interesting predition of the model is that the osmotially driven Münh �ow meh-anism has a maximum in transloation veloity for a speial value of the radius a = ac.The existene of suh a maximum is quite easy to understand: the osmoti �ow takesplae aross the ell surfae and is therefore more e�etive in terms of the axial veloityfor thinner tubes where the surfae-to-volume ratio is larger. Very thin tubes, on the otherhand, o�er high visous resistane to the �ow, and thus there is an optimum radius ac,where the osmoti pump is e�etive and the resistane not too large. We have derived ananalytial expression for ac whih takes the form of an allometri saling law relating theradius of the sieve tube ac to the length of the stem l2 and the size of the leaf l1; a3c ∝ l1l2.We have ompared this predition to plant data and have found good agreement betweenobservations and our result for plants varying several orders of magnitude in size. Thissuggests that the physial onstraints imposed by the optimality of the Münh mehanismhave played a signi�ant role in the evolution of the phloem vasular system of plants.We have studied several aspets of the �ow proess in detail. First, we have tried toquantify the e�et of the perforated sieve plates that separate adjaent phloem ells onthe hydrauli resistane of the phloem transloation pathway. Our �ndings suggest thatthe presene of sieve plate ontributes signi�antly to the total hydrauli resistane, andthat one needs to take this into aount when modeling long-distane transport in plants.109



110 Conlusion and outlookSeond, we have studied the e�et of unstirred onentration boundary layers on the �owin order to quantify how well-mixed the onentration �eld is. We have found that at thePélet numbers relevant to plants the onentration is nearly uniformly distributed arossthe tube.Finally, we have designed, fabriated and onduted osmoti experiments using a newtype of biomimiking miro�uidi devies with hannels approahing the dimensions foundin plants. We have found that the experiments follow the Münh theory with reasonableauray.OutlookThe equations of motion analyzed in the present thesis were derived under a number ofassumptions that identi�es whih physial e�ets are believed to be most signi�ant.Theseapproximations are not due to the author, but are widely used throughout the phloemtransport literature.The appliability of a number of these assumptions are, however, not well establishedand needs to be tested empirially. It is therefore an important task for future researh inthis �eld to analyze and identify the quantitative e�et that eah of these approximationshas on the �ow. The analytial results relating the transloation veloity to the harater-isti sizes of the plant organs derived in the present thesis an at as a starting point forthis type of analysis. By studying deviations from the preditions of the model, one anidentify plants that have behaviors very far from the preditions and thereby learn of thequalitative and quantitative features whih makes the assumption valid or invalid.The author would like, mainly out of personal interest, to highlight the fat that mosturrent phloem models ompletely neglet the branhed struture of the phloem transportnetwork. These networks are present on many sales in plants and are known to play asigni�ant role in the struture of transloation networks in virtually all living reaturesfrom the largest animals to the smallest mirobes [87℄. This is most likely also the ase forthe phloem network.Finally, the author believes that future researh should also fous on gymnosperms.For this group of plants, some of whih are very tall trees, the feasibility of the Münhmehanism for long distane transport is even more ontroversial than for the angiospermsstudied in the present thesis. A �rst step in this diretion would be to study the hydrauliresistane of sieve plates and optimized Münh saling behavior in gymnosperms.



Appendix AAnalytial solution of the 3-zonemodelIn this appendix we provide analytial solution to Eqns. (5.28)-(5.30)
∂2
XU1 = Mü U1, (A.1)

∂2
XU2 = −U1(X1)

U2
2

∂XU2 +Mü U2, (A.2)
∂2
XU3 = − U2(X1)

U2(X2)(X3 −X2)
+Mü U3, (A.3)with the set of boundary onditions

U1(0) = 0, (A.4)
U2(X1) = U1(X1), (A.5)

∂XU2(X1) = ∂xU1(X1), (A.6)
U3(X2) = U2(X2), (A.7)

∂XU3(X2) = ∂XU2(X2), (A.8)
U3(X3) = 0. (A.9)Along the way, we will use the notation
L1 = X1, (A.10)
L2 = X2 −X1 = 1, (A.11)
L3 = X3 −X2, (A.12)
ω =

L3

L1
. (A.13)111



112 Analytial solution of the 3-zone modelIt is immediately apparent that Eqns. (A.1) and (A.3) an be solved diretly for all valuesof Mü:
U1(X) = A1 sinh

√Mü X +A2 cosh
√Mü X, (A.14)

U3(X) = A3 sinh
√Mü (X −X2) +A4 cosh

√Mü (X −X2) +
U2(X1)

U2(X2)(X3 −X2)

1Mü .(A.15)At present time, solutions of Eq. (A.2) are only avaliable as numerial approximations. Inthe limits Mü ≫ 1 and Mü ≪ 1, the system an, however, be solved analytially.A.1 Solution for Mü ≪ 1In the limit Mü ≪ 1 the equations of motion (A.1)-(A.3) beome
∂2
XU1 = 0, (A.16)

∂2
XU2 = −U1(X1)

U2
2

∂XU2, (A.17)
∂2
XU3 = −U2(X1)

U2(X2)

1

(X3 −X2)
. (A.18)We an write the solutions in domains 1 and 3 as

U1(X) = B1X +B2, (A.19)
U3(X) = −1

2

U2(X1)

U2(X2)

1

(X3 −X2)
(X −X3)

2 +B3(X −X3) +B4, (A.20)In domain 2, we an integrate one
∂XU2 =

U1(X1)

U2
+B5. (A.21)As long as ∂XU2 6= 0, this means that

∂U2X =
1

B5

(

1− U1(X1)

U1(X1) +B5U2

)

, (A.22)whih has the solution
X(U2) =

U1(X1)

B5

[

U2

U1(X1)
− 1

B5
log

(

1 + B5U2
U1(X1)

1 +B5

)]

+B6. (A.23)In the limit ∂XU2 = 0, we �nd
U2 = −U1(X1)

B5
. (A.24)



Solution for Mü ≪ 1 113The derivatives of the solutions U1, U2 and U3 are
∂XU1 = B1, (A.25)
∂XU2 =

U1(X1)

U2
+B5, (A.26)

∂XU3 =
U2(X1)

U2(X2)

X3 −X

X3 −X2
+B3. (A.27)A.1.1 Calulation of the onstants B1, B2, . . . , B6The alulations determining the onstants B1, B2, . . . , B6

B1 =
1

ω

(

1 + ω −
√
1 + 2ω

)

, (A.28)
B2 = 0, (A.29)
B3 =

1

ω

(

1−
√
1 + 2ω

)

, (A.30)
B4 = 0, (A.31)
B5 =

1

ω

(

1−
√
1 + 2ω

)

, (A.32)
B6 =

L1ω√
1 + 2ω − 1

. (A.33)are given below. They are found using the boundary onditions in Eqns. (A.4)-(A.9).Calulation of B2It is lear from Eq. (A.4) (U1(0) = 0) that
B2 = 0 (A.34)Calulation of B4Similarly, we �nd from Eq. (A.9) (U3(X3) = 0) that
B4 = 0 (A.35)Calulation of B5To determine B5 we use Eq. (A.6) (∂XU2(X1) = ∂XU1(X1)) and Eq. (A.5) (U2(X1) =

U1(X1)) and �nd that
B1 =

U1(X1)

U2(X1)
+B5 = 1 +B5. (A.36)Thus

B5 = B1 − 1 (A.37)



114 Analytial solution of the 3-zone modelCalulation of B3To determine B3 we use Eq. (A.8) (∂XU3(X2) = ∂XU2(X2)) and �nd that
U1(X1)

U2(X2)
+B5 =

U1(X1)

U2(X2)
+B3, (A.38)suh that

B3 = B5 = B1 − 1. (A.39)Calulation of B1To determine B1 onsider Eq. (A.7)
U2(X2) = U3(X2) = −1

2

U2(X1)

U2(X2)
L3 −B3L3 = −1

2

B1L1L3

U2(X2)
− (B1 − 1)L3. (A.40)This leads to a seond order equation for U2(X2)

U2(X2)
2 + (B1 − 1)L3U2(X2) +

1

2
B1L1L3 = 0, (A.41)whih has the solution

U2(X2) =
(1−B1)L3 ±

√

(B1 − 1)2L2
3 − 2B1L1L3

2
. (A.42)Using ω = L3

L1
this beomes

U2(X2) = L1
(1−B1)ω ±

√

(B1 − 1)2ω2 − 2B1ω

2
. (A.43)For U2(X2) to be real, positive and unique, we require that the term in the square rootvanishes

(B1 − 1)2ω2 − 2B1ω = 0. (A.44)This is illustrated for ω = 1 in Fig. A.1, and implies that B1 must be given by
B1 =

1

ω

(

1 + ω −
√
1 + 2ω

)

, (A.45)where we have hosen the �−� solution of Eq. (A.44) to ensure that U2(X2) is positive.Calulation of B6From Eq. (A.23) it follows that
X1 = X(U2(X1)) =

U1(X1)

B5





U2(X1)

U1(X1)
− 1

B5
log





1 + B5U2(X1)
U1(X1)

1 +B5







+B6 (A.46)
=

B1L1

B5
+B6, (A.47)suh that

B6 = L1

(

1− B1

B5

)

. (A.48)
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Figure A.1: Plot of UX(X2) as a funtion of B1 for ω = 1 and L1 = 0.2 from Eq. (A.43).The real and imaginary part of the two solutions (+ and −, as indiated in the legend)to Eq. (A.43) are shown. For the solution to be physial, we require that U2(X2) is real,positive and unique. This happens when B1 =
1
ω

(

1 + ω −
√
1 + 2ω

)

= 2−
√
3 ≃ 0.268.A.1.2 Additional resultsFor the alulation of the mean transloation veloity, the ratio χ = U2(X2)/U1(X1) isuseful. We have that

U1(X1) = B1L1 =
L1

ω

(

1 + ω −
√
1 + 2ω

)

, (A.49)and
U2(X2) =

1

2
L1 (1−B1)ω. (A.50)Thus

χ =
U2(X2)

U1(X1)
=

1

2

(

1 +
√
1 + 2ω

)

. (A.51)A.1.3 Calulation of Ū for Mü ≪ 1The mean veloity in the transloation zone is
Ū =

1

X3 −X2

∫ X3

X2

U2(X) dX, (A.52)This quantity an be found from Eq. (A.23). If we de�ne I1, I2, I3, I4 as the area of theregions shown in Fig. A.2, we have that
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I3 I4

I2 I1

0 1 χ

0

X1

X2

U2(X)/U1(X1)

X

Figure A.2: Plot of X (solid line above I4) as a funtion of U2(X)
U1(X1)

from Eq. (A.23). Thefour domains I1, I2, I3 and I4 used in the alulation of Ū are indiated.
I0 = I1 + I2 + I3 + I4 = X2χ, (A.53)

I2 = 1, (A.54)
I3 = L1, (A.55)
I4 =

∫ χ

1
X

(

U2

U1(X1)

)

d

(

U2

U1(X1)

)

. (A.56)We shall now evaluate I4, using along the way that limx→0 x log x = 0

I4 =

∫ χ

1

(

U1(X1)

B5

[

U2

U1(X1)
− 1

B5
log

(

1 + B5U2
U1(X1)

1 +B5

)]

+B6

)

d

(

U2

U1(X1)

)(A.57)
=

1

8
L1

(

ω − 2 + (2 + ω)
√
1 + 2ω

)

. (A.58)The mean veloity Ū an then be alulated from
Ū = U1(X1)(I1 + I2), (A.59)

= U1(X1)(I0 − I3 − I4) (A.60)
=

1

2

(√
1 + 2ω − 1

)

L1 −
(

4 + 6ω − ω2 +
√
1 + 2ω

(

ω2 − 4− 2ω
)

8ω

)

L2
1. (A.61)In most ases, the seond order term (in L1) is very small. The funtion f(ω) = 1

2

(√
1 + 2ω − 1

)showing the importane of the relative size of L1 and L3 is shown in Fig. A.3. For thespeial ase ω = 1,we �nd that
Ū(ω = 1) =

√
3− 1

2
L1 −

9− 5
√
3

8
L2
1 (A.62)

≃ 0.36L1 − 0.043L2
1. (A.63)
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Figure A.3: The funtion f(ω) = 1
2

(√
1 + 2ω − 1

) plotted as a funtion of ω = L3/L1showing the importane of the relative size of L1 and L3 in Eq. (A.61).A.2 Solution for Mü ≫ 1In the limit Mü ≫ 1 the equations of motion (A.1)-(A.3) are
∂2
XU1 = Mü U1, (A.64)

∂2
XU2 = −U1(X1)

U2
2

∂XU2 +Mü U2, (A.65)
∂2
XU3 = −K +Mü U3, (A.66)where K = U2(X1)

U2(X2)(X3−X2)
. The equations in domains 1 and 3 an be readily solved

U1(X) = A1 sinh
√Mü X +A2 cosh

√Mü X, (A.67)
U3(X) = A3 sinh

√Mü (X −X2) +A4 cosh
√Mü (X −X2) +

KMü . (A.68)Here, A2 = 0 beause of the boundary ondition at X = 0, while A3 and A4 are determinedby the ontinuity ondition on U and ∂XU at X = X2.
A3 =

1√Mü ∂XU2(X2), (A.69)
A4 = U2(X2)−

KMü . (A.70)In the transloation zone, we shall solve the equation
∂2
XU2 = −U1(X1)

U2
2

∂XU2 +Mü U2, (A.71)



118 Analytial solution of the 3-zone modelby assuming that U2 an be written as U2 =
U ′

2Mü , where U ′
2 is of the order 1. Insertingthis, and keeping only terms of order Mü and M2, we get thatMü U1(X1)∂XU ′

2 = U ′3
2 . (A.72)Sine we require that U2(X1) = U1(X1) this implies that

U2(X) =
U1(X1)

√

1− 2Mü U1(X1)(X −X1)
(A.73)Please note that this solution does not ful�ll the ondition ∂XU2(X1) = ∂XU1(X1) exatly.This is due to the fat that we have ignored the term ∂2

XU2. This, however, turns out toplay very little role when omparing the analytial solution to the numerial results.With the solution given in Eq. (A.73), we an now determine the onstants A3 and A4and K = U2(X1)
U2(X2)(X3−X2)

. The only free parameter is A1 whih has to be determined suhthat U3(X3) = 0. Using Mathematia 7.0.0, we an then determine the A's using theode1 Clear [A1 , A2 , A3 , A4 , X, X1 , X2 , X3 , M, v1 , v2 , v3 , K ℄ ;2 A2 = 0 ;3 X2 = X1 + 1 ;4 v1 [X_℄ = A1∗Sinh [ Sqrt [M℄∗X℄ + A2∗Cosh [ Sqrt [M℄∗X℄ ;5 v0 = v1 [X1 ℄ ;6 v2 [X_℄ = v0 /( Sqrt [ 1 − 2∗M∗v0 ∗(X − X1) ℄ ) ;7 K = v2 [X1℄ / v2 [X2℄∗1/ (X3 − X2) ;8 Dv2 [X_℄ = D[ v2 [X℄ , X ℄ ;9 A3 = 1/ Sqrt [M℄∗Dv2 [X2 ℄ ;10 A4 = v2 [X2 ℄ − K/M;11 v3 [X_℄ = A3∗Sinh [ Sqrt [M℄ ∗ (X − X2) ℄ + A4∗Cosh [ Sqrt [M℄ ∗ (X − X2) ℄ + K/M;12 v3 [X3 ℄ ;13 So lve [ v3 [X3 ℄ == 0 , A1 ℄ ;14 Fu l l S imp l i f y [%℄15 A316 A4The expressions are generally very ompliated funtions of Mü, X1, X2 and X3. For
ω = 1, we e.g. �nd that A1 is given by
A1(ω=1)=

Mü (4+X1) coth[Mü∗]−sh[Mü∗](4Mü +sh[Mü∗]√Mü 3/2X1 sinh[Mü∗]2(Mü∗ cosh[Mü∗]2−4 sinh[Mü∗]+2 sinh[2Mü∗]))
4Mü 2(2+X1) cosh[Mü∗]−2(4Mü 2+Mü 3/2X1 sinh[Mü∗]) ,(A.74)where Mü ∗ =

√Mü X1.Calulating the mean veloity in the transloation zone for Mü ≫ 1From the solution in Eq. (A.73) we an now alulate the mean veloity
Ū =

1

X3 −X2

∫ X3

X2

U2(X) dX =
1−

√

1− 2Mü U1(X1)Mü . (A.75)



Solution for Mü ≫ 1 119Despite of the omplexity of the expression for A1, we �nd that as long as the produtMü (X3−X2) is large, the produt Mü U1(X1) is nearly onstant and equal approximatelyequal to 0.5. This implies that
Ū ≃ 1Mü . (A.76)To see why this is so, onsider the equation for U3

U3(X) = A3 sinh
√Mü (X −X2) +A4 cosh

√Mü (X −X2) +
KMü . (A.77)It is lear that K ≤ 1

X3−X2
. Thus, sine U3(X3) = 0, and if (X3 −X2)Mü is su�ientlylarge we must have that

0 = A3 sinh
√Mü (X3−X2)+A4 cosh

√Mü (X3−X2)+
KMü ≃ (A3+A4) exp

(√Mü (X3 −X2)
)

.(A.78)This implies that A3 = −A4. Eqns. (A.69)-(A.70) then leads to
1√Mü ∂XU2(X2) = −U2(X2) (A.79)or √Mü U2

1 (X1)

(1− 2Mü U1(X1))3/2
= − U1(X1)

(1− 2Mü U1(X1))1/2
. (A.80)sine X2 −X1 = 1. Rewriting, we get that

√Mü U1(X1) = 2Mü U1(X1)− 1, (A.81)or
U1(X1) =

1

2Mü −
√Mü ≃ 1

2Mü . (A.82)In this way, Mü U1(X1) ≃ 1/2 as found above.
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Appendix BHorwitz's derivation of the equationsof motionFollowing Horwitz [25℄, we onsider a tube with ross setion area A and perimeter Ssubmerged in a large water reservoir as shown in Fig. B.1. The tube is �lled with asolution of sugar and water with onentration c, �ow veloity u and hydrostati pressure
p. Both c = c(x), u = u(x), and p = p(x) are one-dimensional variables that does notdepend on the radial position. The walls are made of a semipermeable membrane withpermeability Lp that allows water, but not sugar, to �ow aross driven by osmoti andhydrostati pressure di�erenes at a rate jw = Lp(RTc − p). Here, R is the gas onstantand T is the temperature. Sugar is added/removed from the tube at a rate υ by someative mehanism deoupled from the osmoti pumping.B.1 Conservation of volumeConsider now a small setion of the tube from x0 to x0 + ∆x. Taking into aount theadvetive �ow of water along the tube and the radial in�ux due to osmosis, the onservationequation for volume is

Sjw∆x+A(u(x0)− u(x0 +∆x)) = 0. (B.1)Letting ∆x → 0 we �nd that
∂xu =

S

A
jw =

S

A
Lp(RTc(x)− p(x)). (B.2)For a ylindrial tube with radius a, this is simply

∂xu =
2Lp

a
(RTc− p). (B.3)This an be further redued by using Hagen-Pouiseuille relation between pressure gradientand �ow veloity in a ylindrial tube ∂xp = −8η

a2
u suh that

∂2
xu =

2Lp

a

(

RT∂xc+
8η

a2
u

)

. (B.4)121
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Figure B.1: Sketh of the geometry used in Horwitz's deriviation of the transport equations.(a) An inompressible liquid is moving inside a tube with ross setion area A and perimeter
S with mean veloity u (arrows). A solute of onentration c is dissolved in the liquid andis moving due to the motion of the liquid and moleular di�usion. The tube is submergedin a large reservoir (gray region) and has a walls made from a semipermeable membrane(dashed line) with permeability Lp that allow the liquid but not the solute to pass. (b)Closeup of the situation at the membrane (dashed line). The presene of the membranefailitates a �ow of water driven by osmoti and hydrostati pressure di�erenes arossthe wall. This ours at a rate jw = Lp (RTc− p) indiated by the solid arrow at themembrane interfae (See Fig. 3.1). Sugar is added to/removed from the tube at a rate υby an ative mehanism deoupled from the osmoti pumping as indiated by the dashedarrow. The osmotially driven �ow aross the membrane aelerates the liquid as it movesalong the tube as indiated by the growing size of the arrows in (a).



Conservation of sugar 123B.2 Conservation of sugarConsider again a small setion of the tube of length ∆x. Taking into aount the advetiveand di�usive �ow of sugar along the tube and the radial in�ux due to loading and unloading,the onservation equation is
0 = ∂tc∆xA

− A (u(x)c(x) − u(x0 +∆x)c(x+∆x))

+ AD (∂xc(x)− ∂xc(x0 +∆x))

− A∆xυ, (B.5)where D is the di�usion oe�ient of the sugar and υ is the loading/unloading rate. Letting
∆x → 0, this redues to the familiar advetion-di�usion equation

∂tc+ ∂x(cu) = D∂2
xc+ υ. (B.6)B.2.1 Mathematial formulation of the loading/unloading proessesThe form of the trans-membrane loading funtion υ in Eq. (B.6) varies depending onwhether one onsiders loading or unloading. Several mathematial formulation has beenused in the literature to approximate the quantitative properties of the loading proesses.The most widely used formulations are

υ =































k0, (a) onstant loading [13, 84℄,
k1x+ k2, (b) linear loading [70℄,
k3c, () onentration dependent loading [79℄,
(k4x+ k5)c, (d) onentration dependent linear loading [70℄,
k6(cT − c), (e) onentration dependent loading with target onentration cT [38℄,
k7c
k8+c , (f) Mihaelis-Menten loading [45℄. (B.7)The k's are loading onstants whih an be determined experimentally (see e.g. [45℄).
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Appendix CThemodynamis of osmosisIn this appendix we onsider the thermodynamis of osmosis. We derive transport equa-tions for �ow of water and solute aross a membrane whih is permeable to both substanes.The derivation is due to Shultz [67℄ and Heimburg [21℄.C.1 Non-equlibrium thermodynamisThe proess of osmosis an best be desribed by the formalism of non-equlibrium thermody-namis [67℄. We thus onsider a linear phenomenologial relation between a thermodynami�ux j′n and the orresponding onjugate fore ξn

j′n = Lnnξn, (C.1)whih is valid if the system is lose to equilibrium. Here, Lnn is a proportionality onstantwith the unit of ondutane. The driving fore ξn is related to the di�erene in hemialpotential of the substane n between di�erent regions of the system
ξn = ∆µn (C.2)Ohm's law of urrent �ow, Fourier's law of heat �ow, Fik's law of di�usion and thePoiseuille's equation desribing volume �ow are all examples of Eq. (3.1). If the system isharaterized by several fores and �uxes (e.g. if the membrane is non-ideal) there may beinterations between �uxes and non-onjugate fores

j′n = Lnnξn +
∑

m6=n

Lnmξm, (C.3)where aording to the Onsager relations Lnm = Lmn. The �ux of partiles as a onse-quene of temperature gradients (the Soret e�et) and the �ux of heat due to onentrationgradients (the Dufour e�et) are well known examples of Eq. (C.3). It an be shown thatthe relation between the rate of internal entropy prodution ∂ts, the absolute temperature
T, and the fores and �uxes is given by

T∂ts =
∑

n

j′nξn. (C.4)125



126 Themodynamis of osmosisThe quantity T∂ts is known as the dissipation funtion and is a measure of the tendenyof the non-equilibrium proess to proeed.C.2 Osmotially driven �ow aross non-ideal membranesIn the present disussion we onsider a membrane separating two hambers at pressures
p1 and p2. The hambers ontain a dilute aqueous solutions of a solute at onentrations
c1 and c2. The hemial potentials of the water µw in the two ompartments are

µw,1 = = (µw,1)0 + v̄wp1 + RT log

(

nw,1

nw,1 + ns,1

)

, (C.5)
µw,2 = = (µw,2)0 + v̄wp2 + RT log

(

nw,2

nw,2 + ns,2

)

, (C.6)(C.7)where v̄w is the partial molar volume of water, (µw)0 are referene values, and nw and nsare the number of water and solvent moleules respetively. Sine the solutions are dilute,the logarithmi term an be expanded
log

(

nw

nw + ns

)

= − log

(

1 +
ns

nw

)

≃ − ns

nw
= −v̄wc (C.8)where c is the onentration of the solute. The di�erene in hemial potential ∆µw isthus

∆µw = µw,2 − µw,1 ≃ v̄w (p2 − p1)− v̄wRT (c2 − c1) = v̄w∆p− v̄w∆Π. (C.9)For the solute, the hemial potentials are
µs,1 = = (µs,1)0 + v̄sp1 + RT log

(

ns,1

nw,1 + ns,1

)

, (C.10)
µs,2 = = (µs,2)0 + v̄sp2 + RT log

(

ns,2

nw,2 + ns,2

)

, (C.11)(C.12)In this ase we annot generally get rid of the logarithm sine its argument is not lose toone. If the onentrations are of similar magnitude, we an however write1
∆µs = µs,2 − µs,1 ≃ v̄s (p2 − p1) + RT

(

c2 − c1
c1

)

= v̄s∆p+
∆Π

c1
(C.13)The dissipation equation (C.4) is

T∂ts = j′w (v̄w∆p− v̄w∆Π) + j′s

(

v̄s∆p− ∆Π

c1

)

. (C.14)1See [67℄ for a detailed treatment of the expansion of the logarithmi term.



Osmotially driven �ow aross non-ideal membranes 127Upon rearrangement this beomes
T∂ts =

(

j′wv̄w + j′sv̄s
)

∆p+

(

j′s
c1

− v̄wj
′
w

)

∆Π. (C.15)where j′v = (j′wv̄w + j′sv̄s) is simply the volume �ow and j′D = j′s
c1

− v̄wj
′
w the di�erenebetween the veloities of the oppositely direted �ows of solute and water. In this notationwe have that

T∂ts = j′v∆p+ j′D∆Π. (C.16)We an now write the phenomenologial equations (C.3)
j′v = Lpp∆p+ LpD∆Π, (C.17)
j′D = LDp∆p+ LDD∆Π, (C.18)where LpD = LDp from the Onsager relation. Using the notation σs = −LpD

Lpp
the volume�ux j′v given in Eq. (C.17) an be written as

j′v = Lpp (∆p− σs∆Π) , (C.19)The quantity σs is know as a re�etion oe�ient, and is a measure of the degree to whiha membrane is permeable to the solute. If σs = 1 it is perfetly impermeable, at we obtainthe ideal membrane transport Eq. (3.5), p. 21 . If on the other hand σs = 0 the membraneis equally permeable to solute and water. The solute �ux j′s is given by
j′s = (1− σs)c1j

′
v + ωs∆Π (C.20)where ωs = c1

LppLDD−L2
pD

Lpp
.
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Appendix DSieve plate dataThis appendix ontains data for the Curubita maxima sieve plate shown in Fig. 4.2(a),p. 41. The data was kindly provided by M. Knoblauh and D. L. Mullendore. See [48℄ fordetails on how the measurements were made.Sieve tube element length = 154.3*1e-6 mSieve tube element radius = 29.005*1e-6 mSieve plate thikness = 0.966*1e-6 mSieve pore radii = 1e-6 m*[4.62175621884.5356838984.47590944224.42175249164.40928038464.36771220454.26302746944.18973201914.01907806574.00040811383.9493182193.88451145253.81003287023.74626174353.66404931653.60271076793.40754441763.33995563623.33479858773.23924819843.17349845323.17160016183.1506399347 129



130 Sieve plate data3.14188815913.10691166393.09303271493.07041540253.00412172822.97215747332.8663379582.84706018592.79705428842.764874362.53055601142.41146072572.20805308222.13957249122.03231864012.00417897281.91369164691.77852030231.65262581.5975583721.58674947741.29269365061.22080118570.96846556180.8878074810.82761439050.7478736748℄
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Optimality of the Münch mechanism
for translocation of sugars in plants
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Harvard University, Cambridge, MA 02138, USA

Plants require effective vascular systems for the transport of water and dissolved molecules
between distal regions. Their survival depends on the ability to transport sugars from the
leaves where they are produced to sites of active growth; a flow driven, according to the
Münch hypothesis, by osmotic gradients generated by differences in sugar concentration.
The length scales over which sugars are produced (Lleaf) and over which they are transported
(Lstem), as well as the radius r of the cylindrical phloem cells through which the transport
takes place, vary among species over several orders of magnitude; a major unsettled question
iswhether theMünch transportmechanism is effective over thiswide range of sizes.Optimization
of translocation speed predicts a scaling relation between radius r and the characteristic lengths
as r � (Lleaf Lstem)

1/3. Direct measurements using novel in vivo techniques and biomimicking
microfluidic devices support this scaling relation and provide the first quantitative support for
a unified mechanism of sugar translocation in plants spanning several orders of magnitude in
size. The existence of a general scaling law for phloem dimensions provides a new framework
for investigating the physical principles governing the morphological diversity of plants.

Keywords: phloem transport; sugar translocation; microfluidics; biomimetics;
osmotic pumping

1. INTRODUCTION

Vasculatures of plants and animals are among the most
elegant and complex of microfluidic systems. In plants,
xylem transports water from soil to leaves, while
phloem distributes the products of photosynthesis
throughout the plant. Flow generation in both systems
occurs in the absence of any mechanical pump. Xylem
flow is generated by evaporation and driven by tension
gradient in the vessels [1]. The physics of transport
under tension creates a safety–efficiency optimization
problem that constrains the design of xylem vessels [2].
The mechanism driving phloem transport is believed to
be the movement of water via osmosis in response to the
loading and unloading of sugar in different parts of the
plant and sustained along the tubes by continuous
maintenance of the osmotic gradient across the per-
imeter of the phloem tube, as shown in figure 1 [3,4].
Phloem operates under positive pressure and the
assumed mode of its generation results in the delivery
of sugars being controlled by their loading and unload-
ing rates [5,6], rather than by the velocity of the flow.

However, phloem distributes hormonal and signalling
molecules that allow for the integration of distal parts
in lieu of a designated nervous system [7,8]. This
additional signalling task could result in the selection
pressure to optimize translocation velocity by providing
plants with the ability to respond rapidly to environ-
mental perturbations [9]. Here we ask if phloem is
indeed optimized for speed. Further, we investigate if
a single scaling law can describe the design principles
of phloem tubes governing the speed of translocation
given the wide range of length scales existing in
nature. Phloem tube radii range from 1 to 40 mm,
their length from 0.01 to 100 m, with transport
velocities from 0.01 to 1 m h21 [10–12].

Studies of long-distance transport in plants are
inherently difficult because the fluxes are intracellular,
protected by physical barriers [13] or biological activity
(e.g. forisomes and p-proteins [14,15]), and occur under
large tensions or pressures [16]. In principle, these pro-
perties require in vivo approaches, which are prone to
methodological challenges. However, recent biomimetic
approaches have helped answer long-standing questions
regarding water transport in the xylem [17] and to
resolve optimization laws governing the placement of
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veins within leaves [18], both processes being part of the
transpiration stream [1]. Progress in the fabrication of
microfluidic devices has made it possible to mimic
phloem transport [19], providing a physical model to
test Münch theory [20]. Here, we use synthetic phloem
to resolve design properties underlying the delivery of
photoassimilate and chemical signals between distal
plant parts and to provide a mechanistic basis for the
implementation of our mathematical model of phloem
function.

Many of the published models of phloem transport
incorporate details of sugar loading and unloading (e.g.
[21–24]). In contrast, our goal was to study a simplified
model, which agrees with the general trends previously
reported, but which due to its simplicity lends itself to a
scaling analysis. To determine if real plants follow the
scaling relation predicted by our mathematical model,
we examined phloem dimensions and transport velocities
in real plants using a novel, non-invasive, dye-tracing
method that offers a significant improvement to the pre-
viously used techniques such as traditional dye tracing
[25], biomass accumulation [26] or tracing radioactive
carbon [27], while accommodating a broader range of
plant materials than magnetic resonance imaging [12].
We also compared published data on sieve tube radii
with the optimal radii calculated from our model.

2. MATERIAL AND METHODS

To study osmotically driven flows in microchannels, we
designed and fabricated a microfluidic system consisting
of two layers of 1.5 mm thick polymethyl methacrylate

(PMMA) separated by a semi-permeable membrane
(Spectra/Por Biotech cellulose ester dialysis membrane,
MWCO 3.5 kDa, thickness 40 mm), as shown in
figure 2a. Channels of length 27 mm, width 200 mm and
depth h ¼ 100–200 mm were milled in the two PMMA
layers using a MiniMill/Pro3 milling machine [19]. The
top channel contains partly the sugar solution and
partly pure water, while the bottom channel always con-
tains only pure water. Inlets were produced by drilling
800 mm diameter holes through the wafer and inserting
brass tubes into these. By removing the surrounding
material, the channel walls in both the top and bottom
layers acquired a height of 100 mm and a width of
150 mm. After assembly, the two PMMA layers were posi-
tioned such that the main channels in either layer were
facing each other. Thus, when clamping the two layers
together using four 10 mm paper clamps, the membrane
acted as a seal, stopping any undesired leaks from the
channels as long as the applied pressure did not exceed
approximately 100 kPa.

The top channel was connected at one end to a
syringe pump (NE-1000, New Era syringe pump, NY),
which continuously injected a solution of water, dextran
(17.5 kDa, Sigma-Aldrich) 1 mm polystyrene beads
(Sigma-Aldrich, L9650-1ML, density 1050 kg m23) into
the channel at flow velocities of 2–4 mm s21. At the
other end, the channel was left open with the outlet termi-
nating in an open reservoir. Both ends of the lower ‘pure
water’ channel were connected to this reservoir to mini-
mize the hydrostatic pressure difference across the
membrane and to prevent axial flow in this channel.
The flow velocity inside the upper channel was recorded
by tracking the motion of the beads. Image sequences
were recorded at different positions along the channel
using a Unibrain Fire-i400 1394 digital camera attached
to a Nikon Diaphot microscope with the focal plane at
h/2 and a focal depth of approximately 10 mm. The flow
behaved as if it were pressure-driven and the standard
laminar flow profile was used to determine the average
flow velocity [19].

To determine rates of phloem transport in vivo, an aqu-
eous solution (100 mg l21) of 5(6)-carboxyfluorescein
diacetate was placed onto gently abraded upper leaf
epidermis from where it was loaded into the phloem by
the plant (figure 2b) [28,29]. We tracked the dye, as
it moved in the phloem of petioles or stems, by photo-
bleaching flow velocity techniques that were previously
used in microfluidic systems [30,31]. However, these
single-detector techniques required modification to
accommodate measurements on living plant tissues (low
velocities, tissue light scattering and absorption, the
need to maintain favourable growth conditions). We
used two solid-state, high-gain photodiodes (SED033
used with IL1700 Research Radiometer, International
Light Technologies) separated by a known distance to
determine travel time of the photobleached pulse. The
photodiodes were connected to the stem/petiole via
bifurcated, 4 mm diameter optical fibres to obtain a suffi-
cient signal-to-noise ratio despite extremely low light
intensities. Excitation light was delivered via 490 nm
short-pass filters (Omega Optical, USA), while photo-
diodes were fitted with 510 nm long-pass filters (Omega
Optical). Excitation light was generated by narrow
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Figure 1. (a) Schematic of a plant in which sugar and signal-
ling molecules travel from sources, e.g. leaves, to places of
storage and growth, e.g. fruits or roots. In our model, the
plant is divided into three zones, a source/loading zone of
length l1 (the leaf; 0 , x, x1), a translocation zone of
length l2 (the stem; x1 , x, x2) and a sink/unloading zone
of length l3 (the root; x2 , x, x3). (b) Diagram of how the
Münch flow mechanism is thought to drive sugar transloca-
tion in plants. The surfaces of the cylindrical phloem cells of
radius r are covered by a semi-permeable membrane. Sugar
loaded actively into the cells at the sugar source draws
water by osmosis from the surrounding tissue, thereby gener-
ating flow as the sugar solution is displaced downstream.
(Online version in colour.)
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band blue diodes (470 nm, Roithner LaserTechnik
GmbH, Switzerland). Fibres were attached to the plant
through custom-made, light-tight clips. A bleached
pulse was produced ahead of the detection system by a
20 mW laser of wavelength 473 nm (Dragon Laser,
China) as sketched in figure 2b. All filters and laser par-
ameters were chosen to accommodate properties of the
5(6)-carboxyfluorescein diacetate dye.
The set-up was tested by comparing flow velocity

determined by photodetection with values u ¼ Q/
(2pr2) obtained from volume flow rate Q as measured
by a microbalance (Sartorius 210DX +0.01 mg) and
the radius r of the capillary tube (figure 2c). We gener-
ated velocities from 20 to 1000 mm s21, similar to the
measured in vivo phloem velocities. The signal output
is Gaussian-shaped, figure 2d, due to the convolution
of the 4 mm wide detection window (set by the optical
fibre diameter) and the internal dispersion-widened
bleaching pulse combined with light scattering in the
plant tissues. Thus, the flow velocity u was determined
by measuring the traversal time between the two diodes
of a minimum intensity of fluorescence following the
photobleaching of the dye using a 30 s laser pulse.

The same procedure was used on the plants
(figure 2d). We note that the technique is independent
of dye loading rate and tissue light properties.

3. RESULTS

In plants, phloem transport initiates in the leaves,
where sugar is actively loaded into sieve tubes, and
ends in growth or storage zones, where sugar is
unloaded. We may think of the plant aligned with
x-axis as being divided into three zones: (i) a loading
zone (0, x , x1) of length l1 ¼ x1 (essentially
the length of the leaf); (ii) a translocation zone (x1 ,
x , x2) of length l2 ¼ x2 2 x1 (essentially the length
the plant, typically much larger than l1); and (iii) an
unloading zone (x2 , x , x3) of length l3 ¼ x3 2 x2,
where the sugar is consumed (figure 1; table 1). The
flow rate through a phloem tube depends on the osmo-
tic driving force, the radius r of the tube, its length l2
and the effective viscosity h of the fluid including the
effect of sieve plates [6,32]. The most important charac-
teristic of this relation is that, fixing all other parameters,
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Figure 2. (a) Microfluidic set-up. (i) Picture of the microfluidic device used to biomimic the phloem transport system. (ii,iii) Sche-
matic of the microfluidic device. Two microchannels are in osmotic contact through a semi-permeable membrane. One, the
bottom channel, remains filled with pure water while the other contains a sugar solution injected slowly at one end by a syringe
pump. (iv) Close-up showing the flow mechanism driving sugar translocation in the microfluidic system. (b) Sketch of the set-up
used to determine phloem flow rate in tomato petioles. (c) Comparison of flow velocities in a 1.19 mm diameter glass capillary
determined by our photobleaching technique and by a standard mass flow-rate technique (filled circles, measurements; thin line,
regression; dashed line, 95% confidence interval; thick line, one to one relation). (d) Two consecutive measurements of the relative
intensity I of the fluorescence versus time t detected by the two photodiodes shown in (b). The flow velocity u is determined by
measuring the traversal time between the two diodes, marked by arrows (A,B), of a minimum in I induced by photobleaching of
the dye using a short (less than 30 s) laser pulse. The inset shows @I/@t versus time; the intensity minima (indicated by arrows
(A,B)) are given by @I/@t ¼ 0 (black circles, sensor 1; grey circles, sensor 2). (Online version in colour.)

Optimal translocation of sugar in plants K. H. Jensen et al. 3

J. R. Soc. Interface

 on January 23, 2011rsif.royalsocietypublishing.orgDownloaded from 



it is non-monotonic in r giving maximal flow rate at a par-
ticular value denoted rc. This is easily understood since the
behaviour for large and small r is strongly dependent on
the ratio of the resistance of the flow in the channel to
the resistance (or the inverse of the permeability Lp)
across the semi-permeable membrane, a non-dimensional
quantity we call the Münch number Mü [33],

M €u ¼ 16
hLpl

2
2

r3
: ð3:1Þ

For wide tubes (Mü � 1) there is essentially no vis-
cous pressure gradient along the tube, but the efficacy
of the osmotic pump is small. On the other hand, for
narrow tubes (Mü � 1), where the osmotic driving
force is strong, the viscous pressure gradient in the
tube becomes important and the flow is impeded.

The water flow J across the membrane of the tube at
position x is determined by the local difference c(x) in
sugar concentration and in pressure p(x) across the
membrane. In a tube at temperature T,

JðxÞ ¼ Lp RTcðxÞ � pðxÞ½ � ð3:2aÞ

and together with conservation of fluid volume, this
leads to the Münch equation for the gradient of the
velocity u(x) in the translocation zone

@u

@x
¼

2Lp

r
RTc � pð Þ; for x1 , x , x2: ð3:2bÞ

Here, we assume ideality of the sugar solution, a
semi-permeable membrane with unity reflection

coefficient, and slow flow velocities relative to trans-
verse diffusion such that radial gradients are weak.
Also, we are assuming that the external pressure and
concentration do not vary—aside from hydrostatic
pressure differences owing to height variations. This is
clearly a strong simplification since of course the
phloem flow is not independent of the state of the
xylem. However, all of our phloem flow measurements
were conducted under low-light thus minimizing
transpiration-induced gradients in xylem pressure [12].
The neglect of external variations in the sugar concen-
tration is partly due to the way our model is
formulated, since the strong variations in concen-
trations between leaf and root are modelled as
internal variations in the tube.

The pressure gradient for such slow flows is given by
the Hagen–Poiseuille–Darcy relation

@p

@x
¼ �

8h

r2

� �

u ð3:2cÞ

valid even taking into account the radial, osmotic
inflow [34,35]. We verified (figure 3a) the description
(3.2a)–(3.2c) of osmotic transport by comparing
measurements of osmotically driven flows through
microfluidic channels (described in detail in [19])
with analytical solutions of the flow problem in the
limit Mü � 1 (see appendix A), under the boundary
conditions of a fixed concentration and velocity at x1

and a fixed pressure ( p ¼ 0) at x2, boundary con-
ditions used in previous experimental studies [36,37].
Fabrication of devices working in the limit Mü � 1
is difficult owing to the properties of currently avail-
able artificial membranes, channel lengths and
bonding burst pressures, and we have not been able
to realize this limit.

To examine how velocity scales with the full range
of radial and axial phloem dimensions found in plants
we formulated a simple model (see appendix A for
further details), which gives a complete overview of the
concentration and velocity profiles as a function of Mü

and the relative size of the loading, translocation and
unloading zones. In this analysis, the loading zone is
characterized by a constant sugar concentration c(x) ¼
c0, i.e. @c=@x ¼ 0, such that equation (3.2) becomes

@2u

@x2
¼ �

2Lp

r

@p

@x
¼

16hLp

r3
uðxÞ; for 0 , x , x1;

ð3:3Þ

with the boundary condition u(0) ¼ 0, i.e. a vanishing vel-
ocity at the beginning of the loading zone. Here, we have
taken the derivative of both sides of equation (3.2b) in
order to eliminate the pressure gradient using equation
(3.2c). In the translocation zone, the flux c(x)u(x) of sugar
is conserved and equal to c0u(x1), where c0 is the loading
concentration and u(x1) is the velocity at the entrance
of the translocation zone. This leads to an equation of
the form

@2u

@x2
¼ �

2LpRTc0

r

uðx1Þ

u2

@u

@x
þ

16hLp

r3
uðxÞ;

for x1 , x , x2: ð3:4Þ

Table 1. Nomenclature.

parameter symbol
value and/
or unit

length x m
viscosity h Pa s
membrane permeability Lp m s21 Pa21

length of leaf l1, Lleaf m
length of stem l2, Lstem m
length of root l3 m
radius of phloem tube r m
optimal radius rc m
water flow through tube wall J m s21

pressure p Pa
osmotic flow velocity scale U m s21

Münch number Mü dimensionless
leaf to stem length ratio a dimensionless
dimensionless sugar

concentration gradient
in root

b dimensionless

volume flux Q m3 s21

gas constant R m3 Pa K21 mol21

temperature T K
wall resistance Rw Pa m23 s
tube resistance Rt Pa m23 s
velocity u m s21

dimensionless velocity v dimensionless
dimensionless length j dimensionless
dimensionless concentration 6 dimensionless
height of channel h m
intensity of fluorescence I arb. units
time t s
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The unloading zone is characterized by a linear
decrease in the sugar concentration for x2 , x , x3,
such that both the sugar concentration and the velocity
vanish at the end of the tube, c(x3) ¼ 0 and u(x3) ¼ 0.
This introduces a coefficient b ; ðl2=c0Þð@c=@xÞ,
which can be determined only when we know the con-
centration cðx2Þ at the entry of the unloading zone.
It can also be expressed in terms of the velocities at
the entry of the translocation and unloading zones
(equations (A 8a) and (A 8b)). In the unloading zone,
equation (3.2) for u thus becomes

@2u

@x2
¼ � 2LpRTc0

rl2
bþ 16hLp

r3
uðxÞ;

for x2 , x , x3: ð3:5aÞ

Our analysis of these equations is carried out in
appendix A. An important simplification can be acheived
by non-dimensionalization, introducing a non-dimen-
sional length j (scaled by the length l2 of the plant) and
a non-dimensional velocity v scaled by the naive osmotic
velocity U ¼ ð2l2=rÞLpRTc0 and a non-dimensional
concentration 6 scaled by c0. This gives

@2
j v ¼ @j6þM €uv; ð3:5bÞ

where the dimensionless Münch number Mü is given by
equation (3.1).

This analysis gives us a complete overview of the
concentration and velocity profiles as a function of
Mü. Of special interest is the mean velocity ū2 in the
translocation zone, which sets the transit time from
one end of the plant to the other. In the limit of very
wide tubes, the bulk of the resistance lies in the trans-
port of water across the membrane in the loading and
unloading zone with a resistance Rw ¼ ð2prl1 LpÞ�1.
Writing the volume flux Q ¼ ūpr2 as Q ¼ Dp/Rw,
with Dp ¼ RTc0, we find that the average flow velocity
is �u � RTc0 Lpl1=r. A more thorough analysis of

the problem, assuming for simplicity that l3 ¼ l1,
shows that

�u ¼
ffiffiffi

3
p

� 1
� �RTc0 Lp

r
l1; for M €u � 1: ð3:6Þ

See appendix A for the full derivation, including a
discussion of the case l3 = l1. In the opposite limit of
very narrow tubes (Mü 	 1), we can argue in the fol-
lowing way: water moving in the system faces three
barriers. First, it must pass across the membrane in
the loading zone. Then, it has to move along the
length of the tube before finally escaping the tube
across the membrane in the unloading zone. The first
and last of these three resistances are proportional to
1/r, while the middle part scales as 1/r4. Thus, for
very small r, the resistance in the tube
Rt ¼ 8hl2ðpr4Þ�1 will dominate, giving Q ¼ RTc0pr

4/
(8hl2), and we find an average flow velocity

�u ¼ RTc0

8hl2
r2; for M €u 	 1: ð3:7Þ

Figure 3b shows the numerical simulations on the full
system of equations with the two expressions (3.6) and
(3.7) shown as dashed and full lines, respectively. The
radius (rc) yielding the maximum velocity can be esti-
mated as the intersection of these two curves, giving
M €u / l2=l1 or

rc ¼ 8
ffiffiffi

3
p

� 1
� �

hLp

h i 1=3
l

1=3
1 l

1=3
2 : ð3:8Þ

Under the assumption that swift translocation of the
phloem provides a competitive edge, it would thus be
desirable for plants to have sieve tube radii close to
the value rc predicted by equation (3.8).

To explore the design constraints facing the long-
distance transport in phloem, and to determine if real
plants follow the scaling relation described by equation

0.5 1.0 1.5 2.0 2.50

5

10

15

20(a) (b)

x (cm)

u
 (

µ
m

s–
1
)

u-
 (

µ
m

s–
1
)

100 µm channel

200 µm channel
l1/l2 = 0.10

l1/l2 = 0.25

l1/l2 = 0.50

10 20 30 400

200

400

600

800

1000

r (µm)

Figure 3. (a) Flow velocity u(x) measured in 100 mm (white region) and 200 mm (grey region) deep and 200 mm wide micro-
channels. The dashed and solid lines are fits to equation (A 4). The sugar concentrations used are 21 mM (open circles) and 13
mM (filled circles). The horizontal error bars indicate the resolution of the microscope stage, while the vertical error bars were
obtained via least squares error propagation from the velocity profile. (b) Numerically computed mean velocity ū (dots connected
by lines) as a function of radius r assuming Lp ¼ 5 
 10214 m (Pa s)21, l1 ¼ (0.1, 0.25, 0.50) m, l2 ¼ 1 m, RTc0 ¼ 0.54 MPa, and
h ¼ 5 
 1023 Pa s. The solid and dashed lines show the scaling laws for u predicted by equations (3.6) and (3.7), respectively.
These clearly show that ū grows as r2 for small r while it decays as 1/r for large r. At the intersection between the two lines
given by equation (3.8) the transition between the two types of flow occurs and the velocity is at a maximum (filled circles with
solid lines, numerics; solid lines, Mü� 1; dashed lines, Mü	 1).
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(3.8), we examined phloem dimensions and transport
velocities in real plants in petioles or stems of six species
using our novel, non-invasive, dye-tracing method.
Results, figure 4a, show that phloem velocities vary as
much as a factor of 50, from 3 mm s21 (0.01 m h21) in
Tradescantia virginiana L. to 150 mm s21 (0.6 m h21)
in Solanum lycopersicum L., values consistent with the
range of velocities reported using other techniques
[10,12]. Comparison of velocities measured in plants
with the prediction of the proposed model, figure 4a
and equation (A 22), shows that the model reproduces
the observed velocities across a wide range of species
thus validating the proposed assumptions. The agree-
ment between in vivo measurements (figure 4a) and
theory derived from the analysis of osmotic-driven flow
in synthetic channels (figure 3a) suggests that phloem
flow rates are controlled by the same physical principles
in plants as in biomimicking devices—at least in the
low Mü limit, to which our microfluidic devices are so
far limited—despite the anatomical complexity present
in the living systems [38].

The proposed scaling law allows for the calculation of
a speed-optimized radius when both loading zone and
translocation length are known. Thus, we compared
published data on sieve tube radii with the optimal
radii calculated from equation (3.8) using leaf size as
the proxy for the loading and unloading zone (l1) and
plant length as the proxy for the translocation
length (l2). The plant selection consisted of a diverse
range of species, encompassed 2.5 orders of magnitude
in length, and included small rosettes, grasses, vines
and trees. We found good agreement between measured
radii and the scaling relationships of l1 and l2 predicted by
equation (3.8), indicating thewidespread optimization of
phloem dimensions for rate of translocation, figure 4b.
Further, we found that the scaling pre-factor in equation
(3.8) agrees well with the predicted optimum radii using
published values of the membrane permeability Lp and

the effective viscosity h. The effects of the increased
flow resistance owing to the flow through the sieve
plates are taken into account bymultiplying the viscosity
h ¼ 1.85 mPa s of a typical plant sugar solution [10] by a
so-called sieve plate factor, which typically is between 2
and 5 [6,29], for which we have assumed the value 2.7
thus arriving at the effective viscosity of 5 mPa s used
in our simulations.

4. DISCUSSION

Plants are reliant on efficient and robust distribution
systems made of microchannels to transport water,
energy and signals over distances that range from only
a few centimetres to many tens of metres. Building on
the basic physical laws for osmosis, we have developed
a simple, generic model for osmotically driven flow in
a phloem tube with semi-permeable membranes at the
wall. A single scaling law based on optimization for
this theoretical translocation speed predicts phloem
dimensions relative to the lengths of the loading (leaf)
and unloading (root) zones and the translocation
distance (stem). The existence of this optimization
underscores the role of the phloem as a major informa-
tional pathway for molecular signal transduction across
the plant body. It also explains why a smaller plant
with large leaves (e.g. Cucurbita) may have larger
diameter sieve tubes than found in many trees.

We have shown that our simple model for phloem
translocation in plants leads to an understanding
of the dependence between the speed of phloem flow
and the characteristic dimensions of the plant. The
assumption that plants have evolved to optimize
their phloem speed then led us to a scaling relation
between radius r and the characteristic lengths as
r � ðALleafLstemÞ

1=3, where the constant A (with dimen-
sions of length) is proportional to hLp, the product of
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Figure 4. (a) In vivo determined phloem flow rates (black dots) in petioles (one stem) of six species plotted as a function of
phloem radius as later determined on the same plant material. The velocities vary as much as 2.5 orders of magnitude, from
3 mm s21 (0.01 m h21) in T. virginiana to 150 mm s21 (0.6 m h21) in Solanum lycopersicum. The model predictions (grey dots)
calculated from equations (3.5)–(3.7) agree well with the observed data. The error bars indicate the mean and standard errors
of N ¼ 3–8 measurements. (b) Log–log plot of l1l2 versus measured radius r (black dots) for 20 plants of sizes ranging from r ¼

1 mm (T. virginiana) to r ¼ 40 mm (Cucurbita pepo) and l2 ¼ 0.1 m (T. virginiana) to l2 ¼ 40 m (Robinia pseudoacacia). The
prediction of equation (3.8) (thick black line) with parameters Lp ¼ 5 � 10214 m (Pa s)21 and h ¼ 5 � 1023 Pa s (kinematic
viscosity ¼ 1.85 � 1023, sieve plate factor ¼ 2.7) is plotted along with the best fit to the plant data (dashed line, slope
2.6+0.3), showing that the scaling relationship predicted by equation (3.8) falls within the 95% confidence interval
(dotted lines). The error bars indicate the standard error in the radius r and lengths l1 and l2. See table 2 for further details
on the species used.
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the viscosity of the flow and the permeability of
the membrane, a prediction which is supported by
field-data from plants. It should be noted that the
optimization over the radius is done while fixing the
lengths Lleaf and Lstem of the plant. The corresponding
optimal velocity can approximately be obtained by
inserting r ¼ rc, given by equation (3.8), into equation
(3.6) or (3.7), giving

uopt ¼ aRTc0 L
2=3
p h�1=3L

2=3
leafL

�1=3
stem ;

where a is a numerical constant. Thus an increase of
the leaf size (with fixed stem size) will lead to an
increase in the velocity, while an increase of the stem
size (with fixed leaf size) will lead to a decrease. We
thus assume that these external length scales are set
by other biological constraints such as the cost of
building, supporting and maintaining photosynthetic
surfaces.

The challenges faced by the phloem in moving
photo-assimilates over long distances led to the sugges-
tion that the axial pathway is compartmentalized into
‘relays’, such that solutes are actively reloaded at dis-
crete points [39]. Relays increase the rate of phloem
transport, but require additional inputs of energy.
Although no empirical evidence exists for relays, their
potential contribution to phloem transport has been
widely considered [32,40]. Our analysis, which uses the
length of the entire plant as proxy for l2, is not consist-
ent with the presence of relays, suggesting that axial
compartmentalization is not a necessary design feature
for efficient phloem transport.

Plants, which span tens of metres and proliferate in
hundreds of cubic metres of soil and air, experience
diverse and often rapid fluctuations in environmental
conditions. To respond to such environmental hetero-
geneity requires the rapid distribution of both energy
and information in the form of chemical signals to
enhance plant productivity and competitiveness. The
phloem provides uninterrupted coupling between most
distal parts of all plants and links plants’ multi-
branched dendritic structure into a single functional
microfluidic system [41]. Concordance between our
theoretical model, studies of osmotically driven flow in
synthetic phloem, and measurements of flow and geo-
metric properties made on real plants gives confidence
in the Münch theory of phloem flow and suggests that
plants are optimized for rapid translocation of sugar,
thereby gaining a competitive edge in terms of their
ability to respond rapidly to environmental stimuli.
Our analysis provides a general scaling law for phloem
dimensions that maximizes translocation velocity,
suggesting that evolutionary selection on the efficacy
of signal transduction has shaped the structure and
function of this supracellular transport pathway.

We thank Howard Stone and Matthew Thompson for
comments on the manuscript. This work was supported by
the Danish National Research Foundation (grant no. 74),
the Andrew W. Mellon Foundation and the Materials
Research Science and Engineering Centre at Harvard
University.

APPENDIX A

Analysis of the Münch equation (3.2b) is facilitated by
making it dimensionless using the following rescaling
of length, velocity and concentration:

x ¼ j l2; u ¼ Uv ¼
2l2
r
LpRTc0

� �

v and c ¼ 6 c0;

ðA1Þ

whereby the non-dimensional Münch equation
becomes

@2
j v ¼ @j6þM€uv; for 0 , j , j3: ðA2Þ

The three zones are the loading zone
(0 , j , j1) of length l1 ¼ a ¼ l1=l2, the transloca-
tion zone (j1 , j , j2) of length l2 ¼ 1, and the
unloading zone (j2 , j , j3) of length
l3 ¼ a ¼ l1=l2.

The zero-end-pressure phloem transport model. In
the literature (see [6] and references therein), the
correct choice of boundary conditions remains unclear,
primarily due to lack of knowledge of the exact physio-
logical processes in the loading and unloading zones.
This has led to a large class of models all based on
equation (A 2), but with widely different boundary
conditions. The method applied by most workers
has been to either ignore the loading and unloading
zones by setting simple conditions at the edges of
the translocation zone or to use specific loading and
unloading functions. A special case of these models
examined by Hölttä et al. [40] is to set the pressure
at the end of the translocation zone to a fixed
value, say p ¼ 0. In the microfluidic experiments, we
have tested this limit experimentally, and we now
consider the solution to equation (A 2) under these
conditions.

In the microfluidic channel zone, here defined as 0 ,

j , 1, equation (A 2) becomes

@2v

@j2
¼ �

v0

v2

@v

@j
þM€uv; for 0 , j , 1; ðA3aÞ

with the boundary conditions

vð0Þ ¼ v0 ðA3bÞ

and

pð1Þ ¼ 0: ðA3cÞ

In the experiments Mü is very small, so combining
Mü ¼ 0 with equation (A 3b) yields

vðjÞ ¼ v
1=2
0 v0 þ 2jð Þ1=2; ðA4Þ

in good agreement with the experimetal results
(figure 3a).

The loading/unloading phloem transport model.
We now return to the more general three-zone
model of the phloem translocation pathway
(figure 1). We assume that the loading and unload-
ing zones are of equal size (l1 ¼ l3), that the
concentration c is constant and equal to c0 in the
loading zone and that the concentration profile is
linearly decreasing in the unloading zone. The quantity
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we wish to calculate is the mean flow velocity ū in the
translocation zone as a function of Mü and a ¼ l1/l2.
The boundary conditions on the velocity v is that it is
zero at the boundaries,

vð0Þ ¼ vðj3Þ ¼ 0: ðA5Þ

In the loading zone, the concentration 6 is assumed to be
constant and equal to unity,

61ðjÞ ¼ 1; for 0 , j , j1: ðA6Þ

In the translocation zone,we have sugar flux conservation,

v2ðjÞ62ðjÞ ¼ 63ðj2Þv3ðj2Þ ¼ v2ðj1Þ; for j1 , j , j2:

ðA7Þ

In the unloading zone, we assume that the concentration
profile is linear and of the form

63ðjÞ ¼ �bðj� j3Þ; for j2 , j , j3; ðA8aÞ

where b is determined from sugar conservation (A 6) and
(A 7) in the translocation zone,

b ¼ v2ðj1Þ
v2ðj2Þðj3 � j2Þ

: ðA8bÞ

The equations of motion are

@2
j v1 ¼ M €uv1; for 0 , j , j1; ðA9aÞ

@2
j v2 ¼ � v1ðj1Þ

v22
@jv2 þM €uv2; for j1 , j , j2;

ðA9bÞ

and @2
jv3 ¼ �bþM €uv3; for j2 , j , j3: ðA9cÞ

Here, the indices on v indicate the domain to
which it belongs. These equations cannot be solved
analytically for arbitrary values of Mü and a; how-
ever, analytical solutions can be found in the limits
Mü � 1 and Mü � 1. These analytical solutions
allow us to calculate the mean flow velocity ū as a
function of the parameters in the problem. Keeping,
say, l1 and l2 fixed while varying the tube radius r,
we find that the analytical solutions allow us to
determine the point in the parameter space
where the average translocation speed ū is at a
maximum.

Solution for Mü � 1. In this limit, the equations of
motion (A 9a)–(A 9c) are

@2
jv1 ¼ 0; for 0 , j , j1; ðA10aÞ

@2
jv2 ¼ � v1ðj1Þ

v22
@jv2; for j1 , j , j2; ðA10bÞ

and @2
jv3 ¼ �b; for j2 , j , j3; ðA10cÞ

with the boundary conditions v1(0) ¼ 0 and v3( j3) ¼ 0.
The solutions can be written as

v1ðjÞ ¼ C1jþ C2; ðA11aÞ

jðv2Þ¼
v1ðj1Þ
C5

v2

v1ðj1Þ
� 1

C5
log

1þðC5v2=v1ðj1ÞÞ
1þC5

� �� �

þC6

ðA11bÞ

and v3ðjÞ ¼ � 1

2

v2ðj1Þ
v2ðj2Þ

1

ðj3 � j2Þ
ðj� j3Þ2

þ C3ðj� j3Þ þ C4: ðA11cÞ

By demanding that the velocity and its derivative
should be continous at j ¼j1 and j ¼j2, and that
a� 1, we find the six C coefficients above to be

C1;C2;C3;C4;C5;C6ð Þ ¼
�

2�
ffiffiffi

3
p

; 0; 1�
ffiffiffi

3
p

; 0;

1�
ffiffiffi

3
p

; l1b1þ
ffiffiffi

3
p

c =2
�

:

ðA12Þ

The mean velocity �v is then

�v ¼
ffiffiffi

3
p

� 1

2
l1 �

9� 5
ffiffiffi

3
p

8
l21

� 0:366 l1 � 0:043 l21; ðA13Þ

which in dimensional units for small values of l1, i.e.
l1 � l2, becomes equation (3.6).

Solution for Mü � 1. The equations of motion are

@2
jv1 ¼ M €uv1; for 0 , j , j1; ðA14aÞ

@2
jv2 ¼ � v1ðj1Þ

v22
@jv2 þM €uv2; for j1 , j , j2

ðA14bÞ
and @2

j v3 ¼ �bþM €uv3; for j2 , j , j3; ðA14cÞ

with the boundary conditions v1(0) ¼ 0 and v1( j3) ¼ 0.
In zones 1 and 3, the solutions are

v1ðjÞ ¼ A1 sinh
ffiffiffiffiffiffiffiffi

M €u
p

jþ A2 cosh
ffiffiffiffiffiffiffiffi

M €u
p

j;

for 0 , j , j1 ðA15aÞ

and

v3ðjÞ ¼ A3 sinh
ffiffiffiffiffiffiffiffi

M €u
p

ðj� j2Þ

þA4 cosh
ffiffiffiffiffiffiffiffi

M €u
p

ðj� j2Þ þ
b

M €u
; for j2 , j, j3:

ðA15bÞ

Here, A2 ¼ 0 because of the boundary condition at
j ¼ 0, while A3 and A4 are determined by the continuity
condition on v and @jv at j ¼ j2:

A3 ¼
1
ffiffiffiffiffiffiffiffi

M €u
p @jv2ðj2Þ ðA15cÞ

and

A4 ¼ v2ðj2Þ �
b

M €u
: ðA15dÞ
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Figure 5. Comparison between analytical and numerical solutions of the non-dimensional phloem flow problem. (a) Numerically
computed velocity v (circles) as a function of position j for Mü ¼ 0, 1, 10, 100, j1 ¼ 0.3, j2 ¼ 1.3 and j3 ¼ 1.6. The analytical
solutions for the velocity (solid lines) given in equations (A 11a–c), (A 15a,b) and (A 18) are shown for comparison. (b) Numeri-
cally computed concentration 6 (circles) as a function of position j for the same parameters as in (a). The analytical solutions for
the concentration (solid lines) were found using the solutions for v given in equations (A 11a–c), (A 15a,b) and (A 18) and the
conditions given in equations (A 6), (A 7) and (A 8a,b). Open circles, numerics; solid lines, analytics.

Table 2. Plant data used in figure 4 for phloem type P (primary ¼ 1, secondary ¼ 2). Sieve lumen radius r, translocation zone
length l2 (plant length), loading zone length l1 (leaf size) and measured flow velocity are given with corresponding standard
deviations. The Münch number Mü and the ratio l1/l2 were calculated using Lp ¼ 5 � 10214 m s21 Pa21, h ¼ 5 � 1023 Pa s.
Estimates of l1 and l2 follow general knowledge of plants available at online databases (USDA plant database) and visits to the
Harvard University Herbaria. References are given in square brackets.

species habit P r (mm)
Dr

(mm)
l2
(m)

Dl2
(m)

l1
(m)

Dl1
(m)

u

(mm s21)
Du

(mm s21) Mü l1/l2

Beta vulgaris herbaceous
dicot

1 5.0
[42–44]

1.0 0.3 0.06 0.10 0.02 2.88 0.33

Yucca flaccida woody
monocot

1 10.0 [44] 2.0 1.0 0.2 0.5 0.1 4.00 0.50

Sabal palmetto tree
monocot

1 16.5 [44] 1.7 20 4 0.5 0.1 35.6 0.025

Tilia americana tree dicot 2 15.0 [44] 1.5 20 4 0.10 0.02 474 0.0050
Robinia pseudoacacia tree dicot 2 10.0 [44] 1.0 40 8 0.030 0.006 6400 0.00075
Vitis vinifera vine 2 18.0 [44] 4.0 20 4 0.10 0.02 274 0.0050
Gossypium

bardadense

herbaceous
dicot

1 11.0 [44] 2.2 1.5 0.3 0.15 0.03 6.76 0.10

Pinus strobus tree conifer 2 10.9 [45] 1.0 20 4 0.10 0.02 1240 0.0050
Festuca arundinacea herbaceous

monocot
1 3.0 [46] 0.6 0.30 0.06 0.05 0.01 13.3 0.17

Cucurbita pepo creeper
dicot

2 40.0 [47] 8.0 7.0 1.4 0.30 0.06 3.06 0.043

Glycine max herbaceous
dicot

1 3.7a 1.0 0.40 0.08 0.10 0.02 145 46 12.6 0.25

Tradescantia

virginiana

herbaceous
monocot

1 1.2a 0.4 0.10 0.02 0.020 0.004 4.13 1.64 23.1 0.20

Cucumis sativus creeper
dicot

1 6.3a 1.4 0.60 0.12 0.10 0.02 149 54 5.76 0.17

Cucurbita maxima creeper
dicot

1 12.3a 2.7 4.0 0.8 0.20 0.04 62.9 48.4 34.4 0.050

Cucurbita maxima creeper
dicot

2 16.6a 2.6 4.0 0.8 0.20 0.04 48.2 29.3 14.0 0.050

Solanum

lycopersicum

herbaceous
dicot

1 5.2a 0.8 0.40 0.08 0.10 0.02 162 48 4.55 0.25

Anacyclus purethrum herbaceous
dicot

1 2.1 [10] 0.6 0.30 0.06 0.010 0.002 38.9 0.033

Ecbalium elaterium creeper
dicot

1 15.0 [10] 3.0 3.0 0.6 0.20 0.04 10.7 0.067

Eragostis plana herbaceous
monocot

1 3.0 [48] 0.6 0.2 0.04 0.10 0.02 5.93 0.5

Heracleum

mantegazzianum

herbaceous
dicot

1 9.0 [49] 1.8 2.0 0.4 0.20 0.04 21.9 0.1

aRefers to our own measurements.
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In the translocation zone, we shall solve the equation

@2
j v2 ¼ � v1ðj1Þ

v22
@jv2 þ M €uv2; for j1 , j , j2;

ðA16Þ
by assuming that v2 can be written as v2 ¼ v0

2/Mü,
where v02 is of the order of unity. Inserting this, and
keeping only terms of order Mü and Mü2, we get that

M €uv1ðj1Þ@jv02 ¼ v302 : ðA17Þ

Since we must have that v2( j1) ¼ v1( j1), we get that

v2ðjÞ ¼
v1ðj1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2M €uv1ðj1Þðj� j1Þ
p ;

for j1 , j , j2: ðA18Þ

Note that this solution does not fulfil the condition
@jv2ðj1Þ ¼ @jv1ðj1Þ. This is due to the fact that we
have ignored the term @2

jv2. However, this turns out
to play very little role when comparing the analytical
solution with the numerical solution of the full problem.
Using the continuity conditions at j ¼ j1 and j ¼ j2,
the mean translocation velocity �v in the translocation
zone is found to be

�v ¼ 1

M €u
; ðA19Þ

which in dimensional units becomes equation (3.7).
Representative examples of numerical solutions for the
dimensionless velocity and concentration fields together
with the analytical solutions for small and large Mü are
shown in figure 5.

Different sizes of the loading and unloading zone. If
l1 = l3, we find that for Mü � 1 the solution (A 19)
remains unchanged, while for Mü � 1 the mean
velocity instead of equation (A 13) now is given by

�v ¼ 1

2
l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2x
p

� 1
� �

; ðA20Þ

where x ¼ l3/l1. Thus the scaling relations are not sig-
nificantly affected as long as x is of the order of unity.

Optimal radius of the phloem tubes. To maximize
the flow velocity, a plant would presumably operate near
the maximum in the u–r diagram shown in figure 3b.
Equating the two expressions (3.6) and (3.7) for ū in the
limits Mü � 1 and Mü �1 gives the following estimate
for the optimal radius rc:

r3c ¼ 8ð
ffiffiffi

3
p

� 1ÞLphl1l2: ðA21Þ

Phloem translocation velocity. Figure 4a shows the
velocities �u measured experimentally (black circles)
using the method described in figure 2. To compare
our model with the experimental data, the non-
dimensional mean velocity �v depending on Mü and a
was first calculated numerically from equations (A 5)–
(A 9c) using the data for r and l2 shown in table 2.
Then, the dimensional mean velocity ū was found from

�uðM€u;aÞ ¼ 2l2

r
LpRTc0�vðM€u;aÞ; ðA22Þ

with Lp ¼ 5
 10214 m (Pa s)21 chosen as the representa-
tive value and RTc0 ¼ 0.54 MPa chosen to fit the model
to the experimental value forS. lycopersicum.Thesepredic-
ted values for ū (grey circles) are also plotted in figure 3b
showing good agreement between theory and experiment.
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