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Abstract

The present PhD thesis is a contribution to the research field of induced-charge electro-
osmotic (ICEO) flows, and to the field of applied topology optimization in microfluidic
systems. The scientific efforts behind this contribution can be divided into four areas of
research. These have been summarized below.

Within the topic of ICEO, experimental studies of AC electro-osmotic pumping in
microchannels generated above an array of asymmetric electrodes have been carried out.
In the regime of low frequencies and low voltages a hitherto unobserved reversal of the
flow direction has been detected. No existing electrokinetic models published in the liter-
ature are able to account quantitatively for this observation. The impedance spectra of
these pumps have additionally been thoroughly measured and investigated in terms of an
equivalent circuit diagram. By fitting these spectra to a Bode plots, good agreement with
our model was found using realistic parameter values.

Furthermore, a conventional full nonlinear model of DC-driven ICEO flows has been
implemented and solved numerically for fully resolved electric double layers. The im-
plemented model has subsequently been validated against analytical flow results. The
generated flow calculated by this model has been compared to the same flow calculated
using a linear ICEO model, which is based on the assumption of an infinitely thin Debye
layer with an effective slip-velocity condition on the flow outside the electrical double layer.
It turns out that the slip-velocity model overestimates the flow compared to the full model.
When the Debye length increases relative to the size of the flow-generating electrode, the
discrepancy between the models increases significantly. Even when the Debye length is one
percent of the electrode size, deviations of at least 10% are to be expected. This deviation
could provide a partial explanation of the quantitative discrepancy between observed and
calculated ICEO velocities reported in the literature.

In extension of the numerical ICEO flow modeling, the third part of the thesis work
concerns the application of topology optimization on ICEO systems. This numerical op-
timization method has been implemented for a linearized AC-driven ICEO system with
fully resolved double layers. Contrary to previously optimized systems relying on bulk
properties, the ICEO is purely a boundary dependent phenomenon relying on the dynam-
ics taking place in a narrow region around the solid/fluid interface. This is of importance
for the implementation of the topology optimization method, which depends on the in-
troduction of an artificial design field describing the transition from liquid to solid in the
governing equations. This extended model has successfully been established and validated
against the conventional model without the design field. The model has subsequently been
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utilized to optimize ICEO structures for their ability to generate pumping, i.e. maximize
the net induced flow rate, perpendicular to the applied electrical field. Once found, the
performance of the topology optimized geometries has been validated by transferring them
to the conventional electrokinetic model without the artificial design field. Compared to
simpler geometric structures previously utilized to generate pumping, the performance of
the topology optimized geometries is superior.

Finally, the topology optimization method has also been applied to a chemical micro-
reactor system. An existing implementation of this method in a simplified reaction model
has been extended to include a realistic model for the reaction kinetics of a CO oxidation
process supported by a platinum catalyst. The distribution of catalyst in a reactor cham-
ber has subsequently been topology optimized with the goal of maximizing the overall
reaction rate. An experimental setup for verifying these numerical optimization results
has been prepared by incorporating the optimized catalyst structures in an existing mi-
crofabricated reactor. Reactor devices have been fabricated and the experimental testing
of the system is progress at the time of writing.



Resumé

Den foreliggende ph.d.-afhandling er et bidrag til forskningen indenfor elektro-osmotiske
strømninger via ladningsinduktion (ICEO) samt topologi-optimering anvendt på mikroflu-
ide systemer. De videnskabelige bestræbelser der ligger til grund for denne afhandling kan
inddeles i fire forskningsmæssige kategorier og er beskrevet således i det følgende.

Indenfor ICEO-området er der udført eksperimentelle undersøgelser af AC-elektro-
osmotisk væskepumpning på mikroskala, som frembringes med en række asymmetriske
elektroder placeret fortløbende i en mikrokanal. For lave frekvenser og spændinger er der
i systemet konstateret væskestrømninger modsat rettet den teoretisk forudsagte strømn-
ingsretning, hvilket aldrig tidligere har været observeret. Til dato er der ikke blevet
publiceret elektro-kinetiske modeller som kan redegøre for denne effekt. Herudover er der
blevet foretaget udførlige målinger af impedansspektrummet for denne vekselspændings-
elektro-osmotiske væskepumpe, og de herved fremkomne data er dernæst analyseret ved
hjælp af et ækvivalenskreds-diagram. Anvendes realistiske parameter-værdier er der ved
at tilpasse det resulterende spektrum til et Bode plot opnået god overensstemmelse med
vores model.

Desuden er en konventionel ikke-lineær model af jævnstrøms-drevne ICEO væskestrømme
blevet implementeret og løst numerisk for fuldt opløste elektriske dobbeltlag. Oftest an-
tages det elektriske dobbeltlag at være uendelig tyndt i den fysiske modellering af ICEO-
systemer, men ved at medtage de elektriske dobbeltlag i en mere realistisk form øges
modellens nøjagtighed, idet elektrokinetiske effekter i systemets randområder inkluderes
i de numeriske beregninger. Modellen er dernæst blevet valideret ved at sammenholde
de numeriske løsninger med analytiske beregninger af samme modelsystem. Endvidere er
modellens estimater af væskestrømmene blevet sammenholdt med tilsvarende estimater fra
en lineær ICEO-model, som er baseret på antagelsen om et uendeligt tyndt Debye-lag med
en effektiv slip-hastigheds-betingelse på væskestrømmen udenfor det elektriske dobbeltlag.
Det har vist sig at den lineære model overestimerer styrken af væskestrømmene sammen-
lignet med den ikke-lineære model. Når forholdet mellem Debye-længden og dimension-
erne for den væskestrøms-inducerende elektrode bliver større, forøges uoverensstemmelsen
mellem modellerne markant. Selv når Debye-længden er en procent af elektrodens bredde
kan der forventes en afvigelse på mindst 10 procent. Denne afvigelse kunne være en mulig
forklaring på den kvantitative uoverensstemmelse mellem observerede og beregnede ICEO
strømningshastigheder som er blevet rapporteret i litteraturen.

I forlængelse af den numeriske modellering af ICEO-systemer, og som den tredje del
af arbejdsgrundlaget for denne Ph.d.-afhandling, er topologi-optimering blevet anvendt
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på forskellige ICEO-modelsystemer. Den numeriske optimeringsmetode er blevet im-
plementeret for et lineariseret vekselspændings-drevet ICEO-system med fuldt opløste
dobbeltlag. I modsætning til tidligere optimerede systemer, hvor systemets materiale-
egenskaber var afgørende for optimeringsprocessen, afhænger optimeringen af ICEO-systemet
udelukkende af dynamiske randeffekter, der optræder i en snæver region hvor væsken
i systemet mødes med det faste stof der afgrænser systemet. Dette forhold er vigtigt
for implementeringen af topologi-optimerings-metoden, idet implementering er baseret på
indførelsen af et kunstigt design-felt som beskriver overgangen fra væske til fast stof i
modellens grundlæggende ligninger. Denne udvidede model er med succes blevet etableret
og dernæst valideret på grundlag af en konventionel model uden et design-felt. Modellen
er efterfølgende blevet anvendt til at optimere ICEO-strukturers evne til at generere en
effektiv væskestrøm i mikrokanalens længderetning og således vinkelret på det påtrykte
elektriske felt. De fremkomne strukturers pumpeeffektivitet er, i lighed med selve mod-
ellen, blevet efterprøvet ved at indsætte strukturerne i en konventionel elektrokinetisk
model uden det kunstige design-felt. Sammenlignet med mere simple geometriske struk-
turer tidligere anvendt til at generere væskestrømme i mikrokanaler, er de optimerede
strukturers pumpeeffektivitet markant bedre.

Det sidste arbejdsområde i forbindelse med denne afhandling har været anvendelsen
af topologi-optimerings-metoden på en kemisk mikroreaktor. En allerede implementeret
optimeringsmetode anvendt på et simplificeret kemisk modelsystem er blevet udbygget
således at modellen inkluderer en realistisk beskrivelse af reaktionskinetikken for en CO-
oxidationsproces katalytisk understøttet af en platin-belagt overflade. Fordelingen af kat-
alytisk materiale i reaktionskammeret er dernæst blevet optimeret med henblik på at
maksimere den samlede reaktionsrate. For at kunne efterprøve de resulterende katalytiske
strukturers evne til at fremme oxidationen af CO sammenlignet med et konventionelt
struktureret reaktionskammer, er der blevet lavet en eksperimentel opstilling, som anven-
der den optimerede fordeling af katalytisk materiale i en eksisterende renrumsfabrikeret
mikroreaktor. Fabrikationen af disse modificerede reaktor-enheder er blevet udført med
succes og systemerne afprøves nu i skrivende stund.
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ω Angular frequency rad s−1

τ0, τc RC time s
V Voltage V
C Capacitance F
R Resistance Ω
γ Artificial design field -
Φ Objective function -
Ω Computational domain



Chapter 1

Introduction

1.1 Background and motivation

Through technological developments in microfabrication, research within the field of lab-
on-a-chip technology has flourished and consequently brought about the need for theoreti-
cal and experimental investigations of microfluidic systems. The usual liquid manipulation
techniques, exploiting turbulent mixing and pressure driven flow, are often inefficient or
even not viable for the low-Reynolds-number laminar flows realized in microfluidic de-
vices. Yet, for micro-device length scales, i.e. 10 µm-100 µm, purely diffusive mixing is in
most cases very time-consuming and thus impractical. Thus, it is desirable to introduce
alternative fluid manipulation methods that preferably can be integrated directly with the
microfluidic devices.

Demonstrated in several experiments [1–7], electrokinetic phenomena in microfluidics
offer interesting alternatives to the common fluid manipulation techniques as they can be
utilized in a range of different non-mechanical tools, which are particularly efficient on
the micro-scale. For this reason, the utilization of electrokinetic phenomena for manipula-
tion of minute amounts of liquid has been extensively investigated both theoretically and
experimentally.

Although AC-driven elecro-osmotic flow has been utilized as the preferred method of
fluid propulsion in the present work, electro-osmotic flows can also be achieved using a
DC-source. However, the drawbacks of the latter technique, such as bubble-formation and
alterations of pH, makes it is less suitable for lab-on-a-chip applications [6, 8]. Naturally,
fluid motion in microchannels can also be realized by means of pressure driven flow or by
employing capillary forces, but they collectively lack the degree of flow control and flow
profile homogeneity seen for electro-osmotic flows [9, 10].

Prior research of electro-hydrodynamic effects has primarily been carried out in the
context of colloids, where experimental and theoretical studies have focused on the electric
double layer and induced dipole moments around spheres in electric fields, as reviewed
by Dukhin [11] and Murtsovkin [12]. Around the turn of the millennium, experimental
and theoretical investigations of AC-driven steady electroosmotic flow were initiated by
observations of fluid motion induced by AC electroosmosis over pairs of microelectrodes

1
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[13–16]. A theoretical prediction by Ajdari that the same mechanism would generate
flow above an electrode array [17] closely followed by an experimental verification of the
pumping mechanism by Brown et al. [1], suggested the use of the mechanism for pumping
in microfluidic devices. From a microfabrication perspective planar electrodes are easy to
fabricate and relatively easy to integrate in existing systems, and for this reason pumping
and mixing devices based on the AC electro-osmotic effect has seen great interest. Since
2000, further investigations and theoretical extensions of the models have been published
by numerous groups [2–5,18–25].

Recently, induced-charge electro-osmotic (ICEO) flows around inert, polarizable ob-
jects have been observed and investigated theoretically [7,26–30]. ICEO flow is generated
when an external electric field polarizes a solid object placed in an electrolytic solution.
The ICEO effect has been reported for both AC and DC forcing, and may be utilized in
microfluidic devices for fluid manipulation, as proposed in 2004 by Bazant and Squires [26].
Various simple dielectric shapes have been analyzed analytically for their ability to pump
and mix liquids [27]. Experimentally ICEO was observed and the basic model validated
against particle image velocimetry in 2005 [28], and later it has been used in a microfluidic
mixer, where a number of triangular shapes act as passive mixers [7].

In spite of the growing interest in the literature not all aspects of the flow-generating
mechanisms in ICEO have been explained so far. While qualitative agreement is seen
between theory and experiment, quantitative agreement is often lacking [7, 25, 31]. The
present work seeks to illuminate some of the possible reasons underlying these observed
discrepancies.

A numerical tool, topology optimization, has recently become available for the opti-
mization of channel networks in microfluidic systems. The application of the method to
microfluidics was suggested by Borrvall and Petterson [32], but topology optimization has
been used since the late eighties for improving the stiffness-to-weight ratio of mechani-
cal structures [33]. Since the initial introduction of the method, it has been extended to
various physical fields, such as photonic band gap structures in optical waveguides [34],
acoustic noise reduction [35], and as mentioned microfluidics. Topology optimization of
fluidic channel networks has in particular led to promising results within the field of mi-
croreactors. A simplified model of a catalytic reaction has indicated a 20-fold improvement
for the total reaction rate in a reactor chamber [36]. However, no experimental verification
exists for the application of topology optimization in microreactors or in microfluidics in
general.

1.2 Thesis work

Based on the observations in the previous section, the scientific efforts described in this
thesis have been focused on three individual, yet closely related, topics within the field of
microfluidics, and guided by three main objectives: Characterizing an ACEO microfluidic
pumping system, applying advanced numerical simulations to optimize the reaction rate
and throughput of a chemical microreactor as well as an ICEO microfluidic system, and
furthermore applying these tools to investigate complex ICEO phenomena. A further elab-
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oration on the experimental and theoretical work done in order to achieve these objectives
is given below.

To gain better understanding of ICEO effects, experimental investigations of an ACEO
flow generating device have been carried out; both by actual measurements of the gen-
erated pumping, but also by a basic impedance analysis of the electrical circuit. This
analysis makes it possible to establish an equivalent circuit model for the device, whereby
the purely electrical properties of the ACEO system may be understood independently
of the flow generating mechanisms. To achieve a high degree of reproducibility of the
measurements it has been chosen to use cleanroom fabricated devices for the experiments.

Furthermore, by design of a topology optimized chemical microreactor and preparation
of the experimental fabrication and testing, it has been the goal to establish a basis for
the experimental exploitation of topology optimization in microfluidics in general and in
chemical microreactors in particular. Optimization of microreactors would especially be
advantageous for chemical reactions taking place in the liquid phase, where the diffusive
mixing is slow, and in reactors where a higher degree of flow control could increase the
production safety.

It has finally been the aim to establish the method of topology optimization for ICEO
systems, and use the method to optimize the flow rate, i.e. the pumping efficiency, in
a model system. No studies have previously been carried out concerning the impact of
topology changes on the mixing or pumping efficiency in these systems, and there is a
great potential for optimization of device geometries in existing microfabricated systems.
In order to implement the topology optimization method, the electrical double layers in
the ICEO model system have been fully resolved, and thereby also provided a more precise
understanding of complex ICEO phenomena.

Central to the theoretical part of the work outlined above are the governing equations
of convection and diffusion. In addition, kinetics of chemical surface reactions are employed
in the optimization of a microreactor, whereas kinetics of surface charge distributions in an
electro-hydrodynamic system are essential in optimizing an induced-charge electro-osmotic
flow system. Hence, the optimization process for both systems is based on the intricate
balance between the coupled effects of surface kinetics and bulk-flows, representing a
trade-off between the efficacy and the throughput of the system.

The scientific approach to accomplishing the objectives presented at the beginning
of this section can conceptually be described as a circular work process, where experi-
mental data is produced and structured to form a basis for advanced numerical models
subsequently utilized in the explanation of other physical phenomena or the prediction of
unknown effects, which can then be verified experimentally.

1.3 Outline of the thesis

• Chap. 2: Basic concepts
Concepts known from the literature are presented here to provide a basis for the
subjects treated in the subsequent chapters. Especially, the electric double layer is
introduced along with the physics of induced-charge electro-osmosis. Additionally,
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the numerical tools Comsol and the topology optimization routine are presented.

• Chap. 3: Experiments on ACEO system
The experiments on a microfabricated AC electro-osmotic pump are described. The
main part of the chapter has been published in our paper [25]. The focus is on a
new observation of flow-reversal at low frequencies and low voltages, and a thorough
investigation of the impedance response of the system is also included.

• Chap. 4: DC-driven ICEO
A full nonlinear numerical model of a DC-driven ICEO flow is established and vali-
dated against analytical results. The effect of introducing a fully resolved and finite
Debye layer in the model is compared to the widely used analytical models based on
an assumption of an infinitely thin electrical double layer.

• Chap. 5: AC-driven ICEO
A linearized numerical model of an AC-driven ICEO flow is established and vali-
dated against analytical results. This model constitutes the basis for the topology
optimization of the system.

• Chap. 6: Topology optimization of ICEO system
Topology optimization is implemented in the governing equations for an AC-driven
ICEO system, and the resulting equations are validated against the conventional
numerical model. Shapes optimized for liquid pumping with ICEO are presented.
The efficiency of the resulting structures is finally compared to the that of simpler
ICEO structures and shape optimized ICEO structures.

• Chap. 7: Topology optimized chemical microreactors
A reaction kinetics model for CO oxidation on a platinum catalyst is implemented
in the governing convection-diffusion-reaction equations prepared for topology op-
timization. The platinum distribution is subsequently topology optimized in the
reactor chamber of an existing catalytic microreactor. The design of the optimized
reactors is presented and the preliminary fabrication is briefly outlined.

1.4 Publications during the PhD studies

Papers in peer reviewed journals

1. Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic
pump,
M. M. Gregersen, L. H. Olesen, A. Brask, M. F. Hansen, and H. Bruus,
Phys. Rev. E 76, 056305 (2007)

2. Topology and shape optimization of induced-charge electro-osmotic micropumps,
M. M. Gregersen, F. Okkels, M. Z. Bazant, and H. Bruus,
New J. Phys. (in press, 2009)
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3. A numerical analysis of finite Debye-length effects in induced-charge electro-osmosis,
M. M. Gregersen, M. B. Andersen, G. Soni, C. Meinhart, T. Squires, and H. Bruus,
Submitted to Phys Rev. E (2009)

Conference proceedings

1. Characterization of flowreversal in anodically boded glass-based AC electrokinetic
micropumps,
M. M. Gregersen, L. H. Olesen, A. Brask, M. F. Hansen, and H. Bruus,
MicroTAS 2007, Paris, France, October 2007, proc. vol. 1, pp. 35-37.

2. Numerical studies of nonlinear kinetics in induced-charge electro-osmosis,
M. M. Gregersen, M. Z. Bazant, and H. Bruus,
ICTAM 2008, Adelaide, Australia, August 2008.

3. Topology optimization of induced-charge electro-osmotic flows,
M. M. Gregersen, F. Okkels, M. Z. Bazant, and H. Bruus,
APS-DFD08 Meeting, San Antonio, Texas, USA, November 2008.

4. Microchannel electrokinetics of charged analytes in buffered solutions near floating
electrodes,
M. B. Andersen, T. Wolfcale, M. M. Gregersen, S. Pannathur, and H. Bruus
GAMM-2009, Gdansk, Poland, February 2009.
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Chapter 2

Basic concepts

The basics of electro-hydrodynamics, our numerical solution method and topology op-
timization is briefly summarized in the present chapter. The introduced concepts are
thoroughly described in the literature [9, 10, 37, 38] and constitute the basis for the work
presented in the subsequent chapters.

2.1 Conventional electro-hydrodynamic model

2.1.1 The electrical double layer

In general most materials will acquire a surface charge when brought into contact with an
electrolyte. The charge transfer between the material surface and the liquid occur through
various mechanisms depending on the chemical composition of the solid and the electrolyte.
In microfluidic systems this intrinsic charging of a solid surface is often modified by the
application of external electric circuits. Metallic surfaces may be directly biased or external
electric fields in the vicinity of the solid may induce an additional polarization of the solid.

Regardless of the specific charging mechanisms, an electrolyte in contact with a charged
surface will influence the distribution of nearby ions in the solution. A thin layer with a
large excess of counterions is formed near the surface to screen out the potential difference
between the surface and the bulk electrolyte. A monolayer of hydrated ions are immo-
bilized at the surface due to the strong electric forces. This layer is termed the compact
layer or the Stern layer, and has a typical width λS of two solvent molecules, see Fig. 2.1.
The remaining, mobile ions of the screening layer are subjected to thermal motions and
this part of the layer is therefore called the diffusive layer or the Debye layer. It has a
typical length of λD ∼ 10 nm, depending on the composition of the electrolyte. As one, the
compact and diffusive layers are referred to as the electrical double layer. In conventional
models of the double layer, the Stern layer is often neglected. This assumption may be
applied for low surface-potentials, when the charged surface is bare and in direct contact
with the electrolyte. Naturally, the assumption may also be applied when the exact po-
tential of the surface behind the Stern layer is not important. The potential φ at the plane
between the diffusive layer and the compact layer is called the zeta-potential φ = ζ and
may then be associated with the surface-potential when the Stern layer is neglected.
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Figure 2.1: Schematic overview of the electric double layer established in an electrolyte near a
charged surface. Positive counterions are attracted to the negatively charged solid surface, where
they form an electric double layer consisting of a compact layer of width λS and a diffusive layer of
width λD, which screens out the potential difference between the solid and the charge neutral bulk
electrolyte. The graph shows the potential decrease as a function of distance from the charged
surface.

Following the usual continuum description of the electro-hydrodynamic system, and
assuming and ideal, dilute electrolytic solution, the governing equation for the ionic con-
centrations ci is derived from the thermodynamic expression of the chemical potential for
the ith species,

µi = µ0 + Zieφ+ kBT ln
(
ci
c0

)
. (2.1)

Here e is the elementary charge, Zi is the valence number, kB is Boltzmanns constant,
T is the absolute temperature, c0 is the bulk ionic concentration for the charge-neutral
electrolyte, and µ0 is the chemical potential in the absence of the electrical potential. For
simplicity we consider a symmetrical, binary electrolyte, where the positive and negative
ions with concentrations c+ and c−, respectively, have the same charge number Z. In
equilibrium, where the electrical and thermal forces balance, the gradient of the chemical
potential is zero, and Eq. (2.1) leads to a Boltzmann distribution of the ions,

c±(r) = c0 exp
[
∓ Ze

kBT
φ(r)

]
. (2.2)

The electrostatic potential is determined by the charge density ρel = Ze(c+− c−) through
the Poisson equation

∇ · (ε∇φ) = −ρel. (2.3)

For a constant electrolyte permittivity ε, Eqs. (2.2) and (2.3) combines into the nonlinear
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Poisson–Boltzmann equation for the potential,

∇2φ(r) = 1
λ2

D

kBT

Ze
sinh

(
Zeφ

kBT

)
. (2.4)

In the Debye–Hückel limit the electrical energy is small compared to the thermal energy
Zeζ � kBT , and the Poisson–Boltzmann equation may be linearized to facilitate further
analytical studies of the fields,

∇2φ(r) = 2(Ze)2c0
εkBT

φ(r) ≡ 1
λ2

D
φ(r). (2.5)

From this linearization a typical screening length for the diffusive layer has been defined
and termed the Debye-length

λD =
√

εkBT

2(Ze)2c0
. (2.6)

It is noted, that the nonlinear Poisson–Boltzmann equation has an analytical solution for
one-dimensional systems, the Gouy–Chapmann solution,

φ(z) = 4kBT

Ze
artanh

[
tanh

(
Zeζ

4kBT

)
e−z/λD

]
. (2.7)

The electrical double layer acts as a capacitor accumulating charge in response to the
potential difference between the charged surface and the charge neutral bulk electrolyte.
The total amount of charge accumulated in the Debye layer per unit area is from Eq. (2.7),

qD =
∫ ∞

0
ρel dz = ε∂zφ|z=0 = − ε

λD

2kBT

Ze
sinh

(
Zeζ

2kBT

)
. (2.8)

The total potential drop across the Debye layer is ∆φ = ζ, thus, the differential Debye
layer capacitance becomes,

CD = dqD
dζ = − ε

λD
cosh

(
Zeζ

2kBT

)
. (2.9)

On basis of the assumption of a charge free Stern layer, the Stern layer capacitance is
assumed to be linear, CS = εS/λS, where εS is the permittivity of the Stern layer. The
double layer can be treated as two parallel capacitors in series, thus, the total differential
capacitance per unit area for the double layer becomes,

Cdl =
{

1
CS

+ λD
ε cosh[Zeζ/(2kBT )]

}−1

. (2.10)

In the Debye–Hückel limit the double layer capacitance reduces to

Cdl =
{ 1
CS

+ λD
ε

}−1
. (2.11)



10 CHAPTER 2. BASIC CONCEPTS

The ratio between the two capacitances depends on the characteristics of the specific
system and the variable parameters, such as the electrolyte concentration and the surface
potential. For low potentials and a bare electrode in direct contact with the electrolyte,
the Debye capacitance dominates the system. Conversely, if the electrode is for instance
covered with a thin oxide layer or the voltage exceeds the Debye–Hückel limit, the ratio
between the capacitances changes and the contribution from the Stern capacitance may
become significant.

The interpretation of the electric double layer as a capacitor can be exploited to an-
alyze electro-hydrodynamic systems in terms of an equivalent circuit diagram. The bulk
electrolyte acts as a linear resistor with a resistivity of 1/σ, where σ is the conductivity
of the electrolyte. Thus, the basic unit of such a system is the series coupling between
the double layer capacitance Cdl and the bulk electrolyte resistor Rb. This model of the
electro-hydrodynamic system especially becomes important when the electrode is biased
with an alternating voltage. Then the characteristic time for charging of the double layer
through the bulk electrolyte is given as the RC-time of the equivalent circuit τ0 = RbCdl.

2.1.2 Electro-hydrodynamic transport

If the equilibrium balance of the double layer is disturbed, e.g. by gradients in the external
potential or by time variations in the potential, the gradient of the chemical potential is
no longer zero. The ionic transport is then governed by particle conservation through the
continuity equation,

∂tc± = −∇ · J±, (2.12)

where J± is the flux density of the two ionic species, respectively. The flux densities J±
are functions of the chemical potential gradients,

J± = − D

kBT
c±∇µ± + vc±, (2.13)

where it is assumed that the two ionic species c± have the same diffusivity D. For dilute
solutions Eq. (2.13) reduces to the Nernst–Planck equation

J± = −D
(

∇c± + ±Ze
kBT

c±∇φ

)
+ c±v, (2.14)

where the first term expresses ionic diffusion and the second term ionic electromigration
due to the electrostatic potential φ. The last term expresses the convective transport of
ions by the fluid velocity field v. The fluid velocity field v and pressure p are governed
by the continuity equation and the Navier–Stokes equation for incompressible fluids with
a body force density fel = −ρel∇φ from the electrical forces acting on the ions in the
elctrolyte,

∇ · v = 0, (2.15a)

ρm
[
∂tv +

(
v ·∇)v

]
= −∇p+ η∇2v − ρel∇φ, (2.15b)
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where ρm and η are the fluid mass density and viscosity, respectively, both assumed con-
stant. It is noted that the pressure p comprises contributions from both the hydrodynamic
pressure and the osmotic pressure, see Sec. 4.2.3.

For a given flow solution, the dimensionless Reynolds number Re characterizes the
flow,

Re = ρmu0l0
η

, (2.16)

where u0 and l0 are the characteristic velocity and length scale of the system, respectively.
Due to the small length-scales involved in our microfluidic systems Re is generally much
less than unity, and consequently we may neglect the nonlinear inertia term in the Navier–
Stokes equation and simply solve the Stokes equation.

For simplicity and due to computational limitations we only consider two-dimensional
problems throughout the present thesis, i.e. we assume translational invariance in the
third dimension. This implies an infinite channel height in the third dimension, but for
aspect ratios of 1:100 or even smaller it remains a good approximation. However, for
systems with a stronger limitation in the third dimension, e.g. a shallow channel, we
instead apply the Heley–Shaw approximation to account for the resistance exserted by the
channel substrate and lid on the fluid flow. This additional shear is calculated by averaging
the fluid velocity over the shallow channel height h, and modeling the lowered average
velocity with an effective friction force density f = −v12η/h2 added to the Navier–Stokes
equation.

2.1.3 electro-osmosis

When an electric field is applied parallel to the charged surface, the ions in the Debye layer
electromigrate in the external electric field and drag the entire liquid along by viscous
forces. At the outer surface of the double layer a resulting effective slip velocity vslip
is thus established. For a uniformly charged flat surface at z = 0 in contact with an
electrolyte and with a tangential electric field Ex acting on the charges in the Debye layer,
the steady-state Navier–Stokes equation reduces to

0 = η∂2
zvx(z)− ε∂2

zφ(z)Ex. (2.17)

Integrating twice and exploiting that vx(0) = 0 and φ(0) = ζ at the surface, and ∂zvx = 0
and ∂zφ = 0 in the bulk electrolyte, we get

vx(z) = −εEx
η

[
ζ − φ(z)

]
(2.18)

So, the slip velocity at the outer surface of the double layer becomes

vslip = −εζ
η
Ex, (2.19)

know as the Helmholtz–Smoluchowski formula. In a generalized formulation, the Helmholtz–
Smoluchowski formula becomes

vHS = −εζ
η
E‖. (2.20)
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where E‖ is the electric field parallel to the surface. In numerical models of electro-
osmotic systems it is customary to exploit that the Debye-layer is much thinner than
the remaining geometric length scales of the system, by applying this velocity vslip as an
effective boundary condition on the fluid velocity field at the electrode surface. In general
the slip-condition based model remains valid as long as

λD
a

exp
(
Zeζ

2kBT

)
� 1, (2.21)

where a denotes the radius of curvature of the surface [37].

2.2 AC electro-osmosis
When the geometric dimensions of a device become small, e.g. in micro and nanofluidic
systems, the electro-osmotic effect may be exploited to manipulate minute amounts of
liquid. The DC electro-osmosis described above, where an electric field is applied across
the channel to drag the ions in the mobile layer along the channel wall, may be directly
applied in microfluidic systems, but requires a rather complex setup. The required voltage
is relatively high, so electrode reactions will take place and create bubbles, affect the pH-
value of the electrolyte etc. Ion exchange membranes may be used, however, the setup
will not be very compact [39]. Alternatively, AC electro-osmosis has been proposed and
investigated as an alternative flow generation method, during the last decade. In Chap. 3
experimental investigations in an AC electro-osmotic system is described, and below, the
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Figure 2.2: Schematic picture of ACEO pumping by asymmetric electrodes, shown in a side-view
of the electrolyte filled channel. The widths and spacings for each electrode pair in the electrode
array are breaking the left-right symmetry within the translation period L. The electrode array
is externally biased with a harmonic oscillating voltage difference ∆φ = 2V0 cos(ωt), which on
average drives a net Couette flow in the horizontal x-direction. However, the actual flow pattern
is very complex with flowrolls above the electrode edges. Courtesy of Laurits H. Olesen, DTU
Nanotech 2006.
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underlying mechanism for the generated flow is briefly outlined. Further discussions of
the effect can for instance be found in Refs. [17, 19,40,41].

An electrode array on the bottom of an electrolyte filled channel is externally biased
with an alternating voltage of Vext = ±V0 cos(ωt) on every second electrode, respectively.
The double layers formed above the electrode surface partially screen out the electric field,
depending on the applied frequency ω. For low frequencies the electric field is completely
screened out by the equilibrium double layer, while the double layer is absent for very high
frequencies due to the limited ionic mobility. However, for intermediate frequencies, the
screening is partial, and the ions in the diffusive layer is affected by the remaining potential
field gradients tangential to the electrode surface. Thus, an effective position dependent
slip velocity vslip(x) is established at the electrode surface giving rise to a complex flow
pattern with flowrolls above the electrode corners, as indicated at fig. 2.2.

If the left-right symmetry is broken within the electrode translation period, e.g. by
introducing asymmetric electrode widths and spacings, the resulting flow pattern, with
asymmetric flowrolls established above the electrode edges, gives rise to a net horizontal
fluid motion. This resulting flow can be modeled as a simple Couette flow, driven by
a constant fluid velocity U above the electrodes determined by time-averaging the slip
velocity established at the electrode surfaces.

It is noted, that the AC electro-osmosis and the pumping by asymmetric electrodes
may be categorized under the overall effect termed induced-charge electro-osmosis. Squires
et al. [27] suggest that ICEO should include all electrokinetic phenomena involving a
nonlinear flow component in which double-layer charge induced by the applied field is
driven by that same field.

2.3 Induced-charge electro-osmosis
Induced-charge electro-osmotic (ICEO) flow is generated when an external electric field
polarizes an object in an electrolytic solution. Counter ions in the electrolyte screen out the
induced dipole, by forming an electric double layer at the surface of the object. The ions
in the Debye layer then electromigrate in the external electric field, and an electro-osmotic
flow with a resulting effective slip velocity vslip is established around the object.

Squires and Bazant [27] have presented an analytical solution to the ICEO flow problem
around a metallic cylinder with radius a using a linear slip-velocity model in the two
dimensional plane perpendicular to the cylinder axis. The external electric field is assumed
to be infinite and parallel to the cartesian, vertical z-axis E = E0ẑ, where ẑ is the unit
vector in the z-direction. If the electric field is turned on at time t = 0, there is at
first no screening of the induced dipole field. Solving the Laplace equation ∇2φ = 0
in spherical polar coordinates (r, θ) with the boundary conditions φ(r = a) = 0 and
φ(r, θ)→ −E0r sin θ for r →∞, leads to the well-known potential field

φi(r, θ) = −E0z

[
1− a2

r2

]
. (2.22)

As time progress, ions are driven into a charge cloud near the conductor surface, and
steady-state is reached when the electric field ceases to exist within the evolved electric



14 CHAPTER 2. BASIC CONCEPTS

Dielectric

Electrolyte

Net flow

φ = +V0

φ = −V0

ρel(r)

x

z−1

0

1

Figure 2.3: Illustration of the ICEO flow generated around an asymmetric dielectric object in
an electrolyte subjected to a potential difference ∆φ = 2V0 in the vertical z-direction. Electrical
double layers are induced at the dielectric surface, shown with the color-plot of the electrical charge
density ρel(r). The induced velocity field (small red arrows) results in a net horizontal flow rate
due to the broken left-right symmetry in the system. The fields has been solved numerically by
application of the model described in Secs. 4.1 and 4.2, but with periodic boundary conditions on
the vertical side walls.

double layer. The slip-velocity model implies an infinitely thin double layer, and thus
the effective boundary condition on the potential at the conductor surface becomes r̂ ·
∇φ|r=a = 0, where r̂ is the radial unit vector. Solving the Laplace equation with this
boundary condition and still assuming that the electric field becomes parallel to the z-axis
when r approaches infinity, leads to the steady-state potential

φs(r, θ) = −E0z

[
1 + a2

r2

]
. (2.23)

Defining the ζ-potential as the potential difference between the conductor potential φ0 ≡ 0
and the potential at the outer surface of the Debye layer φs(r = a) results in

ζ(θ) = −φs(a, θ) = 2E0a sin θ. (2.24)

The radial component of the electric field is zero at the cylinder surface, while the tangen-
tial component θ̂ · E drives the ions in the Debye layer tangentially to the surface. The
total electric field is from Eq. (2.23) given as

E = −∇φs = E0 sin θ
(

1− a2

r2

)
r̂ + E0 cos θ

(
1 + a2

r2

)
θ̂. (2.25)

The Helholtz–Smoluchowski formula Eq. (2.20) finally leads to the slip velocity at the
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cylinder surface r = a,

vslip = −εζ
η

(θ̂ ·E)θ̂,

= −2U0 sin(2θ)θ̂, (2.26)

where U0 = εE2
0a/η is the characteristic velocity for the ICEO flow.

The symmetry in the problem of the conducting cylinder in an infinite electric field,
results in a spatially symmetric flow field. In the second paper on the same subject by
Squires and Bazant [29], it is shown analytically how the introduction of antisymmetry
in the system can lead to net motion. Thus, breaking the left-right symmetry of the
conducting cylinder problem by introducing a geometrical perturbation of the surface,
results in a net fluid motion parallel to the horizontal x-direction, i.e. perpendicular to
the externally applied electric field. In this way the cylinder effectively acts as a pump
that moves liquid in the horizontal direction. A numerical solution of the generated ICEO
flow around a dielectric asymmetric object is shown in Fig. 2.3 to illustrate the effect. For
illustrative purposes, the chosen Debye length is very large compared to the rest of the
geometrical length scales. The solution is calculated using the model system and equations
introduced in Secs. 4.1 and 4.2, but with periodic boundary conditions on the vertical side
walls. The top and bottom boundaries are equipotential surfaces with φ = ±V0 driving
the ICEO flow, which is shown with small arrows. The surface plot displays the electric
charge density ρel scaled according to a characteristic charge density.

Finally, it is noted that an AC field drives an identical flow, since an oppositely directed
field induces an oppositely charged screening cloud, resulting in the same net flow.

2.3.1 Finite Debye length for metalic cylinder

For a Debye layer of finite width at the cylinder surface it is possible to write down the
potential and ionic concentration fields. Assuming the Debye–Hückel approximation to be
valid, the ionic concentration may be linearized as

c± = c0 ∓ c1, (2.27)

where the deviation c1 from the background concentration is minute. Furthermore, assum-
ing the effect from convection to be vanishing the last term of Eq. (2.14) may be neglected
and the Nernst–Planck equation becomes

J± = ±D∇c1 ∓D
Zec0
kBT

∇φ. (2.28)

The conservation of ions is given by Eq. (2.12), which in steady-state becomes ∇ ·J± = 0.
Combined with the poisson equation (2.3) and the Debye-length Eq. (2.6) we get

∇2c1 = 1
λ2

D
c1. (2.29)

Using that the potential approaches φ(r, θ) → −E0r sin θ and that the concentration
deviation c1 vanishes for r → ∞, the solution of Eq. (2.29) can be expressed by the
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decaying modified Bessel function of order 1 K1. Knowing the concentration c1, the
potential is given by the Poisson equation and the ionic current densities are found by the
Nernst–Planck equation. At the conducting cylinder surface r = a the potential is zero
φ(a, θ) = 0, and the ionic current densities vanish in the radial direction J · r̂ = 0. Given
these boundary conditions, the final expressions for the concentration and potential fields
becomes

c1(r, θ) = c0
2ZeE0a

kBT

K1
(
r
λD

)

K1
(
a
λD

) sin θ, (2.30a)

φ(r, θ) = −E0a



r

a
+ a

r
− 2

K1
(
r
λD

)

K1
(
a
λD

)


 sin θ. (2.30b)

The tangential component of the electric field is then given as E‖ = −θ̂ ·∇φ, and the
charge density is found from ρel = Ze(c+ − c−) = −2Zec1,

E‖(r, θ) = E0


1 + a2

r2 − 2a
r

K1
(
r
λD

)

K1
(
a
λD

)


 cos θ, (2.31a)

ρel(r, θ) = −2 εE0a

λ2
D

K1
(
r
λD

)

K1
(
a
λD

) sin θ, (2.31b)

2.4 Numerical implementation of governing equations

For our numerical analysis we use the commercial numerical finite-element modeling tool
Comsol [42] controlled by scripts written in Matlab [43]. We use second-order Lagrange
elements for all the fields except the pressure, for which first-order elements suffices. In
the following, the basic implementation method for the governing equations is briefly
described. Within our research group, several thesis on both M.Sc. and Ph.d. level have
been published, and further information about Comsol implementation aspects may be
found in for instance Refs. [40, 42,44].

In general the partial differential equations must be formulated on divergence form to
be used as input in Comsol. The governing equations of a time independent system must
be stated in the form

∇ · Γl = Fl, in Ω, (Governing eq.) (2.32)

being valid in the domain Ω. Here Ul is a vector containing the l dependent variables,
while Γl and Fl are coefficients, which may be functions of both the dependent and the
independent variables as well as their derivatives.
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The boundary conditions of the problem in general form are formulated as
Rl = 0, on ∂Ω, (Dirichlet bc.) (2.33a)

−n · Γl = Gl +
l∑

k=1
µk
∂Rk
∂Ul

, on ∂Ω, (Neumann bc.) (2.33b)

where n is a normal vector to the boundary ∂Ω of the computational domain Ω, and µk is
a lagrange multiplier computed internally in Comsol to fulfill Eq. (2.33b). By specifying
the coefficients Rk and Gl either a Dirichlet or a Neumann condition, may be applied at
the boundary. If Rk is assigned a value, i.e. a Dirichlet condition is specified for one of
the dependent variables, Comsol determines a value of µk that fulfills Eq. (2.33b) and
thereby effectively eliminates the equation. On the other hand, if Rk ≡ 0, Eq. (2.33a)
is trivially fulfilled and the last term of Eq. (2.33b) vanishes. Thus, by specifying Gl a
Neumann condition is applied at the boundary. When applying the general formulation it
is therefore not possible to enforce both a Dirichlet and a Neumann boundary condition
for the same variable simultaneously.

As a concrete example of the implementation method for the governing equations we
use Eqs. (2.15), but omit the electric force density for simplicity. Neglecting the left-hand-
side of Eq. (2.15b) and applying the general stress tensor formulation, we obtain

∇ · v = 0 (2.34a)
0 = ∇ · σ, (2.34b)

where the components of the stress tensor are σlj = −δljp + η(∂jul + ∂luj). This is
implemented in general form by defining the vectors

U = [u, v, p], F = [0, 0, ∂xu+ ∂yv], (2.35a)
Γu = [σxx, σxy], Γu = [σyx, σyy], Γu = [0, 0]. (2.35b)

Implemented in the underlying Matlab controlled script, the equations take the form:
1 fem.form = ’general’;
2 fem.dim = {’u’ ’v’ ’p’};
3 fem.expr = {’sigmaxx’ ’-p+2*ux’ ’sigmayx’ ’vx+uy’ ...
4 ’sigmaxy’ ’uy+vx’ ’sigmayy’ ’-p+2*vy};
5 fem.equ.ga = {{{’sigmaxx’ ’sigmaxy’} ...
6 {’sigmayx’ ’sigmayy’} ...
7 {’0’ ’0’}}};
8 fem.equ.f = {{’0’} {’0’} {’ux+vy’}};

In the numerical solutions presented in the following chapters, the strong formulation
has been used for the Comsol implementation. This implementation form is very conve-
nient and has been possible to apply, since it is only necessary to use standard boundary
conditions.1

1The strong formulation with the ideal constraints fails for many common physical systems, e.g. if more
than one dependent variable were included in the Dirichlet condition. In that case the more flexible ’weak’
implementation form is applied, where a higher degree of control is obtained through the explicitly defined
lagrange multipliers.
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2.5 Topology optimization
The mathematical method of topology optimization in microfluidic systems is based on
the seminal paper by Borrvall and Petersson [32], while the implementation containing
the method of moving asymptotes by Svanberg [45, 46] is taken from Olesen, Okkels and
Bruus [41]. The topology optimization method is briefly outlined in the following based
on the paper by Olesen et al. [41], where further details can be found.

Originally, the method of topology optimization for material distribution was developed
for improving the stiffness-to-weight ratio of mechanical structures. Later is has been
extended to various other fields, including optics, acoustics and fluidics in the Stokes flow
regime. The general goal of topology optimization in microfluidic systems, is to determine
the most optimal channel network for a given purpose, within a fixed design domain
Ω with specified boundary condition on the domain boundary ∂Ω. This is achieved by
transforming the discrete problem into a continuous problem through the introduction
of a material with spatially varying permeability in the entire design domain. Areas
with low permeability then corresponds to the solid channel walls, while areas with high
permeability mimic the open channels. During the optimization process the permeability
may vary continuously between the two limits, while a discrete solution is preferable as
the final result.

In a purely hydrodynamic system, the porous medium is modeled as a spatially varying
Darcy friction force on the fluid, given as f = −αv, where α(r) is the inverse of the local
permeability. Thus, the governing steady-state equations becomes

∇ · v = 0, (2.36a)
ρm
(
v ·∇)v = −∇p+ η∇2v − αv, (2.36b)

An artificial design field variable γ(r) is introduced to model the local permeability. It
varies continuously between zero (solid material) and unity (open channels), and is related
to the local inverse permeability as

α(γ) ≡ αmin +
[
αmax − αmin

]q(1− γ)
q + γ

. (2.37)

Here q is a positive penalty parameter employed to control the convex shape of α(γ). αmax
and αmin are the inverse permeability of the solid walls and open channels, respectively,
and it is noted that αmin can be exploited to model the friction force from the Heley–Shaw
approximation, as explained above.

The goal or objective of the optimization is stated as the minimization of an objective
function

Φ(v, γ) =
∫

Ω
A(v, γ)dr +

∫

∂Ω
B(v, γ)ds, (2.38)

where objectives assigned to A and B are minimized inside the fluidic domain Ω and on
the domain boundary ∂Ω, respectively. Objectives related to specific points are assigned
to A and multiplied with Dirac delta functions.

It is possible to impose an additional volume constraint on the problem, which limits
the amount of material to be distributed in the design domain. However, for the systems
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treated in the following, it has not been necessary to enforce such a constraint. The
problems have been formulated, so the optimal solution structure must contain the right
balance between solid and void areas.

To summarize, the optimal design problem can be written as

minγ Φ(U , γ) (2.39a)

subject to :
∫

Ω
γ(r)dr − β|Ω| ≤ 0, Volume constraint (2.39b)

: 0 ≤ γ(r) ≤ 1, Design variable bounds (2.39c)
: Governing equations (incl. bc.) (2.39d)

Here, the volume constraint requires that at least a fraction of 1− β of the total volume
|Ω| is covered with porous material.

The formulation of the optimization problem as a continuous design problem, makes
it possible to apply efficient mathematical programming routines. In the applied imple-
mentation, the Method of Moving Asymptotes (MMA) is exploited. MMA is designed
to find minima for large problems with many degrees of freedom. It is a gradient-based
algorithm, which require that the gradient of the objective function Φ is calculated with
respect to γ. Since the dependent variables U are calculated on basis of the γ-field, U(γ)
is treated as an implicit function, so using the chain-rule the gradient becomes

d
dγ
{
Φ[U(γ), γ]

}
= ∂Φ
∂γ

+
∫

Ω

∂Φ
∂U
· ∂U
∂γ

dr. (2.40)

The derivative ∂U/∂γ is eliminated from Eq. (2.40) by application of the adjoint method.
For a detailed derivation of the calculation scheme and the implementation in Comsol,
see Ref. [41] and references therein.

The iteration procedure for the topology optimization can be summarized as follows:

1. An initial guess γ(k) for the material distribution is inserted in the governing equa-
tions Eqs. (2.36), and they are solved using Comsol.

2. Sensitivity analysis is performed calculating the gradient of the objective and con-
straints with respect to γ, and the adjoint problem is solved using Comsol.

3. MMA is employed to obtain a new guess γ(k+1) for the material distribution.

This iteration routine is continued until convergence, which is typically obtained when
|Φ(k+1) − Φ(k)| < 10−5.

In the original problem formulation by Borrvall and Petersson [32] the existence of a
unique optimal solution was proven in the case of minimizing the total power-dissipation
inside a fluidic device. Furthermore, it was shown that in the case of a linear function
α(γ), the optimal material distribution is discrete. However, applying a linear relation
of α(γ), the severe penalty on the design often result in solutions caught in local min-
ima. Therefore, the convex interpolation of α(γ) in Eq. (2.37) is introduced to soften the
discrete boundaries of the optimal solution structure, and ease the transition between dif-
ferent topologies, though, it is noted that this method may fail. When objective functions
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different from the power-dissipation are applied, there are no proofs for the existence of a
unique solution. Thus, for applications involving several coupled fields and other objective
functions, there are no guarantee for the existence of a unique optimal solution.

2.5.1 Topology optimization example: Reverse flow in a straight channel

To provide an example of the topology optimization process, we consider a classic and
purely hydrodynamic problem, which is simple but serves the purpose of illustration. An
elaborated treatment of this example is found in Ref. [41].

The computational domain consists of a long straight channel, where the design area is
restricted to the central section of the channel, see Fig. 2.4. A pressure difference applied
across the channel in the horizontal x-direction drives a flow along the x-axis, and a no-slip
condition is applied at the channel walls. The objective is to minimize the horizontal flow
in the point r∗ in the center of the channel. This is implemented in Eq. (2.38) by choosing
B = 0 and A = vx(r)δ(r − r∗). The problem is optimized in the Stokes limit Re = 0,
with the Darcy number set to Da = 10−4. The value of q is gradually increased during
the optimization process, from a low initial value of q = 0.03 to a final value of q = 1,
where α(γ) is nearly linear.

Fig. 2.4 shows a number of iterations from the optimization process. Iteration 0 at the
top of the figure corresponds to the initial guess of the material distribution, which in this
case is γ = 0.99 in the entire design domain, corresponding to a completely empty channel.
The thin gray lines show equidistant contours of the flowrate Q through the channel.
Following the optimization process, it is observed how the fluid is first directed around the
center point r∗ in order to lower the velocity to zero. Subsequently, around iteration 4 a
spontaneous symmetry break results in a change of topology towards an inverted S-shaped
channel, that reverses the flow in point r∗. During the remaining iterations no further
large topology changes take place. The inverted S-shape may also come out in a regular
S-shape version, depending on minor numerical changes in the system, e.g. a slightly
different mesh or numerical noise. It is noted that the solution topology also depends
on the chosen Da number, since the optimal barrier thicknesses depend strongly on the
resistance exerted by the material on the fluid.



2.5. TOPOLOGY OPTIMIZATION 21

p = p0 + ∆p p = p0
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Q r∗

Design area

Iteration 0

Iteration 1

Iteration 2

Iteration 4

Iteration 6

Iteration 20

Final iteration 53

Figure 2.4: A series of iterations from the topology optimization of the reverse flow problem. The
top panel shows the starting point of the iteration process. A pressure drop of ∆p is applied across
the channel driving a Poiseuille flow in the x-direction. The center section of the channel is the
design area, where the material distribution γ(r) is optimized, in order to minimize the horizontal
flow in the center point r∗. The thin gray lines are equidistant contours of the flow rate. The
material porosity is shown as a gray-scale plot, where white corresponds to the limit of open areas
with γ = 1, and black corresponds to the limit of nearly solid material with γ = 0. As starting
point, the design area is nearly empty, corresponding to a constant design field value of γ = 0.99
(white). The panels below show iterations 1,2,4,6,20 and the final converged iteration 53, of the
topology optimization routine, where the optimal S-shaped channel is formed to reverse the flow
in the point r∗.
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Chapter 3

Experiments on ACEO system

During the M.Sc. project by same author [47] an integrated electrokinetic AC driven
micropump (Sec. 2.2) was fabricated and initial tests of the system were performed. As
part of the present Ph.D work the electrical characterization of the micropump and the
measurements of the resulting pump effects were substantially extended and thoroughly
analyzed. The work was published in our paper Ref. [25], which broadly comprises this
chapter.

Studer et al. [3] made a thorough investigation of flow dependence on electrolyte con-
centration, driving voltage and frequency for a characteristic system. In that work a
reversal of the pumping direction for frequencies above 10 kHz and rms voltages above
2 V was reported. For a travelling wave device Ramos et al. [5] observed reversal of the
pumping direction at 1 kHz and voltages above 2 V. The reason for this reversal is not
yet fully understood and the goal of this work is to contribute with further experimental
observations of reversing flow for other parameters than those reported previously.

The micropump design follows Studer et al. [3], where an effective electrokinetic slip
velocity is generated just above an asymmetric array of electrodes that covers the channel
bottom in one section of a closed pumping loop. Pumping velocities are measured in
another section of the channel without electrodes. In this way electrophoretic interaction
between the beads used as flow markers and the electrodes is avoided. In contrast to
the soft lithography utilized by Studer et al., we use more well-defined MEMS fabrication
techniques in Pyrex glass. This results in a very robust system, which exhibits stable
properties and remains functional over time periods extending up to a year. Furthermore,
we have a larger electrode coverage of the total channel length allowing for the detection
of a given pumping velocity generated by a smaller electrokinetic slip velocity at a lower
voltage. Our improved design has led to the observation of a new phenomenon, namely
reversal of the flow at at low voltages (Vrms < 1.5 V) and low frequencies (f < 20 kHz).
The electrical properties of the fabricated microfluidic chip have been investigated to
clarify whether these reflect the reversal of the flow direction. We propose an equivalent
circuit diagram, evaluate it based on the electrical measurements, and conclude that we
can rule out trivial circuit explanations of our findings. Supplementary details related to
the present work can be found in Ref. [47].

23
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3.1 Experimental

3.1.1 System design

The microchip was fabricated for studies of the basic electrokinetic properties of the
system. Hence, a simple microfluidic circuit was designed to eliminate potential side-
effects due to complex device issues. The microfluidic chip has a size of approximately
16 mm × 28 mm and is shown in Fig. 3.1, while the device parameters are listed in Ta-
ble 3.1. It consists of two 500 µm thick Pyrex glass wafers anodically bonded together.
Metal electrodes are defined on the bottom wafer and channels are contained in the top
wafer, as illustrated schematically in Fig. 3.1(a). This construction ensures an electrical
insulated chip with fully transparent channels.

An electrode geometry akin to the one utilized by Brown et al. [1] and Studer et al. [3]
was chosen. The translation period of the electrode array is 50 µm with electrode widths
of W1 = 4.2 µm and W2 = 25.7 µm, and corresponding electrode spacings of G1 = 4.5 µm
and G2 = 15.6 µm, see Fig. 3.1(d). Further theoretical investigations have shown that this
geometry results in a nearly optimal flow velocity [24]. The total electrode array consists of
eight sub-arrays each having their own connection to the shared contact pad, Fig. 3.1(b).
This construction makes it possible to disconnect a malfunctioning sub-array. The entire
electrode array has a width of 1.3 mm ensuring that the alignment of the electrodes and
the 1.0 mm wide fluidic channels is not critical.

A narrow side channel, Fig. 3.1(b), allows beads to be introduced into the part of the
channel without electrodes, where a number of ruler lines with a spacing of 200 µm enable
flow measurements by particle tracing, Fig. 3.1(c).

An outer circuit of valves and tubes is utilized to control and direct electrolytes and
bead solutions through the channels. During flow-velocity measurements, the inlet to the
narrow side channel is blocked and to eliminate hydrostatic pressure differences the two
ends of the main channel are connected by an outer teflon tube with an inner diameter of
0.5 mm. The hydraulic resistance of this outer part of the pump loop is three orders of
magnitude smaller than the on-chip channel resistance and is thus negligible.

In our design the channel has a rectangular cross-section of width w = 967 µm and
height H = 33.6 µm, while the total length is Ltot = 40.8 mm. The subsection containing
electrodes has the length Lel = 16.0 mm and the hydraulic resistance R1, and here an
average slip velocity vslip is generated by electroosmosis just above the electrodes. The
subsection containing the measurement channel section has length Ltot − Lel = 24.2 mm
and hydraulic resistance R2, and there a Poiseuille flow profile is established with a max-
imal center-point velocity denoted vpois. In the electrode subsection of the channel the
flow rate Q is the sum of a forward Couette flow [19] and a backward Poiseuille flow,
Q = 1

2wHvslip − ∆p/R1, while in the measurement subsection it is a forward Poiseuille
flow, Q = ∆p/R2. By combining these two expressions, the unknown overpressure ∆p can
be eliminated, and we find (1 +R2/R1)Q = 1

2wHvslip or

vpois = 3
4

1(
1− 0.63Hw

) Lel
Ltot

vslip ≈ 0.30 vslip, (3.1)
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Figure 3.1: (a) Sketch of the fabricated chip consisting of two Pyrex glass wafers bonded together.
The channels are etched into the top wafer, which also contains the fluid access ports. Flow-
generating electrodes are defined on the bottom wafer. (b) Micrograph of the full chip containing
a channel (white) with flow-generating electrodes (black) and a narrow side channel for bead
injection (upper right corner). During flow measurements the channel ends, marked with asterisks,
are connected by an outer tube. The electrode array is divided into eight sub arrays, each having
its own connection to the electrical contact pad. (c) Magnification of the framed area in panel (b)
showing the flow-generating electrodes to the left and the measurement channel with ruler lines to
the right. (d) Close-up of an electrode array section with electrode translation period of 50 µm.
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Table 3.1: Dimensions and parameters of the fabricated microfluidic system.
Channel height H 33.6 µm
Channel width w 967 µm
Channel length, total Ltot 40.8 mm
Channel length with electrodes Lel 16.0 mm

Width of electrode array wel 1300 µm
Narrow electrode gap G1 4.5 µm
Wide electrode gap G2 15.6 µm
Narrow electrode width W1 4.2 µm
Wide electrode width W2 25.7 µm
Electrode thickness h 0.40 µm
Electrode surface area ([W1 + 2h]w) A1 4.84× 10−9 m2

Electrode surface area ([W2 + 2h]w) A2 25.63× 10−9 m2

Number of electrode pairs p 312
Electrode resistivity (Pt) ρ 10.6× 10−8 Ωm

Electrolyte conductivity (0.1 mM) σ 1.43 mS/m
Electrolyte conductivity (1.0 mM) σ 13.5 mS/m
Electrolyte permittivity ε 80 ε0
Pyrex permittivity εp 4.6 ε0

where we have used that for Poiseuille flow in a rectangular channelQ ≈ 2
3(1−0.63Hw )wHvpois

and 1+R2/R1 = (R1 +R2)/R1 = Ltot/Lel. So to obtain a given pumping velocity vpois for
as low an electrokinetic slip velocity vslip as possible, the electrode coverage ratio Lel/Ltot
should be as large as possible. In our system Lel/Ltot = 0.39, which almost doubles the
sensitivity compared to Studer et al. [3], where Lel/Ltot = 0.21.

3.1.2 Chip fabrication

The flow-generating electrodes of e-beam evaporated Ti(10 nm)/Pt(400 nm) were defined
by lift-off in 1.5 µm thick photoresist AZ 5214-E (Hoechst) using a negative process.
Platinum is electrochemically stable and has a low resistivity, which makes it suitable for
the application. The thin Ti layer ensures good adhesion of the Pt layer to the Pyrex
substrate. By choosing an electrode thickness of h = 400 nm, the metallic resistance
between the contact pads and the channel electrolyte is at least one order of magnitude
smaller than the resistance of the bulk electrolyte covering the electrode array.

In the top Pyrex wafer the channel of width w = 967 µm and height H = 33.6 µm
was etched into the surface using a solution of 40% hydrofluoric acid. A 100 nm thick
amorphous silicon layer was sputtered onto the wafer surface and used as etch mask in
combination with a 2.2 µm thick photoresist layer. The channel pattern was defined
by a photolithography process akin to the process used for electrode definition, and the
wafer backside and edges were protected with a 70 µm thick etch resistant PVC foil. The
silicon layer was then etched away in the channel pattern using a mixture of nitric acid and
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buffered hydrofluoric acid, HNO3:BHF:H2O = 20:1:20. The wafer was subsequently baked
at 120◦C to harden the photoresist prior to the HF etching of the channels. Since the glass
etching is isotropic, the channel edges were left with a rounded shape. However, this has
only a minor impact on the flow profile, given that the channel aspect ratio is w/H ≈ 30.
The finished wafer was first cleaned in acetone, which removes both the photoresist and
the PVC foil, and then in a piranha solution.

After alignment of the channel and the electrode array, the two chip layers were anodi-
cally bonded together by heating the ensemble to 400◦C and applying a voltage difference
of 700 V across the two wafers for 10 min. During this bonding process, the previously
deposited amorphous Si layer served as diffusion barrier against the sodium ions in the
Pyrex glass. Finally, immersing the chip in DI-water holes were drilled for the in- and
outlet ports using a cylindrical diamond drill with a diameter of 0.8 mm.

3.1.3 Measurement setup and procedures

Liquid injection and electrical contact to the microchip was established through a specially
constructed PMMA chip holder, shown in Fig. 3.2. Teflon tubing was fitted into the
holder in which drilled channels provided a connection to the on-chip channel inlets. The
interface from the chip holder to the chip inlets was sealed by O-rings. Electrical contact
was obtained with spring loaded contact pins fastened in the chip holder and pressed
against the electrode pads. The inner wires of thin coax cables were soldered onto the
pins and likewise fastened to the holder.

The pumping was induced by electrolytic solutions of KCl in concentrations ranging
from c = 0.1 mM to 1.0 mM. The chip was prepared for an experiment by careful injection
of this electrolyte into the channel and tubing system, after which the three valves to in-
and outlets were closed. The electrical impedance spectrum of the microchip was measured
before and after each series of flow measurements to verify that no electrode damaging
had occurred during the experiments. If the impedance spectrum had changed, the chip
and the series of performed measurements were discarded. Velocity measurements were

Top PMMA plate

Bottom PMMA plate

Contact pins

Aluminum holder

Coax cables

O-ringFitting

Figure 3.2: Chip holder constructed to connect external tubing and electrical wiring with the
microfluidic chip.
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only carried out when the tracer beads were completely at rest before biasing the chip,
and it was always verified that the beads stopped moving immediately after switching
off the bias. The steady flow was measured for 10 s to 60 s depending on the velocity,
see Sec. 3.1.5. After a series of measurements was completed, the system was flushed
thoroughly with milli-Q water. When stored in milli-Q water between experiments the
chips remained functional for at least one year.

3.1.4 AC biasing and impedance measurements

Using an impedance analyzer (HP 4194 A), electrical impedance spectra of the microflu-
idic chip were obtained by four-point measurements, where each contact pad was probed
with two contact pins. Data was acquired from 100 Hz to 15 MHz. To avoid electrode
damaging by application of a too high voltage at low frequencies, all impedance spectra
were measured at Vrms = 10 mV.

The internal sinusoidal output signal of a lock-in amplifier (Stanford Research Systems
SR830) was used for AC biasing of the electrode array during flow-velocity measurements.
The applied rms voltages were in the range from 0.3 V to 1.5 V and the frequencies
between 1.0 kHz and 100 kHz. A current amplification was necessary to maintain the
correct potential difference across the electrode array, since the overall chip resistance
could be small (∼ 0.1 kΩ to 1 kΩ) when frequencies in the given interval were applied.
The current through the microfluidic chip was measured by feeding the output signal
across a small series resistor back into the lock-in amplifier.

The lock-in amplifier was also used for measuring impedance spectra for frequencies
below 100 Hz, which were beyond the span of the impedance analyzer.

3.1.5 Flow velocity measurements

After filling the channel with an electrolyte and actuating the electrodes, the flow measure-
ments were performed by optical tracing of fluorescent beads suspended in the electrolyte.
Instead of the previously employed micro-PIV method [3, 48], we used a simpler, less ac-
curate, but adequate optical particle tracing method for the velocity determination to be
described below. We have demonstrated that our method is accurate within 10% for veloci-
ties between 10 µm/s and 100 µm/s by the following calibration measurements. A reservoir
containing beads suspended in milli-Q water was placed at an adjustable height and con-
nected by teflon tubing to the measurement channel through a partially closed valve. For
each setting of the height the resulting hydrostatic pressure generated a Poiseuille flow
in the microchannel. After waiting for half an hour to allow for compliant relaxation of
the system, the flow velocity vpois was measured using our optical tracing method and
compared to the velocity vnfs = 3

2 Q/
[
(1− 0.63Hw )wH

]
for a rectangular channel deduced

from the flow rate Q measured directly by an Upchurch Scientific N-565 Nano Flow Sensor
connected to the outlet. The two sets of velocity determinations agree within 10%, see
the inset of Fig. 3.3.

For our optical tracing method we introduced fluorescent tracer beads (Molecular
Probes, FluoSpheres F-8765) with a diameter d = 1 µm into the measurement section
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of the channel. The diffusivity of the beads are estimated by using the Stokes–Einstein
relation, D = kBT/(3πη d) = 4.4 × 10−13 m2/s. The concentration of beads was kept
low enough to allow the individual beads to be distinguished, when our Leica MZFLIII
Fluorescence Microscope was focused on a section of length 700 µm of the measurement
channel using a focal depth in the vertical z-direction slightly larger than the channel
depth of 34 µm. With an attached Sony DFW-X710 Digital Camera, we recorded series of
pictures of the beads at preset time intervals. We utilize the fact that for a Poiseuille flow
in a wide, flat channel all particles in the middle third of the channel, H/3 < z < 2H/3,
(except those within a distance H of the side walls) move with nearly the same horizontal
velocity, namely between 0.9 and 1.0 times the maximal center-point velocity vpois. Due to
the size and density of the beads their vertical sedimentation speed and Brownian motion
is negligible; it takes 420 s for a bead to fall from z = 2H/3 to z = H/3 under the influence
of gravity and 275 s to diffuse out of that region; no single bead was followed for more
than 20 s during our measurements.

The preset time intervals for acquiring pictures of the bead flows were adjusted to the
velocity determined by the voltage setting on the electrode array. It ranged from 1.00 s
for very low velocities below 15 µm/s to 0.125 s for high velocities around 100 µm/s.
The measurement series for a given voltage setting contained between 80 and 600 frames,
and for each series the displacements of the fastest moving particles in the 700 µm long
field of view were traced over at least 20 frames. The displacement distances ∆x we
traced, using the in-channel ruler lines, were between 50 µm for the slowest and 200 µm
for the fastest beads, while the corresponding measurement times ∆t were between 20 s
and 2 s. The diffusion length for these times is 1 µm and 3 µm, respectively, leading to
relative uncertainties in displacement of 3 µm/50 µm = 6% and 1 µm/200 µm = 0.5%
for slowest and fastest particles, respectively. By averaging over ensembles of 10 particles
these uncertainties are lowered to 2% and 0.2%, respectively. For a given series it was
checked that the selected fastest moving particles (typically 10) all moved with (nearly)
the same, constant velocity, and the velocity vpois was determined as the average over the
individually determined velocities ∆x/∆t. The total statistical uncertainty, mainly due
to the vertical bead position and the horizontal Brownian motion, was estimated to be on
the order of 10%. This estimate is in good agreement with the calibration measurements
described above.

Flow reversal appearing as a result of a change in the bias voltage setting between
two measurements, see Sec. 3.2, was thoroughly verified. It was checked that the beads
were completely at rest before biasing the chip, and then the forward flow was measured.
Subsequently, it was again controlled that the beads were completely at rest when turning
off the bias. The bias value was then changed and turned on, and the reverse flow was
measured. Finally, the bias was turned off and the beads were once more confirmed to be
completely at rest.
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Figure 3.3: Reproducible flow-velocities induced in a 0.1 mM KCl solution and observed at
different days as a function of frequency at a fixed rms voltage of 1.5 V. A corresponding series
was measured at Vrms = 1.0 V. The frequencies are distributed on a log10 scale, and lines have
been added to guide the eye. The inset shows the flow velocity vpois, measured using our optical
tracing method, versus vnfs, deduced from flow rates measured directly with a nano flow sensor.
The linear fit, vpois = 1.1 vnfs (full line), is within 10% of perfect agreement, vpois = vnfs (dotted
line).

3.2 Results

In the parameter ranges corresponding to those published in the literature, our flow veloc-
ity measurements are in agreement with previously reported results. Using a c = 0.1 mM
KCl solution and driving voltages of Vrms = 1.0 V to 1.5 V over a frequency range of
f = 1.1 kHz to 100 kHz, we observed among other measurement series the pumping veloc-
ities shown in Fig. 3.3. The general tendencies were an increase of velocity towards lower
frequencies and higher voltages, and absence of flow above f ∼ 100 kHz. The measured
velocities corresponded to slightly more than twice those measured by Studer et al. [3]
due to our larger electrode coverage of the total channel. We observed damaging of the
electrodes if more than 1 V was applied to the chip at a driving frequency below 1 kHz,
for which reason there are no measurements at these frequencies. It is, however, plausible
that the flow velocity for our chip peaked just below f ∼ 1 kHz.

3.2.1 Reproducibility of measurements

Our measured flow velocities were very reproducible due to the employed MEMS chip fab-
rication techniques and the careful measurement procedures described in Sec. 3.1. This
is illustrated in Fig. 3.3, which shows three velocity series recorded several days apart.
The measurements were performed on the same chip and for the same parameter values.
Between each series of measurements, the chip was dismounted and other experiments
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Figure 3.4: Experimentally observed flow reversal for repeated measurements of two concentra-
tions of KCl at 1.0 kHz. The inset shows that for a 0.4 mM KCl solution at a fixed rms voltage of
0.8 V the flow direction remains negative, but slowly approaches zero on a log10 scale for frequencies
up to 50 kHz.

performed. However, it should be noted that a very slow electrode degradation was ob-
served when a dozen of measurement series were performed on the same chip over a couple
of weeks.

3.2.2 Flow reversal at low voltage and low frequency

Devoting special attention to the low-voltage (Vrms < 1.5 V), low-frequency (f < 20 kHz)
regime, not studied in detail previously, we observed an unanticipated flow reversal for
certain parameter combinations. This observation was made possible by the large electrode
coverage ratio Lel/Ltot appearing in the expression Eq. (3.1) for vpois in terms of vslip.

Fig. 3.4 shows flow velocities measured for a frequency of 1.0 kHz as a function of ap-
plied voltage for various electrolyte concentrations. It is clearly seen that the velocity series
of c = 0.1 mM exhibits the known exclusively forward and increasing pumping velocity
as function of voltage, whereas for slightly increased electrolyte concentrations an unam-
biguous reversal of the flow direction is observed for rms voltages below approximately
1 V.

This reversed flow direction was observed for all frequencies in the investigated spec-
trum when the electrolyte concentration and the rms voltage were kept constant. This
is shown in the inset of Fig. 3.4, where a velocity series was obtained over the frequency
spectrum for an electrolyte concentration of 0.4 mM at a constant rms voltage of 0.8 V.
It is noted that the velocity is nearly constant over the entire frequency range and tends
to zero above f ∼ 20 kHz.
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Figure 3.5: Bode plot showing the measured amplitude |Z| on a log10 scale (right ordinate axis)
and phase θ (left ordinate axis) of the impedance as a function of frequency over eight decades
distributed on a log10 scale from 0.2 Hz to 15 MHz. The voltage was Vrms = 10 mV and the
electrolyte concentration c = 1.0 mM KCl. The measurements are shown with symbols while
the curves of the fitted equivalent diagram, see Fig. 3.6, are represented by dashed lines. The
measurement series obtained with the impedance analyzer consist of 400 very dense points while
the series measured using the lock-in amplifier contains fewer points with a clear spacing.

3.2.3 Electrical characterization

To investigate whether the flow reversal was connected to unusual properties of the elec-
trical circuit, we carefully measured the impedance spectrum Z(f) of the microfluidic
system. Spectra were obtained for the chip containing KCl electrolytes with the different
concentrations c = 0.1 mM, 0.4 mM and 1.0 mM.

Fig. 3.5 shows the Bode plots of the impedance spectrum obtained for c = 1.0 mM.
For frequencies between f ∼ 1 Hz and f ∼ 103 Hz the curve shape of the impedance
amplitude |Z| is linear with slope −1, after which a horizontal curve section follows, and
finally the slope again becomes −1 for frequencies above f ∼ 106 Hz. Correspondingly, the
phase θ changes between 0◦ and 90◦. From the decrease in phase towards low frequencies
it is apparent that |Z| must have another horizontal curve section below f ∼ 1 Hz. When
the curve is horizontal and the phase is 0◦, the system behaves resistively, while it is
capacitively dominated when the phase is 90◦ and the curve has a slope of −1.

3.3 Discussion

As we shall see in the following, our observation of a reproducible and stable flow reversal
cannot be explained by the existing theories of induced-charge (AC) electroosmosis, even
when faradaic current injection is taken into account as in the most developed theoretical
model, the weakly nonlinear electro-hydrodynamic model presented in Ref. [24] and ex-
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Figure 3.6: (a) Equivalent circuit diagram showing the total electrode resistance Rel, the total
bulk electrolyte resistance Rb, the total faradaic (charge transfer) resistance Rct, the internal
resistance of the lock-in amplifier Rx′ , the total electrode capacitance Cel, and the total double
layer capacitance Cdl. (b) Sketch of the impedance amplitude response of the equivalent diagram.
It consists of three plateaus, Rel, Rb and the DC-limit Rx of the total resistance. These are
delimited by the four characteristic frequencies the inverse faradaic charge transfer time ωx, the
inverse ohmic relaxation time ω0, the Debye frequency ωD and the electrode circuit frequency ωel.

tended in Ref. [40], see Sec. 3.3.2. This is not surprising, as this model and other similar
models are limited to the weakly nonlinear regime V . 0.2 V. We nevertheless do find
some qualitative agreement and discuss the experimentally observed trends of the flow
velocities, in particular the flow reversal. The following discussion is included to relate
our experimental results to a state-of-the-art theoretical model, and to indicate possible
directions for future work in the field.

3.3.1 Equivalent circuit impedance analysis

In electrochemistry the standard way of analyzing impedance measurements is in terms
of an equivalent circuit diagram [38]. Based on the Gouy–Chapman–Stern model for
the electric double layer, the component values extracted from this analysis are used to
estimate three important electrokinetic parameters: the Stern layer capacitance Cs, the
intrinsic zeta potential ζeq on the electrodes and the charge transfer resistance Rct.

Following [16,24,49] the basic unit in the diagram Fig. 3.6(a) is a double-layer electrode
capacitor in series with a bulk electrolyte resistor and a double-layer counter electrode ca-
pacitor. The order of the series components is unimportant, so in the diagram the electrode
pair can be placed next to each other. In our system all electrodes are identical except for
their widths W1 and W2 and thus their respective surface areas A1 and A2. However, the
important physical parameter, the RC-time due to the charge transfer resistance R and
the capacitance C, is independent of the area since R ∝ 1/A and C ∝ A. Consequently,
only one RC-time is present in the system due to the electric double layers. As seen in
Fig. 3.6(a) this can be represented by one single parallel coupling of Cdl (the total capaci-
tance due to accumulation of charge in the double layers at all the electrodes) and Rct (the
total resistance due to faradaic current injection from electrochemical reactions at all the
electrodes) in series with the bulk electrolyte resistor Rb. Moreover, we include the ohmic
resistance of the metal electrodes Rel, a shunt resistance Rx′ = 10 MΩ to represent the
internal resistance of the lock-in amplifier, and the mutual capacitance between the narrow
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Table 3.2: Comparison of measured (meas) and modeled (mod) values of the components in the
equivalent diagram, Fig. 3.6. The measured values are given by curve fits of Bode plots, Fig. 3.5,
obtained on two similar chips labelled A and B, respectively. Due to a minor error on the chip
introduced during the bonding process, we were unable to measure Rct for chip B. The modeled
values are estimated on basis of Table 3.1 and a particular choice of the parameters ζeq and Cs as
follows: The inverse of the total double layer capacitance is 1/Cdl = (1/Cs+1/CD)(1/A1+1/A2)/p,
while the bulk electrolyte resistance is Rb = 0.85/(σwp) and the mutual capacitance between the
electrodes is Cel = p

0.85
[
εw + εp(2wel − w)

]
, where 0.85 is a numerical factor computed for our

particular electrode layout using the finite-element based program Comsol Multiphysics.

Conc. Rb Rb Rel Rel Rct Cdl Cdl Cel Cel ωD ωD ω0 ω0
mod meas mod meas meas mod meas mod meas mod meas mod meas

[mM] [kΩ] [kΩ] [Ω] [Ω] [MΩ] [µF] [µF] [nF] [nF] [M rad s−1] [k rad s−1]

0.1 A 2.0 1.0 7.6 5 1.0 0.50 0.50 0.28 0.30 2.0 3.3 1.0 2.0
1.0 A 0.21 0.17 7.6 6 1.0 0.56 0.55 0.28 0.29 19.1 20.6 8.5 10.7

0.1 B 2.0 1.4 7.6 6 − 0.50 0.51 0.28 0.29 2.0 3.0 1.0 1.4
0.4 B 0.52 0.41 7.6 7 − 0.54 0.53 0.28 0.28 7.7 9.3 3.6 4.6
1.0 B 0.21 0.17 7.6 8 − 0.56 0.55 0.28 0.26 19.1 22.6 8.5 10.5

and wide electrodes Cel. The latter contains contributions from both the electrolyte and
the surrounding glass. However, since it is three orders of magnitude smaller than Cdl its
precise placement relative to Cdl is not important. Finally, since the separation between
the electrodes is small and the charge transfer resistance is large, the diffusion-related
Warburg impedance [38] can be neglected.

By fitting the circuit model Fig. 3.6(a) to the impedance measurements, see Figs. 3.5
and 3.6(b), we extract the component values listed in Table 3.2 including the four char-
acteristic angular frequencies ω = 2πf . The inverse frequency ω−1

x = RxCdl primarily
expresses the characteristic time for the faradaic charge transfer into the Debye layer.
The characteristic time for charging the Debye layer through the electrolyte is given by
ω−1

0 = RbCdl. The Debye frequency is ωD = 1/(RbCel), and ωel = 1/(RelCel) states the
characteristic frequency for the on-chip electrode circuit in the absence of electrolyte.

These fitted values can be compared with the modeled values, which are found as
explained in Table 3.2, with the following additional remarks regarding the parameters of
the electric double layers. Although the impedance measurements were performed at a
low voltage of Vrms = 10 mV the presence of an intrinsic zeta potential ζeq of the order of
typically 100 mV nevertheless forces us to use the nonlinear Gouy–Chapman–Stern theory,
where Cdl can be expressed as a series coupling of the compact Stern layer capacitance
Cs and the differential Debye-layer capacitance CD, see Table 3.2. For simplicity Cs is
often assumed constant and independent of potential and concentration, while CD is given
by CD = (ε/λD) cosh[ζeqze/(2kBT )]. Indeed, the measured Cdl is roughly 10 times larger
than predicted by Debye–Hückel theory, which indicates that the intrinsic zeta potential
is at least ±125 mV. Unfortunately, it is not possible to estimate the exact values of both
Cs and ζeq from a measurement of Cdl, because a range of parameters lead to the same
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Cdl. We can, nevertheless, state lower limits as Cs ≥ 0.39 F/m2 and |ζeq| ≥ 175 mV for
c = 0.1 mM or Cs ≥ 0.43 F/m2 and |ζeq| ≥ 125 mV at c = 1.0 mM. For the model values
in Table 3.2 we used Cs = 1.8 F/m2 and ζeq = 190 mV, 160 mV and 140 mV at 0.1 mM,
0.4 mM and 1.0 mM KCl, respectively, in accordance with the trend often observed that
ζeq decreases with increasing concentration [50].

At frequencies above 100 kHz the impedance is dominated by Rb, Cel and Rel, and the
Bode plot closely resembles a circuit with ideal components, see Fig. 3.5. Around 1 kHz
we observe some frequency dispersion, which could be due to the change in electric field
line pattern around the inverse RC-time ω0 = 1/(RbCdl) [40]. Finally, below 1 kHz where
the impedance is dominated by Cdl, the phase never reaches 90◦ indicating that the double
layer capacitance does not behave as an ideal capacitor but more like a constant phase
element (CPE). This behavior is well known experimentally, but not fully understood
theoretically [51].

Overall, we have a fair agreement between the measurements and the equivalent dia-
gram analysis, so we conclude that the observation of flow reversal is not related to any
unusual electrical properties of the chip, but must be due to the intrinsic electrokinetic
properties of the electrolyte.

3.3.2 Flow analysis

The forward flow velocities measured at c = 0.1 mM as a function of frequency, Fig. 3.3,
qualitatively exhibit the trends predicted by standard theory, namely, the pumping in-
creases with voltage and falls off at high frequency [17,19].

More specifically, the theory predicts that the pumping velocity should peak at a
frequency around the inverse RC-time ω0, corresponding to f ≈ 0.3 kHz, and decay as
the inverse of the frequency for our applied driving voltages, see Fig. 11 in Ref. [24].
Furthermore, the velocity is predicted to grow like the square of the driving voltage at low
voltages, changing to V log V at large voltages [24,40].

Experimentally, the velocity is indeed proportional to ω−1 and the peak is not observed
within the range 1.1 kHz to 100 kHz, but it is likely to be just below 1 kHz. However,
the increase in velocity between 1.0 V and 1.5 V displayed in Fig. 3.3 is much faster than
V 2. That is also the result in Fig. 3.4 for c = 0.1 mM where no flow is observed below
Vrms = 0.5 V, while above that voltage the velocity increases rapidly. For c = 0.4 mM and
c = 0.5 mM the velocity even becomes negative at voltages Vrms ≤ 1 V. This cannot be
explained by the standard theory and is also rather different from the flow reversal that
has been observed by other groups at larger voltages Vrms > 2 V and at frequencies above
the inverse RC-time [3, 5, 23].

The velocity shown in the inset of Fig. 3.4 is remarkable because it is almost constant
between 1 kHz and 10 kHz. This is unlike the usual behavior for AC electroosmosis that
always peaks around the inverse RC-time, because it depends on partial screening at the
electrodes to simultaneously get charge and tangential field in the Debye layer. At lower
frequency the screening is almost complete so there is no electric field in the electrolyte to
drive the electroosmotic fluid motion, while at higher frequency the screening is negligible
so there is no charge in the Debye layer and again no electroosmosis.
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One possible explanation for the almost constant velocity as a function of frequency
could be that the amount of charge in the Debye layer is controlled by a faradaic electrode
reaction rather than by the ohmic current running through the bulk electrolyte. Our
impedance measurement clearly shows that the electrode reaction is negligible at f = 1 kHz
and Vrms = 10 mV bias, but since the reaction rate grows exponentially with voltage in
an Arrhenius type dependence, it may still play a role at Vrms = 0.8 V. However, previous
theoretical investigations have shown that faradaic electrode reactions do not lead to
reversal of the AC electroosmotic flow or pumping direction [24].

Laurits Højgård Olesen, DTU Nanotech 2006, has been analyzing the flow reversal in
terms of an extended theoretical model valid in the weakly nonlinear regime [40]. The
model is based on classical approximations for the double layer dynamics and includes
Butler–Volmer reaction kinetics for the faradaic electrode reaction, thus, the model is
quite comprehensive compared to other published models. Detailed information about the
model can be found in Refs. [24, 40]. For the comparison between the theoretical model
predictions and the measured flow velocities (Fig. 3.4), the theoretical model parameters
has been chosen in accordance with the impedance measurements. The conclusion on this
comparison between model and measurements is as follows: The model is able to predict
the trends of the experimentally observed velocity curves, but the quantitative agreement
is lacking. In the model calculations, the flow reversal is predicted to take place for a
frequency ten times higher than the experimentally applied frequency. Furthermore, the
predicted reverse flow is weaker than observed experimentally and does not show the
almost constant reverse flow profile below 10 kHz. Most important, the model is unable to
account for the strong concentration dependence displayed in Fig. 3.4. It is noted though,
that a lowering of the ambiguously determined Stern layer capacitance Cs in the theoretical
model leads to a slight enhancement of the reverse flow. A detailed comparison between
the theoretical model and the experimental results in Fig. 3.4 is reported in Ref. [25].

According to Ref. [52], steric effects give rise to a significantly lowered Debye layer ca-
pacitance and a potentially stronger concentration dependence when ζ exceeds 10 kBT/e ∼
250 mV, which roughly corresponds to a driving voltage of Vrms ∼ 0.5 V. Thus, by disre-
garding these effects we overestimate the double layer capacitance slightly in the calcula-
tions of the theoretical flow velocity for Vrms = 0.8 V. This seems to fit with the observed
tendencies, where theoretical velocity curves calculated on the basis of a lowered Cdl better
resemble the measured curves.

It should be noted that several electrode reactions are possible for the present system.
As an example we mention 2H2O(l) +O2(aq) + 4e− 
 4OH−(aq). This reaction is limited by
the amount of oxygen present in the solution, which in our experiment is not controlled. If
this reaction were dominating the faradaic charge transfer, the value of Rct could change
from one measurement series to another.

In a recent Ph.D. work by García-Sánchez [53] it is suggested that differences in ionic
mobilities could lead to the observed flow reversal. They observe a lowering in the pH value
of the electrolyte near the positive electrode, which indicates that water reactions leads
to a significant increase in the concentration of H+ ions. For a KCl solution the mobility
of the counterions Cl− is 4.6 times lower than for the H+ ions. In a linearized model
they show how this ionic mobility difference leads to a negative velocity contribution for
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frequencies below 10 kHz, and most important, how this negative contribution increases
for increasing electrolyte concentration. Their calculation is based on parameter values
corresponding to those applied in our system, thus, the effect of mobility difference may
be part of the explanation of the flow reversal.

3.4 Summary
We have produced an integrated AC electrokinetic micropump using MEMS fabrication
techniques. The resulting systems are very robust and may preserve their functionality
over years. Due to careful measurement procedures it has been possible over weeks to
reproduce flow velocities within the inherent uncertainties of the velocity determination.

An increased electrode coverage fraction of the channel has lead to an increased sen-
sitivity as reflected in the velocity ratio vpois/vslip = 0.30. Based on this, a hitherto
unobserved reversal of the pumping direction has been measured in a regime, where the
frequency and the applied voltage are low (f < 20 kHz and Vrms < 1.5 V) compared
to earlier investigated parameter ranges. This reversal depends on the exact electrolytic
concentration and the applied voltage. The measured velocities are of the order −5 µm/s
to −10 µm/s. Previously reported studies of flow measured at the same parameter com-
binations show zero velocity with the given resolution in this regime [3].

Finally, we have performed an impedance characterization of the pumping devices
over eight frequency decades. By fitting Bode plots of the data, the measured impedance
spectra compared favorably with our model using reasonable parameter values.

The trends of our flow velocity measurements are accounted for by a previously pub-
lished theoretical model, but the quantitative agreement is lacking. Most of the theoretical
models do not predict that the velocities should depend on electrolyte concentration, yet
the concentration seems to be one of the causes of our measured low-voltage, low-frequency
flow reversal, Fig. 3.4(a). Only recently a connection between electrolyte concentration
and flow velocities has been proposed, and there are still need for further theoretical work
on the electro-hydrodynamics of these systems.
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Chapter 4

DC-driven ICEO

Regardless of the growing interest in the literature, not all aspects of the complex flow-
generating mechanisms in ICEO systems have been explained by now. Qualitative agree-
ment is often seen between theory and experiment, however, quantitative agreement is
frequently lacking as reported by Gregersen et al. [25], Harnett et al. [7], and Soni et
al. [31]. In the present chapter we seek through numerical simulations to illuminate some
of the possible reasons underlying these observed discrepancies.

A numerical solution scheme is set up in Comsol for solving the full nonlinear equa-
tion system for a DC-driven ICEO system. The code is validated against the well known
analytical result of the ICEO flow around a cylinder in a weak infinite uniform electrical
field [27], see Sec. 2.3. A validation is also performed using a corresponding analytical
benchmark, where the domain is confined and the shape of the cylinder is slightly per-
turbed. Since the analytical results are only strictly valid for an infinitely thin Debye
layer, i.e. for a Debye-length λD much shorter than the cylinder radius a, we investigate
for which ratio λD/a the deviations between the models becomes negligible.

4.1 Model system

A model system corresponding to the geometry analyzed in the work of Squires et al [27]
is chosen as starting point for the analysis. A single un-biased dielectric cylinder in a
uniform, external electric field is considered. The cylinder of radius a is placed at the
center, (x, z) = (0, 0), of a square 2L×2L domain in the xz-plane filled with an electrolyte,
see Fig. 4.1. The system is unbounded and translational invariant in the perpendicular
y-direction. The uniform electric field, parallel to the z-axis, is provided by biasing the
driving electrodes placed at the edges z = ±L with the DC voltages ±V0, respectively.
This anti-symmetry in the bias voltage ensures that the potential along the x-axis is zero.
A double layer, or a Debye screening layer, is induced around the center dielectric cylinder,
and an ICEO flow is generated consisting of four flow rolls. Electric insulating walls at
x = ±L confine the domain in the x-direction. The symmetries of the system around
x = 0 and z = 0 are exploited in the numerical calculations.

39
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Figure 4.1: A sketch of the square 2L×2L electrolytic microchamber in the xz-plane. The external
voltage is applied to the two electrodes (thick black lines) at z = ±L. It induces a quadropolar
flow pattern (curved black arrows) by electro-osmosis around the un-biased dielectric cylinder of
radius a placed in the center (x, z) = (0, 0). The spatial extent of the flow rolls is represented
by the streamline plot (thin black curves) drawn as equidistant contours of the flow rate. The
inset is a zoom-in on the upper right quadrant of the un-biased center electrode and the nearby
streamlines.

4.2 Nonlinear governing equations

We follow the conventional continuum approach to the electrokinetic modeling of the
electrolytic capacitor [27]. The full non-linear equation system, presented in Chap. 2, is
applied to the electrolytic microchamber and only steady-state problems is treated. For
simplicity a symmetric, binary electrolyte is considered, where the positive and negative
ions with concentrations c+ and c−, respectively, have the same diffusivity D and charge
number Z.

4.2.1 Dimensionless form

To simplify the numerical implementation, the governing equations are rewritten in di-
mensionless form, using the characteristic parameters of the system: The radius a of
the cylinder, the ionic concentration c0 of the bulk electrolyte, and the thermal voltage
φ0 = kBT/(Ze). The characteristic velocity u0 is chosen as the Helmholtz–Smoluchowski
slip velocity induced by the local electric field E = ζ/a, where the characteristic zeta-
potential ζ of the dielectric cylinder is set to ζ = φ0 above which value the Debye–Hückel
approximation is violated. Finally, the pressure scale is set by the characteristic microflu-
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idic pressure scale p0 = ηu0/a. In summary,

φ0 = kBT

Ze
, u0 = εζ

η

ζ

a
= εφ2

0
ηa

, p0 = ηu0
a
. (4.1)

The new dimensionless variables (denoted by a tilde) thus become

r̃ = r

a
, c̃i = ci

c0
, φ̃ = φ

φ0
, ṽ = v

u0
, p̃ = p

p0
. (4.2)

To exploit the symmetry of the system, the governing equations are reformulated
in terms of the average ion concentration c ≡ (c+ + c−)/2 and half the charge density
ρ ≡ (c+− c−)/2. Correspondingly, the average ion flux density Jc = (J+ +J−)/2 and half
the current density Jρ = (J+ − J−)/2 are introduced. Thus, the resulting full system of
coupled nonlinear equations takes the following form for the ionic fields

∇̃ · J̃c = ∇̃ · J̃ρ = 0, (4.3a)
J̃c = −ρ̃∇̃φ̃− ∇̃c̃+ Pé c̃ṽ, (4.3b)
J̃ρ = −c̃∇̃φ̃− ∇̃ρ̃+ Pé ρ̃ṽ, (4.3c)

Pé = u0a

D
, (4.3d)

while the electric potential obeys
∇̃2φ̃ = − 1

ε2
ρ̃, (4.4)

and finally the fluid fields satisfy

∇̃ · ṽ = 0, (4.5a)

Re
(
ṽ · ∇̃)ṽ = −∇̃p̃+ ∇̃2ṽ − ρ̃

ε2
∇̃φ̃, (4.5b)

Re = ρu0a

η
. (4.5c)

Here the small dimensionless parameter ε = λD/a has been introduced, where λD is the
Debye length,

ε = λD
a

= 1
a

√
εkBT

2(Ze)2c0
. (4.6)

4.2.2 Boundary conditions

The symmetries around x = 0 and z = 0 are exploited, and only the upper, right quadrant
(0 < (x, z) < L) of the domain is considered, see Fig. 4.1. As boundary conditions on
the driving electrode we take both ion concentrations to be constant and equal to the
bulk charge neutral concentration. Correspondingly, the charge density is set to zero.
Consequently, we ignore all dynamics taking place on the driving electrode and simply
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treat it as an equipotential surface with the value V0. We set a no-slip condition for the
fluid velocity, and thus at z = L we have

c̃ = 1, ρ̃ = 0, φ̃ = V0
φ0
, ṽ = 0. (4.7)

On the top-down symmetry axis (z = 0) the potential and the charge density must be
zero due to the anti-symmetry of the applied potential. Moreover, there is neither a fluid
flux nor a net ion flux in the normal direction and the shear stresses vanish. So at z = 0
the conditions are

φ̃ = 0, n̂ · J̃c = 0, ρ̃ = 0, (4.8a)
t̂ · σ̃ · n̂ = 0, n̂ · ṽ = 0, (4.8b)

where the stress tensor is (σ)ik = −pδik + η(∂iuk + ∂kui), and n̂ and t̂ are the normal and
tangential unit vectors, respectively, which in 2D, contrary to 3D, are uniquely defined. On
the left-right symmetry axis (x = 0) the same conditions apply for for the fluid velocity
and there are no net ion flux in the normal direction. Additionally, the potential field
gradient vanishes in the normal direction, thus, at x = 0 we have

n̂ · ∇̃φ̃ = 0, n̂ · J̃c = 0, n̂ · J̃ρ = 0, (4.9a)
t̂ · σ̃ · n̂ = 0, n̂ · ṽ = 0, (4.9b)

On the dielectric cylinder surface a no-slip condition is applied on the fluid velocity and
a no-current condition in the normal direction. For the potential the usual electrostatic
boundary conditions apply, so the conditions on the dielectric surface are

n̂ · J̃c = 0, n̂ · J̃ρ = 0, ṽ = 0, (4.10a)
φ̃diel = φ̃fluid, εdiel n̂ · ∇̃φ̃diel = εfluid n̂ · ∇̃φ̃fluid. (4.10b)

On the solid, insulating walls there are no fluxes in the normal direction, the normal
component of the electric field vanishes and there are no-slip on the fluid velocity.

n̂ · J̃c = 0, n̂ · J̃ρ = 0, n̂ · ∇̃φ̃ = 0, ṽ = 0. (4.11)

4.2.3 The osmotic body force

The osmotic pressure is much larger than the pure hydrodynamic pressure within the
double layer, and in this section we analyze how these pressures enters the Navier–Stokes
equation. The force F± on a given ion can be expressed as minus the gradient ∇µ of the
chemical potential Eq. (2.1),

F± = −∇µ± = ∓Ze∇φ− kBT

c±
∇c±. (4.12)

Assuming a complete force balance between each ion and the surrounding electrolyte, the
body force density fion appearing in the Navier–Stokes equation for the electrolyte due to
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Figure 4.2: The purely hydrodynamic pressure calculated by solving the full nonlinear governing
equation system for the geometry shown in Fig. 4.1. (a) The explicitly calculated hydrodynamic
pressure p̃dyn entering Eq. (4.14). (b) The hydrodynamic pressure contribution calculated as
p̃− p̃os = p̃− (c̃− 1)/ε2 on basis of the equation set including Eq. (4.5b).

the forces acting on the ions, can be written as the sum of the electric and the osmotic
body force density,

fion =
∑

i=±
ciFi = −Ze(c+ − c−)∇φ− kBT∇(c+ − c−). (4.13)

In terms of the average ion concentration c and half the charge density ρ, the dimensionless
Navier–Stokes equation then becomes

Re
(
ṽ · ∇̃)ṽ = −∇̃p̃dyn + ∇̃2ṽ − 1

ε2
(
ρ̃∇̃φ̃+ ∇̃c̃

)
, (4.14)

where p̃dyn is a purely hydrodynamic pressure. For the undisturbed salt concentration
c̃ = 1 the osmotic pressure pos is absent, thus, it is natural to define p̃os as the scalar field

p̃os ≡
1
ε2

(c̃− 1). (4.15)

Hence, the Navier–Stokes equation becomes

Re
(
ṽ · ∇̃)ṽ = −∇̃(p̃dyn + p̃os

)
+ ∇̃2ṽ − 1

ε2
ρ̃∇̃φ̃, (4.16)

where the total pressure is p̃ = p̃dyn + p̃os.
Consequently, in analogy with the gravitational potential energy density and the

hydrostatic pressure, the osmotic effect can either appear explicitly as a body force
fos = −∇c̃/ε2 or it can be absorbed into the pressure gradient term,

∇̃p̃ = ∇̃p̃dyn + ∇̃p̃os. (4.17)
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To check the result numerically, we use the model system described in Sec. 4.1, and
solve the full nonlinear governing equations including either Eq. (4.5b) or Eq. (4.14) for
the Navier–Stokes equation. The ratio between the domain half-height L and the cylinder
diameter a is set to L/a = 10, while the dimensionless Debye length is set to ε = 0.01. The
potential difference across the cylinder diameter is 0.1φ0, where φ0 is the thermal voltage,
ensuring that the calculation is performed in the Debye–Hückel regime. In Fig. 4.2 the
purely hydrodynamic pressure contribution has been plotted for each of the numerical
solutions in the area close to the cylinder. Panel (a) shows the explicitly calculated p̃dyn
entering Eq. (4.14), while panel (b) is a plot of p̃− p̃os = p̃− (c̃− 1)/ε2 calculated on basis
of the equation set including Eq. (4.5b). It is clearly seen, that there is full agreement
between the two solutions. Consequently, the explicit body force density arising from the
osmotic pressure of the ions, may be treated implicitly through the total pressure in the
electrolyte. In the following, we only calculate the total pressure p̃.

4.3 Validation of the numerical solutions

To validate the numerical solutions of the model system presented above, the analytical
flow solution presented by Squires and Bazant in Ref. [27] is used as benchmark. In their
analytical work the geometry corresponds to the one defined above, but the electrical
background field extends to infinity and the double layer is assumed to be infinitely thin.
These limits are not directly realizable in the numerical solution scheme, so instead the
convergence of the numerical solutions toward the limiting analytical solution is checked.
The comparison between the analytical and numerical flow solutions can be carried out
in different ways. At least three parameters can be employed for the comparison; the
generated slip velocity immediately outside the Debye-layer, the generated kinetic energy
around the cylinder, or the total kinetic energy dissipation from the resulting velocity field
in the bulk electrolyte. In Fig. 4.4 these three different methods have been employed to
compare the numerical results with corresponding the analytical values as functions of
both the relative double layer width ε = λD/a and the total domain size 2L.

The slip velocity is uniquely defined for the analytical solution as the Helmholtz-
Smoluchowski slip-velocity at the cylinder surface vslip = 2u0 sin θ, where u0 = εE2

0a/η,
see Sec. 2.3. For the numerical solution, however, the double layer is fully resolved, and
it is not obvious to decide where the slip velocity should be measured. In this case, the
magnitude of the fluid velocity grows up from zero at the cylinder boundary r = a to a
maximum at approximately r = a + 3λD, whereafter it decays into the bulk electrolyte.
Since the slip velocity is maximal at angles θ = noddπ/4, where nodd are odd integers,
we choose to define the numerical slip velocity as the maximal velocity tangential to the
cylinder surface along the radial direction (r, θ) = (r, π/4), i.e.

vslip = max
[
v(r, π/4) · t̂ ], (4.18)

where t̂ is the tangential vector to the cylinder surface.
Alternative to the direct slip velocity comparison, the total kinetic energy of the in-
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duced flow field v is independent of the local velocity profile in the double layer.

Ekin = 1
2ρm

∫

Ω
v2 dx dz, (4.19)

Numerically, this parameter is beneficial, since it depends directly on the velocity field
and not its gradients, and furthermore it is a bulk integral of good numerical stability.
Nevertheless, the total kinetic energy is not well defined for the analytical flow solution,
since the integral of the squared velocity field across the infinite plane diverges. The
comparison between the two models can still be performed, though, by introducing a cut-
off radius r = R0 for the calculation of the kinetic energies in both models. The analytical
expression for the kinetic energy then becomes

Ekin = −1
2ρm

[
2a2πu2

0
{
(a2 −R2

0)2 − 2R4
0 ln(R0

a )
}

R4
0

]
(4.20)

The energy dissipation in the bulk electrolyte can also be used as a comparable pa-
rameter for the two models. In the analytical model with its infinitely thin double layer,
the surrounding electrolyte is charge neutral, and hence the strength of the ICEO flow can
be defined solely in terms of the hydrodynamic stress tensor σ, as the mechanical power
Pmech exerted on the electrolyte by the tangential slip-velocity vslipt̂

Pmech =
∮

|r|=a
n̂ · σ · t̂ vslipda, (4.21)

where n̂ and t̂ is the normal and tangential vector to the cylinder surface, respectively.
In steady flow, this power is equal to the total kinetic energy dissipation Pkin of the
resulting quadrupolar velocity field in the electrolyte. In cartesian coordinates Pkin for an
incompressible fluid is given as

Pkin = 1
2η
∫

a<|r|
(∂ivj + ∂jvi)2dr. (4.22a)

Exploiting that the trace of a tensor is invariant under coordinate transformation, we get
the following expression for Pkin in polar coordinates [54],

Pkin = 1
2η

∫

a<|r|
Tr(σ2)dr = 1

2η

∫

a<|r|

(
σ2
rr + 2σ2

rθ + σ2
θθ

)
rdrdθ = 16πηu2

0. (4.22b)

The analytical expression for the flow field in cylindrical coordinates leads to the following
value of the mechanical power per unit length in the y-direction,

Pmech =
∮

|r|=a
r̂ · σ · vsliprdθ = a

∫ 2π

0
σrθvθdθ = −16πηu2

0. (4.23)

Here r̂ is the unit vector in the radial direction. Indeed, the expression for the kinetic
energy dissipation leads to the same absolute value.



46 CHAPTER 4. DC-DRIVEN ICEO

a
6λD

L

Pkin: a+ 6λD < r < L

Ekin(a+ 6λD): a < r < a+ 6λD

Ekin(L): a < r < L

Figure 4.3: Overview of the integration areas used in the calculations of the graphs shown in
Fig. 4.4.

First, in the full double-layer resolving simulation we determined the value P ∗mech(R0) =∮
|r|=R0

n̂·σ·v da of the mechanical input power, where R0 is the radius of a cylinder surface
placed co-axially with the metallic cylinder. Then, as expected due to the electrical forces
acting on the net charge in the double layer, we found that P ∗mech(R0) varied substantially
as long as the integration cylinder surface was inside the double layer. For R0 ≈ a+6λD the
mechanical input power stabilized at a certain value. However, since surface integrals are
generally more numerical stable, the corresponding kinetic energy dissipation P ∗kin(R0) =
1
2η
∫
R0<|r|(∂ivj + ∂jvi)2dr is employed for the comparison with the analytical result.
Fig. 4.4 (a) shows how the confinement of the domain influences the numerical so-

lutions. The full nonlinear equation system has been solved for increasing values of the
domain width L, and each of the above outlined comparable parameters Pkin, Ekin and
vslip has been calculated. For the kinetic energy dissipation Pkin the integral has been
evaluated on the entire domain outside the co-axially placed cylinder surface of radius
R0 = a+ 6λD. The generated kinetic energy has been calculated for two different cut-off
radii of R0 = a + 6λD and R0 = L, respectively. An overview of the different integration
areas is given in Fig. 4.3. The physical parameter values and corresponding dimensionless
values used as input in the model are displayed in Table 4.1.

It is noted that the problem is formulated well below the Debye–Hückel limit with a
voltage drop of 0.05φ0 across the cylinder to meet the approximations of the analytical
model. The curves in Fig. 4.4 (a) are the relative differences of the parameter values
[Ekin(Li) − Ekin(Li+1)]/Ekin(Li) plotted as function of Li, where i is an index indicating
the numerical solution for increasing values of L, and the numerical parameter values Ekin
have been divided by the corresponding analytical parameter value. From this plot the
confinement effects seams vanishing when the domain exceeds a size of L = 25a, where all
relative differences are below 0.5%. A domain of L = 15a is enough if we use vslip, Pkin or
the generated kinetic energy inside the double layer Ekin(r < a+ 6λD).

In Fig. 4.4 (b) the analytical and numerical results are compared for a domain of
half-width L = 25a. The full non-linear equation system with fully resolved double layer
has been solved for a series of ε values. Each of the parameters Pkin, Ekin and vslip have
been calculated for the numerical solution and normalized by the corresponding analytical
value, i.e. full agreement between the two models would give the value unity. The cut-off
radii and integration limits are the same as for Fig. 4.4 (a) and the input parameters of
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Figure 4.4: Plots of the kinetic energy dissipation Pkin, the generated kinetic energy for two
different cut-off radii, Ekin(r < a + 6λD) and Ekin(r < L), and the slip velocity vslip. (a) Plot of
the relative differences calculated as [Ekin(Li)−Ekin(Li+1)]/Ekin(Li) as function of an increasing
domain size Li. (b) Plots of the four parameters divided by their corresponding analytical values
as function of the inverse dimensionless Debye length 1/ε. The value of ε decreases from 1 to
3× 10−3 going from left to right.

Table 4.1 has been used. The numerical values are significantly lower than the analytical
values, but the discrepancies decrease for decreasing values of ε = λD/a. Remarkably, even
for a quite thin Debye layer, λD = 0.01a, the values of the full numerical simulation are at
least about 20% lower than the analytical value, depending on the compared parameter.
Clearly, the analytical model overestimates the ICEO effect, and the double-layer width
must be extremely thin before the simple analytical model agrees well with the full model.

Table 4.1: Parameters used in the simulations of the conventional ICEO model of the generated
flow around a dielectric cylinder in an electrolyte between by two DC biased capacitor plates in a
confined square domain.

Parameter Symbol Dimensionless Physical
value value

Cylinder radius a 1.0 125 nm
Domain half-length and half-height L 50.0 6.25 µm
Linear Debye length λD 0.01 1.25 nm
Characteristic velocity u0 1.0 3.5× 10−3 m/s
Characteristic potential φ0 1.0 25 mV
External potential amplitude V0 1.25 32 mV
Bulk fluid permittivity εfluid 1.0 78 ε0
Dielectric permittivity εdiel 1.3× 104 106 ε0
Bulk ionic concentration c0 1.0 58 mM
Fluid viscosity η 1.0 10−3 Pas
Ionic diffusion constant D 1.0 2× 10−9 m2/s
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The discovered discrepancies presented above have become the primary motivation
for the study presented in our paper Ref. [30], where a much more extensive numerical
investigation of these discrepancies have been carried out. In Sec. 4.5 the main results
from this paper is presented.

4.4 Validation of perturbed cylinder in finite domain
To further validate our numerical simulations, we solve the potential and slip velocity
around a perturbed cylinder in a square domain confined by two capacitor plates, corre-
sponding to the geometry shown in Fig. 4.1. Assuming an infinitely thin Debye layer at the
cylinder surface leaves the bulk electrolyte charge neutral and the Laplace equation valid
for the potential in the entire domain. The Laplace equation is solved using perturbation
theory and the solution potential then leads to the slip-velocity at the cylinder surface by
insertion in the Helmholtz–Smoluchowski formula Eq. (2.20). The corresponding problem
is subsequently solved using the conventional ICEO model with fully resolved double layer
and compared to the analytical solution.

The radius of the perturbed cylinder, see Fig. 4.5, is chosen as

R = a
[
1 + α cos(3θ)

]
. (4.24)

The plates at z = ±Ly are symmetrically biased φ = ±V0, and on the vertical side walls
x = ±Lx a linear potential φ = V0z/L is assumed. We exploit the symmetry around
z = 0, and use the boundary condition φ = 0 at the symmetry line. The general solution
to the Laplace equation in cylindrical coordinates is given by

φ(r, θ) = A0 +B0 ln r +
∞∑

n=1

[
Anr

n +Bnr
−n][Cn cos(nθ) +Dn sin(nθ)

]
. (4.25)

Due to the symmetry of the problem the constants A0, B0 and Cn equals zero, and the
general solution becomes

φ(r, θ) =
∞∑

n=1

[
Anr

n +Bnr
−n] sin(nθ). (4.26)

α = 0.05 α = 0.5

Figure 4.5: The perturbed cylinders given by Eq. (4.24). The small perturbation with α = 0.05
is used in the perturbation analysis of the cylinder in a finite domain. The strongly perturbed
cylinder with α = 0.5 is used in the calculation of the ICEO flow result in Fig. 6.6.
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4.4.1 Zeroth order solution potential

First, the potential φ0 around the unperturbed cylinder in the confined domain is deter-
mined. In steady state the induced dipole field is completely screened and the boundary
condition at the cylinder surface becomes

∂rφ(r, θ)|r=a = 0, (4.27)

leading to the potential

φ0 =
∞∑

l=1
Ala

l
[(r
a

)l
+
(r
a

)−l]
sin(lθ). (4.28)

The condition along the domain boundary (r, θ) = (r∗, θ) is divided into three parts
corresponding to the confining edges,

φ0(Lx/ cos θ, θ) = V
Lx
Ly

tan θ, for 0 < θ < θ0, (4.29a)

φ0(Ly/ sin θ, θ) = V, for θ0 < θ < π − θ0, (4.29b)

φ0(−Lx/ cos θ, θ) = −V Lx
Ly

tan θ, for π − θ0 < θ < π, (4.29c)

where θ0 = arctan(Ly/Lx). Denoting the left- and right-handside of Eq. (4.29) φ0,1(r∗, θ)
and φ0,2(θ), respectively, a fouriertranformation of the equation yields

∫ π

0
φ0,1(r∗, θ) sin(mθ)dθ =

∫ π

0
φ0,2(θ) sin(mθ)dθ. (4.30a)

Switching summation and integration gives

∞∑

l=1
Ala

l
∫ π

0

[(
r∗(θ)
a

)l
+
(
r∗(θ)
a

)−l]
sin(lθ) sin(mθ)dθ =

∫ π

0
φ0,2(θ) sin(mθ)dθ, (4.30b)

or with a simplified notation
∞∑

l=1
Mml(Alal) = Bm, (4.30c)

leading to the matrix equation

M ·A = B ⇒ A = M−1B. (4.30d)

4.4.2 First order solution potential

On basis of the known solution potential φ0 around the unperturbed cylinder, the first
order perturbation term φ1 can be found, assuming that the potential can be written as

φ = φ0 + αφ1. (4.31)
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φ1 has the general form given in Eq. (4.26),

φ1(r, θ) =
∞∑

k=1

[
Ckr

k +Dkr
−k] sin(kθ). (4.32)

On the domain boundary φ0 fulfills the boundary condition, thus, φ1(r∗(θ), θ) = 0. Fourier
transforming the equation and rearranging the terms yields
∞∑

k=1
Ck

∫ π

0

[
r∗(θ)k sin(kθ) sin(mθ)

]
dθ = −

∞∑

k=1
Dk

∫ π

0

[
r∗(θ)−k sin(kθ) sin(mθ)

]
dθ, (4.33)

which results in a second matrix equation

L ·C = −N ·D ⇒ C = −L−1ND. (4.34)

The resulting expression for the perturbation term is

φ1(r, θ) =
∞∑

k=1

[− L−1
kmNkmr

k + δkmr
−k]Dk sin(kθ). (4.35)

On the cylinder boundary the condition is

n̂ ·∇φ|r=R = 0, (4.36)

where the normal vector for the perturbed cylinder is given by

n̂ = r̂ − α∂θ cos(3θ)θ̂ = r̂ + α3 sin(3θ)θ̂. (4.37)

Taylor expanding the condition Eq. (4.36) to first order yields

n̂ ·∇φ|r=R ' n̂ ·∇φ|r=a + (r − a)∂rn̂ ·∇φ|r=a = 0. (4.38)

Inserting and rearranging leads to the following known boundary condition on φ1,

∂rφ1|r=a = −3
r

sin(3θ)∂θφ0|r=a − a cos(3θ)∂2
rφ0|r=a, (4.39)

which after manipulation of the involved infinite sums gives the final expression for the
boundary condition on the cylinder,

∂rφ1|r=a =− 2a(A2 + 2a2A4) sin θ − 2(A1 + 5a4A5) sin(2θ)− 18a5A6 sin(3θ)

−
∞∑

n=4

[
n(n− 3)an−4An−3 + n(n+ 3)an+2An+3

]
sin(nθ).

(4.40)

Simplified this expression can be written

∂rφ1|r=a =
∞∑

n=1
Hn sin(nθ). (4.41)
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From Eq. (4.35) the general expression for the derivative in the radial direction of φ1
is given as

∂rφ1(r, θ)|r=a =
∞∑

k=1

k

a

[− L−1
kmNkma

k + δkma
−k]Dk sin(kθ), (4.42)

which can be denoted
∂rφ1|r=a =

∞∑

k=1
JknDk sin(kθ). (4.43)

By combination of Eqs. (4.41) and (4.43) the final vector D is determined,

H = JD ⇒D = J−1H. (4.44)

It is now possible to calculate the perturbed potential around the cylinder in the
confined domain as

φ(r, θ) = φ0(r, θ) + αφ1(r, θ)

=
∞∑

l=1

{
Al a

l
[(r
a

)l
+
(r
a

)−l]
+ α

[
Cl r

l +Dl r
−l]
}

sin(lθ)
(4.45)

4.4.3 Resulting slip velocity

Knowing the potential field around the perturbed cylinder, the ζ potential and the tangen-
tial electrical field E‖ is easily determined and inserted in the Helmholtz–Smoluchowski
formula for the slip-velocity. The zeta potential is found by direct insertion of the per-
turbed cylinder boundary Eq. (4.24) in the potential,

ζ = −φ(R(θ), θ). (4.46)

Using the tangential unit vector t̂ = θ̂ + α∂θ cos(3θ)r̂ = θ̂ − α3 sin(3θ)r̂, the tangential
E-field to the first order of α is given as

E‖ = t̂ ·∇φ = 1
r
∂φ− α3 sin(3θ)∂rφ0. (4.47)

By insertion the, final expression is found

E‖ =
∞∑

l=1

[{
Al a

l
[(r
a

)l
+
(r
a

)−l]
+ α

[
Cl r

l +Dl r
−l]
}
l

r
cos(lθ)

− α3 sin(3θ)Al
lal

r

[(r
a

)l
−
(r
a

)−l]
sin(lθ)

] (4.48)

Thus, the slip-velocity can now be determined from the Helmholtz–Smoluchowski formula

vslip = − ε
η
ζ(R(θ), θ)E‖(R(θ), θ). (4.49)
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Figure 4.6: Slip-velocity vslip as function of angle θ at the surface of a cosine-perturbed
cylinder in a confined domain with ratio L/a = 6. An analytical solution obtained by
perturbation theory (solid line) is compared to two corresponding numerical solutions
calculated by the conventional full Debye layer resolving ICEO model (dashed lines) for
two different values of ε = λD/a.

Choosing a ratio of L/a = 6, a potential V0 = 1 and a perturbation of α = 0.05, the
coefficients entering Eq. (4.49) can be calculated using Matlab for the matrix inversions
and multiplications. The analytical slip-velocity calculated using the first ten terms of
the infinite sums is shown in Fig. 4.6 as function of the angle θ. Two corresponding
numerically calculated slip-velocity graphs are also shown in the figure. They have been
calculated for a corresponding system using the conventional full Debye-layer resolving
model for two values of ε = λD/a, ε = 0.01 and ε = 0.005. The numerical slip-velocity
is determined by calculating the velocity tangential to the perturbed cylinder surface at
r = (a + δa)[1 + α cos(3θ)], where δa is calculated using Eq. (4.18) on the corresponding
unperturbed cylinder. It is seen how the numerical slip-velocities agrees well with the
analytical perturbation result. There is a small discrepancy between the absolute values
of the two solution methods, but the difference decreases with decreasing ε as expected
from the discussions in the previous sections of this chapter. Furthermore, the difference
between the values falls within the range expected on basis of Fig. 4.4.

Based on the validations presented in this and the previous section, we have gained
confidence in our numerical approach for treating DC-ICEO systems.

4.5 Numerical analysis of finite Debye-length effects in ICEO
This section presents the results published in our paper Ref. [30]. The primary motivation
for the studies presented in the paper and summarized in the following, were the discov-
ered discrepancies presented in the previous section. From the preliminary investigations,
shown in the convergence graph Fig. 4.4 (b), we were surprised to find such a rapidly
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increasing difference between the analytical slip-velocity model and the full Debye-layer
resolving numerical model for small increments in the double-layer width (ε = λD/a). It
was surprising since the simple slip-velocity model often is applied as reference for work
reported in the literature, without the very sharp restrictions on system length scales that
our findings suggests.

MSc. student Mathias Bækbo Andersen, DTU Nanotech, carried out the more thor-
ough investigation of the discrepancies, where a stricter numerical mesh convergence
scheme was applied and the dimensionless ratio ε was decreased to a value of ε ∼ 10−4.
A more advanced slip-velocity model, briefly mentioned in the following, was additionally
set up through a collaboration with Gaurav Soni and Carl Meinhart, UCSB and compared
to the full nonlinear model.

We analyze quantitatively the impact of a finite Debye length on the kinetic energy
of the flow rolls generated by ICEO for three different models: (i) The full nonlinear
electrokinetic model (FN) with a fully resolved double layer, (ii) the linear slip-velocity
model (LS), where electrostatics and hydrodynamics are completely decoupled, and (iii)
a nonlinear slip-velocity model (NSL) including the double layer charging through ohmic
currents from the bulk electrolyte and the surface conduction in the Debye layer. The latter
two models are only strictly valid for infinitely thin double layers, and we emphasize that
the aim of our analysis is to determine the errors introduced by these models neglecting
the finite width of the double layers compared to the full nonlinear model resolving the
double layer. We do not seek to provide a more accurate description of the physics in
terms of extending the modeling by adding, say, the Stern layer (not present in the model)
or the steric effects of finite-sized ions (not taken into account).

4.5.1 Model system: flat center electrode at a wall

To keep our analysis simple, we consider a single un-biased metallic electrode in a uniform,
external electric field. The electrode of width 2a and height h is placed at the bottom
center, −a < x < a and z = 0, of a square 2L × 2L domain in the xz-plane filled with
an electrolyte, see Fig. 6.1. The system is unbounded and translational invariant in the
perpendicular y-direction. The uniform electric field, parallel to the surface of the center
electrode, is provided by biasing the driving electrodes placed at the edges x = ±L with
the DC voltages ±V0, respectively. This anti-symmetry in the bias voltage ensures that
the constant potential of the center electrode is zero. A double layer, or a Debye screening
layer, is induced above the center electrode, and an ICEO flow is generated consisting of
two counter-rotating flow rolls. Electric insulating walls at z = 0 (for |x| > a) and at
z = 2L confine the domain in the z-direction. The symmetry of the system around x = 0
is exploited in the numerical calculations.

4.5.2 Full nonlinear model (FN)

The full nonlinear electrokinetic model is governed by the equations presented in Sec. 4.2.1.
The same characteristic parameters applies to the present system, where a becomes the
half-width of the electrode in this geometry. Additionally, we introduce the dimensionless
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Figure 4.7: A sketch of the square 2L × 2L electrolytic microchamber in the xz-plane. The
external voltage ±V0 is applied to the two electrodes (thick black lines) at x = ±L, respectively. It
induces two counter-rotating flow rolls (curved black arrows) by electro-osmosis over the un-biased
metallic center electrode of length 2a and height h placed at the bottom wall around (x, z) = (0, 0).
The spatial extent of the flow rolls is represented by the streamline plot (thin black curves) drawn
as equidistant contours of the flow rate. The inset is a zoom-in on the right half, 0 < x < a, of the
un-biased center electrode and the nearby streamlines.

zeta-potential α. The characteristic zeta-potential ζ of the center electrode, i.e. its induced
voltage, is given as the voltage drop along half of the electrode, ζ = (a/L)V , thus, ζ ≡ αφ0,
or α = (aV )/(Lφ0). Consequently, the characteristic velocity can be expressed through α
as

u0 = εζ

η

ζ

a
= εφ2

0
ηa

α2. (4.50)

Furthermore, the electric body force term in the Navier–Stokes equation (last term of
Eq. (4.5b)) can then explicitly be expressed by α as fel = −[ρ̃/(ε2α2)]∇̃φ̃, while the
osmotic body force term (last term of Eq. (4.14)) becomes fos = −∇c̃/(ε2α2) .

We exploit the symmetry around x = 0 and consider only the right half (0 < x < L)
of the domain. The boundary conditions on the driving electrode (x = L) is given by
Eq. (4.7), where the condition on the potential φ can be expressed by α as φ̃ = αL/a. On
the symmetry axis (x = 0) the boundary conditions are given by Eq. (4.8). On the floating
electrode the potential is zero φ̃ = 0 and the boundary conditions for the remaining fields
are given in Eq. (4.10a). Finally, the boundary conditions on the solid insulating wall
(z = 2L) are given by Eq. (4.11).

At high values of the induced ζ-potential, the concentrations of counter- and co-ions ac-
quire very large and very small values, respectively, near the center electrode. Numerically
this is problematic. The concentration ratio becomes extremely large and the vanishingly
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small concentration of co-ions is comparable to the round-off error and may even become
negative. However, this numerical problem can be circumvented by working with the
logarithms (marked by a breve accent) of the concentration fields, c̆± = log(c±/c0). By
inserting

c± = c0 exp
(
c̆±
)

(4.51)
in the governing equations (2.3), (2.14), and (2.15b), a new equivalent set of governing
equations is derived. This transformation serves to help linearize solutions of the depen-
dent variables, c̆ and ρ̆, at the expense of introducing more nonlinearity into the governing
equations. More details about the resulting equations is found in our paper [30].

4.5.3 Slip-velocity models

The numerical calculation of ICEO flows in microfluidic systems is generally connected
with computational limitations due to the large difference of the inherent length scales.
Typically, the Debye length is much smaller than the geometric length scale, λD � a,
making it difficult to resolve both the dynamics of the Debye layer and the entire microscale
geometry with the available computer capacity. Therefore, it is customary to use slip-
velocity models, where it is assumed that the electrodes are screened completely by the
Debye layer leaving the bulk electrolyte charge neutral. The dynamics of the Debye layer is
modeled separately and applied to the bulk fluid velocity through an effective, Helmholtz–
Smoluchowski slip velocity condition, Eq. (2.20), at the electrode surface. Regardless of
the modeled dynamics in the double layer, the slip-velocity models are only strictly valid
in the limit of infinitely thin double layers λD � a, as mentioned in Sec. 2.1.3

The linear slip-velocity model (LS)

The double-layer screening of the electrodes leaves the bulk electrolyte charge neutral, and
hence the governing equations only include the potential φ, the pressure field p and the
flow velocity field v. In dimensionless form they become,

∇̃2φ̃ = 0, (4.52a)
Re
(
ṽ · ∇̃)ṽ = −∇̃p̃+ ∇̃2ṽ, (4.52b)

∇̃ · ṽ = 0. (4.52c)

The electrostatic problem is solved independently of the hydrodynamics, and the potential
is used to calculate the effective slip velocity applied to the fluid at the un-biased electrode
surface. The boundary conditions of the potential and fluid velocity are equivalent to the
conditions applied to the full non-linear system, except at the surface of the un-biased
electrode. Here, the normal component of the electric field vanishes, and the effective
slip velocity of the fluid is calculated from the electrostatic potential using ζ = −φ and
E‖ = −[(t̂ · ∇̃)φ̃

]
t̂,

n̂ ·∇φ̃ = 0, (4.53a)

ṽHS = 1
α2 φ̃

[
(t̂ · ∇̃)φ̃

]
t̂. (4.53b)
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This represents the simplest possible, so-called linear slip-velocity model; a model
which is widely applied as a starting point for numerical simulations of actual microflu-
idic systems [9, 10]. In this simple model all the dynamics of the double layer has been
neglected, an assumption known to be problematic when the voltage across the electrode
exceeds the thermal voltage.

The nonlinear slip-velocity model (NLS)

The linear slip-velocity model can be improved by taking into account the nonlinear charge
dynamics of the double layer. This is done in the so-called nonlinear slip-velocity model,
where, although still treated as being infinitely thin, the double layer has a non-trivial
charge dynamics with currents from the bulk in the normal direction and currents flowing
tangential to the electrode inside the double layer. For details on the non-linear slip-
velocity model, the reader is referred to references [30] and [55], and in the following the
model is roughly outlined.

For simplicity we assume in the present nonlinear model that the neutral salt con-
centration c0 is uniform. This assumption breaks down at high zeta potentials, where
surface transport of ionic species can set up gradients in the salt concentrations leading
to chemi-osmotic flow.

The charging of the double layer by the ohmic bulk current is assumed to happen in
quasi-equilibrium characterized by a nonlinear differential capacitance Cdl given by the
Gouy–Chapmann model (Sec. 2.1.1), Cdl = ε cosh[zeζ/(2kBT )]/λD, where the Stern layer
is ignored. The zeta-potential is then directly proportional to the bulk potential right
outside the double layer, ζ = −φ. The current along the electrode inside the Debye layer
is described by a 2D surface conductance σs1, and in steady state the conservation of
charge then yields

0 = n̂ · (σ∇φ) + ∇s ·
[
σs∇sφ

]
, (4.54)

where the operator ∇s = t̂(t̂ ·∇) is the gradient in the tangential direction of the surface.
Eq. (4.54) is then applied as an effective boundary condition for the potential on the
floating unbiased electrode.

4.5.4 Numerical issues

We have applied the so-called weak formulation mainly to be able to control the coupling
between the bulk equations and the boundary constraints, such as Eqs. (4.53b) and (4.54),
in the implementation of the slip-velocity models in script form. Details on the weak
implementation of the boundary conditions can be found in Ref. [30].

The accuracy and the mesh dependence of the simulation has been investigated as
follows. The comparison between the three models quantifies relative differences of orders
down to 10−3, and the convergence of the numerical results is ensured in the following way.
COMSOL has a build-in adaptive mesh generation technique that is able to refine a given
mesh so as to minimize the error in the solution. The adaptive mesh generator increases

1Following Dukhin [56] the surface conductance is given as σs = 4λDσ(1+m) sinh2[Zeζ/(4kBT )], where
m = 2[kBT/(Ze)]2ε/(ηD) indicates the relative contribution of electroosmosis to surface conduction.
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the mesh density in the immediate region around the electrode to capture the dynamics of
the ICEO in the most optimal way under the constraint of a maximum number of degrees
of freedom (DOFs). For a given set of physical parameters, the problem is solved each time
increasing the number of DOFs and comparing consecutive solutions. As a convergence
criterium we demand that the standard deviation of the kinetic energy relative to the
mean value should be less than a given threshold value typically chosen to be around
10−5. All of the simulations ended with more than 106 DOFs, and the ICEO flow is
therefore sufficiently resolved even for the thinnest double layers in our study for which
ε = 10−4.

4.5.5 Results of the finite Debye length effects

Our comparison of the three numerical models is primarily focused on variations of the
three dimensionless parameters ε, α, and β relating to the Debye length λD, the applied
voltage V0, and the height h of the electrode, respectively,

ε = λD
a
, α = aV0

Lφ0
, β = h

a
. (4.55)

As mentioned in Sec. 4.3, the strength of the generated ICEO flow can be measured
in several ways. We could use either the mechanical power input Pmech exerted on the
electrolyte by the slip-velocity just outside the Debye layer or equivalently the kinetic
energy dissipation Pkin in the bulk of the electrolyte. However, both these methods suffers
from numerical inaccuracies due to the dependence of both the position of the integration
path and of the less accurately determined velocity gradients in the stress tensor σ. To
obtain a numerically more stable and accurate measure, we have chosen in the following
analysis to characterize the strength of the ICEO flow by the kinetic energy Ekin of the
induced flow field v,

Ekin = 1
2ρm

∫

Ω
v2 dx dz, (4.56)

which depends on the velocity field and not its gradients, and which furthermore is a bulk
integral of good numerical stability.

Zero height of the un-biased center electrode

We assume the height h of the un-biased center electrode to be zero, i.e. β = 0, while
varying the Debye length and the applied voltage through the parameters ε and α. We
note that the linear slip-velocity model Eqs. (4.52) and (4.53) is independent of the di-
mensionless Debye length ε. It is therefore natural to use the kinetic energy ELS

kin of this
model as a normalization factor.

In the lin-log plot of Fig. 4.8 (a) we show the kinetic energy ENLS
kin and EFN

kin normalized
by ELS

kin as a function of the inverse Debye length 1/ε for three different values of the
applied voltage, α = 0.05, 0.5 and 5, ranging from the linear to the strongly nonlinear
voltage regime.

We first note that in the limit of vanishing Debye length (to the right in the graph) all
models converge towards the same value for all values of the applied voltage α. For small
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Figure 4.8: (a) The total induced kinetic energy ENLS
kin (gray dashed) and EFN

kin (black) for the
nonlinear slip-velocity model and the full model, respectively, relative to ELS

kin (horizontal black
line) of the linear slip-velocity model as a function of dimensionless inverse Debye length 1/ε. Each
are shown for three values of the dimensionless applied voltage α = 0.05, 0.5 and 5. The value of ε
decreases from 1 to 10−4 going from left to right. (b) The difference between the induced kinetic
energies ELS

kin and ENLS
kin of the linear and nonlinear slip-velocity models, respectively, relative to the

full model EFN
kin as a function of the inverse Debye length 1/ε. for three different applied voltages

α = 0.05, 0.5, 5.

values of α the advanced slip-velocity model ENLS
kin is fairly close to the linear slip-velocity

model ELS
kin, but as α increases, it requires smaller and smaller values of ε to obtain the

same results in the two models. In the linear regime α = 0.05 a deviation less than 5% is
obtained already for ε < 1. In the nonlinear regime α = 0.5 the same deviation requires
ε < 10−2, while in the strongly nonlinear regime ε < 10−4 is needed to obtain a deviation
lower than 5%.

In contrast, it is noted how the more realistic full model EFN
kin deviates strongly from

ELS
kin for most of the displayed values of ε and α. To obtain a relative deviation less than

5% in the linear (α = 0.05) and nonlinear (α = 0.5) regimes, a minute Debye length of
ε < 10−3 is required, and in the strongly nonlinear regime the 5% level it not reached at
all.

The deviations are surprisingly large. The Debye length in typical electrokinetic ex-
periments is λD = 30 nm. For a value of ε = 0.01 this corresponds to an electrode of width
2× 3 µm = 6 µm, comparable to those used in Refs. [3,21,25]. In Fig. 4.8 (a) we see that
for α = 5, corresponding to a moderate voltage drop of 0.26 V across the electrode, the
linear slip-velocity model overestimates the ICEO strength by a factor 1/0.4 = 2.5. The
nonlinear slip-model does a better job. For the same parameters it only overestimates the
ICEO strength by a factor 0.5/0.4 = 1.2.

For more detailed comparisons between the three models the data of Fig. 4.8 (a)
are plotted in a different way in Fig. 4.8 (b). Here the overestimates (ELS

kin/E
FN
kin ) − 1

and (ENLS
kin /EFN

kin ) − 1 of the two slip-velocity models relative to the more correct full
model are plotted in a log-log plot as a function of the inverse Debye length 1/ε for three
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Figure 4.9: (a) The difference between the induced kinetic energies ELS
kin and ENLS

kin of the linear
and nonlinear slip-velocity models, respectively, relative to the full model EFN

kin as a function of
the voltage bias α for three different Debye layer thicknesses ε = 1.8 × 10−3, 10−2, 10−1. (b)
The difference between the induced kinetic energies EFN

kin (ε, β) of the full model at finite Debye
length and electrode height relative to the full model EFN

kin (0, 0) at zero Debye length and zero
electrode height as a function of the inverse Debye length 1/ε for four electrode heights β =
0, 10−3, 10−2, 10−1.

different values of the applied voltage. It is clearly seen how the relative deviation decreases
proportional to ε as ε approaches zero.

Finally, in Fig. 4.9 (a) the relative deviations (ELS
kin/E

FN
kin )− 1 and (ENLS

kin /EFN
kin )− 1 are

plotted versus the voltage α in a log-log plot. For any value of the applied voltage α, both
slip-velocity models overestimates by more than 100% for large Debye lengths ε = 10−1

and by more than 10% for ε = 10−2. For the minute Debye length λD = 1.8 × 10−3 the
overestimates are about 3% in the linear and weakly nonlinear regime α < 1, however, as
we enter the strongly nonlinear regime with α = 5 the overestimation increases to a level
above 10%.

Finite height of the un-biased electrode

Compared to the full numerical model, the slip-velocity models are convenient to use, but
even for small Debye lengths, say λD = 0.01a, they are prone to significant quantitative
errors as shown above. Similarly, it is of relevance to study how the height of the un-biased
electrode influences the strength of the ICEO flow rolls. In experiments the thinnest
electrodes are made by evaporation techniques. The resulting electrode heights are of the
order 50 nm − 200 nm, which relative to the typical electrode widths a ≈ 5 µm results in
dimensionless heights 10−3 < β < 10−1.

In Fig. 4.9 (b) is shown the results for the numerical calculation of the kinetic energy
EFN

kin (ε, β) using the full numerical model. The dependence on the kinetic energy of the
dimensionless Debye length ε = λD/a and the dimensionless electrode height β = h/a
is measured relative to the value EFN

kin (ε, β) of the infinitely small Debye length for an



60 CHAPTER 4. DC-DRIVEN ICEO

electrode of zero height.
For small values of the height no major deviations are seen. The curve for β = 0 and

β = 0.001 are close. As the height is increased to β = 10−2 we note that the strength of
the ICEO is increased by 20%−25% as β > ε. This tendency is even stronger pronounced
for the higher electrode β = 10−1. Here the ICEO strength is increased by approximately
400% for a large range of Debye lengths.

4.5.6 Final remarks

Our calculations show that the simple zero-width models significantly overestimates the
ICEO flow velocities compared to more realistic models taking the finite size of the Debye
screening length into account. This may provide a partial explanation of the observed
quantitative discrepancy between observed and calculated ICEO velocities. The discrep-
ancy increases substantially for increasing ε, i.e. in nanofluidic systems.

Even larger deviations of the ICEO strength is calculated in the full numerical model
when a small, but finite height of the un-biased electrode is taken into account.

A partial explanation of the quantitative failure of the analytical slip velocity model
is the radial dependence of the tangential field E‖ combined with the spatial extent of
the charge density ρel of the double layer. In the Debye–Hückel approximation E‖ and ρel
around the metallic cylinder of radius a are given by Eq. (2.31). The slowly varying part
of E‖ is given by E0

[
1 + (a/r)2] sin θ. For very thin double layers it is well approximated

by the r-independent expression 2E0 sin θ, while for wider double layers, the screening
charges sample the decrease of E‖ as a function of the distance from the cylinder. Also
tangential pressure gradients developing in the double layer may contribute to the lower
ICEO strength when taking the finite width of the double layer into account.

Our work shows that for systems with a small, but non-zero Debye length of 0.001 to
0.01 times the size of the electrode, and even when the Debye-Hückel approximation is
valid, a poor quantitative agreement between experiments and model calculations must be
expected when applying the linear slip-velocity model based on a zero Debye-length. For
a typically applied electrolyte concentration of 0.1 mM the Debye length becomes λD =
30 nm. Hence, the electrodes of the systems have to be larger than 30 µm corresponding
to ε = 10−3 to obtain deviations less than 5%. Thus, it is advised to employ the full
numerical model of ICEO, when comparing simulations with experiments.



Chapter 5

AC-driven ICEO

In microsystems it is often more convenient to drive ICEO flows with AC biasing than DC
biasing. AC-driving prevents the formation of completely screening double layers at the
driving electrodes, and can therefore generate steady liquid motion without any additional
requirements. In contrast, DC systems require a rather complex setup with ion-exchange
membranes and buffers in the solution to drive a steady flow. Thus, for AC-systems it is
possible to implement the driving electrodes directly in a micro-channel in contact with
the electrolyte to be manipulated. Given that the frequency is sufficiently high and the
voltage sufficiently low, no additional chemistry or membranes are necessary to stabilize
the ICEO effect. Furthermore, the AC-system provides us with an additional tunable
parameter, the frequency, which may be utilized to change the resulting motion of the
electrolyte. One could imagine a system which for instance is tuned to pump liquid in
one frequency regime and to mix liquid in another regime. To prepare the optimization
of AC-driven ICEO systems, which is the subject of the following Chap. 6, the governing
equations are rewritten and the numerical solutions are validated by comparison with an
analytical model.

5.1 Governing equations for time-averaged AC biased flow

The model system is identical to the DC biased system shown in Fig. 4.1, with the
exception that the capacitor plates are biased with a harmonic oscillating voltage φ =
±V0 cos(ωt). We take a starting point in the full non-linear equation system Eqs. (2.3),
(2.12), (2.14) and (2.15b), and rewrite the equations in dimensionless form. For simplicity
we consider a symmetric, binary electrolyte, where the positive and negative ions with
concentrations c+ and c−, respectively, have the same diffusivity D and valence charge
number Z. The characteristic numbers of the DC system also applies for the AC system,
see Eqs. (4.1) and (4.2), and additionally, the RC time for the ICEO system is introduced
as the characteristic time scale,

τc = aλD
D

, t̃ = t

τc
. (5.1)

61
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To prepare a linearization of the equation system, the governing equations are refor-
mulated in terms of the average ion concentration c ≡ (c+ + c−)/2 and half the charge
density ρ ≡ (c+−c−)/2, in the same way as for the DC system. The resulting full nonlinear
dimensionless equation system takes the following form for the ionic transport,

∂c̃

∂t̃
= ε∇ · (ρ̃∇̃φ̃+ ∇̃c̃− Pé c̃ṽ

)
, (5.2a)

∂ρ̃

∂t̃
= ε∇ · (c̃∇̃φ̃+ ∇̃ρ̃− Pé ρ̃ṽ

)
, (5.2b)

Pé = u0a

D
, (5.2c)

while the electric potential obeys

∇̃2φ̃ = − 1
ε2
ρ̃, (5.3)

and finally the fluid fields satisfy

∇̃ · ṽ = 0, (5.4a)

Re
[ 1
εPé

∂ṽ

∂t̃
+
(
ṽ · ∇̃)ṽ

]
= −∇̃p̃+ ∇̃2ṽ − ρ̃

ε2
∇̃φ̃, (5.4b)

Re = ρu0a

η
. (5.4c)

Again, the small dimensionless parameter ε = λD/a is used. In the following, the tilde is
omitted for convenience.

5.1.1 Linearized equation system

The topology optimization routine is very time and memory consuming, so to ease the
numerical simulations we choose to linearize the equations. There are several nonlinearities
to consider.

By virtue of a low Reynolds number Re = ρmvslipa/η = 10−6, the nonlinear Navier–
Stokes equation is replaced by the linear Stokes equation. Likewise, the low Péclet number
Pé = vslipa/D = 5× 10−4 allows us to neglect the nonlinear ionic convection flux density
c±v. This approximation implies the additional simplification that the electrodynamic
problem is independent of the hydrodynamics.

Finally, since Zeζ/kBT = 0.05 � 1 the linear Debye–Hückel approximation is valid,
and we can utilize that the ionic concentrations only deviate slightly from the bulk equi-
librium ionic concentration. Thus, by expanding the fields to first order as c = 1 + δc and
ρ = 0 + δρ, the resulting differential equation for ρ is decoupled from that of c. Intro-
ducing complex field notation, the applied external bias voltage is ∆φ(t) = 2V0 cos(ωt) =
Re[2V0 exp(iωt)], yielding a corresponding response for the potential φ and charge den-
sity ρ, with the complex amplitudes Φ(r) = ΦR(r) + iΦI(r) and P (r) = PR(r) + iPI(r),
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respectively.

φ(±L, t) = ±V0 cos(ωt) = Re
[± V0 exp(iωt)

]
, (5.5a)

φ(r, t) = Re
[
Φ(r) exp(iωt)

]
, (5.5b)

ρ(r, t) = Re
[
P (r) exp(iωt)

]
. (5.5c)

The resulting governing equations for the electrodynamic problem is then

∇2ΦR = − 1
ε2
PR, (5.6a)

∇2ΦI = − 1
ε2
PI , (5.6b)

∇ · [∇ΦR + ∇PR
]

= −ω
ε
PI , (5.6c)

∇ · [∇ΦI + ∇PI
]

= +ω

ε
PR, (5.6d)

Given the electric potential Φ and the charge density P , we solve for the time-averaged
hydrodynamic fields 〈v〉 and 〈p〉,

∇ · 〈v〉 = 0, (5.7a)
0 = −∇〈p〉+∇2〈v〉+ 〈fel〉, (5.7b)

where the time-averaged electric body force density 〈fel〉 is given by

〈fel〉 = − 1
2ε2

[
PR∇ΦR + PI∇ΦI

]
. (5.7c)

5.1.2 Boundary conditions

In contrast to the DC system, where both the left-right and top-down symmetries of the
system were exploited, we only make use of the top-down symmetry in the AC system,
for reasons that become clear in the following chapter about optimization. We exploit the
symmetry around z = 0 and consider only the upper half (0 < z < L/a) of the domain.
As boundary condition on the driving electrode we set the amplitude V0 of the applied
potential. Neglecting any electrode reactions taking place at the surface there is no net
ion flux in the normal direction to the boundary with unit vector n̂. For the fluid velocity
we set a no-slip condition, and thus at z = L/a we have

ΦR = ±V0, ΦI = 0, (5.8a)

n · [∇ΦR + ∇PR
]

= 0, (5.8b)

n · [∇ΦI + ∇PI
]

= 0, (5.8c)

〈v〉 = 0. (5.8d)



64 CHAPTER 5. AC-DRIVEN ICEO

On the symmetry axis (z = 0) the potential and the charge density must be zero due
to the anti-symmetry of the applied potential. Furthermore, there is no fluid flux in the
normal direction and the shear stresses vanish. So at z = 0 we have

ΦR = ΦI = 0, PR = PI = 0, (5.9a)

n̂ · 〈v〉 = 0, t̂ · 〈σ〉 · n̂ = 0, (5.9b)

where the dimensionless stress tensor is 〈σik〉 = −〈p〉δik+
(
∂i〈vk〉+∂k〈vi〉

)
, and n̂ and t̂ are

the normal and tangential unit vectors, respectively. On the dielectric cylinder surface a
no-slip condition is applied on the fluid velocity and a no-current condition in the normal
direction. For the potential the usual electrostatic boundary conditions apply, so the
conditions on the dielectric surface are

Φdiel = Φfluid, εdiel n̂ ·∇Φ̃diel = εfluid n̂ ·∇Φ̃fluid, (5.10a)

n · [∇ΦR + ∇PR
]

= 0, (5.10b)

n · [∇ΦI + ∇PI
]

= 0, (5.10c)

〈v〉 = 0. (5.10d)

On the remaining vertical insulating walls (x = ±L/a) there are no fluxes in the normal
direction, the normal component of the electric field vanishes and there are no-slip on the
fluid velocity.

n̂ ·∇ΦR = n̂ ·∇ΦI = 0, (5.11a)

n · [∇ΦR + ∇PR
]

= 0, (5.11b)

n · [∇ΦI + ∇PI
]

= 0, (5.11c)

〈v〉 = 0. (5.11d)

5.2 Validation

To validate the numerical solution of the linearized governing equations, the analytical
model presented by Squires and Bazant [27] is once more used as benchmark. On basis
of the method and expressions presented in the paper, an analytical solution is written
down for a conducting cylinder confined by an AC biased parallel plate capacitor. The
analytical model is valid for an infinitely thin double layer λD � a and for a plate distance
2L much larger than the cylinder diameter 2a, i.e. a� L.
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5.2.1 Induced dipole strength and zeta potential

For a cylindrical conductor with radius a in an infinite DC electric field E = E0ez, the
general time dependent potential can be expressed by the dipole strength g(t) as

φ = −E0z

[
1 + g(t)a

2

r2

]
, (5.12)

such that g(t = 0) = −1 and g(t → ∞) = 1, in order to reconstruct the solutions
Eqs. (2.22) and (2.23).

Using the same formulation in the case of an applied AC electric field, where the
infinite electric background field varies as E = E0eiωtez and the background potential
correspondingly is φ0 = −E0zeiωt, the overall potential can be written as

φ = −E0z

[
1 + g(t)a

2

r2

]
eiωt = −E0r sin(θ)

[
1 + g(t)a

2

r2

]
eiωt. (5.13)

In the Debye–Hückel limit the potential drop across the double layer can be approximated
by the linear relation

φ(r = a, θ, t)− φ0 = −ζ(θ) = −q(θ)λD/ε. (5.14)

Here cD = λD/ε is the linear Debye capacitance, φ0 ≡ 0 is the conductor potential, and q
is the induced surface charge. The time change of q is governed by the ionic current J⊥
into the charge cloud perpendicular to the conductor surface at r = a, i.e.

J⊥ = −q̇(θ) = −σE · er = −σE0 sin(θ)eiωt(1− g(t)), (5.15)

where σ is the conductivity of the bulk electrolyte. Inserting Eq. (5.13) in Eq. (5.14) and
differentiating leads to

q̇(θ) = E0aε

λD
sin(θ)eiωt

[
iω(1 + g(t)) + ġ(t)

]
. (5.16)

Equalizing these two expressions for q̇(θ) results in an ordinary differential equation for g,

ġ(t) = σλD
aε
− iω − g(t)

[
σλD
aε

+ iω

]
, (5.17)

where the initial condition g(0) = −1 leads to the solution

g(t) = 1− iωτc − 2e−t(1/τc+iω)

1 + iωτc
. (5.18)

Here the characteristic charging time, or the RC time, for the Debye layer has been
introduced,

τc = RcCD = aε

σλD
= λDa

D
. (5.19)
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Thus, the zeta-potential is then given by

ζ(θ) = λD
ε
q(θ) = E0a sin(θ)eiωt[1 + g(t)] = 2E0a sin(θ)e

iωt − e−t/τc
1 + iωτc

. (5.20)

When the transient has passed and the steady state situation is reached, the induced
dipole strength becomes

g = 1− iωτc
1 + iωτc

, (5.21)

and the zeta-potential is correspondingly

ζ = λD
ε
q(θ) = 2E0a sin(θ) eiωt

1 + iωτc
= E0a sin(θ)eiωt[1 + g]. (5.22)

5.2.2 Electric field

The electric field between two capacitor plates with distance 2L biased with an AC voltage
∆φ(t) = Re[2V0 exp(iωt)] and filled with electrolyte is calculated using the standard elec-
tric circuit theory on the RC circuit presented in Chap. 2. The equivalent circuit for the
parallel plate capacitor consists of two double layer capacitances and a bulk electrolytic
resistance coupled in series, so the total capacitance is CD = ε/(2λD) and the resistance
is Re = 2L/σ, where σ is the bulk electrolytic conductivity.

E0(t) = V0
L

Re
[

iωτe
1 + iωτe

eiωt
]
. (5.23)

Given that σ = 2Zec0µ for a binary, symmetric electrolyte, and that the ionic mobility µ
is related to the ionic diffusivity D through the Einstein relation as µ = DZe/(kBT ), we
have the following expression for the characteristic electrode charging time

τe = ReCD = Lε

σλD
= λDL

D
. (5.24)

Two time scales dominates the system, the cylinder charging time τc and the electrode
charging time τe, corresponding to the characteristic driving frequencies ωc and ωe, re-
spectively. The bulk flow around the cylinder is generated when the ions have time to
partially screen the induced dipole field at the cylinder surface, i.e. for frequencies around
ω ≤ ωc. If the frequency becomes higher ω � ωc, the screening of the induced dipole is
negligible, and no flow can be generated. For very low frequencies ω � ωe Debye layers
have time to form and fully screen the electrode surfaces such that no electric fields are
left in the bulk electrolyte to induce and drive a flow. Consequently, the induced flow only
has a maximum within a small band of driving frequencies ωe ≤ ω ≤ ωc.

5.2.3 Resulting slip velocity

If L� a it may be assumed that Eq. (5.23) acts as the applied electric field "at infinity"
in the calculation of the slip velocity just outside the infinitely thin Debye layer around at
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the cylindrical conductor surface. Thus, from Eq. (5.13) the steady state potential field is
given by

φ = −E0(t)r sin(θ)
[
1 + g

a2

r2

]
, (5.25)

and thereby the electric field becomes

E = −∇φ = E0(t) sin(θ)
[
1− ga

2

r2

]
er + E0(t) cos(θ)

[
1 + g

a2

r2

]
eθ. (5.26)

Correspondingly, from Eq. (5.22) the ζ potential can be written as

ζ = E0(t)a sin(θ)[1 + g] = E0(t)a sin(θ) 2
1 + iωτc

. (5.27)

The resulting slip velocity is then determined by the Helmholtz–Smoluchowski formula
vslip = −(ζ ε/η) (−eθ ·∇φ) eθ by insertion of Eqs. (5.26) and (5.27) at r = a. Rearranging
and time averaging lead to the final expression

〈vslip〉 = −εE
2
0a

η
sin(2θ) τ2

e ω
2

(1 + τ2
c ω

2)(1 + τ2
e ω

2) eθ, (5.28)

where E0 = V0/L. It is noted that the pre-factor εE2
0a/η represents the characteristic

velocity for the average flow.

5.2.4 Frequency dependence of analytical and numerical solutions

The parameters of Table 4.1 is used for the calculation of the analytical and numerical
solutions. The characteristic time scale of the system is chosen as the cylinder charging
time τc = λDa/D = 7.8× 10−8 s, and the electrode charging time then becomes τe =
τcL/a.

In Fig. 5.1 the analytically and numerically calculated slip velocities vslip have been
plotted as functions of angular frequency ω for three different ratios L/a = 5, L/a = 15
and L/a = 25. The numerical slip velocities are determined in the same way as in the
case of the DC driven flow, see Sec. 4.3. Additionally, the analytical average slip velocity
for the unconfined cylinder has been plotted using the expression given explicitly in the
paper of Squires and Bazant [27] as

〈vslip〉 = −εE
2
0a

η
sin(2θ) 1

(1 + τ2
c ω

2) eθ. (5.29)

The frequency dependence of the slip velocities follows the expected curve with maximum
in the frequency band a/L ≤ ω ≤ 1. Furthermore, the numerical solutions (dashed lines)
have the exact frequency dependence expected from the analytical solutions (solid lines).
For all three ratios of L/a the maximal numerical slip velocity is approximately 20%
lower than the analytically expected velocity. This corresponds to the deviation seen
in the DC driven flow for the same ratio ε = λD/a = 0.01. Conclusively, on basis of
the discussion of Chap. 4, we obtain the expected correspondence between the analytical
numerical calculations.

With this validation we have gained confidence in our numerical simulation scheme for
AC-driven ICEO flows.
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Figure 5.1: Comparison between numerical (dashed lines) and analytical (solid lines) slip veloc-
ities as function of frequency for three different dimensionless capacitor half lengths L, where the
characteristic length scale is the cylinder radius a. The analytical slip velocity for the unconfined
cylinder L→∞ is additionally plotted.



Chapter 6

Topology optimization of ICEO
system

In this chapter we focus on the application of topology optimization to AC-driven ICEO
systems. With this method it is possible to optimize the dielectric shapes for many pur-
poses, such as mixing and pumping efficiency, where the latter is the main focus here. No
studies have previously been carried out concerning the influence of topological changes
on the efficiency of the systems.

Our model system consists of two externally biased, parallel capacitor plates confining
an electrolyte. A dielectric solid is shaped and positioned in the electrolyte, and the exter-
nal bias induces ICEO flow at the dielectric surfaces. In this work we focus on optimizing
the topology and shape of the dielectric solid to generate the maximal flow perpendicular
to the external applied electric field. This example of establishing an optimized ICEO
micropump serves as demonstration of the implemented topology optimization method.

Following the method of Borrvall and Petersson [32] and the implementation by Olesen,
Okkels and Bruus [41] of topology optimization in microfluidic systems we introduce an
artificial design field γ(r) in the governing equations. The design field varies continuously
from zero to unity, and it defines to which degree a point in the design domain is occupied
by dielectric solid or electrolytic fluid. Here, γ = 0 is the limit of pure solid and γ = 1
is the limit of pure fluid, while intermediate values of γ represent a mixture of solid and
fluid. In this way, the discrete problem of placing and shaping the dielectric solid in the
electrolytic fluid is converted into a continuous problem, where the sharp borders between
solid and electrolyte are replaced by continuous transitions throughout the design domain.
In some sense one can think of the solid/fluid mixture as a sort of ion-exchange membrane
in the form of a sponge with varying permeability. This continuum formulation allows for
an efficient gradient-based optimization of the problem.

In one important aspect our system differs from other systems previously studied by
topology optimization: induced-charge electro-osmosis is a boundary effect relying on
the polarization and screening charges in a nanometer-sized region around the solid/fluid
interface. Previously studied systems have all been relying on bulk properties such as the
distribution of solids in mechanical stress analysis [57], photonic band gap structures in

69
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optical wave guides [34], and acoustic noise reduction [35], or on the distribution of solids
and liquids in viscous channel networks [32, 41, 58] and chemical microreactors [36]. In
our case, as for most other applications of topology optimization, no mathematical proof
exists that the topology optimization routine indeed will result in an optimized structure.
Moreover, since the boundary effects of our problem result in a numerical analysis which
is very sensitive on the initial conditions, on the meshing, and on the specific form of the
design field, we take the more pragmatic approach of finding non-trivial geometries by use
of topology optimization, and then validate the optimality by transferring the geometries
to conventional electrokinetic models not relying on the artificial design field.

6.1 Model system

We consider a parallel-plate capacitor externally biased with a harmonic oscillating voltage
difference ∆φ = 2V0 cos(ωt) and enclosing an electrolyte and a dielectric solid. The two
capacitor plates are positioned at z = ±H and periodic boundary conditions are applied at
the open ends at x = ±L/2. The resulting bound domain of size L×2H in the xz-plane is
shown in Fig. 6.1. The system is assumed to be unbounded and translational invariant in
the perpendicular y-direction. The topology and shape of the dielectric solid is determined
by the numerical optimization routine acting only within a smaller rectangular, central
design domain of size l × 2h. The remaining domain outside this area is filled with pure
electrolyte. Double layers, or Debye screening layers, are formed in the electrolyte around
each piece of dielectric solid to screen out the induced polarization charges. The pull from
the external electric field on these screening layers in the design domain drives an ICEO
flow in the entire domain.

If the dielectric solid is symmetric around the x-axis, the anti-symmetry of the applied
external bias voltage ensures that the resulting electric potential is anti-symmetric and
the velocity and pressure fields symmetric around the center plane z = 0. This symmetry
appears in most of the cases studied in this paper, and when present it is exploited to
obtain a significant decrease in memory requirements of the numerical calculations.

The specific goal of our analysis is to determine the topology and shape of the dielectric
solid such that a maximal flow rate Q is obtained parallel to the x-axis, i.e. perpendicular
to the direction of external potential field gradient.

6.2 Governing equations

The governing equations for the conventional ICEO model have been presented in Sec. 5.1.
As mentioned, we employ the linearized equation system, and introduce complex field
notation. The decoupled electrical problem is then solved in one step, while the time av-
eraged flow problem is subsequently solved. In the following, the corresponding governing
equations used in the implementation of the topology optimization problem is presented.
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Figure 6.1: (a) A sketch of the rectangular L × 2H cross-section of the electrolytic capacitor in
the xz-plane. The external voltage φ1 and φ2 is applied to the two infinite parallel-plate electrodes
(thick black lines) at z = ±H. The voltage difference φ1 − φ2 induces an ICEO flow around
the un-biased dielectric solid (dark gray) shaped by the topology optimization routine limited to
the rectangular l × 2h design domain (light gray). The dielectric solid is surrounded by pure
electrolyte (light gray and white). Periodic boundary conditions are applied ar the vertical edges
(dotted lines). (b) The dimensionless electric permittivity ε as a function of the design variable
γ. (c) Zoom-in on the rapid convergence of ε(γ) towards εfluid = 1 for γ approaching unity after
passing the value γcut −∆γ ' 0.98.

6.2.1 The artificial design field γ used in the topology optimization
model of ICEO

To be able to apply the method of topology optimization, it is necessary to extend the con-
ventional ICEO model with three additional terms, all functions of a position-dependent
artificial design field γ(r). The design field varies continuously from zero to unity, where
γ = 0 is the limit of a pure dielectric solid and γ = 1 is the limit of a pure electrolytic
fluid. The intermediate values of γ represent a mixture of solid and fluid.

The first additional term concerns the purely fluid dynamic part of our problem. Here,
we follow Borrvall and Petersson [32] and model the dielectric solid as a porous medium
giving rise to a Darcy friction force density −α(γ)v, where α(γ) may be regarded as a
local inverse permeability, which we denote the Darcy friction. We let α(γ) be a linear
function of γ of the form α(γ) = αmax(1− γ), where αmax = η/`2pore is the Darcy friction
of the porous dielectric material assuming a characteristic pore size `pore. In the limit of
a completely impenetrable solid the value of αmax approaches infinity, which leads to a
vanishing fluid velocity v. The modified Navier–Stokes equation extending to the entire
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domain, including the dielectric material, becomes

ρm

[
∂v

∂t
+ (v ·∇)v

]
= −∇p+ η∇2v − ρel∇φ− α(γ)v. (6.1)

The second additional term is specific to our problem. Since the Navier–Stokes equa-
tion is now extended to include also the porous dielectric medium, our model must prevent
the unphysical penetration of the electrolytic ions into the solid. Following the approach of
Kilic et al. [59], where current densities are expressed as gradients of chemical potentials,
J ∝ −∇µ, we model the ion expulsion by adding an extra free energy term κ(γ) to the
chemical potential µ± = ±Zeφ + kBT ln(c±/c0) + κ(γ) of the ions, where c0 is the bulk
ionic concentration for both ionic species. As above we let κ(γ) be a linear function of γ
of the form κ(γ) = κmax(1− γ), where κmax is the extra energy cost for an ion to enter a
point containing a pure dielectric solid as compared to a pure electrolytic fluid. The value
of κmax is set to an appropriately high value to expel the ions efficiently from the porous
material while still ensuring a smooth transition from dielectric solid to electrolytic fluid.
The modified ion flux density becomes

J± = −D
(

∇c± + ±Ze
kBT

c±∇φ+ 1
kBT

c±∇κ(γ)
)
. (6.2)

The third and final additional term is also specific to our problem. Electrostatically,
the transition from the dielectric solid to the electrolytic fluid is described through the
Poisson equation by a γ-dependent permittivity ε(γ). This modified permittivity varies
continuously between the value εdiel of the dielectric solid and εfluid of the electrolytic
fluid. As above, we would like to choose ε(γ) to be a linear function of γ. However,
during our analysis using a metallic dielectric with εdiel = 106ε0 in an aqueous electrolyte
with εfluid = 78 ε0 we found unphysical polarization phenomena in the electrolyte due
to numerical rounding-off errors for γ near, but not equal to, unity. To overcome this
problem we ensured a more rapid convergence towards the value εfluid by introducing a
cut-off value γcut ' 0.98, a transition width ∆γ ' 0.002, and the following expression for
ε(γ),

ε(γ) = εdiel + (εfluid − εdiel)
{

1− (1−γ)
2

[
tanh

(γcut−γ
∆γ

)
+ 1

]}
. (6.3)

For γ . γcut we obtain the linear relation ε(γ) = εdiel + (εfluid − εdiel)γ, while for γ & γcut
we have ε(γ) = εfluid, see Fig. 6.1(b)-(c). For γ sufficiently close to unity (and not only
when γ equals unity with numerical precision), this cut-off procedure ensures that the
calculated topological break up of the dielectric solid indeed leads to several correctly
polarized solids separated by pure electrolyte. The modified Poisson equation becomes

∇ · [ε(γ)∇φ
]

= −ρel. (6.4)

Finally, we introduce the γ-dependent quantity, the so-called objective function Φ[γ],
to be optimized by the topology optimization routine: the flow rate in the x-direction
perpendicular to the applied potential gradient. Due to incompressibility, the flow rate
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Q(x) is the same through cross-sections parallel to the yz-plane at any position x. Hence
we can use the numerically more stable integrated flow rate as the objective function,

Φ[γ(r)] =
∫ L

0
Q(x) dx =

∫

Ω
v · n̂x dx dz, (6.5)

where Ω is the entire geometric domain (including the design domain), and n̂x the unit
vector in the x direction.

6.2.2 Dimensionless form

To prepare the numerical implementation, the governing equations are rewritten in dimen-
sionless form, using the characteristic parameters of the system. In conventional ICEO
systems the size a of the dielectric solid is the natural choice for the characteristic length
scale `0, since the generated slip velocity at the solid surface is proportional to a. However,
when employing topology optimization we have no prior knowledge of this length scale,
and thus we choose it to be the fixed geometric half-length `0 = H between the capacitor
plates. Further characteristic parameters are the ionic concentration c0 of the bulk elec-
trolyte, and the thermal voltage φ0 = kBT/(Ze). The characteristic velocity u0 is chosen
as the Helmholtz–Smoluchowski slip velocity, Eq. (2.20), induced by the local electric field
E = φ0/`0, and finally the pressure scale is set by the characteristic microfluidic pressure
scale p0 = ηu0/`0.

Although strictly applicable only to parallel-plate capacitors, the characteristic time τ0
of the general system in chosen as the RC time of the double layer in terms of the Debye
length λD of the electrolyte [49],

τ0 = `0
D
λD = `0

D

√
kBTεfluid
2(Ze)2c0

. (6.6)

Moreover, three characteristic numbers are connected to the γ-dependent terms in
the governing equations: The characteristic free energy κ0, the characteristic permittivity
chosen as the bulk permittivity εfluid, and the characteristic Darcy friction coefficient α0.
In summary,

`0 = H, φ0 = kBT

Ze
, u0 = εfluidφ

2
0

η `0
, p0 = η u0

`0
, (6.7a)

τ0 = `0λD
D

, ω = 1
τ0
, κ0 = kBT, α0 = η

`20
. (6.7b)

The new dimensionless variables (denoted by a tilde) thus become

r̃ = r

`0
, ṽ = v

u0
, p̃ = p

p0
, φ̃ = φ

φ0
, c̃± = c±

c0
, (6.8a)

t̃ = t

τ0
, κ̃ = κ

κ0
, α̃ = α

α0
, ε̃ = ε

εfluid
. (6.8b)

In the following all variables and parameters are made dimensionless using these charac-
teristic numbers and for convenience the tilde is henceforth omitted.
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6.2.3 Linearized and reformulated equations

The approximations and reformulations presented in Sec. 5.1 are applied to the governing
equations, which are now extended by the artificial γ-field terms. The resulting electro-
dynamic equations for the electric potential Φ and the charge density P are then

∇ · [ε(γ)∇ΦR

]
= − 1

ε2
PR, (6.9a)

∇ · [ε(γ)∇ΦI

]
= − 1

ε2
PI , (6.9b)

∇ · [∇ΦR + ∇PR + PR∇κ(γ)
]

= −ω
ε
PI , (6.9c)

∇ · [∇ΦI + ∇PI + PI∇κ(γ)
]

= +ω

ε
PR, (6.9d)

where we have introduced the dimensionless thickness of the linear Debye layer ε = λD/`0.
Correspondingly, the time-averaged hydrodynamic fields 〈v〉 and 〈p〉 are governed by,

∇ · 〈v〉 = 0, (6.10a)
0 = −∇〈p〉+∇2〈v〉+ 〈fel〉 − α(γ)〈v〉, (6.10b)

where the time-averaged electric body force density 〈fel〉 is given by

〈fel〉 = − 1
2ε2

[
PR∇ΦR + PI∇ΦI

]
. (6.10c)

6.2.4 Boundary conditions

In the search for left-right symmetry breaking topologies of the dielectric material, it is
possible to exploit the top-down symmetry around z = 0 and only consider the upper half
(0 < z < 1) of the domain. The boundary conditions of this problem are much alike the
conditions presented in Sec. 5.1. On the driving electrode we set the amplitude V0 of the
applied potential, and a no-slip condition for the fluid velocity. Any electrode reactions
at the electrode surface is neglected, so there is no net ion flux in the normal direction to
the boundary with unit vector n̂. Thus, at z = 1 we have

ΦR = V0, ΦI = 0, (6.11a)

n̂ · [∇ΦR + ∇PR + PR∇κ(γ)
]

= 0, (6.11b)

n̂ · [∇ΦI + ∇PI + PI∇κ(γ)
]

= 0, (6.11c)

〈v〉 = 0. (6.11d)

Due to the anti-symmetry of the applied potential, the charge density and the potential
must be zero on the symmetry axis (z = 0). There is no fluid flux in the normal direction
and the shear stresses vanish. So, at x = 0 we have

ΦR = ΦI = 0, PR = PI = 0, (6.12a)
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n̂ · 〈v〉 = 0, t̂ · 〈σ〉 · n̂ = 0, (6.12b)

where the dimensionless stress tensor is 〈σik〉 = −〈p〉δik+
(
∂i〈vk〉+∂k〈vi〉

)
, and n̂ and t̂ are

the normal and tangential unit vectors, respectively. On the remaining vertical boundaries
(x = ±L/2`0) periodic boundary conditions are applied to all the fields.

6.3 Implementation and validation of numerical code

6.3.1 Implementation and parameter values

For our numerical analysis we use the programs, methods and implementation presented
in Sec. 2.5.

Due to the challenges discussed in Sec. 6.3.2 of resolving all length scales in the elec-
trokinetic model, we have chosen to study small systems, 2H = 500 nm, with a relatively
large Debye length, λD = 20 nm. Our main goal is to provide a proof of concept for the use
of topology optimization in electro-hydrodynamic systems, so the difficulties in fabricating
actual devices on this sub-micrometric scale is not a major concern for us in the present
work. A list of the parameter values chosen for our simulations is given in Table 6.1.

For a typical topology optimization, as the one shown in Fig. 6.5(a), approximately
5400 FEM elements are involved. In each iteration loop of the topology optimization
routine three problems are solved: the electric problem , the hydrodynamic problem, and

Table 6.1: Parameters used in the simulations of the topology optimization ICEO model and the
conventional ICEO model.

Parameter Symbol Dimensionless Physical
value value

Characteristic length `0 1.0 250 nm
Channel half-height H 1.0 250 nm
Channel length L 2.0 500 nm
Design domain half-height h 0.8 200 nm
Design domain length l 0.6 150 nm
Linear Debye length λD 0.08 20 nm
Characteristic velocity u0 1.0 1.7× 10−3 m/s
Characteristic potential φ0 1.0 25 mV
External potential amplitude V0 1.0 25 mV
External potential frequency ω 6.25 4× 105 rad/s
Bulk fluid permittivity εfluid 1.0 78 ε0
Dielectric permittivity εdiel 1.3× 104 106 ε0
Bulk ionic concentration c0 1.0 0.23 mM
Fluid viscosity η 1.0 10−3 Pa s
Ionic diffusion constant D 1.0 2× 10−9m2/s
Ionic free energy in solid κ 3.0 75 mV
Maximum Darcy friction αmax 105 2× 1016 Pa s/m2



76 CHAPTER 6. TOPOLOGY OPTIMIZATION OF ICEO SYSTEM

(a) (b)

Figure 6.2: (a) Meshing for a design field model of Fig. 6.5(a) with a uniformly fine mesh inside
the design domain and a coarser mesh outside. (b) Meshing for the hard-wall model of Fig. 6.5(b)
with a mesh refinement in the double layer surrounding the dielectric solids.

the adjunct problem for the sensitivity analysis, involving 4× 104 , 2× 104 , and 7× 104

degrees of freedom, respectively. On an Intel Core 2 Duo 2 GHz processer with 2 GB
RAM the typical CPU time is several hours.

6.3.2 Validation of the γ-dependent ICEO model

We have validated our simulations in two steps. First, the conventional ICEO model
not involving the design field γ(r) is validated against the analytical result for the slip
velocity at a simple dielectric cylinder in an infinite AC electric field given by Squires and
Bazant [27]. Second, the design field model is compared to the conventional model. This
two-step validation procedure is necessary because of the limited computer capacity. The
involved length scales in the problem make a large number of mesh elements necessary for
the numerical solution by the finite element method. Four different length scales appear
in the gamma-dependent model for the problem of a cylinder placed mid between the
parallel capacitor plates: The distance H from the center of the dielectric cylinder to the
biased plates, the radius a of the cylinder, the Debye length λD, and the length d over
which the design field γ changes from zero to unity. This last and smallest length-scale d
in the problem is controlled directly be the numerical mesh size set up in the finite element
method. It has to be significantly smaller than λD to model the double layer dynamics
correctly, so here a maximum value of the numerical mesh size is defined. Examples of
the meshing are shown in Fig. 6.2.

The analytical solution of Squires and Bazant [27] is only strictly valid in the case
of an infinitely thin Debye layer in an infinite electric field. So, to compare this model
with the bounded numerical model the plate distance must be increased to minimize the
influence on the effective slip velocity. Furthermore, in the perspective of the results
presented in Chap. 4 the Debye length λD should be about a factor of 103 smaller than
the cylinder radius a to approximate the solution for the infinitely thin Debye layer model.
Including the demand of d being significantly smaller than λD we end up with a length
scale difference of at least 105, which is difficult to resolve by the finite element mesh, even
when mesh adaption is used. Consequently, we have checked that the slip velocity for the
conventional model converges towards the analytical value when the ratio λD/a decreases,
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Figure 6.3: Comparison of the slip velocities vslip calculated with conventional ICEO model (solid
line) and with the design-field ICEO model (dashed line) as function of the frequency ω. The slip
velocity is generated around a dielectric cylinder between two capacitor plates.

see Figs. 4.4 and 5.1.
Afterwards, we have compared the slip velocities for the conventional and design-field

models in a smaller system, where a dielectric cylinder with radius a = 0.25 is placed
centrally between the capacitor plates. The parameter values were the same as listed in
Table 6.1, but with slightly changed lengths H and λD, resulting in the ratios H/a = 6,
a/λD = 10 and λD/d = 5.

Fig. 6.3 shows the calculated slip-velocities vslip as function of frequency ω for each
of the models, where vslip has been determined by Eq. (4.18). The plot is shown on a
semi-logarithmic scale since a single negative velocity was calculated in the high frequency
regime. We note that the resonance peak corresponds to the expected value of ωc = 4 for
the cylinder diameter a = 0.25. The two models yield nearly the same result. The only
difference between the two models is a slight shift in the resonance peak. In the gamma-
dependent model the cylinder effectively has a slightly larger diameter corresponding to one
mesh-element d = 5× 10−3. This diameter difference between the two models theoretically
results in a resonance frequency shift of ∆ωc ∼ 0.1 for the cylinder, which could be the
origin of the minor discrepancy. The velocity decrease towards lower frequencies coincides
for the two models, where the characteristic frequency is controlled by the capacitor plate
distance, which is exactly the same in the two models.

6.3.3 Validation of the self-consistency of the topology optimization

As an example of our validation of the self-consistency of the topology optimization, we
study the dependence of the objective function Q = Φ[ω, γ(ω, r)] on the external driving
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(c) ωc = 62.5
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Figure 6.4: Validation of the self-consistency of the topology optimization for different driving
frequencies ω. (a) The streamline pattern (thick lines) for ω = ωa = 1.25 calculated using the
design-field ICEO model with a porous dielectric medium (black and gray), the structure γa of
which has been found by topology optimization within the indicated rectangular design domain
(straight lines). The flow rate for this converged solution structure is Q = 2.95 × 10−3. (b) As
panel (a) but with ω = ωb = 12.5 and Q = 1.82× 10−3. (c) As panel (a) but with ω = ωc = 62.5
and Q = 0.55× 10−3. (d) Flow rate Q versus frequency ω for each of the three structures in panel
(a), (b), and (c). Note that structure γa indeed yields the highest flow rate Q for ω = ωa, structure
γb maximizes Q for ω = ωb, and structure γc maximizes Q for ω = ωc.

frequency ω. As shown in Fig. 6.4(a)-(c) we have calculated the topology optimized
dielectric structures γj = γ(ωj , r), j = a, b, c, for three increasing frequencies ω = ωa =
1.25, ω = ωb = 12.5, and ω = ωc = 62.5. In the following we let Qj(ω) denote the flow
rate calculated at the frequency ω for a structure optimized at the frequency ωj .

First, we note that Qj(ωj) decreases as the frequency increases above the characteristic
frequency ω0 = 1; Qa(ωa) = 2.95×10−3, Qb(ωb) = 1.82×10−3, and Qc(ωc) = 0.55×10−3.
This phenomenon is a general aspect of ICEO systems, where the largest effect is expected
to happen at ω ∼ 1.

Second, and most significant, we see in Fig. 6.4(d) that structure γa is indeed the
optimal structure for ω = ωa since Qa(ωa) > Qb(ωa), Qc(ωa). Likewise, γb is optimal for
ω = ωb, and γc is optimal for ω = ωc.

We have gained confidence in the self-consistency of our topology optimization routine
by carrying out a number of tests like the one in the example above.
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Figure 6.5: (a) The streamline pattern (thick lines) drawn as equidistant contours of the flowrate.
The flow has been calculated for ω = 6.25 using the design-field ICEO model with a porous
dielectric medium (black and gray), the structure of which has been found by topology optimization
within the indicated rectangular design domain (thin lines). The flow rate for this converged
solution structure is Q = 2.99× 10−3. (b) The streamline pattern (full lines) calculated using the
conventional ICEO model with a hard-walled dielectric solid (black). The shape of the dielectric
solid is the 0.95-contour of the γ-field taken from the topology-optimized structure shown in panel
(a). The flow rate is Q = Q∗ = 1.88 × 10−3. (c) and (d) Color plot of the charge density ρ(r)
corresponding to panel (a) and (b), respectively. See Table 6.1 for parameter values.

6.4 Results

6.4.1 Topology optimization

For each choice of parameters the topology optimization routine converges to a specific
distribution of dielectric solid given by γ(r). As a starting point for the investigation of the
optimization results we used the parameters listed in Table 6.1. As discussed above, the
geometric dimensions are chosen as large as possible within the computational limitations:
the Debye length is set to λD = 20 nm and the distance between the capacitor plates to
2H = 500 nm. The external bias voltage is of the order of the thermal voltage V0 = 25 mV
to ensure the validity of the linear Debye–Hückel approximation. We let the bulk fluid
consist of water containing small ions, such as dissolved KCl, with a concentration c0 =
0.23 mM set by the chosen Debye length. The dielectric material permittivity is set to
εdiel = 106 ε0 in order to mimic the characteristics of a metal. The artificial parameters
κ and αmax are chosen on a pure computational basis, where they have to mimic the real
physics in the limits of fluid and solid, but also support the optimization routine when the
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phases are mixed.
Throughout our simulations we have primarily varied the applied frequency ω and the

size l × 2h of the design domain. In Fig. 6.4 we have shown examples of large design
domains with l × h = 2.0 × 0.8 covering 80% of the entire domain and frequency sweeps
over three orders of magnitude. However, in the following we fix the frequency to be
ω = 6.25, where the ICEO response is close to maximum. Moreover we focus on a smaller
design domain l×h = 0.6× 0.8 to obtain better spatial resolution for the given amount of
computer memory and to avoid getting stuck in local optima. It should be stressed that
the size of the design domain has a large effect on the specific form and size of the dielectric
islands produced by the topology optimization. Also, it is important if the design domain
is allowed to connect to the capacitor plates or not, see the remarks in Sec. 6.5.

The converged solution found by topology optimization under these conditions is shown
in Fig. 6.5(a). The shape of the porous dielectric material is shown together with a
streamline plot of equidistant contours of the flow rate. We notice that many stream lines
extend all the way through the domain from left to right indicating that a horizontal flow
parallel to the x-axis is indeed established. The resulting flow rate is Q = 2.99×10−3. The
ICEO flow of this solution, based on the design-field model, is validated by transferring the
geometrical shape of the porous dielectric medium into a conventional ICEO model with
a hard-walled dielectric not depending on the design field. In the latter model the sharp
interface between the dielectric solid and the electrolyte is defined by the 0.95-contour of
the topology optimized design field γ(r). The resulting geometry and streamline pattern
of the conventional ICEO model is shown in Fig. 6.5(b). The flow rate is now found to be
Q = Q∗ = 1.88 × 10−3. There is a close resemblance between the results of two models
both qualitatively and quantitatively. It is noticed how the number and positions of the
induced flow rolls match well, and also the absolute values of the induced horizontal flow
rates differs only by 37%.

Based on the simulation we can now justify the linearization of our model. The largest
velocity ugap is found in the gap of width `gap between the two satellite pieces and the
central piece. As listed in Table 6.2 the resulting Reynolds number is Re = 2.8 × 10−7,
the Péclet number is Pé = 1.4× 10−3, while the Debye–Hückel number is Hü = 0.13.

Table 6.2: The value of characteristic physical quantities calculated in the topology optimization
ICEO model corresponding to Fig. 6.5.

Quantity Symbol Dimensionless Physical
value value

Gap between dielectric pieces `gap 0.4 100 nm
Velocity in the gap ugap 0.016 u0 28 µm/s
Largest zeta potential ζmax 0.5 φ0 12.5 mV
Reynolds number Re ρmugap`gap/η 2.8× 10−6 −
Péclet number Pé ugap`gap/D 1.4× 10−3 −
Debye–Hückel number Hü eζmax/(4kBT ) 0.13 −
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Figure 6.6: (a) The streamline pattern (thick lines) for the shape-optimized right-angled triangle
fixed at the symmetry line z = 0 calculated for ω = 6.25 using the conventional ICEO model with
a hard-walled dielectric solid (black). In the full domain this is a triangle symmetric around z = 0.
The flow rate is Q = 0.32× 10−3. (b) As in panel (a) but without constraining the triangle to be
right-angled. In the full domain the shape is foursided polygon symmetric around z = 0. The flow
rate is Q = 0.76×10−3. Note that all sharp corners of the polygons have been rounded by circular
arcs of radius 0.01.

6.4.2 Comparison to simple shapes

We evaluate our result for the optimized flow rate by comparing it to those obtained for
more basic, simply connected, dielectric shapes, such as triangles and perturbed circles
previously studied in the literature as flow inducing objects both analytically and experi-
mentally [7,27]. For comparison, such simpler shapes have been fitted into the same design
domain as used in the topology optimization Fig. 6.5(a), and the conventional ICEO model
without the design field was solved for the same parameter set. In Fig. 6.7(a) the result-
ing flow for a triangle with straight faces and rounded corners is shown. The height b of
the face perpendicular to the symmetry line was varied within the height of the design
domain 0 < b < 0.8, and the height b = 0.32 generating the largest flow in the x-direction
results in a flow rate of Q = 0.22 × 10−3, which is eight times smaller than the topology
optimized result. In Fig. 6.7(b) the induced flow around a perturbed cylinder with radius
r(θ) = 0.24

[
1+0.5 cos(3θ)

]
is depicted. Again the shape has been fitted within the allowed

design domain. The resulting flow rate Q = 0.46×10−3 is higher than for the triangle but
still a factor of four slower than the optimized result. It is clearly advantageous to change
the topology of the dielectric solid from simply to multiply connected.

For the topology optimized shape in Fig. 6.5(a) it is noticed that only a small amount
of flow is passing between the two closely placed dielectric islands in the upper left corner
of the design domain. To investigate the importance of this separation, the gap between
the islands was filled out with dielectric material and the flow calculated. It turns out
that this topological change only lowered the flow rate slightly (15%) to a value of Q =
1.59× 10−3. Thus, the important topology of the dielectric solid in the top-half domain is
the appearance of one center island crossing the antisymmetry line and one satellite island
near the tip of the center island.
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Figure 6.7: (a) The streamline pattern (thick lines) for a simple triangular reference structure
calculated for ω = 6.25 using the conventional ICEO model with a hard-walled dielectric solid
(black). The height b = 0.32 of the triangle is chosen to give the largest flow rate for a fixed base
line given by the rectangular design domain of Fig. 6.5(a). The flow rate is Q = 0.22× 10−3. (b)
The same as panel (a) except the geometry of the dielectric solid is given by the perturbed circle
r(θ) = 0.24[1 + 0.5 cos(3θ)]. The flow rate is Q = 0.46× 10−3.

6.4.3 Shape optimization

The topology optimized solutions are found based on the extended ICEO model involving
the artificial design field γ(r). To avoid the artificial design field it is desirable to validate
and further investigate the obtained topology optimized results by the physically more
correct conventional ICEO model involving hard-walled solid dielectrics. We therefore
extend the reasoning behind the comparison of the two models shown in Fig. 6.5 and apply
a more stringent shape optimization to the various topologies presented above. With this
approach we are gaining further understanding of the specific shapes comprising the overall
topology of the dielectric solid. Moremore, it is possible to point out simpler shapes, which
are easier to fabricate, but still perform well. The shape optimization routine has been
implemented by Fridolin Okkels, DTU Nanotech, on basis of the validated scripts solving
the conventional ICEO model for solid, dielectric objects.

In shape optimization the goal is to optimize the objective function Φ, which depends
on the position and shape of the boundary between the dielectric solid and the electrolytic
fluid. This boundary is given by a line interpolation through a small number of points
on the boundary. These control points are in turn given by N design variables g =
(g1, g2, . . . , gN ), so the objective function of Eq. (6.5) depending on the design field γ(r)
is now written as Φ[g] depending on the design variables g,

Φ[g] =
∫

Ω
v · n̂x dx dz. (6.13)

To carry out the shape optimization we use a direct bounded Nelder-Mead simplex
method [60] implemented in Matlab [61,62]. This robust method finds the optimal point
gopt in the N -dimensional design variable space by initially creating a simplex in this
space, e.g. a N -dimensional polyhedron spanned by N + 1 points, one of which is the
initial guess. The simplex then iteratively moves towards the optimal point by updating
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Figure 6.8: Illustration of the parametrization, Eq. (6.14), of the boundary of a dielec-
tric solid with a complex shape. The polar representation is shown for point i = 7. The
shape consist of five harmonic components represented by Eq. (6.15) with the design-variables
xc = −0.1312, zc = 0.7176, r0 = 0.1403, Ai = {0.2501, 0.0151, 0.0062, 0.2103, 0.2313}, ϕi =
{−1.7508,−2.2526, 0.4173, 0.1172,−0.2419}.

one of the N + 1 points at the time. During the iteration, the simplex can expand along
favorable directions, shrink towards the best point, or have its worst point replaced with
the point obtained by reflecting the worst point through the centroid of the remaining
N points. The iteration terminates once the extension of the simplex is below a given
tolerance. We note that unlike topology optimization, the simplex method relies only on
values of the objective function Φ[g] and not on the sensitivity ∂Φ/∂g [63].

First, we perform shape optimization on a right-angled triangle corresponding to the
one shown in Fig. 6.7(a). Due to the translation invariance in the x-direction, we fix the
first basepoint of the triangle (x1, 0) to the right end of the simulation domain, while
the second point (x2, 0) can move freely along the baseline, in contrast to the original
rectangular design. To ensure a right-angled triangle only the z-coordinate of the top
point (x2, z2) may move freely. In this case the design variable becomes the two-component
vector g = (x2, z2). The optimal right-angled triangle is shown in Fig. 6.6(a). The flow
rate is Q = 0.32× 10−3 or 1.5 times larger than that of the original right-angled triangle
confined to the design domain.

If we do not constrain the triangle to be right-angled, we instead optimize a polygon
shape spanned by three corner points in the upper half of the electrolytic capacitor. So, due
to the symmetry of the problem, we are in fact searching for the most optimal, symmetric
foursided polygon. The three corner points are now given as (x1, 0), (x2, 0),and (x3, z3),
and again due to translation invariance, it results in a three-component design variable
g = (x2, x3, z3). The resulting shape-optimized polygon is shown in Fig. 6.6(b). The flow
rate is Q = 0.76 × 10−3, which is 3.5 times larger than that of the original right-angled
triangle confined to the design domain and 2.4 times better than that of the best right-
angled triangle. However, this flow rate is still a factor of 0.4 lower than the topology
optimized results.
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To be able to shape optimize the more complex shapes of Fig. 6.5 we have employed
two methods to obtain a suitable set of design variables. The first method, the radial
method, is illustrated in Fig. 6.8. The boundary of a given dielectric solid is defined
through a cubic interpolation line through N control points (xi, zi), i = 1, 2, . . . , N , which
are parameterized in terms of two co-ordinates (xc, zc) of a center point, two global scale
factors A and B, N lengths ri, and N fixed angles θi distributed in the interval from 0 to
2π,

(xi, zi) = (xc, zc) + ri (A cos θi, B sin θi). (6.14)

In this case the design variable becomes g = (xc, zc, r1, r2, . . . , rN , A,B).
The second parametrization method involves a decomposition into harmonic compo-

nents. As before we define a central point (xc, zc) surrounded byN control points. However
now, the distances ri are decomposed into M harmonic components given by

ri = r0

(
1 +

M∑

n=1
An cos(nθi + ϕn)

)
, (6.15)

where r0 is an overall scale parameter and ϕn is a phase shift. In this case the design
variable becomes g = (xc, zc, r0, A1, A2, . . . , AM , ϕ1, ϕ2, . . . , ϕM ).

6.4.4 Comparing topology optimization and shape optimization

When shape-optimizing a geometry similar to the one found by topology optimization, we
let the geometry consist of two pieces: (i) an elliptic island centered on the symmetry-axis
and fixed to the right side of design domain, and (ii) an island with a complex shape to
be placed anywhere inside the design domain, but not overlapping with the elliptic island.
For the ellipse we only need to specify the major axis A and the minor axis B, so these two
design parameters add to the design variable listed above for either the radial model or
the harmonic decomposition model. To be able to compare with the topology optimized
solution the dielectric solid is restricted to the design domain.

The result of this two-piece shape optimization is shown in Fig. 6.9. Compared to the
simply connected topologies, the two-piece shape-optimized systems yields much improved
flow rates. For the shape optimization involving the radial method with 16 directional
angles and A = B for the complex piece, the flow rate is Q = 1.92 × 10−3, Fig. 6.9(a),
which is 2.5 times larger than that of the shape-optimized foursided symmetric polygon.
The harmonic decomposition method, Fig. 6.9(b), yields a flow rate of Q = 1.52 × 10−3

or 2.0 times larger than that of the polygon.
All the results for the obtained flow rates are summarized in Table 6.3. It is seen that

two-piece shape optimized systems performs as good as the topology optimized system,
when analyzed using the conventional ICEO model without the artificial design field. We
also note by comparing Figs. 6.5 and 6.9 that the resulting geometry found using either
topology optimization or shape optimization is essentially the same. The central island
of the dielectric solid is a thin structure perpendicular to the symmetry axis and covering
approximately 60% of the channel width. The satellite island of complex shape is situated
near the tip of the central island. It has two peaks pointing towards the central island
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Figure 6.9: Shape-optimized dielectrics with a topology corresponding to the topology-optimized
shapes of Fig. 6.5. (a) The streamline pattern (thick lines) for a two-piece geometry calculated
using the conventional ICEO model. The shape of the hard-walled dielectric solid (black) is found
by shape optimization using the radial method Eq. (6.14) with N = 16 directional angles. The
flow rate is Q = 1.92× 10−3. (b) The same as panel (a) except the geometry of the dielectric solid
is by shape optimization using the harmonic decomposition method Eq. (6.15) with M = 5 modes.
The flow rate is Q = 1.52× 10−3. (c) and (d) Color plot of the charge density ρ(r) corresponding
to panel (a) and (b), respectively.

that seem to suspend a flow roll which guides the ICEO flow through the gap between the
two islands.

6.5 Concluding remarks

The main result presented in this chapter is the establishment of the topology optimization
method for ICEO models extended with the design field γ(r). In contrast to the conven-
tional ICEO model with its sharply defined, impenetrable dielectric solids, the design field
ensures a continuous transition between the porous dielectric solid and the electrolytic
fluid, which allows for an efficient gradient-based optimization of the problem. This ex-
tended model has been validated against the conventional ICEO model without the design
field. In contrast to previous applications of the topology optimization method, which all
have been relying on bulk properties of the system with a static, externally applied energy
source, the ICEO effect is relying exclusively on a boundary layer effect, which at the
same time induces the flow. In spite of the complexity level, the method has successfully
been tested on a concrete example. We have shown how the use of topology optimization
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has led to non-trivial system geometries with a flow rate increase of nearly one order of
magnitude, from Q = 0.22× 10−3 in Fig. 6.7(a) to Q = 1.92× 10−3 in Fig. 6.9(a).

When applied to ICEO, the design field method is qualitative but not quantitative
correct. We have found deviations of 37% when comparing design field simulations with
hard-wall simulations. The magnitude of the ICEO effect is sensitive to the exact con-
figuration of the charge density and the electric field within the only 20 nm thick double
layer. From the results in Chap. 4, we know how the magnitude of the ICEO depends on
the thickness of the double layer. The artificial γ-field changes the detailed properties of
the double layer both through the permittivity ε[γ(r)], and through the additional term
in the chemical potential κ[γ(r)]. Quantitative agreement between the design field model
and the hard-wall model is therefore only expected for an extremely fine resolution of the
γ-field, which is difficult if not impossible to realize. In that perspective, we regard the
deviation of 37% between the two models as relatively small.

The topology optimization algorithm of ICEO systems leads to many local optima,
and we cannot be sure that the converged solution is the global optimum. The resulting
shapes and the generated flow rates depend on the initial condition for the artificial γ-field.
Generally, the initial condition used throughout this paper, γ = 0.99 in the entire design
domain, leads to the most optimal results compared to other initial conditions. This initial
value corresponds to a very weak change from the electrolytic capacitor completely void
of dielectric solid. In contrast, if we let γ = 0.01 corresponding to almost pure dielectric
material in the entire design region, the resulting shapes are less optimal, i.e. the topology
optimization routine is more likely to be caught caught in a local optimum. Furthermore,
the resulting shapes turns out to be mesh-dependent as well. So, we cannot conclude much
about global optima. Instead, we can use the topology optimized shapes as inspiration to
improve existing designs. For this purpose shape optimization turns out to be a powerful
tool. We have shown in this work how shape optimization can be used efficiently to refine
the shape of the individual pieces of the dielectric solid once its topology has been identified
by topology optimization.

For all three additional γ-dependent fields α(γ), κ(γ), and ε(γ) we have used (nearly)
linear functions. In many previous applications of topology optimization non-linear func-

Table 6.3: Overview of the resulting flow rates Q relative to the topology optimized value Q∗ =
1.88 × 103, see Fig. 6.5(b), for the various geometries analyzed in the conventional ICEO model.
The methods by which the geometries have been determined are listed.
Shape Method Flow rate

Q/Q∗

Triangle with optimal height, Fig. 6.7(a) Shape optimization 0.12
Perturbed cylinder, Fig. 6.7(b) Fixed shape 0.24
Optimized triangle, Fig. 6.6(a) Shape optimization 0.17
Optimized foursided polygon, Fig. 6.6(b) Shape optimization 0.40
Topology optimized result, Fig. 6.5(b) Topology optimization 1.00
Harmonic decomposition and ellipse, Fig. 6.9(a) Shape optimization 0.81
Radial varying points and ellipse, Fig. 6.9(b) Shape optimization 1.02
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tions have successfully been used to find global optima by gradually changing the non-
linearity into strict linearity during the iterative procedure [32, 36, 41, 57]. However, we
did not improve our search for a global optimum by employing such schemes, and simply
applied the (nearly) linear functions during the entire iteration process.

The limited size of the design domain is in some cases restricting the free formation of
the optimized structures. This may be avoided by enlarging the design domain. However,
starting a topology optimization in a very large domain gives a huge amount of degrees of
freedoms, and the routine is easily caught in local minima. These local minima often yield
results not as optimal as those obtained for the smaller design boxes. A solution could
be to increase the design domain during the optimization iteration procedure. It should
be noted that increasing the box all the way up to the capacitor plates results in solution
shapes, where some of the dielectric material is attached to the electrode in order to extend
the electrode into the capacitor and thereby maximize the electric field locally. This may
be a desirable feature for some purposes. In this work we have deliberately avoided such
solutions by keeping the edges of the design domain from the capacitor plates.

Throughout the chapter we have only presented results obtained for dielectric solids
shapes forced to be symmetric around the center plane z = 0. However, we have per-
formed both topology optimization and shape optimization of systems not restricted to
this symmetry. In general we find that the symmetric shapes always are good candidates
for the optimal design. It cannot be excluded, though, that in some cases a spontaneous
symmetry breaking occurs similar to the asymmetric S-turn channel presented in Sec. 2.5.

By studying the optimized shapes of the dielectric solids, we have noted that pointed
features often occurs, such as those clearly seen on the dielectric satellite island in Fig. 6.9(b).
The reason for these to appear seems to be that the pointed regions of the dielectric sur-
faces can support large gradients in the electric potential and associated with this also
with large charge densities. As a result large electric body forces act on the electrolyte
in these regions. At the same time the surface between the pointed features curve in-
ward which lowers the viscous flow resistance due to the no-slip boundary condition. This
effect is similar to that obtained by creating electrode arrays of different heights in AC
electro-osmosis [64,65].

Another noteworthy aspect of the topology optimized structures is that the appearance
of dielectric satellite islands seem to break up flow rolls that would otherwise be present
and not contribute to the flow rate. This leads to a larger net flow rate, as can be seen be
comparing Figs. 6.7 and 6.9.

Throughout the chapter we have treated the design field γ as an artificial field. How-
ever, the design-field model could perhaps achieve physical applications to systems con-
taining ion exchange membranes, as briefly mentioned in the beginning of this chapter.
Such membranes are indeed porous structures permeated by an electrolyte.

In conclusion, our analysis points out the great potential for improving actual ICEO-
based devices by changing simply connected topologies and simple shapes of the dielectric
solids, into multiply connected topologies of complex shapes.
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Chapter 7

Topology optimized chemical
microreactors

In the theoretical work from 2007 on topology optimized microreactors by Fridolin Okkels et
al. [36,66], promising results were obtained for a simplified reaction kinetics model. We ex-
tend this work and apply the topology optimization method to an existing experimentally
tested microreactor system. At Center for Individual Nanoparticle Functionality (CINF),
DTU, a CO oxidation process on a platinum catalyst is carried out in a microreactor
system. The cleanroom fabricated microreactor is made of silicon with a Pyrex lid. The
reactor chamber, the in- and outlet channels, and a mass spectrometer interface are etched
in the silicon using deep reactive ion etching (DRIE). The mass spectrometer interface is
a very narrow through-hole with a diameter of approximately 3 µm in the outlet channel
leading away from the reactor chamber. Keeping the mass spectrometer at low pressure
and the reactor at atmospheric pressure, the setup is scaled such that the flow resistance
of the hole lets a sufficient flow rate through to the mass spectrometer. Further details
about the fabrication and setup can be found in Ref. [67]. The CO oxidation is a gas
phase reaction catalyzed by platinum deposited in the reaction chamber. The platinum
is deposited in the reaction chamber using various techniques, which typically result in a
rather homogenous distribution of the catalyst. In the present work we do not aim at such
a homogenous distribution. Instead, we control the distribution of catalyst in order to
optimize the overall reaction rate of the reactor chamber. We use topology optimization
to calculate the most optimal catalyst distribution, and an experimental verification of
the optimal solutions is initiated.

Experimentally, the distribution of catalyst in the reactor chamber is controlled by
structuring the silicon surface via etching, and subsequently depositing the platinum cat-
alyst in a thin layer on the silicon surface inside the chamber. In areas, where a high
reaction rate is desirable, densely placed silicon pillars are etched out in order to create
a large surface area to be covered with platinum. In areas, where a low or no reaction
should take place, the silicon is completely etched away leaving a void space in the reactor
chamber, see Fig. 7.1.
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Figure 7.1: Schematic overview of the reactor chamber with silicon pillars placed with spatially
varying density. The silicon is colored gray, while the areas etched away are shown with white. (a)
Top-view of the reactor chamber, where open channels are created between the areas of densely
packed silicon pillars. (b) Side-view of the reactor chamber along the dashed line in panel (a).

7.1 Mathematical model

Extending the mathematical model of Ref. [36], the reaction kinetics of the CO oxidation
process is now included in the model system. The reactor still consists of an inlet feeding
reactants into the chamber by a pressure driven flow and an outlet for the products
and residual reactants. The chamber is filled with a porous medium of spatially varying
porosity both offering resistance to the flow through a Darcy friction force and acting as
catalytic material for the reaction. In accordance with the simple bulk flow problem in
Sec. 2.5 the porosity γ may vary continuously between zero and unity. When γ = 0 the
pores are dense corresponding to a high friction force on the fluid and a high concentration
of catalytic material, and oppositely for γ = 1. In the right parameter range the reaction
rate is proportional to the density of catalytic material, and this gives rise to two opposing
situations. When the pores are dense the reaction rate is high but almost no fluid passes
through. Oppositely, when the pores are very large the fluid flow unhindered, but the
reaction rate is nearly zero. So, to obtain the maximal possible reaction rate in the
chamber a balance between the two scenarios is needed, and this can be calculated with
topology optimization as shown in Ref. [36].

7.1.1 Reaction kinetics

The CO oxidation process is catalyzed by metals such as platinum and palladium, and
the overall reaction for carbon oxide and oxygen converting into carbon dioxide is

2 CO + O2 −−⇀↽−− 2 CO2. (7.1)

The O2 molecules adsorb and dissociate on the catalytic surface where the CO molecules
also adsorb. On the surface CO combines with O to become CO2 that desorps from the
surface again. The overall reaction rate is controlled by several parameters of which tem-
perature and the number of occupied and free surface sites are among the most important.
In steady state the catalytic surface is under a constant bombardment of molecules that
might adsorb or desorp from the surface, and the reaction rate is therefore dependent on
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the actual coverage of molecules on the surface. The surface coverages are modeled by
the statical possibilities for the molecules to be present on the surface, and these can be
provided from experimental data or Monte-Carlo simulations [68,69].

The reaction is typically described by a Langmuir–Hinshelwood mechanism [70], where
it is assumed that all reacting species are adsorbed on the catalytic surface and in thermal
equilibrium before they take part in reactions. It may also be assumed that the adsorbed
species taking part in the CO oxidation, i.e. CO, O and CO2, are equilibrated with the
gas phase locally. Thus, the reaction mechanism can be described by a quasi-equilibrium
approximation, where one elementary reaction step is assumed to be the rate determining
one, while the rest occur sufficiently fast to be assumed in quasi-equilibrium. Consequently,
the CO oxidation may be described by the following reaction mechanism with step (S3)
being the rate-determining step:

(S1) CO + ? K1←−→ CO ?, (7.2a)

(S2) O2 + 2 ? K2←−→ 2 O ?, (7.2b)

(S3) CO ? + O ?
k+

3−−⇀↽−−
k−3

CO ?
2 + ?, (7.2c)

(S4) CO ?
2

K−1
4←−−→ CO2 + ?. (7.2d)

The ? denotes a free surface site. Kx represents the equilibrium constant for the given
reaction step and is defined as Kx ≡ k+

x /k
−
x , where k+

x and k−x denote the forward and
backward reaction rate constants, respectively. Note that the equilibrium constant for the
last desorption step is given by K−1

4 .
The reaction rate per catalytic surface site, i.e. the turnover frequency, for each step is

expressed by the partial pressures px (the reference pressure ptot is omitted for convenience)
just above the catalytic surface and the local fraction of sites θx occupied by species x.
For instance is the rate for step 1 given by r1 = k+

1 pCOθ? − k−1 θCO, where θ? represents
the fraction of free surface sites. Corresponding rate expressions can be written for step 2
and 4, and the rate determining step 3 has the rate r3 = k+

3 θCOθO− k−3 θCO2
θ?. Following

the quasi equilibrium approach by [70] expressions for θx are found by setting r1 ' r2 '
r4 ' 0. Utilizing that the fractions of occupied and free surface sites add up to unity
θCO + θO2

+ θCO2
+ θ? = 1, the probability of finding a free surface site can be expressed

as

θ? =
(

1 +K1pCO +
√
K2pO2

+K−1
4 pCO2

)−1
. (7.3)

The overall reaction rate can then be written directly as the rate of the limiting third
elementary step,

r = k+
3 K1pCO

√
K2pO2

(
1−

pCO2

pCO
√
pO2

KG

)
θ2
?, (7.4)
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where KG is the equilibrium constant for the overall reaction rate KG = K1
√
K2K3K4.

Usually, the CO2 molecules only interacts weakly with the surface and their presence
locally may therefore be neglected. Consequently, the fourth elementary step is close to
irreversible and the local partial pressure of CO2 can be set to zero. This finally leads to
the following overall reaction rate [70]

r = k+
3

K1pCO
√
K2pO2

1 +K1pCO +
√
K2pO2

. (7.5)

If the gas is modeled as an ideal gas, the partial pressures px are interchangeable with the
concentrations cx.

7.1.2 Governing equations

The steady-state gas flow is treated as incompressible, since the typical fluid velocities in
the system is of the order 1 m/s much less than the sound velocity. Due to the reduction
of the overall number of molecules in the catalytic reaction there will be local compression
of the fluid. However, since the reactant species only occupies 7.5 % of the entire gas
mixture this compression may be neglected for convenience. Thus, the steady-state flow
is governed by the Navier–Stokes equation and the continuity equation for incompressible
fluids,

ρ
(
v ·∇)v = −∇p+ η∇2v − α(γ(r))v, (7.6a)

∇ · v = 0. (7.6b)

Applying the Heley–Shaw approximation by integration across the channel height make
the equations valid in two dimensions.

The reactant concentrations are found from the Nernst equation and particle conser-
vation for incompressible, dilute solutions for species i,

∂tci = −∇ · Ji +Ri, (7.7a)

Ji = − Di

kBT
ci∇µi + vci. (7.7b)

The chemical potential µi for species i is given by

µi = µ0 + kBT ln ci
ci0
. (7.7c)

In steady state the latter three equations may be combined to

∇ ·
(
Di∇ci − v ci

)
= −Ri. (7.8)

Integrating over the channel height h0 in the z direction and letting the concentra-
tions denote the average number of molecules per area in the xy plane, c2D(x, y) =
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∫ h0
0 c3D(x, y, z)dz ' h0c3D(x, y), leads to the following averaged 2D equation in the xy-
plane:

∇ ·
(
Di∇ci − v ci

)
= −Ri,eff

(
c̃i, γ(r)

)
. (7.9)

The effective reaction rate Ri,eff(c̃i, γ) = ki,eff(γ)f(c̃i) is then the average number of
molecules reacting per time per unit area in the xy-plane depending on the catalytic
material density through γ(r). The dimensionless concentration dependence f(c̃i) is de-
rived from Eq. (7.5), where the rate can be written as r = k+

3 F (c̃i) with tilde denot-
ing the dimensionless concentrations. The concentration dependence is then modeled by
f(c̃i) = F (c̃i)/|F (c̃i)|.

The performance of the reactor can be characterized by the average reaction rate in
the chamber. So, the aim of the topology optimization is stated as an optimization of the
reaction rate integrated over the chamber area Ω, i.e. the objective function Φ becomes

Φ(γ) =
∫

Ω
Ri,eff(c̃i, γ)dxdy. (7.10)

7.1.3 Dimensionless form

The variables are scaled according to the characteristic numbers of the problem. The new
dimensionless variables are denoted by a tilde.

r̃ = r

l0
, c̃± = c±

c0
, ṽ = v

u0
, p̃ = p

p0
, R̃ = τr

c0
R, α̃ = α

α0
. (7.11)

The characteristic geometric length scale l0 is chosen as the height h0 of the reaction cham-
ber. The reaction takes place at atmospheric pressure, and denoting the total molecular
concentration in the chamber catm leads to c0 = catmh0 applicable in the 2D Nernst–Planck
equation. The characteristic pressure is calculated as p0 for a Poiseuille flow along the
chamber length L0 and the characteristic Darcy friction coefficient is denoted α0. The
characteristic times in the system are the convection time τc expressed by the character-
istic convection velocity u0 arising from the Poiseuille flow, the diffusion time τd and the
reaction time τr.

τc = l0
u0
, τd = l20

D
, τr = c0

ki,eff
, p0 = η u0 L0

l20
, α0 = η

l20
. (7.12)

Here ki,eff is the effective reaction rate constant for reactant i. The dimensionless numbers
Péclet number Pé, Reynolds number Re, Damköhler number Dm, and Darcy number Da
then appear in the dimensionless equations.

P é = u0l0
D

, Re = ρu0l0
η

, Dm = τd
τr

= l20/D

c0/ki,eff
, Da = η

αmaxl20
. (7.13)

Below, Eqs. (7.14a) - (7.14c) show the dimensionless form of the governing equations.

∇̃ · (∇̃c̃i − P é ṽ c̃i
)

= −DmR̃i,eff(c̃i, γ̃(r̃)), (7.14a)
Re
(
ṽ · ∇̃)ṽ = −ε∇̃p̃+ ∇̃2ṽ − α̃(γ̃(r̃)) ṽ, (7.14b)

∇̃ · ṽ = 0. (7.14c)
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Here the small aspect ratio ε = l0/L0 has been introduced. Omitting the r dependence of
γ, the friction coefficient is given by

α̃(γ̃) = α̃max + (α̃min − α̃max) γ̃ (1 + q)
q + γ̃

. (7.15)

The maximum friction α̃max ≡ Da−1 is applied inside the porous medium, and the min-
imum friction αmin = 12η/h2

max is obtained in the open channels where the Heley–Shaw
approximation applies, which in this case where the channel height is constant h0 = l0
leads to α̃min = 12.

Correspondingly, the effective reaction rate constant is given by

k̃i,eff(γ̃) = k̃φ,i + (k̃ch,i − k̃φ,i)
γ̃ (1 + q)
q + γ̃

, (7.16)

where k̃φ symbolizes the average reaction rate constant in the pillar area, while k̃ch is the
average rate constant in the areas with open channels.

It is noted from Eqs. (7.10) and (7.11) that the objective function scales as Φ =
(l20c0/τr)Φ̃.

7.2 Topology optimization
It was decided to perform the experimental testing of the topology optimized microre-
actors on the previously mentioned setup running in the DTU-CINF laboratory [71–73].
This existing setup combined with the MEMS fabrication limitations naturally introduces
a number of restrictions on the model. In addition to the restrictions on reaction chamber
dimensions and post geometries mimicking the porous medium, also the dynamic param-
eters such as diffusion constants, flow rate and reaction rate are limited to certain values.
The outcome of topology optimization on such a system strongly depends on the choice
of parameters, i.e. how the different time scales entering the problem relate to each other.
For the present purpose, where we want to prove the concept of topology optimization in
a microfluidic system, it is important that the optimal catalytic structures in the chamber
are possible to fabricate. In the case of a pressure driven catalytic reactor it means that a
convection-diffusion-reaction time balance has to be achieved. In some parameter regimes
structuring of the catalytic material is not necessary, and in other regimes structures be-
come too fine for the fabrication. In the following the parameters entering the model are
presented along with the numerical results of the optimization of the catalytic reactors.

7.2.1 Physical parameters

The gas mixture, which is let into the reaction chamber, consists of the reactants CO and
O2 mixed according to their stoichiometric reaction ratio, a carrier gas He and a calibration
gas Ar, see Table 7.1. The characteristic parameters for this gas mixture is estimated on
basis of table values in Ref. [74]. The viscosity of the individual gas compounds differs
less than 20%, and since helium is the primary gas compound, the overall viscosity is
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Table 7.1: The mixture of gasses let into the reaction chamber.
Compound CO O2 He Ar
Concentration [mol%] 5.0 2.5 90.0 2.5

6

?

d = 12µm

6?s = 3µm

Figure 7.2: Topview of a segment of the post geometry used as representation of the porous
catalytic medium in the reactor chamber. A pressure difference applied in the horizontal direction
results in the flow shown with white streamlines and gray-scale surface plot of the speed |v| from
dark (low) to white (high).

approximated by the viscosity of He. The density of the gas is estimated from a weighted
average of the atomic masses1. The diffusion constant for the reactants in the gas mixture
is approximated by the diffusivity of an equimolar mixture of helium and the reactant
gas. The hereby introduced error is estimated to be less than 4%. Furthermore, since the
diffusivities of CO and O2 only differs by ∼ 4%, the diffusion constants are assumed to be
equal for the two reactant gasses, and the value for CO is applied.

The physical representation of the porous medium is a dense collection of high aspect-
ratio posts, where the flow velocity becomes significantly reduced and the catalytic reaction
becomes strongly enhanced. To efficiently represent a porous medium a very high aspect-
ratio is needed. However, fabrication issues limits the achievable aspect-ratio, and from
the first fabrication tests, Sec. 7.3, the pillar geometry shown in Fig. 7.2 was chosen.

Generally, a pressure driven flow through a porous medium has experimentally been
shown to obey Darcy’s law [75],

0 = −∇p− η

k
vav, (7.17)

where vav is an average flow velocity (total flow rate divided by cross sectional area) and
k is the permeability of the medium. Traditionally, k can be estimated from the empiri-
cal relation known as the Kozency–Carman equation, which relates k to the geometrical
characteristics of the porous medium as well as the porosity φ of the medium, defined
as φ ≡ (void vol)/(total vol) [75]. However, in this initial attempt to modeling this spe-
cific geometry as a continuous porous medium, we do not have any experimental values
for the geometrical factors entering the Kozency–Carman equation. Instead of estimat-
ing parameters a numerical solution of flow through the pillar structure is found and the

1The average atomic weight wgas of the gas atoms is estimated as 0.90wHe + 0.025wO2
+ 0.05wCO +

0.025wAr = 6.80 g/mol, and the density of a gas at 600 K is 0.020 mol/L leading to ρgas = 0.136 kg/m3.
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Table 7.2: Estimated and measured parameters used as input in the model of the chemical reactor.
Parameter Symbol Value
Temperature T 600 °C
Diffusivity D 2.4× 10−4 m2/s
Density ρ 0.14 kg/m3

Viscosity η 3.2× 10−5 Pa s
Chamber height h0 100 µm
Chamber length and width L0 10.0 mm
Characteristic length l0 h0
Porosity of catalytic material φ 0.30
Pillar width d 6.0 µm
Pillar spacing s 3.0 µm
Darcy number in pillar area Da 1.7× 10−5

Total pressure in chamber ptot 1× 10−5 Pa
Inlet partial pressure of CO pCO,0 5% ptot
Inlet partial pressure of O2 pO2,0 2.5% ptot
Total molecular concentration catm 44.6 mol/m3

Molecular concentration in 2D (catmh0) c0 4.5× 10−3 mol/m2

Measured reaction rate for CO2 rmax 8.5× 10−9 mol/(s mm2)
Reaction rate in open channels kch 8.5× 10−9 mol/(s mm2)
Reaction rate in porous medium kφ 1.7× 10−7 mol/(s mm2)

result is applied. By comparison of Darcy’s law with the low Reynolds number, inertia
free Poiseuille solution in a capillary, it is seen that dimensionally k ∼ a2, where a is the
characteristic radius of the capillary.

An estimate of the Darcy number based on numerical calculations can be found by solv-
ing Stokes equation in the two dimensional post geometry, shown in Fig. 7.2. Eq. (7.18a)
is solved in a corresponding channel of height h0 with a pressure difference applied in the
x-direction across ∼ 400 µm. In the y-direction a symmetry condition is applied to neglect
possible wall effects. Assuming that Darcy’s law is valid it is possible to calculate the av-
erage permeability k or Darcy number Da from equation Eq. (7.18b), where αmax = η/k
has been inserted in Eq. (7.17),

0 = −ε∇̃p̃+ ∇̃2ṽ − α̃minṽ, (7.18a)

0 = −ε∇̃p̃− 1
Da
ṽav. (7.18b)

If the geometry of the post area simply consisted of straight channels of width 3 µm, the
Da number would be Da = k/l20 ∼ a2/l20 = 9.0× 10−4. Calculations of the Poiseuille
flow in the x and y-directions of the actual geometry result in Da = 1.7× 10−5 and
Da = 7.9× 10−4, respectively. A more thorough study of the lattice dependence of the Da
number could be included in the model as a function of the direction of the flow velocity,
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however, in this case we simply put in the number for the horizontal Darcy friction force.
The diffusion of the reactants is also affected by the geometry of the dense posts.

Generally, the Nernst–Planck equations hold in the post area, since the mean-free path
of the particles is much less than the pillar spacings, but the diffusion constant has to
be replaced by an effective diffusion constant given as Dφ = (φ/T )Dfree, where T is the
tortuosity expressing the relative difference in path length due to the post geometry [77].
Again T would depend on the lattice direction and in all cases it would be close to unity,
so we simply approximate D inside the post area by the free space D multiplied with the
porosity,

Deff(γ) = D

[
φ+ (1− φ)γ(1 + q)

q + γ

]
. (7.19)

From previous experiments, performed with the same experimental setup letting the
same gas-mixture into a chamber containing a well defined Pt surface, the reaction rate r
is known as function of temperature [68,78]. At 600 K the highest value of r was measured
to rmax = 8.5× 10−9 mol/(s mm2). Since the modeled fields are averaged over the third
dimension z, the reaction rate on the post walls is integrated and translated into an
effective rate in xy-plane, this rate is denoted kφ.2 The equilibrium constants are assumed
to be K1 = K2 = 1 corresponding to equally many molecules adsorbed on the surface
and free just above the surface [70]. The reaction rate Eq. (7.5) is a monotonic function
for inlet concentrations being less than 5% of the total molecule concentration. The final
expression for the reaction rate is then found by normalizing Eq. (7.5) and multiplying
with the effective reaction rate.

R̃CO = k̃CO,eff(γ̃)
c̃CO

√
c̃O2

1 + c̃CO +
√
c̃O2

R̃−1
CO,max, (7.20)

where RCO,max = RCO(cCO = 0.050, cO2
= 0.025), and RO2

= RCO/2.
The microreactor chip design allows us to make the reaction chamber as big as L2

0 =
1 cm2 and due to the fabrication of high aspect ratio posts a chamber height of h0 =
100 µm was chosen. During testing of the microreactors the adjustable parameters are
the temperature T , which mostly influences the effective reaction rate, and the pressure
difference ∆p applied across the reaction chamber controlling the convection time. In
practice are the three parameters L0, T and ∆p the only parameters, which may be varied
within certain limits when a suitable convection-diffusion-reaction time balance has to be
achieved.

In this case, where the reaction takes place in the gas phase, diffusion time is very short
compared to the convection time and reaction time. If the diffusion time is much shorter
than the other times the most optimal solution to the problem will be a total uniform
distribution of posts/catalytic material, since there is time enough to distribute the gas
and exploit the reactivity of the catalytic sites. Decreasing of the convection time leads
to a balance between convection and diffusion but if the reaction time is long, the optimal

2The surface area of a post with height H is Ap = (2d+ 4
√

2 d/2)H. Multiplying the number of posts
per xy-surface area with Ap leads to the effective surface area in the xy-plane.
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Figure 7.3: The geometry used for optimization of the catalytic material distribution in the
chemical reactor. The porous catalytic material (gray) is distributed in the chamber while the
inlet/outlet (white) are empty.

system does not consist of an advanced channel network, but a uniform distribution or a
single channel.

Consequently, to maximize the diffusion time as much as possible, the size of the
reaction chamber is maximized within the limited area of 1 cm2. To lower the reaction
rate, the temperature is set to T = 600 K with the corresponding measured reaction rate
r, which is known to be in the upper range of the achievable rate. Finally, adjusting the
pressure difference leads to different suitable topology optimized structures.

7.2.2 Geometry and boundary conditions

The final geometry used for the optimization is shown in Fig. 7.3. The inlet boundary
condition on the flow is a normal stress, normal flow condition, where the tangential flow
is zero and the normal stress is equal to the applied pressure difference. The pressure
condition could also be applied as a Diriclet condition along with a no viscous stress
condition, however, for numerical stability reasons the first formulation is chosen [42].

σ · n = −∆pn, t · v = 0, (7.21a)

where t and n are unit vectors in the tangential and normal directions, respectively.
Diriclet conditions set the inlet concentrations,

cCO = cCO,0, cO2
= cO2,0. (7.21b)

At the outlet a corresponding boundary condition is set for the flow, while a convective
flux condition is specified for the concentration fields,

σ · n = 0, t · v = 0, (7.22a)

n · (−D∇ci) = 0. (7.22b)



7.2. TOPOLOGY OPTIMIZATION 99

−50

0

50

z

−50 0 50
x

γ, Q
1.0

7.5

5.0

2.5

0 −50

0

50

z

−50 0 50
x

c̃co ×10−2

5.00

3.79

2.58

1.38

0.17

(a) (b)

−50

0

50

z

−50 0 50
x

γ, Q
1.0

7.5

5.0

2.5

0 −50

0

50

z

−50 0 50
x

c̃co ×10−2

5.00

3.83

2.67

1.50

0.34

(c) (d)

Figure 7.4: Topology optimized solutions for a chemical microreactor. (a) and (b) Solutions
optimized for the pressure difference ∆p = 102 and the reaction rate r = rmax/4. (c) and (d)
Solutions optimized for the pressure difference ∆p = 103 and the reaction rate r = rmax/4. (a)
and (c) Grayscale plots of the γ-field (black and white areas) and streamline plots (thin gray lines)
drawn as equidistant contours of the flow rate. (b) and (d) The concentration of the reactant
species cco (grayscale plot).

At the solid walls a no-slip condition is applied for the velocity field and the normal
reactant current density is set to zero,

v = 0, n · Ji = 0. (7.23)

7.2.3 Results

The topology optimization of the chemical microreactors is performed using the parameters
listed in Table 7.2, along with varying values of both the pressure difference ∆p across
the chamber and the reaction rate r on the platinum surface. These two parameters
may be controlled experimentally through a flow-controller mounted on the inlet channel
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Figure 7.5: The integrated flow rate
∫
|R|dΩ versus pressure difference ∆p across the reaction

chamber for each of the two structures shown in Fig. 7.4(a) (optimal for ∆p = 102) and Fig. 7.4(c)
(optimal for ∆p = 103). The structure in panel (a) indeed yields the highest integrated reaction
rate for the pressure ∆p = 102 and the structure in panel (c) yields the highest rate for ∆p = 103.

and a heating element integrated in the microchip [71–73]. The values of ∆p and r are
chosen within a range that promotes a discrete 0-1 solution of the γ-field. If the applied
pressure difference is too low, the relative diffusion becomes very fast and consequently, a
structuring of the catalytic material is not very beneficial. This causes a slow or absent
convergence of the topology optimization routine and the obtained solutions consist of
intermediate gamma values. On the other hand very high pressure differences lead to high
Reynolds numbers that violate the laminar flow assumption of the gas. Regarding the
reaction rate r, the value in Table 7.2 represents an upper limit for the rate and lower
values may be applied. However, if the rate becomes too low, it is not necessary with more
than one open channel through the reaction chamber, since the reactant transportation no
longer is rate limiting. A valid but not very interesting solution. This discussion reflects
how the topology optimized solution structures are determined by the interplay between
the timescales of convection, diffusion and reaction.

In Fig. 7.4 two optimization results are shown. Fig. 7.4(a) and (b) are plots of the
optimal solution for the parameter set ∆p = 102 and r = rmax/4, while Fig. 7.4(c) and
(d) shows the solution corresponding to the parameter set ∆p = 103 and r = rmax/4.
Panels (a) and (c) display gray scale plots of the γ-fields, where γ = 0 corresponds to the
dense pillar structure and γ = 1 represents the open channels. It is noted that that the γ-
fields have converged to pure 0-1 solutions, and that the slightly wavy channel boundaries
are results of the underlying FEM mesh structures. The thin gray lines are streamline
plots of the flow drawn as equidistant contours of the flow rate. Panels (b) and (d) show
gray scale plots of the reactant concentration cco with inlet concentration cco = 0.05.
In Fig. 7.5 the optimality of the two solution structures shown in Fig. 7.4(a) and (c) is
checked. The response is calculated for a series of pressure differences ∆p applied to each
of the solution structures. It is seen how each of the structures indeed is optimal for the
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Figure 7.6: Topology optimized solutions for chemical microreactors. The reaction rate is r =
rmax/103 for both solution structures. The fields displayed in panel (a) and (b) are calculated for
a pressure difference of ∆p = 104. In panel (c) and (d) the fields are calculated for a pressure
difference of ∆p = 103. (a) and (c) Grayscale plots of the γ-field (black and white areas), and
streamline plots (thin gray lines) drawn as equidistant contours of the flow rate. (b) and (d) The
concentration of the reactant species cco (grayscale plot).

pressure ∆p applied during the topology optimization, though, it is also noted that the
difference between the solutions can be very small.

Analogously, we calculate the optimized structures used in the fabricated microreac-
tors. After initiating the manufacturing process, the mathematical model was slightly
improved into the version presented above, and in the following, the solutions are shown
using this modified version. Figs. 7.6 and 7.7 present the four fabricated reactor types.
Each individual reactor is displayed with the solution fields calculated for a specific pa-
rameter set ∆p, r. When this specific set of parameters is applied to all four reactor
types, the displayed reactor yields the highest integrated reaction rate

∫
RdΩ, i.e. it is

more optimal than the remaining three reactors. The solutions are presented as described
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Figure 7.7: Topology optimized solutions for chemical microreactors. The reaction rate is r =
rmax/10 for both solution structures. The fields displayed in panel (a) and (b) are calculated for
a pressure difference of ∆p = 104. In panel (c) and (d) the fields are calculated for a pressure
difference of ∆p = 103. (a) and (c) Grayscale plots of the γ-field (black and white areas), and
streamline plots (thin gray lines) drawn as equidistant contours of the flow rate. (b) and (d) The
concentration of the reactant species cco (grayscale plot).

for Fig. 7.4, with a combined γ-field and streamline plot next to a plot of the reactant
concentration cco. In Fig. 7.6 the fields of the reactors are displayed for a very low reaction
rate r = rmax/103. The pressure difference in Fig. 7.6(a) and (b) is ∆p = 104, while it for
Fig. 7.6(c) and (d) is ∆p = 103. In Fig. 7.7 the reaction rate is much higher r = rmax/10,
and again the pressure difference for the structure in Fig. 7.7(a) and (b) is ∆p = 104,
while it for Fig. 7.7(c) and (d) is ∆p = 103.

The FEM mesh applied in the numerical solution of the fabricated reactors was chosen
as fine as possible within the computational limitations in order to minimize the mesh
effect on the channel boundaries. However, even with 4× 105 degrees of freedom and a
solution time for the topology optimization routine of several days, the resolution is still
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Table 7.3: Comparison between the performance Ropt of reactors with topology optimized cat-
alytic material distribution, and the performance Runi of the corresponding reactors with homoge-
nous catalytic material distribution.

Reactor geometry 7.6(a) 7.6(c) 7.7(a) 7.7(c)
Ropt 3.0× 102 2.7× 102 1.5× 104 4.6× 103

Runi 1.4× 102 90 6.8× 102 1.7× 102

Ropt/Runi 2.1 2.9 22.0 27.0

very coarse and on the order of approximately ten pillar translation periods in the reaction
chamber. Thus, the channel boundaries are not completely smooth for the manufactured
reactors.

Comparing the performance
∫
RdΩ of the individual reactors for different parameter

sets ∆p, r indicates that the largest difference between the reactors is found for the high
values of the reaction rate, i.e. the fields shown in Fig. 7.7. So, the experimental confirma-
tion of the optimization method may be easiest to obtain in that range. Another reference
is a reactor with a uniform distribution of catalytic material. Often the catalytic material
is the most costly part of the reaction process and traditionally it is uniformly distributed
in the reaction chamber. A valid reference is therefore a reaction chamber containing the
same amount of catalytic material as the optimized reactor, but with the material homoge-
nously distributed throughout the chamber. Thus, a reference is established by calculating
the spatial averaged porosity φ for an optimized reactor, the corresponding Darcy number
Da and the average reaction rate r. The problem is then solved using these new parame-
ters in a reaction chamber with a uniform gamma field γ = 1, and the integrated reaction
rate

∫
RdΩ is determined. Experimentally, this reference reactor is realized by keeping

the dimension of the individual pillar fixed and distribute them homogenously in the reac-
tion chamber in accordance with the calculated average spatial porosity. Such a reference
reactor is fabricated for each of the four optimized reactor types. The expected improve-
ment from a homogenous pillar distribution to a structured distribution is significant. In
Table 7.3 the performance Ropt =

∫ |R|dΩ of the four different reactor types is compared
to the performance Runi =

∫ |R|dΩ of their corresponding homogenous reference reactors.
Again it is noted that the largest differences and improvements are found for the higher
reaction rate.

7.3 Experimental testing

The experimental testing of the microreactors is being carried out in collaboration with Ole
Hansen, Adam Monkowski and Jacob L. Olsen CINF, DTU. This is an on-going project,
not concluded at the time of writing. But in the following, the initial progress is briefly
presented.

The details of the fabrication process for the entire microreactor chip are described
in Ref. [67] for an empty reaction chamber. The chamber, inlet and outlet channels are
etched in a single fabrication step using deep reactive ion etching (DRIE). The etching
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Figure 7.8: SEM picture of a preliminary etch (DRIE) test of the silicon pillar structure later
applied as the porous material in the topology optimized microreactors. The picture is a side view
of a cleaved surface, where the etch has taken place from the top and downwards. The densely
packed pillars are located to the right, and to the left of the pillars there is a wider channel,
which has been etched slightly deeper due to the nonuniformity of the DRIE. Courtesy of Adam
Monkowski, DTU Nanotech 2008.

of the topology optimized pattern, consisting of mixed areas with dense pillars and open
channels within the chamber, is included in this single etching step. It is well known
that the etching depth for a DRIE process is strongly dependent on the etched structure
size, the expected aspect ratio and the surrounding etch-patterns [79]. Thus, an initial
etch test was performed to determine the most suitable pillar diameter and spacing, and
the obtainable aspect ratio. It is crucial for the topology optimization that a rather high
aspect-ratio of the pillars can be obtained, since we want to mimic an actual porous
material.

For the testing purpose a photolithography mask for the etch step was prepared having
152 different combinations of pillar spacings and radii (ranging from 2 µm to 50 µm), and
testing two different pillar shapes, the circular and the hexagonal shown in Fig. 7.2. The
etching of the test structures and the subsequent cleanroom manufacturing of the complete
topology optimized microreactors was carried out by Adam Monkowski. The scanning
electron microscope (SEM) picture in Fig. 7.8 shows a side view of a cleaved silicon wafer
with an etch test of the hexagonal pillar shape (top right) with pillar-diameters of 6 µm
and pillar-spacings of 3 µm. To the left of the etched pillars, a larger area has been etched
to mimic the situation for the topology optimized structures, where wide channels are
etched next to the densely packed pillars. The result is very satisfying. We obtain a high
aspect-ratio pillar structure next to a very wide channel with only 30% height difference.
The pillars have an aspect ratio of approximately 16 and a total height of 83 µm. We
decided to use the pillar structure of Fig. 7.8 for the actual optimized reactors, since these
represented the pillars with highest aspect ratio, which were still robust in the etching
process. Thus, from this decision it is clear that the average chamber height becomes
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100 µm

Figure 7.9: SEM picture of the raw, etched silicon surface in a topology optimized reactor chamber.
The picture is a top/side view of a cleaved surface through the reactor chamber. The uniform gray
area in the bottom of the picture is the bulk silicon wafer, while the edged, topology optimized
channel is running through the densely packed pillars from the cleaved edge and into the picture.
A second channel is out of focus in the background. Courtesy of Adam Monkowski, DTU Nanotech
2008.

h0 ∼ 100 µm, and that the remaining geometrical parameters of Table 7.2 are set.
From the topology optimized reactor structures presented above in Figs. 7.6 and 7.7,

a new photolithography mask was established and used in the fabrication of the actual
microreactors. Fig. 7.9 show a SEM picture of the raw, etched silicon surface in the
reactor chamber. The picture is a top/side view from an edge cleaved through the reactor
chamber. The bulk silicon wafer is seen in the bottom of the picture, while the edged,
topology optimized channel is running through the densely packed pillars from the cleaved
edge and into the picture. In the background of the picture a second channel through the
pillars is glimpsed.

The platinum was deposited in the etched reactor chamber by placing an exact amount
of platinum particle solution and letting it distribute throughout the chamber while heating
it up. The control with this deposition technique is limited, but however yielded a good
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coverage of most of the silicon surface in the chamber. Care was taken so especially
the areas with high reaction rate became covered with platinum. After the platinum
deposition, a pyrex glass lid was bonded on top of the processed silicon chips.

Preliminary CO-oxidation tests has been performed by Jacob L. Olsen, and the results
are promising. Graphs of the detected outlet products as function of the applied pressure
difference across the chambers lead to clearly different curves for the various reactor types.
Thus, it is possible to discriminate between the performance of the reactors experimentally.
However, tests are still being performed, and more work is needed to reach conclusions for
the applicability of the topology optimization method for design of actual microreactors.



Chapter 8

Conclusion and outlook

Conclusion

The present thesis has been devoted to the investigation of microfluidic devices relying
on an interplay between convection, diffusion and reaction. Within the induced-charge
electro-osmotic field an ACEO microfluidic pump has been experimentally investigated
and numerical calculations on an ICEO model system has been carried out. The numer-
ical topology optimization method has been applied both to the ICEO system, and to a
cleanroom fabricated chemical microreactor.

The ACEO asymmetric electrode micropump mentioned above has been experimen-
tally investigated with particular focus on low voltages and low frequencies compared to
the parameter ranges considered in previous experiments. Due to an increased sensitivity
of the device, a flow reversal in this parameter range was detected, which up until that
point had never been observed before. A thorough impedance characterization of the
pumping device over eight frequency decades was performed, and the impedance spectra
were fitted to Bode plots using realistic parameter values. The observed trends of the
flow velocity curves fit with existing theories, however, the quantitative agreement with
previously published theoretical models is lacking. Especially, the strong concentration
dependence of the measured flow has only very recently been accounted for theoretically.

Concerning the topic of induced-charge elecro-osmosis, a full nonlinear numerical model
of an ICEO system with fully resolved double layers has been implemented and solved in
2D for an infinite cylinder in an electrolyte confined by a parallel plate capacitor. The
flows have been validated against two analytical results; the slip velocity for a cylinder in
an infinite domain, and the slip velocity for a perturbed cylinder in a confined domain.
Both analytical models have been calculated in the Debye–Hückel regime and with the
assumption of an infinitely thin Debye layer. Complete agreement between the analytical
and numerical models has not been achieved, mainly due to computational limitations.
It turned out that the slip-velocities predicted by the infinitely-thin-Debye layer models
are generally overestimated. To find a deviation less than 5% between the two models,
the full Debye layer resolving model must have a Debye length less than 10−3 of the flow-
generating electrode size. Since the infinitely thin Debye layer approximation is often
applied as reference for experimentally observed flows, these findings could provide a

107
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partial explanation for the quantitative discrepancies between observed and calculated
ICEO velocities.

In extension of the numerical ICEO studies described above, topology optimization has
successfully been established for a linearized AC-driven ICEO system with fully resolved
Debye layers. An artificial design field ensuring a continuous transition from liquid to solid
has been implemented in the conventional governing equations to allow for an efficient
gradient-based optimization of the problem. This extended model has been validated
against the conventional ICEO model without the design field. In contrast to previous
applications of the topology optimization method, which all have been relying on bulk
properties of the system with a static, externally applied energy source, the ICEO effect
is relying exclusively on a boundary layer effect, which at the same time induces the flow.
The structure of the ICEO flow-inducing dielectric solid between the externally biased
capacitor plates, has been optimized to generate the largest possible flow-rate parallel to
the capacitor plates. The optimization has been carried out for varying driving frequencies
and sizes of the design domain, and the self-consistency of the topology optimization
method has been checked. The optimal dielectric geometries have been transferred to
the conventional electrokinetic model without the artificial design field, and the optimized
flow rate has been validated within a deviation of 37%, which is satisfactory given that the
ICEO effect is very sensitive to small changes of the boundary. It has been shown that the
topology optimized structures perform better than single geometric shapes of the same
size. Furthermore, by application of shape-optimization it has been shown that structures
with the same topology performs equally well. Conclusively, there seems to be a great
potential for improving actual ICEO-based devices by changing simple geometrical shapes
of the dielectric solids into more complex topologies.

Finally, an existing microfabricated reactor for CO oxidation supported by a platinum
catalyst has been topology optimized and prepared for experimental testing. An existing
implementation of topology optimization of a simplified liquid-phase catalytic reaction,
has been improved to include a realistic reaction kinetics model for a gas-phase CO oxida-
tion on platinum. The distribution of catalyst in the reactor chamber has been topology
optimized in order to maximize the overall production rate in the chamber. Optimiza-
tions have been performed for varying combinations of the pressure difference driving the
flow through the chamber, and the temperature controlling the local reaction rate. Four
different designs have been chosen for cleanroom fabrication of actual microreactor chips,
and a photolithographic mask for the DRIE process has been prepared. The preliminary
reports from the testing of these devices have been promising.

Outlook

After initial tests of first generation reactor designs, a calibration of the numerical reac-
tor simulations would make it possible to establish a more accurate model. Especially a
measurement of the actual reaction rate for the areas with a homogenous pillar distribu-
tion would be extremely useful as direct input for the reaction rate in the model. Also,
measurements of the hydraulic resistance and the degree of conversion for the reactants
at the outlet could increase the accuracy of the numerical simulations. The hope is to
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experimentally point out two different parameter ranges that correspond to two different
optimal reactor designs, i.e. to experimentally verify the graph in Fig. 7.5.

Returning to the topology optimization of the ICEO systems, an investigation of the
whole parameter space could lead to interesting results. Especially a gradual increase of
the design-area size could possibly lead to interesting optimal geometries for the large
domains between the capacitor plates. Inspired by the symmetry-breaking properties of
semi-screened micro-spheres, partially covered by insulating material, and suspended in
an electrolyte [29], it would be interesting to introduce a second material in the topology
optimization model. In this way, an additional symmetry breaking degree of freedom
would be available. With the general establishment of the topology optimization of ICEO
systems, other applications could also be possible. For instance, it would be natural to
optimize the degree of mixing in a microfluidic system, e.g. see Ref. [7]. The suggested
model relies on an AC-driven system, where the electrodes may be incorporated directly
along the sidewalls of the channel, making it suitable for experimental purposes. Thus, an
experimental testing of the topology optimized structures could be realized using systems
resembling Ref. [7] or Ref. [76].

Regarding the modeling of the double layer dynamics in ICEO systems, two problems
have been pointed out in this thesis. The experimentally observed flows in ACEO systems
are not fully understood, and the classical modeling approach based on the assumption of
infinitely thin double layers breaks down even for electrodes in the micrometer range in
contact with the typically used electrolyte concentrations of 0.1 mM. Thus, there is need
for a better theoretical understanding of the basic ICEO phenomenon. A closer analysis
of the effects coming into play for finite Debye layers would be useful both as a better
reference for the experimental work, but also for a possible improvement of the slip-velocity
models. To support improvement of the theoretical model, experiments on systems much
simpler than the complex ACEO pump are needed, thereby making it possible to study
the involved effects separately. Steps towards this kind of experimental analysis have
already been taken, see Refs. [53, 76], and correlation with the theoretical models are to
be expected.

Conclusively, many open questions and possibilities for improvement remain, both the-
oretically and experimentally within the fields of ICEO and applied topology optimization.
Hopefully, this will be addressed in the future.
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Appendix A

Comsol code

The code included below has been used for topology optimization of the ICEO system
described in Chap. 6 and for the optimization of the chemical microreactors described in
Chap. 7, respectively. The implementation follows Ref. [41], and here only the Main-file,
Setup-file, and GammaOn-file for each of the implementations are shown. The subroutines
mmasub and subsolv are unchanged from Ref. [41].

A.1 Optmization of ICEO system

Main file for ICEO optimization:

1 % TOPOLOGY OPTIMIZATION OF ICEO FLOW AROUND DIELECTRICUM IN CAPACITOR
2

3 clear all
4 close all
5 flclear fem
6

7 % Setup constants
8 % Physical constants
9 e = 1.602e-19;

10 kB = 1.38e-23;
11 epsilon0 = 8.85e-12;
12

13 % Parameters for bulk electrolyte
14 Z = 1;
15 T = 293;
16 D0 = 2e-9; % Diffusion constant of ions in the bulk
17 rho_bulk = 1e3;
18 eta_bulk = 1e-3;
19 epsilon_bulk = 78*epsilon0;
20

111
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21 % Characteristic numbers
22 charL0 = 0.25e-6; % Characteristic lengthscale - dielectric mat. diameter
23 lambdaDbulk = 2e-8; % Wanted Debye length in bulk electrolyte
24 c0 = (kB*T*epsilon_bulk)/(2*(Z*e)^2*lambdaDbulk^2); % Bulk electrolyte conc.
25 phi0 = kB*T/(Z*e); % Thermal voltage
26 u0 = epsilon_bulk*phi0^2/(eta_bulk*charL0); % Char. EO velocity
27 p0 = eta_bulk*u0/charL0; % Char. microfluidic pressure
28 alpha0 = eta_bulk/charL0^2; % Char. Darcy friction coefficient
29

30 Pe = u0*charL0/D0; % Peclet number
31 Re = rho_bulk*u0*charL0/eta_bulk; % Reynolds number
32

33 % Parameter values
34 phi1 = 1; % Potential boundary conditions
35 phi2 = -1;
36 epsilon1 = 78*epsilon0/epsilon_bulk; % Permitivity of bulk
37 epsilon2 = 1e6*epsilon0/epsilon_bulk; % Permitivity of material
38 Da = 1e-5; % Darcy number (1e-6 - 1e-2)
39 omega = 6.25;
40 gamma0 = 1; % Maximum value of gamma
41 gammast = 0.99; % Initial value of gamma
42 kappa = 3; % Energy preventing ions from entering the solid (2-7).
43 L0 = 2.0; % Domain height, e.g. distance between capacitor plates.
44

45 % Position and size of optimization area
46 h0 = 0.8;
47 w0 = 0.6;
48 x0 = 0.0;
49 y0 = h0/2;
50

51 % TOPOPT Constants
52 charL = 0.125; % Char. dimensionless value for normalization of obj.fct.
53 q = 1.0;
54

55 % Constant-string
56 fem.const = {’phi1’,phi1,’phi2’,phi2,’q’,q, ...
57 ’epsilon1’, epsilon1, ’epsilon2’, epsilon2, ...
58 ’kappa’,kappa,’omega’,omega ...
59 ’epss’,lambdaDbulk/charL0, ’Pe’,Pe, ’Re’,Re, ...
60 ’alphamin’,0/alpha0,’alphamax’,eta_bulk/(Da*charL0^2)/alpha0, ...
61 ’gamma0’,gamma0,’gammast’,gammast};
62 siq = 6; %Constant-string index of q-value
63

64 % Get Geometry
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65 Setup_EHD_AverageFlow_sym_OF_ubulk_cutoff;
66

67 % Include gamma
68 GammaOn_EHD_AverageFlow_box_strip;
69

70 % DESIGN LOOP FOR THE ACTUAL TOPOLOGY OPTIMIZATION
71 plotiter = 1;
72 preiter = 0;
73 for iter = 1:500
74

75 % Solve electric problem
76 fem.sol=femstatic(fem, ...
77 ’init’,fem.sol, ...
78 ’solcomp’,{’phir’,’phii’,’rhor’,’rhoi’}, ...
79 ’outcomp’,{’phir’,’phii’,’rhor’,’rhoi’,’gamma’}, ...
80 ’LinSolver’,’Pardiso’);
81

82 % Solve flow problem
83 fem.sol=femstatic(fem, ...
84 ’init’,fem.sol, ...
85 ’solcomp’,{’v’,’u’,’p’}, ...
86 ’outcomp’,{’v’,’u’,’p’,’phir’,’phii’,’rhor’,’rhoi’,’gamma’}, ...
87 ’LinSolver’,’Pardiso’,’nonlin’,’on’);
88

89 % SOLVE ADJOINT PROBLEM FOR LAGRANGE MULTIPLIERS
90 [K N] = assemble(fem,’Out’,{’K’ ’N’},’U’,fem.sol.u);
91 [L M] = assemble(femadj,’Out’,{’L’ ’M’},’U’,fem.sol.u);
92 femadj.sol = femlin(’In’,{’K’ K(ivar,ivar)’ ’L’ L(ivar) ...
93 ’M’ zeros(size(M)) ’N’ N(:,ivar)});
94

95 % SENSITIVITY ANALYSIS
96 gamma = fem.sol.u(igamma);
97 Phi = real(postint(fem,’A’) + postint(fem,’B’,’Edim’,1));
98 dPhidgamma = L(igamma) - K(ivar,igamma)’*femadj.sol.u;
99 Phi0 = charL^2;

100

101 % PERFORM MMA STEP TO UPDATE DESIGN FIELD
102 mmax = gamma;
103 f = Phi/Phi0;
104 g = gamma’*Vgamma/Vdomain - gamma0;
105 dfdx = dPhidgamma/Phi0;
106 dgdx = Vgamma’/Vdomain;
107 d2fdx2 = zeros(size(gamma));
108 d2gdx2 = zeros(size(gamma’));
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109 [mmaxnew,y,z,lambda,ksi,eta,mu,zeta,s,mmalow,mmaupp] = ...
110 mmasub(1,size(gamma,1),iter,mmax,mmaxmin,mmaxmax,mmaxold,mmaxolder, ...
111 f,dfdx,d2fdx2,g,dgdx,d2gdx2,mmalow,mmaupp,mmaa0,mmaa,mmac,mmad);
112 mmaxolder = mmaxold;
113 mmaxold = mmax;
114 gamma = mmaxnew;
115

116 % TEST CONVERGENCE
117 preiter = preiter + 1;
118 if max(abs(gamma-mmaxold)) < 0.01 & preiter > 3
119 break
120 end
121

122 % UPDATE DESIGN VARIABLE
123 u0 = fem.sol.u;
124 u0(igamma) = gamma;
125 fem.sol = femsol(u0);
126

127 % DISPLAY RESULTS FOR EACH ITERATION STEP
128 disp(sprintf(’Iter.:%3d Obj.: %8.4f Vol.: %6.3f Change: %6.3f q: %5.3f’, ...
129 iter,f,g,max(abs(mmaxnew-mmaxold)),fem.const{siq}))
130 end

Setup file for ICEO optimization:

1 % SETUP FILE FOR TOPOPT ON ICEO SYSTEM
2

3 % Geometry
4 height = L0/2;
5 width = L0;
6 boxheight = h0;
7 boxwidth = w0;
8 g1=rect2(width,height,’base’,’center’,’pos’,[0,L0/4]);
9 g2=rect2(boxwidth,boxheight,’base’,’center’,’pos’,[x0,y0]);

10

11 % Analyzed geometry
12 clear s
13 s.objs={g1,g2};
14 s.name={’R1’,’R2’};
15 s.tags={’g1’,’g2’};
16

17 fem.draw=struct(’s’,s);
18 fem.geom=geomcsg(fem);
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19 geomplot(fem,’edgelabels’,’on’,’pointmode’,’off’)
20

21 % Initialize mesh
22 fem.mesh=meshinit(fem, ...
23 ’hmaxedg’,[3,0.024],’hmaxsub’,[1,0.4,2,0.024], ...
24 ’hgradedg’,[1,1.09,9,1.09]);
25

26 % Space dimension
27 fem.sdim = {’x’ ’y’};
28

29 % Shape functions
30 fem.shape = {’shlag(2,’’u’’)’,’shlag(2,’’v’’)’,’shlag(1,’’p’’)’, ...
31 ’shlag(2,’’phir’’)’, ’shlag(2,’’phii’’)’, ...
32 ’shlag(2,’’rhor’’)’,’shlag(2,’’rhoi’’)’,’shlag(1,’’gamma’’)’};
33 fem.border = 1;
34

35 % Equation form
36 fem.form = ’general’;
37

38 % Subdomain settings
39 clear equ
40 equ.f = {{’F_x-px’;’F_y-py’;’-(ux+vy)’; ...
41 ’-rhor/(epss^2)’;’-rhoi/(epss^2)’; ...
42 ’-omega*rhoi/epss’;’omega*rhor/epss’;0}, ...
43 {’F_x-px’;’F_y-py’;’-(ux+vy)’; ...
44 ’-rhor/(epss^2)’;’-rhoi/(epss^2)’; ...
45 ’-omega*rhoi/epss’;’omega*rhor/epss’;1}};
46 equ.da = 0;
47 equ.init = {{0;0;0;0;0;0;0;1},{0;0;0;0;0;0;0;’gammast’}};
48 equ.ga = {{ ...
49 {’-2*ux’;’-(uy+vx)’}; ...
50 {’-(vx+uy)’;’-2*vy’};{0;0};
51 {’epsilon*phirx’;’epsilon*phiry’}; ...
52 {’epsilon*phiix’;’epsilon*phiiy’}; ...
53 {’phirx+rhorx’; ...
54 ’phiry+rhory’}; ...
55 {’phiix+rhoix’; ...
56 ’phiiy+rhoiy’}; ...
57 {0;0}}, ...
58 {{’-2*ux’;’-(uy+vx)’}; ...
59 {’-(vx+uy)’;’-2*vy’};{0;0};
60 {’epsilon*phirx’;’epsilon*phiry’}; ...
61 {’epsilon*phiix’;’epsilon*phiiy’}; ...
62 {’phirx+rhorx-rhor*kappa*gammax’; ...
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63 ’phiry+rhory-rhor*kappa*gammay’}; ...
64 {’phiix+rhoix-rhoi*kappa*gammax’; ...
65 ’phiiy+rhoiy-rhoi*kappa*gammay’}; ...
66 {0;0}}};
67 equ.ind = [1,2];
68 equ.dim = {’u’,’v’,’p’,’phir’,’phii’,’rhor’,’rhoi’,’gamma’};
69 equ.var = { ...
70 ’F_x’,{’-(rhor*phirx+rhoi*phiix)/(2*epss^2)’, ...
71 ’-(rhor*phirx+rhoi*phiix)/(2*epss^2)-alpha*u’}, ...
72 ’F_y’,{’-(rhor*phiry+rhoi*phiiy)/(2*epss^2)’, ...
73 ’-(rhor*phiry+rhoi*phiiy)/(2*epss^2)-alpha*v’}, ...
74 ’U_ns’,’sqrt(u^2+v^2)’};
75

76 % Subdomain expressions
77 equ.expr.epsilon = ...
78 {’epsilon1’, ...
79 ’epsilon2+(epsilon1-epsilon2)*(1-((1-gamma)/2*(tanh(((1-gamma)-0.03)/0.002)+1)))’};
80 equ.expr.alpha = {’’,’alphamax+(alphamin-alphamax)*gamma’};
81 equ.expr.A = {’u’};
82 fem.equ = equ;
83

84 % Boundary settings
85 clear bnd
86 bnd.shape = 1;
87 bnd.g = 0;
88 bnd.r = ...
89 {{’u-u_cpl’,’v-v_cpl’,’p-p_cpl’, ...
90 ’phir-phir_cpl’,’phii-phii_cpl’, ...
91 ’rhor-rhor_cpl’,’rhoi-rhoi_cpl’,0}, ...
92 {’nx*u+ny*v’,0,0,’-phir’,’-phii’,’-rhor’,’-rhoi’,0}, ...
93 {’-u’,’-v’,0,’-phir+phi1’,’-phii’,0,0,0}, 0, 0};
94 bnd.ind = {[1] [2 5 8] [3] [9] [4 6 7]};
95

96 % Boundary expressions
97 bnd.expr.B = 0;
98 fem.bnd = bnd;
99

100 % COUPLING ELEMENT FOR PERIODIC B.C.
101 % rightmost boundary is source and leftmost is destination
102 clear cpl src dst map
103 % extrusion coupling variables acting in geometry one with names {xx_cpl}
104 cpl.elem = ’elcplextr’;
105 cpl.g = {’1’};
106 cpl.var = {’u_cpl’ ’v_cpl’ ’p_cpl’ ’phir_cpl’ ’phii_cpl’ ’rhor_cpl’ ’rhoi_cpl’};
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107 % source expressions and trivial map {0 0 0} *FROM* source *TO*
108 % intermediate mesh
109 src.expr = {{’u’} {’v’} {’p’} {’phir’} {’phii’} {’rhor’} {’rhoi’}};
110 src.map = {’0’ ’0’ ’0’ ’0’ ’0’ ’0’ ’0’};
111 src.ind = {{’9’}};
112 cpl.src = {{{} src {}}};
113 % define linear transformation *FROM* destination *TO*
114 % intermediate mesh - on source boundary
115 map.type = ’linear’;
116 map.sg = ’1’;
117 map.sv = {’1’,’2’};
118 map.dg = ’1’;
119 map.dv = {’7’,’8’}; % symmetric destination
120 cpl.map = {map};
121 % declare map *FROM* destination *TO* intermediate mesh
122 % - {1 1 1} are indices in cpl.map
123 dst.map = {{’1’} {’1’} {’1’} {’1’} {’1’} {’1’} {’1’}};
124 dst.ind = {{’1’}};
125 cpl.geomdim = {{{} dst {}}};
126 % finally add cpl to fem.elem
127 fem.elem = {cpl};
128

129 % Point settings
130 % Clamp pressure at a single point
131 clear pnt
132 pnt.ind = {[1] [2:8]};
133 pnt.constr = {’p’,0};
134 fem.pnt = pnt;

GammaOn file for ICEO optimization:

1 % GAMMAON FILE FOR TOPOPT ON ICEO SYSTEM
2 % GammaOn file for Topology Optimization of a dielectric material shape
3 % in a parallel plate capacitor. The design domain is a rectangular area
4 % with dimensions and position specified in the Setup file/Main file.
5

6 fem=femdiff(fem);
7

8 % Extend mesh
9 fem.xmesh=meshextend(fem);

10

11 % Assemble Initial-condition
12 fem.sol = asseminit(fem);
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13

14 % DEFINE STRUCTURE FOR COMPUTING RIGHT-HAND-SIDE IN ADJOINT PROBLEM
15 femadj = fem;
16 femadj.equ.ga = {{ ...
17 {’diff(A,ux)’; ’diff(A,uy)’}; {’diff(A,vx)’; ’diff(A,vy)’}; ...
18 {’diff(A,px)’; ’diff(A,py)’};{’diff(A,phirx)’; ’diff(A,phiry)’}; ...
19 {’diff(A,phiix)’; ’diff(A,phiiy)’};{’diff(A,rhorx)’; ’diff(A,rhory)’}; ...
20 {’diff(A,rhoix)’; ’diff(A,rhoiy)’};{’diff(A,gammax)’; ’diff(A,gammay)’}}};
21 femadj.equ.f = {{’diff(A,u)’; ’diff(A,v)’; ’diff(A,p)’; ...
22 ’diff(A,phir)’; ’diff(A,phii)’; ’diff(A,rhor)’; ’diff(A,rhoi)’; ...
23 ’diff(A,gamma)’}};
24 femadj.bnd.g = {{’diff(B,u)’; ’diff(B,v)’; ’diff(B,p)’; ...
25 ’diff(B,phir)’; ’diff(B,phii)’; ’diff(B,rhor)’; ’diff(B,rhoi)’; ...
26 ’diff(B,gamma)’}};
27

28 femadj.xmesh = meshextend(femadj);
29

30 % GET INDICES OF DESIGN VARIABLE IN THE GLOBAL SOLUTION VECTOR (fem.sol.u)
31 gxp = asseminit(fem,’Init’,{’gamma’ ’x+10’},’Out’,’U’);
32 gyp = asseminit(fem,’Init’,{’gamma’ ’y+10’},’Out’,’U’);
33 igamma = find([gxp > (10-boxwidth/2+x0) & gxp < (10+boxwidth/2+x0) & ...
34 gyp > (10-boxheight/2+y0) & gyp < (10+boxheight/2+y0)]);
35

36 % COMPUTE VOLUME BELOW DESIGN VARIABLE BASIS FUNCTIONS
37 L = assemble(fem,’Out’,{’L’});
38 Vgamma = L(igamma);
39 Vdomain = sum(Vgamma);
40

41 % GET INDICES OF VELOCITY-PRESSURE VARIABLES
42 ivar = find(asseminit(fem,’Init’, ...
43 {’u’ 1 ’v’ 1 ’p’ 1 ’phir’ 1 ’phii’ 1 ’rhor’ 1 ’rhoi’ 1},’Out’,’U’));
44

45 % DEFINE VARIABLES PARAMETERS FOR MMA OPTIMIZATION ALGORITHM
46 mmaa0 = 1;
47 mmaa = 0;
48 mmac = 1000;
49 mmad = 0;
50 mmaxmin = 0;
51 mmaxmax = 1;
52 mmaxold = fem.sol.u(ivar);
53 mmaxolder = mmaxold;
54 mmalow = 0;
55 mmaupp = 1;
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A.2 Optmization of chemical microreactor

Main file for reactor optimization:

1 % MAIN FILE FOR REACTOR OPTIMIZATION
2

3 clear all
4 close all
5 flclear fem
6

7 % Setup Constants
8 Da = 1.7e-5; % Darcy number (1e-6 - 1e-2)
9 gamma0 = 1; % Maximum value of gamma

10 gammast = 0.99; % Initial value of gamma
11 dp = 1000; % Inlet pressure
12 k3p = 33; % Reaction constant in pillar area
13 kch = 1.78; % Reaction constant in channel area
14 o20 = 0.025;
15 co0 = 0.050;
16 h0 = 100e-6; % Channel height
17 phirho = 0.30; % Dielectric porosity
18

19 % Pluid properties
20 TK = 600; % Between 300K and 700K (mu(T) & rho(T) 300-1000, D(T) 200-700)
21 fluid_eta = 6.3e-6+4.82e-8*TK-8.4e-12*TK^2; %Poly. fit to temp. dependence
22 rho_fluid = 0.62*exp(-TK/268)+0.069; %Exp. decay fit to temp. dep. of fluid mix.
23 D0 = 9.5e-8*TK+5.0e-10*TK^2; % Diffusivity
24

25 % Characteristic numbers
26 charl0 = 1e-4; % Characteristic lengthscale
27 U0 = 4; % Characteristic convection velocity
28 Pe = U0*charl0/D0; % Péclet number
29 Re = rho_fluid*U0*charl0/fluid_eta; % Reynolds number
30 Dmp = k3p*charl0^2/D0; % Damköhler number in pillar area
31 Dmch = kch*charl0^2/D0; % Damköhler number in channel area
32

33 % TOPOPT Constants
34 qarr = [0.03 0.1 0.3 1];
35 maxnrq = size(qarr,2);
36 nrq = 1;
37 charL = 5e-3/sqrt(o20*k3p*charl0^2);
38

39 % Constant-string
40 fem.const = {’gamma0’,gamma0,’dp’,dp,’alphamin’,12*charl0^2/h0^2, ...
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41 ’alphamax’,1/Da+12*charl0^2/h0^2,’q’,qarr(nrq),’gammast’,gammast, ...
42 ’o20’,o20,’co0’,co0,’k3p’,k3p,’kch’,kch,’Pe’,Pe,’Re’,Re, ...
43 ’Dmp’,Dmp,’Dmch’,Dmch,’TK’,TK,’phirho’,phirho};
44 siq = 10; %Constant-string index of q-value
45

46 % Get Geometry
47 Setup_CO_O2_gas_asym_fnew;
48

49 % Include gamma
50 GammaOn_CO_O2_gas;
51

52 % DESIGN LOOP FOR THE ACTUAL TOPOLOGY OPTIMIZATION
53 preiter = 0;
54 plotiter = 1;
55 for iter = 1:500
56

57 % Solve problem
58 fem.sol=femstatic(fem, ...
59 ’init’,fem.sol, ...
60 ’solcomp’,{’v’,’u’,’p’}, ...
61 ’outcomp’,{’v’,’u’,’p’,’gamma’}, ...
62 ’Linsolver’,’pardiso’);
63

64 % Solve CC problem
65 fem.sol=femstatic(fem, ...
66 ’init’,fem.sol, ...
67 ’solcomp’,{’o2’,’co’}, ...
68 ’outcomp’,{’u’,’v’,’p’,’o2’,’co’,’gamma’}, ...
69 ’nonlin’,’on’,’Linsolver’,’pardiso’);
70

71 % SOLVE ADJOINT PROBLEM FOR LAGRANGE MULTIPLIERS
72 [K N] = assemble(fem,’Out’,{’K’ ’N’},’U’,fem.sol.u);
73 [L M] = assemble(femadj,’Out’,{’L’ ’M’},’U’,fem.sol.u);
74 femadj.sol = femlin(’In’,{’K’ K(ivar,ivar)’ ’L’ L(ivar) ...
75 ’M’ zeros(size(M)) ’N’ N(:,ivar)});
76

77 % SENSITIVITY ANALYSIS
78 gamma = fem.sol.u(igamma);
79 Phi = real(postint(fem,’A’) + postint(fem,’B’,’Edim’,1));
80 dPhidgamma = L(igamma) - K(ivar,igamma)’*femadj.sol.u;
81 Phi0 = charL^2;
82

83 % PERFORM MMA STEP TO UPDATE DESIGN FIELD
84 mmax = gamma;



A.2. OPTMIZATION OF CHEMICAL MICROREACTOR 121

85 f = Phi/Phi0;
86 g = gamma’*Vgamma/Vdomain - gamma0;
87 dfdx = dPhidgamma/Phi0;
88 dgdx = Vgamma’/Vdomain;
89 d2fdx2 = zeros(size(gamma));
90 d2gdx2 = zeros(size(gamma’));
91 [mmaxnew,y,z,lambda,ksi,eta,mu,zeta,s,mmalow,mmaupp] = ...
92 mmasub(1,size(gamma,1),iter,mmax,mmaxmin,mmaxmax,mmaxold,mmaxolder, ...
93 f,dfdx,d2fdx2,g,dgdx,d2gdx2,mmalow,mmaupp,mmaa0,mmaa,mmac,mmad);
94 mmaxolder = mmaxold;
95 mmaxold = mmax;
96 gamma = mmaxnew;
97

98 % TEST CONVERGENCE / q-STEP
99 preiter = preiter + 1;

100 if max(abs(gamma-mmaxold)) < 0.01 & preiter > 3
101 if nrq < maxnrq % CHANGE q & RESET MMA-HISTORY
102 nrq = nrq+1;
103 fem.const{siq}= qarr(nrq);
104 femadj.const{siq} = qarr(nrq);
105 mmaxold = gamma;
106 mmaolder = gamma;
107 preiter = 0;
108 disp(sprintf(’ #### CHANGE q to: %6.4f ####’,qarr(nrq)))
109 else
110 break
111 end
112 end
113

114 % UPDATE DESIGN VARIABLE
115 u0 = fem.sol.u;
116 u0(igamma) = gamma;
117 fem.sol = femsol(u0);
118

119 % DISPLAY RESULTS FOR EACH ITERATION STEP
120 disp(sprintf(’Iter.:%3d Obj.: %8.4f Vol.: %6.3f Change: %6.3f q: %5.3f’, ...
121 iter,f,g,max(abs(mmaxnew-mmaxold)),fem.const{siq}))
122 end

Setup file for reactor optimization:

1 % SETUP FILE FOR REACTOR OPTIMIZATION
2
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3 % Geometry
4 height = 100;
5 g1=rect2(height,height,’base’,’center’,’pos’,[0,0]);
6 g2=rect2(height/5,3,’base’,’corner’,’pos’,[-0.7*height,47]);
7 g3=rect2(height/5,3,’base’,’corner’,’pos’,[0.5*height,-0.5*height]);
8

9 % Analyzed geometry
10 clear s
11 s.objs={g1,g2,g3};
12 s.name={’R1’,’R2’,’R3’};
13 s.tags={’g1’,’g2’,’g3’};
14

15 fem.draw=struct(’s’,s);
16 fem.geom=geomcsg(fem);
17

18 % Initialize mesh
19 fem.mesh=meshinit(fem, ...
20 ’hmaxsub’,[1:3;ones(1,3)*2]);
21

22 % Space dimension
23 fem.sdim = {’x’ ’y’};
24

25 % Shape functions
26 fem.shape = {’shlag(2,’’u’’)’,’shlag(2,’’v’’)’,’shlag(1,’’p’’)’, ...
27 ’shlag(2,’’o2’’)’,’shlag(2,’’co’’)’,’shlag(1,’’gamma’’)’};
28

29 % Integration order
30 fem.gporder = {4,2};
31

32 % Constraint order
33 fem.cporder = {2,1};
34 fem.border = 1;
35

36 % Equation form
37 fem.form = ’general’;
38

39 % Subdomain settings
40 clear equ
41 equ.f = { ...
42 {’-alphamin*u-Re*(u*ux+v*uy)’;’-alphamin*v-Re*(u*vx+v*vy)’; ...
43 ’-(ux+vy)’;’-Pe*(u*o2x+v*o2y)’;’-Pe*(u*cox+v*coy)’;0}, ...
44 {’-alpha*u-Re*(u*ux+v*uy)’;’-alpha*v-Re*(u*vx+v*vy)’; ...
45 ’-(ux+vy)’;’-Peeff*(u*o2x+v*o2y)+Dm*fR/2’; ...
46 ’-Peeff*(u*cox+v*coy)+Dm*fR’;1}};
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47 equ.init = {{0;0;0;0;0;’1’},{0;0;0;0;0;’gammast’}};
48 equ.ga = {{{’-2*ux+p’;’-(uy+vx)’}; ...
49 {’-(vx+uy)’;’-2*vy+p’};{0;0}; ...
50 {’-o2x’;’-o2y’};{’-cox’;’-coy’};{0;0}}};
51 equ.ind = [1,2,1];
52 % Dependent variables
53 equ.dim = {’u’,’v’,’p’,’o2’,’co’,’gamma’};
54 equ.var = {’U_ns’,’sqrt(u^2+v^2)’, ...
55 ’V_ns’,’vx-uy’, ...
56 ’divU_ns’,’ux+vy’};
57

58 % Subdomain expressions
59 % Bug in sqrt-function!
60 equ.expr.tfree = {0,’1/(1+co+realsqrt(abs(o2)))’};
61 equ.expr.fR = {0,’-184.6*co*realsqrt(abs(o2))*tfree^2’};
62 equ.expr.A = {0,’fR*(k3p+(kch-k3p)*gamma)’};
63 equ.expr.alpha = {’’,’alphamax+(alphamin-alphamax)*gamma*(1+q)/(q+gamma)’};
64 equ.expr.Peeff = {0,’Pe*(1/phirho+(1-1/phirho)*gamma)’};
65 equ.expr.Dm = {0,’Dmp+(Dmch-Dmp)*gamma’};
66

67 % Interior mesh boundary settings
68 equ.bnd.ind = [1,1,1];
69 fem.equ = equ;
70

71 % Boundary settings
72 clear bnd
73 bnd.g = {{’-nx*dp’;’-ny*dp’;0;0;0;0}, ...
74 {0;0;0;’-(-nx*u-ny*v)*o2’;’-(-nx*u-ny*v)*co’;0},0,0};
75 bnd.shape = [1;2;3;4;5];
76 bnd.r = {{’nx*v-ny*u’;0;0;’-o2+o20’;’-co+co0’;0}, ...
77 {’-u’;’-v’;0;0;0;0},0, ...
78 {’nx*v-ny*u’;0;0;0;0;0}};
79 bnd.ind = [1,2,2,2,2,3,2,3,2,2,2,4];
80

81 % Boundary expressions
82 bnd.expr.B = 0;
83 fem.bnd = bnd;

GammaOn file for reactor optimization:

1 % GAMMAON FILE FOR REACTOR OPTIMIZATION
2

3 fem=femdiff(fem);
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4

5 % Extend mesh
6 fem.xmesh=meshextend(fem);
7

8 % Assemble Initial-condition
9 fem.sol = asseminit(fem);

10

11 % DEFINE STRUCTURE FOR COMPUTING RIGHT-HAND-SIDE IN ADJOINT PROBLEM
12 femadj = fem;
13 femadj.equ.ga = {{ ...
14 {’diff(A,ux)’; ’diff(A,uy)’}; {’diff(A,vx)’; ’diff(A,vy)’}; ...
15 {’diff(A,px)’; ’diff(A,py)’}; {’diff(A,o2x)’; ’diff(A,o2y)’}; ...
16 {’diff(A,cox)’; ’diff(A,coy)’}; {’diff(A,gammax)’; ’diff(A,gammay)’}}};
17 femadj.equ.f = {{’diff(A,u)’; ’diff(A,v)’; ’diff(A,p)’; ...
18 ’diff(A,o2)’; ’diff(A,co)’; ’diff(A,gamma)’}};
19 femadj.bnd.g = {{’diff(B,u)’ ’diff(B,v)’ ’diff(B,p)’ ...
20 ’diff(B,o2)’ ’diff(B,co)’ ’diff(B,gamma)’}};
21

22 femadj.xmesh = meshextend(femadj);
23

24 % GET INDICES OF DESIGN VARIABLE IN THE GLOBAL SOLUTION VECTOR (fem.sol.u)
25 igamma = find(asseminit(fem,’Init’,fem.sol,’Out’,’U’));
26

27 % COMPUTE VOLUME BELOW DESIGN VARIABLE BASIS FUNCTIONS
28 L = assemble(fem,’Out’,{’L’});
29 Vgamma = L(igamma);
30 Vdomain = sum(Vgamma);
31

32 % GET INDICES OF VELOCITY-PRESSURE VARIABLES ###### UPDATE THIS ######
33 ivar = find(asseminit(fem,’Init’, ...
34 {’u’ 1 ’v’ 1 ’p’ 1 ’o2’ 1 ’co’ 1},’Out’,’U’));
35

36 % DEFINE VARIABLES PARAMETERS FOR MMA OPTIMIZATION ALGORITHM
37 mmaa0 = 1;
38 mmaa = 0;
39 mmac = 1000;
40 mmad = 0;
41 mmaxmin = 0;
42 mmaxmax = 1;
43 mmaxold = fem.sol.u(ivar);
44 mmaxolder = mmaxold;
45 mmalow = 0;
46 mmaupp = 1;
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Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump

Misha Marie Gregersen, Laurits Højgaard Olesen, Anders Brask, Mikkel Fougt Hansen, and Henrik Bruus
MIC–Department of Micro and Nanotechnology, Technical University of Denmark, DTU Building 345 East,

DK-2800 Kongens Lyngby, Denmark
�Received 30 March 2007; published 9 November 2007�

Microfluidic chips have been fabricated in Pyrex glass to study electrokinetic pumping generated by a
low-voltage ac bias applied to an in-channel asymmetric metallic electrode array. A measurement procedure
has been established and followed carefully resulting in a high degree of reproducibility of the measurements
over several days. A large coverage fraction of the electrode array in the microfluidic channels has led to an
increased sensitivity allowing for pumping measurements at low bias voltages. Depending on the ionic con-
centration a hitherto unobserved reversal of the pumping direction has been measured in a regime, where both
the applied voltage and the frequency are low, Vrms�1.5 V and f �20 kHz, compared to previously investi-
gated parameter ranges. The impedance spectrum has been thoroughly measured and analyzed in terms of an
equivalent circuit diagram to rule out trivial circuit explanations of our findings. Our observations agree
qualitatively, but not quantitatively, with theoretical electrokinetic models published in the literature.

DOI: 10.1103/PhysRevE.76.056305 PACS number�s�: 47.57.jd, 47.61.Fg, 47.15.Rq

I. INTRODUCTION

The recent interest in ac electrokinetic micropumps was
initiated by experimental observations by Green, Gonzales et
al. of fluid motion induced by ac electroosmosis over pairs of
microelectrodes �1–3� and by a theoretical prediction by Aj-
dari that the same mechanism would generate flow above an
electrode array �4�. Brown et al. �5� demonstrated experi-
mental pumping of an electrolyte with a low voltage, ac-
biased electrode array, and soon after the same effect was
reported by a number of other groups observing flow veloci-
ties on the order of mm/s �6–13�. Several theoretical models
have been proposed parallel to the experimental observations
�14–16�. However, so far not all aspects of the flow-
generating mechanisms have been explained.

Studer et al. �10� made a thorough investigation of flow
dependence on electrolyte concentration, driving voltage,
and frequency for a characteristic system. In that work a
reversal of the pumping direction for frequencies above
10 kHz and rms voltages above 2 V was reported. For a
traveling wave device Ramos et al. �12� observed reversal of
the pumping direction at 1 kHz and voltages above 2 V. The
reason for this reversal is not yet fully understood and the
goal of this work is to contribute with further experimental
observations of reversing flow for other parameters than
those reported previously.

We have fabricated and studied an integrated electroki-
netic ac-driven micropump. The design follows Studer et al.
�10�, where an effective electrokinetic slip velocity is gener-
ated just above an asymmetric array of electrodes that covers
the channel bottom in one section of a closed pumping loop.
Pumping velocities are measured in another section of the
channel without electrodes. In this way electrophoretic inter-
action between the beads used as flow markers and the elec-
trodes is avoided. In contrast to the soft lithography utilized
by Studer et al., we use more well-defined MEMS fabrica-
tion techniques in Pyrex glass. This results in a very robust
system, which exhibits stable properties and remains func-
tional over time periods extending up to a year. Furthermore,

we have a larger electrode coverage of the total channel
length allowing for the detection of a given pumping velocity
generated by a smaller electrokinetic slip velocity at a lower
voltage. Our improved design has led to the observation of a
phenomenon, namely, reversal of the flow at low voltages
�Vrms�1.5 V� and low frequencies �f �20 kHz�. The electri-
cal properties of the fabricated microfluidic chip have been
investigated to clarify whether these affect the reversal of the
flow direction. We propose an equivalent circuit diagram,
evaluate it based on the electrical measurements, and con-
clude that we can rule out trivial circuit explanations of our
findings. Supplementary details related to the present work
can be found in Ref. �17�.

II. EXPERIMENT

A. System design

The microchip was fabricated for studies of the basic
electrokinetic properties of the system. Hence, a simple mi-
crofluidic circuit was designed to eliminate potential side
effects due to complex device issues. The microfluidic chip
has a size of approximately 16 mm�28 mm and is shown in
Fig. 1, while the device parameters are listed in Table I. It
consists of two 500-�m-thick Pyrex glass wafers anodically
bonded together. Metal electrodes are defined on the bottom
wafer and channels are contained in the top wafer, as illus-
trated schematically in Fig. 1�a�. This construction ensures
an electrical insulated chip with fully transparent channels.

An electrode geometry akin to the one utilized by Brown
et al. �5� and Studer et al. �10� was chosen. The translation
period of the electrode array is 50 �m with electrode widths
of W1=4.2 �m and W2=25.7 �m, and corresponding elec-
trode spacings of G1=4.5 �m and G2=15.6 �m �see Fig.
1�d��. Further theoretical investigations have shown that this
geometry results in a nearly optimal flow velocity �16�. The
total electrode array consists of eight subarrays each having
their own connection to the shared contact pad, Fig. 1�b�.
This construction makes it possible to disconnect a malfunc-
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tioning subarray. The entire electrode array has a width of
1.3 mm ensuring that the alignment of the electrodes and the
1.0-mm-wide fluidic channels is not critical.

A narrow side channel, Fig. 1�b�, allows beads to be in-
troduced into the part of the channel without electrodes,
where a number of ruler lines with a spacing of 200 �m
enable flow measurements by particle tracing, Fig. 1�c�.

An outer circuit of valves and tubes is utilized to control
and direct electrolytes and bead solutions through the chan-
nels. During flow-velocity measurements, the inlet to the nar-
row side channel is blocked and to eliminate hydrostatic
pressure differences the two ends of the main channel are
connected by an outer teflon tube with an inner diameter of
0.5 mm. The hydraulic resistance of this outer part of the
pump loop is three orders of magnitude smaller than the
on-chip channel resistance and is thus negligible.

In our design the channel has a rectangular cross section
of width w=967 �m and height H=33.6 �m, while the total
length is Ltot=40.8 mm. The subsection containing elec-

trodes has the length Lel=16.0 mm and the hydraulic resis-
tance R1, and here an average slip velocity vslip is generated
by electroosmosis just above the electrodes. The subsection
containing the measurement channel section has length Ltot
−Lel=24.2 mm and hydraulic resistance R2, and there a Poi-
seuille flow profile is established with a maximal center-
point velocity denoted vPois. In the electrode subsection of
the channel the flow rate Q is the sum of a forward Couette
flow �14� and a backward Poiseuille flow, Q= 1

2wHvslip
−�p /R1, while in the measurement subsection it is a forward
Poiseuille flow, Q=�p /R2. By combining these two expres-
sions, the unknown overpressure �p can be eliminated, and
we find �1+R2 /R1�Q= 1

2wHvslip or

vPois =
3

4

1

�1 − 0.63
H

w
�

Lel

Ltot
vslip � 0.30vslip, �1�

where we have used that for Poiseuille flow in a
rectangular channel Q� 2

3
�1−0.63H

w
�wHvPois and 1+R2 /R1

= �R1+R2� /R1=Ltot /Lel. So to obtain a given pumping veloc-
ity vPois for as low an electrokinetic slip velocity vslip as
possible, the electrode coverage ratio Lel /Ltot should be as
large as possible. In our system Lel /Ltot=0.39, which almost
doubles the sensitivity compared to Studer et al. �10�, where
Lel /Ltot=0.21.

B. Chip fabrication

The flow-generating electrodes of e-beam evaporated
Ti�10 nm� /Pt�400 nm� were defined by lift-off in
1.5-�m-thick photoresist AZ 5214-E �Hoechst� using a nega-
tive process. Platinum is electrochemically stable and has a
low resistivity, which makes it suitable for the application.

�

��
16mm

��
1mm

��50 µm*

*

(a)

(b) (c)

(d)

Inlet ports
Channel

Pyrex wafers

Electrodes
Contact pads

16 mm
��

FIG. 1. �a� Sketch of the fabricated chip consisting of two Pyrex
glass wafers bonded together. The channels are etched into the top
wafer, which also contains the fluid access ports. Flow-generating
electrodes are defined on the bottom wafer. �b� Micrograph of the
full chip containing a channel �white� with flow-generating elec-
trodes �black� and a narrow side channel for bead injection �upper
right corner�. During flow measurements the channel ends, marked
with asterisks, are connected by an outer tube. The electrode array
is divided into eight subarrays, each having its own connection to
the electrical contact pad. �c� Magnification of the framed area in
panel �b� showing the flow-generating electrodes to the left and the
measurement channel with ruler lines to the right. �d� Closeup of an
electrode array section with an electrode translation period of
50 �m.

TABLE I. Dimensions and parameters of the fabricated micro-
fluidic system.

Channel height H 33.6 �m

Channel width w 967 �m

Channel length, total Ltot 40.8 mm

Channel length with electrodes Lel 16.0 mm

Width of electrode array wel 1300 �m

Narrow electrode gap G1 4.5 �m

Wide electrode gap G2 15.6 �m

Narrow electrode width W1 4.2 �m

Wide electrode width W2 25.7 �m

Electrode thickness h 0.40 �m

Electrode surface area ��W1+2h�w� A1 4.84�10−9 m2

Electrode surface area ��W2+2h�w� A2 25.63�10−9 m2

Number of electrode pairs p 312

Electrode resistivity �Pt� � 10.6�10−8 �m

Electrolyte conductivity �0.1 mM� � 1.43 mS/m

Electrolyte conductivity �1.0 mM� � 13.5 mS/m

Electrolyte permittivity � 80�0

Pyrex permittivity �p 4.6�0
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The thin Ti layer ensures good adhesion of the Pt layer to the
Pyrex substrate. By choosing an electrode thickness of h
=400 nm, the metallic resistance between the contact pads
and the channel electrolyte is at least one order of magnitude
smaller than the resistance of the bulk electrolyte covering
the electrode array.

In the top Pyrex wafer the channel of width w=967 �m
and height H=33.6 �m was etched into the surface using a
solution of 40% hydrofluoric acid. A 100-nm-thick amor-
phous silicon layer was sputtered onto the wafer surface and
used as etch mask in combination with a 2.2-�m-thick pho-
toresist layer. The channel pattern was defined by a photoli-
thography process akin to the process used for electrode defi-
nition, and the wafer backside and edges were protected with
a 70-�m-thick etch resistant PVC foil. The silicon layer
was then etched away in the channel pattern using a
mixture of nitric acid and buffered hydrofluoric acid,
HNO3:BHF:H2O=20:1 :20. The wafer was subsequently
baked at 120 °C to harden the photoresist prior to the HF
etching of the channels. Since the glass etching is isotropic,
the channel edges were left with a rounded shape. However,
this has only a minor impact on the flow profile, given that
the channel aspect ratio is w /H�30. The finished wafer was
first cleaned in acetone, which removes both the photoresist
and the PVC foil, and then in a piranha solution.

After alignment of the channel and the electrode array, the
two chip layers were anodically bonded together by heating
the ensemble to 400 °C and applying a voltage difference of
700 V across the two wafers for 10 min. During this bonding
process, the previously deposited amorphous Si layer served
as a diffusion barrier against the sodium ions in the Pyrex
glass. Finally, immersing the chip in de-ionized water holes
were drilled for the inlet and outlet ports using a cylindrical
diamond drill with a diameter of 0.8 mm.

C. Measurement setup and procedures

Liquid injection and electrical contact to the microchip
was established through a specially constructed PMMA chip
holder, shown in Fig. 2. Teflon tubing was fitted into the
holder in which drilled channels provided a connection to the
on-chip channel inlets. The interface from the chip holder to
the chip inlets was sealed by O-rings. Electrical contact was
obtained with spring loaded contact pins fastened in the chip
holder and pressed against the electrode pads. The inner

wires of thin coax cables were soldered onto the pins and
likewise fastened to the holder.

The pumping was induced by electrolytic solutions of
KCl in concentrations ranging from c=0.1–1.0 mM. The
chip was prepared for an experiment by careful injection of
this electrolyte into the channel and tubing system, after
which the three valves to inlets and outlets were closed. The
electrical impedance spectrum of the microchip was mea-
sured before and after each series of flow measurements to
verify that no electrode damaging had occurred during the
experiments. If the impedance spectrum had changed, the
chip and the series of performed measurements were dis-
carded. Velocity measurements were only carried out when
the tracer beads were completely at rest before biasing the
chip, and it was always verified that the beads stopped mov-
ing immediately after switching off the bias. The steady flow
was measured for 10–60 s depending on the velocity �see
Sec. II E�. After a series of measurements was completed, the
system was flushed thoroughly with milli-Q water. When
stored in milli-Q water between experiments the chips re-
mained functional for at least one year.

D. ac-biasing and impedance measurements

Using an impedance analyzer �HP 4194 A�, electrical im-
pedance spectra of the microfluidic chip were obtained by
four-point measurements, where each contact pad was
probed with two contact pins. Data were acquired from
100 Hz to 15 MHz. To avoid electrode damaging by appli-
cation of a too high voltage at low frequencies, all imped-
ance spectra were measured at Vrms=10 mV.

The internal sinusoidal output signal of a lock-in amplifier
�Stanford Research Systems SR830� was used for ac biasing
of the electrode array during flow-velocity measurements.
The applied rms voltages were in the range from
0.3 to 1.5 V and the frequencies between 1.0 and 100 kHz.
A current amplification was necessary to maintain the correct
potential difference across the electrode array, since the over-
all chip resistance could be small ��0.1–1 k�� when fre-
quencies in the given interval were applied. The current
through the microfluidic chip was measured by feeding the
output signal across a small series resistor back into the
lock-in amplifier. The lock-in amplifier was also used for
measuring impedance spectra for frequencies below 100 Hz,
which were beyond the span of the impedance analyzer.

E. Flow-velocity measurements

After filling the channel with an electrolyte and actuating
the electrodes, the flow measurements were performed by
optical tracing of fluorescent beads suspended in the electro-
lyte. Instead of the previously employed micro-PIV method
�10,18�, we used a simpler, less accurate, but adequate opti-
cal particle tracing method for the velocity determination to
be described below. We have demonstrated that our method
is accurate within 10% for velocities between 10 and
100 �m/s by the following calibration measurements. A res-
ervoir containing beads suspended in milli-Q water was
placed at an adjustable height and connected by teflon tubing
to the measurement channel through a partially closed valve.

Top PMMA plate

Bottom PMMA plate

Contact pins

Aluminum holder

Coax cables

O-ringFitting

FIG. 2. Chip holder constructed to connect external tubing and
electrical wiring with the microfluidic chip.
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For each setting of the height the resulting hydrostatic pres-
sure generated a Poiseuille flow in the microchannel. After
waiting for half an hour to allow for compliant relaxation of
the system, the flow velocity vPois was measured using our
optical tracing method and compared to the velocity vnfs

= 3
2Q /��1−0.63H

w
�wH� for a rectangular channel deduced

from the flow rate Q measured directly by an Upchurch sci-
entific N-565 nanoflow sensor connected to the outlet. The
two sets of velocity determinations agree within 10% �see
the inset of Fig. 3�.

For our optical tracing method we introduced fluorescent
tracer beads �molecular probes, FluoSpheres F-8765� with a
diameter d=1 �m into the measurement section of the chan-
nel. The diffusivity of the beads are estimated by using the
Stokes-Einstein relation, D=kBT / �3	
d�=4.4�10−13 m2/s.
The concentration of beads was kept low enough to allow the
individual beads to be distinguished, when our Leica MZ-
FLIII fluorescence microscope was focused on a section of
length 700 �m of the measurement channel using a focal
depth in the vertical z direction slightly larger than the chan-
nel depth of 34 �m. With an attached Sony DFW-X710 digi-
tal camera, we recorded a series of pictures of the beads at
preset time intervals. We utilize the fact that for a Poiseuille
flow in a wide, flat channel all particles in the middle third of
the channel, H /3�z�2H /3 �except those within a distance
H of the side walls�, move with nearly the same horizontal
velocity, namely, between 0.9 and 1.0 times the maximal
center-point velocity vPois. Due to the size and density of the
beads their vertical sedimentation speed and Brownian mo-
tion are negligible; it takes 420 s for a bead to fall from z
=2H /3 to z=H /3 under the influence of gravity and 275 s to
diffuse out of that region; no single bead was followed for
more than 20 s during our measurements.

The preset time intervals for acquiring pictures of the
bead flows were adjusted to the velocity determined by the

voltage setting on the electrode array. It ranged from 1.00 s
for very low velocities below 15 �m/s to 0.125 s for high
velocities around 100 �m/s. The measurement series for a
given voltage setting contained between 80 and 600 frames,
and for each series the displacements of the fastest moving
particles in the 700-�m-long field of view were traced over
at least 20 frames. The displacement distances �x we traced,
using the in-channel ruler lines, were between 50 �m for the
slowest and 200 �m for the fastest beads, while the corre-
sponding measurement times �t were between 20 and 2 s.
The diffusion length for these times is 1 and 3 �m, respec-
tively, leading to relative uncertainties in displacement of
3 �m/50 �m=6% and 1 �m/200 �m=0.5% for slowest
and fastest particles, respectively. By averaging over en-
sembles of ten particles these uncertainties are lowered to
2% and 0.2%, respectively. For a given series it was checked
that the selected fastest moving particles �typically ten� all
moved with �nearly� the same, constant velocity, and the ve-
locity vPois was determined as the average over the individu-
ally determined velocities �x /�t. The total statistical uncer-
tainty, mainly due to the vertical bead position and the
horizontal Brownian motion, was estimated to be on the or-
der of 10%. This estimate is in good agreement with the
calibration measurements described above.

Flow reversal appearing as a result of a change in the bias
voltage setting between two measurements �see Sec. III� was
thoroughly verified. It was checked that the beads were com-
pletely at rest before biasing the chip, and then the forward
flow was measured. Subsequently, it was again controlled
that the beads were completely at rest when turning off the
bias. The bias value was then changed and turned on, and the
reverse flow was measured. Finally, the bias was turned off
and the beads were once more confirmed to be completely at
rest.

III. RESULTS

In the parameter ranges corresponding to those published
in the literature, our flow velocity measurements are in
agreement with previously reported results. Using a c
=0.1 mM KCl solution and driving voltages of Vrms
=1.0–1.5 V over a frequency range of f =1.1–100 kHz, we
observed among other measurement series the pumping ve-
locities shown in Fig. 3. The general tendencies were an
increase of velocity toward lower frequencies and higher
voltages, and absence of flow above f �100 kHz. The mea-
sured velocities corresponded to slightly more than twice
those measured by Studer et al. �10� due to our larger elec-
trode coverage of the total channel. We observed damaging
of the electrodes if more than 1 V was applied to the chip at
a driving frequency below 1 kHz, for which reason there are
no measurements at these frequencies. It is, however, plau-
sible that the flow velocity for our chip peaked just below
f �1 kHz.

A. Reproducibility of measurements

Our measured flow velocities were very reproducible due
to the employed MEMS chip fabrication techniques and the
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FIG. 3. Reproducible flow velocities induced in a 0.1 mM KCl
solution and observed at different days as a function of frequency at
a fixed rms voltage of 1.5 V. A corresponding series was measured
at Vrms=1.0 V. The frequencies are distributed on a log10 scale, and
lines have been added to guide the eye. The inset shows the flow
velocity vPois, measured using our optical tracing method, versus
vnfs, deduced from flow rates measured directly with a nanoflow
sensor. The linear fit, vPois=1.1 vnfs �full line�, is within 10% of
perfect agreement, vPois=vnfs �dotted line�.
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careful measurement procedures described in Sec. II. This is
illustrated in Fig. 3, which shows three velocity series re-
corded several days apart. The measurements were per-
formed on the same chip and for the same parameter values.
Between each series of measurements, the chip was dis-
mounted and other experiments performed. However, it
should be noted that a very slow electrode degradation was
observed when a dozen of measurement series were per-
formed on the same chip over a couple of weeks.

B. Flow reversal at low voltage and low frequency

Devoting special attention to the low-voltage �Vrms

�1.5 V�, low-frequency �f �20 kHz� regime, not studied in
detail previously, we observed an unanticipated flow reversal
for certain parameter combinations. This observation was
made possible by the large electrode coverage ratio Lel /Ltot
appearing in the expression Eq. �1� for vPois in terms of vslip.

Figure 4�a� shows flow velocities measured for a fre-
quency of 1.0 kHz as a function of applied voltage for vari-
ous electrolyte concentrations. It is clearly seen that the ve-
locity series of c=0.1 mM exhibits the known exclusively
forward and increasing pumping velocity as a function of
voltage, whereas for slightly increased electrolyte concentra-
tions an unambiguous reversal of the flow direction is ob-
served for rms voltages below approximately 1 V.

This reversed flow direction was observed for all frequen-
cies in the investigated spectrum when the electrolyte con-
centration and the rms voltage were kept constant. This is
shown in the inset of Fig. 4�a�, where a velocity series was
obtained over the frequency spectrum for an electrolyte con-
centration of 0.4 mM at a constant rms voltage of 0.8 V. It is
noted that the velocity is nearly constant over the entire fre-
quency range and tends to zero above f �20 kHz.

C. Electrical characterization

To investigate whether the flow reversal was connected to
unusual properties of the electrical circuit, we carefully mea-
sured the impedance spectrum Z�f� of the microfluidic sys-
tem. Spectra were obtained for the chip containing KCl elec-
trolytes with the different concentrations c=0.1, 0.4, and
1.0 mM.

Figure 5 shows the Bode plots of the impedance spectrum
obtained for c=1.0 mM. For frequencies between f �1 and
f �103 Hz the curve shape of the impedance amplitude 	Z	 is
linear with slope −1, after which a horizontal curve section
follows, and finally, the slope again becomes −1 for frequen-
cies above f �106 Hz. Correspondingly, the phase � changes
between 0° and 90°. From the decrease in phase toward low
frequencies it is apparent that 	Z	 must have another horizon-
tal curve section below f �1 Hz. When the curve is horizon-
tal and the phase is 0°, the system behaves resistively, while
it is capacitively dominated when the phase is 90° and the
curve has a slope of −1.

IV. DISCUSSION

As we shall see in the following, our observation of a
reproducible and stable flow reversal cannot be explained by

the existing theories of induced-charge �ac� electroosmosis,
even when faradaic current injection is taken into account as
in the most developed theoretical model, the weakly nonlin-
ear electrohydrodynamic model presented in Ref. �16� and
extended in Ref. �19� �see Sec. IV B�. This is not surprising,
as this model and other similar models are limited to the
weakly nonlinear regime V�0.2 V. We nevertheless do find
some qualitative agreement and discuss the experimentally
observed trends of the flow velocities, in particular, the flow
reversal. The following discussion is included to relate our
experimental results to a state-of-the-art theoretical model,
and to indicate possible directions for future work in the
field.

A. Equivalent circuit impedance analysis

In electrochemistry the standard way of analyzing imped-
ance measurements is in terms of an equivalent circuit dia-

FIG. 4. �a� Experimentally observed flow reversal for repeated
measurements of two concentrations of KCl at 1.0 kHz. The inset
shows that for a 0.4 mM KCl solution at a fixed rms voltage of
0.8 V the flow direction remains negative, but slowly approaches
zero on a log10 scale for frequencies up to 50 kHz. �b� The theoret-
ical model presented in Ref. �19� predicts the trends of the experi-
mentally observed velocity curves. The depicted graphs are calcu-
lated for a c=0.4 mM solution and parameters corresponding to the
experiments �Table II� with 
eq=160 mV. Additional curves have
been plotted for slightly different parameter values in order to ob-
tain a closer resemblance to the experimental graphs �see Sec. IV�.
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gram �20�. Based on the Gouy-Chapman-Stern model for the
electric double layer, the component values extracted from
this analysis are used to estimate three important electroki-
netic parameters: the Stern layer capacitance Cs, the intrinsic
zeta potential 
eq on the electrodes, and the charge transfer
resistance Rct.

Following �3,16,21� the basic unit in the diagram Fig. 6�a�
is a double-layer electrode capacitor in series with a bulk
electrolyte resistor and a double-layer counterelectrode ca-
pacitor. The order of the series components is unimportant,
so in the diagram the electrode pair can be placed next to
each other. In our system all electrodes are identical except
for their widths W1 and W2 and thus their respective surface
areas A1 and A2. However, the important physical parameter,
the RC time due to the charge transfer resistance R and the

capacitance C, is independent of the area since R�1/A and
C�A. Consequently, only one RC time is present in the sys-
tem due to the electric double layers. As seen in Fig. 6�a� this
can be represented by one single parallel coupling of Cdl �the
total capacitance due to accumulation of charge in the double
layers at all the electrodes� and Rct �the total resistance due to
faradaic current injection from electrochemical reactions at
all the electrodes� in series with the bulk electrolyte resistor
Rb. Moreover, we include the ohmic resistance of the metal
electrodes Rel, a shunt resistance Rx�=10 M� to represent
the internal resistance of the lock-in amplifier, and the mu-
tual capacitance between the narrow and wide electrodes Cel.
The latter contains contributions from both the electrolyte
and the surrounding glass. However, since it is three orders
of magnitude smaller than Cdl its precise placement relative
to Cdl is not important. Finally, since the separation between
the electrodes is small and the charge transfer resistance is
large, the diffusion-related Warburg impedance �20� can be
neglected.

By fitting the circuit model Fig. 6�a� to the impedance
measurements �see Figs. 5 and 6�b��, we extract the compo-
nent values listed in Table II including the four characteristic
angular frequencies �=2	f . The inverse frequency �x

−1

=RxCdl primarily expresses the characteristic time for the
faradaic charge transfer into the Debye layer. The character-
istic time for charging the Debye layer through the electro-
lyte is given by �0

−1=RbCdl. The Debye frequency is �D
=1/ �RbCel�, and �el=1/ �RelCel� states the characteristic fre-
quency for the on-chip electrode circuit in the absence of
electrolyte.

These fitted values can be compared with the modeled
values, which are found as explained in Table II, with the
following additional remarks regarding the parameters of the
electric double layers. Although the impedance measure-
ments were performed at a low voltage of Vrms=10 mV the
presence of an intrinsic zeta potential 
eq of the order of
typically 100 mV nevertheless forces us to use the nonlinear
Gouy-Chapman-Stern theory, where Cdl can be expressed as
a series coupling of the compact Stern layer capacitance Cs
and the differential Debye layer capacitance CD �see Table
II�. For simplicity Cs is often assumed constant and indepen-
dent of potential and concentration, while CD is given by
CD= �� /�D�cosh�
eqze / �2kBT��. Indeed, the measured Cdl is
roughly 10 times larger than predicted by the Debye-Hückel
theory, which indicates that the intrinsic zeta potential is at
least ±125 mV. Unfortunately, it is not possible to estimate
the exact values of both Cs and 
eq from a measurement of
Cdl, because a range of parameters led to the same Cdl. We
can, nevertheless, state lower limits as Cs�0.39 F/m2 and
	
eq 	 �175 mV for c=0.1 mM or Cs�0.43 F/m2 and 	
eq	
�125 mV at c=1.0 mM. For the model values in Table II
we used Cs=1.8 F/m2 and 
eq=190, 160, and 140 mV at 0.1,
0.4, and 1.0 mM KCl, respectively, in accordance with the
trend often observed that 
eq decreases with increasing con-
centration �22�.

At frequencies above 100 kHz the impedance is domi-
nated by Rb, Cel, and Rel, and the Bode plot closely resembles
a circuit with ideal components �see Fig. 5�. Around 1 kHz
we observe some frequency dispersion, which could be due
to the change in the electric field line pattern around the
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FIG. 5. Bode plot showing the measured amplitude 	Z	 on a
log10 scale �right ordinate axis� and phase � �left ordinate axis� of
the impedance as a function of frequency over eight decades dis-
tributed on a log10 scale from 0.2 Hz to 15 MHz. The voltage was
Vrms=10 mV and the electrolyte concentration c=1.0 mM KCl. The
measurements are shown with symbols while the curves of the fitted
equivalent diagram �see Fig. 6� are represented by dashed lines. The
measurement series obtained with the impedance analyzer consist
of 400 very dense points while the series measured using the
lock-in amplifier contains fewer points with a clear spacing.
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FIG. 6. �a� Equivalent circuit diagram showing the total elec-
trode resistance Rel, the total bulk electrolyte resistance Rb, the total
faradaic �charge transfer� resistance Rct, the internal resistance of
the lock-in amplifier Rx�, the total electrode capacitance Cel, and the
total double-layer capacitance Cdl. �b� Sketch of the impedance am-
plitude response of the equivalent diagram. It consists of three pla-
teaus, Rel, Rb, and the dc-limit Rx of the total resistance. These are
delimited by four characteristic frequencies: the inverse faradaic
charge transfer time �x, the inverse ohmic relaxation time �0, the
Debye frequency �D, and the electrode circuit frequency �el.
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inverse RC time �0=1/ �RbCdl� �19�. Finally, below 1 kHz
where the impedance is dominated by Cdl, the phase never
reaches 90° indicating that the double layer capacitance does
not behave as an ideal capacitor but more like a constant
phase element �CPE�. This behavior is well known experi-
mentally, but not fully understood theoretically �23�.

Overall, we have a fair agreement between the measure-
ments and the equivalent diagram analysis, so we conclude
that the observation of flow reversal is not related to any
unusual electrical properties of the chip, but must be due to
the intrinsic electrokinetic properties of the electrolyte.

B. Weakly nonlinear flow analysis

We analyze our experimental results in terms of the
weakly nonlinear model �16,19� based on the following clas-
sical approximations �15,20,21�: �i� The bulk electrolyte is an
ohmic resistor assumed to be charge neutral with uniform
salt concentration. �ii� The Debye layer is assumed to be in
local equilibrium with the electrolyte immediately outside
the layer. �iii� The thickness of the Debye layer is much
smaller than the size of the electrodes, and surface diffusion
and migration of charge is neglected. �iv� The bulk fluid
motion is described by Stokes flow with a slip condition on
the electrodes set by the electroosmotic flow induced in the
Debye layer. �v� Finally, following the extended model in
�19�, Butler-Volmer reaction kinetics models a generic fara-
daic electrode reaction �20� and small perturbative variations
in the concentration in the diffusive layer of the reactants in
the faradaic electrode reaction are allowed.

The forward flow velocities measured at c=0.1 mM as a
function of frequency �Fig. 3� qualitatively exhibit the trends
predicted by standard theory, namely, the pumping increases
with voltage and falls off at high frequency �4,14�.

More specifically, the theory predicts that the pumping
velocity should peak at a frequency around the inverse RC
time �0, corresponding to f �0.3 kHz, and decay as the in-
verse of the frequency for our applied driving voltages �see
Fig. 11 in Ref. �16��. Furthermore, the velocity is predicted
to grow like the square of the driving voltage at low volt-

ages, changing to V ln V at large voltages �16,19�.
Experimentally, the velocity is indeed proportional to �−1

and the peak is not observed within the range 1.1–100 kHz,
but it is likely to be just below 1 kHz. However, the increase
in velocity between 1.0 and 1.5 V displayed in Fig. 3 is
much faster than V2. That is also the result in Fig. 4�a� for
c=0.1 mM where no flow is observed below Vrms=0.5 V,
while above that voltage the velocity increases rapidly. For
c=0.4 mM and c=0.5 mM the velocity even becomes nega-
tive at voltages Vrms�1 V. This cannot be explained by the
standard theory and is also rather different from the flow
reversal that has been observed by other groups at larger
voltages Vrms�2 V and at frequencies above the inverse RC
time �10,12,13�.

The velocity shown in the inset of Fig. 4�a� is remarkable
because it is almost constant between 1 and 10 kHz. This is
unlike the usual behavior for ac electroosmosis that always
peaks around the inverse RC time, because it depends on
partial screening at the electrodes to simultaneously get
charge and tangential field in the Debye layer. At lower fre-
quency the screening is almost complete so there is no elec-
tric field in the electrolyte to drive the electroosmotic fluid
motion, while at higher frequency the screening is negligible
so there is no charge in the Debye layer and again no elec-
troosmosis.

One possible explanation for the almost constant velocity
as a function of frequency could be that the amount of charge
in the Debye layer is controlled by a faradaic electrode reac-
tion rather than by the ohmic current running through the
bulk electrolyte. Our impedance measurement clearly shows
that the electrode reaction is negligible at f =1 kHz and
Vrms=10 mV bias, but since the reaction rate grows exponen-
tially with voltage in an Arrhenius-type dependence, it may
still play a role at Vrms=0.8 V. However, previous theoretical
investigations have shown that faradaic electrode reactions
do not lead to the reversal of the ac electroosmotic flow or
pumping direction �16�.

Due to the strong nonlinearity of the electrode reaction
and the asymmetry of the electrode array, there may also be
a dc faradaic current running although we drive the system
with a harmonic ac voltage. In the presence of an intrinsic

TABLE II. Comparison of measured �meas.� and modeled �mod.� values of the components in the equivalent diagram, Fig. 6. The
measured values are given by curve fits of Bode plots �Fig. 5�, obtained on two similar chips labeled A and B, respectively. Due to a minor
error on the chip introduced during the bonding process, we were unable to measure Rct for chip B. The modeled values are estimated on the
basis of Table I and a particular choice of the parameters 
eq and Cs as follows: The inverse of the total double-layer capacitance is
1 /Cdl= �1/Cs+1/CD��1/A1+1/A2� / p, while the bulk electrolyte resistance is Rb=0.85/ ��wp� and the mutual capacitance between the
electrodes is Cel= �p /0.85���w+�p�2wel−w��, where 0.85 is a numerical factor computed for our particular electrode layout using the
finite-element-based program COMSOL MULTIPHYSICS.

Concentration
�chip�

Rb Rb Rel Rel Rct Cdl Cdl Cel Cel �D �D �0 �0

mod. meas. mod. meas. meas. mod. meas. mod. meas. mod. meas. mod. meas.

�k�� �k�� ��� ��� �M�� ��F� ��F� �nF� �nF� �M rad s−1� �k rad s−1�

0.1 mM �A� 2.0 1.0 7.6 5 1.0 0.50 0.50 0.28 0.30 2.0 3.3 1.0 2.0

1.0 mM �A� 0.21 0.17 7.6 6 1.0 0.56 0.55 0.28 0.29 19.1 20.6 8.5 10.7

0.1 mM �B� 2.0 1.4 7.6 6 0.50 0.51 0.28 0.29 2.0 3.0 1.0 1.4

0.4 mM �B� 0.52 0.41 7.6 7 0.54 0.53 0.28 0.28 7.7 9.3 3.6 4.6

1.0 mM �B� 0.21 0.17 7.6 8 0.56 0.55 0.28 0.26 19.1 22.6 8.5 10.5
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zeta potential 
eq on the electrodes and/or the glass substrate
this would give rise to an ordinary dc electroosmotic flow.
This process does not necessarily generate bubbles because
the net reaction products from one electrode can diffuse rap-
idly across the narrow electrode gap to the opposite electrode
and be consumed by the reverse reaction.

To investigate to which extent this proposition applies, we
used the extended weakly nonlinear theoretical model pre-
sented in Ref. �19�. The concentration of the oxidized and
reduced species in the diffusion layer near the electrodes is
modeled by a generalization of the Warburg impedance,
while the bulk concentration is assumed uniform. The model
parameters are chosen in accordance with the result of the
impedance analysis, i.e., Cs=1.8 F/m2, Rct=1 M�, and

eq=160 mV, as discussed in Sec. IV A. Further, we assume
an intrinsic zeta potential of 
eq=−100 mV on the borosili-
cate glass walls �22�, and choose �arbitrarily� an equilibrium
bulk concentration of 0.02 mM for both the oxidized and the
reduced species in the electrode reaction, which is much less
than the KCl electrolyte concentration of c=0.4 mM.

The result of the model calculation is shown in Fig. 4�b�.
At 1 kHz the fluid motion is dominated by ac electroosmo-
sis, which is solely in the forward direction. However, at
12.5 kHz the ac electroosmosis is much weaker and the
model predicts a �small� reverse flow due to the dc electroos-
mosis for Vrms�1 V. Figure 4�b� shows that the frequency
interval with reverse flow is only from 30 kHz down to
10 kHz, while the measured velocities remain negative down
to at least 1 kHz. The figure also shows results obtained with
a lower Stern layer capacitance Cs=0.43 F/m2 in the model,
which turns out to enhance the reverse flow.

In both cases, the reverse flow predicted by the theoretical
model is weaker than that observed experimentally and does
not show the almost constant reverse flow profile below
10 kHz. Moreover, the model is unable to account for the
strong concentration dependence displayed in Fig. 4�a�.

According to Ref. �24�, steric effects give rise to a signifi-
cantly lowered Debye layer capacitance and a potentially
stronger concentration dependence when 
 exceeds
10kBT /e�250 mV, which roughly corresponds to a driving
voltage of Vrms�0.5 V. Thus, by disregarding these effects
we overestimate the double-layer capacitance slightly in the
calculations of the theoretical flow velocity for Vrms=0.8 V.
This seems to fit with the observed tendencies, where theo-
retical velocity curves calculated on the basis of a lowered
Cdl better resemble the measured curves.

Finally, it should be noted that several electrode reactions
are possible for the present system. As an example we men-

tion 2H2O�l�+O2�aq�+4e−�4OH�aq�
− . This reaction is limited

by the amount of oxygen present in the solution, which in
our experiment is not controlled. If this reaction were domi-
nating the faradaic charge transfer, the value of Rct could
change from one measurement series to another.

V. CONCLUSION

We have produced an integrated ac electrokinetic micro-
pump using MEMS fabrication techniques. The resulting
systems are very robust and may preserve their functionality
over years. Due to careful measurement procedures it has
been possible over weeks to reproduce flow velocities within
the inherent uncertainties of the velocity determination.

An increased electrode coverage fraction of the channel
has led to an increased sensitivity as reflected in the velocity
ratio vPois /vslip=0.30. Based on this, a hitherto unobserved
reversal of the pumping direction has been measured in a
regime, where the frequency and the applied voltage are low
�f �20 kHz and Vrms�1.5 V� compared to earlier investi-
gated parameter ranges. This reversal depends on the exact
electrolytic concentration and the applied voltage. The mea-
sured velocities are of the order −5 �m/s to −10 �m/s.
Previously reported studies of flow measured at the same
parameter combinations show zero velocity with the given
resolution in this regime �10�.

Finally, we have performed an impedance characterization
of the pumping devices over eight frequency decades. By
fitting Bode plots of the data, the measured impedance spec-
tra compared favorably with our model using reasonable pa-
rameter values.

The trends of our flow-velocity measurements are ac-
counted for by a previously published theoretical model, but
the quantitative agreement is lacking. Most important, the
predicted velocities do not depend on electrolyte concentra-
tion, yet the concentration seems to be one of the causes of
our measured low-voltage, low-frequency flow reversal, Fig.
4�a�. This shows that there is a need for further theoretical
work on the electrohydrodynamics of these systems and, in
particular, on the effects of electrolyte concentration varia-
tions.
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Abstract. For a dielectric solid surrounded by an electrolyte and positioned
inside an externally biased parallel-plate capacitor, we study numerically how the
resulting induced-charge electro-osmotic (ICEO) flow depends on the topology
and shape of the dielectric solid. In particular, we extend existing conventional
electrokinetic models with an artificial design field to describe the transition
from the liquid electrolyte to the solid dielectric. Using this design field, we
have succeeded in applying the method of topology optimization to find system
geometries with non-trivial topologies that maximize the net induced electro-
osmotic flow rate through the electrolytic capacitor in the direction parallel to
the capacitor plates. Once found, the performance of the topology optimized
geometries has been validated by transferring them to conventional electrokinetic
models not relying on the artificial design field. Our results show the importance
of the topology and shape of the dielectric solid in ICEO systems and point to
new designs of ICEO micropumps with significantly improved performance.

Submitted to: New J. Phys.

1. Introduction

Induced-charge electro-osmotic (ICEO) flow is generated when an external electric field
polarizes a solid object placed in an electrolytic solution [1, 2]. Initially, the object
acquires a position-dependent potential difference ζ relative to the bulk electrolyte.
However, this potential is screened out by the counter ions in the electrolyte by the
formation of an electric double layer of width λD at the surface of the object. The
ions in the diffusive part of the double layer are then electromigrating in the resulting
external electric field, and by viscous forces they drag the fluid along. At the outer
surface of the double layer a resulting effective slip velocity is thus established. For a
review of ICEO see Squires and Bazant [3].

The ICEO effect may be utilized in microfluidic devices for fluid manipulation,
as proposed in 2004 by Bazant and Squires [1]. Theoretically, various simple
dielectric shapes have been analyzed for their ability to pump and mix liquids [3, 4].
Experimentally ICEO was observed and the basic model validated against particle
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image velocimetry in 2005 [2], and later it has been used in a microfluidic mixer,
where a number of triangular shapes act as passive mixers [5]. However, no studies
have been carried out concerning the impact of topology changes of the dielectric
shapes on the mixing or pumping efficiency. In this work we focus on the application
of topology optimization to ICEO systems. With this method it is possible to optimize
the dielectric shapes for many purposes, such as mixing and pumping efficiency.

Our model system consists of two externally biased, parallel capacitor plates
confining an electrolyte. A dielectric solid is shaped and positioned in the electrolyte,
and the external bias induces ICEO flow at the dielectric surfaces. In this work
we focus on optimizing the topology and shape of the dielectric solid to generate
the maximal flow perpendicular to the external applied electric field. This example
of establishing an optimized ICEO micropump serves as demonstration of the
implemented topology optimization method.

Following the method of Borrvall and Petersson [6] and the implementation by
Olesen, Okkels and Bruus [7] of topology optimization in microfluidic systems, we
introduce an artificial design field γ(r) in the governing equations. The design field
varies continuously from zero to unity, and it defines to which degree a point in
the design domain is occupied by dielectric solid or electrolytic fluid. Here, γ = 0
is the limit of pure solid and γ = 1 is the limit of pure fluid, while intermediate
values of γ represent a mixture of solid and fluid. In this way, the discrete problem
of placing and shaping the dielectric solid in the electrolytic fluid is converted into
a continuous problem, where the sharp borders between solid and electrolyte are
replaced by continuous transitions throughout the design domain. In some sense
one can think of the solid/fluid mixture as a sort of ion-exchange membrane in the
form of a sponge with varying permeability. This continuum formulation allows for
an efficient gradient-based optimization of the problem.

In one important aspect our system differs from other systems previously studied
by topology optimization: induced-charge electro-osmosis is a boundary effect relying
on the polarization and screening charges in a nanometer-sized region around the
solid/fluid interface. Previously studied systems have all been relying on bulk
properties such as the distribution of solids in mechanical stress analysis [8], photonic
band gap structures in optical wave guides [9], and acoustic noise reduction [10], or on
the distribution of solids and liquids in viscous channel networks [6, 7, 11] and chemical
microreactors [12]. In our case, as for most other applications of topology optimization,
no mathematical proof exists that the topology optimization routine indeed will result
in an optimized structure. Moreover, since the boundary effects of our problem result
in a numerical analysis which is very sensitive on the initial conditions, on the meshing,
and on the specific form of the design field, we take the more pragmatic approach of
finding non-trivial geometries by use of topology optimization, and then validate the
optimality by transferring the geometries to conventional electrokinetic models not
relying on the artificial design field.

2. Model system

We consider a parallel-plate capacitor externally biased with a harmonic oscillating
voltage difference ∆φ = 2V0 cos(ωt) and enclosing an electrolyte and a dielectric solid.
The two capacitor plates are positioned at z = ±H and periodic boundary conditions
are applied at the open ends at x = ±L/2. The resulting bound domain of size
L× 2H in the xz-plane is shown in Fig. 1. The system is assumed to be unbounded
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Figure 1. (a) A sketch of the rectangular L×2H cross-section of the electrolytic
capacitor in the xz-plane. The external voltages φ1 and φ2 are applied to the
two infinite parallel-plate electrodes (thick black lines) at z = ±H. The voltage
difference φ1−φ2 induces an ICEO flow around the un-biased dielectric solid (dark
gray) shaped by the topology optimization routine limited to the rectangular l×2h
design domain (light gray). The dielectric solid is surrounded by pure electrolyte
(light gray and white). Periodic boundary conditions are applied ar the vertical
edges (dotted lines). (b) The dimensionless electric permittivity ε as a function
of the design variable γ. (c) Zoom-in on the rapid convergence of ε(γ) towards
εfluid = 1 for γ approaching unity after passing the value γcut −∆γ ' 0.98.

and translational invariant in the perpendicular y-direction. The topology and shape
of the dielectric solid is determined by the numerical optimization routine acting only
within a smaller rectangular, central design domain of size l × 2h. The remaining
domain outside this area is filled with pure electrolyte. Double layers, or Debye
screening layers, are formed in the electrolyte around each piece of dielectric solid
to screen out the induced polarization charges. The pull from the external electric
field on these screening layers in the design domain drives an ICEO flow in the entire
domain.

The magnitude of the ICEO effect increases as the permittivity εdiel of the
dielectric solid increases relative to that of the electrolyte, εfluid = 78ε0. For maximum
effect we therefore employ εdiel = 106ε0 throughout this work. For such a large value
of the permittivity the potential inside the dielectric solid is nearly constant as for a
metal. Placed in an external electric field E, the largest potential difference, denoted
the zeta potential ζ, between the dielectric solid and the surrounding electrolyte just
outside the screening double layer can thus be estimated as ζ = Ea [3].

If the dielectric solid is symmetric around the x-axis, the anti-symmetry of the
applied external bias voltage ensures that the resulting electric potential is anti-
symmetric and the velocity and pressure fields symmetric around the center plane
z = 0. This symmetry appears in most of the cases studied in this paper, and when
present it is exploited to obtain a significant decrease in memory requirements of the
numerical calculations.

The specific goal of our analysis is to determine the topology and shape of the
dielectric solid such that a maximal flow rate Q is obtained parallel to the x-axis, i.e.
perpendicular to the direction of external potential field gradient.
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3. Governing equations

We follow the conventional continuum approach to the electrokinetic modeling of the
electrolytic capacitor [3]. For simplicity we consider a symmetric, binary electrolyte,
where the positive and negative ions with concentrations c+ and c−, respectively, have
the same diffusivity D and valence charge number Z.

3.1. Bulk equations in the conventional ICEO model

Neglecting chemical reactions in the bulk of the electrolyte, the ionic transport is
governed by particle conservation through the continuity equation,

∂c±
∂t

= −∇ · J±, (1)

where J± is the flux density of the two ionic species, respectively. Assuming a dilute
electrolytic solution, the ion flux densities are governed by the Nernst–Planck equation,

J± = −D

(
∇c± +

±Ze

kBT
c±∇φ

)
, (2)

where the first term expresses ionic diffusion and the second term ionic electro-
migration due to the electrostatic potential φ. Here e is the elementary charge, T
the absolute temperature and kB the Boltzmann constant. We note that due to the
low fluid velocity v obtained in the ICEO systems under consideration, we can safely
neglect the convective ion fluxes c±v throughout this paper, see Table 2.

The electrostatic potential φ is determined by the charge density ρel = Ze(c+−c−)
through Poisson’s equation,

∇ · (εfluid∇φ) = −ρel, (3)

where εfluid is the fluid permittivity, which is assumed constant. The fluid velocity field
v and pressure field p are governed the the continuity equation and the Navier–Stokes
equation for incompressible fluids,

∇ · v = 0, (4a)

ρm

[
∂v

∂t
+ (v ·∇)v

]
= −∇p + η∇2v − ρel∇φ, (4b)

where ρm and η are the fluid mass density and viscosity, respectively, both assumed
constant.

3.2. The artificial design field γ used in the topology optimization model of ICEO

To be able to apply the method of topology optimization, it is necessary to extend
the conventional ICEO model with three additional terms, all functions of a position-
dependent artificial design field γ(r). The design field varies continuously from zero
to unity, where γ = 0 is the limit of a pure dielectric solid and γ = 1 is the limit of a
pure electrolytic fluid. The intermediate values of γ represent a mixture of solid and
fluid.

The first additional term concerns the purely fluid dynamic part of our problem.
Here, we follow Borrvall and Petersson [6] and model the dielectric solid as a porous
medium giving rise to a Darcy friction force density −α(γ)v, where α(γ) may be
regarded as a local inverse permeability, which we denote the Darcy friction. We let
α(γ) be a linear function of γ of the form α(γ) = αmax(1−γ), where αmax = η/`2

pore is
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the Darcy friction of the porous dielectric material assuming a characteristic pore size
`pore. In the limit of a completely impenetrable solid the value of αmax approaches
infinity, which leads to a vanishing fluid velocity v. The modified Navier–Stokes
equation extending to the entire domain, including the dielectric material, becomes

ρm

[
∂v

∂t
+ (v ·∇)v

]
= −∇p + η∇2v − ρel∇φ− α(γ)v. (5)

The second additional term is specific to our problem. Since the Navier–Stokes
equation is now extended to include also the porous dielectric medium, our model must
prevent the unphysical penetration of the electrolytic ions into the solid. Following
the approach of Kilic et al. [13], where current densities are expressed as gradients
of chemical potentials, J ∝ −∇µ, we model the ion expulsion by adding an extra
free energy term κ(γ) to the chemical potential µ± = ±Zeφ + kBT ln(c±/c0) + κ(γ)
of the ions, where c0 is the bulk ionic concentration for both ionic species. As above
we let κ(γ) be a linear function of γ of the form κ(γ) = κmax(1 − γ), where κmax is
the extra energy cost for an ion to enter a point containing a pure dielectric solid as
compared to a pure electrolytic fluid. The value of κmax is set to an appropriately
high value to expel the ions efficiently from the porous material while still ensuring
a smooth transition from dielectric solid to electrolytic fluid. The modified ion flux
density becomes

J± = −D

(
∇c± +

±Ze

kBT
c±∇φ +

1
kBT

c±∇κ(γ)
)

. (6)

The third and final additional term is also specific to our problem.
Electrostatically, the transition from the dielectric solid to the electrolytic fluid is
described through the Poisson equation by a γ-dependent permittivity ε(γ). This
modified permittivity varies continuously between the value εdiel of the dielectric solid
and εfluid of the electrolytic fluid. As above, we would like to choose ε(γ) to be a
linear function of γ. However, during our analysis using the aforementioned large
value εdiel = 106ε0 for the solid in an aqueous electrolyte with εfluid = 78 ε0, we found
unphysical polarization phenomena in the electrolyte due to numerical rounding-off
errors for γ near, but not equal to, unity. To overcome this problem we ensured a more
rapid convergence towards the value εfluid by introducing a cut-off value γcut ' 0.98,
a transition width ∆γ ' 0.002, and the following expression for ε(γ),

ε(γ) = εdiel + (εfluid − εdiel)
{

1− (1−γ)
2

[
tanh

(γcut−γ

∆γ

)
+ 1

]}
. (7)

For γ . γcut we obtain the linear relation ε(γ) = εdiel + (εfluid − εdiel)γ, while for
γ & γcut we have ε(γ) = εfluid, see Fig. 1(b)-(c). For γ sufficiently close to unity
(and not only when γ equals unity with numerical precision), this cut-off procedure
ensures that the calculated topological break up of the dielectric solid indeed leads to
several correctly polarized solids separated by pure electrolyte. The modified Poisson
equation becomes

∇ ·
[
ε(γ)∇φ

]
= −ρel. (8)

Finally, we introduce the γ-dependent quantity, the so-called objective function
Ψ[γ], to be optimized by the topology optimization routine: the flow rate in the x-
direction perpendicular to the applied potential gradient. Due to incompressibility,
the flow rate Q(x) is the same through cross-sections parallel to the yz-plane at any
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position x. Hence we can use the numerically more stable integrated flow rate as the
objective function,

Ψ[γ(r)] =
∫ L

0

Q(x) dx =
∫

Ω

v · n̂x dx dz, (9)

where Ω is the entire geometric domain (including the design domain), and n̂x the
unit vector in the x direction.

3.3. Dimensionless form

To prepare the numerical implementation, the governing equations are rewritten in
dimensionless form, using the characteristic parameters of the system. In conventional
ICEO systems the size a of the dielectric solid is the natural choice for the characteristic
length scale `0, since the generated slip velocity at the solid surface is proportional
to a. However, when employing topology optimization we have no prior knowledge
of this length scale, and thus we choose it to be the fixed geometric half-length
`0 = H between the capacitor plates. Further characteristic parameters are the ionic
concentration c0 of the bulk electrolyte, and the thermal voltage φ0 = kBT/(Ze). The
characteristic velocity u0 is chosen as the Helmholtz–Smoluchowski slip velocity u0,
which for the induced zeta potential ζ = E`0 in a local electric field E = φ0/`0 is [3]

u0 =
εfluidζ

η
E =

εfluidφ
2
0

η`0
. (10)

The pressure scale is set by the characteristic microfluidic pressure scale p0 = ηu0/`0.
Although strictly applicable only to parallel-plate capacitors, the characteristic time
τ0 of the general system in chosen as the RC time of the double layer in terms of the
Debye length λD of the electrolyte [14],

τ0 =
`0

D
λD =

`0

D

√
kBTεfluid

2(Ze)2c0
. (11)

Moreover, three characteristic numbers are connected to the γ-dependent terms
in the governing equations: The characteristic free energy κ0, the characteristic
permittivity chosen as the bulk permittivity εfluid, and the characteristic Darcy friction
coefficient α0. In summary,

`0 = H, φ0 =
kBT

Ze
, u0 =

εfluidφ
2
0

η `0
, p0 =

η u0

`0
, (12a)

τ0 =
`0λD

D
, ω0 =

1
τ0

, κ0 = kBT, α0 =
η

`2
0

. (12b)

The new dimensionless variables (denoted by a tilde) thus become

r̃ =
r

`0
, ṽ =

v

u0
, p̃ =

p

p0
, φ̃ =

φ

φ0
, c̃± =

c±
c0

, (13a)

t̃ =
t

τ0
, κ̃ =

κ

κ0
, α̃ =

α

α0
, ε̃ =

ε

εfluid
. (13b)

In the following all variables and parameters are made dimensionless using these
characteristic numbers and for convenience the tilde is henceforth omitted.



Gregersen et al.: Topology and shape optimization of ICEO micropumps 7

3.4. Linearized and reformulated equations

To reduce the otherwise very time- and memory- consuming numerical simulations,
we choose to linearize the equations. There are several nonlinearities to consider.

By virtue of a low Reynolds number Re ≈ 10−6, see Table 2, the nonlinear Navier–
Stokes equation is replaced by the linear Stokes equation. Likewise, as mentioned in
Sec. 3.1, the low Péclet number Pé ≈ 10−3 allows us to neglect the nonlinear ionic
convection flux density c±v. This approximation implies the additional simplification
that the electrodynamic problem is independent of the hydrodynamics.

Finally, we employ the linear Debye–Hückel approximation, which is valid when
the electric energy Zeζ of an ion traversing the double layer is smaller than the thermal
energy kBT . For our system we find Zeζ/kBT . 0.5, so the linear Debye–Hückel
approximation is valid, and we can utilize that the ionic concentrations only deviate
slightly from the bulk equilibrium ionic concentration. The governing equations are
reformulated in terms of the average ion concentration c ≡ (c+ + c−)/2 and half
the charge density ρ ≡ (c+ − c−)/2. Thus, by expanding the fields to first order
as c = 1 + δc and ρ = 0 + δρ, the resulting differential equation for ρ is decoupled
from that of c. Introducing complex field notation, the applied external bias voltage
is ∆φ(t) = 2V0 cos(ωt) = Re[2V0 exp(iωt)], yielding a corresponding response for the
potential φ and charge density ρ, with the complex amplitudes Φ(r) = ΦR(r)+iΦI(r)
and P (r) = PR(r) + iPI (r), respectively. The resulting governing equations for the
electrodynamic problem is then

∇ ·
[
ε(γ)∇ΦR

]
= − 1

λ2
PR, (14a)

∇ ·
[
ε(γ)∇ΦI

]
= − 1

λ2
PI , (14b)

∇ ·
[∇ΦR + ∇PR + PR∇κ(γ)

]
= −ω

λ
PI , (14c)

∇ ·
[∇ΦI + ∇PI + PI∇κ(γ)

]
= +

ω

λ
PR, (14d)

where we have introduced the dimensionless thickness of the linear Debye layer
λ = λD/`0. Given the electric potential Φ and the charge density P , we solve for
the time-averaged hydrodynamic fields 〈v〉 and 〈p〉,

∇ · 〈v〉 = 0, (15a)
0 = −∇〈p〉+∇2〈v〉+ 〈fel〉 − α(γ)〈v〉, (15b)

where the time-averaged electric body force density 〈fel〉 is given by

〈fel〉 = − 1
2λ2

[
PR∇ΦR + PI∇ΦI

]
. (15c)

3.5. Boundary conditions

For symmetric dielectric solids we exploit the symmetry around z = 0 and consider
only the upper half (0 < z < 1) of the domain. As boundary condition on the
driving electrode we set the spatially constant amplitude V0 of the applied potential.
Neglecting any electrode reactions taking place at the surface there is no net ion flux
in the normal direction to the boundary with unit vector n̂. Finally, for the fluid
velocity we set a no-slip condition, and thus at z = 1 we have

ΦR = V0, ΦI = 0, (16a)
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n̂ ·
[∇ΦR + ∇PR + PR∇κ(γ)

]
= 0, (16b)

n̂ ·
[∇ΦI + ∇PI + PI∇κ(γ)

]
= 0, (16c)

〈v〉 = 0. (16d)

On the symmetry axis (z = 0) the potential and the charge density must be zero due
to the anti-symmetry of the applied potential. Furthermore, there is no fluid flux in
the normal direction and the shear stresses vanish. So at z = 0 we have

ΦR = ΦI = 0, PR = PI = 0, (17a)

n̂ · 〈v〉 = 0, t̂ · 〈σ〉 · n̂ = 0, (17b)

where the dimensionless stress tensor is 〈σik〉 = −〈p〉δik +
(
∂i〈vk〉 + ∂k〈vi〉

)
, and

n̂ and t̂ are the normal and tangential unit vectors, respectively, where the latter
in 2D, contrary to 3D, is uniquely defined. On the remaining vertical boundaries
(x = ±L/2`0) periodic boundary conditions are applied to all the fields.

Corresponding boundary conditions apply to the conventional ICEO model
Eqs. (1)-(4b), without the artificial design field but with a hard-wall dielectric solid.
For the boundary between a dielectric solid and electrolytic fluid the standard
electrostatic conditions apply, moreover, there is no ion flux normal to the surface,
and a no-slip condition is applied to the fluid velocity.

4. Implementation and validation of numerical code

4.1. Implementation and parameter values

For our numerical analysis we use the commercial numerical finite-element modeling
tool Comsol [16] controlled by scripts written in Matlab [15]. The mathematical
method of topology optimization in microfluidic systems is based on the seminal paper
by Borrvall and Petersson [6], while the implementation (containing the method of
moving asymptotes by Svanberg [17, 18]) is taken from Olesen, Okkels and Bruus [7].

In Comsol all equations are entered in the divergence form ∇·Γ = F . The tensor
Γ contains all the generalized fluxes in the governing equations, one per row, eg. J±
from Eq. (1), εfluid∇φ from Eq. (3), 0 from Eq. (4a), and ∇v +(∇v)T from Eq. (4b).
The source-term vector F contains all other terms in the governing equations that
cannot be written as the divergence of a vector. Note that the continuity equation (4a)
is not interpreted as an equation for v but rather as a divergence of a pressure-related
flux (which is always zero), with the term ∇·v acting as the corresponding source-term,
thus appearing in the vector F . As in Ref. [7] we have used second-order Lagrange
elements for all fields except the pressure and the design field, for which first-order
elements suffices. The resulting algebraic FEM-equations are solved using the sparse
direct linear solvers UMFPACK or PARDISO. More details concerning the numerical
implementation in Comsol can be found in Ref. [7].

Due to the challenges discussed in Sec. 4.2 of resolving all length scales in the
electrokinetic model, we have chosen to study small systems, 2H = 500 nm, with a
relatively large Debye length, λD = 20 nm. Our main goal is to provide a proof of
concept for the use of topology optimization in electro-hydrodynamic systems, so the
difficulties in fabricating actual devices on this sub-micrometric scale is not a major
concern for us in the present work. A list of the parameter values chosen for our
simulations is given in Table 1.
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Table 1. Parameters used in the simulations of the topology optimization ICEO
model and the conventional ICEO model.

Parameter Symbol Dimensionless Physical
value value

Characteristic length `0 1.0 250 nm
Channel half-height H 1.0 250 nm
Channel length L 2.0 500 nm
Design domain half-height h 0.8 200 nm
Design domain length l 0.6 150 nm
Linear Debye length λD 0.08 20 nm
Characteristic velocity u0 1.0 1.7× 10−3 m/s
Characteristic potential φ0 1.0 25 mV
External potential amplitude V0 1.0 25 mV
External potential frequency ω 6.25 4× 105 rad/s
Bulk fluid permittivity εfluid 1.0 78 ε0

Dielectric permittivity εdiel 1.3× 104 106 ε0

Bulk ionic concentration c0 1.0 0.23 mM
Fluid viscosity η 1.0 10−3 Pa s
Ionic diffusion constant D 1.0 2× 10−9m2/s
Ionic free energy in solid κ 3.0 75 mV
Maximum Darcy friction αmax 105 2× 1016 Pa s/m2

For a typical topology optimization, as the one shown in Fig. 4(a), approximately
5400 FEM elements are involved. In each iteration loop of the topology optimization
routine three problems are solved: the electric problem, the hydrodynamic problem,
and the so-called adjunct problem for the sensitivity analysis ∂Ψ/∂γ (used to update
the design field γ, see Ref. [7] for details), involving 4 × 104, 2 × 104, and 7 × 104

degrees of freedom, respectively. On an Intel Core 2 Duo 2 GHz processer with 2 GB
RAM the typical CPU time is several hours.

4.2. Analytical and numerical validation by the conventional ICEO model

We have validated our simulations in two steps. First, the conventional ICEO model
not involving the design field γ(r) is validated against the analytical result for the slip
velocity at a simple dielectric cylinder in an infinite AC electric field given by Squires
and Bazant [3]. Second, the design field model is compared to the conventional model.
This two-step validation procedure is necessary because of the limited computer
capacity. The involved length scales in the problem make a large number of mesh
elements necessary for the numerical solution by the finite element method. Four
different length scales appear in the gamma-dependent model for the problem of a
cylinder placed mid between the parallel capacitor plates: The distance H from the
center of the dielectric cylinder to the biased plates, the radius a of the cylinder, the
Debye length λD, and the length d over which the design field γ changes from zero to
unity. This last and smallest length-scale d in the problem is controlled directly be
the numerical mesh size set up in the finite element method. It has to be significantly
smaller than λD to model the double layer dynamics correctly, so here a maximum
value of the numerical mesh size is defined. Examples of meshing are shown in Fig. 2.

The analytical solution of Squires and Bazant [3] is only strictly valid in the

Gregersen et al.: Topology and shape optimization of ICEO micropumps 10

100 101 1020

0.2

0.4

0.6

0.8

1

v
FN sl
ip
/v

LS sl
ip

(a) (b) (c)

1/λ

Figure 2. (a) Meshing for the design-field model of Fig. 4(a) with a uniformly
fine mesh inside the design domain and a coarser mesh outside. (b) Meshing
for the hard-wall model of Fig. 4(b) with a mesh refinement in the double layer
surrounding the dielectric solids. (c) A Debye-length convergence analysis for
a cylinder with radius a. The maximum ICEO slip velocity vFN

slip in units of the

maximum analytical linear slip velocity vLS
slip is plotted as a function of the inverse

dimensionless Debye length 1/λ = a/λD. Unity is approached as λ tends to zero.

case of an infinitely thin Debye layer in an infinite electric field. So, to compare this
model with the bounded numerical model the plate distance must be increased to
minimize the influence on the effective slip velocity. Furthermore, it has been shown
in a numerical study by Gregersen et al. [19] that the Debye length λD should be about
a factor of 103 smaller than the cylinder radius a to approximate the solution for the
infinitely thin Debye layer model. Including the demand of d being significantly smaller
than λD we end up with a length scale difference of at least 105, which is difficult to
resolve by the finite element mesh, even when mesh adaption is used. Consequently,
we have checked that the slip velocity for the conventional model converges towards
the analytical value when the ratio a/λD increases, see Fig. 2(c). Afterwards, we
have compared the solutions for the conventional and gamma-dependent models in a
smaller system with a ratio of a/λD ∼ 10 and found good agreement.

4.3. Validation of the self-consistency of the topology optimization

As an example of our validation of the self-consistency of the topology optimization,
we study the dependence of the objective function Q = Ψ[ω, γ(ω, r)] on the external
driving frequency ω. As shown in Fig. 3(a)-(c) we have calculated the topology
optimized dielectric structures γj = γ(ωj , r), j = a, b, c, for three increasing
frequencies ω = ωa = 1.25, ω = ωb = 12.5, and ω = ωc = 62.5. In the following we let
Qj(ω) denote the flow rate calculated at the frequency ω for a structure optimized at
the frequency ωj .

First, we note that Qj(ωj) decreases as the frequency increases above the
characteristic frequency ω0 = 1; Qa(ωa) = 2.95 × 10−3, Qb(ωb) = 1.82 × 10−3, and
Qc(ωc) = 0.55× 10−3. This phenomenon is a general aspect of ICEO systems, where
the largest effect is expected to happen at ω ≈ 1 (in units of 1/τ0).

Second, and most significant, we see in Fig. 3(d) that structure γa is indeed the
optimal structure for ω = ωa since Qa(ωa) > Qb(ωa), Qc(ωa). Likewise, γb is optimal
for ω = ωb, and γc is optimal for ω = ωc.

We have gained confidence in the self-consistency of our topology optimization
routine by carrying out a number of tests like the one in the example above.
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(c) ωc = 62.5
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Figure 3. Validation of the self-consistency of the topology optimization for
different driving frequencies ω (in units of 1/τ0). (a) The streamline pattern
(thick lines) for ω = ωa = 1.25 calculated using the design-field ICEO model with
a porous dielectric medium represented by the design field γ in gray scale from
γ = 0 (black, solid) to γ = 1 (white, fluid), and the corresponding structure γa,
which has been found by topology optimization within the indicated rectangular
design domain (straight lines). The flow rate for this converged solution structure
is Q = 2.95×10−3 . (b) As panel (a) but with ω = ωb = 12.5 and Q = 1.82×10−3 .
(c) As panel (a) but with ω = ωc = 62.5 and Q = 0.55 × 10−3. (d) Flow rate Q
versus frequency ω for each of the three structures in panel (a), (b), and (c). Note
that structure γa indeed yields the highest flow rate Q for ω = ωa, structure γb

maximizes Q for ω = ωb, and structure γc maximizes Q for ω = ωc.

5. Results

5.1. Topology optimization

For each choice of parameters the topology optimization routine converges to a specific
distribution of dielectric solid given by γ(r). As a starting point for the investigation of
the optimization results we used the parameters listed in Table 1. As discussed above,
the geometric dimensions are chosen as large as possible within the computational
limitations: the Debye length is set to λD = 20 nm and the distance between the
capacitor plates to 2H = 500 nm. The external bias voltage V0 is of the order of the
thermal voltage V0 = φ0 = 25 mV to ensure the validity of the linear Debye–Hückel
approximation. We let the bulk fluid consist of water containing small ions, such as
dissolved KCl, with a concentration c0 = 0.23 mM set by the chosen Debye length.
As mentioned above, the permittivity of the dielectric solid is set to εdiel = 106 ε0 for
maximum ICEO effect. The artificial parameters κ and αmax are chosen on a pure
computational basis, where they have to mimic the real physics in the limits of fluid
and solid, but also support the optimization routine when the phases are mixed.
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Figure 4. (a) The streamline pattern (thick lines) calculated for ω = 6.25 using
the design-field ICEO model with a porous dielectric solid (black and gray), the
structure of which has been found by topology optimization within the rectangular
design domain (thin lines). The flow rate for this converged solution structure
is Q = 2.99 × 10−3. (b) The streamline pattern (full lines) calculated using the
conventional ICEO model with a hard-walled dielectric solid (black). The shape
of the dielectric solid is the 0.95-contour of the γ-field taken from the topology-
optimized structure shown in panel (a). The flow rate is Q = Q∗ = 1.88× 10−3.
(c) and (d) Color plots of the charge density ρ(r) corresponding to panel (a) and
(b), respectively. See Table 1 for parameter values.

Throughout our simulations we have primarily varied the applied frequency ω
and the size l × 2h of the design domain. In Fig. 3 we have shown examples of large
design domains with l×h = 2.0×0.8 covering 80% of the entire domain and frequency
sweeps over three orders of magnitude. However, in the following we fix the frequency
to be ω = 6.25, where the ICEO response is close to maximum. Moreover we focus
on a smaller design domain l × h = 0.6 × 0.8 to obtain better spatial resolution for
the given amount of computer memory and to avoid getting stuck in local optima. It
should be stressed that the size of the design domain has a large effect on the specific
form and size of the dielectric islands produced by the topology optimization. Also,
it is important if the design domain is allowed to connect to the capacitor plates or

Table 2. The value of characteristic physical quantities calculated in the topology
optimization ICEO model corresponding to Fig. 4.

Quantity Symbol Dimensionless Physical
value value

Gap between dielectric pieces `gap 0.4 100 nm
Velocity in the gap ugap 0.016 u0 28 µm/s
Largest zeta potential ζmax 0.5 φ0 12.5 mV
Reynolds number Re ρmugap`gap/η 2.8× 10−6 −
Péclet number Pé ugap`gap/D 1.4× 10−3 −
Debye–Hückel number Hü eζmax/(4kBT ) 0.13 −
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not, see the remarks in Sec. 6.
The converged solution found by topology optimization under these conditions

is shown in Fig. 4(a). The shape of the porous dielectric material is shown together
with a streamline plot of equidistant contours of the flow rate. We notice that many
stream lines extend all the way through the domain from left to right indicating that
a horizontal flow parallel to the x-axis is indeed established. The resulting flow rate
is Q = 2.99× 10−3. The ICEO flow of this solution, based on the design-field model,
is validated by transferring the geometrical shape of the porous dielectric medium
into a conventional ICEO model with a hard-walled dielectric not depending on the
design field. In the latter model the sharp interface between the dielectric solid and
the electrolyte is defined by the 0.95-contour of the topology optimized design field
γ(r). The resulting geometry and streamline pattern of the conventional ICEO model
is shown in Fig. 4(b). The flow rate is now found to be Q = Q∗ = 1.88 × 10−3.
There is a close resemblance between the results of two models both qualitatively and
quantitatively. It is noticed how the number and positions of the induced flow rolls
match well, and also the absolute values of the induced horizontal flow rates differs
only by 37%, which is a small deviation as discussed in Sec. 6.

Based on the simulation we can now justify the linearization of our model. The
largest velocity ugap is found in the gap of width `gap between the two satellite
pieces and the central piece. As listed in Table 2 the resulting Reynolds number
is Re = 2.8 × 10−7, the Péclet number is Pé = 1.4 × 10−3, while the Debye–Hückel
number is Hü = 0.13.

5.2. Comparison to simple shapes

We evaluate our result for the optimized flow rate by comparing it to those obtained
for more basic, simply connected, dielectric shapes, such as triangles and perturbed
circles previously studied in the literature as flow inducing objects both analytically
and experimentally [3, 4, 5]. For comparison, such simpler shapes have been fitted
into the same design domain as used in the topology optimization Fig. 4(a), and the
conventional ICEO model without the design field was solved for the same parameter
set. In Fig. 5(a) the resulting flow for a triangle with straight faces and rounded
corners is shown. The height b of the face perpendicular to the symmetry line was

φ = φ1

φ = 0

Q

(a) φ = φ1

φ = 0

Q

(b)

Figure 5. (a) The streamline pattern (thick lines) for a simple triangular
reference structure calculated for ω = 6.25 using the conventional ICEO model
with a hard-walled dielectric solid (black). The height b = 0.32 of the triangle is
chosen to give the largest flow rate for a fixed base line given by the rectangular
design domain of Fig. 4(a). The flow rate is Q = 0.22 × 10−3. (b) The same
as panel (a) except the geometry of the dielectric solid is given by the perturbed
circle r(θ) = 0.24[1 + 0.5 cos(3θ)]. The flow rate is Q = 0.46 × 10−3.
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varied within the height of the design domain 0 < b < 0.8, and the height b = 0.32
generating the largest flow in the x-direction results in a flow rate of Q = 0.22×10−3,
which is eight times smaller than the topology optimized result. In Fig. 5(b) the
induced flow around a perturbed cylinder with radius r(θ) = 0.24

[
1 + 0.5 cos(3θ)

]
is

depicted. Again the shape has been fitted within the allowed design domain. The
resulting flow rate Q = 0.46 × 10−3 is higher than for the triangle but still a factor
of four slower than the optimized result. It is clearly advantageous to change the
topology of the dielectric solid from simply to multiply connected.

For the topology optimized shape in Fig. 4(a) it is noticed that only a small
amount of flow is passing between the two closely placed dielectric islands in the upper
left corner of the design domain. To investigate the importance of this separation, the
gap between the islands was filled out with dielectric material and the flow calculated.
It turns out that this topological change only lowered the flow rate slightly (15%) to
a value of Q = 1.59 × 10−3. Thus, the important topology of the dielectric solid in
the top-half domain is the appearance of one center island crossing the antisymmetry
line and one satellite island near the tip of the center island.

5.3. Shape optimization

The topology optimized solutions are found based on the extended ICEO model
involving the artificial design field γ(r). To avoid the artificial design field it is
desirable to validate and further investigate the obtained topology optimized results by
the physically more correct conventional ICEO model involving hard-walled dielectric
solids. We therefore extend the reasoning behind the comparison of the two models
shown in Fig. 4 and apply a more stringent shape optimization to the various topologies
presented above. With this approach we are gaining further understanding of the
specific shapes comprising the overall topology of the dielectric solid. Moreover, it is
possible to point out simpler shapes, which are easier to fabricate, but still perform
well.

In shape optimization the goal is to optimize the objective function Ψ, which
depends on the position and shape of the boundary between the dielectric solid and
the electrolytic fluid. This boundary is given by a line interpolation through a small
number of points on the boundary. These control points are in turn given by N design
variables g = (g1, g2, . . . , gN), so the objective function of Eq. (9) depending on the
design field γ(r) is now written as Ψ[g] depending on the design variables g,

Ψ[g] =
∫

Ω

v · n̂x dx dz. (18)

To carry out the shape optimization we use a direct bounded Nelder–Mead
simplex method [20] implemented in Matlab [21, 22]. This robust method finds
the optimal point gopt in the N -dimensional design variable space by initially creating
a simplex in this space, e.g. a N -dimensional polyhedron spanned by N +1 points, one
of which is the initial guess. The simplex then iteratively moves towards the optimal
point by updating one of the N + 1 points at the time. During the iteration, the
simplex can expand along favorable directions, shrink towards the best point, or have
its worst point replaced with the point obtained by reflecting the worst point through
the centroid of the remaining N points. The iteration terminates once the extension
of the simplex is below a given tolerance. We note that unlike topology optimization,
the simplex method relies only on values of the objective function Ψ[g] and not on the
sensitivity ∂Ψ/∂g [23].
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Figure 6. (a) The streamline pattern (thick lines) for the shape-optimized right-
angled triangle fixed at the symmetry line z = 0 calculated for ω = 6.25 using
the conventional ICEO model with a hard-walled dielectric solid (black). In
the full domain this is a triangle symmetric around z = 0. The flow rate is
Q = 0.32× 10−3. (b) As in panel (a) but without constraining the triangle to be
right-angled. In the full domain the shape is foursided polygon symmetric around
z = 0. The flow rate is Q = 0.76 × 10−3. Note that all sharp corners of the
polygons have been rounded by circular arcs of radius 0.01.

First, we perform shape optimization on a right-angled triangle corresponding to
the one shown in Fig. 5(a). Due to the translation invariance in the x-direction, we
can without loss of generality fix one base point of the triangle (x1, 0) to the right end
of the simulation domain, while the other (x2, 0) can move freely along the baseline, in
contrast to the original rectangular design. To ensure a right-angled triangle only the
z-coordinate of the top point (x2, z2) may move freely. In this case the design variable
becomes the two-component vector g = (x2, z2). The optimal right-angled triangle is
shown in Fig. 6(a). The flow rate is Q = 0.32× 10−3 or 1.5 times larger than that of
the original right-angled triangle confined to the design domain.

If we do not constrain the triangle to be right-angled, we instead optimize a
polygon shape spanned by three corner points in the upper half of the electrolytic
capacitor. So, due to the symmetry of the problem, we are in fact searching for the
most optimal, symmetric foursided polygon. The three corner points are now given
as (x1, 0), (x2, 0),and (x3, z3), and again due to translation invariance, it results in
a three-component design variable g = (x2, x3, z3). The resulting shape-optimized
polygon is shown in Fig. 6(b). The flow rate is Q = 0.76× 10−3, which is 3.5 times
larger than that of the original right-angled triangle confined to the design domain
and 2.4 times better than that of the best right-angled triangle. However, this flow
rate is still a factor of 0.4 lower than the topology optimized results.

To be able to shape optimize the more complex shapes of Fig. 4 we have employed
two methods to obtain a suitable set of design variables. The first method, the radial
method, is illustrated in Fig. 7. The boundary of a given dielectric solid is defined
through a cubic interpolation line through N control points (xi, zi), i = 1, 2, . . . , N ,
which are parameterized in terms of two co-ordinates (xc, zc) of a center point, two
global scale factors A and B, N lengths ri, and N fixed angles θi distributed in the
interval from 0 to 2π,

(xi, zi) = (xc, zc) + ri (A cos θi, B sin θi). (19)

In this case the design variable becomes g = (xc, zc, r1, r2, . . . , rN , A, B).
The second parametrization method involves a decomposition into harmonic

components. As before we define a central point (xc, zc) surrounded by N control
points. However now, the distances ri are decomposed into M harmonic components
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Figure 7. Illustration of the polar-coordinate parametrization Eq. (19) of the
boundary of a dielectric solid with a complex shape. The polar representation
(ri, θi) is shown for the ith point (xi, zi). The shape consists of five harmonic
components represented by Eq. (20) with the design-variables xc = −0.1312,
zc = 0.7176, r0 = 0.1403, Ai = {0.2501, 0.0151, 0.0062, 0.2103, 0.2313}, and
ϕi = {−1.7508, −2.2526, 0.4173, 0.1172, −0.2419}.

given by

ri = r0

(
1 +

M∑

n=1

An cos(nθi + ϕn)
)

, (20)

where r0 is an overall scale parameter and ϕn is a phase shift. In this case the design
variable becomes g = (xc, zc, r0, A1, A2, . . . , AM , ϕ1, ϕ2, . . . , ϕM ).

5.4. Comparing topology optimization and shape optimization

When shape-optimizing a geometry similar to the one found by topology optimization,
we let the geometry consist of two pieces: (i) an elliptic island centered on the
symmetry-axis and fixed to the right side of the design domain, and (ii) an island with
a complex shape to be placed anywhere inside the design domain, but not overlapping
with the elliptic island. For the ellipse we only need to specify the major axis A and
the minor axis B, so these two design parameters add to the design variable listed
above for either the radial model or the harmonic decomposition model. To be able
to compare with the topology optimized solution the dielectric solid is restricted to
the design domain.

The result of this two-piece shape optimization is shown in Fig. 8. Compared to
the simply connected topologies, the two-piece shape-optimized systems yields much
improved flow rates. For the shape optimization involving the radial method with 16
directional angles and A = B for the complex piece, the flow rate is Q = 1.92× 10−3,
Fig. 8(a), which is 2.5 times larger than that of the shape-optimized foursided
symmetric polygon. The harmonic decomposition method, Fig. 8(b), yields a flow
rate of Q = 1.52× 10−3 or 2.0 times larger than that of the polygon.

All the results for the obtained flow rates are summarized in Table 3. It is seen
that two-piece shape optimized systems performs as good as the topology optimized
system, when analyzed using the conventional ICEO model without the artificial
design field. We also note by comparing Figs. 4 and 8 that the resulting geometry found
using either topology optimization or shape optimization is essentially the same. The
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Figure 8. Shape-optimized dielectric solids with a topology corresponding to
the topology-optimized shapes of Fig. 4. (a) The streamline pattern (thick lines)
for a two-piece geometry calculated using the conventional ICEO model. The
shape of the hard-walled dielectric solid (black) is found by shape optimization
using the radial method Eq. (19) with N = 16 directional angles. The flow rate is
Q = 1.92× 10−3 . (b) The same as panel (a) except the geometry of the dielectric
solid is by shape optimization using the harmonic decomposition method Eq. (20)
with M = 5 modes. The flow rate is Q = 1.52 × 10−3. (c) and (d) Color plot of
the charge density ρ(r) corresponding to panel (a) and (b), respectively.

central island of the dielectric solid is a thin structure perpendicular to the symmetry
axis and covering approximately 60% of the channel width. The satellite island of
complex shape is situated near the tip of the central island. It has two peaks pointing
towards the central island that seem to suspend a flow roll which guides the ICEO
flow through the gap between the two islands.

Table 3. Overview of the resulting flow rates Q relative to the topology optimized
value Q∗ = 1.88 × 103 , see Fig. 4(b), for the various geometries analyzed in the
conventional ICEO model. The methods by which the geometries have been
determined are listed.

Shape Method Flow rate
Q/Q∗

Triangle with optimal height, Fig. 5(a) Shape optimization 0.12
Perturbed cylinder, Fig. 5(b) Fixed shape 0.24
Optimized triangle, Fig. 6(a) Shape optimization 0.17
Optimized foursided polygon, Fig. 6(b) Shape optimization 0.40
Topology optimized result, Fig. 4(b) Topology optimization 1.00
Harmonic decomposition and ellipse, Fig. 8(a) Shape optimization 0.81
Radial varying points and ellipse, Fig. 8(b) Shape optimization 1.02
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6. Concluding remarks

The main result of this work is the establishment of the topology optimization method
for ICEO models extended with the design field γ(r). In contrast to the conventional
ICEO model with its sharply defined, impenetrable dielectric solids, the design field
ensures a continuous transition between the porous dielectric solid and the electrolytic
fluid, which allows for an efficient gradient-based optimization of the problem. By
concrete examples we have shown how the use of topology optimization has led to non-
trivial system geometries with a flow rate increase of nearly one order of magnitude,
from Q = 0.22× 10−3 in Fig. 5(a) to Q = 1.92× 10−3 in Fig. 8(a).

When applied to ICEO, the design field method is qualitatively but not
quantitatively correct. We have found deviations of 37% when comparing design
field simulations with hard-wall simulations. The magnitude of the ICEO effect is
sensitive to the exact configuration of the charge density and the electric field within
the only 20 nm thick double layer. Even for the relatively simple hard-wall model,
we have shown in another numerical analysis [19], how the magnitude of the ICEO
depends on the width of the double layer. By introducing the design field γ and
the associated artificial smoothing of the transition between the dielectric solid and
the liquid, the electric properties within the double layer is changed by γ in several
ways: The electric field is directly affected by the permittivity ε[γ(r)], while the
charge density is directly affected by the chemical potential term κ[γ(r)] pushing ions
away from the solid, and (to a lesser degree) by the viscous drag from the velocity
field of the electrolyte, which is affected by the Darcy term −α[γ(r)]v. Quantitative
agreement between the design field model and the hard-wall model can therefore
only be achieved by an extremely fine (and in practice un-reachable) resolution of
the transition zone, the position of which is not even known a priori. Given this
insight, the discrepancy of 37% may be regarded as relatively small. Moreover, in
spite of the quantitative discrepancy, the design field method nevertheless produces
qualitatively correct solutions with topologically non-trivial geometries, which, as we
have shown, easily can be transferred to quantitatively correct hard-wall models and
further improved by shape optimization.

The topology optimization algorithm of ICEO systems leads to many local
optima, and we cannot be sure that the converged solution is the global optimum.
The resulting shapes and the generated flow rates depend on the initial condition
for the artificial γ-field. Generally, the initial condition used throughout this paper,
γ = 0.99 in the entire design domain, leads to the most optimal results compared to
other initial conditions. This initial value corresponds to a very weak change from
the electrolytic capacitor completely void of dielectric solid. In contrast, if we let
γ = 0.01 corresponding to almost pure dielectric material in the entire design region,
the resulting shapes are less optimal, i.e. the topology optimization routine is more
likely to be caught caught in a local optimum. Furthermore, the resulting shapes
turns out to be mesh-dependent as well. So, we cannot conclude much about global
optima. Instead, we can use the topology optimized shapes as inspiration to improve
existing designs. For this purpose shape optimization turns out to be a powerful tool.
We have shown in this work how shape optimization can be used efficiently to refine
the shape of the individual pieces of the dielectric solid once its topology has been
identified by topology optimization.

For all three additional γ-dependent fields α(γ), κ(γ), and ε(γ) we have used
(nearly) linear functions. In many previous applications of topology optimization
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non-linear functions have successfully been used to find global optima by gradually
changing the non-linearity into strict linearity during the iterative procedure [6, 7, 8,
12]. However, we did not improve our search for a global optimum by employing such
schemes, and simply applied the (nearly) linear functions during the entire iteration
process.

The limited size of the design domain is in some cases restricting the free formation
of the optimized structures. This may be avoided by enlarging the design domain.
However, starting a topology optimization in a very large domain gives a huge amount
of degrees of freedoms, and the routine is easily caught in local minima. These local
minima often yield results not as optimal as those obtained for the smaller design
boxes. A solution could be to increase the design domain during the optimization
iteration procedure. It should be noted that increasing the box all the way up to
the capacitor plates results in solution shapes, where some of the dielectric material
is attached to the electrode in order to extend the electrode into the capacitor and
thereby maximize the electric field locally. This may be a desirable feature for some
purposes. In this work we have deliberately avoided such solutions by keeping the
edges of the design domain from the capacitor plates.

Throughout the paper we have only presented results obtained for dielectric
solids shapes forced to be symmetric around the center plane z = 0. However, we
have performed both topology optimization and shape optimization of systems not
restricted to this symmetry. In general we find that the symmetric shapes always
are good candidates for the optimal design. It cannot be excluded, though, that in
some cases a spontaneous symmetry breaking occurs similar to the asymmetric S-turn
channel studied in Ref. [7].

By studying the optimized shapes of the dielectric solids, we have noted that
pointed features often occurs, such as those clearly seen on the dielectric satellite
island in Fig. 8(b). The reason for these to appear seems to be that the pointed
regions of the dielectric surfaces can support large gradients in the electric potential
and, associated with this, also large charge densities [24, 25]. As a result large electric
body forces act on the electrolyte in these regions. At the same time the surface
between the pointed features curve inward which lowers the viscous flow resistance
due to the no-slip boundary condition. This effect is similar to that obtained by
creating electrode arrays of different heights in AC electro-osmosis [26, 27].

Another noteworthy aspect of the topology optimized structures is that the
appearance of dielectric satellite islands seem to break up flow rolls that would
otherwise be present and not contribute to the flow rate. This leads to a larger
net flow rate, as can be seen by comparing Figs. 5 and 8.

Throughout the paper we have treated the design field γ as an artificial field.
However, the design-field model could perhaps achieve physical applications to systems
containing ion exchange membranes, as briefly mentioned in Sec. 1. Such membranes
are indeed porous structures permeated by an electrolyte.

In conclusion, our analysis points out the great potential for improving actual
ICEO-based devices by changing simply connected topologies and simple shapes of
the dielectric solids, into multiply connected topologies of complex shapes.
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A numerical analysis of finite Debye-length effects in induced-charge electro-osmosis

Misha Marie Gregersen1, Mathias Bækbo Andersen1, Gaurav Soni2, Carl Meinhart2, and Henrik Bruus1
1Department of Micro- and Nanotechnology, Technical University of Denmark

DTU Nanotech Building 345 East, DK-2800 Kongens Lyngby, Denmark
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For a microchamber filled with a binary electrolyte and containing a flat un-biased center electrode
at one wall, we employ three numerical models to study the strength of the resulting induced-
charge electro-osmotic (ICEO) flow rolls: (i) a full nonlinear continuum model resolving the double
layer, (ii) a linear slip-velocity model not resolving the double layer and without tangential charge
transport inside this layer, and (iii) a nonlinear slip-velocity model extending the linear model
by including the tangential charge transport inside the double layer. We show that compared to
the full model, the slip-velocity models significantly overestimate the ICEO flow. This provides a
partial explanation of the quantitative discrepancy between observed and calculated ICEO velocities
reported in the literature. The discrepancy increases significantly for increasing Debye length relative
to the electrode size, i.e. for nanofluidic systems. However, even for electrode dimensions in the
micrometer range, the discrepancies in velocity due to the finite Debye length can be more than
10% for an electrode of zero height and more than 100% for electrode heights comparable to the
Debye length.

PACS numbers: 47.57.jd, 47.61.-k, 47.11.Fg

I. INTRODUCTION

Within the last decade the interest in electroki-
netic phenomena in general and induced-charge electro-
osmosis (ICEO) in particular has increased significantly
as the field of lab-on-a-chip technology has developed.
Previously, the research in ICEO has primarily been con-
ducted in the context of colloids, where experimental and
theoretical studies have been carried out on the elec-
tric double layer and induced dipole moments around
spheres in electric fields, as reviewed by Dukhin [1] and
Murtsovkin [2]. In microfluidic systems, electrokineti-
cally driven fluid motion has been used for fluid manip-
ulation, e.g. mixing and pumping. From a microfab-
rication perspective planar electrodes are easy to fabri-
cate and relatively easy to integrate in existing systems.
For this reason much research has been focused on the
motion of fluids above planar electrodes. AC electroki-
netic micropumps based on AC electroosmosis (ACEO)
have been thoroughly investigated as a possible pumping
and mixing device. Experimental observations and the-
oretical models were initially reported around year 2000
[3, 4, 5, 6], and further investigations and theoretical ex-
tensions of the models have been published by numerous
groups since [7, 8, 9, 10, 11, 12]. Recently, ICEO flows
around inert, polarizable objects have been observed and
investigated theoretically [13, 14, 15, 16, 17, 18]. For a
thorough historical review of research leading up to these
results, we refer the reader to Squires et al. [13] and ref-
erences therein.

In spite of the growing interest in the literature not
all aspects of the flow-generating mechanisms have been
explained so far. While qualitative agreement is seen be-
tween theory and experiment, quantitative agreement is

often lacking as reported by Gregersen et al. [11], Harnett
et al. [16], and Soni et al. [19]. In the present work we
seek to illuminate some of the possible reasons underlying
these observed discrepancies.

ICEO flow is generated when an external electric field
polarizes an object in an electrolytic solution. Counter
ions in the electrolyte screen out the induced dipole,
having a potential difference ζ relative to the bulk elec-
trolyte, by forming an electric double layer of width λD

at the surface of the object. The ions in the diffuse part
of the double layer then electromigrate in the external
electric field and drag the entire liquid by viscous forces.
At the outer surface of the double layer a resulting effec-
tive slip velocity vslip is thus established. Many numer-
ical models of ICEO problems exploit this characteristic
by applying the so-called Helmholtz–Smoluchowski slip
condition on the velocity field at the electrode surface
[20, 21]. Generally, the slip-condition based model re-
mains valid as long as

λD

ac
exp

(
Zeζ

2kBT

)
≪ 1, (1)

where kBT/(Ze) is the thermal voltage and ac denotes
the radius of curvature of the surface [13]. The slip-
velocity condition may be applied when the double layer
is infinitely thin compared to the geometrical length scale
of the object, however, for planar electrodes, condition
(1) is not well defined. In the present work we investi-
gate to what extent the slip condition remains valid.

Squires et al. [13] have presented an analytical solu-
tion to the ICEO flow problem around a metallic cylin-
der with radius ac using a linear slip-velocity model in
the two dimensional plane perpendicular to the cylin-
der axis. In this model with its infinitely thin dou-
ble layer, the surrounding electrolyte is charge neutral,

2

and hence the strength of the ICEO flow can be defined
solely in terms of the hydrodynamic stress tensor σ, as
the mechanical power Pmech =

∮
|r|=ac

n̂ · σ · vslipda ex-
erted on the electrolyte by the tangential slip-velocity
vslip = ueot̂, where n̂ and t̂ is the normal and tangential
vector to the cylinder surface, respectively. In steady
flow, this power is equal to the total kinetic energy dissi-
pation Pkin = 1

2η
∫

ac<|r|(∂ivj + ∂jvi)2dr of the resulting
quadrupolar velocity field in the electrolyte.

When comparing the results for the strength of the
ICEO flow around the cylinder obtained by the analytical
model with those obtained by a numerical solution of
the full equation system, where the double layer is fully
resolved, we have noted significant discrepancies. These
discrepancies, which are described in the following, have
become the primary motivation for the study presented
in this paper.

First, in the full double-layer resolving simulation we
determined the value P ∗

mech(R0) =
∮
|r|=R0

n̂ · σ · v da

of the mechanical input power, where R0 is the radius
of a cylinder surface placed co-axially with the metallic
cylinder. Then, as expected due to the electrical forces
acting on the net charge in the double layer, we found
that P ∗

mech(R0) varied substantially as long as the inte-
gration cylinder surface was inside the double layer. For
R0 ≈ ac + 6λD the mechanical input power stabilized at
a certain value. However, this value is significantly lower
than the analytical value, but the discrepancy decreased
for decreasing values of λD. Remarkably, even for a quite
thin Debye layer, λD = 0.01 ac, the value of the full
numerical simulation was about 40% lower than the ana-
lytical value. Clearly, the analytical model overestimates
the ICEO effect, and the double-layer width must be ex-
tremely thin before the simple analytical model agrees
well with the full model.

A partial explanation of the quantitative failure of the
analytical slip velocity model is the radial dependence
of the tangential field E‖ combined with the spatial ex-
tent of the charge density ρel of the double layer. In
the Debye–Hückel approximation E‖ and ρel around the
metallic cylinder of radius ac become

E‖(r, θ) = E0


1 +

a2
c

r2
− 2

ac

r

K1

(
r

λD

)

K1

(
ac

λD

)


 sin θ, (2a)

ρel(r, θ) = 2
ǫE0ac

λ2
D

K1

(
r

λD

)

K1

(
ac

λD

) cos θ, (2b)

where K1 is the decaying modified Bessel function of
order 1. The slowly varying part of E‖ is given by
E0

[
1+(ac/r)2

]
sin θ. For very thin double layers it is well

approximated by the r-independent expression 2E0 sin θ,
while for wider double layers, the screening charges sam-
ple the decrease of E‖ as a function of the distance from
the cylinder. Also tangential hydrodynamic and osmotic
pressure gradients developing in the double layer may

contribute to the lower ICEO strength when taking the
finite width of the double layer into account.

In this work we analyze quantitatively the impact
of a finite Debye length on the kinetic energy of the
flow rolls generated by ICEO for three different models:
(i) The full nonlinear electrokinetic model (FN) with a
fully resolved double layer, (ii) the linear slip-velocity
model (LS), where electrostatics and hydrodynamics are
completely decoupled, and (iii) a nonlinear slip-velocity
model (NSL) including the double layer charging through
ohmic currents from the bulk electrolyte and the surface
conduction in the Debye layer. The latter two models
are only strictly valid for infinitely thin double layers,
and we emphasize that the aim of our analysis is to de-
termine the errors introduced by these models neglecting
the finite width of the double layers compared to the full
nonlinear model resolving the double layer. We do not
seek to provide a more accurate description of the physics
in terms of extending the modeling by adding, say, the
Stern layer (not present in the model) or the steric effects
of finite-sized ions (not taken into account).

II. MODEL SYSTEM

To keep our analysis simple, we consider a single un-
biased metallic electrode in a uniform, external electric
field. The electrode of width 2a and height h is placed
at the bottom center, −a < x < a and z = 0, of a
square 2L × 2L domain in the xz-plane filled with an
electrolyte, see Fig. 1. The system is unbounded and
translational invariant in the perpendicular y-direction.
The uniform electric field, parallel to the surface of the
center electrode, is provided by biasing the driving elec-
trodes placed at the edges x = ±L with the DC volt-
ages ±V0, respectively. This anti-symmetry in the bias
voltage ensures that the constant potential of the center
electrode is zero. A double layer, or a Debye screening
layer, is induced above the center electrode, and an ICEO
flow is generated consisting of two counter-rotating flow
rolls. Electric insulating walls at z = 0 (for |x| > a) and
at z = 2L confine the domain in the z-direction. The
symmetry of the system around x = 0 is exploited in the
numerical calculations.

III. FULL NONLINEAR MODEL (FN)

We follow the usual continuum approach to the elec-
trokinetic modeling of the electrolytic microchamber and
treat only steady-state problems. For simplicity we con-
sider a symmetric, binary electrolyte, where the positive
and negative ions with concentrations c+ and c−, respec-
tively, have the same diffusivity D and charge number Z.
Using the ideal gas model for the ions, an ion is affected
by the sum of an electrical and an osmotic force given
by F± = ∓Ze∇φ − (kBT/c±) ∇c±. Here e is the ele-
mentary charge, T is the absolute temperature and kB is
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FIG. 1: A sketch of the square 2L×2L electrolytic microcham-
ber in the xz-plane. The external voltage ±V0 is applied to
the two electrodes (thick black lines) at x = ±L, respectively.
It induces two counter-rotating flow rolls (curved black ar-
rows) by electro-osmosis over the un-biased metallic center
electrode of length 2a and height h placed at the bottom wall
around (x, z) = (0, 0). The spatial extent of the flow rolls is
represented by the streamline plot (thin black curves) drawn
as equidistant contours of the flow rate. The inset is a zoom-in
on the right half, 0 < x < a, of the un-biased center electrode
and the nearby streamlines.

Boltzmann’s constant. Assuming a complete force bal-
ance between each ion and the surrounding electrolyte,
the resulting body force density fion =

∑
i=± ciFi, ap-

pearing in the Navier–Stokes for the electrolyte due to
the forces acting on the ions, is

fion = −Ze
(
c+ − c−

)∇φ− kBT∇(
c+ + c−

)
. (3)

As the second term is a gradient, namely the gradient of
the osmotic pressure of the ions, it can in the Navier–
Stokes equation be absorbed into the pressure gradient
∇p = ∇pdyn +∇pos, which is the gradient of the sum of
hydrodynamic pressure and the osmotic pressure. Only
the electric force is then kept as an explicit body force.

A. Bulk equations

Neglecting bulk reactions in the electrolyte, the ionic
transport is governed by the particle conservation

∇ · J± = 0, (4)

where J± is the flux density of the two ionic species. As-
suming the electrolytic solution to be dilute, the ion flux

densities are governed by the Nernst–Planck equation

J± = −D

(
∇c± +

±Ze

kBT
c±∇φ

)
+ c±v, (5)

where the first term expresses ionic diffusion and the sec-
ond term ionic electromigration due to the electrostatic
potential φ. The last term expresses the convective trans-
port of ions by the fluid velocity field v.

The electrostatic potential is determined by the charge
density ρel = Ze(c+ − c−) through Poisson’s equation

∇ · (ε∇φ) = −ρel, (6)

where ε is the fluid permittivity, which is assumed con-
stant. The fluid velocity field v and pressure field p are
governed the the continuity equation and the Navier–
Stokes equation for incompressible fluids,

∇ · v = 0, (7a)

ρm(v ·∇)v = −∇p + η∇2v − ρel∇φ, (7b)

where ρm and η are the fluid mass density and viscosity,
respectively, both assumed constant.

B. Dimensionless form

To simplify the numerical implementation, the gov-
erning equations are rewritten in dimensionless form, as
summarized in Fig. 2, using the characteristic parameters
of the system: The geometric half-length a of the elec-
trode, the ionic concentration c0 of the bulk electrolyte,
and the thermal voltage φ0 = kBT/(Ze). The character-
istic zeta-potential ζ of the center electrode, i.e. its in-
duced voltage, is given as the voltage drop along half of
the electrode, ζ = (a/L)V0, and we introduce the dimen-
sionless zeta-potential α as ζ ≡ αφ0, or α = (aV0)/(Lφ0).
The characteristic velocity u0 is chosen as the Helmholtz–
Smoluchowski slip velocity induced by the local electric
field E = ζ/a, and finally the pressure scale is set by the
characteristic microfluidic pressure scale p0 = ηu0/a. In
summary,

φ0 =
kBT

Ze
, u0 =

εζ

η

ζ

a
=

εφ2
0

ηa
α2, p0 =

ηu0

a
. (8)

The new dimensionless variables (denoted by a tilde) thus
become

r̃ =
r

a
, c̃i =

ci

c0
, φ̃ =

φ

φ0
, ṽ =

v

u0
, p̃ =

p

p0
. (9)

To exploit the symmetry of the system and the binary
electrolyte, the governing equations are reformulated in
terms of the average ion concentration c ≡ (c+ + c−)/2
and half the charge density ρ ≡ (c+−c−)/2. Correspond-
ingly, the average ion flux density Jc = (J+ +J−)/2 and
half the current density Jρ = (J+−J−)/2 are introduced.
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∂zρ = 0, ∂zφ = 0
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∂zρ = 0, φ = 0
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ρ = 0, φ = −αL

a

∂zc = 0, vx = vz = 0
∂zρ = 0, ∂zφ = 0

vx = 0, ∂xvz = 0
φ = 0, ∂xc = 0
ρ = 0

p = 0
∂jvj = 0

Re vj∂jvi = ∂jσij − 1
ǫ2α2 ρ ∂iφ

∂2
j φ = − 1

ǫ2 ρ

∂j(∂jc + ρ∂jφ) = P é vj∂jc

∂j(∂jρ + c∂jφ) = P é vj∂jρ

x

z

0−L L
0

2L

FIG. 2: The governing equations (without box) and boundary conditions (with boxes, arrows points to specific boundaries) in
dimensionless form (the tilde is omitted for clarity) for the entire quadratic 2L×2L domain (not shown in correct aspect ratio)
bisected into two symmetric halves. Only the right half (x > 0) of the domain is included in the simulations. The boundaries
are the surface of the un-biased center electrode (black rectangle), the solid insulating walls (dark gray lines), the external
electrode (black line), and the symmetry line (dashed black line).

Thus, the resulting full system of coupled nonlinear equa-
tions takes the following form for the ionic fields

∇̃ · J̃c = ∇̃ · J̃ρ = 0, (10a)

J̃c = −ρ̃∇̃φ̃− ∇̃c̃ + Pé c̃ṽ, (10b)

J̃ρ = −c̃∇̃φ̃− ∇̃ρ̃ + Pé ρ̃ṽ, (10c)

Pé =
u0a

D
, (10d)

while the electric potential obeys

∇̃2φ̃ = − 1
ǫ2

ρ̃, (11)

and finally the fluid fields satisfy

∇̃ · ṽ = 0, (12a)

Re
(
ṽ · ∇̃)

ṽ = −∇̃p̃ + ∇̃2ṽ − ρ̃

ǫ2 α2
∇̃φ̃, (12b)

Re =
ρu0a

η
. (12c)

Here the small dimensionless parameter ǫ = λD/a has
been introduced, where λD is the Debye length,

ǫ =
λD

a
=

1
a

√
εkBT

2(Ze)2c0
. (13)

We note that the dimensionless form of the osmotic force,
the second term in Eq. (3), is f̃os

ion = −(1/ǫ2α2)∇c̃.

C. Boundary conditions

We exploit the symmetry around x = 0 and consider
only the right half (0 < x < L) of the domain, see Fig. 2.
As boundary conditions on the driving electrode we take

both ion concentrations to be constant and equal to the
bulk charge neutral concentration. Correspondingly, the
charge density is set to zero. Consequently, we ignore
all dynamics taking place on the driving electrode and
simply treat it as an equipotential surface with the value
V0. We set a no-slip condition for the fluid velocity, and
thus at x = L we have

c̃ = 1, ρ̃ = 0, φ̃ =
V0

φ0
= α

L

a
, ṽ = 0. (14)

On the symmetry axis (x = 0) the potential and the
charge density must be zero due to the anti-symmetry of
the applied potential. Moreover, there is neither a fluid
flux nor a net ion flux in the normal direction and the
shear stresses vanish. So at x = 0 we have

φ̃ = 0, n̂ · J̃c = 0, ρ̃ = 0, (15a)

t̂ · σ̃ · n̂ = 0, n̂ · ṽ = 0, (15b)

where the stress tensor is (σ)ik = −pδik +η(∂iuk +∂kui),
and n̂ and t̂ are the normal and tangential unit vectors,
respectively, which in 2D, contrary to 3D, are uniquely
defined. The constant potential on the un-biased metallic
electrode is zero due to symmetry, and on the electrode
surface we apply a no-slip condition on the fluid velocity
and no-current condition in the normal direction. So on
the electrode surface we have

n̂ · J̃c = 0, n̂ · J̃ρ = 0, φ̃ = 0, ṽ = 0. (16)

On the solid, insulating walls there are no fluxes in the
normal direction, the normal component of the electric
field vanishes and there are no-slip on the fluid velocity.

n̂ · J̃c = 0, n̂ · J̃ρ = 0, n̂ ·∇φ̃ = 0, ṽ = 0. (17)

A complete overview of the governing equations and
boundary conditions is given in Fig. 2.
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2 )
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2

[
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]
+ (∂jφ)(∂j ρ̆)

−∂2
j (ρ̆ + 2φ) = (∂j c̆)(∂j ρ̆) + (∂jφ)(∂j c̆)− P é vj∂j ρ̆

x

z
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FIG. 3: The governing equations (without box) and boundary conditions (with boxes) in dimensionless form (the tilde is
omitted) using the logarithmic concentrations (denoted by a breve) of Eq. (18). Otherwise the figure is identical to Fig. 2.

D. The strongly nonlinear regime

At high values of the induced ζ-potential, the concen-
trations of counter- and co-ions acquire very large and
very small values, respectively, near the center electrode.
Numerically this is problematic. The concentration ratio
becomes extremely large and the vanishingly small con-
centration of co-ions is comparable to the round-off error
and may even become negative. However, this numerical
problem can be circumvented by working with the loga-
rithms (marked by a breve accent) of the concentration
fields, c̆± = log(c±/c0). By inserting

c± = c0 exp
(
c̆±

)
(18)

in the governing equations (5), (6), and (7b), a new equiv-
alent set of governing equations is derived. The symme-
try is exploited by defining the symmetric c̆ = c̆+ + c̆−
and antisymmetric ρ̆ = c̆+ − c̆− combination of the log-
arithmic fields and the corresponding formulation of the
governing equations is

∇̃2c̆ = P é ṽ · ∇̃c̆− (∇̃c̆)2+(∇̃ρ̆)2

2
− ∇̃φ̃ · ∇̃ρ̆,

(19a)

∇̃2
(
ρ̆ + 2φ̃

)
= P é ṽ · ∇̃ρ̆− ∇̃c̆ · ∇̃ρ̆− ∇̃φ̃ · ∇̃ρ̆, (19b)

∇̃2φ̃ = − 1
ǫ2

ec̆/2 sinh
(

ρ̆

2

)
, (19c)

Re
(
ṽ · ∇̃)

ṽ = −∇̃p̃ + ∇̃2ṽ − 1
ǫ2α2

ec̆/2 sinh
(

ρ̆

2

)
∇̃φ̃,

(19d)

while the continuity equation remains the same as in
Eq. (12a). The governing equations and boundary con-
ditions for the logarithmic fields (breve-notation) is sum-
marized in Fig. 3. This transformation serves to help
linearize solutions of the dependent variables, c̆ and ρ̆,
at the expense of introducing more nonlinearity into the
governing equations.

IV. SLIP-VELOCITY MODELS

The numerical calculation of ICEO flows in microflu-
idic systems is generally connected with computational
limitations due to the large difference of the inherent
length scales. Typically, the Debye length is much
smaller than the geometric length scale, λD ≪ a, mak-
ing it difficult to resolve both the dynamics of the Debye
layer and the entire microscale geometry with the avail-
able computer capacity. Therefore, it is customary to
use slip-velocity models, where it is assumed that the
electrodes are screened completely by the Debye layer
leaving the bulk electrolyte charge neutral. The dynam-
ics of the Debye layer is modeled separately and applied
to the bulk fluid velocity through an effective, so-called
Helmholtz–Smoluchowski slip velocity condition at the
electrode surface,

vHS = − ε

η
ζ E‖. (20)

where ζ is the zeta potential at the electrode surface,
and E‖ is the electric field parallel to the surface. Re-
gardless of the modeled dynamics in the double layer the
slip-velocity models are only strictly valid in the limit of
infinitely thin double layers λD ≪ a.

A. The linear slip-velocity model (LS)

The double-layer screening of the electrodes leaves the
bulk electrolyte charge neutral, and hence the governing
equations only include the potential φ, the pressure field
p and the flow velocity field v. In dimensionless form
they become,

∇̃2φ̃ = 0, (21a)

Re
(
ṽ · ∇̃)

ṽ = −∇̃p̃ + ∇̃2ṽ, (21b)

∇̃ · ṽ = 0. (21c)
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The electrostatic problem is solved independently of the
hydrodynamics, and the potential is used to calculate
the effective slip velocity applied to the fluid at the un-
biased electrode surface. The boundary conditions of the
potential and fluid velocity are equivalent to the condi-
tions applied to the full non-linear system, except at the
surface of the un-biased electrode. Here, the normal com-
ponent of the electric field vanishes, and the effective slip
velocity of the fluid is calculated from the electrostatic
potential using ζ = −φ and E‖ = −

[
(t̂ · ∇̃)φ̃

]
t̂,

n̂ ·∇φ̃ = 0, (22a)

ṽHS =
1
α2

φ̃
[
(t̂ · ∇̃)φ̃

]
t̂. (22b)

This represents the simplest possible, so-called linear
slip-velocity model; a model which is widely applied as
a starting point for numerical simulations of actual mi-
crofluidic systems [20, 21]. In this simple model all the
dynamics of the double layer has been neglected, an
assumption known to be problematic when the voltage
across the electrode exceeds the thermal voltage.

B. The nonlinear slip-velocity model (NLS)

The linear slip-velocity model can be improved by tak-
ing into account the nonlinear charge dynamics of the
double layer. This is done in the so-called nonlinear slip-
velocity model, where, although still treated as being in-
finitely thin, the double layer has a non-trivial charge
dynamics with currents from the bulk in the normal di-
rection and currents flowing tangential to the electrode
inside the double layer. For simplicity we assume in the
present nonlinear model that the neutral salt concentra-
tion c0 is uniform. This assumption breaks down at high
zeta potentials, where surface transport of ionic species
can set up gradients in the salt concentrations leading
to chemi-osmotic flow. In future more complete studies
of double layer charge dynamics these effects should be
included.

The charging of the double layer by the ohmic
bulk current is assumed to happen in quasi-equilibrium
characterized by a nonlinear differential capacitance
Cdl given by the Gouy–Chapmann model, Cdl =
ε cosh[zeζ/(2kBT )]/λD, which in the the low-voltage, lin-
ear Debye–Hückel regime reduces to Cdl = ε/λD. Ignor-
ing the Stern layer, the zeta-potential is directly propor-
tional to the bulk potential right outside the double layer,
ζ = −φ.

The current along the electrode inside the Debye layer
is described by a 2D surface conductance σs, which for a
binary, symmetric electrolyte is given by [1]

σs = 4λDσ(1 + m) sinh2

(
Zeζ

4kBT

)
, (23)

where σ is the bulk 3D conductivity and

m = 2
ε

ηD

(
kBT

Ze

)2

(24)

is a dimensionless parameter indicating the relative con-
tribution of electroosmosis to surface conduction. In
steady state the conservation of charge then yields [25]

0 = n̂ · (σ∇φ) + ∇s ·
[
σs∇sφ

]
, (25)

where the operator ∇s = t̂(t̂ ·∇) is the gradient in the
tangential direction of the surface.

Given the length scale a of the electrode, the strength
of the surface conductance can by characterized by the
dimensionless Dukhin number Du defined by

Du =
σs

aσ
=

4λD

a
(1 + m) sinh2

(
Zeζ

kBT

)
. (26)

Conservation of charge then takes the dimensionless form

0 = n̂ · (∇̃φ̃) + ∇̃s ·
[
Du∇̃s · φ̃

]
, (27)

and this effective boundary condition for the potential
on the flat electrode constitutes a 1D partial differen-
tial equation and as such needs accompanying boundary
conditions. As a boundary condition the surface flux is
assumed to be zero at the edges of the electrode,

σs(t̂ ·∇)φ
∣∣
x=±a

= 0, (28)

which is well suited for the weak formulation we employ
in our numerical simulation as seen in Eq. (34).

V. NUMERICS IN COMSOL

The numerical calculations are performed using the
commercial finite-element-method software COMSOL
with second-order Lagrange elements for all the fields ex-
cept the pressure, for which first-order elements suffices.
We have applied the so-called weak formulation mainly
to be able to control the coupling between the bulk equa-
tions and the boundary constraints, such as Eqs. (22b)
and (25), in the implementation of the slip-velocity mod-
els in script form.

The Helmholtz–Smoluchowski slip condition poses a
numerical challenge because it is a Dirichlet condition
including not one, but up to three variables, for which
we want a one-directional coupling from the electrostatic
field φ to the hydrodynamic fields v and p. We use the
weak formulation to unambiguously enforce the bound-
ary condition with the explicit introduction of the re-
quired hydrodynamic reaction force f on the un-biased
electrode

f = σ · n̂. (29)

The x and z components of Navier–Stokes equation are
multiplied with test functions ux and uz, respectively,
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and subsequently integrated over the whole domain Ω.
Partial integration is then used to move the stress tensor
contribution to the boundaries ∂Ω,

0 =
∫

∂Ω

uiσijnjds−
∫

Ω

[
(∂jui)σij + uiBi

]
da, (30)

where Bi = Re (vj∂j) vi + ρ(∂iφ)/(ǫ2α2). The boundary
integral on the un-biased electrode ∂Ωue is rewritten as

∫

∂Ωue

uiσijnjds =
∫

∂Ωue

[
uifi + Fi(vi − vHS,i)

]
ds, (31)

where Fi are the test functions belonging to the compo-
nents fi of the reaction force f . These test functions are
used to enforce the Helmholtz–Smoluchowski slip bound-
ary condition consistently. This formulation is used for
both slip-velocity models.

In the nonlinear slip-velocity model the Laplace equa-
tion (21a) is multiplied with the electrostatic test func-
tion Φ and partially integrated to get a boundary term
and a bulk term

0 =
∫

∂Ω

Φ (∂iφ)nids−
∫

Ω

(∂iΦ) (∂iφ) da. (32)

The boundary integration term on the electrode is sim-
plified by substitution of Eq. (25) which results in

∫

∂Ωue

Φ (∂iφ) nids = −
∫

∂Ωue

Φ
[
t̂i∂i

(
Du t̂j∂jφ

)]
ds.

(33)
Again, the resulting boundary integral is partially inte-
grated, which gives us explicit access to the end-points
of the un-biased electrode. This is necessary for applying
the boundary conditions on this 1D electrode,

∫

∂Ωue

Φ
[
t̂i∂i(Du t̂j∂jφ)

]
ds

=
[
ΦDu (t̂i∂iφ)

]x=+a

x=−a
−

∫

∂Ωue

(t̂i∂iΦ)Du (t̂j∂jφ) ds,

(34)

The no-flux boundary condition can be explicitly in-
cluded with this formulation. Note that in both slip-
velocity models the zeta-potential is given by the poten-
tial just outside the Debye layer, ζ = −φ, and it is there-
fore not necessary to include it as a separate variable.

The accuracy and the mesh dependence of the simu-
lation as been investigated as follows. The comparison
between the three models quantifies relative differences
of orders down to 10−3, and the convergence of the nu-
merical results is ensured in the following way. COMSOL
has a build-in adaptive mesh generation technique that
is able to refine a given mesh so as to minimize the error
in the solution. The adaptive mesh generator increases
the mesh density in the immediate region around the
electrode to capture the dynamics of the ICEO in the
most optimal way under the constraint of a maximum
number of degrees of freedom (DOFs). For a given set

of physical parameters, the problem is solved each time
increasing the number of DOFs and comparing consec-
utive solutions. As a convergence criterium we demand
that the standard deviation of the kinetic energy relative
to the mean value should be less than a given threshold
value typically chosen to be around 10−5. All of the sim-
ulations ended with more than 106 DOFs, and the ICEO
flow is therefore sufficiently resolved even for the thinnest
double layers in our study for which ǫ = 10−4.

VI. RESULTS

Our comparison of the three numerical models is pri-
marily focused on variations of the three dimensionless
parameters ǫ, α, and β relating to the Debye length λD,
the applied voltage V0, and the height h of the electrode,
respectively,

ǫ =
λD

a
, α =

aV0

Lφ0
, β =

h

a
. (35)

As mentioned in Sec. I, the strength of the generated
ICEO flow can be measured as the mechanical power in-
put Pmech exerted on the electrolyte by the slip-velocity
just outside the Debye layer or equivalently by the ki-
netic energy dissipation Pkin in the bulk of the electrolyte.
However, both these methods suffers from numerical in-
accuracies due to the dependence of both the position
of the integration path and of the less accurately deter-
mined velocity gradients in the stress tensor σ. To ob-
tain a numerically more stable and accurate measure, we
have chosen in the following analysis to characterize the
strength of the ICEO flow by the kinetic energy Ekin of
the induced flow field v,

Ekin = 1
2ρm

∫

Ω

v2 dxdz, (36)

which depends on the velocity field and not its gradi-
ents, and which furthermore is a bulk integral of good
numerical stability.

A. Zero height of the un-biased center electrode

We assume the height h of the un-biased center elec-
trode to be zero, i.e. β = 0, while varying the Debye
length and the applied voltage through the parameters
ǫ and α. We note that the linear slip-velocity model
Eqs. (21) and (22) is independent of the dimensionless
Debye length ǫ. It is therefore natural to use the kinetic
energy ELS

kin of this model as a normalization factor.
In the lin-log plot of Fig. 4 we show the kinetic energy

ENLS
kin and EFN

kin normalized by ELS
kin as a function of the

inverse Debye length 1/ǫ for three different values of the
applied voltage, α = 0.05, 0.5 and 5, ranging from the
linear to the strongly nonlinear voltage regime.
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FIG. 4: The total induced kinetic energy ENLS
kin (gray dashed)

and EFN
kin (black) for the nonlinear slip-velocity model and the

full model, respectively, relative to ELS
kin (horizontal black line)

of the linear slip-velocity model as a function of dimensionless
inverse Debye length 1/ǫ. Each are shown for three values of
the dimensionless applied voltage α = 0.05, 0.5 and 5. The
value of ǫ decreases from 1 to 10−4 going from left to right.

We first note that in the limit of vanishing Debye
length (to the right in the graph) all models converge
towards the same value for all values of the applied volt-
age α. For small values of α the advanced slip-velocity
model ENLS

kin is fairly close to the linear slip-velocity model
ELS

kin, but as α increases, it requires smaller and smaller
values of ǫ to obtain the same results in the two models.
In the linear regime α = 0.05 a deviation less than 5%
is obtained already for ǫ < 1. In the nonlinear regime
α = 0.5 the same deviation requires ǫ < 10−2, while
in the strongly nonlinear regime ǫ < 10−4 is needed to
obtain a deviation lower than 5%.

In contrast, it is noted how the more realistic full model
EFN

kin deviates strongly from ELS
kin for most of the displayed

values of ǫ and α. To obtain a relative deviation less
than 5% in the linear (α = 0.05) and nonlinear (α = 0.5)
regimes, a minute Debye length of ǫ < 10−3 is required,
and in the strongly nonlinear regime the 5% level it not
reached at all.

The deviations are surprisingly large. The Debye
length in typical electrokinetic experiments is λD =
30 nm. For a value of ǫ = 0.01 this corresponds to
an electrode of width 2 × 3 µm = 6 µm, comparable
to those used in Refs. [7, 10, 11]. In Fig. 4 we see that
for α = 5, corresponding to a moderate voltage drop of
0.26 V across the electrode, the linear slip-velocity model
overestimates the ICEO strength by a factor 1/0.4 = 2.5.
The nonlinear slip-model does a better job. For the same
parameters it only overestimates the ICEO strength by
a factor 0.5/0.4 = 1.2.

For more detailed comparisons between the three mod-
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FIG. 5: The difference between the induced kinetic energies
ELS

kin and ENLS
kin of the linear and nonlinear slip-velocity mod-

els, respectively, relative to the full model EFN
kin as a function

of the inverse Debye length 1/ǫ. for three different applied
voltages α = 0.05, 0.5, 5.
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FIG. 6: The difference between the induced kinetic energies
ELS

kin and ENLS
kin of the linear and nonlinear slip-velocity mod-

els, respectively, relative to the full model EFN
kin as a function of

the voltage bias α for three different Debye layer thicknesses
ǫ = 1.8× 10−3, 10−2, 10−1.

els the data of Fig. 4 are plotted in a different way
in Fig. 5. Here the overestimates (ELS

kin/EFN
kin ) − 1 and

(ENLS
kin /EFN

kin )− 1 of the two slip-velocity models relative
to the more correct full model are plotted in a log-log
plot as a function of the inverse Debye length 1/ǫ for
three different values of the applied voltage. It is clearly
seen how the relative deviation decreases proportional to
ǫ as ǫ approaches zero.

Finally, in Fig. 6 the relative deviations (ELS
kin/EFN

kin )−1



9

and (ENLS
kin /EFN

kin)−1 are plotted versus the voltage α in a
log-log plot. For any value of the applied voltage α, both
slip-velocity models overestimates by more than 100% for
large Debye lengths ǫ = 10−1 and by more than 10% for
ǫ = 10−2. For the minute Debye length λD = 1.8× 10−3

the overestimates are about 3% in the linear and weakly
nonlinear regime α < 1, however, as we enter the strongly
nonlinear regime with α = 5 the overestimation increases
to a level above 10%.

B. Finite height of the un-biased electrode

Compared to the full numerical model, the slip-velocity
models are convenient to use, but even for small Debye
lengths, say λD = 0.01a, they are prone to significant
quantitative errors as shown above. Similarly, it is of
relevance to study how the height of the un-biased elec-
trode influences the strength of the ICEO flow rolls. In
experiments the thinnest electrodes are made by evapo-
ration techniques. The resulting electrode heights are of
the order 50 nm − 200 nm, which relative to the typi-
cal electrode widths a ≈ 5 µm results in dimensionless
heights 10−3 < β < 10−1.

In Fig. 7 is shown the results for the numerical calcu-
lation of the kinetic energy EFN

kin (ǫ, β) using the full nu-
merical model. The dependence on the kinetic energy of
the dimensionless Debye length ǫ = λD/a and the dimen-
sionless electrode height β = h/a is measured relative to
the value EFN

kin (ǫ, β) of the infinitely small Debye length
for an electrode of zero height. For small values of the
height no major deviations are seen. The curve for β = 0
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FIG. 7: The difference between the induced kinetic en-
ergies EFN

kin(ǫ, β) of the full model at finite Debye length
and electrode height relative to the full model EFN

kin(0, 0) at
zero Debye length and zero electrode height as a function
of the inverse Debye length 1/ǫ for four electrode heights
β = 0, 10−3, 10−2, 10−1.

and β = 0.001 are close. As the height is increased to
β = 10−2 we note that the strength of the ICEO is in-
creased by 20%−25% as β > ǫ. This tendency is even
stronger pronounced for the higher electrode β = 10−1.
Here the ICEO strength is increased by approximately
400% for a large range of Debye lengths.

C. Thermodynamic efficiency of the ICEO system

Conventional electro-osmosis is known to have a low
thermodynamic efficiency defined as the delivered me-
chanical pumping power relative to the total power de-
livered by the driving voltage. Typical efficiencies are of
the order of 1% [26], while in special cases an efficiency of
5.6% have been reported [27]. In the following we provide
estimates and numerical calculations of the correspond-
ing thermodynamic efficiency of the ICEO system.

The applied voltage drop 2V0 = 2E0L across the sys-
tem in the x-direction is written as the average electrical
field E0 times the length 2L, while the electrical cur-
rent is given by I = WHσE0, where W and H is the
width and height in the y- and z-direction, respectively,
and σ = Dε/λ2

D = ε/τD is the conductivity written in
terms of the Debye time τD = λ2

D/D. The total power
consumption to run the ICEO system is thus

Ptot = 2V0 × I =
4
τD

(1
2
εE2

0

)
LWH. (37)

This expression can be interpreted as the total energy,
1
2εE2

0 × LWH , stored in the average electrical field of
the system with volume LWH multiplied by the charac-
teristic electrokinetic rate 4/τD.

The velocity-gradient part of the hydrodynamic stress
tensor is denoted σ̃, i.e. (σ̃)ij = η(∂ivj + ∂jvi). In
terms of σ̃, the kinetic energy dissipation Pkin neces-
sary to sustain the steady-state flow rolls is given by
Pkin = W

2η

∫ L

0 dx
∫ H

0 dz Tr(σ̃2). In the following esti-
mate we work in the Debye–Hückel limit for an electrode
of length 2a, where the induced zeta potential is given
by ζind = aE0 and the radius of each flow roll is approx-
imately a. In this limit the electro-osmotic slip velocity
ueo and the typical size of the velocity gradient |∂ivj | are

ueo =
εζind

η
E0 =

εa

η
E2

0 , (38a)

|∂ivj | ≈
ueo

a
=

ε

η
E2

0 . (38b)

Thus, since the typical area covered by each flow roll is
πa2 , we obtain the following estimate of Pkin,

Pkin ≈ 2
W

2η
πa2 4

[
η
ueo

a

]2

= 8
εE2

0

η

(1
2
εE0

)2

πa2W. (39)

Here the power dissipation can be interpreted as the en-
ergy of the electrical field in the volume πa2W occupied
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by each flow roll multiplied by an ICEO rate given by the
electric energy density εE2

0 divided by the rate of viscous
energy dissipation per volume given by η.

The thermodynamic efficiency can now be calculated
as the ratio Pkin/Ptot using Eqs. (37) and (39),

Pkin

Ptot
≈ 2πa2

LH

εE2
0

η/τD
≈ 2.4× 10−8. (40)

This efficiency is the product of the ratio between the
volumes of the flow rolls and the entire volume multiplied
and the ratio of the electric energy density in the viscous
energy density η/τD. The value is found using L = H =
15a = 0.15 mm, E0 = 2.5 kV/m, and λD = 20 nm,
which is in agreement with the conventional efficiencies
for conventional electro-osmotic systems quoted above.

VII. CONCLUSION

We have shown that the ICEO velocities calculated
using the simple zero-width models significantly overes-
timates those calculated in more realistic models taking
the finite size of the Debye screening length into ac-
count. This may provide a partial explanation of the
observed quantitative discrepancy between observed and
calculated ICEO velocities. The discrepancy increases
substantially for increasing ǫ, i.e. in nanofluidic systems.

Even larger deviations of the ICEO strength is calcu-
lated in the full numerical model when a small, but finite
height of the un-biased electrode is taken into account.

A partial explanation of the quantitative failure of the
analytical slip velocity model is the decrease of the tan-
gential electric field as a function of the distance to the

surface of the polarized ICEO object combined with the
spatial extent of the charge density of the double layer.
Also tangential hydrodynamic and osmotic pressure gra-
dients developing inside the double layer may contribute
to the lowering ICEO strength when taking the finite
width of the double layer into account. The latter may
be related to the modification of the classical Helmholtz–
Smoluchowski expression of the slip-velocity obtained by
adding a term proportional to the gradient of the salt
concentration c [28].

Our work shows that for systems with a small, but
non-zero Debye length of 0.001 to 0.01 times the size of
the electrode, and even when the Debye-Hückel approx-
imation is valid, a poor quantitative agreement between
experiments and model calculations must be expected
when applying the linear slip-velocity model based on
a zero Debye-length. It is advised to employ the full
numerical model of ICEO, when comparing simulations
with experiments.
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