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Abstract

The goal of the present thesis has been to investigate ways of controlling
and manipulating fluids and suspensions in microfluidic systems. In partic-
ular, we focus on a theoretical description of AC electroosmotic micropumps
with asymmetric electrode arrays, that have recently been demonstrated to
permit fast pumping (velocities ∼ mm/s) with low driving voltage of a few
volt only.

The dynamical description of electrokinetics and electrochemical trans-
port at driving voltages of just a few volt is a theoretically challenging
subject, and therefore simplifying assumptions such as the Debye–Hückel
approximation or linear response for weak applied field have often been em-
ployed in the literature.

We extend previous linear theory for AC electroosmotic flow into the
“weakly nonlinear” regime by accounting for nonlinear capacitance of the
Debye screening layer, and also consider the effect of Faradaic current in-
jection from electrochemical electrode reactions. This allows us to explain
why the frequency of maximum pumping is sometimes shifted down when
the driving voltage is increased, but neither the linear nor weakly nonlinear
models are able to account for the reversal of the pumping direction that
has been observed experimentally.

Therefore we also study the “strongly nonlinear” regime where classical
circuit models with uniform bulk electrolyte concentration break down. We
extend recent theoretical work in this regime, by accounting for dynamics
in the diffusion layer developing when an AC voltage with driving frequency
around the inverse RC time is applied, and by considering fluid motion and
convection of ions. Moreover, we attempt to include existing theory for
double layers driven out of quasiequilibrium from problems of DC Faradaic
conduction at “very large” (but experimentally relevant) voltage into our
dynamical model.

We solve the coupled electrohydrodynamical problem numerically for
experimental micropump geometries and display contributions to the net
pumping velocity from the different flow sources in the model: Our results
indicate that both bulk electroconvection and electroosmotic flow of the
“second kind” may contribute a significant fraction of the overall induced
flow already at driving voltages of a few volt. However, a rigorous account
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for nonequilibrium double layers in a dynamical setting would be necessary
to justify several ad hoc assumptions in our model.

Finally, we investigate different ways of breaking the symmetry of an
electrode array and determine in each case the optimal device geometry to
maximize the pumping velocity at a given low driving voltage as described
by the simple linear theory.



Resumé

Formålet med nærværende afhandling har været at undersøge måder at
kontrollere og manipulere væsker og partikler i mikrofluide systemer. Især
fokuserer vi p̊a en teoretisk beskrivelse af AC elektroosmotiske mikropumper
med asymmetriske sæt af elektroder, der tillader hurtig pumpning (hastig-
heder ∼ mm/s) ved lav spænding p̊a nogle f̊a volt.

Dynamisk beskrivelse af elektrokinetik og elektrokemisk transport ved
spændinger p̊a bare f̊a volt er teoretisk udfordrende, og derfor benyttes i
litteraturen ofte forudsætninger s̊asom Debye–Hückel approksimationen eller
lineært respons for svage p̊atrykte felter.

Vi udvider den eksisterende lineære teori for AC elektroosmose til at
gælde i det “svagt ulineære” regime, idet vi tager højde for ulineær ka-
pacitans i Debye skærmningslaget, og undersøger ogs̊a effekten af faradaisk
strøm fra elektrokemiske elektrode reaktioner. Dermed kan vi forklare hvor-
for den frekvens hvor pumpehastigheden maksimeres i nogle tilfælde falder
n̊ar spændingen øges, men hverken den lineære eller svagt ulineære teori kan
forklare hvorfor pumperetningen vender, s̊aledes som det ses eksperimentelt.

Derfor studerer vi ogs̊a det “stærkt ulineære” regime hvor de klassiske
kredsløbsmodeller bryder sammen, idet vi udvider tidligere teoretisk arbej-
de i dette regime ved at tage højde for dynamik i diffusionslaget der dannes
n̊ar en vekselspænding med frekvens omkring den inverse RC tid p̊atrykkes,
og ved at medregne væskestrømning og deraf følgende konvektion af ioner.
Desuden forsøger vi at inkludere eksisterende teori for elektriske dobbelt-
lag drevet ud af kvasiligevægt fra problemer med DC faradaisk strøm ved
“meget høj” spænding i vores dynamiske model.

Vi løser det koblede elektrohydrodynamiske problem numerisk for ekspe-
rimentelt relevante mikropumpe geometrier, og bestemmer bidrag til pumpe-
hastigheden fra de forskellige strømningsled i modellen: Vores resultater in-
dikerer at b̊ade elektrokonvektion og elektroosmose af den “anden slags”
kan bidrage med en betydelig del af den samlede væskestrøm allerede ved
spændinger p̊a nogle f̊a volt. Imidlertid er en mere grundig behandling
af dobbeltlag drevet dynamisk ud af kvasiligevægt nødvendig for at ret-
færdiggøre flere ad hoc antagelser i vores model.

Endelig undersøger vi forskellige måder at bryde symmetrien af et sæt
af elektroder, og bestemmer i hvert tilfælde den geometri der maksimerer
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pumpehastigheden for en given lav spænding ved en beskrivelse med den
simple lineære teori.
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To reduce the notational overload we denote dimensionless quantities by the
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Chapter 1

Introduction

1.1 Microfluidics and the lab-on-a-chip

Microfluidics refers to hydrodynamics and flow manipulation in systems and
devices with characteristic dimensions less than a millimeter. Of course,
such systems have long been studied in biology and colloid science, but
recently there has been an enormous increase of attention on the subject, for
several reasons: First, the fabrication techniques originally developed by the
microelectronics industry now allow accurate design of microfluidic circuits,
and is being used to construct microelectromechanical systems (MEMS)
and microfluidic devices, e.g., inkjet printer heads. Secondly, advances in
biology and biotechnology require manipulation of particles or living cells
and chemical detection of very small quantities. Also in more conventional
analytical chemistry, miniaturization has the advantage of low sample and
reagent consumption. The ultimate goal is development of “lab-on-a-chip”
systems with integrated pumps, reagent dispensers, mixers, separators, and
detection units, that would automatize the complete analysis from sample to
electrical read-out [1, 2]. Fabrication from polymer materials would lower
the production cost and allow for cheap and portable devices to perform
simple analyses. Equally important, miniaturization opens for new types of
analysis that would not be possible in a macrosystem, because mass diffusion
and heat transfer is very rapid on the microscale and the relative importance
of surface to volume forces increases as the system is scaled down [3, 4].

An important question when designing such microfluidic lab-on-a-chip
systems is how to get the sample into the chip and manipulate it around.
For a simple disposable device an elegant approach is the use of capillary
forces, but for more complex systems it is necessary to use active pumping
to control the flow. Depending on the application there can be very different
requirements for such a pump: In a laboratory test setup it is often sufficient
to use external syringe pumps, and multilayer soft lithography provides a
very flexible platform for microfluidic plumbing with valves and peristaltic
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pumps powered by external pressure transducers [5]. Devices for drug deliv-
ery need to be extremely fail-safe, and especially if designed for implantation
they should have very low power consumption. On the other hand, for dis-
posable devices the production costs and ease of integration should be much
more important. An integrated pump design that has been subject to inten-
sive research over the years is the (piezo-actuated) membrane pump, where
a membrane is displaced to create pulsating flow that is rectified by valves
at the inlet and outlet to the pumping chamber [6]. However, moving parts
makes the fabrication delicate, and many valve designs are prone to failure
if there are particles or bubbles in the liquid. Micropumps based on elec-
troosmosis have no moving parts which makes them easy to fabricate, but
their performance depends strongly on the pH and chemical composition
of the pumping liquid. The basic design where an electric field is simply
applied down a section of the microchannel can in principle pump the liquid
in a plug flow with velocities of a few mm/s in free flow conditions, but
only generate very small pressures so the thermodynamic (energy) efficiency
is low [7]. This can be overcome by introducing a micro- or nanoporous
medium, e.g., a sintered glass frit, into the channel which increases the hy-
draulic resistance dramatically but does not affect the electroosmotic flow;
in this way both a decent flow rate and pressure can be generated at a ther-
modynamic efficiency of a few percent [7, 8, 9, 10, 11, 12]. Another problem
is that in order to maintain an electric field down the pumping channel, a
DC Faradaic current has to be drawn between electrodes submerged in the
pumping liquid, which in many cases generates bubbles due to electrolysis.
This can be avoided by separating the electrodes from the pumping channel
by means of ion exchange membranes [11, 12] or a gel salt bridge [13] at the
expense of increased fabrication complexity.

An interesting alternative to standard DC electroosmotic pumps is the
use of AC electroosmosis with an asymmetric array of microelectrodes to
generate pumping [14]. This requires driving the system with an AC voltage
in the kHz range, but allows pumping velocities of the order of mm/s to
be attained with just a few volt applied between the electrodes [15]. The
fabrication is simple and only requires an array of interdigitated electrodes
to be deposited on the channel substrate, which can be achieved by a single
photolithography step followed by metal deposition and lift-off. Similar to
the basic DC electroosmotic pump design, the AC electroosmotic micropump
is very poor at generating pressure, but it allows local control of the flow
and could be used, e.g., to circulate sample between two chambers on a chip.
Moreover, the pumping velocity is inversely proportional to the size of the
electrodes, i.e., the efficiency increases with miniaturization.
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1.2 AC electrokinetics

In electrochemistry impedance spectroscopy, where a small harmonic modu-
lation is added to a (slowly varying) DC voltage and the current response of
the electrochemical cell is measured, is a standard and very powerful tool for
determining reaction rate constants and also for probing the surface prop-
erties at the electrode [16]. Usually one stirs the solution to ensure uniform
bulk reagent concentrations and simplify the experiment.

In colloid science the focus is most often on colloidal particles with a
certain intrinsic surface charge and zeta potential, and one studies, e.g., the
electrophoretic velocity of the particles in an applied DC field, or investigate
their influence on the dielectric response when an AC field is applied [17, 18].
An AC field also gives rise to electrokinetic flow around the particles but no
net particle motion (if the field is uniform and the particle is spherical). The
flow does, however, induce interaction between particles and influence their
tendency to agglomerate [19, 20]. Interestingly, Squires and Bazant predict
that a nonspherical egg-shaped metal colloid will align with the applied field
and “swim” due to induced-charge electroosmosis [21].

Ramos and co-workers first observed electroosmotic flow over pairs of
microelectrodes when driven with an AC voltage in the kHz range, around
the inverse RC time form the system [22, 23, 24]. Ajdari predicted that
the same mechanism would give rise to pumping on an asymmetric elec-
trode array [14], which was soon after demonstrated experimentally by
Brown et al. [25] and later by several other groups [15, 26, 27, 28, 29, 30,
31, 32]. While the general symmetry arguments of Ajdari predicts pumping
in some direction for any locally asymmetric geometry, Ramos et al. did a
detailed theoretical study with realistic boundary conditions for the partic-
ular planar geometry used by Brown et al., and obtained the same direction
of pumping as observed experimentally and similar streamline patterns [33].
They were also able to match quantitatively the experimental pumping ve-
locity and frequency of maximal pumping by assuming a compact Stern
layer on the electrodes with roughly the same capacitance as the diffuse
Debye layer. In some sense this good agreement is surprising because their
theory is based on the Debye–Hückel approximation and linearization which
is strictly valid only at low driving voltages V0 < kBT/e ≃ 25 mV, while
experiments are typically performed with at least a few volt.

Later, Studer et al. observed reversal of the pumping direction when
driving the system at around 50 kHz and above 5 Vrms, well above the fre-
quency for maximal pumping in the “forward” direction around 1 kHz [15].
Applying the same voltage at 1 kHz, bubble formation and electrode degra-
dation was observed because they used bare platinum electrodes that sup-
port electrochemical electrode reactions and Faradaic current. Gregersen
found reversal of the pumping direction at 2.5 kHz and below 1.2 Vrms,
changing to forward pumping above 1.2 Vrms [32]; this was found for a dilute
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KCl working electrolyte on bare platinum electrodes with the same device
geometry as used by Studer. Ramos and co-workers found reversal of the
pumping direction on a travelling wave device at 1 kHz and above 2 V [34],
and on an asymmetric electrode array at 10 kHz and above 5 Vrms [31]. They
used titanium coated gold electrodes that do not support Faradaic current
due to the formation of a thin natural titanium oxide layer. We note that
while electrode reactions leading to bubble formation is a major challenge
for DC electroosmosis, the same needs not be the case in AC because the
reactions could be run reversibly [35]. However, our guess is that many
biochemists would be uncomfortable with uncontrolled electrode reactions
taking place in same the channel where a delicate sample is to be pumped
through.

Most previous work on AC or induced-charge electroosmosis has been
based on the Debye–Hückel approximation with linearization of the electrical
problem [19, 23, 33, 36], which we denote “linear theory” even though the
induced time-average electroosmotic flow scales as the square of the driving
voltage. However, this theory is unable to account for the reversal of the
pumping direction observed experimentally. Therefore it has been a major
focus of our work to extend the existing theory to be able to describe these
phenomena, and also to be able to compare the theory more quantitatively
with experiments as a function of both driving voltage and frequency.

Bazant, Thornton, and Ajdari recently studied diffuse-charge dynamics
in a simple 1D model system analytically by means of matched asymptotic
expansions [37]. In particular they went beyond the linear theory to an-
alyze the “weakly nonlinear” regime, where the capacitance of the Debye
screening layer at the electrodes becomes nonlinear, but the bulk electrolyte
concentration remains uniform and constant at leading order, with pertur-
bations showing up only as higher order corrections. They also derived a
dimensionless criterion for the zeta potential at which the weakly nonlinear
asymptotics break down, and argued that for weakly nonlinear dynamics
to hold, the driving voltage V0 cannot greatly exceed the thermal voltage
kBT/ze. Further, they wrote the governing equations for the “strongly
nonlinear” regime, where the assumption of uniform bulk electrolyte con-
centration breaks down but bulk charge neutrality remains valid; however,
because that problem is not analytically tractable they did not attempt to
solve it. Chu extended this work to three dimensions by studying a spher-
ical metal particle, and investigated both the weakly nonlinear dynamical
response to a suddenly applied DC field and the steady-state solution to the
strongly nonlinear problem arising at larger applied DC field [38, 39].

We have taken this fruitful approach further by actually solving the
strongly nonlinear dynamical model numerically in 2D, and by account-
ing also for electroosmotic fluid motion and convection. We agree that for
weakly nonlinear dynamics to hold, the total zeta potential indeed cannot
greatly exceed the thermal voltage, but because the induced zeta potential
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is related to the driving voltage in a nonlinear way we also find that the
latter can often be an order of magnitude larger than the thermal voltage
at the point where the weakly nonlinear dynamics break down.

As the driving voltage is further increased, even the strongly nonlin-
ear asymptotics break down due to complete salt depletion in the diffusion
layers close to the electrodes. In steady-state problems of Faradaic con-
duction it is well known that beyond the “diffusion-limited” current, the
electrical double layer changes from quasiequilibrium to a nonequilibrium
structure with an extended space charge layer, as described first by Ru-
binstein and Shtilman [40]. Further, when tangential fields act upon this
space charge layer, nonlinear electrokinetic flow is induced. Dukhin and co-
workers introduced the term “electroosmosis of the second kind” to describe
this phenomenon, and studied it extensively in the context of nonlinear elec-
trophoresis of conductive particles made from ion exchanger material [41].
More recently, Rubinstein and Zaltzman theoretically predicted that second
kind electroosmosis renders linearly instable the diffusion layer at a planar
permselective (ion exchange) membrane and provides an efficient mixing
mechanism, which can account for overlimiting conductance [42, 43].

Because even our strongly nonlinear model does not seem to be able
to account for reversal of the pumping velocity, and because the driving
voltages used experimentally are often large enough to make the strongly
nonlinear model break down, we try to incorporate the basic features of the
nonequilibrium double layer and electroosmosis of the second kind into our
dynamical model. This is a challenging problem, and to be able to handle it
numerically we make some fairly crude approximations. Our results indicate
that electroosmosis of the second gives rise to net pumping in the same
(“forward”) direction as the usual electroosmosis of the “first kind”, while
bulk electroconvection contributes in the “reverse” direction.

1.3 Outline of the thesis

Chapter 2: Electrokinetic theory

We first give a brief overview of some of the classical electrokinetic
theory, before we proceed to construct a mathematical model based
on matched asymptotic expansions. The latter is a perturbation tech-
nique where one identifies the ratio of the Debye screening length to the
characteristic geometrical length scale as a small parameter. Indeed
the assumption of thin Debye layers underlies most classical analysis
in electrochemistry, so the perturbation technique is often just a sys-
tematic way of obtaining already known results, but it also provides
a firm starting point for going beyond the classical theory. In this we
follow the work of Bazant, Thornton, and Ajdari [37] and Chu [38] on
diffuse charge dynamics, but where they primarily focus on transient
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solutions for a suddenly applied DC voltage, we study AC driving and
steady-state periodic solutions.

Chapter 3: Linear and weakly nonlinear analysis

We study the pumping from an array of asymmetric pairs of micro-
electrodes, extending the existing linear theory for AC electroosmo-
sis by accounting for Faradaic current injection both in a linearized
scheme and using the full nonlinear Butler–Volmer reaction kinetics.
We also include the nonlinear surface capacitance of the Debye layer
as described by Gouy–Chapman–Stern theory. Most of this work was
published in our paper ‘AC electrokinetic micropumps: the effect of ge-

ometrical confinement, Faradaic current injection, and nonlinear sur-

face capacitance’ [44], see Appendix B, but here we also take into
account the effects of mass transfer on the Faradaic electrode reac-
tion.

Chapter 4: Strongly nonlinear analysis

In this chapter we first analyse the strongly nonlinear dynamics for
a simple 1D geometry with parallel-plate blocking electrodes, both
to gain a better understanding of the dynamical solutions, but also
to validate the asymptotic model by comparison to a full numerical
solution of the Poisson–Nernst–Planck equations. Next we study a
2D model of the planar AC electroosmotic pump and determine the
contributions to the net pumping from both electroosmotic flow of the
first and second kind, and from electroconvection due to concentration
gradients in the electroneutral diffusion layers and bulk electrolyte.

Chapter 5: Optimization

There are many ways of breaking the left-right symmetry of an elec-
trode array to induce net pumping. In this chapter we consider both
the “standard” pump with asymmetric pairs of planar microelectrodes,
a design with asymmetric coating of the individual electrodes, and a 3D
structured electrode design recently suggested by Bazant and Ben [45].
In all cases the performance increases with miniaturization, so we in-
vestigate the optimal electrode design for a fixed minimal linewidth or
feature size in the geometry. This work is related to our work done on
topology optimization earlier during the PhD studies, which has been
published in the paper ‘A high-level programming-language implemen-

tation of topology optimization applied to steady-state Navier–Stokes

flow’ [46]. We have chosen not to present those results in this thesis
but have included the paper in Appendix C.

Chapter 6: Conclusion and outlook

We present concluding remarks on our work on AC electrokinetic
pumping and give some directions for future research.
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Appendix A: FEMLAB code

While the standard linear model for induced-charge electroosmosis has
been studied numerically by several authors, not many attempts have
been made in the weakly nonlinear regime. Part of the reason may
be the increased complexity involved with solving a time evolution
problem with special variables defined on the boundary. However,
using commercial finite element software like Femlab [47] this is ac-
tually straightforward to implement, and to demonstrate this we have
included a code example in Appendix A. We also include the imple-
mentation of our strongly nonlinear model, and discuss how to deal
with the nonlocal coupling in time introduced by our semi-analytical
solution for the dynamics in the diffusion layer.

1.4 Publications during the PhD studies

Papers in peer reviewed journals

1. Electro-hydrodynamics of binary electrolytes driven by modulated

surface potentials,
N. A. Mortensen, L. H. Olesen, L. Belmon, and H. Bruus,
Phys. Rev. E 71, 056306 (2005).

2. A high-level programming-language implementation of topology

optimization applied to steady-state Navier–Stokes flow,
L. H. Olesen, F. Okkels, and H. Bruus,
Int. J. Num. Meth. Eng. 65, 975 (2006).

3. Transport coefficients for electrolytes in arbitrarily shaped nano

and micro-fluidic channels,
N. A. Mortensen, L. H. Olesen, and H. Bruus,
New J. Phys. 8, 37 (2006).

4. AC electrokinetic micropumps: the effect of geometrical confinement,

Faradaic current injection, and nonlinear surface capacitance,
L. H. Olesen, H. Bruus, and A. Ajdari,
Phys. Rev. E 73, 056313 (2006).
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Conference proceedings

1. Topology optimization of Navier–Stokes flow in microfluidics,
L. H. Olesen, F. Okkels, and H. Bruus,
ECCOMAS 2004, Jyväskylä, Finland, July 2004, proc. vol. 2, p. 224.

2. Applications of topology optimization in the design of micro- and

nanofluidic devices,
F. Okkels, L. H. Olesen, and H. Bruus,
Nanotech 2005, Anaheim, USA, May 2005, proc. vol. 1, p. 575–578.

3. Applications of topology optimization in microfluidics: fluid flows,

thermal transport, and chemical reactions,
F. Okkels, L. H. Olesen, and H. Bruus,
6th EPS Liquid Matter Conf., Utrecth, the Netherlands, July 2005.

4. AC electrokinetic micropumps: the effect of geometrical confinement,

Faradaic currents, and nonlinear surface capacitance,
L. H. Olesen, H. Bruus, and A. Ajdari
MicroTAS 2005, Boston, USA, October 2005, proc. vol. 1, p. 560–562.

5. Nonlinear studies of AC electrokinetic micropumps,
H. Bruus, L. H. Olesen, and A. Ajdari
APS MAR06 Meeting, Baltimore, USA, March 2006.

6. Mass and charge transport in micro and nano-fluidic channels,
N. A. Mortensen, L. H. Olesen, and H. Bruus,
2nd Int. Conf. Transport Phenomena in Micro and Nanodevices,
Barga, Italy, June 2006.

7. Universality in microfluidic phenomena inside microchannels with

arbitrarily shaped cross-sections,
H. Bruus, N. Mortensen, F. Okkels, and L. H. Olesen,
Euromech Fluid Mechanics Conf. 6, Stockholm, Sweden, June 2006.



Chapter 2

Electrokinetic theory

In this chapter we start by giving a brief overview of the classical theory of
electrochemical transport and electrode reaction processes. This is a widely
studied subject due to its importance both for industrial applications such
as batteries and fuel cells, electroplating, and desalination by electrodialy-
sis, and in natural processes such as corrosion and ion transport through
ion channels in biological cells. A common feature underlying most of the
classical analysis is the assumption that the system can be divided into an
electroneutral bulk region and charged boundary layers that are very thin
compared to the characteristic geometrical length scale in the system. This
simple picture can be formalized by perturbation theory, and in Sec. 2.2
we go through a systematic derivation of a mathematical model based on
matched asymptotic expansions.

2.1 Classical theory

A fundamental approximation in the classical theory of electrochemical
transport is the continuum approximation where the different chemical species
are represented by their concentration fields. For a concentrated solution
of 1 M the mean separation between ions is around 1 nm, whereas for a
dilute 1 mM solution the mean separation is around 10 nm. Therefore, in
most micro- and macroscopic applications the continuum approximation is
well justified, but in true nanofluidics it may not be. However, even in a
macroscopic electrochemical experiment, the system spontaneously devel-
ops microscopic structure in the form of screening layers at electrodes or
any other charged surfaces and interfaces in the electrolyte. The thickness
of the screening layer is given by the Debye length

λD =

√

ǫkBT
∑

i c
∗
i z

2

i e
2
, (2.1)
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where ǫ is the electrical permittivity of the solvent, kB is Boltzmanns con-
stant, T the absolute temperature, e the elementary charge, c∗i is the bulk
concentration (number density) of the ith ionic species, and zi the valence
number. For a typical system λD is of the order of 1–10 nm, that is, on
average there are no more than a few ions across it. This means that the
instantaneous “concentration profile” over a particular point on the surface
will be highly nonuniform and rapidly fluctuating, but upon proper averag-
ing in time or in the transverse direction to the screening layer one should
still be able to use continuum theory on the averaged fields.

2.1.1 Electrochemical transport

Within a continuum model the transport of the individual chemical species
is governed by conservation laws of the form

∂tci = −∇ ·Fi, (2.2)

where Fi is the flux of the ith species and we disregard any bulk chemical
reactions producing or consuming that species. In general the flux is a
function of the electrochemical potential µj of all the species present in
solution [53, 54]

Fi = −ci
(

∑

j

Lij∇µj

)

+ ciu, (2.3)

where Lij are generalized mobilities that account for interactions between
different species, and ciu represents transport by convection with the fluid
velocity u.

Nernst–Planck equation

For an ideal dilute system the interaction between different species can be
neglected and the electrochemical potential can be decomposed into separate
entropic and electrical terms as

µi = kBT log ci + zie φ (2.4)

where is φ the mean-field electrostatic potential. Then Eq. (2.3) for the flux
reduces to the Nernst–Planck equation

Fi = −Di

(

∇ci +
zie

kBT
ci∇φ

)

+ ciu, (2.5)

where we used the Einstein relation Di = kBTLii to express the mobility in
terms of the diffusivity Di. The electrostatic potential φ is determined by
the charge distribution ρ through the Poisson equation

−ǫ∇2φ = ρ = e
∑

i

zici, (2.6)

assuming constant permittivity ǫ of the solvent.
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Figure 2.1: Schematic picture of the diffuse screening layer in the electrolyte next to

a negatively biased metal electrode. Cations are attracted to the electrode and anions

are repelled so the interface appears charge neutral when seen from the bulk. The outer

Helmholtz plane (OHP) defines the closest distance that the solvated cations can move

towards the electrode. Also shown is φ(y), the mean-field potential variation from the

electrode to the charge neutral bulk.

2.1.2 Electrical double layer

The common continuum model view of the screening layer is based on di-
vision into a compact and a diffuse part. This is shown schematically in
Fig. 2.1 for the screening layer next to a negatively biased metal electrode.
Cations in the electrolyte move towards the electrode to screen the negative
charge, and anions are repelled. The finite size of the ions can be taken into
account by defining a smallest distance that the solvated cations can move
towards the electrode, and this point of closest approach is called the outer
Helmholtz plane (OHP). The region between the OHP and the electrode is
called the “compact layer”, and in Fig. 2.1 it is roughly two solvent molecules
thick because the approach of the cations is obstructed both by their own
solvation shell and by a monolayer of solvent molecules held at the surface
by van der Waals forces. The ions in the screening layer outside the OHP are
not static but undergo thermal motion, and this region is therefore called
the “diffuse layer”. Some ions in the electrolyte may interact more strongly
with the electrode material and adsorb directly on the electrode, and the
locus of their electrical centers is denoted the inner Helmholtz plane (IHP).
Together the compact and diffuse layers are called the “double layer”, and
the model is known as the Gouy–Chapman–Stern model [16].

In order to avoid confusion with the diffusion layer of width ℓi(ω) ∼
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√

Di/ω, to and from which the ions have time to diffuse during one cycle of
the driving voltage at angular frequency ω, we prefer to denote the diffuse
part of the double layer as the “Debye layer”. We also tend to denote the
compact part as the “Stern layer”, and mention that this can also be used
to model an oxide layer or insulating coating on the electrode.

Gouy–Chapman–Stern model

In thermal equilibrium the electrochemical potential is constant thoughout
the system and the ions in the Debye layer are Boltzmann distributed, i.e.,

ci = c∗i exp

[

− zie(φ− φ∗)

kBT

]

, (2.7)

where c∗i is the reference concentration attained in the charge neutral bulk
electrolyte where φ = φ∗. Substituting into Eq. (2.6) we get the Poisson–
Boltzmann equation

−∇
2ψ =

e

ǫ

∑

i

c∗i zi exp

(

− zieψ

kBT

)

, (2.8)

where we introduced ψ = φ−φ∗, and for a symmetric binary z:z electrolyte
this reduces to the more familiar form

∇
2ψ =

1

λ2

D

kBT

ze
sinh

(

zeψ

kBT

)

. (2.9)

The Poisson–Boltzmann equation constitutes a single equation to solve for
the equilibrium electrostatic potential; the ion distributions then follow di-
rectly from Eq. (2.7). For one-dimensional systems it has an analytical
solution, namely the Gouy–Chapman solution1

ψ(y) =
4kBT

ze
tanh−1

[

tanh

(

zeζ

4kBT

)

e−y/λD

]

, (2.11)

where y is the distance perpendicular to the surface and ζ is the potential
attained at the outer Helmholtz plane where y = 0, cf. Fig. 2.1. The total
amount of charge accumulated in the Debye layer per unit area is

q =

∫ ∞

0

ρdy = ǫ∂yψ
∣

∣

y=0
(2.12)

= −sgn(ζ)

√

2ǫkBT
∑

i c
∗
i (e

−zieζ/kBT − 1) (2.13)

= − ǫ

λD

2kBT

ze
sinh

(

zeζ

2kBT

)

, (2.14)

1Gouy also showed that Eq. (2.8) can be integrated for an asymmetric binary electrolyte

with z+ = −2z− = 2z, where

ψ(y) =
kBT

ze
log

[

1 − 3

1 + cosh
(

y/λD + 2 tanh−1
√

(1 + 2ezeζ/kBT )/3
)

]

. (2.10)
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where Eq. (2.13) reduces to Eq. (2.14) for a symmetric z:z electrolyte only.
Neglecting specifically adsorbed ions, the region −λS ≤ y ≤ 0 behind the
outer Helmholtz plane is free of charge and the potential varies linearly, i.e.,
the Stern layer ideally behaves as a capacitor of capacitance CS = ǫS/λS .
The overall potential drop across the double layer is then

Vext − φ∗ = ζ − q

CS
, (2.15)

and the differential capacitance per unit area becomes

Cdl = − dq

d(Vext − φ∗)
=

[

1

CS
+

λD
ǫ cosh(zeζ/2kBT )

]−1

. (2.16)

In the Debye–Hückel limit ζ ≪ kBT/e where the potential variations are
small compared to the thermal voltage, the double layer capacitance reduces
to

Cdl =

[

1

CS
+
λD
ǫ

]−1

=
ǫ

λD(1 + δ)
, (2.17)

where we introduced the parameter δ = ǫλS/ǫSλD for the capacitance ratio
between the Debye and Stern layers. At larger potential the Debye layer
capacitance becomes very large and the overall double layer capacitance is
dominated by the Stern layer.

The relevant parameter range for δ is large: If we compare the Debye
layer capacitance for a dilute 1 mM aqueous electrolyte with λD = 10 nm
and ǫ = 80ǫ0 to the molecular Stern layer defined by the distance closest
approach λS ∼ 1 Å of an ion to a bare metal electrode then we get a very
small capacitance ratio δ ∼ 0.01, whereas for a titanium electrode with
a natural TiO2 oxide of thickness λS ∼ 4 nm and ǫS = 110ǫ0 we find
δ ∼ 0.3, and for even thin polymer coatings we easily obtain δ ≫ 1. In real
electrochemical systems the Stern layer on bare metal electrodes often does
not behave exactly as an ideal capacitor but shows some voltage dependence
in CS , and the specific adsorbtion and desorption of ions give rise to an
additional component in Eq. (2.16). However, because we are not concerned
with any particular material system but wish to study electrokinetics in
more general, we stick to the simplest form of the Gouy–Chapman–Stern
model and always assume a constant Stern layer capacitance and neglect
specific adsorption.

Modified Poisson–Boltzmann equation

The Gouy–Chapman–Stern model is widely used because it is simple and
yet captures the generic features observed in typical electrochemical experi-
ments. The exponential increase in ion concentration with potential implied
in Eq. (2.7) effectively limits the range of zeta potentials that makes sense
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Figure 2.2: Double logarithmic plot of the relative increase in anion concentration at

the outer Helmholtz plane as a function of the overall potential drop Vext − φ∗ across the

double layer for different capacitance ratios δ in the Gouy–Chapman–Stern model.

physically: Substituting ζ = 500 mV for a bulk dilute 1 mM KCl solu-
tion, the concentration predicted at the outer Helmholtz plane exceeds 1032

ions per m3 or 100 ions per Å3 which is ridiculously large. However, the
“purpose” of the Stern layer is exactly to supress this unphysical behaviour.
At large voltage when the double layer capacitance is dominated by the
Stern layer, the accumulated charge depends linearly on the applied voltage
q ≃ −CS(Vext − φ∗), whereas the zeta potential grows only logarithmically
with q, cf. Eq. (2.13). Therefore the increase in ion concentrations in the
Debye layer also becomes less dramatic, as shown in Fig. 2.2 where the rel-
ative increase in the anion concentration at the outer Helmholtz plane is
plotted as a function Vext −φ∗. The figure shows that the ion concentration
grows as (Vext − φ∗)2/δ2 at large voltage, but also that this large voltage
regime is not reached until Vext − φ∗ exceeds ≈ 1 V. If we consider again
a dilute 1 mM KCl solution then the bulk concentration is 6 × 1023 ions
per m3. The ions have radii of a few ångstrøm, with 1.33 (2.32) Å for a
(hydrated) K+ ion and 2.32 Å for Cl−, so the steric limit of a close packed
phase of ions corresponds to around 1028 ions per m3. The voltage at which
this limit is reached depends on the Stern layer capacitance: Assuming a
low capacitance ratio of δ = 0.1 it occurs already at 500 mV while for δ = 10
the limit is reached around 10 V.

One problem with this reasoning, where almost the entire potential drop
across the double layer is placed on the Stern layer, is that most insulators
suffer dielectric breakdown around 1–100 MV/m, which is far exceeded if we
put 1 V across a 1 Å molecular Stern layer, or even a 5 nm titanium oxide
layer.
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Further, the neglect of correlations between different ions inherent in the
use of Eq. (2.4) for the electrochemical potential obviously becomes ques-
tionable long before the limit of steric exclusion sets in, but the violation of
the steric limit is perhaps the most offending feature in the Gouy–Chapman–
Stern model. Borukhov et al. have suggested a simple modification of the
Poisson–Boltzmann equation to account for the finite size of ions [55]. They
include the entropy of the solvent molecules in the expression for the free
energy F , and obtain for a symmetric binary z:z electrolyte with ions of
characteristic size a the following expression for the electrochemical poten-
tial

µ± =
δF

δc±
= kBT log(c±a

3) + z±eφ− kBT log(1 − c+a
3 − c−a

3), (2.18)

where a3 is the volume occupied by a single ion. The ion concentrations
c± cannot then exceed the steric limit 1/a3, essentially because the entropy
associated with excluding the last solvent molecule from a condensed phase
of ions is infinite. Their modified Poisson–Boltzmann equation becomes

∇
2ψ =

1

λ2

D

kBT

ze

sinh
( zeψ
kBT

)

1 − 2c∗a3 + 2c∗a3 cosh
( zeψ
kBT

) . (2.19)

Kilic, Bazant, and Ajdari have recently extended this approach to the non-
equilibrium case by deriving a modified Nernst–Planck equation based on
Eq. (2.18) [56, 57]. This is very a interesting direction which may allow to
explain, e.g., the vanishing of the AC electroosmotic pumping at electrolyte
concentrations above 10 mM [15]. However, we also like stress that the
ability of the double layer to absorb ions and act as a capacitor persist long
after the steric limit is reached. In this regime the Gouy–Chapman–Stern
model systematically underestimates the zeta potential, but may still give
a good approximation to the overall capacitance provided the capacitance
ratio δ is not too low and the nominal bulk concentration is not too high.

2.1.3 Electrode reactions

Electrode reactions are chemical redox reactions that involve transfer of one
or more electrons from an electrode to the reactants. Familiar examples are

Zn2+

(aq) + 2e− ⇋ Zn(s) E◦− = −0.762 V, (2.20)

2H+

(aq) + 2e− ⇋ H2(g) E◦− = 0.000 V, (2.21)

O2(aq) + 2H2O(ℓ) + 4e− ⇋ 4OH−
(aq) E◦− = 0.444 V, (2.22)

where E◦− is the standard reduction potential. The reaction in Eq. (2.20)
involves transfer of two electrons from the electrode to the Zn2+ ion. Such
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Figure 2.3: Free energy landscape along reaction path from state I (reactant) to state II

(product). The activated complex (or transition state) ‡ is the configuration of maximal

free energy.

a tunneling process is very unlikely, and Eq. (2.20) must therefore repre-
sent a multistep reaction where the Zn2+ is first reduced to Zn+ and then
Zn. Likewise, the reaction in Eq. (2.21) must also be a multistep reaction
consisting of one step where H+ is reduced to form a single hydrogen atom
adsorbed on the electrode, followed by a second step where two hydrogen
atoms join and desorb from the electrode as H2. Often one step in such a
multistep reaction is much slower than the rest. To determine the reaction
kinetics it is then sufficient to focus on this rate-limiting step whereas the
other steps are considered as reaction equilibria. In the present study we
therefore assume a generic one-step, single electron process of the form

O + e− ⇋ R, (2.23)

where z
O

= z
R

+ 1 to ensure charge conservation.

Nernst equation

In thermal equilibrium the change in electrochemical Gibbs free energy as-
sociated with the reaction is zero

∆G =
[

G◦−
R

+ kBT log c∗
R

+ z
R
eφ∗

]

−
[

G◦−
O

+ kBT log c∗
O

+ z
O
eφ∗ − eVext

]

= 0, (2.24)

from which we obtain the Nernst equation for the equilibrium potential drop
from the electrode to the electrolyte

(Vext − φ∗)eq = E◦− +
kBT

e
log

c∗
O

c∗
R

. (2.25)

Here ∆G◦− = G◦−
R

− G◦−
O

= −eE◦− is the increase in standard free energy
associated with the reaction.
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Butler–Volmer kinetics

Out of equilibrium the forward and backward reaction rates no longer bal-
ance and a net reaction takes place. According to transition state theory
the rate limiting factor is associated with getting across a bump in the free
energy landscape, cf. Fig. 2.3. The state ‡ of maximal free energy along
the reaction path in configuration space is denoted the transition state or
activated complex. The forward reaction rate νf is proportional to the prob-
ability of getting from the reactant state into the transition state, and this
probability drops exponentially with the difference in electrochemical free
energy between the two states, i.e.,

νf ∝ exp

(

−
∆G‡

f

kBT

)

, (2.26)

and similarly for the backward reaction νb

νb ∝ exp

(

− ∆G‡
b

kBT

)

. (2.27)

Further it is assumed that the electrochemical free energy at the transition
state can be decomposed into a chemical term that is essentially independent
of the applied potential, and an electrical term (G‡)e that is a weighted
average of the electrostatic energy of the reactant and product, i.e.,

(G‡)e = (1 − α)(z
O
eφs − eVext) + αz

R
eφs. (2.28)

Here the transfer coefficient α is simply a measure of how close the transition
state is to either the reactant or product state in terms of electrostatic
energy, and φs is the potential in the electrolyte at the electrode surface (or
outer Helmholtz plane). Substituting into Eqs. (2.26) and (2.27) the net
reaction rate becomes

νnet = νf − νb = k◦−f csOe−αe(Vext−φs
)/kBT − k◦−b csRe(1−α)e(Vext−φs

)/kBT , (2.29)

where k◦−f and k◦−b are the forward and backward standard rate constants,
and csO and csR are the concentrations of the oxidized and reduced species at
the surface. This result and its implications is known as the Butler–Volmer
formulation of reaction kinetics [16]. The Faradaic current injected from the
electrode into the electrolyte by the reaction is

jext = −eνnet. (2.30)

If we assume quasiequilibrium in the double layer we can relate the con-
centrations at the electrode surface to those immediately outside the Debye
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layer by a Boltzmann factor, csi = ci e
−zieζ/kBT . Then Eqs. (2.29) and (2.30)

can be re-expressed as the current-overpotential equation

jext = j0e
−(zO−α)eζ/kBT

(

c
R

c∗
R

e(1−α)eϑ/kBT − c
O

c∗
O

e−αeϑ/kBT

)

, (2.31)

where j0 = ek◦−(c∗
R
)α(c∗

O
)1−α is the exchange current, k◦− is the standard

rate constant, c
O

and c
R

are the concentrations immediately outside the
Debye layer, c∗

O
and c∗

R
are the corresponding bulk values at equilibrium,

and the overpotential ϑ = (Vext − φ)− (Vext − φ)eq is the difference between
the actual potential drop across the double layer and the thermal equilibrium
for the given redox process and bulk concentration. Linearizing for small
overpotentials we get

jext =
j0e

kBT
exp

[

− (z
O
− α)eζeq

kBT

]

ϑ =
1

Rct

ϑ, (2.32)

defining the charge transfer resistance Rct.

Reversibility of the electrode reactions

In our model calculations we always assume that the electrode reaction is
reversible. This seems natural because our primary focus is on a micropump
based on an array of electrode pairs that is driven with an AC voltage: We
model this as an infinite periodic system in space and look for steady-state
periodic solutions in time after all transients have died out. If the device
is pumping the electrolyte in a closed loop and for a long time then this
should be a good approximation. However, if the device is pumping from an
inlet with “fresh” electrolyte to an outlet that is sent to “waste”, then the
chemical composition in the electrolyte might change upon passage through
the pump, e.g., by a change in pH, by absorbtion of a small amount of
electrolytic gasses, or by gradually dissolving the electrode material and
flushing it out to waste. While it may or may not be feasible or desirable to
operate a pump in this way we do not account for it in our model.

2.1.4 Electroosmosis

The fluid motion in the electrolyte is governed by the Navier–Stokes equation

ρm[∂tu + (u · ∇)u] = −∇p+ η∇2u + ρE, (2.33)

where u is the fluid velocity, p is the pressure, ρm is the mass density, η
the dynamic viscosity, and ρE is the electrical body force acting the fluid.
In the bulk electrolyte the charge density ρ is small, but when a tangential
field acts on the charge in the Debye layers it can induce a flow which in
turn drags the bulk fluid along. This phenomenon is called electroosmosis.
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If we consider a uniformly charged flat surface at y = 0 in contact with
an electrolyte and with a tangential field Ex acting on the charge in the
screening layer then the tangenial component of the Navier–Stokes equation
reduces to a balance between electrical and viscous forces

0 = η∂2

yux − ǫ∂2

yψEx. (2.34)

Integrating twice and using that ux = 0 and ψ = ζ at the surface while
∂yux = 0 and ∂yψ = 0 in the bulk we obtain

ux = −ǫ(ζ − ψ)

η
Ex. (2.35)

The fluid velocity increases from no-slip at the surface to a constant value

ux = −ǫζ
η
Ex (2.36)

outside the Debye layer, which effectively acts as a slip velocity for the bulk
fluid motion. This classical result is known as the Helmholtz–Smoluchowski
formula [17, 53].

In deriving Eq. (2.36) we associated the zeta potential with the no-
slip plane, whereas in Sec. 2.1.2 we defined ζ as the potential at the outer
Helmholtz plane. Apriori there is no guarantee that the no-slip and the outer
Helmholtz planes should coincide, but experiments for some particularly
smooth, impermeable, and well-defined surfaces indicate that they do [17,
58]. On the other hand, for rough, porous, or inhomogeneous surfaces we
cannot expect this, e.g., if the charged surface has a thin adsorption layer
of macromolecules or polymer gel then the electroosmotic flow would be
greatly suppressed due to the large hydrodynamic resistance of the polymer
fragments [58].

2.2 Mathematical model

The solution of the full Poisson–Nernst–Planck equations is a challenging
task; even numerically the solution is made difficult because the intrinsic
length scale λD in the electrolyte is often several orders of magnitude smaller
than the relevant geometrical length scale ℓ0. Yet our physical intuition is
that the bulk electrolyte is simply charge neutral, and that only the screening
layers at the boundary display structure on the Debye length scale. This
simple picture can be formalized by perturbation theory, rewriting the full
Poisson–Nernst–Planck problem as a perturbation expansion in the small
parameter

ε =
λD
ℓ0
. (2.37)
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The Poisson equation turns out to be singularly perturbed in the sense that
the small parameter ε multiplies the highest (second) order derivative, and
mathematically this singular perturbation can be seen as the origin of the
disparate length scales appearing in the solution.

The method of matched asymptotic expansions is a generalization of
Prandtl’s viscous boundary layer theory, and it is a method for treating
singular perturbations [59]. Essentially the method works by computing
separate “outer” and “inner” approximations to the solution in the bulk
and boundary regions, respectively, where the inner approximation in the
boundary layer is obtained by scaling the spatial variables to remove the
singular perturbation before solving the problem. The two solutions are
matched by requiring that the outer limit of the inner approximation c̃±
should be asymptotically equal to the inner limit of the outer approximation
c̄±, i.e.,

lim
ỹ→∞

c̃±(x, ỹ, t) = lim
y→0

c̄±(x, y, t), (2.38)

where ỹ = y/ε is the rescaled spatial variable normal to the boundary in the
inner region. The standard procedure begins by seeking regular expansions
in the form of power series

c̄± = c̄(0)± + ε c̄(1)± + ε2c̄(2)± + . . . , (2.39)

substituting into the governing equations, and collecting like powers of ε.
The primary interest is on the leading order term c̄(0)± , but the higher order
corrections c̄(i)± can also contain important information. The expansions need
not always take the form Eq. (2.39) but can also contain fractional powers
of ε, and logarithmic terms like ε log ε sometimes “pop up” in the process
of deriving higher order terms [59]. The approximations to the solution are
“asymptotic” in the sense that they converge to the true solution in the limit
ε → 0 with all other parameters in the problem held fixed. However, for
any fixed ε > 0 there could be ε dependent restrictions on, e.g., the driving
voltage V0 for a truncation of the series to produce accurate results [37], and
strictly there is no guarantee that the series will converge at all, even if an
infinite number of terms are included [59].

We denote “weakly nonlinear” the regime where the leading order term
in the standard asymptotic expansion remains a good approximation to the
solution. However, experimentally there are several interesting and intrigu-
ing phenomena that show up at larger voltage, so we would like to extend
the validity of the model as far up in driving voltage as possible. It turns
out that for V0 ∼ kBT/ze

√
ε the weakly nonlinear solution breaks down,

but by reordering the terms in the expansion to reflect the dominant bal-
ance we can develop another “strongly nonlinear” model valid in the joint
limit ε→ 0 and V0 → ∞.

Because we focus on the periodic solution for an AC driving voltage
after all transients have died out, there are actually three different charac-
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The asymptotic model in a nutshell

Substrate

Electrode

Electrolyte

ε

√
ε

1

y

Electrode

Debye layer

Diffusion layer

Bulk electrolyte

Nested boundary layers Variables

c̄, φ̄, ū, p̄

č, φ̌, ǔ, p̌

c̃±, φ̃, ũ, p̃

y̌ = y/
√

ε

ỹ = y/ε

γ̌, ς̌, ǔs

w̃±, ζ̃, ũs

Figure 2.4: Schematic picture of the nested boundary layers in the matched asymptotic

expansion: The “outer” bulk region is connected via the “middle” diffusion layer to the

“inner” Debye layer. Variables associated with the different regions are denoted by bar,

check, and tilde accents, respectively. The bulk is electroneutral with a salt concentration

c̄ that is constant in time but not necessarily in space. The diffusion layer is also elec-

troneutral but has a dynamically varying salt concentration; the excess salt concentration

γ̌ = č − c̄ is determined by a simple 1D diffusion problem. The excess potential drop

ς̌ across the diffusion layer induces an effective slip velocity ǔs. The Debye layer is in

quasiequilibrium at the RC time scale with a structure that is completely determined by

the excess amount of each ion w̃± =
∫

∞

0
(c̃±− č) dỹ accumulated in the layer together with

the salt concentration č seen from the Debye layer. The potential drop ζ̃ across the Debye

layer determines the electroosmotic contribution to the slip velocity ũs.

teristic length scales in the system that we can identify, namely, the De-
bye screening length λD, the geometrical length scale ℓ0, and the diffusion
length ℓ(ω) =

√

D0/ω which is the typical distance that an ion can diffuse
during one period of the driving signal. Likewise we can identify three dif-
ferent characteristic time scales, namely, the charge relaxation (Debye) time
τD = λ2

D/D0, the bulk diffusion time τℓ = ℓ2
0
/D0, and the cell relaxation

(RC) time τ0 = λDℓ0/D0. AC electroosmosis occurs primarily for driving
frequencies around the inverse RC time ω ∼ 1/τ0. Here the diffusion length
becomes ℓ(ω = 1/τ0) =

√
λDℓ0, which means that in the asymptotic analysis

we need to account for three nested regions: The “inner” screening layer of
(dimensionless) width ε, the “middle” diffusion layer of width

√
ε, and the

“outer” bulk region at the unit characteristic length scale [38].

Applying the method of matched asymptotic expansions to study prob-
lems in electrochemistry and electrokinetics is not a new idea: Much work
has been done on steady-state solutions for electrochemical cells operated at
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DC conditions, e.g., [40, 60], and the low voltage regime, where the Debye–
Hückel approximation ζ ≪ kBT/ze can be employed or the driving voltage
or applied field is weak enough that the problem can be linearized, has been
studied extensively, e.g., [23, 58, 61, 62]. Dynamical solution have been
looked at recently by Bazant and co-workers [37, 38, 39]. However, they pri-
marily focus on transient solutions for a suddenly applied DC voltage. We
extend their work by taking into account dynamics in the diffusion layers
when the system is driven into the strongly nonlinear regime by a large AC
voltage around the inverse RC time. Also we include electroosmotic fluid
motion into our model and account for bulk ion transport by convection.

Below we first cast the problem into dimensionless form and identify the
relevant dimensionless groups. Then we proceed determine the leading order
solution in the bulk, diffusion layer, and Debye layer, respectively, and state
the surface conservation laws governing the dynamics of the solution in the
boundary layers. The structure is sketched in Fig. 2.4; we focus exclusively
on the leading order solution and therefore drop the superscript (0) to sim-
plify the notation. In the derivation we retain all terms that are important
in the strongly nonlinear regime, which makes it easy in subsequent sections
to extract the linear (low voltage), weakly nonlinear, and strongly nonlinear
dynamical models. Finally we discuss the conditions for validity or break-
down of both the weakly and strongly nonlinear models, and propose an ad

hoc modification to the strongly nonlinear model when the double layer is
driven out of quasiequilibrium at “very large” voltage.

2.2.1 Dimensionless form

For simplicity we assume a symmetric binary electrolyte with z+ = −z− = z,
but we allow for asymmetry in the diffusivity D+ 6= D−. The problem is
cast into dimensionless form, denoting dimensionless variables by an acute
accent,

ŕ =
r

ℓ0
, t́ =

t

τ0
, ć± =

c±
c0
, φ́ =

φ

φ0

, ú =
u

u0

, (2.40)

where ℓ0 is the characteristic geometrical length scale,

τ0 =
λDℓ0
D0

(2.41)

is the RC time for the system,

D0 =
D+ +D−

2
(2.42)

is the average diffusivity, c0 is the nominal bulk salt concentration,

φ0 =
kBT

ze
(2.43)
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is the thermal voltage, and

u0 =
ǫφ2

0

ηℓ0
(2.44)

is the characteristic electroosmotic velocity. In dimensionless form the gov-
erning equations become

1

ε
∂t́ć± = −∇́ · F́±, (2.45)

F́± = −D́±
(

∇́ć± ± ć±∇́φ́
)

+ Pe úć±, (2.46)

−ε2∇́2

φ́ = ρ́ =
1

2
(ć+ − ć−), (2.47)

1

Sc

[

1

ε
∂t́ú + Pe(ú · ∇́)ú

]

= −∇́ṕ+ ∇́
2

ú− 1

ε2
ρ́∇́φ́ (2.48)

0 = ∇́ · ú. (2.49)

Here ε = λD/ℓ0 is the dimensionless thickness of the Debye layer,

Pe =
u0ℓ0
D0

=
ǫφ2

0

ηD0

(2.50)

is the Péclet number defined as the ratio of the convective to the diffusive
ion flux, and

Sc =
η

ρmD0

=
ν

D0

(2.51)

is the Schmidt number defined as the ratio of momentum diffusion to ionic
diffusion in the electrolyte. The factors of 1/ε in front of the time deriva-
tives in Eqs. (2.45) and (2.48) arise because we have chosen to focus on the
dynamics at the RC time t́ and not the bulk diffusion time t̄ = εt́. We also
introduced dimensionless diffusion constants

D́+ =
D+

D0

=
2Dr

1 +Dr
and D́− =

D−
D0

=
2

1 +Dr
, (2.52)

where Dr = D+/D− is the ratio of the cation to the anion diffusivity. By
construction they add up to D́+ + D́− = 2, whereas (half) their difference
becomes

∆D́ =
1

2
(D́+ − D́−) =

Dr − 1

Dr + 1
, (2.53)

and is always in the range −1 < ∆D́ < 1. It is convenient to operate also
with the average ion concentration

ć = 1

2
(ć+ + ć−), (2.54)

which we often denote as the “salt” concentration. The characteristic dif-
fusion constant for this quantity turns out to be the harmonic mean of the
individual diffusivities

D́a = D́+D́− =
4Dr

(1 +Dr)2
. (2.55)
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Symbol Expression Value Unit Scaling

ν 1 × 10−6 m2 s−1

D0 2 × 10−9 m2 s−1

φ0 kBT/ze 25 mV

c0 6 × 1023 m−3

ℓ0 10 µm

λD
√

ǫkBT/2c0z2e2 10 nm ∝ 1/
√
c0

τ0 λDℓ0/D0 50 µs ∝ ℓ0/
√
c0

u0 ǫφ2

0
/ηℓ0 50 µm s−1 ∝ 1/ℓ0

ε λD/ℓ0 0.001 ∝ 1/ℓ0
√
c0

δ ǫλS/ǫSλD 1 ∝ √
c0

Pe ǫφ2

0
/ηD0 0.25

Sc ν/D0 5 × 102

Re ǫφ2

0
/ην 5 × 10−4 ≡ Pe/Sc

Table 2.1: Typical numbers with and without dimensions, corresponding to a dilute

1 mM KCl solution at room temperature in a device with 10 µm characteristic length.

This is denoted the ambipolar diffusion constant and it is always in the range
0 < D́a ≤ 1.

Table 2.1 shows typical values for the different numbers with or without
dimension in the problem, corresponding to a dilute 1 mM KCl solution at
room temperature in a device with characteristic geometrical length scale
ℓ0 = 10 µm. Notice that the Reynolds number Re = Pe/Sc = u0ℓ0/ν is
small, and also independent of ℓ0 because the characteristic velocity scales
as 1/ℓ0. The nonlinear convection term in the Navier–Stokes equation can
be neglected if |Re ú| ≪ 1 which is usually the case, even at large driving
voltage; in the numerical example above this corresponds to |u| ≪ 0.1 m/s.
The relative diffusivity is typically in the range 0.1 < Dr < 10, but the
common working electrolyte KCl is actually very close to symmetric with
Dr ≈ 0.97.

For the remainder of this thesis we drop the acute accent on dimension-
less variables to reduce the notational overload; it should be obvious from
the context whether a given quantity is dimensionless or not.

2.2.2 Electroneutral bulk transport

The standard procedure of matched asymptotic expansions begins by seeking
regular expansions (denoted here by bar accents) in the bulk “outer” region,
cf. Eq. (2.39) and similarly for φ̄, ū, and p̄. Substituting first into the Poisson
equation Eq. (2.47) and equating like powers in ε we find that the bulk
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charge density ρ̄ vanishes to both zeroth and first order in ε. For a binary
electrolyte this implies that the leading order ion concentrations are equal,
i.e.,

c̄+ = c̄− = c̄. (2.56)

From the Nernst–Planck equation Eq. (2.45) we find at leading order that

∂tc̄ = 0, (2.57)

i.e., the leading order bulk concentration c̄ = c̄(r) is stationary in time,
with the dynamics showing up only as higher order corrections. Bulk charge
neutrality together with the Nernst–Planck equation also imply that the
leading order electric current density J̄ = 1

2
(F̄+ − F̄−) is divergence free

∇ · J̄ = 0, (2.58)

where
J̄ = −c̄∇φ̄− ∆D∇c̄. (2.59)

In the case of equal diffusivities where ∆D = 0 this reduces to an Ohmic
current with spatially varying conductivity c̄, but more generally the second
term related to the diffusion potential must also be taken into account. With
this, the leading order charge density (that is to second order in ε) can be
determined as

ρ̄ = −ε2∇2φ̄ = ε2
∇c̄ · ∇φ̄+ ∆D∇

2c̄

c̄
, (2.60)

using Eqs. (2.58) and (2.59) to eliminate ∇
2φ̄.

We focus on the periodic solution reached after all transients in the
system have died out. In order for a periodic first order correction to exist,
it is necessary that the leading order time average fluxes are divergence free,
i.e., that ∇ · 〈F̄±〉 = 0. Writing the mean ion flux as

F̄ = 1

2
(F̄+ + F̄−) = F̄a + ∆DJ̄, (2.61)

where
F̄a = 1

2
(D−F̄+ +D+F̄−) = −Da∇c̄+ Pe ū c̄, (2.62)

we then obtain2

−∇ · 〈F̄a〉 = ∇ ·
(

Da∇c̄− Pe 〈ū〉c̄
)

= 0. (2.63)

At leading order in the Navier–Stokes equation for the fluid motion we obtain

∂tū = 0, (2.64)

2It is an interesting feature of binary electrolytes that the evolution of the leading order

bulk concentration profile – at the bulk diffusion time scale t̄ = εt – is determined by a

simple convection-diffusion equation with no migration term, and with a diffusivity that

is simply the harmonic mean of the individual ion diffusivities, namely, the ambipolar

diffusion constant Da [54].
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i.e., the leading order fluid velocity ū = ū(r) is stationary and determined
by a time average force balance

0 = −∇p̄+ ∇
2ū + 〈∇2φ̄∇φ̄〉, (2.65)

with the pressure p̄ determined by the incompressibility constraint

∇ · ū = 0. (2.66)

We denote as “bulk electroconvection” that component of the overall fluid
motion that is induced by the bulk electrical body force f̄ =

〈

∇
2φ̄∇φ̄

〉

to distinguish it from, e.g., electroosmotic flow induced in the Debye layer.
Because momentum diffusion is typically much faster than ionic diffusion
corresponding to a large Schmidt number Sc ≫ 1, cf. Table 2.1, the first
order correction of O(εSc) may be not-so-small for the ε of interest to a
microsystem. It may therefore be more appropriate to state the leading
order problem as

1

εSc
∂tū = −∇p̄+ ∇

2ū + ∇
2φ̄∇φ̄, (2.67)

for εSc ∼ O(1). In any case the time average velocity entering Eq. (2.63)
remains the same.

2.2.3 Diffusion layer

The Debye layer at the electrodes periodically absorbs and expels an excess
amount of ions. However, because the bulk transport of neutral salt is
effectively a diffusion process with diffusion constant Da and we consider
driving frequencies around the inverse RC time, the disturbances do not have
time to propagate into the bulk region, and the leading order dynamics only
occur in a diffusion layer of width O(

√
ε) around the electrode. Assuming

the electrode is smooth on the diffusion length scale we model it locally as
a flat surface and define x as the tangential and y as the normal direction.
Further, we introduce a scaled spatial variable y̌ = y/

√
ε and seek regular

asymptotic expansions (denoted by check accents) in the “middle” diffusion
layer.

Substituting into the Poisson equation (2.47) we find immediately that
the charge density vanishes to zeroth order in ε, so that again the leading
order ion concentrations are equal

č+ = č− = č. (2.68)

To determine the dynamical solution we introduce the excess concentration
γ̌ = č − c̄ in the diffusion layer relative to the bulk, and form weighted



2.2 Mathematical model 27

averages of the ionic fluxes similar to Eq. (2.62) to get

∂tγ̌ = −∇ · (F̌a − F̄a)

= Da∂
2

y̌ γ̌ + εDa∂
2

xγ̌ − εPe
[

ǔx∂xč+
1√
ε
ǔy∂y̌ č− ūx∂xc̄− ūy∂y c̄

]

= Da∂
2

y̌ γ̌ + O(ε). (2.69)

At leading order the excess concentration in the diffusion layer is therefore
determined by a simple 1D diffusion problem for y̌ ∈ [0,∞[. We argue
below that the normal velocity component uy vanishes at leading order,
which means that convection is indeed negligible provided |Pe ux∂xc| ≪ ε−1.
Matching to the bulk solution requires that γ̌ = 0 at y̌ = ∞ whereas the
boundary condition at y̌ = 0 is determined by the excess flux fed into the
diffusion layer from the Debye layer

− 1√
ε
Da∂y̌ γ̌ =

[

F̌y,a − F̄y,a
]

y̌=0
≡ f̌a. (2.70)

The solution can be expressed as a Fourier series

γ̌(y̌, t) =

√

ε

ωDa

∞
∑

n=1

f̂a,n√
in

einωt−
√
inω/Day̌ + c.c. (2.71)

where f̂a,n is the nth Fourier component of f̌a(t)

f̂a,n =

∫ T

0

f̌a(t) e
−inωt dt. (2.72)

Equivalently, the solution can be written as a convolution integral

γ̌ =

√

ε

ωDa

1

T

∫ T

0

G(y̌, t− t′)f̌a(t
′) dt′ (2.73)

where G the periodic 1D diffusion kernel (Green’s function)

G(y̌, t− t′) =
∞
∑

n=1

1√
in
einω(t−t′)−

√
inω/Day̌ + c.c. (2.74)

In the weakly nonlinear regime where the excess flux f̌a is O(1) the excess
concentration γ̌ only exist as an O(

√
ε) small perturbation to the bulk con-

centration; the strongly nonlinear regime at driving voltages V0 ∼ 1/
√
ε is

then essentially defined as the point where the perturbation reaches O(1).
Since the diffusion layer is charge neutral, the current must be constant

across it at leading order, i.e.,

J̌y = − 1√
ε

(

č∂y̌φ̌+ ∆D∂y̌ č
)

= J̄y = −
(

c̄∂yφ̄+ ∆D∂y c̄
)

. (2.75)
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Introducing the excess potential ψ̌ = φ̌− φ̄ and rearranging a bit we obtain

∂y̌ψ = −
√
ε J̄y

(

1

č
− 1

c̄

)

− ∆D∂y̌ log
(

č/c̄
)

, (2.76)

where we used ∂y̌φ̄ =
√
ε∂yφ̄ and similarly for c̄. Integrating once we get

ψ̌(y̌) =
√
ε J̄y

∫ ∞

y̌

(

1

č(y̌′)
− 1

c̄

)

dy̌′ − ∆D log
[

č(y̌)/c̄
]

. (2.77)

The interpretation is straightforward: The last term is the diffusion po-
tential due to the difference in concentration across the layer, whereas the
first term is just the excess potential drop required to drive the bulk cur-
rent through the diffusion layer when the local resistivity 1/č differs from
the bulk value 1/c̄. In the weakly nonlinear regime where č is only a small
perturbation to the bulk concentration c̄, the magnitude of the diffusion
potential −∆D log(č/c̄) is only O(

√
ε), whereas the excess Ohmic poten-

tial drop is O(ε). In the strongly nonlinear regime both terms reach O(1)
because log(č/c̄) ∼ O(1) and J̄y ∼ 1/

√
ε. 3

Concerning the fluid motion induced in the diffusion layer, the incom-
pressibility constraint immediately yields ǔy = 0. In the normal direcion
the Navier–Stokes equation reduces to a force balance between the excess
electrical body force and the pressure at leading order

0 = −∂y̌p̌+
1

ε

(

∂2

y̌ ψ̌
)

∂y̌ψ̌ = ∂y̌

[

− p̌+
1

2ε

(

∂y̌ψ̌
)2

]

, (2.79)

from which

p̌ =
1

2ε

(

∂y̌ψ̌
)

2
. (2.80)

In the tangential direction we obtain a balance between the viscous and
electrical forces and the tangential pressure gradient

0 = −ε∂xp̌+ ∂2

y̌ ǔx + ∂2

y̌ ψ̌∂xφ̌. (2.81)

Neglecting terms proportional to ∂xψ̌ because these are much smaller than
∂xφ̄ we arrive at a Helmholtz–Smoluchowski type tangential velocity com-
ponent

ǔx = (ς̌ − ψ̌)∂xφ̄, (2.82)

where ς̌ = ψ̌(0) is the total excess potential drop across the diffusion layer.

3To make a rough estimate of the integral factor we can approximate č by a piecewise

linear profile č ≈ čo + (c̄− čo)
√

ω/Da y̌ for y̌ ≤
√

Da/ω and č ≈ c̄ for y̌ ≥
√

Da/ω to get

∫

∞

0

(

1

č
− 1

c̄

)

dy̌ ≈ −
√

Da

ω

[

log(čo/c̄)

c̄− čo
+

1

c̄

]

∼ O(1). (2.78)



2.2 Mathematical model 29

2.2.4 Quasiequilibrium double layer

The singular perturbation in the Poisson equation gives rise to a boundary
layer of width ε where the charge density is nonzero to zeroth order in
ε. Introducing a scaled spatial variable ỹ = y/ε to remove the singular
perturbation, we can seek regular asymptotic expansions (denoted by tilde
accents) in the Debye “inner” layer. Substituting into the Nernst–Planck
equations Eqs. (2.45) and (2.46) and using ∂ỹ = ε∂y we find at leading order

0 = ∂ỹ
(

∂ỹ c̃± ± c̃± ∂ỹφ̃
)

, (2.83)

that is, the Debye layer is in quasiequilibrium and the ions are Boltzmann
distributed

c̃± = če∓ψ̃, (2.84)

where ψ̃ = φ̃ − φ̌ is the excess potential in the Debye layer relative to the
bulk, and č is the limiting value of the concentration in the diffusion layer
seen from the Debye layer at y̌ = 0. Likewise for the charge density and
average ion concentration in the Debye layer we have

ρ̃ = −č sinh(ψ̃) and c̃ = č cosh(ψ̃). (2.85)

The quasiequilibrium arises because the Debye layer reaches local equilib-
rium on the Debye time scale t̃ = t/ε which is much faster than the RC
time of the system. Strictly, Eq. (2.83) does not imply that the leading
order fluxes

F̃y,± = −1

ε
D±

(

∂ỹ c̃± ± c̃± ∂ỹφ̃
)

(2.86)

vanish but only that they are constant; it is by matching with bulk fluxes
≪ O(1/ε) that we arrive at the Boltzmann profiles. Substituting into the
Poisson equation, the leading order problem is the dimensionless Poisson–
Boltzmann equation

∂2

ỹ ψ̃ = č sinh(ψ̃), (2.87)

which has the well-known Gouy–Chapman solution

ψ̃ = 4 tanh−1

[

tanh
(

ζ̃/4
)

e−
√
č ỹ

]

. (2.88)

The integration constant ζ̃ is simply the leading order zeta potential, and
1/
√
č is the local effective Debye length.

As in the diffusion layer, the incompressibility constraint immediately
yields ũy = 0 at leading order, and the balance between the electrical body
force and the pressure in the normal direction that gives rise to an (excess)
osmotic pressure of

p̃ =
1

2ε2
(

∂ỹψ̃
)2
. (2.89)



30 Electrokinetic theory

Substituting into the Navier–Stokes equation in the tangential direction we
obtain at leading order

0 = −ε2∂xp̃+ ∂2

ỹ ũx − ρ̃ ∂xφ̃. (2.90)

Writing ∂xφ̃ = ∂xφ̌+∂xψ̃ and using again ρ̃ = −∂2

ỹ ψ̃ we arrive at the general

expression for electroosmotic flow of the first kind 4

ũx = (ζ̃ − ψ̃)∂xφ̌+ 4 log

[

cosh(ψ̃/4)

cosh(ζ̃/4)

]

∂x log č. (2.91)

The first term is the familiar Helmholtz–Smoluchowski velocity due to the
action of the tangential field from the diffusion layer, and the second term is
the diffusioosmotic flow due to tangential gradients in the osmotic pressure
in the Debye layer.

2.2.5 Surface conservation laws

The redistribution of ions across the Debye layer in the normal direction is
instantaneous on the (RC) time scale that we consider here, but the total
amount of ions accumulated locally can change only by flux in or out of
the layer or by tangenial fluxes within the layer. Following Bazant and
Chu [37, 39] we quantify this by defining εw̃±(x, t) as the excess amount of
each ionic species accumulated locally in the Debye layer, such that

w̃± =
1

ε

∫

Debye layer

(

c̃± − č±
)

dy =

∫ ∞

0

(c̃± − č±) dỹ. (2.92)

Likewise we define the surface charge and average excess concentration by

q̃ =

∫ ∞

0

(ρ̃− ρ̌) dỹ and w̃ =

∫ ∞

0

(c̃− č) dỹ, (2.93)

respectively, where by construction w̃± = w̃ ± q̃. At leading order the
integrals can be evaluated using Eqs. (2.84) and (2.88) to get

w̃± = 2
√
č
(

e∓ζ̃/2 − 1
)

, (2.94)

from which also

q̃ = −2
√
č sinh(ζ̃/2) and w̃ = 4

√
č sinh2(ζ̃/4). (2.95)

4The notion “electroosmosis of the first kind” was introduced by Dukhin and co-workers

to distinguish it from their “electroosmosis of the second kind” in double layers driven out

of quasiequilibrium [41, 42].
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The time evolution of w̃± is determined by

∂tw̃± =

∫ ∞

0

∂t
(

c̃± − č±
)

dỹ (2.96)

= −
∫ ∞

0

[

ε∂x
(

F̃x,± − F̌x,±
)

+ ∂ỹ
(

F̃y,± − F̌y,±
)

]

dỹ (2.97)

= −ε∂x
∫ ∞

0

(

F̃x,± − F̌x,±
)

dỹ −
[

F̃y,± − F̌y,±
]∞

ỹ=0

(2.98)

= −ε∂xΓ̃x,± − F̌y,± + F±,ext. (2.99)

Here we used the continuity equation Eq. (2.45) to eliminate the time deriva-
tive. Next we partially integrated the normal flux, used the flux matching
condition

lim
ỹ→∞

F̃y,± ∼ lim
y̌→0

F̌y,±, (2.100)

and wrote F̃y,±|ỹ=0 = F±,ext for the flux injected into the Debye layer at the
electrode surface, e.g., by electrochemical reaction. Finally, we introduced
the surface excess flux Γ̃x,± given by

Γ̃x,± =

∫ ∞

0

(

F̃±,x − F̌±,x
)

dỹ. (2.101)

At leading order we can evaluate Γx,± by rewriting the flux in terms of the
electrochemical potential µ± = log c±±φ to get F± = −D±c±∇µ±+Pe u c±.
Then

Γ̃±,x = −D±

∫ ∞

0

(c̃±∂xµ̃± − č±∂xµ̌±) dỹ + Pe

∫ ∞

0

(c̃±ũx − č±ǔx) dỹ

= −D±w̃±∂xµ̌± + Pe

∫ ∞

0

(c̃±ũx − č±ǔx) dỹ, (2.102)

where we used that µ± is constant across the Debye layer because it is in
quasiequilibrium at leading order. This is a powerful result because it is
independent of the particular model for the double layer [39], i.e., it remains
valid when the dilute approximation breaks down at large voltage, and may
even be generalized to account for interactions between the different species
by replacing the diffusivities D± by generalized mobilities Lij , cf. Eq. (2.3).
However, in order to handle the convection term we do need a model, and
using Eq. (2.91) we get

∫ ∞

0

(c̃±ũx − č ǔx) dỹ = − 2
{

± w̃± +
√
č
[

W‡(ζ̃
)

+ ζ̃
]

}

∂xφ̌ (2.103)

− 2
{

w̃± +
√
c̄
[

W†(ζ̃
)

± ζ̃
]

}

∂xlog č.

Here W† and W‡ are shorthands for the expressions

W†(ζ) = −8 log[cosh(ζ/4)] − 1

2
Li2[tanh2(ζ/4)] ≈ − 9

32
ζ2 +

7

2048
ζ4 (2.104)
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and

W‡(ζ) = Li2[tanh(ζ/4)] − Li2[− tanh(ζ/4)] ≈ 1

2
ζ − 1

144
ζ3, (2.105)

and Li2(z) =
∑∞

n=1
zn/n2 is the dilogarithm.

Surface conservation laws of this form were used already by Dukhin,
Deryagin, and Shilov in their studies of surface conductance and the polar-
ization of thin but highly charged double layers around spherical particles in
weak applied fields [18, 63, 64, 65]. Recently Chu and Bazant revisited the
problem using matched asymptotic expansions which allowed them to lift the
requirements for weak applied fields and small deviations from equilibrium
in the bulk [38, 39]. What we have contributed is to extend their work to
account also for surface convection and evaluate the integral in Eq. (2.103).
Dukhin and co-workers also accounted for electroosmotic convection and our
result is fully equivalent to their work except for two features: First, in the
English translation it appears that there is a sign error on their term for flux
by electroosmotic convection proportional to ∂xlog č, which in our notation
reads 2

{

± w̃± + ζ̃ − 8 log[cosh(ζ̃/4)]
}

∂xlog č. For a symmetric electrolyte

a change of sign of φ̌ and φ̃ while retaining č unchanged must result in a
symmetric interchange of the cation and anion fluxes. Our Eq. (2.103) sat-
isfies this property, but the results in Refs. [18, 65] do not. Secondly, the
dilogarithm terms are absent in their work.

The presence of the dilogarithm terms qualitatively changes the form
of the convective flux at low zeta potential: The slope of the coefficient to
∂xφ̌ becomes nonzero at ζ̃ = 0, and coefficient to ∂xlog č becomes a non-
monotonic function of ζ̃. However, these subtle changes will be very hard
to detect experimentally due to the factor of ε multiplying the divergence
of the surface fluxes in Eq. (2.99). Only at high zeta potential is the excess
amount of ions accumulated in the Debye layer large enough to make the
surface flux term significant, which can occur either for colloidal particles
with a large intrinsic zeta potential determined by their surface chemistry,
or for electrodes or polarizable objects subjected to large external voltages
or applied field. In this regime the surface excess conductance is dominated
by the factors w̃± that grow exponentially with ζ̃ and the expression for the
surface excess flux simplifies to

Γ̃±,x = −(D± + 2Pe)w̃±∂xµ̌±. (2.106)

Using this we can write the surface excess current ̃x = 1

2
(Γ̃+,x − Γ̃−,x) and

neutral salt flux Γ̃ = 1

2
(Γ̃+,x + Γ̃−,x) as

̃x = −
[

(1 + 2Pe)w̃ + ∆Dq̃
]

∂xφ̌−
[

(1 + 2Pe)q̃ + ∆Dw̃
]

∂xlog č, (2.107)

and

Γ̃x = −
[

(1 + 2Pe)q̃ + ∆Dw̃
]

∂xφ̌−
[

(1 + 2Pe)w̃ + ∆Dq̃
]

∂xlog č, (2.108)



2.2 Mathematical model 33

where we used that w̃+ + w̃− = 2w̃, w̃+ − w̃− = 2q̃, D+ + D− = 2, and
D+ −D− = 2∆D.

To close the coupled electrical problem for φ̄ and c̄ in the bulk, q̃ and
w̃ in the Debye layer, and č in the diffusion layer, we need another two
boundary conditions. The first is the potential drop across the boundary
layers obtained from the Gouy–Chapman–Stern model

Vext − φ̄ = ς̌ + ζ̃ − q̃ δ, (2.109)

where ς̌, ζ̃, and −q̃ δ are the potential drops over the diffusion, Debye, and
Stern layers, respectively, and δ is the surface capacitance ratio. This acts
as a Dirichlet condition for the bulk potential φ̄. The second condition is a
requirement of consistency in Eq. (2.95) as

w̃ = 4
√
č sinh2(ζ̃/4) =

√

q̃2 + 4č−
√

4č, (2.110)

where we used ζ̃ = −2 sinh−1
(

q̃/2
√
č
)

to express w̃ directly in terms of the
dynamical variables q̃ and č.

With this we are ready to formulate in the following sections the leading
order dynamical models corresponding to the linear, weakly nonlinear, and
strongly nonlinear regimes.

2.2.6 Linear model

In the Debye–Hückel limit ζ̃ ≪ 1 where the potential is small compared to
the thermal voltage the electrokinetic problem can be linearized. This sim-
plifies the analysis significantly and this regime has therefore been studied
extensively in the literature. Since we drive the system with a harmonic
signal, at leading order all variables can be expressed as an equilibrum value
with a small deviation that varies harmonically in time

φ(r, t) = Re
[

φ̂(r)eiωt
]

= 1

2
φ̂(r)eiωt + c.c. (2.111)

and likewise for the ionic concentrations

ci(r, t) = c∗i + Re
[

ĉi(r)e
iωt

]

. (2.112)

Because we focus on driving frequencies around the inverse RC time, the
perturbations do not have time to propagate into the bulk, so the bulk
concentration is uniform and Eq. (2.58) reduces to a Laplace problem for φ̂

−∇
2φ̂ = 0. (2.113)

The surface conservation law for charge accumulation in the Debye layer
becomes

iωq̂ = ̂ext + n · ∇φ̂, (2.114)
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where ̂ext is the Faradaic current injection at the electrode and n ·∇φ̂ is the
Ohmic current running into the Debye layer from the bulk. The capacitance
of the double layer at low voltage is Cdl = 1/(1 + δ) so the accumulated
charge is related to the potential drop over the double layer by

q̂ = − V̂ext − φ̂

1 + δ
. (2.115)

In the absense of Faradaic electrode reactions the boundary condition for
the potential therefore becomes [23]

−n · ∇φ̂ =
iω

1 + δ

(

V̂ext − φ̂
)

. (2.116)

The slip velocity condition for the time average bulk fluid motion reduces
to [33]

ũs =
〈

ζ̃∇sφ̄
〉

=
1

2
Re

[

ζ̂∗∇sφ̂
]

=
1

2(1 + δ)
Re

[

(V̂ext − φ̂)∗∇sφ̂
]

= − 1

4(1 + δ)
∇s

∣

∣V̂ext − φ̂
∣

∣

2
, (2.117)

where we used that ζ̃ = (Vext− φ̄)/(1+δ) at low voltage and that ∇sVext = 0
because the metal electrode is an equipotential surface. Since the bulk con-
centration is uniform there is no body force at leading order and the Stokes
flow problem for the bulk fluid motion is driven entirely by the electroos-
motic slip.

Faradaic current injection

The Faradaic current is determined from Eq. (2.32) as

̂ext =
1

Rct

[

(V̂ext − φ̂) +
ĉ
R

c∗
R

− ĉ
O

c∗
O

]

, (2.118)

where Rct = σkBT/j0eℓ0 is the dimensionless charge transfer resistance,
and ĉ

O
and ĉ

R
are the concentrations of the oxidized and reduced species

immediately outside the Debye layer. Assuming we can neglect migration
of O and R in the diffusion layer we employ the result from Sec. 2.2.3 to get

ĉO|y̌=0 =

√

ε

iωD
O

f̂O (2.119)

and similarly for ĉ
R
. Approximating the flux f̂

O
into the diffusion layer

by the external current ̂ext, which is equivalent to neglecting accumulation
of O in the Debye layer, and similarly approximating f̂

R
by −̂ext we then

arrive at

̂ext =
1

Rct

[

(V̂ext − φ̂) − 1

c∗
R

√

ε

iωD
R

̂ext −
1

c∗
O

√

ε

iωD
O

̂ext

]

. (2.120)
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Rct
Cdl

ZW

Rb

Vext

Figure 2.5: Equivalent circuit diagram for the linear model: The double layer capaci-

tance Cdl is connected in parallel with the charge transfer resistance Rct for the Faradaic

electrode reaction and the Warburg impedance ẐW (ω) describing the effects of mass trans-

fer. All are connected in series to the bulk Ohmic resistance Rb.

This can be rearranged to

ĵext =
V̂ext − φ̂

Rct + ẐW (ω)
, (2.121)

where

ẐW (ω) =

( √
ε

c∗
O

√

D
O

+

√
ε

c∗
R

√

D
R

)

1√
iω

(2.122)

is known as the Warburg impedance [16]. The expression in the parenthesis
is called the Warburg constant and we denote it by Rmt

5

Rmt =

( √
ε

c∗
O

√

D
O

+

√
ε

c∗
R

√

D
R

)

. (2.123)

Finally, substituting into the surface charge conservation law we obtain a
closed relation between the complex bulk current running into the double
layer and the potential drop across it

−n · ∇φ̂ =

[

iω

1 + δ
+

1

Rct + ẐW (ω)

]

(

V̂ext − φ̂
)

. (2.124)

The equivalent circuit diagram for the entire system is shown in Fig. 2.5
with the double layer capacitance Cdl = 1/(1 + δ) connected in parallel
to the charge transfer resistance Rct that is in series with ẐW , while all
are connected in series to the bulk Ohmic resistance Rb = 1. This way
of representing an electrochemical cell is a standard tool in electrochemi-
cal impedance spectroscopy which allows experimental parameters such as
Rct to be determined with high accuracy [16]. In such experiments it is
common practice to add an excess amount of supporting electrolyte that is

5The Warburg constant is often denoted σ in electrochemistry but we prefer the non-

standard symbol Rmt to avoid confusion with the electrolyte conductivity.



36 Electrokinetic theory

electrochemically inert but serves to minimize the bulk Ohmic resistance.
This also justifies the neglect of migration of O and R in the diffusion layer
and of accumulation of those species in the Debye layer. In our formulation
this corresponds to the limit c∗

O
≪ 1 and c∗

R
≪ 1. However, because AC

electroosmosis is strongly supressed at high electrolyte concentration it is
relevant to consider the case when, e.g., the species O also plays the role
of cation in the supporting electrolyte, i.e., z

O
= z

R
+ 1 = 1 and c∗

O
= 1.

Performing exactly the same analysis as above but taking into account mi-
gration of O in the diffusion layer we get

ĉ
O

=

√

ε

iωDa
f̂a, (2.125)

where Da is the ambipolar diffusion constant and the flux f̂a is given by

f̂a = 1

2
(D−F̂+ +D+F̂−) = 1

2
D−̂ext − iω∆D q̂. (2.126)

Using this we find a relation similar to Eq. (2.124) between the bulk current
and potential drop across the double layer

−n · ∇φ̂ =

[

iω

1 + δ
+

1 −
√
iωε ∆D

(1+δ)
√
Da

Rct + ẐW (ω)

]

(V̂ext − φ̂), (2.127)

where now ẐW is given by

ẐW (ω) =

( √
ε

c∗
R

√

D
R

+

√
ε

2
√
Dr

)

1√
iω

(2.128)

and Dr = D+/D−. The term proportional to ∆D in the nominator in
Eq. (2.127) is related to the accumulation of O in the Debye layer, and it is
negligible at leading order due to the factor of

√
ε. Therefore the case when

O plays the role of cation in the supporing electrolyte (or R plays the role
of anion) is formally equivalent to the that of excess supporting electrolyte,
with the only difference being the definition of Rmt.

The Warburg impedance reaches O(1) only at driving frequencies below

ω ∼ R2

mt
∼ ε/min{c∗

O
, c∗

R
}2. (2.129)

However, we must keep in mind that our model with thin diffusion layers
is valid only when ω is well above the inverse bulk diffusion time, i.e., for
ω ≫ ε. The effect of mass transfer is therefore significant in our model only if
one of the electrochemically active species is present at a concentration much
lower than the supporting electrolyte, min{c∗

O
, c∗

R
} ≪ 1. On the other hand,

at very low concentration min{c∗
O
, c∗

R
} ≪ √

ε the mass transfer resistance is
so large that the Faradaic electrode reaction is negligible alltogether.
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2.2.7 Weakly nonlinear model

Our notion of the “weakly nonlinear” regime is characterized by two features
in the solution, namely,

• The bulk electrolyte concentration is uniform and given by c̄ = 1.

• The diffusion layer around the electrodes exists only as a small per-
turbation to the bulk solution.

When these conditions are satisfied the solution again simplifies significantly.
The leading order bulk problem is linear and given by

c̄ = 1, (2.130)

0 = −∇
2φ̄, (2.131)

0 = −∇p̄+ ∇
2ū, (2.132)

0 = ∇ · ū, (2.133)

which is matched with the following set of dynamical boundary conditions
in the Debye layer

∂tq̃ = n · ∇φ̄+ jext, (2.134)

Vext − φ̄ = ζ̃ − q̃δ, (2.135)

ū = ũs =
〈

ζ̃∇sφ̄
〉

, (2.136)

where the zeta potential is related to the charge accumulated in the Debye
layer by

ζ̃ = −2 sinh−1(q̃/2). (2.137)

As we discuss below in Sec. 2.2.9 both the surface fluxes in the Debye layer
and the perturbations in the local salt concentration in the diffusion layer
reach O(1) at sufficiently large driving voltage V0 ∼

√

δ/ε. Our weakly
nonlinear model is therefore only valid at relatively low voltage

V0 ≪
√

δ/ε. (2.138)

For blocking electrodes where the Faradaic current jext vanishes, the weakly
nonlinear model is described in terms of four dimensionless parameters,
namely the driving voltage V0 and frequency ω, the capacitance ratio δ,
and the equilibrium zeta potential ζ̃eq on the electrodes. The electrical part
of the problem is nonlinear, but local in time so it is straightforward to in-
tegrate using, e.g., Femlab’s standard time-stepping algorithm. The flow
problem is linear and can be computed from the time average slip velocity
once the electrical problem has been solved.
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Faradaic current injection

When electrode reactions do occur the leading order Faradaic current jext

is determined from the current-overpotential equation Eq. (2.31)

jext =
1

Rct

e−ζ̃/2
[

č
R

c∗
R

eϑ̃/2 − č
O

c∗
O

e−ϑ̃/2
]

, (2.139)

where Rct = σkBT/j0eℓ0 is the dimensionless charge transfer resistance,
ϑ = (Vext − φ̄) − (Vext − φ̄ )eq is the overpotential, č

O
and č

R
are the con-

centrations of the oxidized and reduced species immediately outside the
Debye layer, and we assume a symmetric transfer coefficient α = 1

2
and take

z
O

= z
R

+ 1 = 1. To further simplify the solution we also assume that there
is excess supporting electrolyte such that c∗

O
≪ 1. If this is not satisfied

the Faradaic reaction would invalidate our assumption of small perturba-
tions to the bulk concentration in the diffusion layer and make the problem
“strongly nonlinear” already at relatively low voltage V0 ∼ O(log ε) due to
the exponential voltage dependence in Eq. (2.139). For c∗

O
≪ 1 we can ne-

glect migration of O in the diffusion layer and employ the 1D solution from
Sec. 2.2.3 to get

čO = c∗O +

√

ε

ωD
O

1

T

∫ T

0

Ǧ(t− t′)f̌O(t′) dt′, (2.140)

assuming the bulk concentration c̄
O

is at the equilibrium value c∗
O
, and

similarly for č
R
. Using f̌

O
= jext and f̌

R
= −jext and substituting into

Eq. (2.139) we obtain a single integral equation for jext(t), and after some
rearranging we arrive at

1

T

∫ T

0

Ǧ(t− t′)jext(t
′) dt′ =

√
ω

2 sinh
(

ϑ̃/2
)

−Rcte
ζ̃/2jext(t)

RR

mt
eϑ̃/2 +RO

mt
e−ϑ̃/2

. (2.141)

Here the constants RO
mt and RR

mt are the contributions from O and R to the
Warburg constant, cf. the linear analysis in Sec. 2.2.6

RO

mt =
1

c∗
O

√

ε

D
O

and RR

mt =
1

c∗
R

√

ε

D
R

. (2.142)

At large positive overpotential the Faradaic current jext saturates at the
limiting value jR

lim
(ω) = D

R
c∗
R
/ℓ

R
(ω) = 1/RR

mt

√
ω, where ℓ

R
(ω) =

√

εD
R
/ω

is the diffusion length for species R, and similarly for O at large negatively
overpotential. The numerical solution of the problem is more complicated
than for the simple case with blocking electrodes because the solution is
nonlocal in time. In Appendix A.3 we discuss how it can be handled by
replacing the standard time evolution with a relaxation method to determine
the steady-state periodic solution in time while employing the commercial
finite element software Femlab to solve the spatial problem [47].
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2.2.8 Strongly nonlinear model

Our notion of the “strongly nonlinear” regime is characterized by the fol-
lowing features in the solution

• The surface excess flux Γ̃ in the Debye layer induces O(1) bulk elec-
trolyte concentration gradients, although the leading order bulk con-
centration is constant in time c̄ = c̄(r).

• In the diffusion layer the perturbations to the local electrolyte concen-
tration caused by the periodic massive uptake and release of ions in
the Debye layer reach O(1).

• The Debye layer remains in quasiequilibrium but the solution depends
on the local electrolyte concentration in the diffusion layer immediately
outside the Debye layer.

• The fluid motion has components from both electroosmotic slip from
the Debye layer, an additional effective slip from space charge in the
diffusion layer, and bulk electroconvection.

• We disregard Faradaic electrode reactions because the problem is com-
plicated enough without.

In the bulk we have four variables, namely, the potential φ̄(r, t), concentra-
tion c̄(r), and fluid velocity and pressure ū(r) and p̄(r), that are governed
by

0 = ∇ · J̄, (2.143)

0 = ∇ · F̄a, (2.144)

0 = −∇p̄+ ∇
2ū + 〈∇2φ̄∇φ̄〉, (2.145)

0 = ∇ · ū, (2.146)

where the electric current J̄ and ambipolar flux F̄a are given by

J̄ = −c̄∇φ̄− ∆D∇c̄, (2.147)

F̄a = −Da∇c̄+ Pe ū c̄. (2.148)

In the Debye layer we also have four dynamical variables, namely, the ac-
cumulated charge q̃ and excess neutral salt w̃, together with the normal
current J̄n and salt flux F̌n that act as Lagrange multipliers in the model

∂tw̃ = −F̌n − ε∇s · Γ̃, (2.149)

∂tq̃ = −J̄n − ε∇s · ̃, (2.150)

Vext − φ̄ = ζ̃ − q̃ δ, (2.151)

w̃ =
√

q̃2 + 4č−
√

4č, (2.152)
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where

ζ̃ = −2 sinh−1
(

q̃/2
√
č
)

, (2.153)

and we neglected the potential drop ς̌ across the diffusion layer in the con-
dition Eq. (2.151) for the overall potential drop over the boundary layers
because ς̌ is small compared to −q̃ δ. In the expressions for the surface ex-
cess current ̃ and neutral salt flux Γ̃ we drop the diffusion term proportional
to ∇s log č because this is negligible compared to ∇sφ̌ at large voltage, and
moreover approximate the latter by ∇sφ̄ because ς̌ is small; hence

̃ = −
[

(1 + 2Pe)w̃ + ∆Dq̃
]

∇sφ̄, (2.154)

Γ̃ = −
[

(1 + 2Pe)q̃ + ∆Dw̃
]

∇sφ̄. (2.155)

The Lagrange multipliers J̄n and F̌n determine the boundary conditions for
the bulk current and ambipolar flux running into the Debye layer

n · J̄ = J̄n, (2.156)

n · F̄a = 〈F̌n〉 − ∆D〈J̄n〉, (2.157)

and the Debye layer also gives rise to an electroosmotic slip velocity of

ũs =
〈

ζ̃∇sφ̄
〉

, (2.158)

where again we dropped the term proportional to ∇s log č and approximated
the tangential field by −∇sφ̄.

In the diffusion layer we have just one dynamical variable, namely, the
concentration č, that is determined by

č(y̌, t) = c̄+

√

ε

ωDa

1

T

∫ T

0

G(y̌, t− t′)f̌a(t
′) dt′, (2.159)

where the ambipolar flux entering f̌a is expressed in terms of J̄n and F̌n as

f̌a = F̌n − ∆DJ̄n − 〈F̌n − ∆DJ̄n〉. (2.160)

With this, the excess potential drop across the diffusion layer can be evalu-
ated

ς̌ =
√
εJ̄n

∫ ∞

0

[

1

č
− 1

c̄

]

dy̌ − ∆D log(č/c̄), (2.161)

in terms of which the effective slip velocity induced in the diffusion layer
becomes

ǔs =
〈

ς̌∇sφ̄
〉

. (2.162)

Now, we already argued that ς̌ is small so one might ask if ǔs is not neg-
ligible compared to the electroosmotic slip ũs from the Debye layer. The
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point is that ζ̃ scales only as ζ̃ ∼ 2 log q̃ ∼ 2 log(V0/δ) at large voltage, cf.
Eqs. (2.151) and (2.153), which is also a relatively weak dependence. More-
over, when the Gouy–Chapman solution in the Debye layer breaks down
due to steric exclusion there may be viscoelectric effects suppressing the
electroosmotic flow. While a description of that is beyond the scope of this
thesis, it is interesting to take into account other sources of electrokinetic
flow that could start to dominate in that situation.

In order to simplify the numerical solution we do, however, assume that
the component of the bulk flow induced by ǔs can be neglected in the
convection of neutral salt in Eq. (2.148). Upon this approximation, only
the concentration č at y̌ = 0 enters the coupled dynamical problem for
{

φ̄, c̄, ū, p̄, q̃, w̃, J̄n, F̌n, č
}

, which is convenient. Once this problem is solved,
we can compute the full profile for č as a function of y̌ and evaluate ς̌ along
the electrode surface, evaluating the integral over y̌ by numerical quadra-
ture, and determine the slip velocity ǔs and the corresponding bulk flow
component as a postprocessing step.

Finally, because the bulk concentration profile is controlled only by flux
(Neumann) boundary conditions we need an additional constraint to fix the
total number of ions in the system, namely,

∫

Ω

c̄ dr + ε

∫

∂Ω

〈w̃〉ds =

∫

Ω

c∗ dr = |Ω|, (2.163)

because the nominal bulk concentration is exactly c∗ = 1; the excess concen-
tration from the diffusion layer does not enter since it has no time average
by construction. Such a constraint would be redundant in an ordinary time
evolution problem, where the total amount of salt is fixed by the initial con-
dition, but it is necessary in our case because we compute the steady-state
periodic solution directly using a relaxation method. Alternatively, if the
system is not closed but open and connected to a large reservoir of elec-
trolyte at unit concentration, the total amount of ions is of course not fixed,
but the salt concentration level is determined by a Dirichlet condition c̄ = 1
at the reservoir boundary. Likewise we need to impose a constraint on the
total amount of charge accumulated in the Debye layers

∫

∂Ω

q̃ ds =

∫

∂Ω

q̃eq ds, (2.164)

where q̃eq = −2 sinh(ζ̃eq/2) is the equilibrium intrinsic surface charge. In the
special case where the ionic diffusivities are equal, ∆D = 0, and the intrinsic
zeta potential vanishes, ζ̃eq = 0, the problem has additional symmetry in
time: The bulk potential φ̄ and q̃ and J̄n in the Debye layer have odd
symmetry across one half period in time, e.g., φ̄(r, t + T/2) = −φ̄(r, t),
whereas the rest of the solution components have even symmetry, e.g., c̄(r, t+
T/2) = c̄(r, t).
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2.2.9 Beyond quasiequilibrium

In this section we first develop an estimate for the driving voltage at which
the weakly nonlinear model breaks down, namely, V0 ∼

√

δ/ε. Around this
voltage both the bulk concentration gradients and the perturbations to the
bulk concentration in the diffusion layer reach O(1). As the driving voltage
is increased the electrolyte concentration in the diffusion layer approaches
zero, which makes the assumption of local charge neutrality break down and
with that also the leading order strongly nonlinear solution. The voltage
where this occurs is also around V0 ∼

√

δ/ε, so it would seem that the
strongly nonlinear model applies only to a relatively narrow voltage range,
although certainly an experimentally relevant one. At even larger voltage
the double layer is driven out of quasiequilibrium and expands to form an
extended space charge layer: We give a brief summary of the existing theory
for the structure of this layer in the case of DC Faradaic conduction, and
discuss how the key features in this solution could be incorporated into our
strongly nonlinear model to extend its validity even beyond quasieuilibrium.

The common way of expressing the condition for validity of the weakly
nonlinear description of an electrokinetic system is in terms of the Dukhin
number Du = σs/σℓ0 ∼

∣

∣ε ̃
∣

∣ /
∣

∣ J̄
∣

∣, defined as the ratio of the double layer
surface excess conductance σs to the bulk conductivity σ per geometrical
length ℓ0 [58]: Surface conductance and distortion of the double layer can
be neglected only when Du ≪ 1. For a symmetric binary electrolyte it can
be expressed as, cf. Eq. (2.154)

Du = ε(1 + 2Pe)w̃ = ε(1 + 2Pe)4 sinh2
(

ζ̃/4
)

. (2.165)

Bazant et al. showed that the same dimensionless group governs local salt
depletion in the diffusion layer in the dynamical problem of a suddenly
applied voltage, and they used the low voltage estimate ζ̃ ≃ V0/(1 + δ) to
argue that for weakly nonlinear dynamics to hold the applied voltage cannot
greatly exceed the thermal voltage [37].

In colloid science it is natural to express the Dukhin number in terms of
the zeta potential because for a colloidal particle the electrokinetic proper-
ties are often determined by the intrinsic zeta potential due to bound surface
charges when the particle reacts chemically with the suspending electrolyte.
However, for electrokinetic problems involving microelectrodes that are bi-
ased by an external voltage, and also for initially uncharged polarizable
particles subjected to an external DC or AC electric field, the induced zeta
potential depends on the driving voltage in a nonlinear way and it is prefer-
able to express the conditions for validity directly in terms of V0 rather than
ζ̃. To this end we observe that at large voltage the surface capacitance is
dominated by the Stern layer so the accumulated charge can be estimated
as

q̃ ∼ V0

δ
, (2.166)
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provided that the driving frequency is at or below the inverse RC time
such the screening is not negligible, and that the intrinsic surface charge
q̃eq = −2 sinh

(

ζ̃eq/2
)

can be disregarded. Eq. (2.166) is an upper bound on
q̃ where a more accutate estimate would be

q̃ ∼ V0

δ + sech(ζ̃/2)
, (2.167)

with ζ̃ understood to be a function of q̃. If steric effects are taken into
account the Debye layer capacitance becomes a non-monotonic function of
the accumulated charge, but q̃ . V0/δ remains valid also in that case. The
excess accumulated salt is bounded by w̃ ≤ |q̃| by construction and at large
voltage where the absorption is dominated by uptake of coions rather than
expulsion of counterions we have w̃ ≃ |q̃|. The Dukhin number can therefore
be estimated as

Du ∼ ε(1 + 2Pe)w̃ ∼ εV0

δ
, (2.168)

assuming the Péclet number is O(1). This shows that the surface excess
current should become significant only at very large voltage V0 ∼ δ/ε. How-
ever, because the bulk salt flux F̄ is only O(1), the surface excess salt flux
Γ̃ becomes signficant when the ratio

∣

∣εΓ̃
∣

∣

∣

∣ F̄
∣

∣

∼
∣

∣ε(1 + 2Pe)q̃∇sφ̄
∣

∣ ∼ εV 2

0

δ
(2.169)

reaches O(1), which occurs already for V0 ∼
√

δ/ε. Likewise, if an amount
of ions εw̃ (per unit area) is taken up by the Debye layer from a diffusion
layer of width

√

ε/ω, the perturbation to the concentration in the diffusion
layer can be estimated as

γ̌ ∼ εw̃
√

ε/ω
∼

√
εω V0

δ
, (2.170)

reaching O(1) for V0 ∼ δ/
√
εω , or, for V0 ∼

√

δ/ε assuming the system is
driven around the inverse RC time with ω ∼ δ. If ε is small it is clear that
the weakly nonlinear dynamics do not break down before the V0 significantly
exceeds unity, i.e., not before the driving voltage is well above the thermal
voltage. This argument is consistent with our numerical results for pairs and
arrays of microelectrodes, and also with those of Chu et al. for an uncharged
metal particle subjected to a DC electric field where O(1) perturbations to
the concentration were reached at a dimensionless field strength of Ē ≃ 5 for
dimensionless Debye layer thickness ε = 0.01 and unit surface capacitance
ratio δ = 1 [38, 39].

The strongly nonlinear model both in the bulk and the diffusion layer
is based fundamentally on local electroneutrality. The leading order charge
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density in the bulk is nominally to second order in ε and for a symmetric
electrolyte it can be expressed simply as, cf. Eq. (2.60)

ρ̄ = −ε2∇2φ̄ = −ε2 ∇c̄ · J̄
c̄2

. (2.171)

Obviously, as c̄ approaches zero the charge density diverges which is incon-
sistent with the underlying assumption of electroneutrality; that assumption
breaks down when the charge density becomes comparable to the average
concentration, i.e., for ρ̄ ∼ c̄, which occurs when

c̄ ∼ ε2
∇c̄ · J̄
c̄2

or c̄ ∼ ε2/3
∣

∣∇c̄ · J̄
∣

∣

1/3
. (2.172)

In an electrochemical cell the “diffusion-limited” DC Faradaic current is
O(1) which leads to the conclusion that the electroneutral bulk solution
breaks down for c̄ ∼ ε2/3 [60, 54]. However, in our case of strong AC forcing
applied to blocking electrodes the Ohmic currents involved and the average
ion flux fed into the diffusion layer at the electrode surface are much larger:
Taking J̄ ∼ V0 and using −∂y č = F̌y ∼ ωw̃ we obtain

|∂y čJ̄y| ∼
ωV 2

0

δ
. (2.173)

In effect, the leading order strongly nonlinear solution based on electroneu-
trality breaks down already for

č ∼ (ωε)1/3, (2.174)

taking V0 ∼
√

δ/ε.

Nonequilibrium double layer structure

When the electroneutral solution breaks down, the structure of the double
layer changes from quasiequilibrium to a nonequilibrium structure and ex-
pands in width from O(ε) to O(ε2/3); this was first described by Smyrl and
Newman [60]. Rubinstein and Shtilman later showed that a region com-
pletely depleted of counterions can develop at an electrode or ion exchange
membrane when driven above the diffusion-limited current [40]. In this
regime one can identify three sublayers within the nonequilibrium double
layer, namely [42]

• A quasiequilibrium “Debye” layer of width O(ε) at the electrode sur-
face.

• An extended “space charge” layer of width yo > O(ε2/3) that is com-
pletely depleted of counterions.
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• A “Smyrl–Newman” transition layer of width O(ε2/3) around y = yo
connecting the space charge layer to the quasi-electroneutral diffusion
layer.

To our knowledge this fundamental structure of the nonequilibrium double
layer has only been studied for electrochemical systems in steady state with a
DC Faradaic current, although it was argued by Bazant et al. that a similar
solution with a transient space charge layer should form also in systems
driven dynamically at very large voltage [37]. Our numerical solution to the
full Poisson–nernst–Planck equations in Chap. 4 show that such a layer does
indeed form.

In the existing theory for DC Faradaic conduction, the Poisson–Nernst–
Planck equations can be reduced to a single master equation for the electric
field whose solution can be expressed in terms of Painlevé trancendents [42,
60, 66]. In the space charge layer migration dominates and the solution for
the electric field reduces to (denoting variables by a breve accent)

∂yφ̆ = ±1

ε

√

∓2J̄n(yo − y)/D±, (2.175)

where the positive sign applies to a space charge layer completely depleted
of anions (c̆+ 6= 0 and c̆− = 0) and the negative sign to depletion of cations,
and the thichkess yo of the layer arises simply as an integration constant.
The potential drop across the space charge layer is found by integrating
Eq. (2.175) to get

Φ̆ = φ̆(0) − φ̆(yo) = ∓ 2

3ε

√

2|J̄n|
D±

y2/3
o , (2.176)

and the (small) charge density from the coions by differentiation

ρ̆ = −ε2∂2

y φ̆ = ±ε
2

√

2|J̄n|
D±(yo − y)

. (2.177)

The ions in the inner O(ε) quasiequilibrium Debye layer are Boltzmann
distributed and the solution for the potential takes the form [66]

φ̃ = ± log
[

sinh2(aỹ + b)
]

+ const. (2.178)

where a is determined by matching to the field in the space charge layer

a =
√

|J̄n|/2D±, (2.179)

and b is related to the total amount of charge q̃ accumulated in both the
Debye and space charge layers by

q̃ = ±2a coth(b). (2.180)
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The excess potential drop across the O(ε) Debye layer can be determined as

ζ̃ = ∓2 log

(

1

2
+

|q̃|
4a

)

. (2.181)

Finally, in the Smyrl–Newman transition layer |y − yo| ≤ O(ε2/3) all terms
in the master equation play in, but at least the fundamental form of the
solution is an invariant function of the rescaled spatial variable [42]

ỳ = (y − yo)
|J̄n/D±|1/3

ε2/3
. (2.182)

When we try to apply this solution structure in a dynamical rather
that steady-state setting there are several things we need to worry about,
e.g., in the space charge layer the migration term must dominate over ∂tc̆±
in the Nernst–Planck equation, and the detailed structure of the Smyrl–
Newman transition layer might change due to the dynamic nature of yo(t).
However, the most important complication seems to be that the solution
structure is only valid during the charging of the Debye layer, but not during
decharging. This is indicated in Eq. (2.175) where the expression under the
square root is positive only when J̄n has the opposite sign of the coions,
i.e., when J̄n < 0 for a space charge layer completely depleted of anions
with c̆+ 6= 0 and c̆− = 0, developing during charging of the negatively
biased electrode, or vice versa at the positively biased electrode. During
decharging the interpretation of the integration constant yo as the thickness
of the space charge layer does not apply and matching to the solution in
the diffusion layer seems impossible. Moreover, at the end of the charging
period when J̄n approaches zero before it changes sign, the thickness of the
O(ε2/3/|J̄n|1/3) Smyrl–Newman transition layer diverges. It is not clear to
us how the dynamics at this point should be properly described, but from
our numerical solutions in Chap. 4 it appears that the space charge layer
collapses rapidly when the current is reversed.

Ad hoc modification to strongly nonlinear model

In order to incorporate the key features from the nonequilibrium double layer
into our strongly nonlinear model we attempt the following modifications:

• The breakdown of the quasiequilibrium solution is identified with the
point where the concentration č in the diffusion layer drops to zero at
the electrode surface. Beyond this point we continue to solve a simple
diffusion problem for the concentration profile in the diffusion layer,
i.e., we maintain Eq. (2.159) even if that results in unphysical negative
concentrations close to the electrode surface.

• Based on the solution for č we determine yo(t) as the width of the
region where č is negative during charging of the Debye layer. However,
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we always set yo = 0 during decharging to model a rapid collapse of
the space charge layer when the current is reversed.

• The nonequilibrium zeta potential is modelled as

ζ̃ = −2 sinh−1

[

q̃

2
√

č+ 8|J̄n/D±|yo

]

, (2.183)

where č is a strictly positive model for the concentration at the surface

č = max{č(0, t), ε1/3}. (2.184)

Here ε1/3 is a small number introduced to avoid division by zero at the
point where č(0, t) and yo(t) vanish simultaneously, and the exponent
is chosen in accordance with Eq. (2.174). This approximation for ζ̃ is
identical to the quasiequilibrium solution for č(0, t) ≥ ε1/3 and asymp-
totically equal to Eq. (2.181) for |J̄n/D±|yo ≫ ε1/3.

• When computing the potential drop ς̌ across the diffusion layer in
Eq. (2.161) we only consider the interval where č ≥ č.

• We include the potential drop Φ̆ across the space charge layer as given
by Eq. (2.176) into the boundary condition for the bulk potential

Vext − φ̄ = Φ̆ + ζ̃ − q̃ δ, (2.185)

but continue to exclude ς̌.

• The relation between the surface excess accumulated charge and neu-
tral salt remains

w̃ =
√

q̃2 + 4max{č, 0} −
√

4max{č, 0}, (2.186)

i.e., we simply impose w̃ = |q̃| in the nonequilibrium double layer
completely depleted of counterions.

• The surface conservation laws can still be applied to the nonequi-
librium double layer provided the thickness is small enough, yo ≪ 1.
The (excess) surface flux is dominated by the O(ε) Debye layer because
the concentration in the space charge layer is small in comparison.
Since the Debye layer is in quasiequilibrium the electrochemical po-
tential of the coions is constant, which allows the diffusion and migra-
tion part of the surface flux to be evaluated exactly as in Sec. 2.2.5 to
get −w̃±∇sµ̆±. However, the electrochemical potential is not constant
across the space charge layer, so µ̆± 6= µ̄±. What we do assume is that
µ̆± is dominated by the electrical term so that we can write µ̆± ≈ ±φ̆.
The convection part of the surface flux is more difficult to evaluate,
but for simplicity we continue to use Γ̃± = ∓w̃±(1 + 2Pe)∇sφ̆, which
is consistent with our assumption that the Helmholtz–Smoluchowski
term dominates the electroosmotic flow of the first kind.



48 Electrokinetic theory

• For the electrosmotic slip induced in the nonequilibrium double layer
we have both the usual component of the “first kind” from the O(ε)
quasiequilibrium Debye layer

ũs = ζ̃∇sφ̆, (2.187)

but also an additional component of the “second kind” from the space
charge layer, for which we use the result of Rubinstein et al. [43]

ŭs = − y3
o

9ε3D±
∇s|J̄n| + Φ̆∇sφ̄. (2.188)

Here the first term is expected to dominate at very large voltage, but
the second Helmholtz–Smoluchowski type term is significant at more
realistic finite voltages.

Clearly, there are several crude approximations in this approach. Especially
our model for the transport in the diffusion layer is offending because of the
region of negative concentration, which corresponds to ions absorbed by the
double layer that were really not there, but should have been taken up from
the region y ≥ yo. This effectively means that we systematically underes-
timate yo, and therefore also Φ̆ and ŭs. A more correct approach would
be to solve a diffusion problem for γ̌ in the dynamically changing domain
y̌o(t) ≤ y̌ < ∞ with the flux boundary condition −Da∂y̌ γ̌ =

√
εf̌a applied

at y̌o =
√
εyo. However, this problem is significantly more challenging to

implement numerically than the simple form Eq. (2.159) so we have chosen
not to pursue it. On the contrary, to avoid the complexity involved with
determining yo from the spatial profile of č dynamically and as a function
of the position along the electrode surface, we make a simple estimate for it
based on a quadratic extrapolation of č from the value at the surface, i.e.,

č(y̌, t) ≈ č(0, t) + ∂y̌ č y̌ + 1

2
∂2

y̌ č y̌
2, (2.189)

to get an algorithm of the form

if č ≥ 0 or sign
(

q̃ J̄n
)

≥ 0

y̌o ≈ 0,

elseif ∂2

y̌ č < 0

y̌o ≈ −č/∂y̌ č, (2.190)

else

y̌0 ≈ −∂y̌ č
∂2
y̌ č

+

√

(

∂y̌ č

∂2
y̌ č

)

2

− 2
č

∂2
y̌ č

.

end
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Because both č(0, t), ∂y̌ č = −√
εf̌a/Da, and ∂2

y̌ č = ∂tč/Da are readily avail-
able as solution variables at the surface, this estimate for y̌o is straight-
forward and cheap to implement numerically. In Chap. 4 we compare our
simple model to a full solution of the Poisson–Nernst–Planck equations in
a simple 1D geometry, and find that they agree remarkably well: Even at
V0 = 200 for ε = 10−3 where the space charge layer expands a significant
depth yo ≈ 0.025 into the diffusion layer of characteristic length

√
ε ≈ 0.03,

the rough estimate from Eq. (2.190) comes within 10% of the true thickness
of the space charge layer as observed from the full numerical solution, except
just around the collapse of the space charge layer.

Another issue is that the bulk concentration variations due to surface
excess salt flux in the Debye layer can become so large that c̄ approaches
zero. This occurs first close to the electrode edges or other sharp features
where the electric field is particularly strong. We take this as an indication
that space charge layers should develop that are steady, i.e., not transient,
in space but with a charge density that changes with the polarity of the
driving voltage. However, it is not clear to us how the dynamics in such a
situation should be described. For the driving voltages that we consider in
Chap. 4 the region where c̄ approaches zero is small, so we simply choose
neglect this problem except for another ad hoc modification to our model:

• We replace c̄ with the strictly positive c̄ = max{c̄, ε1/3} in Eqs. (2.59)
and (2.60) to avoid unphysically large predictions of bulk electrocon-
vection and low conductivity.

2.3 Summary

In this chapter we first gave a brief overview of some of the classical theory
for electrochemical transport, electrode reactions, and the standard Gouy–
Chapman–Stern model for the electrical double layer. Next we constructed
a mathematical model based on matched asymptotic expansions in the three
nested regions, namely, the “inner” Debye layer, “middle” diffusion layer,
and “outer” bulk region. In this we build on recent work by Bazant et al.

and Chu on dynamical solutions in electrochemical systems, where our con-
tribution has been to write an explicit semi-analytical solution (in terms of
a Fourier series) for the salt concentration in the diffusion layer developing
when the system is driven with an AC voltage around the inverse RC time,
and also to account for electroosmotic fluid motion and convection of salt
in the bulk region. We formulated separate model equations corresponding
to the linear, weakly nonlinear, and strongly nonlinear regimes, which form
the basis for our numerical results in Chap. 3 and 4. Finally, we derived
an estimate for the driving voltage where the weakly and strongly nonlinear
models break down, and also discussed how existing theory for nonequilib-
rium double layers in electrochemical cells driven above the diffusion-limited
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current could be incorporated into our dynamical model. However, this at-
tempt to extend the validity of our strongly nonlinear model beyond the
breakdown of local electroneutrality in the diffusion layers has character of
an ad hoc modification and lacks the mathematical rigor otherwise pursued
in this chapter.



Chapter 3

Linear and weakly nonlinear

analysis

In this chapter we study the standard planar AC electroosmotic pump design
with an asymmetric array of interdigitated thin microelectrodes on a planar
substrate, as sketched in Fig. 3.1. This design was first used by Brown
et al. [25] and later by several other groups [15, 26, 27, 29, 30, 31, 32].

It was on a device like this that Studer et al. observed pumping in
the “reverse” direction [15], where the “forward” direction is defined by the
experimental observations of Brown et al. and the predictions from the
linear theory of Ramos et al. [33]. This theory predicts a single maximum
in the pumping velocity at a driving frequency around the inverse RC time,
with rapid and monotonical decrease in pumping at both lower and higher
frequencies. The only free adjustable parameter is the surface capacitance
ratio between the Debye and Stern layers, which allows the inverse RC time
and to some extent also the magnitude of the pumping velocity to be fitted
to experiments. However, the theory is completely unable to account for
reversal of the pumping velocity at higher frequency.

This discrepancy between experimental observations and predictions from
existing theory has motivated us to extend the latter by including nonlinear
capacitance in the Debye layer, and Faradaic electrode reactions in both a
linearized scheme and using the full nonlinear Butler–Volmer reaction ki-
netics. Most of our results have been published in the paper Ref. [44], see
Appendix B, but in the present chapter we take into account also the ef-
fect of mass transfer limitations on the Faradaic electrode reaction. Several
groups have observed bubble formation and electrode degradation at driving
frequencies below 1 kHz and voltages of a few volt [26, 28, 29, 15, 32, 31],
which is experimental evidence that electrode reactions do actually occur.
Another motivation for including electrode reactions into the theory was
that the original results of Ajdari indicated reverse pumping in this case,
although in the low, not high frequency limit [14].
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Figure 3.1: Sketch of the device geometry for the planar pump design with asymmetric

pairs of interdigitated electrodes. Each pair has a narrow electrode of width W1 and a

wide electrode of width W2 separated by a narrow and wide gap of width G1 and G2.

The fluid flow pattern is complex with vortices above the electrode edges, but the spatial

average in the x direction is a simple Couette flow profile.

Idealized geometry model

As sketched in Fig. 3.1 the device consist of an array of interdigitated elec-
trodes, where each pair has a narrow electrode of width W1 and a wide
electrode of width W2 separated by a narrow and a wide gap of width G1

and G2, respectively, and the full period is L = W1 + G1 + W2 + G2. No-
tice that in order to break the left-right symmetry it is necessary that both
W1 6= W2 and G1 6= G2. On top of the array a microfluidic channel of height
H is placed, and we assume that the transverse width of the channel is large
enough that a 2D description in the xy plane is appropriate. In order to
reduce the number of geometrical parameters we assume an idealized geom-
etry with infinitely thin and flat electrodes, and a channel height H ≫ L
large enough to not influence the solution. Brown et al. originally used
W1 = 4.2 µm, G1 = 4.5 µm, W2 = 25.7 µm, G2 = 15.6 µm, and L = 50 µm,
but in this chapter we study a design with (dimensionless) electrode widths
and gaps W1 = 1.5, G1 = 1, W2 = 7, G2 = 5, and L = 14.5. As discussed in
Chap. 5 this choice is close to optimal in the sense of maximizing the pump-
ing velocity for a given (low) driving voltage, but the qualitative features
in the solution are not very sensitive to the particular choice of electrode
geometry.

In order to determine the net pumping we observe that because the
system is periodic in the x direction, the fluid velocity ū can be expressed
as a Fourier series [33]

ū(x, y) =

∞
∑

n=0

ûn(y) e
i2πnx/L + c.c. (3.1)
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where ûn is the nth Fourier component. The net flow rate is given by

Q =

∫ H

0

ūx dy, (3.2)

and due to incompressibility Q must be independent of x, i.e., only the
zeroth order Fourier component û0 can contribute to the net flow rate. The
solution for û0 is simply a Couette profile, û0 = y U/H ex, where U is the
spatial average slip velocity

U =
1

L

∫

electrodes

ũs dx, (3.3)

and the net flow rate becomes Q = HU/2. When the channel height is
sufficiently large H ≫ L to not affect the electric field line distribution
around the electrodes, the slip velocity and hence U becomes independent
of H, whereas Q grows linearly with H. To quantify the pump performance
it is therefore convenient to report the “pumping velocity” U instead of the
net flow rate Q.

In Ref. [33] Ramos et al. carried out a complete Fourier analysis in the
limit H → ∞ and determined all components ûn(y) in terms of the slip
velocity distribution ũs(x). They also expressed the streamfunction Ψ for
the flow in terms of the Green’s function H(x − x′, y) for an array of fluid
velocity line sources

Ψ(x, y) =
1

L

∫ L

0

H(x− x′, y) ũs(x
′) dx′, (3.4)

where the Green’s function is given by

H(x− x′, y) =
y sinh

(

2πy/L
)

cosh
(

2πy/L
)

− cos
(

2π(x− x′)/L
) . (3.5)

We adopt this for calculating the streamfunction and visualizing the flow
pattern around the electrodes also at finite H ≫ L.

Importantly, this Fourier analysis applies not only to the low voltage
limit, but also in the weakly nonlinear regime, or more generally to any slip
velocity driven flow above a planar surface. Moreover, the linearity of the
Stokes flow problem allows us to include (back) pressure driven flow simply
by superposition of a parabolic Poiseuille flow profile [25, 31].

3.1 Linear analysis at low voltage

In the Debye–Hückel limit ζ ≪ kBT/ze the electrical problem can be lin-
earized, and the dimensionless boundary condition for the Ohmic current
running into the Debye layer becomes, cf. Eq. (2.124)

−n · ∇φ̂ =

(

iω

1 + δ
+

1

Rct +Rmt/
√
iω

)

(V̂ext − φ̂), (3.6)
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Figure 3.2: Pumping velocity U as a function of frequency ω. The pumping is maximized

around the inverse RC time ω ∼ 1 when the screening of the electrodes is partial. Dashed

line: Analytical result at low frequency where U ∝ ω2.

whereas the time average electroosmotic slip velocity reduces to

ũs = 〈ζ̃∇sφ̄〉 = − 1

1 + δ
∇s

∣

∣V̂ext − φ̂
∣

∣

2
. (3.7)

Here V̂ext − φ̂ is the potential drop across the double layer; for a given
electrode geometry there are only five dimensionless parameters describing
the problem, namely, the driving frequency ω and voltage V0, the surface
capacitance ratio δ, charge transfer resistance Rct, and Warburg constant
Rmt. The dependence on the driving voltage in the model can be scaled out
by rescaling the potential with V0 instead of the thermal voltage kBT/ze,
and the fluid velocity by V 2

0
. Also the influence of the capacitance ratio

δ is almost trivial as it simply shifts the inverse RC time from ω ∼ 1 to
ω ∼ 1 + δ, and reduces the electroosmotic slip by a factor of (1 + δ)−1. In
our paper Ref. [44] we included this into the rescaling of the problem, but
here we simply set V0 = 1 and δ = 0 throughout the linear analysis, with
the understanding that the effect of nonzero δ and other V0 . 1 is trivial.

3.1.1 Capacitive charging

In the absense of Faradaic electrode reactions the only dimensionless pa-
rameter left in the problem is the driving frequency ω. At low frequency
ω ≪ 1 the Debye layers are fully charged and the screening is complete at all
times, so there is no tangential electric field to drive the electroosmotic flow.
Conversely, at high frequency ω ≫ 1 the screening is negligible, so there is
no charge in the Debye layers and again no flow. Only around the inverse
RC time ω ∼ 1 when there is partial screening do we have both charge and
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Figure 3.3: Streamlines for the time average fluid flow at ω = 0.8 where the pumping

velocity is maximized. The streamlines are drawn as equidistant contours of the stream-

function Ψ, cf. Eq. (3.4), following Ramos et al. [33].

tangential field in the Debye layers. Fig. 3.2 shows the pumping velocity
U as a function of ω. There is a unique maximum around ω ≃ 0.8 where
U = 0.0035, and the pumping falls off rapidly as ω2 for ω ≪ 1 or as ω−2 for
ω ≫ 1.1 This scaling of the pumping velocity at low and high frequency was
predicted already in the original paper by Ajdari [14] for a simple generic
model of an electrode array as a harmonic potential modulation at the bot-
tom of the channel, whereas the particular direction and magnitude was
obtained by Ramos et al. using more realistic boundary conditions [33].

The streamline pattern for the flow at ω = 0.8 is shown in Fig. 3.3:
There is a uniform flow from the left to the right far above the electrodes and
more tortuous streamlines close to the electrodes, including two recirculating
vortices at the right edge of both electrodes. Notice that the stagnation
point where the slip velocity changes sign is close to the center of the narrow
electrode but is shifted more to the right on the wide electrode.

Electrical impedance

The impedance of the system can be determined as Ẑ = ∆V̂ /Î , where
∆V = 2 is the magnitude of the voltage difference applied between the
electrodes, and Î is the total current running onto the electrodes through
the power supply, i.e.,

I(t) =

∫

electrode #1

(

jext − ∂t(q̃ + εn · ∇φ̄ )
)

dx. (3.8)

1In Fig. 3.2 it appears that U falls off faster than ω−2 at ω ≫ 1, but this is an artefact

due to our idealized geometry model with infinitely thin electrodes. For a more realistic

geometry with electrodes of finite thickness and radius of curvature R at the edges, the

pumping U matches ω−2 for ω ≫ R−1.
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Figure 3.4: Bode plot of the dimensionless impedance Ẑ as a function of frequency ω

at zero capacitance ratio δ = 0: Magnitude (solid line) and phase angle (dashed line).

For comparison also the impedance Ẑ0 = R∞ + 1
iωC0

for a simple RC circuit with linear

circuit elements is shown (dotted lines). The phase angle passes through −π/4 when the

frequency is at the inverse RC time at ω ≈ 0.8.

Here jext is the Faradaic current passed from the electrode into the elec-
trolyte, −q̃ is the charge on the electrode required to screen the accumulated
charge in the Debye layer, and −εn·∇φ̄ is the dielectric polarization charge.
For ω ≪ ε−1 we can neglect the last term and obtain

Î =

(

iω

1 + δ
+

1

Rct +Rmt/
√
iω

)
∫

electrode #1

(

V̂ext − φ̂
)

dx. (3.9)

Fig. 3.4 shows a Bode plot of the dimensionless impedance of the system in
the absense of Faradaic electrode reactions and for zero capacitance ratio δ.
At low frequency the impedance is dominated by the capacitance C0 of the
Debye layers on the two electrodes that are connected in series, i.e.,

1

C0

=
1

W1

+
1

W2

=
1

1.24
, (3.10)

whereas at high frequency the bulk Ohmic resistance R∞ = 0.88 dominates.2

For ω ∼ 1 we observe a slight frequency dispersion in Ẑ as compared to a
constant circuit element model Ẑ0 = R∞+1/iωC0, which is due to a change

2At high frequency the resistance R∞ can be computed with high accuracy from the

power dissipation P = ∆V 2/R∞ in the electrolyte

1

R∞

=
1

∆V 2

∫

Ω

∇φ · ∇φ dr = 1.125, (3.11)

where φ is a solution to the Laplace equation with a Dirichlet boundary condition φ = Vext

on the electrodes. Likewise, the capacitance due to dielectric polarization at high frequency
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in the electric field line pattern between low and high frequency. The inverse
RC time can be read off as the point when the phase angle of Ẑ passes
through −π/4, which coincides almost exactly with the frequency where the
pumping velocity is maximized, namely at ω ≈ 0.8. This “coincidense” is
not particular to our specific electrode geometry from Fig. 3.1, but holds for
other choices of the electrode widths and gaps as well. Which is perhaps
not surprising, given that both the impedance Ẑ and the pumping velocity
U are integral quantities over the electrodes.

3.1.2 Faradaic current injection

When we include electrode reactions and Faradaic current into our model,
one of the most important new features is that the complete screening at
frequencies below the inverse RC time is unbalanced, that is, provided the
electrode reaction is not limited by mass transfer. In general, we expect AC
electroosmotic flow whenever there is partial screening of the electrodes. In-
specting the boundary condition Eq. (3.6) there are three regimes in param-
eter space where the surface impedance is O(1), namely, (i) when capacitive
charging dominates for ω ∼ 1 and either Rct & 1 or Rmt & 1, (ii) when
the electrode reaction kinetics dominate for Rct ∼ 1 and R2

mt ≤ ω ≤ 1, and
(iii) when mass transfer dominates for ω ∼ R2

mt and Rct . 1. These different
regimes are illustrated in Fig. 3.5, where the pumping velocity U is shown
as a function of ω and Rct for different values of Rmt. In Fig. 3.5(a) we have
Rmt = 1, so at the baseline Rct ≫ 1 we recover the previous results from
Fig. 3.2 for purely capacitive charging, whereas for Rct ≤ 1 we see a minor
downshift in the optimal frequency for pumping and a factor of 3 reduction
in the magnitude of the pumping velocity. Figs. 3.5(b) to (d) show results
for Rct = 0.46, 0.1, and 0.01, respectively, where we see the peak around
ω ∼ R2

ct
shifting down and even outside the figure window in Fig. 3.5(d).

What we do not see, however, is the peak in the pumping velocity for Rct ∼ 1
and R2

mt . ω . 1. This is puzzling, in particular because there is actually
electroosmotic fluid motion in this parameter range, but only no net pump-
ing. It turns out that the vanishing of the pumping is particular to the case
when the charge transfer resistance takes the same value on both electrodes.
If Rct is larger on the wide electrode than on the narrow electrode we do
get pumping in the usual “forward” direction, whereas if Rct is larger on the
narrow electrode the pumping is in the “reverse” direction; see our paper
in Appendix B for more details on this.

Although we have not gained an intuitive understanding of why the

can be determined from the electric field energy U = 1
2
C∞∆V 2 as

C∞ =
2ε

∆V 2

∫

Ω

1

2
∇φ · ∇φdr = 1.125ε. (3.12)



58 Linear and weakly nonlinear analysis

0
.0

0
30

.0
0
2

0
.0

0
1

R
c
t

103

102

101

100

10-1

10-2

0
.0

0
3

0
.0

0
2

0
.0

0
1

0
.0

0
0
5

0
.0

0
3

0
.0

0
2

0
.0

0
1

0
.0

0
0
5

R
c
t

ω
10-3 10-2 10-1 100 101 102

103

102

101

100

10-1

10-2

0
.0

0
30

.0
0
2

0
.0

0
1

ω
10-3 10-2 10-1 100 101 102

(a) (b)

(c) (d)

Figure 3.5: Contour plots of the pumping velocity U as a function of frequency ω and

charge transfer resistance Rct for different values of the Warburg constant Rmt: (a) Rmt =

1, (b) Rmt = 0.46, (c) Rmt = 0.1, (d) Rmt = 0.01.

Faradaic charging does not give rise to any pumping when Rct is uniform,
we do have a qualitative explanation for the direction of the pumping when
Rct takes different values on the two electrodes: The net pumping contribu-
tion from the narrow electrode tends to be in the reverse direction, whereas
the wide electrode contributes in the forward direction. In the simple case
with purely capacitive charging, the wide electrode dominates and the net
pumping is in the forward direction. At lower frequency the Debye layer on
the electrode where Rct is smaller tends to be “short-circuited” by the elec-
trode reaction, which inhibits the electroosmotic flow and leaves the other
electrode dominating and determining the pumping direction. This idea can
be useful in other designs as well where, e.g., one could inhibit the flow from
the reverse slipping electrode by modifying the intrinsic zeta potential on
the electrodes as in Sec. 3.1.3 below, by depositing a porous layer permable
to ions but with a large hydraulic resistance, or by geometrically lowering
the reverse slipping sections from the channel surface as suggested by Bazant
and Ben [45] and investigated in detail in Sec. 5.3.
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3.1.3 Linear response at nonzero intrinsic zeta potential

Many electrode-electrolyte systems spontaneously form a Debye layer and
possess an intrinsic zeta potential typically of the order ζeq ∼ 100 mV,
which is well beyond the Debye–Hückel limit ζ ≪ kBT/ze ≃ 25 mV. Our
previous linear analysis does not immediately apply to such systems, but
we can still attempt a linear response analysis if the driving voltage is low
enough V0 ≪ (1 + δ)kBT/ze. In the absense of Faradaic electrode reactions
we obtain essentially the same results as in Sec. 3.1.1, except that the RC
time for the system is determined by the differential capacitance, and the
dimensionless frequency where the pumping occurs is therefore shifted down
from ω ∼ 1 + δ to

ω ∼
[

− dq̃

d(Vext − φ̄)

]−1

= sech(ζ̃eq/2) + δ. (3.13)

Also the characteristic fluid velocity is proportional, not to (1 + δ)−1 but to

dζ̃

d(Vext − φ̄)
=

1

1 + δ cosh(ζ̃eq/2)
(3.14)

which can be come very small if ζ̃eq is large. Of course, at very large ζ̃eq

where the Dukhin number reaches O(1) we would also have to include tan-
gential surface fluxes into the model. When Faradaic electrode reactions do
occur we need to replace Rct by the differential charge transfer resistance

Rct(ζ̃
eq) =

[

djext

d(Vext − φ̄)

]−1

= Rct(0)e
(zO−α)ζ̃eq . (3.15)

However, we also need to take into account the possibility that a time average
current to second order in V0 could run between the electrodes. This would
give rise to an additional component to the flow when the corresponding time
average electric field interacts with the constant intrinsic zeta potential, as
we discuss at the end of Sec. 3.2.2.

3.2 Weakly nonlinear analysis

The weakly nonlinear model is a first step towards better understanding of
the dynamics at larger voltage, and yet there have been few theoretical inves-
tigations that go beyond the Debye–Hückel limit (or linear response) in the
context of AC electrokinetics. One reason for this may be that the numerical
solution is slightly more complicated: Instead of a single linear problem for
the complex potential φ̂(r) one has to solve a time evolution problem for
the bulk potential φ̄(r, t) with a special variable q̃(x, t) defined only on the
electrode boundary. However, using commercial finite element software like
Femlab [47] this is straightforward to implement, and to demonstrate this
we have included a code example in Appendix A.1.
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Figure 3.6: Contour plot of the rescaled dimensionless pumping velocity U/V 2
0 as a

function of driving frequency ω and voltage V0 for a capacitance ratio of δ = 0.1 and no

Faradaic current. The dashed white line marks the frequency where the pumping velocity

is maximized as a function of V0.

3.2.1 Nonlinear surface capacitance

In the absense of Faradaic electrode reactions there are four dimensionless
parameters in the model, namely, the driving voltage V0 and frequency ω,
the capacitance ratio δ, and the intrinsic zeta potential ζ̃eq on the electrodes.
Fig. 3.6 shows the pumping velocity U as a function of V0 and ω for δ =
0.1 and ζ̃eq = 0, with the data rescaled to U/V 2

0
to remove the inherent

quadratic voltage dependence and ease comparison to the linear analysis.
At the baseline V0 ≪ 1 we recover the result from Fig. 3.2 with a peak
in the pumping velocity for ω ∼ 1 + δ. However, at higher voltage the
double layer capacitance is dominated by the Stern layer, and the inverse
RC time where the pumping is maximized drops to ω ∼ δ. It also appears
from Fig. 3.6 that the pumping velocity falls off at large voltage, but this
is simply because the electroosmotic slip ũs = ζ̃∇sφ̄ no longer scales as V 2

0

at large voltage: There ζ̃ ∼ 2 log(V0/δ) rather than ζ̃ ∼ V0/(1 + δ), cf. the
discussion in Sec. 2.2.9, and the slip velocity grows only as V0 logV0.

When the intrinsic zeta potential is nonzero, the pumping velocity follows
the linear response analysis from Sec. 3.1.3 up to the point where the induced
perturbations in ζ̃ becomes comparable to ζ̃eq, and well above that point
the results are largely unaffected by ζ̃eq.

We must emphasize that the upper voltage limit in Fig. 3.6 where V0

extends to 103 is far outside the range of validity of weakly nonlinear model
for a typical microsystem. Nevertheless, the conclusion that according to
the weakly nonlinear model the only effect of having a nonlinear surface
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Figure 3.7: Contour plot of the rescaled dimensionless pumping velocity U/V 2
0 as a

function of driving frequency ω and voltage V0, for capacitance ratio δ = 0.1 and Faradaic

current with charge transfer resistance Rct = 10 and RO
mt = RR

mt = 0.1. The dashed white

line marks the frequency where the pumping velocity is maximized as a function of V0,

and the dashed black line roughly marks the voltage where the limiting current is reached.

Some data points at large voltage V0 ≥ 102 are missing due to numerical difficulties with

obtaining a self-consistent solution for jext(t) in Eq. (2.141).

capacitance is to downshift the inverse characteristic RC time and to change
the scaling of U with driving voltage from V 2

0
to V0 logV0 is important as a

starting point for interpreting the results from the strongly nonlinear model
in Chap. 4.

3.2.2 Nonlinear Faradaic current injection

With electrode reactions included into our model, the number of dimen-
sionless parameters increases by the charge transfer resistance Rct, mass
transfer coefficients RO

mt and RR
mt, and the intrinsic zeta potential ζ̃eq on

the electrodes and channel substrate. From the analysis in Sec. 3.1.2 we
know that if Rmt & 1, the effect of the Faradaic electrode reaction is always
relatively small, so in order to actually see a nonvanishing effect we consider
RO

mt = RR
mt = 0.1. Further we take Rct = 10 and ζeq = 0 on the elec-

trodes. Fig. 3.7 shows the pumping velocity U as a function of the driving
voltage V0 and frequency ω, where again we rescaled to U/V 2

0
to remove

the inherent quadratic voltage dependence. At the baseline for V0 ≪ 1 we
recover the results from Fig. 3.5(c), except that the scaling differs by a fac-
tor of 1 + δ. For V0 ∼ 5 there is a peak in the pumping velocity at low
frequency which is due to Faradaic current injection. Although Rct is rela-
tively large, the exponential increase in Faradaic current with overpotential
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Figure 3.8: Contour plot of the rescaled average tangential field Es/V
2
0 along the insu-

lating substrate, cf. Eq. (3.17), for the same parameters as in Fig. 3.7. Depending on the

intrinsic zeta potential ζ̃eq this can induce pumping in either the “forward” or “reverse”

direction, but above the diffusion-limited current Es saturates and the effect becomes

negligible compared to the “ordinary” induced-charge electroosmosis.

always makes it significant for V0 ≫ 1. Moreover, because the potential drop
across the double layer is generally larger on the narrow electrode than on
the wide, the effective value of Rct is smaller, i.e., the nonlinearity induces
an asymmetry between Rct on the two electrodes that leads to pumping in
the forward direction, cf. the discussion in Sec. 3.1.2 and in more detail in
our paper [44] in Appendix B. The peak fades out for ω ≪ 10−2 due to
the mass-transfer limitations on the Faradaic current, a feature which was
missing in our earlier results in that paper. Specifically, the dashed black
line in Fig. 3.7 roughly marks the voltage where the deviations in č

O
and

č
R

relative to the bulk reach O(1); beyond this voltage the diffusion-limited
current is reached, i.e., the Faradaic current saturates, and for V0 ≫ 1 the
system behaviour is again dominated by the capacitive charging.

The nonlinearity in the reaction kinetics also implies that a DC Faradaic
current can be running between the electrodes even when a harmonic AC
voltage difference is applied. The corresponding DC tangential electric field
〈−∂xφ̄〉 will interact with any intrinsic zeta potential on the electrodes or
channel substrate and induce electroosmotic flow. In the special case when
ζ̃eq takes the same value on both electrodes and substrate, this flow does not
give rise to any net pumping on a planar device because there is no global
potential gradient along the electrode array, i.e.,

∫ L

0

〈

ζ̃eq∂xφ̄
〉

dx = ζ̃eq

∫ L

0

〈

∂xφ̄
〉

dx = ζ̃eq
[ 〈

φ̄
〉 ]L

x=0
= 0. (3.16)
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However, if ζ̃eq is nonuniform there can be pumping, and Fig. 3.8 shows the
average tangential field along the channel substrate

Es =
1

L

∫

substrate

−〈∂xφ̄〉dx, (3.17)

which gives rise to an additional component to the pumping velocity of
U ′ =

(

ζ̃eq
e − ζ̃eq

s

)

Es, where ζ̃eq
e is the constant intrinsic zeta potential on the

electrodes and ζ̃eq
s is the corresponding value on the channel substrate. As

before the data are rescaled to Es/V
2

0
to remove the inherent voltage depen-

dence. The figure shows that at low voltage and for ω ∼ 0.1 there is a max-
imum in the average tangential field along the substrate with Es = 0.0012.
Therefore, if the (difference in) dimensionless intrinsic zeta potential is larger
that 2, the pumping induced by the time average field becomes comparable in
magnitude to the peak pumping velocity from the “ordinary” induced-charge
electroosmotic flow, while the direction of this flow component depends on
the sign of ∆ζ̃eq = ζ̃eq

e − ζ̃eq
s . Beyond the voltage where the diffusion-limited

current is reached, Es saturates and therefore appears to fall off rapidly in
Fig. 3.8 due to the rescaling with V 2

0
. Since the induced-charge electroos-

motic flow continues to grow as V0 logV0, this means that any net pumping
from Es is negligible at large voltage.

Strictly, a DC Faradaic current implies a time average flux of O and
R between the two electrodes. In our model we assumed uniform bulk
concentrations c̄

O
= c∗

O
and c̄

R
= c∗

R
of the electrochemically active species,

which means that we neglected any bulk mass transfer limitations. Taking
such into account would reduce the value of the DC current and hence Es,
but we do not expect it to have much impact on the results in Fig. 3.7.

3.3 Summary

In this chapter we have studied the planar AC electroosmotic pump de-
sign used experimentally by several groups, extending the existing linear
theory to account for Faradaic electrode reactions. When the electrode
reaction is fast enough to effectively “short-circuit” the Debye layer, i.e.,
when the charge transfer resistance is small Rct ≪ 1, the electroosmotic
flow is suppressed because it depends fundamentally on partial screening of
the electrodes. However, the electrode reaction can run no faster than the
electrochemically active species O and R are transported to and from the
electrode by diffusion, and depending on whether this mass-transfer limita-
tion is weak or strong, the pumping velocity is either suppressed and shifted
down in frequency to ω ∼ R2

mt
or virtually unaffected by the electrode reac-

tion.

We also extended the theory into the weakly nonlinear regime, where the
nonlinear capacitance of the Debye layer causes the characteristic inverse RC
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time to shift down from ω ∼ 1 + δ to ω ∼ δ, and the electroosmotic slip to
scale as V0 logV0 with the driving voltage rather than V 2

0
. González et al.

have reported a nonlinear theoretical study of a travelling wave device, and
their results are fully equivalent to ours [67]. The nonlinearity in the Butler–
Volmer electrode reaction kinetics gives rise to more dramatic results: A DC
Faradaic current scaling as V 2

0
at low voltage should interact with any intrin-

sic zeta potential on the electrodes or channel substrate, and the direction
of the induced pumping velocity depends on the sign of the (difference in)
intrinsic zeta potential. At larger voltage there is pumping at low frequency
due to an asymmetry in the effective charge transfer resistance between the
narrow and wide electrode. Ultimately, when the diffusion-limited current
is reached and the concentration of O and R (dynamically) approaches zero
at the electrodes, the Faradaic current saturates and our weakly nonlinear
model becomes dominated by capacitive charging. We should stress that this
last conclusion is valid only because we assume an excess of inert supporting
electrolyte, while otherwise the Faradaic current would induce bulk concen-
tration gradients and strong concentration polarization which we consider
“strongly nonlinear” phenomena.

In many aspects the weakly nonlinear model does not differ qualita-
tively from the linear theory, and could therefore be classified as a “circuit
model” with nonlinear circuit elements. Neither the linear or weakly nonlin-
ear models are able to account for the reversal observed experimentally at
large voltage and frequencies above the inverse RC time. Another feature
is that the bulk concentration almost completely scales out of the problem,
entering only through λD in the surface capacitance ratio δ = ǫλS/ǫSλD.
Therefore these models are also unable to account for the experimental fact
that AC electroosmosis is suppressed at concentrations above 10 mM [15].



Chapter 4

Strongly nonlinear analysis

In this chapter we present numerical results obtained using the strongly
nonlinear model derived in Chap. 2. We first apply the model to a simple
1D geometry in Sec. 4.1. The purpose of studying this system is both that
it gives good understanding of the dynamical properties of the model, which
is necessary when we later interpret the results in higher dimensions, but
also that it allows us to test the validity by comparing with a dynamical
solution of the full Poisson–Nernst–Planck equations.

In Sec. 4.2 we study the electrokinetic flow induced on both a symmet-
ric and asymmetric electrode array. Of course, the symmetric device does
not pump, but it allows us to monitor the strength of the different flow
components, namely, electroosmotic flow of the first and second kind, and
electroconvection induced when a current is passed through concentration
gradients in the electroneutral diffusion layer and bulk. Such a distinction
between different flow components is artificial in the sense that experimen-
tally only the overall flow is observed, but it helps us gain understanding of
the system behaviour. Finally, we investigate the net pumping induced in
the asymmetric device.

4.1 1D model problem

In this section we study the dynamics of the strongly nonlinear model in a
one-dimensional geometry as shown in Fig. 4.1 with an electrolyte confined
between parallel-plate blocking electrodes, i.e., we neglect Faradaic electrode
reactions, and the (dimensionless) width of the electrode gap is L = 2. The
system is identical to that studied by Bazant et al. in Ref. [37], except that
we apply an AC voltage rather than a step voltage, and study the periodic
response after all transients have died out.
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2V0 sin(ωt)

−1 0 1 y

Electrolyte

Figure 4.1: Sketch of 1D model problem. The electrolyte is confined between parallel-

plate blocking electrodes separated by a gap of width L = 2, and a harmonic potential of

±V0 sin(ωt) is applied to the left and right electrode, respectively, so the overall voltage

drop across the system is 2V0 sin(ωt).

In one dimension the solution to the leading order bulk problem simpli-
fies a lot. By symmetry there can be no fluid motion,1 so the only dynamical
variables in the electroneutral bulk are the potential φ̄(y, t) and the average
concentration c̄(y, t). Moreover, there can be no time average flux from the
boundary layers into the bulk, so the leading order bulk concentration is sim-
ply constant c̄(y, t) = c̄o, and using Eq. (2.163) to impose mass conservation
across the entire system we obtain

c̄o = 1 − ǫ〈w̃〉. (4.1)

The bulk electric current J̄(t) is constant in space and the potential is given
by

φ̄ = φ̄o(t) −
J̄(t)y

c̄o
, (4.2)

where φ̄o is the potential at the centre of the cell. The bulk fields are matched
to the solution in the boundary layers at y = ±1 by requiring

∂tq̃ = ±J̄ , (4.3)

∂tw̃ = ±F̌ , (4.4)

Vext − φ̄o ±
J̄

c̄o
= ζ̃ − q̃ δ, (4.5)

ζ̃ = −2 sinh−1
(

q̃/2
√
č
)

, (4.6)

w̃ =
√

q̃2 + 4č−
√

4č, (4.7)

in the Debye layers, where č is the concentration in the diffusion layer seen

1Unless, of course, some kind of electroconvective instability occurs, but we do not

consider that here.
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from the electrode surface

č = c̄o ∓
√

ε

Daω

1

T

∫ T

0

G(t− t′)
[

F̌ (t′) −∆DJ̄(t′)
]

dt′. (4.8)

The bulk potential must have odd symmetry upon reflection in space and
translation by one half period in time

φ̄(−y, t+ T/2) = −φ̄(y, t), (4.9)

which implies that also J̄ and φ̄o must have odd symmetry in time. In the
special case where ∆D = 0, the central potential φ̄o vanishes and both q̃
and ζ̃ have odd symmetry, whereas w̃, F̌ , and č have even symmetry, e.g.,
w̃(t + T/2) = w̃(t). We do not include the excess potential drop ς̌ across
the diffusion layer into Eq. (4.5) because this vanishes at low voltage and
typically remains small compared to Ohmic potential drop across the bulk
at larger voltage.

The coupled differential, algebraic, and integral equations are solved
numerically by substituting a truncated Fourier series and using a collocation
scheme, e.g.,

J̄(t) =

N/2
∑

m=−N/2

′
Ĵme

imωt =

N
∑

n=1

= J̄(tn)SN (t− tn), (4.10)

where SN is the periodic sinc function

SN (t− t′) =
1

N

N/2
∑

m=−N/2

′
eimω(t−t′), (4.11)

see Appendix A.3 or Ref. [68] for details.

4.1.1 Dynamical solutions

We solve the problem for ε = 0.001, ω = 1, δ = 1, and ∆D = 0, at
a relatively large voltage V0 = 50, and using N = 128 grid points in time.
The solution for the different components in the overall potential drop across
(half) the system, namely, the Ohmic potential drop J̄/c̄o across the bulk
electrolyte, the Stern layer potential drop −q̃ δ, and the zeta potential ζ̃
across the Debye layer, is shown in Fig. 4.2(a). At this driving voltage
the Debye layer capacitance is large so ζ̃ is small and the potential drop
across the double layer is primarily on the Stern layer. The nonlinearity
is not very pronounced and the system behaves almost as an ideal linear
impedance Ẑ = 1 − i, except when ζ̃ changes sign and the Debye layer
capacitance shortly drops to 1, which results in a small decrease in the
current. As usual for an RC circuit driven at a frequency around the inverse
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Figure 4.2: Dynamical solution to the 1D model problem as a function of time for two

sets of parameter values: (a) V0 = 50, ω = 1, and δ = 1; (b) V0 = 25, ω = 0.1, and δ = 0.1.

The top panel shows the different components to the overall potential drop across (half)

the system, namely, the driving voltage V0 sin(ωt) (dotted), bulk Ohmic potential J̄/c̄o
(solid), Stern layer potential −q̃ δ (dashed), and zeta potential ζ̃ (dash-dot). The inset

shows the potential drop ς̌ across the diffusion layer which is O(
√
ε) smaller than J̄/c̄o.

The bottom panel shows the concentration č in the diffusion layer as seen from the surface.

RC time, the phase angle of the current is around π/4 ahead of the driving
voltage, whereas the charge accumulated in the Debye layer is π/2 ahead the
current. Fig. 4.2(a) also shows the surface concentration č that oscillates at
the double frequency 2ω. Although the variations in č are O(1), the diffusion
layer potential drop is small, ς̌ . 0.4, as shown in the inset.

For comparison Fig. 4.2(b) shows the solution for a different set of pa-
rameter values where now ω = 0.1, δ = 0.1, and V0 = 25. Again, at this
voltage the Debye layer capacitance is large, but because the intrinsic capac-
itance ratio δ is small, the potential drop across the Debye and Stern layers
are comparable. Therefore the frequency ω = 0.1 is actually also a little
below the inverse RC time. The current has a significant bump at the point
where ζ̃ changes sign and the double layer capacitance drops from ∼ 1/δ
to 1/(1 + δ). The maximal amount of charge q̃ and salt w̃ accumulated in
the Debye layer is about a factor of 3 larger than in Fig. 4.2(a), but the
variations in the surface concentration č are similar because the diffusion
length ℓ(ω) ∝ 1/

√
ω is also increased by roughly a factor of 3.

The concentration variations in the diffusion layer are directly linked
to the amount of salt accumulated in the Debye layer. At low voltage
w̃ = 4

√
č sinh2

(

ζ̃/4
)

scales as V 2

0
, while at higher voltage our estimate

w̃ ∼ V0/δ from Sec. 2.2.9 applies. Therefore we also expect the pertur-
bations to the concentration in the diffusion layer to grow linearly with V0
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Figure 4.3: Minimal salt concentration mintč in the diffusion layer (dashed line), and

maximal values of the zeta potential maxtζ̃ (upper solid line) and diffusion layer potential

drop maxt ς̌ (lower solid line), as a function of the driving voltage V0 for ω = 1 and δ = 1.

Around V0 ≈ 90 the concentration č approaches zero which results in unphysically large

values of both ζ̃ and ς̌. The dotted lines show the result when this is suppressed by

replacing č with č = max{č, ε1/3} in Eq. (4.6) and similarly when computing ς̌, cf. the ad

hoc modifications suggested in Sec. 2.2.9.

for V0 ≫ 1. Fig. 4.3 shows the minimal concentration mint č in the diffu-
sion layer as a function of the driving voltage V0 at ω = 1 and δ = 1, and
indeed for V0 & 10 there is a clear linear dependence. Around V0 ≈ 90
the minimal concentration approaches zero, which marks the breakdown of
local electroneutrality in the diffusion layer close to the electrodes. The
figure also shows the maximal values of ζ̃ and ς̌. At low voltage the zeta
potential ζ̃ ∼ V0/(1+ δ) grows linearly, while at higher voltage the scaling is
only logarithmic with ζ̃ ∼ 2 log(V0/δ). The excess potential drop across the
diffusion layer depends on both the current passing though the layer and
the perturbations to the concentration, and therefore scales as V 3

0
at low

voltage changing to V 2

0
at higher voltage. When č approaches zero both ζ̃

and ς̌ diverge logarithmically, which in turns prevents č from going negative
in Fig. 4.3. However, this divergent behaviour of ζ̃ and ς is unphysical: As
discussed in Sec. 2.2.9 the leading order strongly nonlinear solution based
on local electroneutrality in the diffusion layer breaks down already when
č ∼ ε1/3. The divergence is suppressed by replacing č with č = max{č, ε1/3}
in Eq. (4.6) and similarly when computing ς̌, as suggested also in Sec. 2.2.9,
and the result is shown with dotted lines in Fig. 4.3.
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4.1.2 Comparison to a full numerical solution of the

Poisson–Nernst–Planck equations

Based on the matched asymptotic expansions we can construct a uniformly
valid approximation in space by adding the solutions from the inner, middle,
and outer regions, and subtracting the overlaps, i.e.,

c(y, t) = c̄o+

[

č

(

1 + y√
ε
, t

)

− c̄o

]

+

[

c̃

(

1 + y

ε
, t

)

− č(0, t)

]

+

[

č

(

1 − y√
ε
, t

)

− c̄o

]

+

[

c̃

(

1 − y

ε
, t

)

− č(0, t)

]

, (4.12)

where ỹ = (1± y)/ǫ and y̌ = (1± y)/
√
ǫ are the rescaled spatial variables in

the inner and middle regions. In order to validate the asymptotic model we
can compare this uniformly valid approximation to a full numerical solution
of the Poisson–Nernst–Planck equations in time and space. For a symmetric
electrolyte in one dimension Eqs. (2.45) to (2.47) reduce to

−ε2∂2

yφ = ρ, (4.13)

∂tρ = ε∂y(∂yρ+ c∂yφ), (4.14)

∂tc = ε∂y(∂yc+ ρ∂yφ), (4.15)

with boundary conditions at y = ±1

Vext − φ = ∓εδ∂yφ, (4.16)

0 = −∂yρ− c∂yφ, (4.17)

0 = −∂yc− ρ∂yφ. (4.18)

When solving this problem for ε = 0.001 it is necessary to use a very fine
finite element mesh of hmin . 10−4 close to the electrodes in order to resolve
the highly compressed Debye layer structure, or even finer at larger voltage.
In 1D this is straightforward to achieve with a graded mesh, but in 2D or
3D it can become a serious problem.

We compare the two models for the same parameter values as in Fig. 4.2(a),
i.e., ε = 0.001, δ = 1, ω = 1, and V0 = 50. The results for the average con-
centration c(y, t) is shown in Fig. 4.4 as a number of snapshots over one half
period in time. The first frame at t = 1

16
T is just about when the charge

density in the Debye layer changes sign, cf. Fig. 4.2(a), so for t = 2

16
− 4

16
T

we see the Debye layer charging up and accumulating a lot of ions, holding
them at t = 5

16
T , before it decharges and expels them back into the diffusion

layer for t = 6

16
− 8

16
T . The agreement between the full numerical solution

and the asymptotic expansion is very good, with a maximal relative error
less than 0.5% in the diffusion layer and around around 2.5% in the Debye
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Figure 4.4: Snapshots of the average concentration c in the diffusion layer over one

half period in time for ε = 0.001, ω = 1, δ = 1, and V0 = 50. The figure compares a

full numerical solution of the Poisson–Nernst–Planck equations (circles) to the uniformly

valid approximation from the asymptotic model (dotted line), and the agreement between

the two is very good. Also the leading order approximation č in the diffusion layer alone

is shown (solid line). Notice that the vertical axis does not go to zero.

layer. The error is of the order O(
√
ε) because we neglected the excess po-

tential drop across the diffusion layer ς̌, which is only O(
√
ε) smaller that

the bulk Ohmic potential drop.
If we increase ε the quality of the leading order asymptotic approximation

of course decreases, and, e.g., for ε = 0.05 and δ = 0.1, which are the param-
eter values used throughout Ref. [37], the error for ω ∼ 0.1 at the inverse
RC time is large because the diffusion layer of thickness ℓ(ω) ∼

√

ε/ω ≃ 0.7
extends across the entire system. However, even at very small ε the lead-
ing order strongly nonlinear solution breaks down when the driving voltage is
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Figure 4.5: Individual ion concentrations for ε = 0.001, ω = 1, and δ = 1, at a driving

voltage V0 = 200 which is large enough to drive the double layer out of quasiequilibrium.

The figure shows the full numerical solution for the concentration of the cations c+ (solid

line) and anions c− (dashed line). Between t = 3
16
T and 6

16
T a layer completely depleted

of cations appear between the electrode and the electroneutral diffusion layer.
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increased enough that the solution in the diffusion layer approaches zero. For
ε = 0.001 and ω = δ = 1 this occurs around V0 ≈ 90, cf. Fig. 4.3, and for
other values of ε and δ the breakdown occurs approximately at V0 ≈ 3

√

δ/ε;
the prefactor 3 is particular to the simple 1D geometry that we study here,
but the scaling with

√

δ/ε should hold generally.
When the driving voltage is further increased beyond the point where the

concentration at the surface approaches zero, the Debye layer does not stop
charging but continues to take up ions from the diffusion layer, and a layer
almost completely depleted of ions develops between the Debye layer and the
electroneutral diffusion layer. This is shown in Fig. 4.5, again as a number
of snapshots over one half period for ε = 0.001, δ = 1, ω = 1, and V0 =
200. The solid and dashed lines show the cation and anion concentrations,
respectively, from a full solution to the Poisson–Nernst–Planck equations.
Between t = 1

16
T and 2

16
T we see the charge density in the Debye layer

change sign, followed by a rapid uptake of ions for t = 3

16
T to 5

16
T . At

t = 4

16
T and 5

16
we can clearly distinguish a region completely depleted of

cations, while the anion concentration c− ∼ 0.1 is also low but finite. This
is the extended space charge layer discussed in Sec. 2.2.9, which was first
described by Rubinstein and Shtilman for a permselective membrane driven
above the DC “diffusion-limited” current [40]. Here we see the same basic
structure of the nonequilibrium double layer developing and dynamically
propagating into the diffusion layer. At t = 6

16
T , which is immediately

before the current reverses, we see the space charge layer retreating, and for
t = 7

16
T and 8

16
T the diffusion layer is quickly refilled by an equal amount of

anions expelled from the Debye layer and cations transported by migration
from the opposite electrode.

Fig. 4.6 shows the same data as Fig. 4.5 but on double logarithmic axis
which better allow the different boundary layers to be distinguished. The
figure also shows the results from our strongly nonlinear asymptotic model
when the ad hoc modifications suggested in Sec. 2.2.9 are employed, namely,
we continue to solve a simple 1D diffusion problem for č even beyond the
breakdown of local electroneutrality, and identify the unphysical region of
negative “salt” concentration with the width yo of the space charge layer.
In the electroneutral diffusion layer for y ≥ yo(t) we have c+ = c− = č
at leading order, while in the space charge layer c+ = 0 and c− = |2ρ̆|,
where the charge density ρ̆ is given by Eq. (2.177), and vice versa during the
second half period when a space charge layer completely depleted of anions
develops. Finally, in the O(ε) quasiequilibrium “Debye” layer the leading
order anion concentration is

c− = |2ρ̃| = 2|∂2

ỹ φ̃| =
4a2

sinh2(aỹ + b)
, (4.19)

cf. Eq. (2.178), where a =
√

|J̄n/2D− and b = coth−1(|q̃|/2a). Fig. 4.6
shows that the asymptotic model captures the overall dynamical behaviour
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Figure 4.6: Individual ion concentrations: Same data as in Fig. 4.5 but plotted on

double logarithmic axis. Comparison of the full numerical solution for the concentration

of the cations c+ (stars) and anions c− (circles) to the asymptotic model for the cations

(solid line) and anions (dashed line).
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Figure 4.7: Magnitude of the electric field E = −∂yφ for the same parameters as in

Fig. 4.5. Comparison of the full numerical solution for the field (stars or circles depending

in the sign of E) to the asymptotic model (solid or dashed lines). The agreement is good

except for t = 6
16
T and 7

16
T just before and after the space charge layer collapses.
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of the full numerical solution well, both in the electroneutral bulk and dif-
fusion layer, and in the quasiequilibrium or nonequilibrium double layer.
At t = 2

16
T , just after the charge density in the Debye layer has changed

sign, there is a visible difference between the solutions inside the O(ε) Debye
layer, but once the space charge layer has formed the asymptotic model is
spot on the full numerical solution in the Debye layer. For t = 6

16
T and 7

16
T ,

immediately before and after the collapse of the space charge layer, there is
a significant discrepancy in the diffusion layer around 1 + y ∼ √

ε ≃ 0.03.
And the quality of the asymptotic model within the space charge layer is
generally not as good as in the other regions, part of the reason for which is
simply that we have not included the O(ε2/3/|J̄n|1/3) Smyrl–Newman tran-
sition layer, and therefore the divergent tail of ρ̆ close to yo is visible in
the plots. We already argued in Sec. 2.2.9 that the nonequilibrium solution
breaks down close to the point where the current reverses, because migra-
tion then no longer dominates in the space charge layer, and because the
thickness of the Smyrl–Newman transition layer diverges. Also, much of the
discrepancy is due to our crude model for salt diffusion, allowing for nega-
tive values of č. A solution for č with the ambipolar flux boundary condition
applied on a dynamically changing domain y̌o ≤ y̌ <∞ would certainly im-
prove the quality of the model. However, having said this, we still find that
our simple model captures the qualitative features of the full numerical so-
lution well. To further support this, Fig. 4.7 compares the magnitude of
the electric field E = −∂yφ from the asymptotic model to the full numerical
solution. Again, the agreement is good, except in an O(ε2/3) region around
yo where the field from the diffusion layer −∂yφ̌ = J̄n/č diverges, and except
for t = 6

16
T and 7

16
T immediately before and after the current reverses and

the space charge layer collapses.
Finally, Fig. 4.8 compares the actual thickness of the space charge layer

from the full numerical solution, defined (arbitrarily) as the width of the
region where the cation or anion concentration drops below ε2/3, to the width
of the region of negative concentration from the asymptotic model, and to
the approximate expression for yo based on Eq. (2.190). The figure shows
that the width of negative concentration tends to overestimate yo, whereas
the approximate expression tends to underestimate. Both are within roughly
10 % of the full numerical solution, except close to the point where the space
charge layer collapses. This accuracy is good enough that we dare employ
the simple ad hoc modifications to the strongly nonlinear model and use it
below to predict the direction and magnitude of electroosmotic flow of the
second kind.

Returning to Fig. 4.6 we notice that the Debye layer is highly compressed
at this large voltage. The concentration exceeds 102 at 1 + y = 10−4 and
increases to almost 104 for 1 + y ∼ 10−5. For a dilute electrolyte with
nominal bulk concentration of 1 mM this corresponds to a concentration of
about 1028 ions per m3 or 10 ions per nm3 at the surface which is approx-
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Figure 4.8: Thickness yo of the space charge layer as a function of time: Comparison of

the space charge layer thickness from the full numerical solution (solid line) to the width

of the region of negative concentration in the asymptotic model (dashed line) and to the

approximation for yo based on Eq. (2.190) (dash-dot).

imately at the steric limit, cf. the discussion in Sec. 2.1.2, and for more
concentrated solutions this limit is reached already at lower voltages. At
the same time, even though the Debye length is nominally λD = 10 nm for
a 1 mM electrolyte, the highly compressed Debye layer is effectively no more
than about an ångstrøm wide. This means that the Gouy–Chapman–Stern
model or more generally the use of dilute solution theory to describe the
structure of the O(ε) quasiequilibrium Debye layer at the electrode becomes
questionable. In particular, our model for the zeta potential ζ̃ breaks down,
but as we argued also in Sec. 2.1.2 this does not necessarily imply that our
entire model becomes invalid: Even beyond the steric limit the Debye layer
continues to accumulate charge, so the effects of salt depletion in the dif-
fusion layer, including the development of an extended space charge layer,
are still relevant. The surface conductance could also be affected by strong
interactions between the ions. While this is an interesting topic, it is also
beyond the scope of the present thesis, so we continue to investigate the
dynamical behaviour in our model as derived from dilute solution theory.
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4.2 2D model problems

Figure 4.9: Sketch of the geometry of the symmetric electrode array. The interdigitated

electrodes all have width W = 2 and finite thickness and radius of curvature R = 0.1 at

the edges, and are separated by gaps of G = 1. Dashed lines mark the computational

domain or unit cell, and the streamlines show the usual flow pattern with a vortex above

the electrode edge, driven by electroosmotic slip from the electrode edges towards the

center.

4.2.1 Symmetric electrode array

We consider a symmetric array of interdigitated electrodes as sketched in
Fig. 4.9. The electrodes have (dimensionless) width W = 2 and are sep-
arated by a gap G = 1, and to avoid introducing unphysically strong salt
depletion due to the field singularity at the edges we do not model the
electrodes as being infinitely thin but allow a finite thickness and radius of
curvature R = 0.1 at the edges. Further, we take ε = 0.001, δ = 1, ω = 1,
and assume a symmetric electrolyte with ∆D = 0. Fig. 4.9 also shows the
fluid flow pattern for V0 = 50 and no convective transport, i.e., Pe = 0. The
dominant component in the flow is electroosmosis, so we observe the “usual”
pattern with slip from the electrode edges towards the center, driving pairs
of fluid vortices above the electrodes. The slip pattern is shown in detail
in Fig. 4.10, where the solid line shows electroosmotic slip and the dashed
line is electroconvection induced in the diffusion layer. The two components
have opposite sign, but the electroosmotic slip dominates because the zeta
potential ζ̃ is much larger than the excess Ohmic potential drop ς̌ across the
diffusion layer.

Fig. 4.11(a) shows the bulk concentration profile as a contour plot: At the
electrode edges the concentration is lower than the equilibrium bulk value
c̄ = 1, whereas at the electrode center the concentration is higher. This
nonuniform concentration profile is maintained by a continuous surface flux
in the Debye layer running from the electrode edges to the center, i.e., on
average in time the Debye layer sucks in salt at the electrode edges, and
transports it towards the center where it is expelled and diffuses back; this
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Figure 4.10: Slip velocity us as a function of the distance s from the electrode center.

The electroosmotic slip (solid line) and electroconvection from the diffusion layer (dashed)

have opposite directions but electroosmosis dominates.

diffusive flux is shown in Fig. 4.11(b). The feature that the surface excess
flux Γ̃ = −(1 + 2Pe)q̃∇sφ̄ is in the same direction as the electroosmotic
slip ũs = ζ̃∇sφ̄ holds more generally for a symmetric electrolyte because
q̃ and ζ̃ have opposite sign. Fig. 4.11(c) shows the bulk electroconvection
component of the overall fluid motion due to the volume electrical body
force f̄ = ∇

2φ̄∇φ̄, arising when a current is passed through a region of
nonuniform concentration. This flow takes the form of a fluid vortex with
the same direction as that from electroosmotic slip, but the magnitude is
much smaller than the electroosmotic flow at V0 = 50.

Now, it turns out that neglecting bulk salt transport by convection is a
poor approximation. Although for a typical aqueous electrolyte the nominal
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Figure 4.11: Solution at V0 = 50 and Pe = 0. (a) Contour plot of the bulk concen-

tration profile. The concentration at the electrode edges is lower than the equilibrium

concentration c̄ = 1 and higher at the electrode center. (b) Purely diffusive bulk salt flux

F̄ = −∇c̄. (c) Bulk electroconvection component of fluid flow. The flow takes the form

of a fluid vortex with the same direction as that from electroosmotic slip.
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Figure 4.12: Solution for V0 = 50 and Pe = 0.25. (a) The salt concentration profile is

distorted and (b) the bulk salt flux is dominated by convection. (c) The bulk electrocon-

vection induced with the distorted concentration profile features a second counterrotating

vortex in the electrode gap.

Peclet number Pe = 0.25 is relatively small, cf. Table 2.1, the true ratio of
convective to diffusive ion transport

Pe∗ =
|Peūc̄|
|∇c̄| ∼ Pe|ū| (4.20)

is large because the dimensionless fluid velocity is much larger than unity
at V0 = 50, cf. Fig. 4.10. Therefore in Fig. 4.12 we show the solution at
Pe = 0.25: The salt flux in Fig. 4.12(b) is dominated by convection, which
distorts the concentration profile in Fig. 4.12(a) as compared to Fig. 4.11(a).
Interestingly, the bulk electroconvective flow in Fig. 4.12(c) induced with the
distorted concentration profile has different topology than for Pe = 0: There
is again a large fluid vortex rotating in the same direction as the electro-
osmotic flow, but a second smaller vortex appears in the gap between the
electrodes. However, the overall flow pattern is still dominated by electro-
osmosis so this second small vortex does not show up in the overall picture.

The minimal concentration in the bulk region close to the electrode edge
is around minr c̄ ≈ 0.8 and minr c̄ ≈ 0.7 for Pe = 0 and Pe = 0.25, re-
spectively, but the concentration in the diffusion layer is very close to dy-
namically reaching zero at V0 = 50. Upon a further increase in the driving
voltage, a transient space charge layer forms and gives rise to electroosmotic
flow of the second kind. Fig. 4.13 shows the slip velocity distribution along
the electrode for V0 = 100 and Pe = 0.25, and in particular we notice a sig-
nificant contribution from electroosmotic flow of the second kind close to the
electrode edge, that drives the fluid in the same direction as electroosmosis
of the first kind: The potential drop Φ̆ across the space charge layer has the
same sign as ζ̃, i.e., opposite of q̃, so in general the Helmholtz–Smoluchowski
component Φ̆∇sφ̄ of the second kind electroosmotic slip should have the same
direction as that of the first kind.

In order to quantify the relative strength of the different components in
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Figure 4.13: Slip velocity distribution at V0 = 100. The electroosmotic flow of the first

kind (solid line) and second kind (dash-dot) are in the same direction, while electrocon-

vection from the diffusion layer (dashed) is opposite.

the overall fluid flow we compute the total angular momentum

Ltot =

∫

Ω

r × ū dr, (4.21)

where Ω is the computational domain, cf. Fig. 4.9. Because of symmetry the
linear momentum of the fluid inside Ω vanishes, which makes Ltot indepen-
dent of the choice of origin for r. The contribution to Ltot from the different
flow components is shown in Fig. 4.14(a) for Pe = 0 and in Fig. 4.14(b) for
Pe = 0.25. In both cases electroosmosis of the first and second kind and
bulk electroconvection all contribute negatively to Ltot, i.e., they give rise
to fluid motion in the clockwise direction, while electroconvection induced
in the diffusion layer contributes positively. In general it appears that bulk
convection of salt for Pe 6= 0 enhances all components in the flow, except
bulk electroconvection. The mechanism behind this is as follows: The sur-
face excess salt flux from the electrode edges towards the center tends to
produce a region of low salt concentration and therefore low conductivity in
the gap between the electrodes. This slows down the charging close to the
electrode edges, which means that the accumulated charge becomes more
uniformly distributed along the electrode. That in turns suppresses the tan-
gential electric field because that is fundamentally dependent on nonuniform
charging of the Debye layer, and both electroosmotic slip of the first and
second kind and electroconvection from the diffusion layer are driven by the
tangential field. However, bulk convection of salt tends to counteract the
development of a low conductivity region between the electrodes by stir-
ring the solution and bringing down unit concentration electrolyte into the
gap. This explains why electroosmosis of the first kind saturates already for
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Figure 4.14: Total angular momentum in fluid vortex as a function of driving voltage V0

for: (a) Pe = 0 and (b) Pe = 0.25. The solid line shows the overall Ltot, and the symbols

show contributions from electroosmosis of the first kind (circles) and the second kind

(stars), and from electroconvection from the diffusion layer (squares) and bulk (triangles).

For comparison the dotted line shows the corresponding result from the weakly nonlinear

model. The two arrows mark the voltage where local electroneutrality first breaks down

in the diffusion layer and bulk region, respectively.

V0 & 100 in Fig. 4.14(a) but not until above V0 & 175 in Fig. 4.14(b), and
why both electroosmosis of the second kind and electroconvection from the
diffusion layer is about twice as strong in Fig. 4.14(b) as in Fig. 4.14(a). The
development of the low conductivity zone between the electrodes is shown in
Fig. 4.15 for V0 = 50, 100, 150, and 200, and Pe = 0 and 0.25, respectively.

The bulk electroconvection only contributes very little to Ltot at Pe =
0.25, but this is partly because the secondary vortex from Fig. 4.12(c) grows
so large that the overall contribution from the two vortices almost integrates
to zero. The arrows in Fig. 4.14 marks the point around V0 ≈ 50 where local
electroneutrality first breaks down in the diffusion layer close to the electrode
edge, as well as the point around V0 ≈ 175 where the bulk concentration
drops below ε1/3 = 0.1 and our ad hoc modification, replacing c̄ by c̄ =
max{c̄, ε1/3} in the bulk conductivity and fluid body force, becomes active.

4.2.2 Asymmetric electrode array

We now break the left-rigth symmetry of the electrode array and consider
a planar device as that sketched in Fig. 3.1, with pairs of electrodes of
width W1 = 1.5 and W2 = 7, separated by gaps of G1 = 1 and G2 = 5,
respectively. To avoid problems associated with the field singularity at sharp
edges we allow for electrodes of finite thickness and curvature R = 0.2 at the
edges. Further, we take ε = 0.001 and δ = 1, and consider first a symmetric
electrolyte with ∆D = 0. Because the device is no longer completely flat,
and because bulk electroconvection is not induced at the surface, we cannot
apply the simple Fourier analysis from Chap. 3 to compute the pumping
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Figure 4.15: Salt concentration profile for Pe = 0 (left) and 0.25 (right) at V0 = 50,

100, 150, and 200. The low conductivity region between the electrodes locally reduces

the current into the Debye layer at the electrode edges, which makes the charging of the

Debye layer more uniform and reduces the tangential field. Bulk convection of salt when

Pe 6= 0 counteracts this by flushing “fresh” electrolyte down into the gap region.
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Figure 4.16: Pumping velocity as a function of driving voltage V0 at ω = 1 for: (a)

Pe = 0 and (b) Pe = 0.25. The solid line shows the net pumping U , and the symbols

show contributions from electroosmosis of the first kind (circles) and the second kind

(stars), and from electroconvection from the diffusion layer (squares) and bulk (triangles).

For comparison the dotted line shows the corresponding result from the weakly nonlinear

model. The two arrows mark the voltage where local electroneutrality first breaks down

in the diffusion layer and bulk region, respectively.

velocity from the spatial average slip. Instead we determine the full bulk
flow profile, compute the net volume flow rate Q by integrating over a cross
section of the channel, cf. Eq. (3.2), and define the effective pumping velocity
as U = 2Q/H, where H is the height of the channel.

Fig. 4.16 shows the pumping velocity as a function of driving voltage
V0 for ω = 1 at the inverse RC time, both with and without convective
transport of salt. In both cases the net pumping is dominated by electroos-
motic flow of the first kind, so the model does not predict any reversal of the
pumping direction for V0 . 200. The contribution from electroconvection
falls off as V 4

0
at low voltage, where the flow induced in the diffusion layer

contributes in the “forward” direction, while bulk electroconvection pumps
in the “reverse” direction with much smaller strength. Note that we might
actually have expected the opposite, since we learned in Sec. 4.2.1 that bulk
electroconvection induces vortices in the same direction as electroosmosis,
while electroconvection induced in the diffusion layer slips in the opposite
direction. However, for a planar asymmetric electrode array it is not only
the slip direction, i.e., towards the center or the edges of the electrodes, that
determines the net pumping, but also the balance between different sections
with opposite slip direction at different strength.

Around V0 ≈ 50 the concentration in the diffusion layer dynamically
approaches zero close to the right edge of the narrow electrode, and above
this voltage the electroosmotic flow of the second kind contributes to pump-
ing in the reverse direction. When the driving voltage is further increased,
the narrow electrode experiences breakdown of local electroneutrality and
formation of transient space charge layers over the entire surface of the elec-
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Figure 4.17: Contour plot of pumping velocity as a function of driving frequency ω

and voltage V0 for Pe = 0. (a) Net pumping velocity U and contributions from: (b)

Electroosmotic flow of the first kind, (c) electroosmotic flow of the second kind, and (d)

bulk electroconvection. The dashed black and white lines mark the voltage where local

electroneutrality breaks down in the diffusion layer and bulk region, respectively.

trode, while the wide electrode experiences this only close to the left edge.
Therefore for V0 & 110 the overall contribution from electroosmosis of the
second kind to the net pumping changes to be in the forward direction. The
electroosmotic flow of the first kind saturates for V0 & 125 in Fig. 4.16(a)
with Pe = 0, but not in Fig. 4.16(b) where Pe = 0.25. As for the symmetric
device this occurs because the surface excess flux gives rise to a region of low
conductivity in the gap between the electrodes which reduces the tangential
field, and again bulk convection of salt counteracts the formation of such a
region for Pe 6= 0.

Fig. 4.17 shows the pumping velocity on a contour plot as a function of
the driving frequency ω and voltage V0 for Pe = 0. In Fig. 4.17(a) the total
pumping velocity U is maximized around ω ∼ 1 at the inverse RC time,
but at large voltage there is a more complex frequency dependence due to
the contribution from bulk electroconvection. The dashed lines mark the
breakdown of local electroneutrality in the diffusion layer and bulk region,
respectively, cf. the arrows in Fig. 4.16. Fig. 4.17(b) shows the contribution
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Figure 4.18: Contour plot of pumping velocity U as a function of driving frequency ω

and voltage V0 for Pe = 0.25. (a) Net pumping velocity U and contributions from: (b)

Electroosmotic flow of the first kind, (c) electroosmotic flow of the second kind, and (d)

bulk electroconvection. Again, dashed black and white lines mark the voltage where local

electroneutrality breaks down in the diffusion layer and bulk region, respectively.

from electroosmosis of the first kind, featuring a single peak around ω ∼ 1+δ
at low voltage that shifts down to ω ∼ δ at larger voltage. The contribution
from electroosmosis of the second in Fig. 4.17(c) starts out negative, i.e., in
the reverse direction, but changes to positive at larger voltage. Finally, bulk
electroconvection in Fig. 4.17(d) contributes in the reverse direction around
ω ∼ 1 but in the forward direction at larger frequency. We do not show the
electroconvection induced in the diffusion layer because its contribution to
the net pumping is small.

Fig. 4.18 shows the results at Pe = 0.25, which are qualitatively very
similar to those at Pe = 0, but quantitatively the electroosmotic flow of the
first kind is about twice as strong because convection of salt prevents forma-
tion of a low conductivity region in the electrode gap. The electroosmotic
flow of the second kind displays a twin peak at large voltage, and the same
is true for bulk electroconvection in the reverse direction. A similar feature
with a secondary peak in the pumping velocity has been observed experi-
mentally by Urbanski et al., although for a different electrode geometry [69].
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Figure 4.19: Pumping velocity as a function of driving voltage V0 at ω = 1 for an

asymmetric electrolyte with ∆D = 0.33: (a) Pe = 0 and (b) Pe = 0.25. The solid line

shows the net pumping U , and the symbols show contributions from electroosmosis of

the first kind (circles) and the second kind (stars), and from electroconvection from the

diffusion layer (squares) and bulk (triangles). For comparison the dotted line shows the

corresponding result from the weakly nonlinear model. Arrows mark the breakdown of

local electroneutrality in the diffusion layer and bulk region.

However, the convergence of the solution for large voltage and frequencies
ω & 3 was relatively slow, so we are not fully confident with our numerical
results here.

Until this point we have focused on the symmetric electrolyte case with
∆D = 0 in the strongly nonlinear model which is already farily complex,
but as a final twist let us consider an asymmetric electrolyte with cations
twice as mobile as the anions, i.e., D+/D− = 2, such that ∆D = 0.33 and
Da = 0.88. The results are shown in Fig. 4.19 as a function of driving voltage
at ω = 1, and they are very similar to those for a symmetric electrolyte
from Fig. 4.16. The contribution from electroconvection induced in the
diffusion layer scales as V 2

0
at low voltage because the diffusion potential

−∆D log(1 + γ̌/c̄) is linear in the excess concentration γ̌, which in turns is
linear in V0 due to the electric current component in the excess ambipolar
flux, cf. Eqs. (2.159) and (2.160). Moreover, salt depletion in the diffusion
layer is more pronounced due to the lower effective diffusivity Da, and the
concentration at the electrode approaches zero already around V0 ≈ 40.
Therefore electroosmotic flow of the second kind also shows up earlier, but
with magnitude similar to the symmetric electrolyte solution.

Limitations of the numerical scheme

The temporal resolution in Fig. 4.16 is N = 32 points in time over one
period, while in Figs. 4.17, 4.18, and 4.19 it is only N = 16. The difference
between the results obtained with N = 16 and N = 32 is small, around 5%
or less, but also not completely negligible. We compute the periodic solution
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using a relaxation method as described in Appendix A.3, which allows us
to account for the nonlocal time dependence of the surface concentration
on the flux injected from the Debye layer. However, because the computer
memory required to solve the problem grows as O(N2), this effectively limits
the time resolution that we can obtain; for the spatial resolution in the
finite element mesh that we use, we run out of computer memory already at
N = 64. Obviously, it would be a great advantage to develop a timestepping
algorithm to compute the solution because the memory requirements for a
single timestep would be O(1) only, allowing for a much better resolution in
time and space than we have been able to achieve here. However, we have
not had the time to pursue this.

4.3 Summary

In this chapter we have studied numerical solutions to our strongly nonlinear
dynamical model, both for a simple 1D geometry and for 2D models of a
symmetric and an asymmetric electrode array.

We compared the strongly nonlinear model to a full numerical solution of
the Poisson–Nernst–Planck equations in one dimension, and found excellent
agreement at driving voltages below the point where local electroneutrality
breaks down in the diffusion layer. At even larger voltage we found that
the simple modifications to the model to account for formation of transient
space charge layers captures the qualitative features of the full numerical
solution well, except close to the point where the current reverses and the
space charge layer collapses, but also admit that there is room for general
improvement of the model.

For the symmetric electrode array we found that both electroosmotic
flow of the first and second kind and bulk electroconvection gives rise to fluid
motion in the same direction, whereas the electroconvection induced in the
electroneutral diffusion layer slips in the opposite direction of electroosmosis.
We also found that electroosmotic flow is limited at large voltage by the
formation of a region of low conductivity in the gap between the electrodes,
but bulk convection of salt tends to counteract this.

On the asymmetric array our model predicts that electroosmotic flow
of the first and second kind contributes to pumping in the same “forward”
direction at large voltage, whereas bulk electroconvection contributes in the
“reverse” direction, and electroconvection induced in the diffusion layer con-
tributes only little to the net pumping. However, the electroosmotic flow
dominates over the entire voltage range that we have considered, so we are
not able to account for the reversal of the net pumping direction that has
been observed experimentally [15, 31, 34].

The particular parameter values of ε = 0.001 and δ = 1 used throughout
this chapter corresponds to, e.g., a dilute 1 mM KCl solution with λD =
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10 nm in a device with 10 µm characteristic feature size, cf. Table 2.1, with
an electrode material such as titanium that forms a natural oxide layer and
therefore has a moderate Stern layer capacitance. For electrolytes of even
lower concentration or devices of smaller feature size, the relevant value of
ε would be larger, and the strongly nonlinear phenomena would become
significant at lower driving voltage. Likewise, for electrodes made from gold
or platinum that can have very large Stern layer capacitance, the amount
of ions accumulated in the Debye layer is larger, which again makes the
strongly nonlinear phenomena show up at lower voltage.

For electrolytes of higher concentration the use of dilute solution theory
to describe the Debye screening layer also breaks down at lower driving
voltage. The effect of steric exclusion due to finite size of the ions is first
to decrease the capacitance of the Debye layer, i.e., to increase the zeta
potential for a given amount of accumulated charge [56], which would in
turn enhance the electroosmotic flow of the first kind. However, one might
also envisage viscoelectric effects from strong interactions in a dense phase
of ions that would tend to inhibit fluid motion. In that case the other
sources of electrokinetic flow, i.e., electroosmosis of the second kind and
electroconvection from the quasielectroneutral diffusion layers and bulk as
studied in this chapter, would become more significant to the overall fluid
motion.
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Chapter 5

Optimization

Device optimization is an important discipline in engineering. It is also a
complex task with many objectives to be pursued simultaneously, including
device performance, price, robustness, ease of manufacturing, etc. There are
many trade-off’s to be made and it is often not easy to measure what is the
“optimal” design.

In mathematics an optimization problem is formulated in a much more
clean and abstract way: The goal of the optimization is to minimize or
maximize some quantity f(x), the objective function, which is a function
of all the parameters x that can be adjusted in the optimization process.
In the present chapter we focus on optimizing the electrode geometry to
maximize the pumping velocity U as a function of driving frequency and of
the different parameters describing the electrode shape. E.g., for a simple
planar array of asymmetric electrode pairs as studied in detail Chap. 3 we
have x = [ω, W1, W2, G1, G2]

T . There may be constraints on the values
that the parameters can take, e.g., a geometrical length scale cannot be
negative, or more complex nonlinear constraints that depends on several of
the parameters together which are typically written as gi(x) ≤ 0. Hence a
large class of optimization problems can be formulated as

minimize f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m, (5.1)

xmin

j ≤ xj ≤ xmax

j for j = 1, . . . , n.

Depending on the nature of the problem there are several different solution
algorithms to choose from: For constrained linear problems the method of
choice is the so-called simplex algorithm, whereas for unconstrained nonlin-
ear problems one can apply either a conjugate gradient or a quasi-Newton

method, provided the gradient of the objective function with respect to x can
be computed [70]. For low-dimensional nonlinear constrained optimization
a popular method is sequential quadratic programming where in each itera-
tion the objective and constraints are approximated by quadratic functions
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of x; implementations can be found in many software libraries, including the
Matlab Optimization Toolbox. The algorithm requires the gradient and
Hessian (second derivative) of the objective and constraints to be evalu-
ated, either exactly or by finite differencing. However, for large-dimensional
problems typical of structural optimization, in particular topology optimiza-
tion, it becomes very expensive to compute the Hessian. In such cases it
is preferable to use a simple gradient based algorithm, like steepest descent,
to determine the optimal solution. We have used the so-called method of

moving asymptotes (MMA) where the approximation for the objective and
constraints is chosen to be both convex and separable [71, 72, 73].

Topology optimization is an approach to designing mechanical structures
where one does not a priori specify or even know the topology of the optimal
geometrical structure [74, 75, 76]. It was originally developed in mechanical
engineering to optimize beams for maximal stiffness at a given amount of
material. More recently the method has been extended to optimize acous-
tical systems [77], photonic crystals [78], and fluidic structures [79, 80]. We
have been working with the method in the fluidic domain, extending the
original results of Borrvall and Petterson for Stokes flow [79] to account for
inertial forces, and using it to study a small fluidic network whose optimal
topology changes as a function of the Reynolds number [46]; see our paper
in Appendix 5. The basic idea is to replace the discrete transition between
solid structure and void with a smooth one by introducing an (artifical)
porous medium whose permeability to the fluid depends on the local mate-
rial density. The optimization algorithm is then allowed to distribute a fixed
amount of material in a continuous way, which allows changes in topology to
occur smoothly rather than discretely. Often this improves the convergence
towards the globally optimal topology, but for fluidic systems we observed
problems when there are two strong compeeting local optima [46]. F. Okkels
continues our work by optimizing flow in chemical enzyme reactors and cell
metabolism [51, 81].

While topology optimization is a powerfull tool, there are two major
obstacles that makes it impractical for optimizing the electrode geometry
for AC electroosmotic pumping: First, the electroosmotic slip is an inherent
surface phenomenon which is incompatible with a fuzzy transition between
solid electrode and fluid electrolyte. Second, the electrode topology is not
really up for discussion: A device with free-hanging metal islands above
the base electrodes would certainly be an interesting sort of combination
of AC- and induced-charge electroosmosis but it would also be extremely
difficult to fabricate. Therefore, in the present chapter we use more classical
shape optimization of the electrode structures, both with low- and high-
dimensional design spaces.

We always stick to the low voltage regime V0 ≪ kBT/e. The primary
reason is that optimization is an expensive task numerically and therefore we
prefer to work with the linear model which is in itself inexpensive to solve.
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Our experience from Chap. 3 is that the weakly nonlinear regime is not very
different from the low voltage regime, so it seems reasonable that a device
geometry optimized at low voltage will also perform well at larger voltage.
In the strongly nonlinear regime we still need a better understanding of the
system behaviour before we can start thinking of systematic optimization.

5.1 Planar asymmetric electrode pairs

Most of the AC electroosmotic pump designs so far tested experimentally
[25, 26, 28, 29, 15, 30] have been planar devices with asymmetric electrode
pairs as studied in Chap. 3 and sketched in Fig. 3.1. Often the relative
size of the electrodes has been chosen as in the original paper by Brown
et al. [25], with narrow and wide electrodes of width W1 = 4.2 µm and
W2 = 25.7 µm, respectively, separated by gaps of G1 = 4.5 µm and G2 =
15.6 µm. Mpholo et al. tested devices with three different overall periods
L = 50 µm, 30 µm, and 20 µm, but used the same relative electrode sizes in
each case; this allowed them to confirm that the pumping velocity increases
with downscaling of the system.

In practice the minimal size of the microelectrodes and gaps is limited by
the lithography used to fabricate the device. However, for a given minimal
feature size one can still improve on the pumping velocity U by choosing
the relative electrode sizes optimally. This problem can be expressed as a
constrained optimization of the form of Eq. (5.1) writing

maximize U( log ω,W1,W2, G1, G2) (5.2)

subject to 1 ≤W1 ≤W2,

1 ≤ G1 ≤ G2,

where ω is the driving frequency.1 Because the pumping velocity increases
with downscaling we can be sure that in the optimal design at least one
of W1 and G1 will attain their lower limit, whereas both W2 and G2 must
be strictly larger than W1 and G1, respectively, because the net pumping
vanishes for W1 = W2 or G1 = G2 due to symmetry. It turns out that in
the optimal design G1 = 1 and W1 > G1, and the exact location of the opti-
mum can therefore be determined using a simple unconstrained optimization
algorithm such as the Matlab function fminunc to solve the problem2

maximize U( log ω,W1,W2, G1 = 1, G2), (5.3)

1Optimizing for log ω effectively removes any problems associated with zero or negative

frequencies; indeed we would argue this is the natural way of reporting any frequency.
2In order to use the fminunc function from the Matlab Optimization Toolbox, all the

user has to do is write a function that takes ( log ω,W1,W2, G2) as arguments, sets up and

solves the electrokinetic problem, e.g., using Femlab, and returns (minus) the pumping

velocity U . However, due to the truncation error and noise introduced by remeshing the

geometry in each function call, it is important choose appropriate not-so-small values

for the termination tolerance and for the step size used when fminunc approximates the
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Figure 5.1: Contour plot of the maximum pumping velocity max ω U as a function of

W1 and W2 for G1 = 1 and G2 = 5. When W1 = W2 the net pumping vanishes due to

symmetry. There is a unique optimum close to W1 = 1.5 and W2 = 7 with U = 0.00358

at ω = 0.8.

provided we start the algorithm somewhere in the interior of the feasible
region. In this way we find that the pumping velocity is maximized for
W1 = 1.51, W2 = 6.55, and G2 = 4.74, where U = 0.00359 at ω = 0.80.

The pumping velocity is actually not very sensitive to the particular
choice of planar electrode geometry. This is demonstrated in Fig. 5.1 where
the maximum pumping velocity maxω U is shown as a function of W1 and
W2 for G1 = 1 and G2 = 5. The maximum is close to W1 = 1.5 and W2 = 7
where U = 0.00358 at ω = 0.8, but the figure also shows that the range of
designs that come within the 0.0035 contour is fairly broad. It is for this
reason that we have chosen in Chap. 3 to work with a design with rounded
numbers, namely W1 = 1.5, G1 = 1, W2 = 7, and G2 = 5. This does not
correspond to any device tested experimentally (yet), but it is close to the
global optimum according to our present linear analysis.

5.2 Planar electrodes with nonuniform coating

There are many ways that one can break the left-right symmetry of an elec-
trode array. From a fabrication point of view the asymmetric pairs of planar
electrodes are particularly simple because the device can be processed with
just a single lithography step to define metal electrodes on the substrate.
Another simple approach is to use pairs of planar electrodes that are sym-

gradient and Hessian by finite differencing. A robust but also less efficient alternative is

direct search algorithms like the Matlab fminsearch Nelder–Mead simplex method.
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W G

Figure 5.2: Planar electrodes (black) with a spatially nonuniform thin oxide layer or

coating (orange). The coating thickness is not drawn to scale; streamlines correspond to

the optimal solution at driving frequency ω = 5.1.

metric in size, but with an oxide layer or coating that makes the Stern layer
capacitance left-right asymmetric on the individual electrodes, see Fig. 5.2.
This was actually one of the suggestions for breaking the symmetry in the
original paper by Ajdari [14].

We consider the general problem of an array of blocking electrode where
the Stern layer capacitance varies along the electrodes, i.e., the capacitance
ratio δ(x) is a function on the position with 0 ≤ δ(x) ≤ ∞. For our present
purpose it turns out to be more convenient to parametrize the problem in
terms of Λ = (1+δ)−1, which is simply the ratio of the overall capacitance of
the double layer to the Debye layer capacitance [23, 33], because this stays in
the unit interval 0 ≤ Λ(x) ≤ 1. In the low voltage regime the dimensionless
problem then takes the form

−∇
2φ̂ = 0 (5.4)

in the bulk with

−n · ∇φ̂ = iωΛ(x)(φ̂ − V̂ext) (5.5)

on the electrodes and n · ∇φ̂ = 0 on the channel walls. The time average
slip velocity can be expressed as

us = Λ(x)
1

2
Re

[

(V̂ext − φ̂)∂xφ̂
∗
]

= −Λ(x)
1

4
∂x

∣

∣V̂ext − φ̂
∣

∣

2
. (5.6)
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Discretization and sensitivity analysis

We approximate both the complex potential φ̂ and the design variable Λ by
expanding on a finite basis set

φ̂(r) =
∑

m

ϕm(r)φ̂m and Λ(x) =
∑

k

χk(x)Λk. (5.7)

Multiplying Eq. (5.4) by a test function ϕn and integrating over the com-
putational domain Ω, we obtain the weak form of the problem

∫

Ω

∇ϕn · ∇φ̂dr + iω

∫

electrodes

ϕnΛ(x)(φ̂ − V̂ext) dx = 0 for all n, (5.8)

where we used Gauss’ law with Eq. (5.5) to eliminate n ·∇φ̂. Inserting the
expansion for φ̂ we obtain a linear problem for the coefficients φ̂m

∑

m

[
∫

Ω

∇ϕn · ∇ϕm dr + iω

∫

electrodes

ϕnΛϕm dx

]

φ̂m = iω

∫

electrodes

ϕnΛV̂ext dx. (5.9)

This can be written more compactly in matrix form

K̂Φ̂ = F̂, (5.10)

where

K̂nm =

∫

Ω

∇ϕn · ∇ϕm dr + iω

∫

electrodes

ϕnΛ(x)ϕm dx (5.11)

and

F̂n = iω

∫

electrodes

ϕnΛ(x)V̂ext dx. (5.12)

Notice that K̂ is symmetric but not Hermitian. We also define the residual
L̂ = F̂ − K̂Φ̂ in terms of which the electrical problem becomes

L̂(Φ̂,Λ, ω) = 0. (5.13)

We want to maximize the pumping velocity U , and for an array of planar
electrodes this is simply defined as as the spatial average slip velocity

U =
1

L

∫

electrodes

us dx = − 1

4L

∫

electrodes

Λ (V̂ ∗
ext

− φ̂∗)∂x(V̂ext − φ̂) dx+ c.c. (5.14)

Since the number of parameters Λk describing the distribution of the coating
material is large, we use the gradient based algorithm MMA [71, 72] to
determine the optimum. Hence we need to compute the derivatives

d

dΛ

[

U
(

Φ̂(Λ, ω),Λ
)

]

and
d

dω

[

U
(

Φ̂(Λ, ω),Λ
)

]

, (5.15)
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where Φ(Λ, ω) is considered an implicit function of Λ and ω, defined by
the constraint Eq. (5.13). However, because Φ̂(Λ, ω) is implicit and ∂Φ̂/∂Λ
and ∂Φ̂/∂ω are unknown, we cannot simply use the chain rule. Instead we
use the adjoint method [82] and introduce the Lagrangian L,

L(Φ̂, Φ̂∗,Ŵ,Ŵ∗,Λ, ω) = U(Φ̂, Φ̂∗,Λ) +
1

2
ŴT L̂ +

1

2
Ŵ∗T L̂∗, (5.16)

where both the potential Φ̂ and its complex conjugate Φ̂∗ are considered
as independent variables, and Ŵ is a Lagrange multiplier for the constraint
L̂(Φ̂,Λ, ω) = 0. The derivatives in Eq. (5.15) can be computed as the
gradient of L with respect to Λ and ω at a point in (Φ̂, Φ̂∗,Ŵ,Ŵ∗,Λ, ω)
space where L is stationary with respect to both Φ̂ and Ŵ and their complex
conjugates. That is, for a given Λ and ω we first compute the potential Φ̂

from

∂L
∂Ŵ

= F̂ − K̂Φ̂ = 0, (5.17)

and the Lagrange multiplier Ŵ from

∂L
∂Φ̂

=
∂U

∂Φ̂
− 1

2
K̂TŴ = 0. (5.18)

Then the desired derivatives are given by

d

dΛ

[

U
(

Φ̂(Λ, ω),Λ
)

]

=
∂L
∂Λ

=
∂U

∂Λ
+ Re

[

ŴT ∂L̂

∂Λ

]

, (5.19)

and

d

dω

[

U
(

Φ̂(Λ, ω),Λ
)

]

=
∂L
∂ω

= Re
[

ŴT ∂L̂

∂ω

]

. (5.20)

Numerical implementation

We build the physical model and solve the problem Eq. (5.17) using Femlab.
Therefore the both system matrix K̂ = −∂L̂/∂Φ̂ and the matrix ∂L̂/∂Λ are
computed automatically as part of the solution process and can be obtained
directly as Matlab sparse matrices. Further we need to compute the partial
derivatives of U with respect to Φ̂ and Λ

∂U

∂φ̂n
=

1

4L

∫

electrodes

Λ
[

(V̂ ∗
ext − φ̂∗)∂xϕn + ϕn∂x(V̂

∗
ext − φ̂∗)

]

dx (5.21)

∂U

∂Λk
= − 1

4L

∫

electrodes

χk ∂x
∣

∣V̂ext − φ̂
∣

∣

2
dx. (5.22)
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Figure 5.3: Comparison of the solution for optimal coating (solid) at ω = 5.1 where

U = 0.011 to the solution for uncoated electrodes (dashed) at ω = 4.0 where U = 0:

(a) Design variable Λ(x). (b) Potential φ̂(x, y = 0) on electrodes; optimal Re[φ̂] (solid)

and Im[φ̂] (dotted) vs. uncoated Re[φ̂] (dashed) and Im[φ̂] (dash-dot). (c) Time-average

slip velocity us(x). (d) Sensitivity dU/dΛ(x). The position of the electrode on the x-axis

is marked in gray.

This can also be done with Femlab although on the way we need to make
an auxiliary copy of the original model; see our paper in Appendix C for
details. Finally we need to evaluate

ŴT ∂L̂

∂ω
= i

∫

electrodes

ΛŴ (V̂ext − φ̂) dx (5.23)

= ŴT
[

L̂(Φ̂,Λ, 1) − L̂(Φ̂,Λ, 0)
]

, (5.24)

where the last equality follows because L̂(Φ̂,Λ, ω) is a linear function of ω.

Optimal solution

We consider a symmetric device with electrodes of a fixed width W = 1 and
gap G = 1, cf. Fig. 5.2. The design variable Λ is approximated with first
order Lagrange elements, i.e., it is piecewise linear, and we use second order
elements for the potential φ̂. The optimization algorithm is initialized with
a uniform distribution Λ(x) = 1 corresponding to uncoated electrodes, and
with a frequency of ω = 4 which is about twice the relaxation frequency
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for the uncoated device. The initial solution is shown with dashed lines in
Fig. 5.3: The potential φ̂ has left-right symmetry so the induced electroos-
motic slip velocity does not give rise to any net pumping. The sensitivity
dU/dΛ of the pumping velocity U to local changes in Λ shows that U can be
increased by decreasing Λ on the left half of the electrode or by increasing
Λ on the right half; however, the latter is not an option due to the bound
Λ ≤ 1. At first this result may seem counterintuitive: From Eq. (5.6) we
know that at fixed tangential field and potential drop across the double layer,
the slip velocity decreases locally with decreasing Λ. However, a decrease in
Λ on the left half of the electrode also induces changes in the potential in
such way that the overall result is an increase in the net pumping U .

The optimization algorithm adjusts Λ(x) according the sensitivity and
quickly reaches a solution that is close to optimal, except for some small wig-
gles at the resolution of the finite element mesh, but these slowly fade away
as the design iterations proceed. After 71 iterations the relative increase
in pumping velocity is less than 10−5 for two successive iterations and we
terminate the algorithm. The maximum pumping velocity is U = 0.011 at
ω = 5.1, and the solution is shown with solid lines in Fig. 5.3: Close to the
right edge of the electrode there is an uncoated section of width ∼ 0.25 where
Λ = 1, but for the remaining part it turns out to be optimal to add coating.
The potential varies almost linearly and the time-average slip velocity us is
positive throughout the coated section. Notice that in the optimal solution,
dU/dΛ 6= 0 only where Λ is limited by the upper bound; in optimization
jargon this is known as the complementary slackness condition. Finally, the
thickness of the coating in Fig. 5.2 corresponds to the optimal capacitance
ratio δ = Λ−1 − 1, and the streamlines correspond to the optimal solution
at ω = 5.1.
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Figure 5.4: Approximating the optimal solution from Fig. 5.3 by a design with electrodes

with a uniformly coated section of width W1 = 0.75 where Λ = 0.25 and an uncoated

section of width W2 = 0.25. The maximal pumping velocity is U = 0.0105 at ω = 5.4.

(a) Potential on electrodes; Re[φ̂] (solid) and Im[φ̂] (dashed). (b) Slip velocity us.

From an engineering point of view it may be possible to fabricate devices
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with a nonuniformly graded coating thickness, but with standard lithog-
raphy techniques it is much easier to obtain piecewise constant coating
thickness. Therefore, inspired by the optimal solution we consider a de-
vice where the electrodes are divided into two sections of width W1 = 0.75
and W2 = 0.25 where the design variable is Λ1 = 0.25 and Λ2 = 1.0, respec-
tively. The maximum pumping velocity for this simple design is U = 0.0105
at ω = 5.4, which is merely 5% lower than the optimum from Fig. 5.3. The
solution is shown in Fig. 5.4; notice that the slip velocity is discontinuous
at the point where Λ changes abruptly from Λ1 to Λ2.

One may object to the above solutions because they have features below
the (unit) characteristic length scale. If the same lithography technique
is used to define both the electrodes and the coating on them it is more
appropriate to formulate the problem as

maximize U( log ω,W1,W2, G,Λ1,Λ2 = 1) (5.25)

subject to 1 ≤W1,

1 ≤W2,

1 ≤ G,

0 ≤ Λ1 ≤ 1.

Here the optimal design is W1 = 1.4, W2 = 1, G = 1, Λ1 = 0.31, and
Λ2 = 1, where U = 0.0096 at ω = 1.9. This is about 15% lower than the
optimum from Fig. 5.3, but better suited for fabrication at the lower limit
on resolution set by standard lithography.

Compared to the device with asymmetric pairs of electrodes, asymmetric
coating allows the pumping velocity to be increased by a almost a factor of
3, at the expense of an additional lithography step to define the coating. A
disadvantage of the use an asymmetric coating to break the left-right sym-
metry is that the design variable Λ depends on the electrolyte concentration
through the Debye layer capacitance. Therefore the coating thickness will
have to be designed for a particular concentration, while off that concentra-
tion the performance is suboptimal.

5.3 3D structured electrodes with regular shape

While most work so far have focused on planar designs with thin flat elec-
trodes on a substrate, one may obtain a significant gain in pumping efficiency
by stepping into the third dimension: Bazant and Ben recently suggested
the use electrodes like those shown in Fig. 5.5 [45], for which they predict
pumping velocities an order of magnitude larger than the planar design of
Brown et al. They also tested the 3D design experimentally and obtained
already a factor of 7 larger pumping velocity than with planar devices of the
same minimal feature size [83, 69].
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W1 W2 G

H1

Figure 5.5: Stepped 3D electrode geometry: Each electrode in the array has a raised

section of width W1 and height H1 and a base section of width W2 and the gap between

adjacent electrodes is G. Streamlines correspond to the solution with W1 = W2 = H1 =

G = 1 at driving frequency ω = 0.8; close to the electrode extra streamlines are plotted

to show the details of the flow pattern.

The basic design principle that they propose is to raise those sections
of the electrodes where the slip is in the “forward” direction and to lower
the sections with “reverse” slip. This enhances the forward flow because the
reverse vortex is living in a trench, where it is confined by the vertical solid
electrode surface rather than struggling up against the forward flow. On the
contrary: At the level of the forward slipping surface the recirculation from
the vortex enhances the forward pumping instead of inhibiting it. Effectively,
the electrode array now acts as a fluid “conveyor belt” where all sections
help pumping the fluid in the forward direction [45].

We consider first a geometry as shown in Fig. 5.5 with electrodes that
have both a raised section of width W1 and height H1, a base section of
width W2, and with a gap G between adjacent electrodes. In the simple
case when all dimensions are set to unity, W1 = W2 = H1 = G = 1, the net
pumping is maximized around ω = 0.8. By analogy with the planar pumps
we calculate the effective pumping velocity as U ≈ 2Q/Htot ≈ 0.05, where
Htot ≫ 1 is the overall channel height measured from the substrate to the
channel top wall. This is an order of magnitude larger than the optimal
result from Sec. 5.1, which clearly demonstrates the potential of 3D designs.

For planar designs the pumping velocity U , defined as the spatial average
slip velocity, comes out of a simple Fourier analysis as the natural way of
quantifying the pump performance. For 3D structured electrodes it is not
immediately obvious how the pumping velocity should actually be defined,
or if it is appropriate for quantifying the pump performance at all. To clarify
this we compute the net flow rate Q as a function of the channel height Htot.
The result is shown in Fig. 5.6 where we clearly see a linear dependence for
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Figure 5.6: Maximal flowrate maxω Q vs. total channel height Htot measured from the

substrate to the channel top wall in a geometry with W1 = W2 = H1 = G = 1. For

Htot ≫ 1 there is a linear dependence: Data points (circles) and linear fit (dashed line).

For Htot = 1 the top wall touches the raised electrode section and the flow is blocked.

Htot ≫ 1. For a given electrode design we can therefore uniquely define the
pumping velocity as

U = lim
Htot→∞

2Q(Htot)

Htot

. (5.26)

Extrapolating Q(Htot) to zero we get a nonzero intercept at around H∗ =
0.7, which is perhaps not so surprising, given the ambiguity in the definition
of the channel height, i.e., should it be measured from the substrate or from
the top of the electrodes? For Htot = H1 = 1 the channel top wall touches
the raised electrode section and the flow is blocked. In order to estimate
U from data at finite Htot we could either use U ≈ 2Q/(Htot − H∗) or
U ≈ 2 ∂Q/∂Htot. However, because H∗ depends on H1, and ∂Q/∂Htot

requires finite differencing, we simply choose a “large” Htot = 40 and use
U ≈ 2Q/Htot throughout this section.

In order to compute the net flow rate Q we need to solve the Stokes flow
problem with a slip condition on the electrodes. To avoid numerical diffi-
culties associated with infinite slip velocity from the electric field singularity
at sharp corners on the electrode we use a geometry model with rounded
corners of radius R. Smaller R gives stronger field at the protruding corners
which actually tends to increase the pumping velocity U , but the limit of
sharp corners is finite. We use R = 0.02 which is not very sharp, and there-
fore the pumping velocity that we report here can be up to a few percent
lower than the sharp limit.
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Figure 5.7: Maximum pumping velocity maxω U as a function of each one of the in-

dividual geometrical parameters W1, W2, G, and H1, with the other parameters fixed

at unity. Dashed and solid lines show the results using 1 and min{1,W1,W2, G} as the

characteristic length scale, respectively.

Optimal solution

Using standard planar lithography to process the device, it is much easier
to control the thickness of the raised section on the electrodes than the
transverse dimensions. Therefore we formulate the optimal design problem
as

maximize U( log ω,W1,W2,H1, G) (5.27)

subject to 1 ≤W1,

1 ≤W2,

1 ≤ G.

In Fig. 5.7 we investigate the dependence of the maximum pumping velocity
maxω U on each the individual geometrical parameters W1, W2, G, and H1,
when the other parameters are fixed at unity. The figure shows that the
optimum for both W1 and G is at the lower limit W1 = G = 1 whereas for
W2 and H1 it is around W2 ≈ 1.7 and H1 ≈ 0.6, respectively. The global
optimum can be determined from a contour plot as in Fig. 5.8 showing the
maximum pumping velocity as a function of both W2 and H1: It is close to
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Figure 5.8: Contour plot of the maximum pumping velocity maxω U as a function of

W2 and H1 for W1 = G = 1. There is a unique optimum around W2 = 1.25 and H1 = 0.7

where U = 0.0566 at ω = 0.8.

W2 = 1.25 and H1 = 0.7, where U = 0.0566 at ω = 0.8. However, the figure
also shows that the optimum is broad. In particular, the simple design with
H1 = 0.7 and W1 = W2 = G = 1 has U = 0.0545 at ω = 0.9 which is within
2% of the global optimum, and our starting point W1 = W2 = H1 = G = 1
is within 12%.

A virtue of the simple 3D structured rectangular design in Fig. 5.5 is that
it can be fabricated with just two lithography steps to define the base and
raised sections of the metal electrodes on top of a flat substrate. However,
the basic design principle in [45] speaks of both raising sections of “forward”
slip and recessing sections of “reverse” slip on the electrode. Therefore
we can generalize the simple design by allowing the base section of the
electrode to be lowered by an amount H2 relative to the substrate level as
shown in Fig. 5.9(a). The optimal solution to this problem turns out to
be W1 = 1, W2 = 1, G = 1, H1 = 0.4, and H2 = 1, where U = 0.078 at
ω = 0.65. Yet another possibility is to add thin metal electrodes on top
of a 3D structured substrate as shown in Fig. 5.9(b); D. Burch reported
that such a design would increase the pumping velocity over the solid metal
electrode design [84]. The optimal solution is, roughly, W1 = 1, W2 = 1.2,
G = 1.0, H1 = 0.9, and H2 = 0.3, where U = 0.089 at ω = 2.1. Whether or
not these more complex designs are actually superior to the simple design in
Fig. 5.5 depends on how difficult it is to pattern both the metal electrodes
and the substrate: If it turns out that the minimal linewidth that one can
(routinely) produce in the more complex designs is, say, twice as large as
for the simple design, then the simple design is actually superior due to the
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W1 W2 G

H1

H2

W1 W2 G

H1

H2

(a) (b)

Figure 5.9: Stepped and grooved 3D electrode geometries: (a) Design with the “reverse”

slipping section of the electrode put into a groove. The optimal solution is W1 = 1,

W2 = 1, G = 1, H1 = 0.4, H2 = 1, where U = 0.078 at ω = 0.65. (b) Design with thin

metal electrodes deposited on a 3D structured substrate. The optimal solution is W1 = 1,

W2 = 1.2, G = 1, H1 = 0.9, H2 = 0.3, where U = 0.089 at ω = 2.1.

fundamental scaling of the pumping velocity with one over the characteristic
length scale.

5.4 3D structured electrodes with arbitrary shape

A natural question to ask is whether the rectangular electrode structures
we investigated in the previous section are (close to) optimal in general, or
if some other shape with sloped side walls could improve the performance
even further. In order to answer this question we now consider electrodes
with a general shape described by some continuous function r̄(s). Because
the number of parameters to describe r̄(s) is large (infinite) we will need to
compute the derivative dU/dr̄ of the pumping velocity U with respect to
local changes in the electrode shape exactly rather than using finite differ-
ence approximation. One way to obtain this is by an arbitrary Lagrangian

Eulerian (ALE) type formulation, introducing a mapping from the physical
frame (x, y) to a fixed reference frame (X,Y ). The idea is to continuously
deform the physical domain Ω to match the electrode shape, but keep a
fixed finite element mesh in the reference domain Ω∗ where we solve the
problem numerically. When we transform the weak form of the governing
equations from the physical frame to the reference frame we make use of the
transformation rules

∫

Ω

f(r) dr =

∫

Ω∗

f
(

r(R)
)

detJdR (5.28)
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and
∂

∂xi
=
∂Xj

∂xi

∂

∂Xj
, (5.29)

where detJ is the determinant of the Jacobian matrix Jij = ∂xi/∂Xj for
the mapping from the reference domain Ω∗ to the physical domain Ω, and
∂Xj/∂xi is an element of the inverse Jacobian invJ. The gradient dU/dr̄ is
computed using the adjoint method as described in Sec. 5.2. It is straightfor-
ward in principle, but more cumbersome because there are more dependent
variables in the present problem, including the mesh deformation r(R), com-
plex potential φ̂(r), fluid velocity u(r) and pressure p(r), and a number of
Lagrange multipliers that we account for explicitly to gain full control over
which constraint forces act where in the governing equations.

Discretization

Our bold statement that we consider a general continuous curve r̄(s) for the
electrode shape is subject to a number of constraints, e.g., in order to be
a valid shape r̄(s) cannot intersect itself. Moreover we want it to be fairly
“nice” with not too many or too sharp wiggles.

We discretize the problem by introducing a piecewise linear approxima-
tion to r̄(s) with N line segments defined by N + 1 nodes r̄n where the
endpoints r̄0 and r̄N are fixed. In order to gain more control over the shape
of r̄ and avoid clustering of the nodes we force all line segments to have the
same length a. Then the nodal coordinates can be expressed as

x̄n = x̄0 + a

n−1
∑

m=1

cos θm and ȳn = ȳ0 + a

n−1
∑

m=1

sin θm, (5.30)

where θm is the angle between the mth segment and the horizontal axis,
i.e., tan θm = ∆ȳm/∆x̄m. The shape of r̄ is uniquely determined by the
N − 1 first angles whereas the final angle θN and the segment length a are
chosen to match the final node with the fixed endpoint r̄N . Alternatively we
can parametrize in terms of the N − 1 relative angles Θm = N (θm+1 − θm)
between adjacent line segments; Θ is also a measure of the local curvature
κ = ∂sθ of r̄, where s is the arc length in the physical frame, since

Θm = N
(

θm+1 − θm
)

= Na
∆θm
a

≈ Ltotκm, (5.31)

writing Ltot = Na for the overall arc length of r̄. In the examples below we
control the shape of r̄ by limiting Θm to a finite interval Θmin ≤ Θm ≤ Θmax.
This effectively limits the curvature of r̄ and determines how sharp features
can be on the electrode, but also sets a limit on the overall arc length, cf.
Eq. (5.31). In the design process the optimization algorithm will therefore
have to make a trade-off between curvature and arc length. This makes the
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interpretation of the results more complex, but since we like the electrodes
to have neither too sharp features nor too large a surface area we are still
content with our approach.

Optimal solutions

As a first design problem, inspired by the results for rectangular electrodes
in the previous section, we consider a device with a fixed width W = 2 of
the electrode and a fixed gap of G = 1. To avoid difficulties with fabrication
we do not allow undercut or backward sloping structures, i.e., we require
−π/2 ≤ θ ≤ π/2, and formulate the optimization problem as

maximize U( log ω,Θ) (5.32)

subject to − Θmax ≤ Θn ≤ Θmax for n = 1, . . . , N − 1,

− π/2 ≤ θm ≤ π/2 for m = 1, . . . , N.

The optimal solution to this problem for different values of Θmax with N =
100 is shown in Fig. 5.10. In panel (a) we set Θmax = 6.66 which is just
enough to allow for two half circles of radius R ≈ 0.5, i.e., curvature κ =
1/R ≈ 2, and a total arc length around π. The maximal pumping velocity is
U = 0.078, which is almost as good as the corresponding optimal rectangular
grooved structure from Sec. 5.3, even though the present electrode shape
completely lacks sharp corners to enhance the electric field strength. In
panels (b)-(f) we gradually increase Θmax: We see first the width of the
raised section decrease, which is in accordance with the trend in Fig. 5.7(a)
for W1 < 1. Secondly, we see the lowered section develop into a double
groove, where the “purpose” of the extra “pillar” dividing the groove into
two seems to be to weaken the counter-rotating vortex. In the first four
panels (a)-(d) the optimal solution is everywhere limited either by |Θn| ≤
Θmax or by |θm| ≤ π/2, but in panels (e) and (f) this is no longer the case:
In particular in panel (f) neither of the two “pillars” are capped with half
circles but have a width and shape that start to be “optimal” in itself rather
than limited by the particular constraints that we impose.

In our second design we relax the constraint on backward sloping struc-
tures, but maintain that all nodes should conform with the overall electrode
width W . Thus we formulate the problem as

maximize U( log ω,Θ) (5.33)

subject to − Θmax ≤ Θn ≤ Θmax for n = 1, . . . , N − 1,

x̄0 ≤ x̄m ≤ x̄N for m = 1, . . . , N − 1.

The result is shown in Fig. 5.11, again with N = 100 line segments to
describe the electrode shape. The overall features in the solutions are the
same as in Fig. 5.10: The width of the raised section decreases and a double
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U = 0.078 U = 0.090

U = 0.097 U = 0.111

U = 0.121 U = 0.123

(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Electrode shapes (black) computed as optimal solutions to the prob-

lem Eq. (5.32) for different values of the maximum curvature Θmax: (a) Θmax = 6.66.

(b) Θmax = 10. (c) Θmax = 13.3. (d) Θmax = 20. (e) Θmax = 40. (f) Θmax = 80. The elec-

trode width is fixed at W = 2 and the gap at G = 1 and the electrode shape is described

by N = 100 line segments (nodes in red).
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U = 0.078 U = 0.092

U = 0.101 U = 0.116

U = 0.130 U = 0.127

(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Electrode shapes (black) computed as optimal solutions to the prob-

lem Eq. (5.33) for different values of the maximum curvature Θmax: (a) Θmax = 6.66.

(b) Θmax = 10. (c) Θmax = 13.3. (d) Θmax = 20. (e) Θmax = 40. (f) Θmax = 80. The

shapes in (e) and (f) are not fully converged solutions but were terminated after 200 design

iterations.
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groove develops when Θmax is increased. At the same time the extent of
the backward sloping becomes more and more pronounced, and the two
last solutions in panels (e) and (f) look pathological in the sense that they
contain very narrow parts in the electrode shape. Actually, panels (e) and
(f) do not correspond to fully converged optimal solutions because in both
cases the design process was terminated after a total of 200 iterations.

It is difficult to compare the performance of our optimized electrode
shapes from Figs. 5.10 and 5.11 with the rectangular geometries from Sec. 5.3
because strictly they are not optimal solutions to the same problem: In
Sec. 5.3 we optimized the geometry subject to a constraint on the minimal
transverse linewidth allowed, whereas in the present section we fix the total
width of the electrode at W = 2 and optimize subject to a constraint on
the minimal feature size as represented by the maximal curvature. However,
looking at the results in Fig. 5.10 and 5.11 we find that, largely, the opti-
mization algorithm seems to follow the basic design principle of raising the
forward slipping and recessing the reverse slipping sections on the electrodes,
even though it does not know of any such principle but only has information
on the local gradient dU/dr̄. It therefore seems likely that the simple rect-
angular geometries from Sec. 5.3 are indeed (close to) optimal because we
constructed their low-dimensional design spaces exactly based on this basic
principle together with our knowledge of what electrode structures can most
easily be manufactured in practice.

5.5 Thermodynamic efficiency

Throughout this chapter we have focused on the maximum pumping velocity
that can be obtained for a given driving voltage. Equally important might
be the maximum pumping velocity for a given electrical power consump-
tion used to drive the electrode array, or the maximum amount of “useful
work” that the pump can deliver at a given power consumption, i.e., the
thermodynamic efficiency [7, 9]. Provided convection can be neglected in
the electrical part of the problem, which is true for our linear and weakly
nonlinear models but not in the strongly nonlinear regime, the net flow rate
Q can be decomposed into separate and independent electroosmotic and
pressure-driven components

Q = Qeo +Qp. (5.34)

The electroosmotic contribution to the net flow rate per unit width of the
channel is

Qeo = UH/2 (5.35)

where U is the pumping velocity andH is the height of the pumping channel.
The pressure driven flow is given by

Qp = −∆p/Rhyd (5.36)
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where ∆p is the backpressure that the pump is pumping up against, and
Rhyd is the (dimensionless) hydraulic resistance per unit width

Rhyd =
12Ltot

H3
(5.37)

where Ltot is the total length of the channel. The Q-∆p diagram for the
pump is linear, with maximal flow rate Qmax = Qeo obtained at zero back-
pressure, whereas the maximal backpressure ∆pmax = Qeo/Rhyd is defined
as the point where the pump stalls and Q vanishes. The work done when
pumping up against an external backpressure is Pout = Q∆p which is max-
imized at ∆p = ∆pmax/2 where

Pout =
1

4
RhydQ

2

eo
. (5.38)

The electrical power consumption is

Pin =
1

2
Re[Î∗∆V̂ ] = 2NRe

[

1

Ẑ

]

(5.39)

where ∆V̂ = 2 is the (dimensionless) voltage applied between the electrodes
when Vext = ±Re[eiωt], I is the total current passed though the device, N is
the number of electrode pairs, and Ẑ is the impedance for a single pair, cf.
Sec. 3.1.1. To optimize for thermodynamic efficiency one should therefore
maximize the ratio

Pout

Pin

= β
LU2

Re[1/Ẑ ]
, (5.40)

where L = W1 +G1 +W2 +G2 is the array period and β is a dimensionless
parameter given by

β =
3

8

ǫ

σH

ǫV 2

0

ηℓ0(1 + δ)2
=

3τDu0

8H(1 + δ)2
. (5.41)

The dimensionless function LU2/Re[1/Ẑ ] should be optimized geometrically,
but otherwise the scaling of β shows that it pays to pump an electrolyte of
low conductivity σ because this lowers the power consumption at a given
driving voltage, but does not (in theory) affect the pumping velocity. It
pays to squeeze down the channel lid and lower H because this increases
the internal hydraulic resistance and enables to pump up against a more
decent backpressure. It pays scale down the device and decrease ℓ0 as much
as possible. And finally, according to the low-voltage linear theory, it pays
to increase the driving voltage V0 and decrease the capacitance ratio δ,
which should hold also at larger voltage although the scaling is different.
Substituting typical numbers for a 1 mM KCl solution in a device with
ℓ0 = 5 µm, H = 50 µm, δ = 0, and V0 = 1 V, and using U ≃ 0.0035
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and L ≃ 15 as corresponding to the optimized planar device, we obtain a
thermodynamic efficiency of

Pout

Pin

≈ 10−8. (5.42)

What this tells us is that an AC electroosmotic pump may be employed to
move liquid rapidly through a microchannel, but not against any significant
backpressure.

This should actually be no surprise to us because the same limitation
applies to ordinary inline DC electroosmotic pumps. To overcome this, sev-
eral authors have introduced a porous material or sintered glass frit into
the pumping channel, with effective pore radius a from a few µm down
to 100 nm [8, 9, 10, 11, 12]. The thermodynamic efficiency is maximized
at a ≈ 2.5λD , and experimentally efficiencies of around 1 % have been
obtained pumping deionized water [9] an up to 5.6 % for a buffer solution
with the strongly dipolar additive tris(hydroxymethyl)aminomethane hydro-
cloride [10]. However, introducing porous material in the pumping channel
does not enhance the efficiency of the AC electroosmotic pump. Our results
from Ref. [44] show that strong geometrical confinement of the pumping
channel down to H ≪ L does not, as one might have worried, mask the
asymmetry of the electrodes and destroy the ability to pump. Hence ge-
ometrical confinement could be a route for increasing the thermodynamic
efficiency, but there is a long way to go from 10−8. We believe it is more
fruitful to think of AC electroosmosis as a means for local flow control in a
microfluidic system, and to focus on ease integration rather than (lack of)
energy efficiency.

5.6 Summary

In this chapter we have investigated different strategies for breaking the left-
right asymmetry of an electrode array to create an AC electroosmotic pump,
and determined in each case the design that maximizes the pumping velocity
for a given (low) driving voltage. From a fabrication point of view the easiest
device to produce is that based on asymmetric pairs of electrodes, but the
3D structured design suggested by Bazant and Ben [45] could increase the
pumping velocity by an order of magnitude at the expense of an additional
lithography step. The thermodynamic efficiency is low, so one should focus
on the use of AC electroosmotic pumps for local generation of flow but not
for pumping up against large external backpressure or hydraulic resistance.



Chapter 6

Conclusion and outlook

Conclusion

In the present thesis we have studied AC electrokinetics with focus on mi-
cropumps based on asymmetric electrode arrays.

We have extended the existing linear theory for AC electroosmosis into
the weakly nonlinear regime by accounting for nonlinear capacitance of the
Debye layer and Faradaic current injection from electrochemical reactions at
the electrodes. The primary effect of the nonlinear capacitance is to change
the scaling of the pumping velocity with driving voltage, and to shift down
the inverse RC time to lower frequency at large driving voltage. Depending
on the application it may be feasible to operate a micropump with Faradaic
current injection, provided that the electrode reaction runs reversibly such
that electrolysis and bubble formation is avoided. We conclude that fast elec-
trode reactions act to “short-circuit” the Debye layer and thereby suppress
electroosmotic flow, unless the reaction itself is limited by mass-transfer
of the reactants. If the electrochemically active species are only present
in small concentrations with an excess of inert supporting electrolyte, the
Faradaic current from the reaction levels off when the diffusion-limited cur-
rent is reached, and the dynamical behaviour at larger voltage is dominated
by capacitive charging. On the other hand, if there is no inert supporting
electrolyte the AC Faradaic current should give rise to strong concentration
polarization above the diffusion-limited current with transient space charge
layers and electroosmosis of the second kind. However, that is a strongly
nonlinear phenomenon that we have have not investigated.

Neither the linear nor weakly nonlinear models are able to account for
the reversal of the pumping velocity observed experimentally, and therefore
we have also studied the strongly nonlinear regime where the classical as-
sumption of uniform bulk electrolyte concentration breaks down. Building
on recent theoretical work for diffuse-charge dynamics in electrochemical
systems, we have constructed a strongly nonlinear model based on bound-
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ary layer analysis and matched asymptotic expansions. In particular, we
have contributed by coupling an explicit dynamical solution in the diffusion
layer to the evolution of the quasiequilibrium Debye layer and to the bulk
concentration profile that is nonuniform but stationary in time. We also
account for fluid motion and convection of salt in the bulk.

We have obtained numerical solutions for this model in both a simple
1D geometry and in 2D for a symmetric and an asymmetric electrode array.
Moreover, because even our strongly nonlinear model based on local elec-
troneutrality breaks down at “very large” but still experimentally relevant
voltage, we have attempted to include existing theory for nonequilibrium
double layers and electroosmosis of the second kind into our model. We
predict that electroosmotic flow of the first and second kind contributes to
pumping in the forward direction, while bulk electroconvection contributes
to pumping in the reverse direction. However, for the voltage range that we
have considered, electroosmosis dominates, so we are not able to account
for the experimentally observed reversal of the pumping direction with our
strongly nonlinear model, either.

Finally, we have looked at various ways of breaking the symmetry of an
electrode array and determined in each case the design that maximizes the
pumping velocity at a given low driving voltage. The solutions are expected
to be close to optimal also at larger voltage as long as electroosmosis of
the first kind dominates the electrokinetic flow. It is important to realize
that AC electrokinetic micropumps can provide fast pumping of the order
of ∼ mm/s, but not against a significant backpressure. Thermodynamic
efficiency will therefore always be low, but the technology is still attractive
due to ease of integration in a microsystem or lab-on-a-chip, and because it
offers local control over the fluid motion in the device.

Outlook

There remains many open problems and possible directions for future re-
search on strongly nonlinear electrokinetics. What makes this subject so
challenging, and the experimental results so difficult to interpret, is that
there is a whole zoo of strongly nonlinear effects showing up at roughly the
same time, i.e., salt depletion in the diffusion layer followed by breakdown of
local electroneutrality and development of an extended space charge layer,
large surface excess flux in the Debye layer leading to nonuniform bulk con-
centration with convection dominated bulk salt flux, and even breakdown
of dilute solution theory in the highly charged Debye layer. A full solution
of the Poisson–Nernst–Planck equations provides only little insight into the
solution structure, but for simple geometries it can be useful for validating
the strongly nonlinear theory.

Because the different effects interact in a nontrivial way we can envisage
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complex dynamical behaviour in geometries such as the AC electroosmotic
pump with 3D structured electrodes. However, before this can fully be ex-
ploited to optimize the pump performance or to engineer robust “forward”
operation at large voltage, it is necessary to gain a more detailed under-
standing of the dynamical behaviour, e.g., by studying simple geometries
such as metal spheres or cylinders.

The theoretical description for DC rather than AC driving is simplified
because the diffusion layer and bulk region merge and the number of nested
boundary layers drop by one. It would therefore be interesting to extend
the work of Chu on a metal sphere in an externally applied DC field to
even larger fields, where local electroneutrality breaks down in the bulk
region close to the poles of the sphere due to large surface fluxes towards
the equator. The space charge layers developing in this case are immediately
describable by the existing theory for DC Faradaic conduction.

Alternatively, the existing theory for nonequilibrium double layers could
deserve a rigorous account for the solution structure when the width of the
space charge layer changes in time with the applied current, and in particular
the dynamics of the collapse of the layer when the current reverses is a
challenging problem. In relation to the simple ad hoc modifications that
we suggested, the quality of the model would certainly improve by solving
a 1D semi-infinite diffusion problem on the interval y̌o(t) ≤ y̌ < ∞ for the
concentration in the diffusion layer, and it would be a great advantage to
device a timestepping algorithm to allow for better resolution in time when
computing the periodic solution.

Finally, the dependence on the model parameters ε, δ, ∆D, and possibly
ζ̃eq, deserves more attention and systematic variation. In particular, lower
values of the capacitance ratio δ are relevant to many experiments. To
this end it would also be interesting to actually determine the experimental
values of δ and ζ̃eq by fitting the linear response theory to impedance spectra
recorded as a function of frequency and with a DC voltage applied relative
to a distant reference electrode.
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Appendix A

FEMLAB code

A.1 Weakly nonlinear finite element model

In this section we give an example of our implementation of the weakly
nonlinear model from Sec. 2.2.7 in the absense of Faradaic electrode reaction.
The leading order electrical problem reduces to a Laplace problem in the
bulk

0 = −∇
2φ̄, (A.1)

with

0 = n · ∇φ̄, (A.2)

on the insulating channel walls and a set of dynamical boundary conditions

∂tq̃ = n · ∇φ̄, (A.3)

Vext − φ̄ = ζ̃ − q̃ δ, (A.4)

on the electrodes, where the zeta potential is given by

ζ̃ = −2 sinh−1(q̃/2). (A.5)

The solution to the electrical problem determines the electroosmotic slip
velocity that is boundary condition for the bulk time average Stokes flow
problem for the fluid velocity ū and pressure p̄

0 = ∇ · σ̄, (A.6)

0 = ∇ · ū, (A.7)

where σ̄ is the stress tensor defined by

σ̄ij = −p̄ δij + ∂iūj + ∂jūi. (A.8)



118 FEMLAB code

The slip condition on the electrodes is

ū =
〈

ζ̃∇sφ̄
〉

, (A.9)

and on the channel walls we impose the no-slip condition ū = 0.
The electrical problem is converted to weak form by multiplying Eq. (A.1)

by a test function ϕ for the potential and integrating over the volume Ω of
the computational domain, employing Gauss’ law, and using Eq. (A.3) to
eliminate n · ∇φ̄, i.e.,

0 = −
∫

Ω

ϕ∇
2φ̄ dr =

∫

Ω

∇ϕ · ∇φ̄dr +

∫

∂Ω

ϕn · ∇φ̄ds

=

∫

Ω

∇ϕ · ∇φ̄dr +

∫

electrodes

ϕ∂tq̃ ds, (A.10)

which is supposed to be satisfied for all test functions ϕ.1 The Gouy–
Chapman–Stern boundary condition for the potential drop across the double
layer is imposed by multiplying a test function ̺ for the accumulated charge
and integrating over the electrodes

0 =

∫

electrodes

̺
(

Vext − φ̄− ζ̃ + q̃ δ
)

ds, (A.11)

which is to be satisfied for all ̺. The flow problem is converted to weak form
by multiplying the force balance (A.6) by a test function u for the velocity,
and the incompressibility constraint by a test function ξ for the pressure,
and integrating over Ω, i.e.,

0 = −
∫

Ω

u · (∇ · σ̄) + ξ∇ · ū dr

=

∫

Ω

∇u : σ̄ − ξ∇ · ūdr +

∫

∂Ω

u · (n · σ̄) ds. (A.12)

In Femlab we use so-called strong or ideal constraints to impose the no-slip
condition on the channel walls, but for the slip condition on the electrodes we
need weak constraints. The reason is that with an ideal constraint Femlab

would consider Eq. (A.9) equally much as a constraint on φ̄ as on ū, whereas
we want it to be a constraint on ū only, and also want the reaction forces
or Lagrange multipliers from that constraint to act in the flow problem only
and not in the electrical problem. Therefore we introduce the reaction force
f̄ = n · σ̄ from the electrode surface as a separate variable, and use this to
eliminate n · σ̄ in the boundary integral to get

0 =

∫

Ω

∇u : σ̄ − ξ∇ · ūdr +

∫

electrodes

u · f̄ + f ·
(

ū−
〈

ζ̃∇sφ̄
〉 )

ds, (A.13)

1Unlike the usual notation with Gauss’ law our boundary normal n points out of the

electrodes and channel walls and into the electrolyte and Ω.
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for all test functions u, ξ, f , and subject to the no-slip condition ū = 0
on the channel walls. In this form the problem can be typed directly into
Femlab [47] as shown in the code example below:

Code also available on http://www.mic.dtu.dk/mifts

% AC ELECTOOSMOTIC PUMPING BY WEAKLY NONLINEAR MODEL

clear fem

% GEOMETRY

G1 = 1; % gap between electrodes = reference dimension

W1 = 1.5; % width of narrow electrode

W2 = 7; % width of wide electrode

G2 = 5; % gap between adjacent electrode pairs

H = 25; % height of channel

L = W1+W2+G1+G2; % period of electrode array

R = 0.05; % electrode corner radius

fem.geom = rect2(0,L,0,H) - fillet(rect2(G2/2,G2/2+W1,-1,R),’Radii’,R) ...

- fillet(rect2(G2/2+W1+G1,G2/2+W1+G1+W2,-1,R),’Radii’,R);

% MESH

fem.mesh = meshinit(fem,’Hmax’,2,’Hmaxedg’,[4 6; 0.05 0.2]);

% PARAMETERS

fem.const.w = 1; % driving frequency

fem.const.V0 = 10; % driving voltage

fem.const.delta = 1; % surface capacitance ratio

% VARIABLES

fem.sdim = {’x’ ’y’};

fem.dim = {’phi’ ’u’ ’v’ ’p’ ’q’ ’fx’ ’fy’};

fem.shape = [2 2 2 1 2 2 2];

% GOVERNING EQUATIONS

fem.form = ’weak’;

fem.equ.shape = {[1:4]};

fem.equ.weak = {{’phix_test*phix+phiy_test*phiy’ ’-p_test*(ux+vy)’ ...

’ux_test*(-p+2*ux)+vy_test*(-p+2*vy)+(uy_test+vx_test)*(uy+vx)’}};

% BOUNDARY CONDITIONS

% group [1 2] narrow and wide electrode

% group [3] insulating walls

% group [4] master periodic boundary

% group [5] slave periodic boundary

fem.bnd.ind = {[4 9 10] [6 11 12] [2 3 5 7] [1] [8]};

fem.bnd.shape = {[1:7] [1:7] [1:4] [1:4] [1:4]};

fem.bnd.expr = {’Vext’ {’V0*sin(w*t)’ ’-V0*sin(w*t)’ {} {} {}} ...

’zeta’ ’-2*asinh(q/2)’ ’us’ ’zeta*phiTx’ ’vs’ ’zeta*phiTy’};

fem.bnd.weak = {{’phi_test*qt’ ’q_test*(Vext-phi-zeta+q*delta)’ ...

’fx_test*(u-us)+fy_test*(v-vs)’ ’u_test*fx+v_test*fy’} ...
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{’phi_test*qt’ ’q_test*(Vext-phi-zeta+q*delta)’ ...

’fx_test*(u-us)+fy_test*(v-vs)’ ’u_test*fx+v_test*fy’} {} {} {}};

% implement no-slip and periodic boundary conditions as ideal constraints

fem.bnd.constr = {{} {} {’u’ ’v’} {} ...

{’phi-phi_cpl’ ’u-u_cpl’ ’v-v_cpl’ ’p-p_cpl’}};

% POINT CONDITIONS

% clamp pressure at a single point to fix the pressure level

% clamp constraint force [fx fy] where the electrodes and substrate meet

% and [fx fy] are overruled by the ideal constraint Lagrange multipliers

fem.pnt.ind = {[1] [3 6 7 10]};

fem.pnt.shape = {[4] [6 7]};

fem.pnt.constr = {’p’ {’fx’ ’fy’}};

% COUPLING ELEMENT FOR PERIODIC B.C.

% This is black magic. For an explanation see: elcplextr_example.m

% from www.comsol.com/support/knowledgebase/942.php

clear cpl src dst map

% extrusion coupling variables acting in geometry one

cpl.elem = ’elcplextr’;

cpl.g = {’1’};

cpl.var = {’phi_cpl’ ’u_cpl’ ’v_cpl’ ’p_cpl’};

% source expressions and trivial map {0} *from* source *to* intermediate mesh

src.expr = {{’phi’} {’u’} {’v’} {’p’}};

src.map = {’0’ ’0’ ’0’ ’0’};

src.ind = {{’1’}};

cpl.src = {{{} src {}}};

% linear transformation *from* destination *to* intermediate mesh

map.type = ’linear’;

map.sg = ’1’;

map.sv = {’11’,’12’};

map.dg = ’1’;

map.dv = {’1’,’2’};

cpl.map = {map};

% declare {1} as map *from* destination *to* intermediate mesh

dst.map = {{’1’} {’1’} {’1’} {’1’}};

dst.ind = {{’8’}};

cpl.geomdim = {{{} dst {}}};

% finally add cpl to fem.elem and clean up

fem.elem = {cpl};

clear cpl src dst map

% BUILD EXTENDED MESH

fem.xmesh = meshextend(fem);

fem.sol = asseminit(fem);

% TRANSIENT SOLUTION OVER 2 PERIODS USING FEMTIME

% solve nonlinear electrical problem

fem.sol = femtime(fem,’Tlist’,[0 4*pi],’Solcomp’,{’phi’ ’q’});

% solve linear flow problem with constant system matrix

t = fem.sol.tlist;

fem.sol = femlin(fem,’Solcomp’,{’u’ ’v’ ’p’ ’fx’ ’fy’}, ...
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’Pname’,’t’,’Plist’,t,’U’,fem.sol,’Keep’,{’K’ ’N’});

% compute volume flow rate Q(t) [large Schmidt number limit]

Q = postint(fem,’u’,’Edim’,1,’Dl’,1,’Solnum’,1:length(t));

% COMPUTE PERIODIC SOLUTION USING CUSTOM WRITTEN ALGORITHM FEMFREQ

fem0 = fem;

nt = 16; tt = 2*pi*(0:nt-1)/nt;

% solve nonlinear electrical problem

fem.sol = femfreq(fem,’Tlist’,tt,’Solcomp’,{’phi’ ’q’},’Symmetry’,’odd’);

% solve linear flow problem

fem.sol = femlin(fem,’Solcomp’,{’u’ ’v’ ’p’ ’fx’ ’fy’}, ...

’Pname’,’t’,’Plist’,tt,’U’,fem.sol,’Keep’,{’K’ ’N’});

% compute time average flow rate <Q>

Qavg = postint(fem,’u’,’Edim’,1,’Dl’,1,’U’,mean(fem.sol.u,2));

plot(t,Q,’b.-’,[0 4*pi],[Qavg Qavg],’r:’)
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Figure A.1: Flowrate Q as a function of time t from weakly nonlinear Femlab code

example. Result from Femlab’s built-in timestepping algorithm femtime (solid line) and

time average from custom written pseudospectral algorithm femfreq (dashed). Strictly,

for εSc ≪ 1 we ought to solve a stationary Stokes flow problem driven by the time average

slip
〈

ζ̃∇sφ̄
〉

, while the code example computes a stationary solution at each point in time

corresponding to the limit εSc ≫ 1. However, because the problem is linear we get the

same result for the time average flow rate 〈Q〉 in any case.
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A.2 Strongly nonlinear finite element model

In this section we give an example of our implementation of the strongly non-
linear model from Sec. 2.2.8. The weak form of the bulk electrical problem
∇ · J̄ becomes

0 = −
∫

Ω

ϕ∇ · J̄dr =

∫

Ω

∇ϕ · J̄dr +

∫

∂Ω

ϕn · J̄ds

=

∫

Ω

∇ϕ · J̄dr +

∫

electrodes

ϕ J̄n ds, (A.14)

for all test functions ϕ for the potential φ̄ at all times, where we used the
Lagrange multiplier J̄n to eliminate the normal current n · J̄ in the boundary
integral, and the boundary condition for the potential drop across the double
layer is imposed by requiring

0 =

∫

electrodes

Jn (Vext − φ̄− ζ̃ + q̃ δ) ds, (A.15)

for all test functions Jn for J̄n. The conservation law for the accumulated
charge q̃ in the Debye layer takes the form

0 =

∫

electrodes

̺
(

∂tq̃ + J̄n + ε∇s · ̃
)

ds =

∫

electrodes

̺
(

∂tq̃ + J̄n) − ε∇s̺ · ̃ ds, (A.16)

for all test functions ̺ for q̃, where we used partial integration to move the
derivative ∇s onto ̺ and assumed ̃ = 0 at the electrode edges. For the bulk
salt concentration c̄ we write

0 = −
∫

Ω

C ∇ · F̄a dr =

∫

Ω

∇C · F̄a dr +

∫

∂Ω

C n · F̄a ds

=

∫

Ω

∇C · F̄a dr +

∫

electrodes

C
〈

F̌n − ∆DJ̄n
〉

ds, (A.17)

for all test functions C for c̄. Alternatively, it sometimes gives more stable
numerical results to rewrite ∇ · F̄a in non-conservative form

∇ · F̄a = ∇ · (−Da∇c̄+ Pe ū c̄) = −Da∇
2c̄+ Pe ū · ∇c̄, (A.18)

using ∇ · ū = 0, and performing partial integration only on the ∇
2c̄ term.

The conservation law for the surface excess accumulated salt w̃ becomes

0 =

∫

electrodes

̟ (∂tw̃ + F̌n + ε∇s · Γ̃ds =

∫

electrodes

̟ (∂tw̃ + F̌n) − ε∇s̟ · Γ̃ds, (A.19)

for all test functions ̟ for w̃, which effectively determines the normal flux
F̌n, whereas the excess amount of salt is determined by

0 =

∫

electrodes

Fn
(

w̃ −
√

q̃2 + 4č+
√

4č
)

ds, (A.20)
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for all test functions Fn for F̌n. Finally, the surface excess concentration
γ̌ = č − c̄ at y̌ = 0 is determined by the (excess) ambipolar flux in and out
of the diffusion layer

0 =

∫

electrodes

Y
[

γ̌ −
√

ε

ωDa

1

T

∫ T

0

G(t− t′)
(

F̌n − ∆DJ̄n
)

dt′
]

ds, (A.21)

for all test functions Y for γ̌; it is not necessary to subtract
〈

F̌n − ∆DJ̄n
〉

because the kernel G(t − t′) is blind to any time average component by
construction.

In the strongly nonlinear model we need to include the bulk electrical
body force f̄ into the Stokes flow problem, where

f̄ = ∇
2φ̄∇φ̄ = −∇c̄ · ∇φ̄+ ∆D∇

2c̄

c̄
∇φ̄, (A.22)

cf. Eq. (2.60). The dependence on ∇
2φ̄ or ∇

2c̄ is problematic because
with standard finite element approximations the solution is only continuous
and piecewise differentiable, with the second derivative undefined on ele-
ment boundaries. In the special case of equal diffusivities where ∆D = 0,
Eq. (A.22) expresses f̄ in terms of the gradients ∇c̄ and ∇φ̄ only, and the
problem does not arise. Otherwise it is necessary to rewrite the body force
as

f̄ = ∇
2φ̄∇φ̄ = ∇ · T̄ , (A.23)

where T̄ is the Maxwell stress tensor

T̄ij = ∂iφ̄ ∂jφ̄− δij ∂kφ̄ ∂kφ̄/2. (A.24)

With this formulation we can use Gauss’ law to move the derivative from
T̄ onto the test function u for the fluid velocity, and the weak form of the
Stokes flow problem becomes

0 =

∫

Ω

∇u : (σ̄ + T̄ ) − ξ∇ · ūdr +

∫

electrodes

u · µ̄ + f · (ū − ũs) ds, (A.25)

for all test functions u, ξ, f , and subject to the no-slip condition on the
channel walls. Here µ̄ = n · (σ̄ + T̄ ) is the total reaction force from the
electrode surface, and ũs =

〈(

ζ̃+ ς̌
)

∇sφ̄
〉

is the effective slip velocity induced
in the Debye and diffusion layers.

In the code example below we consider the simple equal diffusivity case
with ∆D = 0 for the symmetric geometry from Sec. 4.2.1. For simplicity
we assume an open system and impose unit concentration c̄ = 1 and no
shear force n · σ̄ = 0 boundary conditions far above the electrode array. For
∆D = 0 both φ̄, q̃, and J̄n have odd symmetry in time, w̃, F̌n, and γ̌ have
even symmetry, whereas c̄, ū, p̄, and µ̄ are constant in time. This allows
the computational cost of solving the full coupled problem to be reduced
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by a factor of two as compared to the case ∆D 6= 0. The convection from
fluid motion induced in the diffusion layer is neglected when solving the
coupled electrohydrodynamical problem, but in a postprocessing step we
single out the components of the net fluid motion due to electroosmotic slip,
bulk electroconvection, and flow induced in the diffusion layer. The auxil-
iary function fkernel evaluates the kernel G(t− t′) at y̌ = 0, and excessr

computes the integral
√

ω/Da

∫ ∞
0

1

č − 1

c̄ dy̌ given γ̌(t) and c̄ by numerical
quadrature.

Code also available on http://www.mic.dtu.dk/mifts

% AC ELECTOKINETIC FLOW BY STRONGLY NONLINEAR MODEL

clear fem

% GEOMETRY

G = 1; % gap between electrodes

W = 2; % width of electrodes

H = 5; % height of channel

L = W+G; % period of electrode array

R = 0.1; % electrode corner radius

fem.geom = rect2(0,L/2,0,H) - fillet(rect2(-W/2,W/2,-1,R),’Radii’,R);

% MESH

fem.mesh = meshinit(fem,’Hmax’,0.75,’Hmaxedg’,[2; 0.1]);

% PARAMETERS

fem.const.omega = 1; % driving frequency

fem.const.V0 = 50; % driving voltage

fem.const.delta = 1; % surface capacitance ratio

fem.const.epsilon = 0.001; % Debye layer thickness

fem.const.Pe = 0.25; % Peclet number

% VARIABLES

fem.sdim = {’x’ ’y’};

fem.dim = {’phi’ ’c’ ’u’ ’v’ ’p’ ’q’ ’w’ ’Jn’ ’Fn’ ’gamma’ ’Zeta’ ’fx’ ’fy’};

fem.shape = [2 2 2 2 1 2 2 2 2 2 2 2 2];

% GOVERNING EQUATIONS

fem.form = ’weak’;

fem.equ.shape = {[1:5]};

fem.equ.expr = {’rho’ ’(cx*phix+cy*phiy)/c’ ...

’Jx’ ’-c*phix’ ’Jy’ ’-c*phiy’ ’Fx’ ’-cx+Pe*u*c’ ’Fy’ ’-cy+Pe*v*c’};

fem.equ.weak = {{’phix_test*Jx+phiy_test*Jy’ ...

’-cx_test*cx-cy_test*cy-c_test*Pe*(u*cx+v*cy)’ ...

’ux_test*(-p+2*ux)+vy_test*(-p+2*vy)+(uy_test+vx_test)*(uy+vx)’ ...

’-p_test*(ux+vy)’ ’u_text*rho*phix+v_test*rho*phiy’}};

fem.equ.init = {{0 1 0 0 0 0 0 0 0 0 0 0 0}};

% BOUNDARY CONDITIONS
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% group [1] electrode

% group [2] substrate

% group [3] even symmetry

% group [4] odd symmetry

% group [5] "infinity"

fem.bnd.ind = {[2 6] [4] [1] [5] [3]};

fem.bnd.shape = {[1:13] [1:5] [1:5] [1:5] [1:5]};

fem.bnd.expr = {’Vext’ {’V0*sin(omega*t)’ {} {} {} {}} ...

’zeta’ ’-2*asinh(q/(2*sqrt(c+gamma)))’ ...

’Gammax’ ’-(1+2*Pe)*q*phiTx’ ’Gammay’ ’-(1+2*Pe)*q*phiTy’ ...

’jx’ ’-(1+2*Pe)*w*phiTx’ ’jy’ ’-(1+2*Pe)*w*phiTy’ ...

’us’ ’(zeta+Zeta)*phiTx’ ’vs’ ’(zeta+Zeta)*phiTy’};

fem.bnd.weak = {{’phi_test*Jn’ ’Jn_test*(Vext-phi-zeta+q*delta)’ ...

’c_test*Fn’ ’Fn_test*(w-sqrt(q^2+4*(c+gamma))+sqrt(4*(c+gamma)))’ ...

’q_test*(qt+Jn)-epsilon*(qTx_test*jx+qTy_test*jy)’ ...

’w_test*(wt+Fn)-epsilon*(wTx_test*Gammax+wTy_test*Gammay)’ ...

’fx_test*(u-us)+fy_test*(v-vs)+u_test*fx+v_test*fy’ ...

’gamma_test*(gamma-Fntt*sqrt(epsilon/omega))’} {} {} {} {}};

fem.bnd.constr = {{} {’u’ ’v’} {’u’} {’u’ ’phi’} {’c-1’}};

fem.bnd.init = {{0 1 0 0 0 0 eps 0 0 0 0 0 0}};

% POINT CONSTRAINTS

% clamp weak constraint force where overruled by ideal constraints

fem.pnt.ind = {[1] [4]};

fem.pnt.shape = {[1:13] [1:13]};

fem.pnt.constr = {{’fx’} {’fx’ ’fy’}};

% BUILD EXTENDED MESH

fem.xmesh = meshextend(fem);

% COMPUTE PERIODIC SOLUTION USING FEMFREQ

nt = 32; tlist = 2*pi*(0:nt-1)/nt;

fem.sol = femfreq(fem,’Tlist’,tlist, ...

’Solcomp’,{’phi’ ’c’ ’q’ ’w’ ’Jn’ ’Fn’ ’gamma’ ’u’ ’v’ ’p’ ’fx’ ’fy’}, ...

’Symmetry’,{’odd’ ’const’ ’odd’ ’even’ ’odd’ ’even’ ’even’ ...

’const’ ’const’ ’const’ ’const’ ’const’}, ...

’Rule’,’leapfrog’,’Kernel’,fkernel(0,nt,4));

% GET INDICES OF [Zeta gamma Jn c] IN GLOBAL SOLUTION VECTOR

iZeta = find(asseminit(fem,’Init’,{’Zeta’ 1},’Out’,’U’));

ndofs = flngdof(fem);

igamma = asseminit(fem,’Init’,{’Zeta’ ’gamma’},’U’,(1:ndofs)’,’Out’,’U’);

iJn = asseminit(fem,’Init’,{’Zeta’ ’Jn’},’U’,(1:ndofs)’,’Out’,’U’);

ic = asseminit(fem,’Init’,{’Zeta’ ’c’},’U’,(1:ndofs)’,’Out’,’U’);

igamma = igamma(iZeta); iJn = iJn(iZeta); ic = ic(iZeta);

% COMPUTE EXCESS POTENTIAL DROP ACROSS THE DIFFUSION LAYER

gamma = fem.sol.u(igamma,:); Jn = fem.sol.u(iJn,:); c = fem.sol.u(ic,1);

R = excessr(gamma,c);

Zeta = sqrt(fem.const.epsilon/fem.const.omega)*Jn.*R;

u0 = fem.sol.u; u0(iZeta,:) = Zeta;

fem.sol = femsol(u0,’tlist’,tlist);
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% COMPUTE INDIVIDUAL FLOW COMPONENTS

% flow due to slip induced in the Debye layer

ueo = femlin(fem,’Solcomp’,{’u’ ’v’ ’p’ ’fx’ ’fy’}, ...

’Const’,{’Zeta’ 0 ’rho’ 0},’U’,fem.sol,’Out’,’U’, ...

’Pname’,’t’,’Plist’,tlist,’Keep’,{’K’ ’N’});

% flow due to slip induced in the diffusion layer

uec = femlin(fem,’Solcomp’,{’u’ ’v’ ’p’ ’fx’ ’fy’}, ...

’Const’,{’zeta’ 0 ’rho’ 0},’U’,fem.sol,’Out’,’U’, ...

’Pname’,’t’,’Plist’,tlist,’Keep’,{’K’ ’N’});

% flow due to bulk electroconvection

ub = femlin(fem,’Solcomp’,{’u’ ’v’ ’p’ ’fx’ ’fy’}, ...

’Const’,{’zeta’ 0 ’Zeta’ 0},’U’,fem.sol,’Out’,’U’, ...

’Pname’,’t’,’Plist’,tlist,’Keep’,{’K’ ’N’});

% COMPUTE ANGULAR MOMENTUM FROM FLUID VORTEX

Leo = postint(fem,’x*v-y*u’,’U’,mean(ueo,2));

Lec = postint(fem,’x*v-y*u’,’U’,mean(uec,2));

Lb = postint(fem,’x*v-y*u’,’U’,mean(ub,2));

Ltot = Leo + Lec + Lb;



A.3 Periodic integro-differential equations in time 127

A.3 Periodic integro-differential equations in time

We wish to solve an integro-differential equation in time of the form

D ∂tU +
1

T

∫ T

0

G(t, t′)U(t′) dt′ = L − NTΛ, (A.26)

subject to the constraint

0 = M, (A.27)

where the solution U(t) is periodic in time, i.e., U(t) = U(t + T ). Here
D(U, t) is the mass matrix, G(t, t′) the kernel matrix in the convolution,
L(U, t) the residual vector, M(U, t) the constraint vector, Λ(t) a Lagrange
multiplier for that constraint, and N = −∂M/∂U the matrix that couples
the Lagrange multiplier into the problem. Apart from the convolution oper-
ator, this is identical to the generic form of a time-dependent problem after
discretization in Femlab. However, we wish to use a relaxation method
to compute the periodic solution instead of the standard time-steppig algo-
rithm. Linearizing around a given trial solution U0(t) we get

D ∂t δU +
1

T

∫ T

0

G(t, t′) δU(t′) dt′ = L0 − K δU − NTΛ, (A.28)

subject to

0 = M0 −N δU. (A.29)

The derivative and integral terms of the trial solution are absorbed into the
residual vector

L0 = L(U0, t) − D(U0, t) ∂tU0 −
1

T

∫ T

0

G(t, t′)U0(t
′) dt′, (A.30)

and further M0 = M
(

U0, t
)

and K = −∂L/∂U. We neglect the dependence
of D and N on U when linearizing; this may cause problems in the Newton
itertions if those are strongly nonlinear functions.

If we represent the temporal solution for U by N equispaced points in
time tn = nT/N for n = 1, 2, . . . , N then it can be written as a discrete
Fourier transform

U(tn) =

N
∑

m=1

Ûme
imω tn , (A.31)

where the coefficients

Ûm =
1

N

N
∑

n=1

U(tn)e
−imω tn (A.32)
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can be computed by a fast Fourier transform. By construction Ûm = Ûm+N ,
and since U is real we also have Ûm = Û∗

−m = Û∗
N−m. The appropriate

way of interpreting U(t) for t 6= tn is

U(t) =
1

N

N/2
∑

m=−N/2

′
Ûme

imωt =

N
∑

n=1

U(tn)

{

1

N

N/2
∑

m=−N/2

′
eimω(t−tn)

}

, (A.33)

where the prime indicates that the terms m = ±N/2 are counted half only.
For an explanation why this is “appropriate”, and for a nice introduction to
spectral methods in general, see Ref. [68]. The function in the curly braces
is the periodic sinc function SN (t− t′)

SN (t− t′) =
1

N

N/2
∑

m=−N/2

′
eimω(t−t′) =

1

N

sin[Nω(t− t′)/2]

tan[ω(t− t′)/2]
, (A.34)

which allows the time detivative of U(t) to be evaluated as

∂tU(tn) =
N

∑

m=1

S′
N (tn − tm)U(tm). (A.35)

The convolution integral can be approximated as

1

T

∫ T

0

G(tn, t
′)U(t′) dt′ ≈ 1

N

N
∑

m=1

G(tn, tm)U(tm). (A.36)

Substituting into the linearized problem we get

N
∑

m=1

[

DnS
′
N (tn − tm) +

1

N
Gnm

]

δUm + KnδUn + NT
nΛn = L0,n, (A.37)

NnδUn = M0,n, (A.38)

for n = 1, 2, . . . , N , i.e., a simultaneous matrix problem for all the solution
components δUm.

Unless N is small this problem will make most linear solvers choke; the
point is that for harmonically driven weakly nonlinear systems the num-
ber of Fourier components required to represent the solution is often fairly
small. If the problem cannot be solved accurately with just a few Fourier
components, we could replace the spectral derivative with a low order finite-
difference scheme, e.g., the leapfrog scheme [∂tU]n ≈ [Un+1 − Un−1]/2∆t,
which would reduce the computational cost for a differential equation from
O(N2) to O(N) at the expense of the spectral accuracy. For comparison,
the cost of one step forward in time by a standard timestepping algoritm
is O(1) which is much more memory efficient but sometimes requires inte-
grating for a long time before a periodic solution is reached. If the problem
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involves convolution there is no obvious way to work around the nonlocal
coupling in time; a pseudo-timestepping algorithm designed specifically for
rapid convergence towards the periodic solution might provide a fairly in-
expensive solution to the problem. However, we have not had time to look
further into this subject.

For our particular application where the nonlocal coupling in time comes
about from our semi-analytical model for the dynamics in the diffusion layer,
the convolution kernel does not depend explicitly on time but only on the
time delay, i.e., G = G(t − t′), and it is originally defined in terms of an
infinite Fourier series

G(t− t′) =

∞
∑

n=−∞
Ĝne

inω(t−t′). (A.39)

Substituting this and the truncated series Eq. (A.33) for U(t) into the con-
volution integral we obtain

1

T

∫ T

0

G(tn − t′)U(t′) dt′ =
1

N

N
∑

m=1

GN (tn − tm)U(tm), (A.40)

where

GN (t− t′) =

N/2
∑

k=−N/2

′
Ĝke

ikω(t−t′). (A.41)

This essentially tells us how to truncate the infinite series Eq. (A.39) in a
consistent way. If the spectral time derivative is replaced by the leapfrog
rule, it is equivalent to replacing SN (t− t′) by a piecewise linear interpolant,
namely, the “hat” function PN (t− t′) = max{1 −N |t− t′|, 0}. In that case
it is more consistent to truncate the convolution kernel as

GN (t− t′) = N

∫ T

0

G(t− t′′)PN (t′′ − t′) dt′′. (A.42)

Implementation: FEMFREQ

We have implemented the relaxation scheme in a function femfreq. It com-
putes periodic solutions to simple first order problems in time with a syntax
similar to Femlab’s standard time-stepping algorithm femtime. For prob-
lems involving convolution we abuse the syntax for second order problems by
interpreting the term E ∂2

tU instead as E
∫ T
0
G(t−t′)U(t′) dt′, where G(t−t′)

is a some scalar function supplied by the user via the property ’Kernel’.
This approach is significantly less flexible than a general G(t, t′) that could
depend explicitly on both time and spatial position, but it serves our pur-
pose. We also support odd, even, and constant symmetries in the solution
which allows the computational cost to be reduced. We do not include the
code here but it is available at http://www.mic.dtu.dk/mifts.
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Recent experiments have demonstrated that ac electrokinetic micropumps permit integrable, local, and fast

pumping �velocities �mm/s� with low driving voltage of a few volts only. However, they also displayed many

quantitative and qualitative discrepancies with existing theories. We therefore extend the latter theories to

account for three experimentally relevant effects: �i� vertical confinement of the pumping channel, �ii� Faradaic

currents from electrochemical reactions at the electrodes, and �iii� nonlinear surface capacitance of the Debye

layer. We report here that these effects indeed affect the pump performance in a way that we can rationalize by

physical arguments.

DOI: 10.1103/PhysRevE.73.056313 PACS number�s�: 47.65.�d, 47.32.�y, 85.90.�h

I. INTRODUCTION

Lab-on-a-chip systems require micropumps and valves to

manipulate small volumes of a liquid sample �1�. Often large

external pumps, such as syringe pumps, are used to deliver

the necessary pressures, but for portable systems a number of

on-chip micropumps have been developed over the last de-

cade. The latter fall into two major categories: One category

comprises mechanical actuation and deflectable membranes

to create pumps and valves. These have proven to be versa-

tile and simple to fabricate and operate, but there are some

difficulties with further downscaling. The second category

involves no moving parts but uses electric fields to induce

electrokinetic pumping. However, classical dc electro-

osmosis requires a relatively large voltage and field strength,

which is undesirable. Moreover, when a dc current is drawn

from electrodes integrated in a microfluidic system there are

problems with bubble formation due to electrolysis.

ac electro-osmosis has recently been observed to induce

fluid motion over pairs of microelectrodes �2–4�. Based on

general symmetry arguments, Ajdari predicted that the same

mechanism would generate a net flow over an asymmetric

array of electrodes �5�, which was soon after demonstrated

experimentally by Brown et al. �6� and later by several other

groups obtaining pumping velocities �mm/s with driving

voltage of a few volts �7–14�.
Theoretically, Ramos et al. performed a more detailed lin-

ear response investigation of the pumping mechanism and

found a specific pumping direction, a pumping velocity scal-

ing as the square of the driving voltage, and a well-defined

frequency for maximal pumping �15�.
However, the above analysis is strictly valid only at low

driving voltage V0�kBT /e�25 mV, whereas experiments

are usually performed with at least a few volts. As a conse-

quence, the theory disagrees with experimental observations

in several ways: e.g., experimentally the pumping velocity

does not always compare well with the predicted V0
2 scaling,

but looks more like a linear scaling �10,11� or tends to satu-

rate at large voltage �13�. Moreover, Studer et al. found a

reversal of the pumping direction at driving frequencies well

above that for maximal pumping in the “forward” direction
�11� and Ramos and co-workers observed reversal of the
pumping direction on a traveling-wave device for driving
voltages above 2 V at 1 kHz driving frequency �13,14�. The
existing theory does not give many clues as to the mecha-

nism for this reversal, except that in the original paper Ajdari

predicted pumping in the “reverse” direction at low fre-

quency when Faradaic electrode reactions were included in

the model �5�. Indeed, several groups have observed bubble

formation and electrode degradation at low frequency and

high voltage which indicates that electrode reactions are ac-

tually taking place �8–11,14�. Lastochkin et al. observed

fluid motion in the reverse direction of that usually expected

for ac electro-osmosis, which was attributed to strong Fara-

daic current injection �16�. However, their experiments were

performed with driving frequencies in the MHz range which

is of the order of the Debye frequency for the electrolyte,

whereas ac electro-osmosis generally occurs around the in-

verse RC time of the device.

These discrepancies between experimental observations

and existing theory demonstrate the need for a more com-

plete theoretical understanding. As a first step we here ad-

dress a few generalizations of the existing linear response

theory to the weakly nonlinear regime by taking into ac-

count, within the thin Debye layer approximation, the effect

of Faradaic currents both in a linearized scheme and using

the full nonlinear Butler-Volmer reaction kinetics. We also

include the nonlinear surface capacitance of the Debye layer

as described in Gouy-Chapman theory.

The paper is organized as follows: In Sec. II we fix the

device geometry and in Sec. III we describe our model for

the electrokinetic system. In Sec. IV we extend the linear

analysis for low driving voltage to study in more detail the

effects of the device geometry and vertical confinement of

the system, and we investigate the effect of Faradaic current

injection in a linearized scheme. This provides a firm starting

point when in Sec. V we study the nonlinear model both with

and without Faradaic current. In Sec. VI we summarize our

results and compare to experiments reported in the literature,

and finally, in Sec. VII we conclude the paper.
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II. DEVICE GEOMETRY

We consider a two-dimensional �2D� geometry like that

shown in a side view in Fig. 1, similar to devices used ex-

perimentally �6–11,14�. It consists of a substrate on which an

asymmetric array of interdigitated microelectrodes is depos-

ited. Each electrode pair in the array consists of a narrow

electrode of width W1 and a wide electrode of width W2

separated by a narrow and a wide gap G1 and G2, respec-

tively, and the full period is L=W1+G2+W2+G2. Notice that

in order to break the left-right symmetry of the array it is

necessary that both W1�W2 and G1�G2. On top of the

electrode array a microfluidic channel of height H is placed

and we assume that the device extends sufficiently far into

the third dimension that a 2D description in the xy plane is

appropriate.

The channel is filled with an electrolyte, and the narrow

and wide electrodes are biased with an ac voltage Vext

= ±V0 cos��t�, respectively; i.e., the applied voltage differ-

ence is 2V0 cos��t�. This induces the formation of a Debye

layer on the electrodes that acts to partially screen the elec-

tric field. The nonuniform partial screening gives rise to tan-

gential electric field in the Debye layer and electro-osmotic

flow. This flow takes the form of fluid rolls above the elec-

trode edges as indicated in Fig. 1.

III. ELECTROKINETIC MODEL

Our model for the electrohydrodynamics of the system is

similar to that of Ramos et al. �15� and is based on the

following classical approximations �17–20�: �i� The bulk

electrolyte is assumed to be charge neutral with uniform salt

concentration, such that the ionic transport can be described

as Ohmic current. �ii� The Debye layer is assumed to be in

local equilibrium with the electrolyte immediately outside

the layer, such that the charge distribution and potential

variation in the Debye layer can be described by Gouy-

Chapman theory. �iii� Moreover, we assume that the thick-

ness of the Debye layer is much smaller than the size of the

electrodes, and we neglect surface diffusion and migration of

charge. �iv� The bulk fluid motion is described by Stokes

flow with a slip condition on the electrodes set by the elec-

troosmotic flow induced in the Debye layer. �v� Finally, we

also assume that the bulk concentration of the reactants in

the Faradaic electrode reaction is constant; i.e., we neglect

the effect of mass transfer.

Upon these approximations, the only dynamical variables

we are left to consider are the potential distribution ��x ,y , t�
in the bulk and the local surface charge density q�x , t� accu-

mulated in the Debye layer on the electrodes. The instanta-

neous value of q determines the potential drop from the elec-

trode to the electrolyte immediately outside the Debye layer,

whereas the time evolution of q is determined by the balance

between the Ohmic current from the bulk and Faradaic cur-

rent from electrochemical reactions on the electrodes.

We emphasize that this simple electrokinetic model is ap-

propriate only in the weakly nonlinear regime of not-too-

high driving voltage ��125 mV�. Beyond this, the assump-

tion of uniform bulk electrolyte concentration breaks down,

the effect of mass transfer on the Faradaic reaction kinetics

cannot be neglected, and the Debye layer may be driven

out of local equilibrium. This is discussed in more detail in

Sec. VI.

A. Bulk electrolyte

In the bulk electrolyte we assume charge neutrality such

that the charge continuity equation reduces to

� · J = 0. �1�

The electric current J is described simply as the Ohmic cur-

rent J=−��� where � is the conductivity of the electrolyte.

Since we assume uniform salt concentration and conductivity

throughout the bulk, we then simply end up with a Laplace

problem for the potential ��r , t�.

B. Debye layer

The Debye layer is assumed to be in local equilibrium

with the electrolyte immediately outside the layer. This im-

plies that the driving frequency should be well below the

Debye frequency �D=� /� of the electrolyte and that the

Faradaic current injection cannot be too strong. The total

charge accumulated in the Debye layer can then be directly

related to the potential drop 	�x , t� across it �18�

q�x,t� = �
Debye layer


�x,y,t�dy �2�

=− sgn�	��2�kBT�
n

cn
*�e−zne	/kBT − 1� , �3�

where 
 is the charge density, � the permittivity of the sol-

vent, kB Boltzmann’s constant, T the temperature, cn
* the bulk

concentration �number density� of the nth ionic species, and

zn its valence. In the Debye-Hückel limit 	�kBT /ze, Eq. �3�
can be linearized to

q = −
�

�D

	 , �4�

where �D=��kBT /�ncn
*zn

2e2 is the Debye length and � /�D is

the Debye layer capacitance �per unit area� at low voltage.

FIG. 1. Sketch of the device geometry. The interdigitated elec-

trode array is biased with an ac voltage that induces a buildup of a

Debye screening layer and electro-osmotic fluid motion.
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For larger potentials we focus on the simple case of a

monovalent symmetric �1:1� electrolyte where Eq. �3� re-

duces to

q = −
�

�D

2kBT

e
sinh	 e	

2kBT

 . �5�

As in the classical Gouy-Chapman-Stern model we assume

that the compact �Stern� layer on the electrode simply gives

rise to an additional surface capacitance Cs in series with the

Debye layer �18�. Alternatively Cs could model an oxide

layer grown intentionally on the electrodes to inhibit electro-

chemical reactions �4,12,20�. In either case we shall for sim-

plicity assume that Cs is independent of potential. The total

potential drop across the double layer �Debye and Stern� is

Vext − � = 	 −
1

Cs

q , �6�

where Vext is the electrode potential and � is the potential in

the electrolyte immediately outside the Debye layer. The

overall capacitance �per unit area� of the double layer is de-

fined as

C�	� = −
q

Vext − �
. �7�

In the Debye-Hückel limit this reduces to

C0 = ��D

�
+

1

Cs

�−1

=
1

1 + �

�

�D

, �8�

where we introduced the parameter �=� /�DCs for the sur-

face capacitance ratio. At larger potential the Debye layer

capacitance becomes very large and C�	� is dominated by the

Stern layer only. Notice that C�	� always satisfies C0


C�	�
Cs.

The charging of the Debye layer is due to both Ohmic

current from the bulk and Faradaic current from electro-

chemical reactions at the electrode:

�tq = − n · J + jext, �9�

where n is a unit normal pointing out of the electrode, −n ·J

is the Ohmic current running into the Debye layer, and jext is

the Faradaic current from the electrode reaction. We neglect

any surface diffusion and migration of charge in the Debye

layer.

C. Insulating walls

On the channel substrate between the electrodes and on

the channel lid we assume no normal current:

n · J = 0. �10�

This is justified because the amount of charge required to

screen any field normal to the channel wall is both very small

and builds up on the Debye time scale �D=� /�.

D. Electrochemistry

For the Faradaic electrode reaction we consider a simple

one-step, one-electron redox process of the form

O + e � R, �11�

where zO=zR+1 to ensure charge conservation. Activated-

complex theory predicts an electric current density jext from

this process given by �18�

jext = e�kR
�cR

s e�1−��e��s/kBT − kO
�cO

s e−�e��s/kBT� , �12�

where kO
� and kR

� are the forward and backward standard rate

constants for the reaction, cO
s and cR

s are the concentrations of

the oxidized and reduced species directly at the electrode

�Stern layer� surface, � is the transfer coefficient, and ��s

=−q /Cs is the potential drop across the Stern layer. Assum-

ing local equilibrium, the concentrations directly at the sur-

face are related to those immediately outside the Debye layer

by a Boltzmann factor, cn
s =cne−zne	/kBT. Then Eq. �12� can be

reexpressed as the current-overpotential equation

jext = j0e−�zO−��e	/kBT	 cR

cR
*

e�1−��e�/kBT −
cO

cO
*

e−�e�/kBT
 ,

�13�

where j0=ek��cR
* ���cO

* �1−� is the exchange current, k� is the

standard rate constant, cO and cR are the concentrations im-

mediately outside the Debye layer, and cO
* and cR

* are the

corresponding bulk values. �= �Vext−��− �Vext−��eq is the

difference between the actual potential drop across the

double layer and the thermal equilibrium for the given redox

process and bulk concentration; � is also termed the overpo-

tential. Appreciating that cn
s in Eq. �12� differs from cn by a

Boltzmann factor is known as the Frumkin correction to the

standard Butler-Volmer equation.

Linearization for small � and for cO and cR close to their

bulk values yields

jext = j0e−�zO−��e	eq/kBT	 cR

cR
*

−
cO

cO
*

+
e�

kBT

 , �14�

where 	eq is the intrinsic equilibrium potential drop across

the Debye layer.

For simplicity we shall take 	eq=0 such that �=Vext−� in

Eqs. �13� and �14�, set the transfer coefficient � equal to 1/2,

and assume that cO and cR are virtually at their bulk values;

i.e., we neglect the effect of mass transfer. Moreover, for

surface potentials outside the Debye-Hückel limit we shall

focus on a monovalent symmetric �1:1� electrolyte with zO

=zR+1=1. Then Eqs. �13� and �14� reduce to

jext = j0e−e	/2kBT2 sinh� e�Vext − ��

2kBT
� �15�

and

jext = j0

e�Vext − ��

kBT
=

Vext − �

Rct

, �16�

respectively, defining the �area specific� charge-transfer resis-

tance Rct=kBT / j0e of units ��m2�.

E. Fluid dynamics

Since we are considering a microsystem where the Rey-

nolds number is usually very low—i.e., where viscosity
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dominates over inertia—the fluid motion in the electrolyte is

described by the Stokes equation


m�tu = − �p + ��
2u , �17�

together with the incompressibility constraint

� · u = 0. �18�

Here 
m is the fluid mass density, u the velocity, p the pres-

sure, and � the dynamic viscosity. On the insulating walls

the no-slip boundary condition applies, whereas on the elec-

trodes we impose a tangential slip condition based on the

Helmholtz-Smoluchowski slip velocity:

us = −
�	

�
Et, �19�

where Et=−�x� is the tangential field. This classical result

for the slip at a flat surface with an externally applied tan-

gential field also holds in general for thin Debye layers in

quasiequilibrium at a metal-electrolyte interface �21�.
The fluid flow pattern is complex with rolls above the

electrode edges as sketched in Fig. 1. However, we are

mostly concerned with the net pumping 
Q�=�0
H
ux�dy. A

Fourier analysis shows that on average in time and space the

flow is a simple Couette flow driven by the average slip

velocity U on the bottom wall �15�

U =
1

L
��

x1

x2


us�dx + �
x3

x4


us�dx� , �20�

in terms of which 
Q�=HU /2—that is, assuming zero back-

pressure on the device. Here xi denote the positions of the

electrode edges �cf. Fig. 1� and the insulating walls do not

contribute due to the no-slip condition.

Notice that us and hence U are determined entirely by the

solution to the electrical problem. Therefore we can study

pumping without resolving any details of the actual flow

pattern above the electrodes—i.e., without solving Eq.

�17�—which is very convenient.

F. Characteristic dimensions

Before going into a detailed analysis it is convenient to

discuss the overall properties of the electrokinetic system.

Very roughly speaking the system is equivalent to the simple

RC circuit shown in Fig. 2. The characteristic length scale �0

of the device is the narrow electrode gap G1, which deter-

mines the magnitude of the electric field strength. The char-

acteristic time �0 is the RC time for charging the Debye layer

through the bulk electrolyte �0=R0C0, where R0 is the �area

specific� bulk electrolyte resistance. However, at high volt-

age the Stern layer dominates the capacitance of the double

layer and the relaxation time changes to ��=R0Cs=�0�1
+�−1�. The characteristic time for �de�charging the Debye

layer through the Faradaic reaction is �ct=RctC0. When the

electrode reaction is very facile and Rct�R0 this can be sig-

nificantly faster than the Ohmic charging, acting effectively

as a “short-circuit” on the Debye layer. Finally, the charac-

teristic fluid velocity obtained with 	�V0 / �1+�� and Et

�V0 /�0 is u0=�V0
2 /��0�1+��.

IV. LINEAR ANALYSIS

We first study the problem in the Debye-Hückel limit 	
�kBT /ze. Here the electrokinetic problem can be linearized

which simplifies the analysis significantly. Indeed the entire

problem is characterized by only two dimensionless groups

measuring the ratios of the two relaxation times �0 and �ct

and the period of the driving voltage. Of course, the solution

also depends on the geometrical parameters W1, W2, G1, G2,

and H, of which four can be varied independently once a

characteristic length scale is fixed. We do not vary all these

parameters simultaneously, though.

In the simplest case with negligible confinement �H�L�
and no Faradaic electrode reaction we recover the earlier

results of Ramos et al. We also determine the optimal param-

eters for the geometry of the electrode array. Then with the

relative size of the electrodes fixed we consider how vertical

confinement of the fluidic channel to H�L affects the sys-

tem and we investigate the behavior when electrode reac-

tions occur. Finally, we discuss how part of the linear analy-

sis can be extended to cover systems with arbitrary intrinsic

zeta potential 	eq on the electrodes but low driving voltage

V0� �1+��kBT /ze.

A. Dimensionless form for linear analysis

In preparation of our numerical analysis of the problem

we rescale the variables based on the characteristic dimen-

sions defined in Table I, denoting dimensionless variables by

a tilde:

r = �0r̃, t = �0t̃, � = �0
−1�̃ ,

� = V0�̃, q = C0V0q̃, u = u0ũ . �21�

In terms of these, the linearized relations �4�, �6�, �9�, and

�16� for the charging of the Debye layer on the electrodes

reduce to

�t̃q̃ = n · �̃�̃ + K�Ṽext − �̃� , �22�

Ṽext − �̃ = − q̃ , �23�

where K=R0 /Rct=�0 /�ct is a measure of the facility of the

electrode reaction—i.e., a Faradaic conductance. The har-

R0

C0

Rct

FIG. 2. Equivalent circuit diagram for the electrokinetic system:

R0 is the bulk electrolyte Ohmic resistance, C0 is the double-layer

capacitance, and Rct is the charge-transfer resistance for the elec-

trode reaction. The characteristic time for charging the Debye layer

through the electrolyte is �0=R0C0, and the time scale for decharg-

ing the layer through Faradaic electrode reaction is �ct=RctC0.
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monic time dependence is most conveniently dealt with by

introducing complex variables

�̃�r̃, t̃� =
1

2 �̂�r̃�ei�̃t̃ + c.c. �24�

and similarly for Ṽext and q̃. Then q̃ in Eq. �22� can be elimi-

nated using Eq. �23� to obtain

n · �̃�̂ = �i�̃ + K���̂ − V̂ext� �25�

for the charge balance in the Debye layer. On the insulating

walls,

n · �̃�̂ = 0, �26�

whereas in the bulk Eq. �1� reduces to a Laplace problem

− �̃
2�̂ = 0. �27�

The time average electro-osmotic slip velocity can be ex-

pressed as


ũs� = 
�Ṽext − �̃��x̃�̃� = −
1

2
�x̃
�Ṽext − �̃�2� = −

1

4
�x̃�V̂ext − �̂�2,

�28�

where we used that �x̃Ṽext=0 across the electrodes. The spa-

tial average is then �15�

Ũ =
1

L̃
��

x̃1

x̃2


ũs�dx̃ + �
x̃3

x̃4


ũs�dx̃�
= −

1

4L̃
��V̂ext − �̂�x̃2

2
− �V̂ext − �̂�x̃1

2

+ �V̂ext − �̂�x̃3

2
− �V̂ext − �̂�x̃4

2 � . �29�

B. Validation of the numerical scheme

We solve Eqs. �25�–�27� numerically with the finite-

element method, using the commercial software package

FEMLAB. We use second-order Lagrange elements to approxi-

mate the solution and a nonuniform finite-element mesh with

increased resolution at the electrode edges.

In the simple case without any Faradaic current, the De-

bye layer is charged by Ohmic current through the bulk only.

Figure 3 shows the time average slip velocity 
ũs� across the

electrodes for �̃=1 and K=0 in a geometry with W̃1=1.5,

W̃2=7, G̃2=5, and H̃� L̃. The slip velocity is strongest close

to the edges of the electrodes and is always directed from the

edges towards the center of the electrodes. To understand this

behavior, notice that close to the electrode edges the electric

field and hence the Ohmic current are stronger, which makes

the charging of the Debye layer faster and the screening of

Ṽext more efficient. Then Eq. �28� clearly shows that 
ũs� is

always directed from regions where the screening is good

and �V̂ext− �̂�2 is large towards regions where the screening is

less efficient and �V̂ext− �̂�2 is smaller—i.e., from the elec-

trode edges towards the center.

The slip velocity on the electrodes gives rise to bulk fluid

motion with rolls above the electrode edges as sketched in

Fig. 1. However, the net pumping is determined only by the

average slip Ũ which is shown in Fig. 4 as a function of

frequency �̃. When �̃�1 the screening is almost complete at

all times. Hence, there is no tangential field and no electroos-

motic flow. Conversely, when �̃�1 the driving is too fast for

any significant screening to occur; i.e., there is no charge in

the Debye layer and no flow. As a consequence, in Fig. 4 we

see that the pumping velocity Ũ is maximized around �̃
�1, whereas it falls off as �̃2 at low frequency and slightly

faster than �̃−2 at high frequency.

In the low-frequency limit �̃�1 we can verify our nu-

merical results analytically by expanding the problem in

powers of �̃ �22�. It then turns out that the leading-order time

average slip 
ũs� scales as �̃2 with a corresponding pumping

velocity Ũ shown with a dashed line in Fig. 4. It is interest-

ing to note that the overall magnitude of ũs falls off only

linearly with �̃ at low frequency. This results from the uni-

form surface charge density to zeroth order in �̃ interacting

TABLE I. Characteristic dimensions of the electrokinetic system

and typical experimental values for a 10−4 M KCl working electro-

lyte, assuming �=0.1.

Geometric length �0 G1 5 �m

Debye length �D
��kBT /�ncn

*zn
2e2 30 nm

Ohmic relaxation time �0 R0C0 70 �s

at large voltage �� R0Cs 770 �s

Faradaic relax. time �ct RctC0 — s

Debye relaxation time �D � /� 0.5 �s

Double-layer cpt. C0 � /�D�1+�� 20 mF m−2

Capacitance ratio � � /�DCs 0.1 —

Bulk resistance R0 �0 /� 3.3 m� m2

Charge-transfer rst. Rct kBT / j0e — � m2

Thermal voltage — kBT /e 25 mV

Fluid velocity u0 �V0
2 /��0�1+�� — ms−1

0 2 4 6 8 10 12 14

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x̃

〈ũ
s
〉

FIG. 3. Time average slip velocity 
ũs� across the electrodes

obtained for �̃=1 and K=0 �no Faradaic current� in a geometry

with W̃1=1.5, W̃2=7, G̃2=5, and H̃� L̃.
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with the first-order electric field, which gives rise to oscillat-

ing flow but no time average. A similar expansion in the

high-frequency limit is more difficult. Still, our numerical

results show that the magnitude of ũs falls off as �̃−2 at high

frequency for fixed x̃, but also that it remains finite in a

narrow region of width �̃−1 from the electrode edges. The

latter appears to be an artifact due to our simplified geometry

model with infinitely thin electrodes: For electrodes of finite

thickness and radius of curvature R̃ at the edges, the magni-

tude of ũs falls of as �̃−2 everywhere on the electrodes for

�̃� R̃−1; see also �23�.
One particular question that one might ask from Fig. 4 is

why the maximum net pumping velocity Ũmax�0.003 is so

low: If the chosen velocity scale u0 is appropriate, should we

not expect Ũmax�1? Starting from Fig. 3 we note that al-

ready the time average slip 
ũs� is less than O�1� because the

double-layer potential drop �V̂ext− �̂� in Eq. �28� is only

around half the total applied voltage V̂ext at the relaxation

frequency. The spatial average over the full period of the

array includes both positive and negative values of 
ũs� and

passive sections of insulating channel wall, which reduces

the value of Ũ further compared to unity. Interestingly, the

average slip across only the narrow electrode,

Ũ1 =
1

L̃
�

x̃1

x̃2


ũs�dx̃ , �30�

changes sign for �̃�1. At low frequency, Ũ1 and the corre-

sponding average Ũ2 across the wide electrode are both posi-

tive with Ũ1�0.1Ũ2� �̃2. Above the relaxation frequency

we have −Ũ1� Ũ2��−1, although their sum Ũ= Ũ1+ Ũ2 falls

off as �or slightly faster than� �̃−2.

In order to further validate our numerical scheme we

compare to the results obtained by Ramos et al. using a

boundary element method based on the Greens function for a

unit charge line source �15�. This is shown in Fig. 5, where

the time average slip 
ũs� from both electrodes is shown on

the same graph for �̃=1.24 in a geometry with W̃1=1, W̃2

= G̃2=10/3, and H̃� L̃. The results from the two different

numerical schemes are hardly distinguishable, except close

to the electrode edges where our finite-element solution dis-

plays a slightly larger slip velocity �24�.
We also checked our results for convergence with mesh

refinement. The potential �̂�r� is everywhere smooth, but the

tangential field is singular at the electrode edges due to the

abrupt change in boundary condition between Eqs. �25� and

�26� �25�. Of course, our finite-element solution cannot rep-

resent an infinite slope, but by choosing a strongly nonuni-

form mesh with very fine resolution near the edges we obtain

fairly good quality of the solution even close to the singular-

ity. Moreover, we are mostly concerned with the net pump-

ing Ũ which is an integral quantity and therefore less sensi-

tive to the details at the electrode edges �26�.

C. Optimal device geometry

An important question in relation to actual device design

is what electrode geometry would maximize the pumping

velocity. It is immediately clear that since the characteristic

velocity u0 is inversely proportional to the characteristic

length scale �0, the pumping is increased by downscaling the

overall size of the electrodes. We focus again on the limit

H�L, where the results are independent of H. Still, there

remains four different length scales describing the electrode

geometry—namely, W1, W2, G1, and G2—of which three can

be varied independently once a characteristic length scale is

fixed.

Ramos et al. also investigated how the pumping velocity

depends on the electrode geometry �15�. They rescaled the

problem using the width of the wide electrode W2 as their

characteristic length scale, but found that the pumping veloc-

ity would increase without bounds as G1 /W2→0. Therefore

they fixed the ratio G1 /W2 at 0.1751, as in the experiment by

Brown et al. �6�, and found that the pumping velocity was

then maximized when W1 /W2=0.24 and G2 /W2=0.8.
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FIG. 4. Pumping velocity Ũ as a function of frequency �̃.

Dashed line: analytical result at low frequency where Ũ� �̃2.
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FIG. 5. Time average slip velocity 
ũs� for both electrodes

against the relative position on the electrode x /Wi. Symbols: results

of Ramos et al. �15� for the narrow ��� and wide ��� electrodes,

respectively. Solid lines: our numerical solution.
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However, the choice G1 /W2=0.1751 is arbitrary. It is

more appropriate to identify the narrow electrode gap G1 as

the characteristic length scale and look for an optimal device

geometry as a function of W̃1, W̃2, and G̃2 in the parameter

ranges 0�W̃1
W̃2�� and 1
 G̃2��. Notice that when

W̃2 and G̃2 attain their lower limits, the net pumping Ũ van-

ishes due to left-right symmetry; i.e., the optimum cannot be

on the parameter range boundaries. Therefore we can use a

simple unconstrained optimization algorithm such as the

MATLAB function FMINSEARCH to determine the global opti-

mum:

Ũmax = max
��̃,W̃1,W̃2,G̃2�

�Ũ��̃,K = 0,W̃1,W̃2,G̃2�� . �31�

In this way we find that the pumping velocity is maximized

for W̃1=1.51, W̃2=6.55, and G̃2=4.74, where Ũmax

=0.003 59 at �̃max=0.80.

Given that we have tracked down the global optimum, it

is natural to ask how much better this geometry performs as

compared to that suggested by Ramos et al. and those used

experimentally. This is summarized in Table II: Almost all

experimental geometries come within 10% of the maximal

pumping velocity, and the theoretical result of Ramos et al. is

less than 1% off. Yet the frequency �̃max at which pumping is

maximized for the various geometries differs by almost a

factor of 2.

The overall conclusion to be drawn is that the pumping

velocity is fairly insensitive to the particular choice of elec-

trode geometry. Henceforth, we shall therefore continue to

use a geometry with rounded numbers W̃1=1.5, W̃2=7, and

G̃2=5 which is still close to optimal; see also Fig. 6.

D. Confined geometry

In several experimental studies the height of the pumping

channel H has been comparable to the period of the electrode

array L �8,10,11�. It is not immediately clear how this would

affect the properties of the device compared to the simple

case of no confinement H�L.

Figure 7 shows the pumping velocity Ũ as a function of

frequency �̃ and degree of confinement L /H. Our previous

results correspond to the base line L /H�1, whereas the con-

finement becomes significant for L /H�2. In particular, the

pumping velocity increases by roughly a factor of 2 and the

optimal driving frequency �̃max becomes proportional to H̃

for L /H�1. The latter is easily understood from our simple

circuit model of the system in Fig. 2: While the double-layer

capacitance C0 is largely independent of confinement, the

resistance of the bulk electrolyte changes from R0 to R0 / H̃

because the cross section of the conducting channel is de-

creased. The relaxation frequency therefore becomes

H̃ /R0C0—i.e., proportional to H̃.

Our findings here are important in relation to actual de-

vice design because they indicate that working with a

strongly confined geometry does not, as one might have wor-

ried, mask the asymmetry and destroy the ability to pump.

Thus the channel height H and the period of the electrode

array L can be chosen independently. It is important to real-

ize that while the pumping velocity U does not depend much

on confinement, the maximal flow rate Qmax=HU /2 that the

pump can deliver �per unit width of the channel� and the

maximal backpressure �pmax=6�NLU /H2 it can sustain

�where N is the total number of electrode pairs� certainly do.

TABLE II. List of geometries used experimentally and our linear model prediction for their dimensionless

maximum pumping velocity and optimal driving frequency. Of course, the actual pumping velocity depends

on the absolute size of the device through u0.

W̃1 W̃2 G̃2 Ũmax �̃max Refs.

Brown et al. 0.93 5.7 3.5 0.00331 1.12 �6,7,11�

Studer et al. 0.67 4.33 2.67 0.00293 1.47 �8�

Mpholo et al. 1.0 5.0 3.0 0.00332 1.12 �9�

Debesset et al. 0.8 5.2 3.2 0.00317 1.26 �10�

Ramos et al. 1.37 5.71 4.57 0.00357 0.88 �15� �theory�

Global optimum 1.51 6.55 4.74 0.00359 0.80 Present work
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FIG. 6. Contour plot of the maximal pumping velocity over

frequency max�̃�Ũ��̃ , . . . �� as a function of W̃1 and W̃2 for G̃2=5.

When W̃1=W̃2 the net pumping vanishes due to symmetry. There is

a unique optimum close to W̃1=1.5 and W̃2=7 with Ũmax

=0.00358 and �̃max=0.8.
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E. Faradaic current injection

When we include electrode reactions and Faradaic current

in our model, one of the most important new features is that

the complete screening of the electrodes at low frequency is

unbalanced. When the reaction is slow and the Faradaic con-

ductance K=R0 /Rct� �̃, the effect is small and only perturb

the result from purely Ohmic charging slightly. Conversely,

when K� �̃ the reaction is fast enough to establish a steady

state where the Ohmic and Faradaic currents are balancing.

For either K�1 and/or �̃�1 the Debye layer is effectively

“short-circuited;” cf. Fig. 2. On the basis of these observa-

tions we would expect to see pumping even in the low-

frequency limit when the Faradaic reaction speed is moderate

and K�1.

Figure 8 shows the pumping velocity Ũ as a function of �̃
and K. For K� �̃ we recover our previous results for pure

Ohmic charging. However, for K� �̃ we observe no pump-
ing at all, not even for K�1. Figure 9 shows the result of a

more detailed investigation in the zero-frequency limit �̃
�0, where we consider a device with asymmetric surface

properties on the electrodes, such that the Faradaic conduc-

tance takes the values K1 and K2 on the narrow and wide

electrodes, respectively. The figure shows that whenever K1

�K2 the device does actually pump: When K1�K2 it pumps

in the forward direction—i.e., in the same direction as ob-

served for purely Ohmic charging—but for K2�K1 the

pumping direction is reversed.

This reversal of the pumping direction can be understood

qualitatively by inspecting the form of the time average slip


ũs� for the four different points marked �a� to �d� in Fig. 9,

the result of which is shown in Fig. 10. When K1=K2=1 �c�
the slip velocity is clearly nonzero on both electrodes, but the

average across the narrow electrode exactly cancels that

across the wide electrode. When K1�K2=1 �d� the Debye

layer on the narrow electrode is essentially short-circuited by

the fast electrode reaction, leaving no charge and no elec-

troosmotic flow there except from in a narrow region of

width �K1
−1 from the electrode edges. Therefore the pump-

ing velocity Ũ is dominated by the contribution from the

wide electrode. Similarly, when K2�K1=1 �a� the Debye

layer on the wide electrode is essentially short-circuited and

the pumping velocity is dominated by the contribution from

the narrow electrode—which tends to be negative.

In conclusion, the absence of pumping in the low-

frequency limit when K1=K2 is a special case due to high

symmetry; whenever K1�K2 there is some pumping and this

falls off linearly with Ki for Ki�1. More generally we can

prove that for a device with spatially varying capacitance

ratio ��x̃� and Faradaic conductance K�x̃�, there can be no

pumping in the low-frequency limit when the product �1
+��x̃��K�x̃� is a constant on all electrodes. The details of the

proof are outlined in Appendix A.
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F. Linear response at nonzero intrinsic zeta potential

Many electrode-electrolyte systems spontaneously form a

Debye layer and possess an intrinsic zeta potential typically

of the order 	eq�100 mV which is well beyond the Debye-

Hückel limit 	�kBT /ze�25 mV. Hence, our foregoing lin-

ear analysis cannot be applied immediately to such systems.

But then it is standard procedure in electrochemical imped-

ance spectroscopy to study the linear response of the electro-

kinetic system to a small applied voltage �18�.
Consider a system where the electrolyte forms a Debye

layer on the electrodes with an intrinsic zeta potential 	eq. In

equilibrium there is a uniform surface charge density qeq

given by Eq. �3� on the electrodes and a constant potential

�eq=−	eq+qeq /Cs in the bulk. If the electrode array is biased

with a small-amplitude ac voltage Vext= ±V0 cos��t�, we can

linearize around equilibrium and writing �=
1

2
��eq+ �̂�ei�t�

+c.c. and similarly for q and 	 we recover the form of Eqs.

�26� and �27� for the linear response �̂�. Only now the char-

acteristic time used for the rescaling in Eq. �21� becomes

�0 = R0Cd, �32�

where Cd�	eq� is the differential capacitance of the double

layer:

Cd = −
dq

d�Vext − ��
. �33�

For a symmetric z :z electrolyte this can be written as

Cd =
�

�D�� + sech�ze	eq/2kBT��
. �34�

The relaxation time for the Faradaic electrode reaction be-

comes

�ct = RctCd, �35�

where Rct�	
eq� is the differential charge-transfer resistance

given by

1

Rct

=
djext

d�Vext − ��
=

j0e

kBT
e−�zO−��e	eq/kBT, �36�

and the Faradaic conductance is redefined as K=R0 /Rct�	
eq�

accordingly. The interaction of the linear response tangential

field with the equilibrium Debye layer charge gives rise to a

linear response slip velocity

us� =
�	eq

�
�x��. �37�

However, because �� is harmonic in time, this does not give

rise to any net pumping. The leading-order time average slip

is to second order in V0, where the interaction of the induced

charge to first order with the tangential field gives rise to a

slip velocity of


us�� =
�

�

	��x��� = −

�

4�

d	

d�Vext − ��
�x�V̂ext − �̂��2. �38�

This is fully equivalent to Eq. �28�, and the net pumping

produced can be obtained directly from the analysis pre-

sented earlier in the text. Only now the characteristic fluid

velocity becomes

u0 =
�V0

2

��0

d	

d�Vext − ��
, �39�

where, for a symmetric z :z electrolyte,

d	

d�Vext − ��
=

1

1 + � cosh�ze	eq/2kBT�
. �40�

Notice that u0�	eq� falls off exponentially with 	eq because 	�

becomes negligible.

The linear response dominates over the higher-order com-

ponents only at low applied voltage. Specifically, we must

require that both V0�Cd / �dCd /d�Vext−��� and V0

�Rct / �dRct /d�Vext−���, and a sufficient condition for this is

V0� �1+��kBT /ze. However, because the time average slip

velocity vanishes to first order in V0, one cannot neglect the

second-order tangential field −�x��, which gives rise to an

additional component 
ūs�� to the slip velocity given by


ūs�� =
�	eq

�
�x
��� . �41�

In the absence of Faradaic currents, the time average poten-

tial 
�� vanishes to second and all higher orders within our

simple electrokinetic model, as is easily seen by taking the

time average of Eq. �9�. Otherwise, 
��� is determined as a

solution to the Laplace equation with the boundary condition

0 = �n · �
��� −
1

Rct


��� +
1

4

d2jext

d�Vext − ��2
�V̂ext − �̂��2

�42�

at the electrodes, where

2 4 6 8 10 12

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

2 4 6 8 10 12

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x̃ x̃

〈ũ
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Ũ =0 Ũ > 0
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FIG. 10. Time average slip velocity 
ũs� on the electrodes for the

parameter values marked in Fig. 9: �a� K1=1, K2=102; �b� K1

=K2=102; �c� K1=K2=1; �d� K1=102, K2=1.

ac ELECTROKINETIC MICROPUMPS: THE EFFECT… PHYSICAL REVIEW E 73, 056313 �2006�

056313-9



d2jext

d�Vext − ��2
= −

e

kBT

2

Rct

��zO − ��
d	

d�Vext − ��
+ � −

1

2
� .

�43�

This demonstrates that when Faradaic electrode reactions oc-

cur, the actual computation of the time average fluid flow and

net pumping for finite intrinsic zeta potential �on the elec-

trodes and/or the insulating channel walls� requires a sepa-

rate and more elaborate study, which we have to leave open

despite its experimental relevance.

V. NONLINEAR ANALYSIS

While theoretically it is convenient to work in the low-

voltage limit where the system can be characterized by rela-

tively few dimensionless parameters, most experimental

work has been done with driving voltages of a few volts in

order to obtain an appreciable fluid motion. However, even

with the simple nonlinear model we consider here, the pa-

rameter space is large, and we therefore focus on the case of

a monovalent symmetric �1:1� electrolyte with no intrinsic

zeta potential formed on the electrodes—i.e., 	eq=0. More-

over, for the Faradaic electrode reaction we take zO=zR+1

=1 and assume a symmetric transfer coefficient �=1/2.

We first investigate the system behavior without the pres-

ence of the electrode reaction so that the only nonlinearity in

our model arises from the nonlinear capacitance of the De-

bye layer. Then we turn on the electrode reaction and study

the full nonlinear model.

A. Dimensionless form for nonlinear analysis

Beyond the Debye-Hückel limit, the smallest characteris-

tic voltage of the electrokinetic system is the thermal voltage

kBT /e�25 mV and not the driving voltage V0. We therefore

introduce a new rescaling for the electrical part of the prob-

lem:

� =
kBT

e
�̃, V0 =

kBT

e
Ṽ0, q = C0

kBT

e
q̃ . �44�

Apart from this, the scaling remains as in Eq. �21�; in par-

ticular, we retain u0=�V0
2 /��0�1+�� for the characteristic

fluid velocity. Then Eqs. �5�, �6�, �9�, and �15�, governing the

charging of the Debye layer on the electrodes, reduce to

Ṽext − �̃ = 	̃ − q̃�/�1 + �� , �45�

�t̃q̃ = n · �̃�̃ + j̃ext, �46�

where j̃ext is the dimensionless Faradaic current given by

j̃ext = 2Ke−	̃/2 sinh��Ṽext − �̃�/2� , �47�

with K=R0 /Rct as before, and where the zeta potential is

directly related to the Debye layer charge by

	̃�q̃� = − 2 sinh−1�q̃/2�1 + ��� . �48�

On the insulating walls we have again

n · �̃�̃ = 0 �49�

and, in the bulk,

− �̃
2�̃ = 0. �50�

The problem, Eqs. �45�–�50�, is solved numerically with the

finite-element method using FEMLAB. Due to the nonlinear-

ity, it is not possible to solve the problem with a single com-

plex variable for the base frequency component. Instead we

employ a relaxation method, where we represent the periodic

solution by a set of equispaced points over one period in

time, and calculate the time derivative in Eq. �46� using the

leapfrog finite-difference scheme; see Appendix B for de-

tails.

B. Nonlinear Debye layer capacitance

In the absence of Faradaic electrode reactions the only

nonlinearity in the model arises from the nonlinear surface

capacitance in the Debye layer. Figure 11 shows the pumping

velocity Ũ as a function of the driving frequency �̃ and

voltage Ṽ0 for �=0.1 and K=0. At the base line for Ṽ0�1

we recover the results from the linear analysis with Ũ peak-

ing for �̃�1. However, at higher voltage when the double-

layer capacitance is dominated by the Stern layer, the fre-

quency at which Ũ is maximized drops to �̃� �̃�, where

�̃�=�0 /��=� / �1+�� is the relaxation frequency at high volt-

age; cf. Table I.

Figure 11 also shows that the �dimensionless� pumping

velocity Ũ falls off at high voltage. This is simply due to the

fact that the �physical� electro-osmotic slip velocity us

�	�x� no longer scales as V0
2. When the driving frequency is

not too large, Eqs. �45� and �48� allow us to estimate the zeta

potential from

Ṽ0 � 	̃ + 2 sinh�	̃/2�� . �51�

At low voltage this reduces to 	̃�V0 / �1+�� whereas at high

voltage 	̃�2 log�Ṽ0 /��. The transition between the two re-

gimes occurs for Ṽ0�� when ��1 and for Ṽ0�−2 log �

when ��1. Hence, for Ṽ0��−2 log � we expect us to scale

as V0 log V0 rather than V0
2. This is confirmed by Fig. 12,

which shows Ũmax as a function of Ṽ0; the data are scaled

with Ṽ0
2 to recover the voltage dependence of the physical

pumping velocity:

U =
�

��0�1 + ��
	 kBT

e

2

ŨṼ0
2. �52�

We must emphasize at this point that the upper voltage limit

Ṽ0=103 in Figs. 11 and 12, corresponding to V0=25 V, is far

outside the range of validity of our simple electrokinetic

model: In Sec. VI we discuss a number of strongly nonlinear

phenomena that become significant for V0�125 mV in a

typical experiment. Beyond this voltage our results can

therefore only provide some characteristic features of the

system and should not be regarded as an accurate descrip-

tion.
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C. Nonlinear Faradaic current injection

While the nonlinearity induced by the Debye layer capaci-

tance manifests itself relatively slowly as the voltage is in-

creased, we expect a more dramatic effect from the Faradaic

current due to the exponential voltage dependence in Eq.

�47�. Figure 13 shows the pumping velocity Ũ as a function

of driving frequency �̃ and voltage Ṽ0 for �=0.1 and K

=0.1. At the base line for Ṽ0�1 we recover the results from

the linear analysis in Fig. 8 for K=0.1—i.e., no pumping in

the low-frequency limit and maximal pumping for �̃�1,

with a peak value of Ũ less than 0.003. However, for Ṽ0

�1 we do observe pumping at low frequency, whereas Ũ

falls off rapidly for all �̃ when Ṽ0�10. The figure also

shows that at low voltage the optimal driving frequency �̃max

follows the same pattern as in Fig. 11, but for Ṽ0�10 it

bends sharply up towards higher frequency.

Qualitatively it is not so difficult to see how the pumping

at low frequency arises: At low voltage the �magnitude of

the� charge density in the Debye layer on the narrow elec-

trode is a factor of W2 /W1 larger than on the wide electrode

to ensure overall charge conservation. Correspondingly, also

the double-layer potential drop Ṽext− �̃ is larger on the nar-

row electrode, such that the exponential increase in the Fara-

daic current �cf. Eq. �47�� starts off earlier there. Effectively,

this makes the Faradaic conductance larger on the narrow

electrode than on the wide one, and according to Fig. 9 from

our linear analysis this should indeed give rise to pumping in

the forward direction at low frequency.

Figure 14 shows in more detail the voltage dependence of

the pumping velocity at low frequency �̃�1. For Ṽ0�1 the

net pumping grows rapidly with Ṽ0. Apart from the intrinsic

Ṽ0
2 scaling, the time average asymmetry in effective Faradaic

conductance between the two electrodes grows roughly as Ṽ0
2

as well, yielding an overall Ṽ0
4 voltage dependence. At larger

voltage we find that the pumping levels off to become almost

independent of Ṽ0. This behavior can be partially understood

by considering the scaling of 	̃ and the tangential field in this

limit: When the frequency is low enough that a steady state

is established with the Ohmic and Faradaic currents balanc-

ing, we can write the applied voltage Ṽ0 as the sum of the

potential drop across the double layer Ṽext− �̃ and the poten-
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FIG. 11. Contour plot of the pumping velocity Ũ as a function

of frequency �̃ and driving voltage Ṽ0 with capacitance ratio �
=0.1 and no Faradaic current, K=0. The white dashed line shows

the frequency �̃max at which Ũ is maximized as a function of Ṽ0. At

large driving voltage �̃max shifts from �1 to � �̃�, reflecting the

larger relaxation time when the double-layer capacitance is domi-

nated by the Stern layer.
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Ṽ

2 0

Ṽ
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Ṽ
0

FIG. 13. Contour plot of the pumping velocity Ũ as a function

of driving frequency �̃ and voltage Ṽ0 with capacitance ratio �
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pumping in the low-frequency limit for Ṽ0�1.
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tial drop across the bulk electrolyte when an Ohmic current

equal to j̃ext is passed through it—i.e.,

Ṽ0 � �Ṽext − �̃� + j̃ext � �Ṽext − �̃� + 2Ke−	̃/2

�sinh��Ṽext − �̃�/2� . �53�

If we neglect for simplicity the 	̃-dependent exponential

prefactor, we find immediately that Ṽext− �̃� Ṽ0 / �1+K� at

low voltage Ṽ0�K−2 log K, changing to Ṽext− �̃

�2 log�Ṽ0 /K� at higher voltage. In effect, both the tangential

field �x̃�̃=−�x̃�Ṽext− �̃� and the zeta potential 	̃��Ṽext

−�� / �1+�� go as log Ṽ0 at large voltage, and we would ex-

pect the �physical� electro-osmotic slip velocity us�	�x� to

grow as slowly as �log V0�2 with driving voltage.

Finally, we note that since the electrode reaction is very

fast at large voltage, the “low-frequency” limit where the

Faradaic and Ohmic currents balance extends higher and

higher in frequency as the driving voltage is increased.

Therefore, the characteristic behavior from Fig. 14 with the

pumping velocity leveling off dominates even for �̃�1

when Ṽ0�102. And when the optimal driving frequency in

Fig. 13 shifts towards higher frequency for Ṽ0�10, it is

essentially a trace of the point at which the Faradaic current

starts to dominate.

VI. DISCUSSION

Our numerical study of the simple electrokinetic model

has brought about a number of interesting theoretical predic-

tions that we briefly summarize below and compare to ex-

perimental observations reported in the literature. In particu-

lar, we comment on the extent to which our results agree or

disagree with the experiments and discuss a number of �non-

linear� effects not included in our model that could account

for some of the more exotic experimental observations.

A. Confinement

Our analysis has shown that vertical confinement of the

pumping channel does not mask the asymmetry of the device

and destroy the ability to pump, as one might have worried,

but instead enhances the pumping velocity by roughly a fac-

tor of 2 and causes the optimal driving frequency to shift

down inversely proportional to L /H. In all experimental

studies to date, the confinement has been relatively weak

with L /H�2, whereas our results indicate that confinement

becomes significant only for L /H�2. It is important to keep

in mind, though, that while the pumping velocity U does not

depend much on confinement, the maximal flow rate Qmax

=HU /2 that the pump can deliver and the maximal back-

pressure �pmax�U /H2 it can sustain certainly do. The opti-

mal choice of channel height therefore depends strongly on

whether the pump is intended to work as a pressure or cur-

rent generator �27�.

B. Nonlinear double-layer capacitance

In the absence of Faradaic electrode reactions, where the

sole nonlinearity in our model is due to the nonlinear capaci-

tance of the Debye layer, we find that as the driving voltage

V0 is increased well beyond the thermal voltage kBT /e, the

relaxation frequency for the electrokinetic system, and hence

also the optimal frequency for pumping, drops from �0

=1/R0C0 to ��=1/R0Cs=�0� / �1+��, where �=� /�DCs is

the surface capacitance ratio. At the same time, the scaling of

the pumping velocity with driving voltage changes from V0
2

to V0 log V0 because the zeta potential entering the

Helmholtz-Smoluchowski slip velocity becomes only a small

fraction of the overall potential drop across the double layer.

Experimentally, Brown et al. reported that the optimal

driving frequency fmax dropped from 3 kHz at

0.2 Vrms to 1 kHz at 1.2 Vrms �6�. For their particular elec-

trolyte and electrode geometry the relaxation frequency at

low voltage was expected to be f0=�0 /2���1+��
�2 kHz. The observed downshift in optimal frequency

therefore fits well with our model predictions if we assume a

capacitance ratio of ��0.5. Likewise, Studer et al. found the

optimal driving frequency around 1 kHz for driving voltages

larger than 1 Vrms with similar electrolyte and electrode ge-

ometry �11�. The electrode material in those experimental

studies was uncoated gold and platinum, respectively, con-

sistent with a large Stern layer capacitance and hence small

�.

Green et al. mapped out the entire fluid velocity field over

a single pair of gold electrodes with titanium coating �4�. The

titanium spontaneously forms a thin oxide layer which was

intended to inhibit Faradaic electrode reactions in the experi-

ment. The observed velocity magnitude and frequency de-

pendence at 500 mV driving voltage was matched with lin-

ear theory predictions by assuming a capacitance ratio of �
=3. It is remarkable that this value was obtained for both a

0.15 mM and a 0.6 mM KCl solution: Naively, assuming a

constant value for the Stern layer capacitance Cs one would

expect �=� /�DCs to depend on the electrolyte concentration

through �D �28�.
Cahill et al. observed ac electroosmotic fluid motion due

to traveling-wave electric fields induced on a four-phase in-
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terdigitated electrode array and found an accurate V0
2 scaling

for 100−500 mV driving voltage, although the pumping ve-

locity peak position and magnitude were smaller than the

linear theory predictions �12�. In their experiments the elec-

trodes were coated with a 50-nm-thick Teflon-like insulating

layer, yielding a capacitance ratio of �=75–150 depending

on the electrolyte concentration. Hence, they remained in the

linear regime over the entire voltage range applied. Ramos et

al. performed a similar study using titanium-coated gold

electrodes �13�. Their optimal driving frequency around

2 kHz was matched with the linear theory by assuming �
=1.5, while the maximum pumping velocity at low fre-

quency was an order of magnitude below the prediction from

linear theory.

Generally, the experimentally observed pumping veloci-

ties tend to be smaller than the linear theory prediction and

sometimes resemble more an affine dependence than a qua-

dratic scaling with V0 �10,11�. This is at least in qualitative

agreement with our nonlinear model results because it is dif-

ficult to distinguish V0 from V0 log V0 over the limited volt-

age range used experimentally.

C. Faradaic current injection

Our linear analysis at low driving voltage shows that

when Faradaic electrode reactions occur, the pumping is

strongly suppressed for Rct�R0 due to “short-circuiting” of

the double layer, where Rct is the charge-transfer resistance

characterizing the electrode reaction and R0 is the bulk elec-

trolyte Ohmic resistance. When Rct�R0 the Faradaic current

injection merely imbalances the otherwise perfect screening

at low frequency and therefore induces electro-osmotic fluid

motion. Moreover, we predict that the direction of the pump-

ing in the low-frequency limit depends on the relative mag-

nitude of Rct on the narrow and wide electrodes, respectively:

If Rct is smaller on the narrow electrodes than on the wide

ones, the pumping at low frequency is in the forward direc-

tion, whereas it is in the reverse direction otherwise. In the

symmetric special case when Rct is equal on both electrodes

there is no net pumping at low frequency.

When the driving voltage is increased, the nonlinearity in

the Faradaic current injection induces an effective asymme-

try in the charge-transfer resistance and we obtain pumping

in the forward direction at low frequency, even if the intrin-

sic surface properties are symmetric. Moreover, at even

larger voltage our nonlinear analysis shows that the pumping

velocity levels off to a constant value. Using the typical pa-

rameter values from Table I and R0 /Rct=0.1 as in Fig. 14, the

magnitude of the pumping velocity at this plateau is roughly

U�100 �m/s.

The observation of electrode degradation and bubble for-

mation from electrolysis is experimental evidence that Fara-

daic reactions do occur above 1.5–4.0 Vrms, depending on

the driving frequency and electrode material �8–11,14�.
Moreover, Studer et al. observed that the pumping direction

was reversed when the driving frequency was increased

above 20 kHz and the voltage above 3 Vrms �11�. Ramos et

al. also found reversal of the pumping direction on an asym-

metric electrode array, as well as a similar reversal on a

traveling-wave array for driving voltages above 2 V and fre-

quencies around 1 kHz �13,14�. And Lastochkin et al. re-

ported that the direction of the time average slip velocity on

an array of T-shaped electrodes was reversed as compared to

the direction usually expected for ac electroosmosis �16�.
We note that the reversal of the pumping direction that we

predict at low frequency is essentially due to an imbalance

between net pumping contributions of opposite signs from

the two electrodes. We never find reversal of the time aver-

age slip direction within our simple electrokinetic model. It

is possible that the pumping reversal observed by Studer et

al. could be due to imbalance between the net pumping con-

tributions from the two electrodes: Although our nonlinear

analysis predicts pumping in the forward direction, there

could be other nonlinear effects leading to imbalance into the

reverse direction. However, Ramos et al. observed pumping

reversal on a traveling-wave array where all the electrodes

are identical—this rules out any imbalance between the con-

tributions from individual electrodes in their setup. And the

reversal of the time average slip direction observed by Las-

tochkin et al. is certainly a different phenomenon.

Lastochkin et al. argued that strong Faradaic current in-

jection in their system would reverse the polarity of the

charge in the Debye layer and hence the direction of the slip.

Based on the simple circuit model for the electrokinetic sys-

tem from Fig. 2, it is difficult to see how the potential drop

across �and hence the charge in� the double layer could

change sign, regardless of how small Rct becomes. However,

since the driving frequency in their experiments was in the

MHz range, which is of the order of the Debye frequency for

the electrolyte, the Debye layer cannot be assumed to be in

local equilibrium and Eqs. �4� and �16� are no longer valid.

Finally, we recall that for simplicity we have been focus-

ing here on the case with no intrinsic zeta potential 	eq on the

electrodes and/or the insulating channel walls. Our analysis

in Sec. IV F indicates that when Faradaic electrode reactions

are present, the behavior for nonzero 	eq needs to be studied

more carefully, especially in the nonlinear regime.

D. Effect of mass transfer on reaction kinetics

One important effect that we have neglected in our model

is the influence of mass transfer on the electrode reaction

kinetics. When the oxidized and reduced species O and R are

consumed or produced at the electrode by the Faradaic reac-

tion, their local concentrations cO and cR become different

from the bulk concentrations cO
* and cR

* , respectively. Now,

the lower cO drops at the electrode, the more difficult it be-

comes to run the reaction forward, and vice versa for cR.

This can be modeled as an additional impedance Z���, called

the Warburg impedance, in series with the charge-transfer

resistance Rct in Fig. 2 �18�. The transport of O and R from

the bulk to the surface is by diffusion, and the characteristic

distance that the nth species can diffuse over one cycle of the

driving voltage is �n���=�Dn /�, where Dn is the diffusion

constant. If this distance is small compared to the character-

istic dimension of the electrodes �0, the diffusion process is

essentially one dimensional and the �area specific� Warburg

impedance takes the form
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Z��� =
kBT

�2e2� 1

cO
* �DO

+
1

cR
* �DR

�1 − i

��
. �54�

Notice that Z��� increases at low frequency because the re-

actants need to diffuse longer. However, at very low fre-

quency when ������0—i.e., ��D /�0
2—the diffusion layer

extends much longer than the separation between the elec-

trodes and the Warburg impedance levels off to a constant

Z0 �
kBT

e2 � �0

cO
* DO

+
�0

cR
* DR

� . �55�

We note that Z0�R0=�0 /�, where the electrolyte conductiv-

ity is given by �=�nDicn
*zn

2e2 /kBT. Therefore, even if Rct

�R0, it is not possible to short-circuit the double layer for

��D /�0
2, because it is the larger of Rct and Z0 that domi-

nates. More generally, the effect of mass transfer is to make

the short-circuiting of the double layer discussed in Secs.

IV E and V C less dramatic. Still, we do expect the predic-

tion of the pumping direction based on Fig. 9 to hold for �̃
��0 and Rct�R0.

As the driving voltage is increased, the Faradaic current

can become so strong that the concentrations of the reactants

at the electrodes differ significantly from their equilibrium

values. Ultimately, as one of them approaches zero, the re-

action stagnates. The current at which this occurs is termed

the limiting current �18�, and it is given by the maximal rate

at which the reactants can be transported from the bulk to the

electrodes by diffusion. Hence, for the forward reaction the

limiting current is jO
lim�eDOcO

* /�O���. Assuming the fre-

quency is low enough that the Ohmic and Faradaic currents

are balancing—i.e., jext��V0 /�0—we find that the limiting

current is reached around V0�eDOcO
*

�0 /��O���. For the

typical parameter values from Table I and ���0, DO

�10−9 m2 / s, and cO
* �0.1 mM, this corresponds to V0

�100 mV. Beyond this voltage, the concentration cO tends

to zero at the electrode and the Faradaic current levels off at

the limiting value. If there is no supporting electrolyte, this

makes the conductivity in the diffusion layer differ signifi-

cantly from the bulk value and the Debye layer is driven out

of local equilibrium and expands in width to ��0
1/3�D

2/3

�30,31�. However, if there is an excess of supporting electro-

lyte that does not participate in the electrode reaction, the

diffusion layer should remain charge neutral and the conduc-

tivity largely unaffected. In this case the system will be

dominated by capacitive charging and behave as if no Fara-

daic reaction is taking place. This underlines the potential

role of the specifics of the electrolyte and electrode material,

known to play a decisive role in a few electrically generated

phenomena �32,33�.

E. Surface conduction in the Debye layer

At large voltage the Debye layer can accumulate enough

charge that the mean ion density, and hence the conductivity,

becomes significantly larger than in the bulk electrolyte. In

this case one cannot neglect lateral surface currents in Eq.

�9�. This is quantified by the Dukhin number Du=�s /��0,

where �s is the surface conductivity in the Debye layer, in-

corporating both migration and electro-osmotic convection

of charge, � is the bulk conductivity, and �0 is the character-

istic geometrical length scale. For a symmetric monovalent

�1:1� electrolyte the Dukhin number can be expressed as �17�

Du = �1 + 	 kBT

e

2 2�

�D
��D

�0

4 sinh2	 e	

4kBT

 . �56�

Taking 	�V0 / �1+�� and using typical parameter values

from Table I, we find that surface conductance becomes sig-

nificant and Du�1 for V0�250 mV. Generally, we expect

surface currents to smear out the charge distribution across

the electrodes, reducing the tangential field and hence the

electroosmotic slip and pumping velocity. We do not antici-

pate that this alone could be the mechanism responsible for

reversal of the time average slip velocity or the direction of

net pumping.

F. Local salt depletion at electrodes

Another issue relating to the massive accumulation of

ions in the Debye layer at large voltage is discussed by Ba-

zant et al. �19�—namely, that of where those ions come

from. For a symmetric monovalent �1:1� electrolyte we de-

fine the excess amount of neutral salt absorbed in the Debye

layer as

w�x,t� =
1

2
�

Debye layer

�c+ + c− − 2c*�dy �57�

=c*�D4 sinh2	 e	

4kBT

 . �58�

This salt is periodically taken up and released again between

the Debye layer and a diffusion zone of width ����=�D /�.

However, when the amount of salt absorbed in the Debye

layer approaches the total amount c*
���� available in the

diffusion zone, we get local depletion of salt and our as-

sumption of uniform electrolyte concentration throughout the

bulk breaks down. This occurs for

	 �
kBT

e
2 log�����/�D� =

kBT

e
log��D/�� , �59�

where we wrote �D=D /�D
2 . Taking again 	�V0 / �1+�� and

using typical parameter values from Table I, we find that salt

depletion around the relaxation frequency �0 becomes an

issue for V0�125 mV.

There are several interesting phenomena arising when the

approximation of uniform bulk electrolyte concentration and

conductivity breaks down. Among other things, this would

change the local Debye length as seen from the electrode

surface and give rise to space charge like 
���y��y log���
in the diffusion layer �32�. While the amount of space charge

in the diffusion layer would typically be much smaller than

in the Debye layer, it interacts with the fluid in a place more

remotely from the wall and is therefore more efficient in

setting the fluid in motion globally. We are currently study-

ing in more detail the role of this nonlinear mechanism for

inducing fluid motion.
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VII. CONCLUSION

We have extended existing theory for ac electrokinetic

pumping to account for vertical confinement of the pumping

channel, nonlinear surface capacitance of the double layer,

and current injection from Faradaic electrode reactions in

both a linear and a nonlinear scheme. For our particular

model system of an asymmetric electrode array micropump

we have obtained a number of results that we subsequently

have interpreted using simple physical arguments. As these

arguments are more general than the specific model, we ex-

pect our results to hold with some generality for other similar

electrokinetic systems. We therefore believe that our work

will be useful for design of electrokinetic micropumps.

Our results compare well with experiments in many as-

pects but there still remains unexplained phenomena—e.g.,

the reversal of the net pumping or the time average slip di-

rection. This points out the need for further studies of �other�
nonlinear phenomena to fully understand the complex elec-

trohydrodynamic system.

APPENDIX A

We give here a proof that there can be no net pumping at

low frequency when the electrode surface properties are

symmetric and we stay within the Debye-Hückel limit. Con-

sider a device where the capacitance ratio ��x̃� and inverse

charge-transfer resistance K�x̃� vary across the electrodes.

The electro-osmotic slip velocity becomes

ũs =
1 + �0

1 + ��x̃�
�Ṽext − �̃��x̃�̃ , �A1�

where �0 is the capacitance ratio used in the rescaling of the

problem, and Eq. �25� describing the charge balance in the

Debye layer generalizes to

n · �̃�̂ = 	i�̃
1 + �0

1 + ��x̃�
+ K�x̃�
��̂ − V̂ext� . �A2�

Combining these we can write the time average slip as


ũs� =
1 + �0

1 + ��x̃�

1

2
Re��V̂ext − �̂��x̃�̂

*�

= −
1

2
Re� n · �̃�̂

i�̃ + ��x̃�
�x̃�̂

*� , �A3�

where ��x̃�=K�x̃��1+��x̃�� / �1+�0�. In the high-symmetry

case where ��x̃� is a constant independent of x̃, the net pump-

ing velocity Ũ can be manipulated as follows:

Ũ =
1

L̃
�

electrodes


ũs�dx̃ =
1

2L̃
�

�V

− Re�n · �̃�̂

i�̃ + �
�x̃�̂

*�ds̃ ,

�A4�

where �V denotes the boundary of the computational domain

and we used the fact that n · �̃�̂ vanishes on insulating walls

and cancels over periodic boundaries. Then, using Gauss’

law and recalling that n is a unit normal pointing out of the

electrodes and into V, we find

Ũ =
1

2L̃
Re� 1

i�̃ + �
�
V

�̃ · ��̃�̂�x̃�̂
*�dr̃� �A5�

=
1

2L̃
Re� 1

i�̃ + �
�
V

�̃�̂ · �̃��x̃�̂
*�dr̃� �A6�

=
1

2L̃
�
V

1

2
��x̃��̃�̂ · �̃�̂*� + �̃ Im��̃�̂ · �̃��x̃�̂

*��

�2 + �̃2
dr̃ �A7�

=
1

2L̃

�̃

�2 + �̃2
Im��

V

�̃�̂ · �̃��x̃�̂
*�dr̃� . �A8�

Here Eq. �A6� follows from �̃
2�̂=0, Eq. �A7� follows from

simple complex arithmetics, and finally, Eq. �A8� holds be-

cause the integral of the term �x̃��̃�̂ ·��̂*� cancels out due to

periodicity.

The final result in Eq. �A8� clearly shows that regardless

of �, the net pumping Ũ goes to zero in the low-frequency

limit �̃→0. The apparent singular behavior for �=0 is only

apparent because the screening is then complete and �̃�̂ zero

in the bulk. Hence, our analysis rules out any net pumping in

the low-frequency limit of our simple model when the elec-

trode surface properties are symmetric in the sense of mak-

ing the parameter � independent of x̃.

APPENDIX B

The nonlinear problem is converted to weak form by mul-

tiplying a test function ��r̃� for �̃ on Eq. �50�, integrating

over the computational domain V, and using Gauss’ law with

Eqs. �46� and �49� to eliminate n · �̃�̃. Hence, for �̃ to be a

weak solution we require that

�
V

�̃� · ��̃dr̃ + �
electrodes

���t̃q̃ − j̃ext�q̃��dx̃ = 0 �B1�

for all � and at all times. The constraint, Eq. �45�, on the

potential drop across the double layer is satisfied by multi-

plying a test function ��x̃� for q̃ and requiring that

�
electrodes

��Ṽext − �̃ − 	̃�q̃� + q̃�/�1 + ���dx̃ = 0 �B2�

for all � and at all times. The weak problem is discretized

using the Galerkin method; i.e., we expand �̃ on a finite set

of basis functions ��n�r̃��n=1
N� as

�̃�r̃, t̃� � �
n=1

N�

�̃n�t̃��n�r̃� �B3�

and similarly for q̃ on ��n�x̃��n=1
Nq , and we use those same

basis sets as test functions in Eqs. �B1� and �B2�. Further, the

solution is periodic in time, so we discretize on a set of M

equispaced points t̃m=m�t̃, m=1,2 , . . . ,M, over one period,

and use the leapfrog finite-difference scheme �t̃q̃n�t̃m�
��q̃n�t̃m+1�− q̃n�t̃m−1�� /2�t̃ to evaluate the time derivative in

Eq. �B1�.
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The full coupled problem for all M time steps is solved

numerically by damped Newton iterations, using the com-

mercial finite-element software FEMLAB to define the basis

functions �n�r̃� and �n�x̃� and to evaluate the Jacobian ma-

trix of the discretized problem. In the frequency-voltage

maps in Figs. 11 and 13 there are five data points per decade

for both frequency and voltage. The convergence of the

Newton iterations is accelerated by a continuation scheme

where the converged solution at one frequency is used as

initial guess for the next solution at higher frequency and the

same voltage; at the lowest frequency, we use the solution

from lower voltage as initial guess when stepping to higher

voltage.

With nonlinear Debye layer capacitance but no Faradaic

currents, we obtain fairly accurate results with a coarse time

resolution of M =16: When compared to a fine resolution

result at M =64, the maximal relative error on Ũ is less than

1% �3%� for Ṽ0
101 �103�, whereas the maximal relative

error on q̃ is about twice as large. Figures 11 and 12 show the

results for M =64. With Faradaic current injection, the charg-

ing and decharging of the Debye layer becomes very rapid at

high voltage, which makes the solution more demanding:

Comparing results for M =64 and M =128 we find that the

maximal relative error on Ũ is less than 0.1% �1.5%� for

Ṽ0
101 �103�, but that the corresponding error on q̃ is as

large as 0.5% �20%�. However, one should keep in mind that

at high voltage our weakly nonlinear model also becomes

physically inadequate for reasons discussed in Secs.

VI D–VI F. Figures 13 and 14 show results for M =128.
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A high-level programming-language implementation of topology
optimization applied to steady-state Navier–Stokes flow

Laurits Højgaard Olesen∗,†, Fridolin Okkels and Henrik Bruus

MIC—Department of Micro and Nanotechnology, Technical University of Denmark,

DK-2800 Kongens Lyngby, Denmark

SUMMARY

We present a versatile high-level programming-language implementation of non-linear topology opti-
mization. Our implementation is based on the commercial software package FEMLAB, and it allows
a wide range of optimization objectives to be dealt with easily. We exemplify our method by studies
of steady-state Navier–Stokes flow problems, thus extending the work by Borrvall and Petersson on
topology optimization of fluids in Stokes flow (Int. J. Num. Meth. Fluids 2003; 41:77–107). We
analyse the physical aspects of the solutions and how they are affected by different parameters of the
optimization algorithm. A complete example of our implementation is included as FEMLAB code in
an appendix. Copyright � 2005 John Wiley & Sons, Ltd.

KEY WORDS: topology optimization; Navier–Stokes flow; inertial effects; FEMLAB

1. INTRODUCTION

The material distribution method in topology optimization was originally developed for stiffness

design of mechanical structures [1] but has now been extended to a multitude of design

problems in structural mechanics as well as to optics and acoustics [2–5]. Recently Borrvall

and Petersson introduced the method for fluids in Stokes flow [6]. However, it is desirable to

extend the method to fluids described in a full Navier–Stokes flow; a direction pioneered by

the work of Sigmund and Gersborg-Hansen [7–9].
In the present work we present such an extension by introducing a versatile high-level

programming-language implementation of non-linear topology optimization, based on the com-

mercial software package FEMLAB. It has a wider range of applicability than the Navier–Stokes
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problems studied here, and moreover it allows a wide range of optimization objectives to be

dealt with easily.

Extending the topology optimization method to new physical domains generally involves

some rethinking of the design problem and some ‘trial and error’ to determine suitable design

objectives. It also requires the numerical analysis and implementation of the problem, e.g.

using the finite element method (FEM). This process is accelerated a lot by using a high-level

FEM library or package that allows different physical models to be joined and eases the tasks

of geometry setup, mesh generation, and postprocessing. The disadvantage is that high-level

packages tend to have rather complex data structure, not easily accessible to the user. This

can complicate the actual implementation of the problem because the sensitivity analysis is

traditionally formulated in a low-level manner.

In this work we have used the commercial finite-element package FEMLAB both for the

solution of the flow problem and for the sensitivity analysis required by the optimization

algorithm. We show how this sensitivity analysis can be performed in a simple way that is

almost independent of the particular physical problem studied. This approach proves even more

useful for multi-field extensions, where the flow problem is coupled to, e.g. heat conduction,

convection–diffusion of solutes, and deformation of elastic channel walls in valves and flow

rectifiers [10].
The paper is organized as follows: In Section 2 we introduce the topology optimization

method for fluids in Navier–Stokes flow, and discuss the objective of designing fluidic devices

or channel networks for which the power dissipation is minimized. In Section 3 we express

the Navier–Stokes equations in a generic divergence form that allows them to be solved with

FEMLAB. This form encompasses a wide range of physical problems. We also work out the

sensitivity analysis for a class of integral-type optimization objectives in such a way that the

built-in symbolic differentiation tools of FEMLAB can be exploited. In Section 4 we present our

two numerical examples that illustrates different aspects and problems to consider: The first

example deals with designing a structure that can guide the flow in the reverse direction of an

applied pressure drop. The general outcome of the optimization is an S-shaped channel, but

the example illustrates how the detailed structure depends on the choice of the parameters of

the algorithm. The second example deals with a four terminal device where the fluidic channel

design that minimizes the power dissipation shows a Reynolds number dependence. As the

Reynolds number is increased a transition occurs between two topologically different solutions,

and we discuss how the position of the transition depends on the choice of initial conditions.

Finally in the appendix we include a transcript of our FEMLAB code required for solving

the second numerical example. The code amounts to 111 lines—excluding the optimization

algorithm that can be obtained by contacting Svanberg [11–13].

2. TOPOLOGY OPTIMIZATION FOR NAVIER–STOKES FLOW IN STEADY STATE

Although our high-level programming-language implementation is generally applicable we have

chosen to start on the concrete level by treating the basic equations for our main example: the

full steady-state Navier–Stokes flow problem for incompressible fluids.

We consider a given computational domain � with appropriate boundary conditions for the

flow given on the domain boundary ��. The goal of the optimization is to distribute a certain

amount of solid material inside � such that the material layout defines a fluidic device or

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:975–1001
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channel network that is optimal with respect to some objective, formulated as a function of

the variables, e.g. minimization of the power dissipated inside the domain.

The basic principle in the material distribution method for topology optimization is to replace

the original discrete design problem with a continuous one where the material density is allowed

to vary continuously between solid and void [2]. Thus in our flow problem we assume the design

domain to be filled with some idealized porous material of spatially varying permeability. Solid

wall and open channels then correspond to the limits of very low and very high permeability,

respectively.

In the final design there should preferably be no regions at intermediate permeability since

otherwise it cannot be interpreted as a solution to the original discrete problem. Alternatively it

may be possible to fabricate the device from polymeric materials such as PDMS that naturally

have a finite permeability to the fluid [14].

2.1. Governing equations for flow in idealized porous media

We assume that the fluid flowing in the idealized porous medium is subject to a friction force f

which is proportional to the fluid velocity v, c.f. Darcy’s law. Thus f = − �v, where �(r) is

the inverse of the local permeability of the medium at position r. These properties of the

idealized porous medium may only be approximately valid for an actual medium. However,

the assumptions are not in conflict with any fundamental physical law, and since the converged

solutions contain only solid walls and open channels, the specific nature of the idealized porous

medium is of no consequence.

The flow problem is described in terms of the fluid velocity field v(r) and pressure p(r).

The governing equations are the steady state Navier–Stokes equation and the incompressibility

constraint

�(v · ∇)v = ∇ · � − �v (1)

∇ · v = 0 (2)

where � is the mass density of the fluid. For an incompressible Newtonian fluid the compo-

nents �ij of the Cauchy stress tensor � are given by

�ij = − p�ij + �

(

�vi

�xj

+ �vj

�xi

)

(3)

where � is the dynamic viscosity. The formalism is valid in three dimensions, but for simplicity

we shall consider only two-dimensional problems, i.e. we assume translational invariance in

the third dimension and set r = (x1, x2) and v = (v1(r), v2(r)). The boundary conditions will

typically be either Dirichlet type specifying the velocity field v on the boundary or Neumann

type specifying the external forces n · �.

It is convenient to introduce a design variable field �(r) controlling the local permeability

of the medium. We let � vary between zero and unity, with � = 0 corresponding to solid

material and � = 1 to no material. Following Reference [6] we then relate the local inverse

permeability �(r) to the design field �(r) by the convex interpolation

�(�) ≡ �min + (�max − �min)
q[1 − �]
q + �

(4)
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where q is a real and positive parameter used to tune the shape of �(�). Ideally, impermeable

solid walls would be obtained with �max = ∞, but for numerical reasons we need to choose a

finite value for �max. For the minimal value we choose �min = 0.‡

For a given material distribution �(r) there are two dimensionless numbers characterizing

the flow, namely the Reynolds number

Re = ��v

�
(5)

describing the ratio between inertia and viscous forces, and the Darcy number

Da = �

�max�2
(6)

describing the ratio between viscous and porous friction forces. Here � is a characteristic length

scale of the system and v a characteristic velocity.

Almost impermeable solid material is obtained for very low Darcy numbers, in practice

Da � 10−5. Further insight into the meaning of the Darcy number is gained by considering

Poiseuille flow in a channel or slit of width � between two infinite parallel plates of porous

material. In this case the fluid velocity inside the porous walls decays on a length scale �Da ,

where �Da =
√

Da � = √
�/�max. See also Section 4.1.1 for details on how the flow depends

on Da.

2.2. Power dissipation

In the pioneering work by Borrvall and Petersson [6] the main focus was on minimizing the

power dissipation in the fluid. The total power � dissipated inside the fluidic system (per unit

length in the third dimension) is given by [15]

�(v, p, �) =
∫

�

[

1

2
�
∑

i, j

(

�vi

�xj

+ �vj

�xi

)2

+
∑

i

�(�)v2
i

]

dr (7a)

In steady-state this is equal to the sum of the work done on the system by the external forces

and the kinetic energy convected into it

�(v, p, �) =
∫

��

∑

i, j

[

ni�ijvj − nivi

(

1
2

�v2
j

)]

ds (7b)

Here n is a unit outward normal vector such that n ·� is the external force acting on the system

boundary and n · � · v is the work done on the system by this force. Moreover, in the common

case where the geometry and boundary conditions are such that the no-slip condition v = 0

‡Borrvall and Petersson suggest a model for plane flow between two parallel surfaces of varying separation h(r).
The power dissipation due to out-of-plane shears is modelled by an absorption term −�v, where v(r)

is the average velocity between the surfaces and �(r) = 12�/h(r)2. In their model it is therefore natural to

operate with a non-zero �min = 12�/h2
max in Equation (4).
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applies on all external solid walls, while on the inlet and outlet boundaries v is parallel to n

and (n · ∇) v = 0,� Equation (7b) reduces to

�(v, p, �) =
∫

��

−n · v
(

p + 1
2
�v2

)

ds (7c)

Borrvall and Petersson showed that for Stokes flow with Dirichlet boundary conditions

everywhere on the boundary ��, the problem of minimizing the total power dissipation inside

the fluidic device subject to a volume constraint on the material distribution is mathematically

well-posed. Moreover it was proven that in the case where �(�) is a linear function, the optimal

material distribution is fully discrete-valued.

When �(�) is not linear but convex then the solid/void interfaces in the optimal solution

are not discrete zero/unity transitions but slightly smeared out. Convexity implies that the

(negative value of the) slope of � at � = 0 is larger than at � = 1; therefore there will be a

neighbourhood around the discrete interface where it pays to move material from the solid side

to the void. Using the interpolation in Equation (4) we have �′(0) = (�min − �max)(1 + q)/q

and �′(1) = (�min − �max)q/(1 + q). For large values of q the interpolation is almost linear and

we expect almost discrete interfaces, whereas for small q we expect smeared out interfaces in

the optimized solution.

Consider the case when Equation (7c) applies. If the system is driven with a prescribed

flow rate then minimizing the total power dissipation is clearly equivalent to minimizing the

pressure drop across the system. Conversely, if the system is driven at a prescribed pressure

drop, then the natural design objective will be to maximize the flow rate which is equivalent

to maximizing the dissipated power, c.f. Equation (7c). In either case the objective can be

described as minimizing the hydraulic resistance of the system.

For problems with more complex design objectives, such as a minimax problem for the

flow rate through several different outlets, there will typically be no analog in terms of total

dissipated power. In such cases there is no guarantee for the existence of a unique optimal

solution and one has to be extra careful when formulating the design problem.

3. GENERALIZED FORMULATION OF THE OPTIMIZATION PROBLEM

For a given material distribution we solve the Navier–Stokes flow problem using the commercial

finite element software FEMLAB. It provides both a graphical front-end and a library of high-

level scripting tools based on the MATLAB programming language, and it allows the user to

solve a wide range of physical problems by simply typing in the strong form of the governing

equations as text expressions. The equations must then comply with a generic divergence form

that eases the conversion to weak form required for the finite element solution. However, that

is not a severe constraint since this is the natural way of expressing most partial differential

equations originating from conservation laws.

Since we have chosen fluidics as our main example, we begin by expressing the incompress-

ible Navier–Stokes flow problem in divergence form. Then we state the optimization problem

�In particular this is the case when the inlets and outlets are chosen as straight channels sufficiently long that
prescribing a parabolic Poiseuille profile can be justified, see Figures 1 and 6.
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with a general form of the design objective function and perform the discretization and sen-

sitivity analysis based on this generalized formulation. We stress that although for clarity our

examples are formulated in two dimensions only, the method is fully applicable for 3D systems.

3.1. The flow problem in divergence form

We first introduce the velocity–pressure vector u = [v1, v2, p] and define for i = 1, 2, 3 the quan-

tities �i and Fi as

�1 ≡
[

�11

�21

]

, �2 ≡
[

�12

�22

]

, �3 ≡
[

0

0

]

(8)

and

F1 ≡ �(v · ∇)v1 + �(�)v1, F2 ≡ �(v · ∇)v2 + �(�)v2, F3 ≡ ∇ · v (9)

Using this, Equations (1) and (2) can be written in divergence form as

∇ · �i = Fi in �, Governing equations (10a)

Ri = 0 on ��, Dirichlet b.c. (10b)

−n · �i = Gi +
3
∑

j=1

�Rj

�ui

�j on ��, Neumann b.c. (10c)

where �i and Fi are understood to be functions of the solution u, its gradient ∇u, and of the

design variable �. The quantity Ri(u, �) in Equation (10b) describes Dirichlet type boundary

conditions. For example, fluid no-slip boundary conditions are obtained by defining R1 ≡ v1 and

R2 ≡ v2 on the external solid walls. The quantity Gi(u, �) in Equation (10c) describe Neumann

type boundary conditions, and �i denote the Lagrange multiplier necessary to enforce the

constraint Ri = 0, e.g. the force with which the solid wall has to act upon the fluid to enforce

the no-slip boundary condition. Of course, it is not possible to enforce both Dirichlet and

Neumann boundary conditions for the same variable simultaneously. Only when the variable ui

is not fixed by any of the Dirichlet constraints Rj does the Neumann condition Gi come into

play, as all �Rj/�ui vanish and the Lagrange multipliers �j are decoupled from Equation (10c).

Inactive Dirichlet constraints can be obtained simply by specifying the zero-function Ri ≡ 0,

that also satisfies Equation (10b) trivially.

3.2. The objective function

In general the design objective for the optimization is stated as the minimization of a certain

objective function �(u, �). We shall consider a generic integral-type objective function of the

form

�(u, �) =
∫

�

A(u, �) dr +
∫

��

B(u, �) ds (11)
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In particular, we can treat the design objective of minimizing the power dissipation inside the

fluidic domain by taking, c.f. Equation (7a)

A ≡ 1

2
�

∑

i, j

(

�vi

�xj

+ �vj

�xi

)2

+
∑

i

�(�)v2
i in � and B ≡ 0 on �� (12)

Alternatively, the objective of maximizing the flow out through a particular boundary seg-

ment ��o is obtained by choosing

A ≡ 0 in � and B ≡
{−n · v on ��o

0 on ��\��o

(13)

and objectives related to N discrete points rk can be treated using Dirac delta functions as

A ≡
N
∑

k=1

Ak(u, �)�(r − rk) in � and B ≡ 0 on �� (14)

Finally we stress that not all optimization objectives lend themselves to be expressed in the form

of Equation (11)—an example of which is the problem of maximizing the lowest vibrational

eigenfrequency in structural mechanics.

3.3. Optimization problem

The optimal design problem can now be stated as a continuous constrained non-linear opti-

mization problem

min
�

�(u, �) (15a)

subject to :
∫

�

�(r)dr − �|�| � 0, Volume constraint (15b)

: 0 � �(r) � 1, Design variable bounds (15c)

: Equations (10a)–(10c), Governing equations (15d)

With the volume constraint we require that at least a fraction 1 − � of the total volume |�|
should be filled with porous material.

The very reason for replacing the original discrete design problem with a continuous one by

assuming a porous and permeable material, is that it allows the use of efficient mathematical

programming methods for smooth problems. We have chosen the popular method of moving

asymptotes (MMA) [11, 12], which is designed for problems with a large number of degrees-

of-freedom and thus well-suited for topology optimization [2]. It is a gradient-based algorithm

requiring information about the derivative with respect to � of both the objective function �

and the constraints. Notice that for any � the governing equations allow us to solve for u;

therefore in effect they define u[�] as an implicit function. The gradient of � is then obtained

using the chain rule

d

d�
[�(u[�], �)] = ��

��
+

∫

�

��

�u
· �u

��
dr (16)
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However, because u[�] is implicit, it is impractical to evaluate the derivative �u/�� directly.

Instead, we use the adjoint method to eliminate it from Equation (16) by computing a set of

Lagrange multipliers for Equations (10a)–(10c) considered as constraints [16]. For details see

Section 3.4.

The optimization process is iterative and the kth iteration consists of three steps:

(i) Given a guess �(k) for the optimal material distribution we first solve Equations

(10a)–(10b) for u(k) as a finite element problem using FEMLAB.

(ii) Next, the sensitivity analysis is performed where the gradient of the objective and con-

straints with respect to � is evaluated. In order to eliminate �u/�� from Equation (16)

we solve the adjoint problem of Equations (10a)–(10c) for the Lagrange multip-

liers ũ(k), also using FEMLAB.

(iii) Finally, we use MMA to obtain a new guess �(k+1) for the optimal design based on

the gradient information and the past iteration history.

Of the three steps, (i) is the most expensive computationalwise since it involves the solution

of a non-linear partial differential equation.

3.4. Discretization and sensitivity analysis

The starting point of the finite element analysis is to approximate the solution component ui

on a set of finite element basis functions {	i,n(r)}

ui(r) =
∑

n

ui,n 	i,n(r) (17)

where ui,n are the expansion coefficients. Similiarly, the design variable field �(r) is expressed

as

�(r) =
∑

n

�n 	4,n(r) (18)

For our incompressible Navier–Stokes problem we use the standard Taylor–Hood element pair

with quadratic velocity approximation and linear pressure. For the design variable we have

chosen the linear Lagrange element.¶

The problem Equations (10a)–(10c) is discretized by the Galerkin method and takes the

form

Li(U, �) −
3
∑

j=1

NT
ji�j = 0 and Mi(U, �) = 0 (19)

where Ui , �i , and � are column vectors holding the expansion coefficients for the solution ui,n,

the Lagrange multipliers �i,n, and the design variable field �n, respectively. The column vec-

tor Li contains the projection of Equation (10c) onto 	i,n which upon partial integration

¶Another common choice is the discontinuous and piecewise constant element for the design variable. Notice
that for second and higher order Lagrange elements the condition 0 � �n � 1 does not imply 0 � �(r)� 1 for
all r because of overshoot at sharp zero-to-unity transitions in �. This in turn can result in negative �, c.f.
Equation (4), which is unphysical and also destroys the convergence of the algorithm.
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is given by

Li,n =
∫

�

(	i,nFi + ∇	i,n · �i) dr +
∫

��

	i,nGi ds (20)

The column vector Mi contains the pointwise enforcement of the Dirichlet constraint

Equation (10b)

Mi,n = Ri(u(ri,n)) (21)

Finally, the matrix Nij = − �Mi/�Uj describes the coupling to the Lagrange multipliers in

Equation (10c). The solution of the non-linear system in Equation (19) above corresponds to

step (i) in kth iteration. The sensitivity analysis in step (ii) requires us to compute

d

d�
[�(U(�), �)] = ��

��
+

3
∑

i=1

��

�Ui

�Ui

��
(22a)

which is done using the standard adjoint method [16]. By construction we have for any �

that Li(U(�), �) −
∑3

j = 1 NT
ji�j (�) = 0 and Mi(U(�), �) = 0. Therefore also the derivative of

those quantities with respect to � is zero, and adding any multiple, say Ũi and �̃i , of them to

Equation (22a) does not change the result

d

d�
[�(U(�), �)] = ��

��
+

3
∑

i=1

��

�Ui

�Ui

��
+

3
∑

i=1

[

ŨT
i

�

��

(

Li −
3
∑

j=1

NT
ji�j

)

− �̃
T

i

�

��
(Mi)

]

= ��

��
+

3
∑

i=1

(

ŨT
i

�Li

��
− �̃

T

i

�Mi

��

)

+
3
∑

i=1

[

��

�Ui

+
3
∑

j=1

(

ŨT
j

�Lj

�Ui

+ �̃
T

j Nji

)

]

�Ui

��

−
3
∑

i=1

[

3
∑

j=1

ŨT
j NT

ij

]

��i

��
(22b)

Here we see that the derivatives �Ui/�� and ��i/�� of the implicit functions can be eliminated

by choosing Ũi and �̃i such that

3
∑

j=1

(KT
jiŨj − NT

ji�̃j ) = ��

�Ui

and
3
∑

j=1

Nij Ũj = 0 (23)

where we introduced Kij = − �Li/�Uj . This problem is the adjoint of Equation (19) and Ũ

and �̃ are the corresponding Lagrange multipliers.

In deriving Equation (22b) we implicitly assumed that Nij is independent of �, i.e. that the

constraint Ri(u, �) is a linear function. If this is not true then the gradient ��/�� computed from

Equation (22b) is not exact, which may lead to poor performance of the optimization algorithm

if the constraints are strongly non-linear. In order to avoid such problems it is necessary to

include the non-linear parts of the constraint vector M into L and move the corresponding

Lagrange multipliers from � into U. While this is beyond the scope of the divergence form
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discussed in Section 3.1, it is certainly possible to deal with such problems in FEMLAB.

Also the sensitivity analysis above remains valid since it relies only on the basic form of

Equation (19) for the discretized problem.

3.5. Implementation aspects

We end this section by discussing a few issues on the implementation of topology optimization

using FEMLAB.

Firstly there is the question of how to represent the design variable �(r). The governing

equations as expressed by �i and Fi in Equation (10a) depend not only on the solution u

but also on �, and the implementation should allow for this dependence in an efficient way.

Here our simple and straightforward approach is to include � as an extra dependent variable

on equal footing with the velocity field and pressure, i.e. we append it to the velocity–pressure

vector, redefining u as

u ≡ [v1, v2, p, �] (24)

This was already anticipated when we denoted the basis set for � by {
4,n(r)}. By making �

available as a field variable we can take full advantage of all the symbolic differentiation, matrix,

and postprocessing tools for analysing and displaying the material distribution. Appending � to

the list of dependent variables we are required to define a fourth governing equation. However,

since we are never actually going to solve this equation, but rather update � based on the

MMA step, we simply define

�4 ≡
[

0

0

]

, F4 ≡ 0, G4 ≡ 0, R4 ≡ 0. (25)

It is crucial then that the finite element solver allows different parts of the problem to be

solved in a decoupled manner, i.e. it must be possible to solve Equations (10a)–(10c) for ui

for i = 1, 2, 3 while keeping u4, i.e. �, fixed.

In FEMLAB the non-linear problem Equation (19) is solved using damped Newton itera-

tions [17]. Therefore, the matrices Kij = − �Li/�Uj and Nij = − �Mi/�Uj appearing in the

adjoint problem Equation (23) are computed automatically as part of the solution process and

can be obtained directly as MATLAB sparse matrices. They are given by

Kij,nm = −
∫

�

(

	i,n

[

�Fi

�uj

	j,m + �Fi

�∇uj

· ∇	j,m

]

+ ∇	i,n

·
[

��i

�uj

	j,m + ��i

�∇uj

· ∇	j,m

])

dr −
∫

��

	i,n

�Gi

�uj

	j,m ds (26)

and

Nij,nm = − �Ri

�uj

∣

∣

∣

∣

ri, n

	j,m(ri,n) (27)
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Regarding the right-hand side vector ��/�Ui in Equation (23), notice that for a general objective

as Equation (11), it has the form

��

�ui,n

=
∫

�

(

�A

�ui

+ �A

�∇ui

· ∇

)

	i,n dr +
∫

��

�B

�ui

	i,n ds (28)

It is not in the spirit of a high-level finite element package to program the assembly of this

vector by hand. Instead we employ the built-in assembly subroutine of FEMLAB. We construct a

copy of the original problem sharing the geometry, finite element mesh, and degree-of-freedom

numbering with the original. Only we replace the original fields �i , Fi , and Gi with

�̃i ≡ �A

�∇ui

, F̃i ≡ �A

�ui

and G̃i ≡ �B

�ui

(29)

Assembling the right-hand-side vector L̃i with this definition yields exactly Equation (28), c.f.

Equation (20). An extra convenience in FEMLAB is that we can rely on the built-in symbolic

differentiation tools to compute the derivatives �A/�ui , etc. In order to try out a new objective

for the optimization problem, the user essentially only needs to change the text expressions

defining the quantities A and B.

After solving the adjoint problem Equation (23) for Ũi and �̃i to eliminate �Ui/��

and ��i/�� for i = 1, 2, 3 in Equation (22b) we can evaluate the sensitivity

d

d�
[�(U, �)] = ��

��
+

3
∑

j=1

(

�Lj

��

)T

Ũj −
(

�Mj

��

)T

�̃j

= L̃4 −
3
∑

j=1

(KT
j4Ũj − NT

j4�̃j ) (30)

where Ki4 = − �Li/��, Ni,4 = − �Mi/��, and L̃4 = ��/�� in accordance with U4 ≡ �. Since

the fourth variable � is treated on equal footing with the other three variables, all expressions

required to compute the matrices Ki,4 and Ni,4 come out of the standard linearization of the

problem. This is yet another advantage of including � as an extra dependent variable.

When dealing with a problem with a volume constraint as in Equation (15b), it is necessary

to compute the derivative of the constraint with respect to �

�

��n

[

1

|�|

∫

�

�(r) dr − �

]

= 1

|�|

∫

�

	n,4(r) dr (31)

which can be obtained by assembling L̂4 with �̂4 ≡ 0, F̂4 ≡ 1, and Ĝ4 ≡ 0. In the appendix we

have included a transcript of the code required to set up and solve the example from Section 4.2

below with FEMLAB. It amounts to 111 lines of code, of which the majority are spent on setting

up the actual Navier–Stokes flow problem. Only a minor part goes to set up the adjoint problem

and perform the sensitivity analysis. Moreover, this part contains almost no reference to the

actual physical problem being solved, and therefore it should apply for any multi-field problem

expressed in the divergence form Equations (10a)–(10c) with an objective function of the form
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of Equation (11). The code example employs, but does not include, a MATLAB implementation

of the MMA optimization algorithm [11–13].

3.5.1. Mesh dependence and regularization techniques. It is well known that many topology

optimization problems have trouble with mesh dependence, e.g. in stiffness design of mechanical

structures it often pays to replace a thick beam with two thinner beams for a given amount of

material. As the finite element mesh is refined, smaller and smaller features can be resolved and

therefore appear in the optimized structure. In that sense the flow problem that we consider

here is atypical because it is generally unfavourable to replace a wide channel with two

narrower channels; hence the proof for the existence of a unique optimal solution with respect

to minimization of the total power dissipation in Reference [6].
The problem with mesh dependence can be overcome by various regularization techniques

based on filtering of either the design variable �(r) or the sensitivity d�/d� [2]. The regular-

ization works by defining a certain length scale r0 below which any features in �(r) or d�/d�

are smeared out by the filter; in both cases this results in optimized structures with a minimal

feature size ∼ r0 independent of the mesh refinement. Unfortunately FEMLAB does not come

with such a filter, and hence its implementation is an issue that has to be dealt with before

our methodology here can be successfully applied to problems that display mesh dependence.

One strategy is to implement the convolution operation of the filter directly [2]. If the

computational domain is rectangular and discretized by square finite elements this is both

efficient and fairly easy to program, if not one simply uses a standard filter from the MATLAB

Image Processing Toolbox. For an unstructured mesh of triangular elements the programming

is more involved and slow in MATLAB due to the need to loop over the design variable nodes

and searching the mesh for neighbouring nodes within the filter radius. Therefore an explicit

matrix representation of the filter would often be preferred [18].
Another possible strategy is to solve an artificial diffusion problem for the design variable �(r)

over some period in ‘time’ �t = r2
0 /k where k is the ‘diffusion’ constant. The diffusion equation

could be included into the fields of Equation (29) that are otherwise unused, and the ‘time’

evolution solved using the built-in timestepper in FEMLAB. This procedure is equivalent to

the action of a filter with Gaussian kernel of width r0, and it conserves the total amount of

material during the filter action. The same approach could be used to smooth out the sensitivity.

However, because d�/d�n is sensitive to the local element size one would need to rescale it

with
∫

� 
4,n(r) dr before application of the filter—actually this is true for any filter acting

on d�/d� whenever the mesh is irregular and
∫

� 
4,n(r) dr not constant for all n.

The major disadvantage of this strategy is that it involves solving a time evolution problem

in each design iteration which could easily turn out to be the most time-consuming step.

Alternatively the timestepping algorithm could be implemented by hand, e.g. deciding on the

Crank–Nicholson algorithm with a fixed stepsize �t ��t . The mass and stiffness matrices for

the diffusion problem can be obtained from FEMLAB, and the corresponding iteration matrix

need only be factorized once for the given stepsize and could thus be reused in all subsequent

design iterations, making this approach relatively cheap, although more cumbersome than using

the built-in timestepper.

3.5.2. Large-scale problems. For large-scale problems and three-dimensional modelling it is

often necessary to resort to iterative linear solvers because the memory requirements of a

direct matrix factorization becomes prohibitive. In that case the strategy we have outlined
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here of obtaining the K and N matrices directly as sparse matrices in MATLAB and simply

transposing K before the solution of the adjoint problem may not be practical. Alternatively, if

the original physical problem is expressed in divergence form then the FEMLAB representation

of that problem contains the symbolic derivatives of �i , Fi , and Gi appearing in Equation (26).

These fields can be transposed and set in the auxiliary copy of the original problem such that it

effectively defines K̃ij = KT
ji , while retaining the definitions in Equation (29) for the right-hand

side vector L̃i . Then the adjoint problem Equation (23) can be solved without direct handling

of the matrices in MATLAB, and using the same iterative solver algorithm as would be employed

for the original physical problem. Ultimately we still require an explicit representation of the

matrices Ki,4 and Ni,4 to evaluate the sensitivity d�/d� in Equation (30).

From our point of view the major advantage of using FEMLAB in its present stage of

development for topology optimization is not in solving large scale problems, though, but

rather in the ease of implementation and the ability to handle problems with coupling between

several physical processes.

4. NUMERICAL EXAMPLES

In this section we present our results for topology optimization of Navier–Stokes flow for

two particular model systems that we have studied. These systems have been chosen because

they illustrate the dependence of the solution on the two dimensionless numbers Re and Da,

measuring the importance of the inertia of the fluid and the permeability of the porous medium,

respectively, relative to viscosity. Moreover we discuss the dependence of the solution on the

initial condition for the material distribution.

For simplicity and clarity we have chosen to consider only two-dimensional model systems.

We note that the dimensionality of the problems has no fundamental consequence for the method

and the numerics, but only affects computer memory requirements and the demand for CPU

time. Our 2D examples can therefore be viewed as idealized test cases for our implementation

of topology optimization. Yet, the 2D models are not entirely of academic interest only as they

represent two limits of actual 3D systems. Due to planar process technology many contemporary

lab-on-a-chip systems have a flat geometry with typical channel heights of about 10 �m and

widths of 1 mm, i.e. an aspect ratio of 1:100 [14]. One limit is the case where the channel

width is constant and the channel substrate and lid are patterned with a profile that is translation

invariant in the transverse (width) direction. In the limit of infinitely wide channels the 2D-

flow in the plane perpendicular to the width-direction is an exact solution, while it remains

an excellent approximation in a 1:100 aspect ratio channel. This is the model system we have

adopted for the numerical examples in the present work. The other important limit is when

the channel width is not constant, but the channel height is sufficiently slowly varying that

the vertical component of the fluid velocity can be neglected. Then writing the Navier–Stokes

equation for the velocity averaged in the vertical (height) direction, the out-of-plane shear

imposed by the channel substrate and lid gives rise to an absorption term −�v. This approach

was studied by Borrvall and Petersson [6], see also the footnote in Section 2.1. Thus, if

one is interested in optimizing the height-averaged flow field in a flat channel the 2D model

is sufficient.

When solving the Navier–Stokes flow problem we use the standard direct linear solver

in FEMLAB in the Newton iterations. Typically we have around 6000 elements in the mesh,
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corresponding to 30 000 degrees-of-freedom. The constrained optimization problem is solved

using a MATLAB implementation of the MMA algorithm kindly provided by Svanberg [11, 13],
except that we modified the code to use the globally convergent scheme described in

Reference [12]. The example script included in the appendix employs only the basic algo-

rithm mmasub, though. The design iterations are stopped when the maximal change in the

design field is ‖�(k+1)−�(k)‖∞ � 0.01, at which point we typically have |�(k+1)−�(k)| < 10−5.

4.1. Example: a channel with reverse flow

Our first numerical example deals with the design of a structure that at a particular point inside

a long straight channel can guide the flow in the opposite direction of the applied pressure drop.

The corresponding problem with a prescribed flow rate was first suggested and investigated

by Gersborg-Hansen [8]. We elaborate on it here to illustrate the importance of the choice of

permeability for the porous medium.

The computational domain is shown in Figure 1. It consists of a long straight channel of

height � and length L = 10�; the actual design domain, inside which the porous material is

distributed, is limited to the central part of length 5�. The boundary conditions prescribe a

pressure drop of �p from the inlet (left) to the outlet (right), and no-slip for the fluid on the

channel side walls.

The optimization problem is stated as a minimization of the horizontal fluid velocity at the

point r∗ at the centre of the channel, i.e. the design objective is

� = v1(r
∗) (32)

In terms of the general objective Equation (11) this is obtained with A ≡ v1(r)�(r − r∗) and

B≡0. There is no explicit need for a volume constraint because neither of the extreme solutions

of completely filled or empty can be optimal. When the design domain is completely filled

with porous material we expect a flat flow profile with magnitude below �p/(5��max). In the

other extreme case when the channel is completely devoid of porous material the solution is

simply a parabolic Poiseuille profile with maximum

v0 = �2

8�

�p

L
(33)

However, a structure that reverses the flow such that v1(r
∗) becomes negative will be superior

to both these extreme cases in the sense of minimizing �.

�

2.5� 5� 2.5�

p0+∆p p0

r
∗

Figure 1. Computational domain for the reverse flow example. The design domain (grey) has length 5�
and height �, and the fluid enters and leaves the design domain through leads of length 2.5�. The
boundary conditions prescribe a pressure drop of �p across the system, and the design objective is

to reverse the flow direction at the point r∗ at centre of the channel.
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4.1.1. Reverse flow in the Stokes limit, Re = 0. We first consider the Stokes flow limit of

small �p where the inertial term becomes negligible. The problem is then linear and the

solution is characterized by a single dimensionless parameter, namely the Darcy number Da,

Equation (6). We have solved the topology optimization problem for different values of Da.

The initial condition for the material distribution was �(0) = 1, and the parameter q determining

the shape of �(�) in Equation (4) was set to q = 0.1. Anticipating that the structural details

close to r∗ should be more important than those further away we chose a non-uniform finite

element mesh with increased resolution around r∗.

Figure 2 shows the optimal structures obtained for Da = 10−3, 10−4, 10−5 and 10−6. They

all consist of two barriers defining an S-shaped channel that guides the fluid in the reverse

direction of the applied pressure drop. At Da = 10−3 the two barriers are rather thick but leaky

with almost all the streamlines penetrating them; as the Darcy number is decreased the optimal

structures become thinner and less penetrable. This result can be interpreted as a trade-off

between having either thick barriers or wide channels. Thick barriers are necessary to force the

fluid into the S-turn, while at the same time the open channel should be as wide as possible

in order to minimize the hydraulic resistance and maximize the fluid flow at the prescribed

pressure drop.

Notice that if we had chosen to prescribe the flow rate through the device rather than the

pressure drop, then the optimal solution would have been somewhat different. When the flow

rate is prescribed, it pays to make the gap between the barriers very small and the barriers

very thick in order to force the fixed amount of fluid flow through the narrow contraction. The

optimal structure is therefore one with a very large hydraulic resistance. In Reference [8], this

problem was circumvented by adding a constraint on the maximal power dissipation allowed

at the given flow rate.

Figure 2. Optimized structures (black) and streamlines at 5% intervals for Stokes flow (Re = 0) at

Darcy numbers decreasing from 10−3 to 10−6. Only the central part of length 3� of the design
domain is shown. The structures consist of two barriers defining an S-shaped channel that reverses
the flow at the central point r∗. As the Darcy number is decreased, the optimized structures become

thinner and less permeable: (a) Da=10−3; (b) Da=10−4; (c) Da=10−5; and (d) Da=10−6.
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In order to validate the optimality of the structures computed by the topology optimization

we do as follows: For each of the optimized structures from Figure 2 we freeze the material

distribution and solve the flow problem for a range of Darcy numbers. The resulting family of

curves for v1(r
∗) vs Da is shown in Figure 3 where it is seen that each of the four structures

from Figure 2 do indeed perform better in minimizing v1(r
∗) than the others at the value

of Da for which they are optimized.

For Da � 10−5 the optimal value of v1(r
∗) tends to saturate because the thin barriers are

then almost completely impermeable and the open channel cannot get much wider. In this

limit the thickness of the optimized barrier structures approach the mesh resolution as seen in

Figure 2(d). When the optimal barrier thickness gets below the mesh size we have observed

the appearance of artificial local optima for the barrier structure. The problem is that the thin

barriers cannot continuously deform into another position without going through an intermediate

structure with barriers that are thicker by at least one mesh element. Depending on the initial

condition, the optimization algorithm can therefore end up with a sub-optimal structure. We

have tried to work around this problem by decreasing the value of q in order to smear out the

solid/void interfaces and thus reduce the cost of going through the intermediate structure. This

did not work out well; the reason may be that the smearing property of a convex �(�) was

derived for the objective of minimizing the power dissipation subject to a volume constraint. In

the present example we are dealing with a different objective and have no volume constraint.

However, when the barrier structures are resolved with at least a few elements across them the

artificial local optima tend to be insignificant. Thus the problem can be avoided by choosing

a sufficiently fine mesh, or by adaptively refining the mesh at the solid/void interfaces.

Returning to Figure 3 we notice that as Da increases all the structures perform poorly in

minimizing v1(r
∗), as they all approach v0. Extrapolating this trend one might suspect that

the S-turn topology will cease to be optimal somewhere above Da = 10−3 simply because the

Figure 3. Comparing the performance of the structures from Figure 2 optimized
at Daopt for different values of Da. The objective v1(r

∗) is normalized with the
velocity in an empty channel, v0, c.f. Equation (33).
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Figure 4. Optimized structure (black) and streamlines for Stokes flow at Da = 10−2; only the central
part of length 3�. The design domain is completely filled with porous material, except immediately
above and below r∗ where two empty regions emerge. These voids divert the flow away from r∗,

resulting in a low velocity v1(r
∗) = 0.1v0.

porous material becomes too permeable to make reversal of the flow direction possible. We have

tested this hypothesis by performing an optimization at Da = 10−2, resulting in the structure

shown in Figure 4 where the value of the objective is v1(r
∗) = 0.1v0. It is seen to display a

different topology from those of Figure 2, with the design domain is almost completely filled

with porous material blocking the flow through the channel. Only immediately above and below

the point r∗ we see two empty regions emerging that act to guide the flow away from r∗.

Actually, in all four cases from Figure 2, starting from an empty channel the design iterations

initially converge towards a symmetric structure blocking the flow like that in Figure 4. However,

at a certain point in the iterations an asymmetry in the horizontal plane is excited and the

structure quickly changes to the two-barrier S-geometry. Whether the optimization converge to

an S- or an inverted S-turn depends on how the asymmetry is excited from numerical noise

or irregularity in the finite element mesh; in fact the structure in Figure 2(b) originally came

out as an inverted S but was mirrored by hand before plotting it to facilitate comparison with

the three other structures.

4.1.2. Reverse flow at finite Reynolds number. We now consider flow at finite Reynolds number,

characterized by the two dimensionless numbers Re and Da. The geometry and boundary

conditions remain unchanged, for convenience we introduce a non-dimensional pressure drop

�p̃ = �p � �2/�2, and finally we fix the Darcy number at Da = 10−5. We note from Figure 2

that this Darcy number allows some but not much fluid to penetrate the walls. We have

nevertheless chosen this Darcy number for practical reasons, as the walls are ‘solid’ enough

and a lower value (more ‘solid’ wall) would increase the calculation time.

We have solved the topology optimization problem for different values of �p̃, always using an

empty channel as initial condition. The results are shown in Figures 5(a)–(c) for �p̃ = 0.2, 0.5,

and 1.0 × 105, where only a few streamlines are seen to penetrate the barriers. For comparison

we also consider the flow field obtained when the structure optimized for Stokes flow at

Da = 10−5 is frozen and exposed to the three different elevated pressure drops. This is shown

in Figures 5(d)–(f): As the pressure drop is increased, more and more streamlines penetrate the

barriers. Moreover, we find a recirculation region emerging behind the second barrier which

reduces the pressure drop over the neck between the barriers.

Returning to Figures 5(a)–(c), we find that the structures that have been optimized for the

corresponding pressure drops are generally thicker than that optimized for Stokes flow, which

reduces the number of streamlines penetrating them. Also a beak-like tip grows on the second
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Figure 5. Optimized structures (black) and streamlines for Navier–Stokes flow; only a part of
length 3.25� near the centre of the channel is shown. Panels (a)–(c) to the left show the optimized

structures for different values of the control parameter �p̃ = �p��2/�2. For comparison the flow field
when the optimized structure from Figure 2(c) is frozen and exposed to the elevated pressure drops is
shown in panels (d)–(f) to the right. The Reynolds number is defined as Re = ��vmax/� where vmax

is the maximal velocity measured at the inlet; note that for a particular value of �p̃, the Reynolds

number is not fixed but differs slightly between left and right column: (a) �p̃ = 0.2 × 105 [Re = 23];
(b) �p̃ = 0.5 × 105 [Re = 42]; (c) �p̃ = 1.0 × 105 [Re = 64]; (d) �p̃ = 0.2 × 105 [Re = 26];

(e) �p̃ = 0.5 × 105 [Re = 47]; and (f) �p̃ = 1.0 × 105 [Re = 71].

barrier that acts to bend the fluid stream down. Finally, on the back of the second barrier a

wing- or spoiler-like structure appears that removes the recirculation.

In summary, our first example has demonstrated that our implementation of topology opti-

mization works, but that the optimal design and performance may depend strongly on the choice

of the Darcy number. In particular, the zero Da limit solution contains zero thickness and yet

impermeable barriers deflecting the fluid. In order to approximate this solution at finite Da and

on a finite resolution mesh it is important to choose the Darcy number small enough that even

thin barriers can be almost impermeable, but large enough to avoid difficulties with artificial

local optima in the discretized problem when the barrier thickness decreases below the mesh

resolution.

4.2. Example: a four-terminal device

Our second numerical example deals with minimization of the power dissipation in a four-

terminal device subject to a volume constraint. The problem is found to exhibit a discrete
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Figure 6. Schematic illustration of the four-terminal device. Two inlet and two outlet leads
(white areas) of height � and length 2� are attached to the design domain (grey) of height 5�
and length L. The flow is characterized by the Reynolds number Re = ��vmax/�, where vmax is

the maximal velocity at the inlets.

change in optimal topology driven by the inertial term. The four-terminal device is related to

one considered by Borrvall and Petersson for Stokes flow in Reference [6]; the present example

demonstrates that the optimization algorithm has difficulties in finding the optimal topology

when there are two strong candidates for the global optimum.

The computational domain, shown in Figure 6, consists of a rectangular design domain (grey)

to which two inlet and two outlet leads (white) are attached symmetrically. The boundary

conditions prescribe parabolic profiles for the flow at the inlets, zero pressure and normal flow

at the outlets, and no-slip on all other external boundaries. Choosing the height � of the leads as

our characteristic length scale, we define the Reynolds number as Re = ��vmax/�, where vmax

is the maximal velocity at the inlets. The Darcy number is fixed at Da = 10−4 to obtain

reasonably small leakage through the porous walls.

The optimization problem is stated as a minimization of the total power dissipation inside

the computational domain, given by Equation (7a), subject to the constraint that at most a

fraction � = 0.4 of the design domain should be without porous material, c.f. Equation (15b).

Figures 7(a) and (b) shows the two optimal structures obtained for Re = 20 and 200, respec-

tively, in a geometry with L = 3.5�. At Re = 20 the optimal structure turns out to be a pair of

U -turns connecting the inlets to the outlets on the same side of the design domain, while at

Re = 200 the optimal structure is a pair of parallel channels. In order to minimize the power

dissipation at low Re, the channel segments should be as short and as wide as possible, which

favours the U -turns in Figure 7(a). However, as the Reynolds number is increased, the cost

of bending the fluid stream grows. When inertia dominates, larger velocity gradients appear in

the long ‘outer lane’ of the U -turn. This increases the dissipation compared to low Re, where

more fluid flows in the shorter ‘inner lane’. At a certain point it will exceed the dissipation in

the parallel channels solution

�0 = 96

9

(

4 + L

�

)

�v2
max (34)
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Figure 7. Optimal structures (black) and streamlines at 10% intervals for the
four-terminal device at Reynolds number Re = 20 and 200, respectively, in a

geometry with L = 3.5�: (a) Re = 20; and (b) Re = 200.

as estimated from Poiseuille flow in two straight channels, each of length L+ 4� and height �.

This number is independent of inertia due to translation symmetry, and we use �0 as a natural

unit of power dissipation (per unit length in the third dimension) in the following.

Clearly the Reynolds number at which the transition between the two classes of solutions

occurs will depend strongly on the ratio L/�. For short lengths L � 2� the parallel channels

solution is expected to be optimal at all Re, whereas for long lengths L � 3� the U -turn

solution should be significantly better than the parallel channels solution at low Re.

4.2.1. Dependence on the Reynolds number. In the following we investigate more closely the

transition between the U -turns and the parallel channels solution as a function of the Reynolds

number for the particular geometry L = 3�. The topology optimization problem is solved for

different Re in the range 0–200, using a homogeneous material distribution �(0) = 0.4 as initial

condition. For the parameter q determining the shape of �(�) in Equation (4) we use a two-step

solution procedure as suggested in Reference [1]. First the problem is solved with q = 0.01

in order to obtain a solution with slightly smeared-out solid/void interfaces. Next this material

distribution is used as initial guess for an optimization with q = 0.1 which generates fully

discrete solid/void interfaces at the resolution of our finite element mesh.

Figure 8(a) shows the result for the normalized power dissipation �/�0 obtained as a

function of Re. At low Reynolds numbers the optimized solutions correctly come out as

U -turns with a power dissipation � that is clearly less than �0. However, at high Reynolds

numbers Re > 90 the method fails because the optimized solutions continue to come out as

U -turns even though this yields �/�0 > 1. For Re � 160 the solution jumps from the simple

U -turns to a hybrid structure, as shown in the inset. The full lines in Figure 8(a) show the

result when the material distributions optimized for Re = 0, 50, and 180, respectively, are frozen

and the power dissipation evaluated at different Re. It is seen that the optimized solutions,

marked (◦), all fall on or below the full lines which confirms that they are indeed superior to

the other solutions of the U -turn family. This also holds for Re > 90, except for the hybrid

structures at Re � 160, that are actually inferior to the U -turns. Moreover, at Re = 160 the

optimized solution falls slightly above that optimized at Re = 180. This could be an indication
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Figure 8. Power dissipation � in structures optimized for different Reynolds numbers; normalized

with the Poiseuille flow result �0 (dashed line): (a) markers (◦) show results when �(0) = 0.4 is used
as initial condition, failing to find the optimal solution for Re > 90. Full lines show the performance
of the structures optimized at Re = 0, 50, and 180, when evaluated at different Reynolds numbers.
As expected, all points fall on or below the full lines, except the hybrid solutions for Re � 160; and

(b) comparison between the two different initial conditions �(0) = 0.4 (◦) and �(0) = 1 (×), showing
the success of the empty channel initial condition in finding the optimal solution. The crosses (×) fall

slightly below �/�0 = 1 due to leakage through the porous walls (see the text).

that the hybrid structures are not local optima in design space after all, but rather a very narrow

saddle point that the optimization algorithm has a hard time getting away from.

The difficulty is that the two families of solutions, the U -turns and the parallel channels, are

both deep local minima for the power dissipation in design space. Using �(0) = 0.4 as initial

condition, the initial permeability is everywhere very low, such that the porous friction almost

completely dominates the inertia and viscous friction in the fluid. Therefore the iteration path

in design space is biased towards low Reynolds numbers and the U -turns solution.

In order to circumvent this problem we have tried using a completely empty design domain

with �(0) = 1 as initial condition. This should remove the bias towards the U -turns and allow

the optimization algorithm to take inertia into account from iteration one. The result is shown

in Figure 8(b). For Re � 80 the solutions are still U -turns, whereas for Re � 90 they come out

as parallel channels. Notice that �/�0 for the parallel channels solution is actually slightly less

than unity, namely 0.98. This is due to a small amount of fluid seeping through the porous

walls defining the device, which lowers the hydraulic resistance compared to the Poiseuille

flow result derived for solid walls.‖

Strictly speaking the initial condition �(0) = 1 is not a feasible solution because it violates

the volume constraint that at least a fraction 1 − � = 0.6 of the design domain should be filled

‖The flow in a straight channel of height � bounded by two porous walls of thickness � can easily be found

analytically. At Da = 10−4 the hydraulic resistance of this system is 94% of that for a channel of height �

bounded by solid walls, and it approaches this zero Da limit only as
√

Da. When L = 3� we therefore expect
a power dissipation �/�0 = (3×0.94+4)/7 = 0.97 for the parallel channels solution, including the leads. This
is close to the observed 0.98.
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Figure 9. Comparison between structures optimized with the initially non-feasible material distribution

�(0) = 1 for different penalty parameters in the MMA optimization algorithm, revealing the difficulty in
choosing the condition for finding the global optimum. Full line: the successful result from Figure 8(b)
with moderate penalty; (+) lower penalty yielding wrong result for 40 < Re < 80; (�) higher

penalty yielding wrong results for 80 < Re < 190.

with porous material. However, the MMA optimization algorithm penalizes this and reaches

a feasible solution after a few iterations. This is controlled by choosing a penalty parameter.

If the penalty for violating the constraint is small, the material is added slowly and only where

it does not disturb the flow much. If the penalty is large, the material is added quickly and

almost homogeneously until the constraint is satisfied. The successful result from Figure 8(b)

was obtained with a moderate penalty. In Figure 9 this is compared with results for smaller

and larger penalty parameters, respectively. The figure shows that with the small penalization,

the solution jumps to the parallel channels already at Re = 50 which is not optimal. For the

large penalization, the solution does not jump until Re � 190. Also we observe hybrid structures

similar to those in Figure 8(a) for Re � 130. We have thus not full control over the convergence

towards the global optimum.

4.2.2. Discussion of problems with local optima. Further insight into the problem of local versus

global optima is gained by inspecting the flow field in the initial material distribution �(0). This

is shown in Figure 10 for the Stokes flow limit, Re = 0. The streamlines are drawn as 10%

contours of the streamfunction, and Figure 10(a) shows that for �(0) = 0.4 the streamline density

is largest between the two leads on the same side of the design domain. Based on the sensitivity

d�/d� the optimization algorithm therefore decides to remove material from these strong-flow

regions in order to reduce the porous friction. The iteration path in design space is therefore

biased towards the U -turn solution. This remains true even at finite Reynolds numbers as long

as the porous friction initially dominates inertia.

Figure 10(b) shows that when �(0) = 1 the streamline density is largest between the leads

on the opposite side of the design domain. Because the volume constraint is violated the
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Figure 10. Flow distributions at Re = 0, L = 3� and q = 0.01: (a) initial design field �(0) = 0.4;

(b) initial design field �(0) = 0.4; and (c) the optimal design field �(∗) obtained at Da = 10−2.

optimization algorithm has to place material somewhere, which it does in the weak-flow regions.

The solution is therefore biased towards the parallel channels. Indeed if the penalty is chosen

very small, the optimized solution comes out as parallel channels even for Stokes flow at

L = 3�, which is far from optimal. When the penalty is larger and the material is added faster,

we move away from this adiabatic solution and closer to the situation for �(0) = 0.4.

The additional complexity associated with making a proper choice of the penalty parameter

is somewhat inconvenient. We have therefore attempted to construct a more convex problem by

increasing the initial permeability. This can be done either by increasing the Darcy number, or

by decreasing the parameter q, c.f. Equation (4). Figure 10(c) shows the optimal solution �(∗)

obtained for Da = 10−2 and q = 0.01 at Re = 0. At this level the problem is convex because

the solution is independent of the initial condition. Using this material distribution as initial

guess and gradually decreasing the permeability to Da = 10−4 and q = 0.1 we correctly end

up in the U -turn solution. However, it is evident from Figure 10(c) that �(∗) has a fair amount

of parallel channels nature. Using the same procedure of gradually decreasing the permeability

at higher Reynolds numbers therefore result in a transition to the parallel channels solution

already for Re � 30, which is not optimal. Moreover, when the Reynolds number is increased

and the inertia starts to play in, the system tends to loose convexity even at the initial high

permeability.

In summary, the topology optimization has difficulties in finding the global optimum for

the problem. There are two strong candidates for the optimal structure, and the solution found

is sensitive to the initial condition for the material distribution. Using an empty channel as

initial condition, the method is able to find the correct solution for all Reynolds numbers.

However, this successful result depends on a particular choice of the penalty parameter in the

MMA algorithm. By using a high initial permeability of the porous medium, it is possible to

convexify the problem at low Reynolds numbers, but continuation of this solution to the desired

low permeability does not generally lead to the global minimum of the non-convex problem.

In the original paper Reference [6] it was argued that in Stokes flow the true optimal design

should be rather insensitive to the choice of the Darcy number, although the dissipated power
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may deviate quite a lot from the zero Da limit. In our work we have observed that the

actual solution found by the topology optimization may depend a great deal on the choice of

the Darcy number, whereas the dissipated power should approach the zero Da limit roughly

as
√

Da.

5. CONCLUSION

Based on the work of Borrvall and Petersson [6] we have extended the topology optimization

of fluid networks to cover the full incompressible Navier–Stokes equations in steady-state. Our

implementation of the method is based on the commercial finite element package FEMLAB,

which reduces the programming effort required to a minimum. Formulating the problem in

terms of a general integral-type objective function and expressing the governing equations

in divergence form makes the implementation very compact and transparent. Moreover, the

code for performing the sensitivity analysis should remain almost the same for any problem

expressed in this way, whereas that required for describing the physical problem of course

changes. Topology optimization of multi-field problems can therefore be dealt with almost as

easy as a single realization of the underlying physical problem.

We would like to mention that our methodology is not as such restricted to the (large) class

of physical problems that can be expressed in divergence form. FEMLAB also allows problems

to be stated directly in weak form, e.g. for systems with dynamics at the boundaries. This

does in fact not invalidate the sensitivity analysis worked out in Section 3.4, since this analysis

only relies on the basic structure of the discretized non-linear problem and the availability of

the Jacobian matrix. It is therefore possible to apply our methodology to even larger classes

of physical problems than the ones comprised by the divergence form.

Our implementation of topology optimization has been tested on two fluidics examples in 2D,

both illustrating the influence of different quantities and conditions on the efficiency of the

optimization method.

The first example, a channel with reversed flow, illustrates the influence of the Reynolds

number Re and the Darcy number Da on the solutions. We have shown that the choice of Da

has a strong impact on the solution when the structure contains barriers to deflect the fluid

stream.

The second example, minimization of the power dissipation in a four-terminal device, reveals

the problems of determining the global minimum when two strong minima are competing. This

problem is highly non-convex, and we have shown that the solution depends on the initial

condition. For an initial homogeneous material distribution, the porous friction dominates and

the solution does not come out as the global optimum in all cases. Using an empty channel

as the initial state, inertia plays a role from the beginning, and better results can be obtained.

However, this initial condition in fact violates the volume constraint, and the part of the

optimization routine correcting this depends on a penalty factor. Unfortunately, the particular

value chosen for this factor strongly influences the results. Increasing the Darcy number makes

the problem more convex, but continuation from large to small Da, i.e. from high to low

permeability of the porous material, does not generally end up in the global optimum.

In conclusion, we have shown that our implementation of topology optimization is a useful

tool for designing fluidic devices.
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APPENDIX

% FEMLAB CODE FOR THE 4-TERMINAL DEVICE EXAMPLE OF SECTION 4.2
clear fem femadj
% DEFINE REYNOLDS NUMBER, DARCY NUMBER, LENGTH OF DESIGN DOMAIN, AND VOLUME FRACTION
Re = 50;
Da = 1e-4;
L0 = 3.0;
beta = 0.4;
% DEFINE GEOMETRY, MESH, AND SUBDOMAIN/BOUNDARY GROUPS [SEE FIGURE 6]
fem.geom = rect2(0,L0,0,5) + rect2(-2,0,1,2) + rect2(-2,0,3,4) + rect2(L0,L0+2,1,2) ...

+ rect2(L0,L0+2,3,4);
fem.mesh = meshinit(fem,’Hmaxsub’,[3 0.125]);
% subdomain groups 1:design domain 2:inlet/outlet leads
fem.equ.ind = {[3] [1 2 4 5]};
% boundary groups 1:walls 2:inlets 3:outlets 4:interior
fem.bnd.ind = {[2:3 5:8 10 12:14 16:18 20:22] [4 23] [1 24] [9 11 15 19]};
% DEFINE SPACE CO-ORDINATES, DEPENDENT VARIABLES, AND SHAPE FUNCTIONS
fem.sdim = {’x’ ’y’};
fem.dim = {’u’ ’v’ ’p’ ’gamma’};
fem.shape = [2 2 1 1];
% DEFINE CONSTANTS
fem.const.rho = 1;
fem.const.eta = 1;
fem.const.umax = Re;
fem.const.alphamin = 0;
fem.const.alphamax = 1/Da;
fem.const.q = 0.1;
Phi0 = 96*fem.const.eta*(L0+4)*fem.const.umaxˆ2/9;
% DEFINE EXPRESSIONS ON SUBDOMAIN AND BOUNDARY GROUPS
fem.equ.expr = {’A’ ’eta*(2*ux*ux+2*vy*vy+(uy+vx)*(uy+vx))+alpha*(u*u+v*v)’ ...

’alpha’ {’alphamin+(alphamax-alphamin)*q*(1-gamma)/(q+gamma)’ ’0’}};
fem.bnd.expr = {’B’ ’0’};

% DEFINE GOVERNING EQUATIONS AND INITIAL CONDITIONS [SEE EQUATIONS (8) AND (9)]
fem.form = ’general’;
fem.equ.shape = {[1:4] [1:3]}; % only define gamma on subdomain group 1
fem.equ.ga = {{{’-p+2*eta*ux’ ’eta*(uy+vx)’} {’eta*(uy+vx)’ ’-p+2*eta*vy’} {0 0} {0 0}}};
fem.equ.f = {{’rho*(u*ux+v*uy)+alpha*u’ ’rho*(u*vx+v*vy)+alpha*v’ ’ux+vy’ 1}};
fem.equ.init = {{0 0 0 beta}};
% DEFINE BOUNDARY CONDITIONS
fem.bnd.shape = {[1:3]}; % do not define gamma on any boundaries
fem.bnd.r = {{’u’ ’v’ 0 0} ... % walls: no-slip

{’u*nx+4*umax*s*(1-s)’ ’v’ 0 0} ... % inlets: parabolic profile
{0 ’v’ 0 0} ... % outlets: normal flow
{0 0 0 0}}; % interior: nothing

fem.bnd.g = {{0 0 0 0}}; % zero prescribed external forces everywhere
% PERFORM LINEARIZATION, DEGREE-OF-FREEDOM ASSIGNMENT, AND ASSEMBLE INITIAL CONDITION
fem = femdiff(fem);
fem.xmesh = meshextend(fem);
fem.sol = asseminit(fem);

% DEFINE STRUCTURE FOR COMPUTING RIGHT-HAND-SIDE IN ADJOINT PROBLEM [SEE EQUATION (29)]
femadj = fem;
femadj.equ.ga = {{{’diff(A,ux)’ ’diff(A,uy)’} {’diff(A,vx)’ ’diff(A,vy)’} ...

{’diff(A,px)’ ’diff(A,py)’} {’diff(A,gammax)’ ’diff(A,gammay)’}}};
femadj.equ.f = {{’diff(A,u)’ ’diff(A,v)’ ’diff(A,p)’ ’diff(A,gamma)’}};
femadj.bnd.g = {{’diff(B,u)’ ’diff(B,v)’ ’diff(B,p)’ ’diff(B,gamma)’}};
femadj.xmesh = meshextend(femadj);
% GET INDICES OF DESIGN VARIABLE IN THE GLOBAL SOLUTION VECTOR (fem.sol.u)
i4 = find(asseminit(fem,’Init’,{’gamma’ 1},’Out’,’U’));
% COMPUTE VOLUME BELOW DESIGN VARIABLE BASIS FUNCTIONS
L = assemble(fem,’Out’,{’L’});
Vgamma = L(i4);
Vdomain = sum(Vgamma);
% GET INDICES OF VELOCITY-PRESSURE VARIABLES
i123 = find(asseminit(fem,’Init’,{’u’ 1 ’v’ 1 ’p’ 1},’Out’,’U’));

% DEFINE VARIABLES AND PARAMETERS FOR MMA OPTIMIZATION ALGORITHM [SEE REFERENCES [11,12,13]]
a0 = 1;
a = 0;
c = 20;
d = 0;
xmin = 0;
xmax = 1;
xold = fem.sol.u(i4);
xolder = xold;
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low = 0;
upp = 1;

% DESIGN LOOP FOR THE ACTUAL TOPOLOGY OPTIMIZATION
for iter = 1:100

% SOLVE NAVIER-STOKES FLOW PROBLEM TO UPDATE VELOCITY AND PRESSURE
fem.sol = femnlin(fem,’Solcomp’,{’u’ ’v’ ’p’},’U’,fem.sol.u);
% SOLVE ADJOINT PROBLEM FOR LAGRANGE MULTIPLIERS
[K N] = assemble(fem,’Out’,{’K’ ’N’},’U’,fem.sol.u);
[L M] = assemble(femadj,’Out’,{’L’ ’M’},’U’,fem.sol.u);
femadj.sol = femlin(’In’,{’K’ K(i123,i123)’ ’L’ L(i123) ’M’ zeros(size(M)) ’N’ N(:,i123)});
% SENSITIVITY ANALYSIS
gamma = fem.sol.u(i4);
Phi = postint(fem,’A’,’Edim’,2) + postint(fem,’B’,’Edim’,1);
dPhidgamma = L(i4) - K(i123,i4)’*femadj.sol.u;
% PERFORM MMA STEP TO UPDATE DESIGN FIELD
x = gamma;
f = Phi/Phi0; g = gamma’*Vgamma/Vdomain - beta;
dfdx = dPhidgamma/Phi0; dgdx = Vgamma’/Vdomain;
d2fdx2 = zeros(size(gamma)); d2gdx2 = zeros(size(gamma’));
[xnew,y,z,lambda,ksi,eta,mu,zeta,s,low,upp] = mmasub(1,length(gamma),iter, ...

x,xmin,xmax,xold,xolder,f,dfdx,d2fdx2,g,dgdx,d2gdx2,low,upp,a0,a,c,d);
xolder = xold; xold = x; gamma = xnew;
% TEST CONVERGENCE
if iter >= 100 | max(abs(gamma-xold)) < 0.01

break
end
% UPDATE DESIGN VARIABLE
u0 = fem.sol.u; u0(i4) = gamma;
fem.sol = femsol(u0);
% DISPLAY RESULTS FOR EACH ITERATION STEP
disp(sprintf(’Iter.:%3d Obj.: %8.4f Vol.: %6.3f Change: %6.3f’, ...

iter,f,xold’*Vgamma,max(abs(xnew-xold))))
postplot(fem,’arrowdata’,{’u’ ’v’},’tridata’,’gamma’,’trimap’,’gray’)
axis equal; shg; pause(0.1)

end
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