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Abstract

A short background presentation has been given of the author’s work concerned with the
quasi static motion of gas bubbles in liquid filled microchannel contractions. This presen-
tation includes a discussion of a first theoretical paper [1] and a presentation of a paper
made in collaboration with the experimental group of D. Attinger at the State University
of New York, Stony Brook, USA [2]. Hereafter a review is given of the experimental results
of Garstecki et al. [3, 4, 5], these are concerned with a microfluidic implementation of a
flow-focusing device. This study acts as the base and motivation for the consequent work
presented in the thesis.

The governing equations for a two-fluid axisymmetric Newtonian Stokes flow prob-
lem have then been presented. The dynamic and kinematic boundary condition at the
free interface between the two immiscible fluids are given together with a choice for a
non-dimensional scaling of the equations. The equations are further reformulated into a
somewhat unusual divergence form that is suited for the later numerical implementation
in Femlab. A model for a non-Newtonian liquid has been discussed at the end of the
theory section.

In a generic framework a direct numerical model for the simulation of a two-phase
flow in an axisymmetric geometry has been developed. It is based on an second-order
Runge–Kutta time integration scheme and curvature code implemented in Matlab . The
governing equations have been solved by using the commercial finite-element program
Femlab that interfaces with Matlab through a script language. A detailed description
of the code and its inner workings together with a test of the time integration scheme has
also been given.

The code has then been validated using three flow problems that have analytical so-
lutions: (1) the surface tension driven coalescence of two viscous liquid cylinders, (2) the
steady state shape of a translating gas bubble on a liquid filled capillary, and (3) the
problem of a viscous drop in a viscous extensional flow. The code has been validated, has
been seen to perform very well, and its flexibility has been demonstrated.

After the numerical testing the code has been applied to a first numerical investigation
of the time-dependent dynamics of the creation of gas bubbles in an axisymmetric flow-
focusing device. The axisymmetric simulations have shown that the collapse of the gas
thread before bubble snap-off is different from recent experimental results by Garstecki
et al.. We have suggested that the differences are geometrically induced. An extended
general scaling law for the volume of the created gas bubbles has further been presented
which includes one geometry parameter and surface tension. The numerical results have
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confirmed existing experimental results and also the full new scaling. A simple snap-off
mechanism has also been implemented and a bubbling sequence of four bubbles has been
simulated. Conclusively a flow-focusing system containing a non-Newtonian liquid and a
gas has been modelled and some initial new results have been presented; these include a
scaling law for the volume of created gas bubbles in this non-linear system.

The PhD thesis work has resulted in the publication of of 2 peer reviewed papers, the
submission of 2 papers, and the publication of 6 peer reviewed conference proceedings.



Resumé

Der er kort gjort rede for baggrunden for forfatterens arbejde med luftboblers kvasistatiske
bevægelse i indsnævringer i væskefyldte mikrokanaler. Denne indtroduktion omfatter en
gennemgang af en grundlæggende teoretisk artikel [1] og fremlæggelse af en artikel udar-
bejdet i samarbejde med D. Attingers eksperimentalgruppe [2]. Herefter følger en oversigt
over Garstecki et al.’s eksperimentelle resultater [3, 4, 5] om en microfluidid implementer-
ing af et flow-focusing device. Denne undersøgelse er grundlag og begrundelse for det
videre arbejde i denne afhandling.

De styrende ligninger for et tovæske aksesymmetrisk Newtonsk Stokes strømnings-
problem er opstillet. De dynamiske og kinematiske randbetingelser for en fri overflade
mellem to ikke- blandbare væsker formuleres sammen med dimensionsløs skalering af
ligninger. Disse er endvidere omformuleret i en noget usædvanlig divergensform, som er
tilpasset den numeriske implementering i Femlab. I slutningen af den teoretiske afdeling
diskuteres en model for en ikke-Newtonsk væske.

En numerisk model til at simulere to-fase strømninger i aksesymmetriske geometrier
er udviklet i generiske rammer. Den bygger p̊a en andenordens Runge–Kutta tidsintegra-
tionsrutine og en krumningskode implementeret i Matlab. De styrende ligninger er løst
ved hjælp af det kommercielle finite-element program Femlab, der kommunikerer med
Matlab. Der fremlægges ligeledes en detaljeret beskrivelse af koden med detaljer og en
test af tidsintegrationsrutinen.

Koden er blevet testet p̊a tre kendte strømningsproblemer: (1) benchmark-problemet
med ”the surface tension coalescence of two viscous liquid cylinders”, (2) den stationære
form af en luftboble, der bevæger sig i et væskefyldt kapillarrør og (3) spørgsmålet om
en dr̊abe i en ”extensional” strømning. Programmet er godkendt, fungerer fint og kodens
fleksibilitet er vist.

Herefter er koden blevet anvendt til en numerisk undersøgelse af den tidsafhængige
dynamik ved dannelse af luftbobler i en aksesymmetrisk flow-focusing device. Simu-
leringerne har vist, at dynamikken lige før bruddet (snap-off) ikke ligner Garstecki et
al.’s seneste forsøgsresultater. Vi formoder, at forskellene er geometrisk afhængige. Der
er yderligere redegjort for en udvidet lov for skalering af boblernes volumen, som omfatter
en geometrisk parameter og overfladespænding. Simuleringerne bekræfter de eksisterende
eksperimentelle resultater samt vores skaleringslov. En række af fire bobler er ogs̊a blevet
simuleret. Afsluttende er der modelleret et system, som indeholder en ikke-Newtonsk
væske og en gas, og der er redegjort for visse helt nye resultater, som omfatter en lov for
skaleringen af boblernes volumen i dette ikke-lineære system.
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Afhandlingen har resulteret i publikationen af 2 peer-reviewed artikler, i at yderligere 2
artikler er blevet indsendt til publikation, samt at 6 peer-reviewed konference proceedings
er blevet publiceret.
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Chapter 1

Introduction

In the last decade, great innovations in the microfluidic area have been made. Microfluidics
is hydrodynamics in devices with scales less than a millimeter. A great amount of work has
been put into the development of different components such as micropumps, microvalves,
mixing chambers, and chemical reaction chambers. An integration of these components
makes up the so-called ”lab-on-a-chip” concept which is one of the driving ideas behind
the research. The miniaturization process is revolutionizing the chemical, biochemical,
and medical industry. Complete chemical and biological analyzes will be carried out in
the lab-on-a-chip systems, also called Micro Total Analysis Systems (µTAS).

The microfluidic systems will most certainly make dramatic changes in the way lab-
oratories work: smaller, cheaper, and fully automated devices will perform faster and
more accurate measurements than today. The application prospects are wide. From easy
environmental monitoring to medical monitoring of patients in geographically remote ar-
eas. The microfluidic field is vast, is in full expansion, and it is the subject of increasing
investments from industry. The development and fabrication of integrated microfluidic
devices require the use of special geometries and the interplay of many physical effects
such as pressure driven flows, electrokinetics, magnetohydrodynamics, multi-phase flows,
and capillarity [6]. As a consequence fascinating variants of classical well-studied fluid
dynamic problems arise. The involved physics draw on classical theory for viscous flows
and capillarity, see for instance Bachelor [7].

In microfluidics, viscous theory is applicable because small characteristic dimensions L
and flow velocities U generally define flows with small Reynolds numbers Re = ρUL/µ < 1,
where ρ is density and µ the dynamic viscosity. Moreover, surface tension related effects,
associated with the presence of a free interface, introduce a unique type of force that scales
directly to length. The capillary number Ca = µU/γ, where γ is the surface tension,
defining the viscous stress to interfacial force ratio is generally small at the operating flow
regimes. Hence, the surface tension forces dominate most other forces, such as gravity,
pressure, and viscous drag. As the surface tension effects are directly related to lengths,
the actual geometry of the device is cardinal. Furthermore as the bulk flow is mostly
viscous, and therefore linear, the non-linearity of the system is embedded in the curvature
of the free surface.



2 Introduction

In the history of microfluidics, bubbles have most often been seen as an impediment
rather than an asset [8, 9, 1, 2]. The bubbles are introduced into the liquid at the inlets
or by electrolysis. Due to the small dimensions, the gas bubbles are prone to get stuck in
sensitive places whereby they may clog the flow and completely eliminate the functionality
of the microdevice. In recent years, however, the design of microfluidic devices making use
of surface tension effects has been initiated. These include micro pumps using bubbles as
actuators [10], two fluid pumps [11], devices where drops are used as chemical reactors [12],
and devices creating controlled liquid-liquid emulsions [13], especially liquid-gas emulsions
[14, 3, 15, 16].

The study of liquid-gas emulsions, and more specifically the generation of bubbles on
the micrometer scale in a predefined geometry, makes it possible to investigate a vari-
ety of physical phenomena, such as capillarity, dripping, and bubbling processes. The
initial studies were mainly experimental and more recently they have been driven by
industrial applications of such devices, e.g., drop formation in ink-jet printing [17]. In
recent years, studies have been concerned with the so-called flow-focusing configuration
[14, 3, 4, 5, 15, 16]. One implementation seen via microfluidic devices allows for the gen-
eration of controlled multi-phase flows; this has mainly been investigated experimentally.
Many interesting physical phenomena have been described, including flow-rate controlled
breakup of gas threads [4], but also the appearance of chaotic behavior as reported in
other bubbling devices [3, 5, 18].

Microfluidic devices are already at a stage where further efficient development requires
the use of simulation capabilities. Advances in computational fluid dynamics (CFD) enable
a better and less expensive design process. An effort in the CFD field should nevertheless
be made together with a thorough theoretical study of the given problem and testing of
the CFD models. Thus the numerical simulation of drop and bubble formation is also nec-
essary. Modelling of free-surface dynamics includes the use of direct numerical techniques,
such as the volume-of-fluid methods [41], tracer methods, and boundary-integral methods
[20, 21]. A wide array of analytical and semi-analytical models have also been introduced
such as, for example, the thin jet approximation [18, 22, 23, 24, 25].

This thesis is concerned with the numerical and theoretical description of interface
dynamics in microfluidics. We shortly present our recently published work treating of the
clogging of microchannel contractions by gas bubbles [1, 2]. The bulk of the present work
deals with the development of a generic free-surface finite-element model for the simulation
of axisymmetric geometries. The numerical model is based on an in-house Matlab free
surface and second order Runge–Kutta time integration scheme that interfaces with the
commercial Femlab finite-element solver. The validity of the numerical results is assessed
through a thorough testing where numerical results are compared with existing analytical
results. The main result of the thesis is the presentation of a first numerical analysis of
an axisymmetric flow-focusing device. We compare our numerical findings with existing
experimental results and further develop on these. As our numerical model is very flexible
we modify it and further study the physics of a flow-focusing device where the fluid follows
a simple non-Newtonian model. An outline of the thesis is given below and, furthermore,
every chapter is introduced by a presentation of necessary background material.
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1.1 Outline of the thesis

• Chap. 2 - Background: bubbles in microchannel contractions
We present the background of the work discussed in this thesis; it includes a pre-
sentation of a first theoretical paper by the author [1] and a second paper which
has recently been submitted [2]. Both papers are concerned with the clogging of
microchannels by bubbles.

• Chap. 3 - Motivation: the flow-focusing device
In this chapter, we present how the author, while on a stay abroad at Harvard Uni-
versity, found the inspiration to study the flow-focusing device. Existing literature
and experimental results are also presented here.

• Chap. 4 - The governing equations
The governing equations for two-phase stokes flow are here presented together with
a description of the necessary boundary conditions at free interfaces. The chapter
also shortly presents a simple model for a non-Newtonian liquid.

• Chap. 5 - Numerics: implementation
In this chapter, all the details of the implementation of our free-surface model are
given. We focus on describing important numerical tricks used in the code.

• Chap. 6 - Numerics: validation
In this part, we thoroughly test the numerical code on three test cases for which
analytical results exist: (1) the benchmark problem of the surface driven coalescence
of two infinite liquid cylinders, (2) we use the code to compute the steady state shape
of a gas bubble moving in a liquid filled cylindrical capillary, and (3) we simulate
the dynamics of a viscous drop in a viscous extensional-flow.

• Chap. 7 - The flow-focusing device
This chapter is the main results chapter where the numerical simulations of the
dynamics in an axisymmetric flow-focusing device are presented. The chapter is
mainly based on a recently submitted paper [80]. Further details not presented in
the paper are also detailed. Finally, the most recent unpublished work concerned
with non-Newtonian fluids in the flow-focusing device is discussed.

• Chap. 8 - Outlook and conclusion
We finalize the thesis by discussing possible further development of the code and
also further application areas. Concluding remarks are also given here.

1.2 Publications during PhD studies

Peer reviewed research papers

1. The clogging pressure of bubbles in hydrophilic microchannel contractions,
M. J. Jensen, G. Goranovic, and H. Bruus,
J. Micromech. Microeng. 14, 876 (2004).
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2. A novel electroosmotic pump design for nonconducting liquids: theoretical analysis
of flow rate-pressure characteristics and stability,
A. Brask, G. Goranovic, M. J. Jensen, and H. Bruus
J. Micromech. Microeng. 15, 883 (2005).

3. Transient pressure drops of bubbles passing through liquid filled microchannel con-
tractions: an experimental and numerical study,
H. Chio, M. J. Jensen, X. Wang, H. Bruus, and D. Attinger
Submitted to J. Micromech. Microeng., June 2005.

4. A numerical study of two-phase Stokes flow in an axisymmetric flow-focusing device,
M. J. Jensen, H. A. Stone, and H. Bruus,
Submitted to Physics of Fluids, August 2005.

Peer reviewed conference proceedings

1. Dynamics of bubbles in microchannels,
M. J. Jensen, G. Goranovic, and H. Bruus,
muTAS-2002, Nara, Japan, November 2002, proc. vol. 2, p. 733-735.

2. Quasi-static Motion of Bubbles in Microchannel Contractions,
M. J. Jensen, G. Goranovic, and H. Bruus,
NanoTech 2003, San Francisco, USA, February 2003, proc. vol. 1, p. 258-261. [oral
presentation]

3. Clogging pressures of bubbles in microchannel contractions: theory and experiments,
M. J. Jensen, X. Wang, D. Attinger, and H. Bruus,
NanoTech 2004, Boston, USA, March 2004.

4. Numerical and experimental investigation of bubble pinch-off in the flow-focusing
device,
M. J. Jensen, P. Garstecki, M. Fuerstman, H. Bruus, G. M. Whitesides, and H. A.
Stone,
muTAS-2004, Malmö, Sweden, September 2004, proc. vol. 1, p. 626-628.

5. Fast packaging of polymeric cantilever chip by micromilling,
A. Johansson, G. Perozziello, M. J. Jensen, O. Geschke, and A. Boisen,
International Conference on Multi-Material Micro Manufacture (4M), Karlsruhe,
Germany 2004.

6. Numerical simulation of two phase flow in the flow-focusing device,
M. J. Jensen and H. Bruus,
Euromech Colloquium 472 on Microfluidics and Transfer, September 6-8, 2005,
Grenoble, France. [oral presentation]



Chapter 2

Background: bubbles in
microchannel contractions

The intention of this chapter is to present the work made in the first part of my PhD
studies. It thus provides the reader an insight into my long lasting interest in multi-phase
flow problems in microfluidics. The chapter will not go into details, as it is my wish
that the most significant part of the present thesis should be concerned with my newly
developed code and its applications. The rest of the thesis deals with the development,
testing and application of my free surface flow finite-element model.

During my MSc thesis work and especially my PhD studies, I have studied the physics
of two-phase flows in microscale geometries (two-phase microfluidics). The studies have
mainly been concerned with the numerical and theoretical treatment of quasi stationary
systems with liquid-gas interfaces and with numerical simulations of time-dependent free-
surface two-phase Stokes-flow problems. The work has mainly focused on the significant

1 mm

Figure 2.1: Microscope picture of a gas bubble getting stuck in a liquid filled microchannel
contraction. The channel was created by laser ablation of a PMMA substrate.
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influence geometry has on the dynamics in these microfluidic systems. During my research
stay at Harvard university in the spring of 2004 I started developing my own free surface
model to model the flow-focusing configuration. The motivation for this part of my work
is presented in Chap. 3.

My initial bubble studies were chiefly motivated by the fact that gas bubbles present in
microfluidic devices are prone to get stuck at, e.g., channel contractions. Hereby bubbles
can clog the main liquid flow and disturb measurements or functionality of the microflu-
idic system in an uncontrolled manner. The microscope picture in Fig. 2.1 depicts how
a gas bubble is stuck in a microchannel contraction. Although these problems related to
two phase systems were already identified a decade ago [8, 9] they had not been studied
theoretically to a great extent. Using a simple model system of a capillary contracting
linearly from a large constant radius R to a small constant radius r we presented such a
first study in a paper published in Journal of Micromechanics and Microengineering [1].
The work was inspired by results obtained while writing my MSc thesis [27]. We restricted
our analysis to the quasi-stationary motion of a hydrophilic wetting bubble through the
contraction. A small summary of the paper and the main results are presented in Sec. 2.1
below. The paper is presented in its full length in Appendix C.

The theoretical results from the paper were presented by my supervisor Henrik Bruus
when he was invited to SmallTalk 2003 The microfluidics, microarrays, and bioMEMS
conference and exhibition, San Jose (CA), 13-16 July 2003. In the audience Associate
Prof. Daniel Attinger1 found the problem very interesting and proposed a collaboration.
The group of D. Attinger has a large experimental expertise. We initiated a collaboration
and D. Attinger started an experimental study of gas bubbles passing through microchan-
nel contractions in glass capillaries. The culmination of our work was the submission of
an experimental and theoretical paper to the Journal of Micromechanics and Microengi-
neering [2] in July of 2005. We give a short review of our work in Sec. 2.1 while the paper
is presented in full length in Appendix E.

2.1 Theoretical paper

In the paper The clogging pressure of bubbles in hydrophilic microchannel contractions [1]
we present a general semi-analytical model for the quasi static motion of a compressible
gas bubble through an axisymmetric channel with a contraction of arbitrary shape r(x).
A sketch of the physical system with various labels is depicted in Fig. 2.2.

In most cases the total energy Etot of a bubble of surface tension σ increases when it is
moved from a wide channel (of radius R) to a narrow channel (of radius r), and the bubble
thus tends to clog the flow of the fluid.2 The so-called clogging pressure Pclog is needed to

1From the Dept. of Mechanical Engineering, State University of New York at Stony Brook, NY, USA.
2All dynamic components of the energy disappear as we are studying a quasi stationary system. As the

surface to volume ratio is very large in microfluidics the only energy we need to take into account is the
total interfacial energy.
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Figure 2.2: Sketch of a bubble with internal pressure Pi, center of mass coordinate xcm, left (right)
contact line coordinate xL (xR), contact angle θ < 90◦, and tapering angle θt = arctan[−r′(x)].
The channel is contracting from constant large radius R to small radius r. The specific channel
profile is defined by some function r(x). The pressure left (right) of the bubble is denoted PL (PR)
and the pressure difference across the bubble is ∆Pb = PR − PL.

push the bubble out of or through the contraction. However, in the case of a hydrophilic
channel contraction there exists a range of parameters where the bubble gains energy by
moving into the narrow part of the channel. Two examples of such situations are given in
Figs. 2.3 and 2.4. Respectively five and four snapshots of the bubble are given together
with the associated energy curve Etot(xcm), where xcm is the center of mass coordinate of
the bubble. The related force F = dEtot/dxcm on the bubble and the pressure drop across
the bubble ∆Pb(xcm) are also depicted.

The most rare behavior is shown in Fig. 2.3, here with a tapering angle of the contrac-
tion of θt = 10◦. In this case the energy Etot(xcm) decreases monotonically as function
of xcm which means that the bubble is sucked through the channel as it gains energy.
In the second and more general case illustrated in Fig. 2.4, where θt = 20◦, an energy
barrier appears on the energy curve. In this case the force F takes positive values which
means that a pressure needs to be applied at the left of the bubble to push it through
the contraction. These two examples of parameters are only two of the many parameters
analyzed in the paper.

In the paper we further apply the energy analysis tool to a parametric study of varying
geometries. We conclude by giving a set of geometrical design rules for constructing mi-
crofluidic channel contractions that reduce or prevent clogging. Most importantly a system
should preferably be designed such that gas bubbles cannot span the entire contraction
region.
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Figure 2.3: Snapshots, energy curve, force curve, and pressure curve for a bubble moving from
an R = 150 µm to an R = 100 µm channel. The contraction is linear and has a tapering angle of
θt = 10◦. The contact angle θ = 72◦.
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an R = 150 µm to an R = 100 µm channel. The contraction is linear and has a tapering angle of
θt = 20◦. The contact angle θ = 72◦.
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Figure 2.5: (a) Sketch of the gas-liquid-solid system with channel profile r(x), main diameter
D, contraction diameter d, left and right contact angles θL and θR, left and right contact line
position xL and xR, length of the contraction `con, and local tapering angle θt. (b) Photograph
of a gas bubble (dark gray) entering from the left into a liquid-filled (white) tube with a 490 µm
contraction. The flow rate Q of the liquid is 0.33 µL/s.

2.2 Experimental and numerical paper

In the paper Transient pressure drops of gas bubbles passing through liquid-filled microchan-
nel contractions: an experimental and numerical study [2] we compare the theoretical re-
sults first presented in our paper [1] with experimental results produced in the group of
D. Attinger. The numerical implementation of the theoretical model is modified so that it
can handle any tube shape r(x) as well as different advancing and receding contact angles,
see Fig. 2.5.

With the experimental set-up, which is depicted in Fig. 2.6, the pressure difference
across the bubble was monitored together with the bubble position. The position and
motion of the bubble was controlled by the liquid flow rate Q using a syringe pump.
Ample details about the experimental setup are found in the paper.

An example of a comparison between the theoretical model and the experimental
results is given in Fig. 2.7. The pressure across the bubble ∆Pb is plotted as function
of the displaced liquid volume Vin = Qt, where t is time. The first peak on the curve
corresponds to the passage of the right meniscus through the contraction while the second
negative peak corresponds to the passage of the left meniscus. From the figure it is evident
that the theory deviates from the experiments at the second passage. In the paper we
describe the possible reasons for this discrepancy, they include: drying of deposited wetting
liquid films, stick slip motion of contact lines, as well as bubble deformation.
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Figure 2.6: Measurement set-up allowing for transient visualization and pressure measurement
during the transport of a microbubble in a microchannel.
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Figure 2.7: Direct measurements with the MEMS pressure sensor (dots) and simulation based
on measured shape (full line) of the pressure across a long L = 8 mm bubble in tube A7 for
Q = 0.33 µL/s as a function of displaced liquid volume Vin = Qt, where t is the time. The
observed values of the advancing and receding wetting angle used for the simulations are 10◦ and
9◦, respectively. The inset indicates the bubble length L and the liquid flow rate Q.



Chapter 3

Motivation: the flow-focusing
device

In the spring of 2004 and as part of my PhD studies I had the opportunity to have a five
month research stay in the group of Prof. H. A. Stone in the Division of Engineering and
Applied Sciences (DEAS) at Harvard University. During the first few weeks of the stay I
visited several groups at Harvard and got to meet Piotr Garstecki of the Whitesides group
who conducted experiments with the so-called flow-focusing configuration on a microflu-
idic chip. Because of my great interest in geometry dependent two-phase phenomena in
microfluidics I got very interested and we started a small collaboration. I had no spe-
cific project description for my stay abroad and thus engaged in developing a numerical
model for simulating the dynamics of a free interface in an axisymmetric version of the
flow-focusing geometry. The model and the numerical results that the code has produced
are amply discussed in the rest of this thesis.

solid wall

liquid

liquid

gas

orifice outlet

Figure 3.1: Sketch of a flow-focusing device where a gas jet under constant pressure pgas is focused
into the orifice region by a liquid flow at flow rate Qin. Bubbles are created periodically when gas
volumes snap-off.
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Figure 3.2: Micrograph of a planar microfluidic flow-focusing device the characteristic lengths are
given in micrometers. By courtesy of P. Garstecki.

A sketch of a planar flow-focusing configuration is given in Fig. 3.1. A gas thread at
constant pressure pgas is focused into the orifice region by a liquid stream with flow rate
Qin. Over a wide range of the flow parameters the gas thread breaks periodically and
delivers bubbles of nearly constant volume into the outlet channel [14, 3]. The first work
reporting the formation of bubbles in a microfluidic flow-focusing like configuration was
by Gañán-Calvo and Gordillo [15], they used a technique called capillary flow focusing.
The first implementation of a flow-focusing device onto a planer microchannel design was
done by Anna et al. [14]. For this study the channels were produced using soft lithography
which allows for rapid fabrication and on-chip integration of the system. In the more recent
extensive studies of the flow-focusing device by Garstecki et al. [3, 4, 5] the device is also
used on-chip and in a planar microfluidic configuration, see the micrograph of Fig. 3.2. In
the recent paper by Utada et al. [13] they report using an axisymmetric version of the
flow-focusing device.

From an industrial point of view the flow-focusing device is very interesting as it
can produce microbubbles of very constant volume and at high bubbling frequencies.
The devices have countless applications and are in particular interesting in fundamental
medical applications, in on-chip separation procedures, in the production of special foams
and many more. An example of such a structured foam produced by a microfluidic flow-
focusing device is given in Fig. 3.3. By adding a surfactant to the liquid the bubbles
do not coalesce and naturally arrange in a lattice-like structure [3]. Further applications
of the flow-focusing configuration include the creation of liquid-liquid emulsions, double
emulsions [13], and micro beads.

In the academic world the flow-focusing device is of paramount interest as it enables
for the study of a rich variety of hydrodynamic phenomena: (1) In a microfluidic imple-
mentation the device allows for the study of breakup in a confined geometry. Garstecki
et al. describe the flow-rate controlled snap-off mechanism [4], where the dynamics of the
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Figure 3.3: Microscope picture of bubbles that have arranged in a lattice like structure in the
outlet channel of a planar microfluidic flow-focusing device. By courtesy of P. Garstecki.

breakup of the gas thread are entirely controlled by the liquid flow-rate Qin. The study
describe deviations from the classical capillary instability. Moreover, it explains why the
volume of the bubbles created in the device Vb scale as Vb ∝ pgas/µQin. We discussed this
scaling in detail in Chap. 7 and confirm it by means of numerical simulations. (2) The
flow-focusing device further exhibits rich nonlinear behavior when it is bubbling. When
monitoring the volume of the bubble Vb as function of the liquid flow-rate Qin Garstecki et
al. [5] describe period doubling, halving bifurcations, and chaotic behavior. The system
is seen to exhibit similarity with the dripping faucet [18].

The diverseness of the dynamics in the two-phase flow of the flow-focusing device
greatly motivated my decision to initiate a numerical study. The use of computational
fluid dynamics (CFD) enables the analysis of a wide range of parameters and provides a
detailed picture of the dynamics. It is the intent of the simulations to help fully understand
the experimental results. Especially it is relatively easy to vary geometric parameters
when conducting a numerical study whereas it is quite time consuming when performing
experiments. As a first step towards modelling the full 3D dynamics corresponding to the
experimental results in a planar geometry we chose to model an axisymmetric version of
the flow-focusing device. This of course bearing in mind that the difference in geometry
most probably will influence on some of the dynamics.
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Chapter 4

The governing equations

The cornerstone of any numerical study is the definition a set of governing equations char-
acterizing the physics of the system at hand. In this chapter we will present the basic
governing equations of fluid dynamics. The main focus of this chapter will be on for-
mulating the equations in an axisymmetric system of coordinates and on rewriting the
equations into a divergence form that is suited for numerical implementation in Femlab.

The most general form of the equations is firstly presented and then the axisymmetric
formulation for Newtonian fluids is given. We then move on to describing the very im-
portant conditions that apply at an interface between two immiscible fluids. Related to
that is the description of the curvature of a surface of revolution. Further, we describe
the re-scaling of the governing equations to a dimensionless form. The equations are then
reformulated in a divergence form for a fluid-fluid system and a liquid-gas system, respec-
tively. Second to last we list the equations for the case of zero Reynolds-number flows
and, finally, we present the power-law model for describing a non-Newtonian liquid.

4.1 The equations of motion

The momentum conservation equation for a fluid in the continuum approximation is the
Navier–Stokes equation. In an isothermal system the momentum equation in tensor form
it is given as

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
=

∂σij

∂xj

(4.1)

where i and j run over the spatial dimensions and implicit summation is assumed, ρ is the
density of the fluid, σij is the full stress tensor, t is time, ui is a velocity component, and
xi is a spatial variable component. The conservation of mass in the fluid system is given
by the continuity equation

∂ρ

∂t
+

∂(ρui)
∂xi

= 0. (4.2)

The momentum Eq. (4.1) and the mass conservation Eq. (4.2) together with a constitu-
tive equation for the stress tensor σij form the equations of motion of the fluid. These
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three equations together with appropriate boundary conditions (BCs) compose a closed
system for finding the flow field (ui, p, ρ) in the fluid [28, 7, 29, 30, 31]. In the case of an
incompressible fluid where the density ρ is constant the continuity Eq. (4.2) reduces to
the incompressibility condition

∂ui

∂xi

= 0. (4.3)

In vector notation Eqs. (4.1) and (4.2) are written as,

ρ

(
∂u

∂t
+ (u ·∇)u

)
= ∇ · σ (4.4)

∂ρ

∂t
+ ∇ · (ρu) = 0 (4.5)

where u is the velocity vector and σ = [σij ] is the stress matrix. The incompressibility
condition Eq. (4.3) is simply ∇ · u = 0.

4.2 Axisymmetric equations of motion

In the main part of this thesis we will be studying Newtonian incompressible fluids. More-
over, the systems we investigate are generally axisymmetric, see the (z, r, φ) system of
coordinates in Fig. 4.1. In the case of flows that have no periodic component in the
angular direction φ the Navier–Stokes Eq. (4.1) reduces to

z-mom.: ρ

[
∂u

∂t
+ v

∂u

∂r
+ u

∂u

∂z

]
= −∂p

∂z
+ µ

[
1
r

∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂z2

]
(4.6)

r-mom.: ρ

[
∂v

∂t
+ v

∂v

∂r
+ u

∂v

∂z

]
= −∂p

∂r
+ µ

[
1
r

∂

∂r

(
r
∂v

∂r

)
+

∂2v

∂z2
− v

r2

]
, (4.7)

where z is the axial coordinate, r the radial coordinate, u the axial velocity, v the radial
velocity, p the pressure, and µ is the dynamic viscosity [28]. The first equation is the
momentum equation in the axial direction and the second in the radial direction. In an
axisymmetric system the continuity condition for an incompressible fluid is

1
r
v +

∂v

∂r
+

∂u

∂z
= 0. (4.8)

For the case of an isotropic Newtonian-fluid the constitutive stress tensor components are

σij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
− δijp (4.9)
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Figure 4.1: Sketch of a cylindrical system of coordinates (z, r, φ) and a rectangular system of
coordinates (x, y, z). The zr-plane is unchanged in an axisymmetric system.
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Figure 4.2: Sketch of an free interface ∂Ω between fluid 1 and fluid 2, of respective pressures p1

and p2. The surface normal is n and the surface tangent is t at the interface position is x.

and the respective components of the stress tensor σ in an axisymmetric system of coor-
dinates are

σzz = 2µ
∂u

∂z
− p, (4.10)

σrr = 2µ
∂v

∂r
− p, (4.11)

σzr = σrz = µ

(
∂u

∂r
+

∂v

∂z

)
. (4.12)

4.3 Free surface conditions

Consider a system consisting of two immiscible fluids with interface ∂Ω see Fig. 4.2. The
two domains are marked 1 and 2 and have the material properties (µ1, ρ1) and (µ2, ρ2),
respectively. The velocity field is denoted ui throughout the fluid domains as it is con-
tinuous across an interface. The pressure however is not continuous when the interface
has a tension. In Fig. 4.2 the pressure is denoted p1 in domain 1 and so forth. At the
location of the free surface between the fluids there is continuity of the stress tensor in the
tangential direction, and a discontinuity in the normal direction. The size of the pressure
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Figure 4.3: Sketch of a meridian curve x(S) to a surface of revolution. The meridian curve is
parameterized by S with tangent t(S) and normal n(S). The two principal curvatures of the
surface of revolution are κrz = 1/Rrz in the rz-plane and κrφ = 1/Rrφ in a plane with normal t,
see Fig. 4.1.

discontinuity ∆p is prescribed by the Young–Laplace equation,

∆p = γκ, κ = ∇s · n, (4.13)

where γ is the surface tension, κ the mean curvature of the interface (see below), n the
unit surface normal, and ∇s the gradient operator along ∂Ω. This condition regarding
the stress translates to the dynamic boundary condition,

njσ2,ij − njσ1,ij = γκni, (4.14)

where the indices i and j run over the spacial dimensions z and r, and n = (n1, n2) =
(nz, nr) is the unit normal at the interface. The expression at the left side of the equal
sign is the total resulting force on the interface while the right side tells that the force is
normal to the interface and proportional to γκ.

At the free surface the interface must move at the speed of a fluid element just next to
it, i.e., continuity of the velocity field. This condition is the kinematic boundary condition
for the free surface,

dxi

dt
= ui xi ∈ ∂Ω, (4.15)

where we have taken the total time-derivative. This last condition is often used computa-
tionally to update the interface shape.

4.4 The curvature κ

The curvature term κ in Eq. (4.14) is given as the mean of the two principal normal
curvatures of a surface. The curvature is also expressed mathematically as the trace of
the so-called Weingarten map matrix [27, 32, 33].
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In the case of an axisymmetric systems all surfaces are represented by a surfaces of
revolution defined by a meridian curve. In Fig. 4.3 the meridian curve is defined by a
parametric curve x(S) = [z(S), r(S)]. In this case the two main curvatures are in the
rz-plane and in the plane spanned by the normal n(S) and the unit normal eφ. The two
components of the curvature are named κrz and κrφ, respectively. The total curvature κ
is hence

κ = κrz + κrφ. (4.16)

In the following formulation S is not assumed to be the arc length parameter ` but any
parameter, hence S = S(`).

The curvature κrz = 1/Rrz is found, by using a fundamental results from the theory
of curves [33], as

∂t

∂`
= κrzn ⇒ κrz =

∣∣∣∣
∂t

∂`

∣∣∣∣ , (4.17)

where by the chain rule we have

∂

∂`
=

∂

∂S

∂S

∂`
=

∂

∂S
(ẋ · ẋ)−1/2, (4.18)

and a dot represents differentiation with respect to S. Using these relations the curvature
κrz is found as

κrz =
żr̈ − ṙz̈

(ṙ2 + ż2)3/2
. (4.19)

The second part of the curvature κrφ is found by projecting the inverse radius r(S)−1 onto
the normal n and yields

κrφ =
1

Rrφ

=
nr

r
=

−ż

r(ṙ2 + ż2)1/2
, (4.20)

where Rrφ is defined on Fig. 4.3 and lies in the plane with t as surface normal (spanned
by n and eφ). The two components of the unit normal are

(nz, nr) =
(

ṙ

(ṙ2 + ż2)1/2
,

−ż

(ṙ2 + ż2)1/2

)
. (4.21)

4.5 Dimensionless form

It is always advantageous to render the governing equations dimensionless. We have re-
scale the equations with respect to a characteristic length L and a characteristic velocity
U . The specific choice of U and L is discussed and pointed out in every specific problem
discussed in this thesis. The pressure is in the following re-scaled with respect to the
viscous stress measure µU/L. A re-scaling of the pressure with the Young–Laplace pressure
γ/L is often used in capillary systems1. For high Reynolds-number flows the pressure is
normally scaled with respect to the the dynamic pressure measure ρU2.

1When the dynamics of the system are governed by the forces at the free interface it is suitable to scale
the velocity by γ/µ. This is especially the case when non-controlled capillary instabilities occur. They
propagate at the interface at the natural speed U = γ/µ, see Refs. [34, 23] for further details.
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With the present choice of pressure scaling the re-scaled flow variables are thus given
by

xi = L x̃i, ui = U ũi, t = t̃
L

U
, and p = p̃

µU

L
. (4.22)

where a tilde over a symbol represents a dimensionless quantity. Using this re-scaling we
may rewrite the Navier–Stokes Eq. (4.6) and (4.7), and the continuity Eq. (4.8) as

Re

[
∂ũ

∂t̃
+ ṽ

∂ũ

∂r̃
+ ũ

∂ũ

∂z̃

]
= −∂p̃

∂z̃
+

[
1
r̃

∂

∂r̃

(
r̃
∂ũ

∂r̃

)
+

∂2ũ

∂z̃2

]
, (4.23)

Re

[
∂ṽ

∂t̃
+ ṽ

∂ṽ

∂r̃
+ ũ

∂ṽ

∂z̃

]
= −∂p̃

∂r̃
+

[
1
r̃

∂

∂r̃

(
r̃
∂ṽ

∂r̃

)
+

∂2ṽ

∂z̃2
− ṽ

r̃2

]
, (4.24)

ṽ

r̃
+

∂ṽ

∂r̃
+

∂ũ

∂z̃
= 0, (4.25)

where Re is the Reynolds number Re = ρUL/µ. When using the re-scaled version of the
governing equations the dynamic boundary condition Eq. (4.14) is rewritten as

nj σ̃2,ij − nj σ̃1,ij =
1

Ca
κ̃ni, (4.26)

where Ca = µU/γ is the capillary number2, σ̃ij is the dimensionless stress tensor, and the
curvature scales as κ = κ̃/L.

4.6 Divergence form: general case

When the momentum and continuity equations are solved numerically they have to be
formulated in a form suitable for implementation with the finite element solver Femlab a
detailed discussion about this is given in Chap. 5. This reformulation is called a divergence
form it is defined as follows

da

dŨk

dt̃
+ ∇̃ · Γ̃k = F̃ k, (4.27)

where Ũk = (ũ, ṽ, p̃k), Γ̃k = Γ̃k(z̃, r̃, p̃k, ũ, ṽ, ∂ũ
∂z̃ , ...), F̃ k = F̃ k(z̃, r̃, p̃k, ũ, ṽ, ∂ũ

∂z̃ , ...), da

is called the mass parameter, and k is the fluid domain number. In the dimensionless
governing equation, Eqs. (4.23) to (4.25), many terms are divided with r̃ and one with r̃2.
Such terms are not suitable for computation as they are very sensitive to the numerical
precision near the singularity at r̃ = 0. To help correct this the governing equations are
multiplied by r̃.

2When defining the capillary number and the Reynolds number a clear definition has to be given.
Specifically in systems with two fluids it is important which material properties are used. This is further
discussed below.
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Governing equations: After multiplication with r̃ and some algebra the governing
equations in liquid 1 may be reformulated to




r̃Re∂ũ
∂t̃

r̃Re∂ṽ
∂t̃

0


 + ∇̃ ·




r̃
(
2∂ũ

∂z̃ − p̃1

)
r̃
(

∂ũ
∂r̃ + ∂ṽ

∂z̃

)

r̃
(

∂ũ
∂r̃ + ∂ṽ

∂z̃

)
r̃
(
2∂ṽ

∂r̃ − p̃1

)

0 0




=




r̃Re
(
ṽ ∂ũ

∂r̃ + ũ∂ũ
∂z̃

)

r̃Re
(
ṽ ∂ṽ

∂r̃ + ũ∂ṽ
∂z̃

)− p̃1 + 2 ṽ
r̃

ṽ + r̃
(

∂ṽ
∂r̃ + ∂ũ

∂z̃

)


 (4.28)

and in liquid 2 the system becomes



r̃ερRe∂ũ
∂t

r̃ερRe∂ṽ
∂t

0


 + ∇̃ ·




r̃
(
2εµ

∂ũ
∂z̃ − p̃2

)
εµr̃

(
∂ũ
∂r̃ + ∂ṽ

∂z̃

)

εµr̃
(

∂ũ
∂r̃ + ∂ṽ

∂z̃

)
r̃
(
2εµ

∂ṽ
∂r̃ − p̃2

)

0 0




=




r̃ερRe
(
ṽ ∂ũ

∂r̃ + ũ∂ũ
∂z̃

)

r̃ερRe
(
ṽ ∂ṽ

∂r̃ + ũ∂ṽ
∂z̃

)− p̃2 + 2εµ
ṽ
r̃

ṽ + r̃
(

∂ṽ
∂r̃ + ∂ũ

∂z̃

)


 (4.29)

where ∇̃ =
[

∂
∂z̃ , ∂

∂r̃

]
. The matrix at the left of the equal sign in Eqs. (4.28) and (4.29)

is Γ̃k = [Γ̃ij ]k and the matrix at the right is F̃ k = [F̃i]k. From Eq. (4.28) it is evident
that the four upper elements of Γ̃ correspond to r̃ times the Cauchy stress tensor. The
dimensionless parameters are defined as

Ca =
µ1U

γ
, Re =

ULρ1

µ1
, pk = p̃k

µ1U

L
, εµ =

µ2

µ1

, ερ =
ρ2

ρ1

, (4.30)

where fluid 1 has been chosen as reference, εµ is the viscosity ratio, and ερ is the density
ratio. Note that only the pressure has a domain subscript as it is discontinuous while the
velocity field is continuous throughout the fluid.

Boundary condition: At the interface between the two fluids the dynamic boundary
condition Eq. 4.14 is rewritten in terms of the Γ matrices,

njΓ̃2,ij − njΓ̃1,ij = r
1

Ca
κ̃ni (4.31)

where κ̃ is the dimensionless curvature. The curvature term κ̃ simplifies when it is multi-
plied by r̃ and yields,

r̃κ̃ = r̃
żr̈ − ṙz̈

(ṙ2 + ż2)3/2
+ nr. (4.32)
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4.7 Divergence form: liquid-gas system

When the two-fluid system consists of a liquid and a gas the governing Eqs. (4.28)
and (4.29) simplify. Compared to the liquid, the shear stress and the viscosity of the
gas are negligible and the pressure variations are expected to be small, so we only need to
specify a pressure in the gas domains. We thus assume that µgas ¿ µliquid which is mainly
due to the fact that ρgas ¿ ρliquid. So if fluid 2 is the gas we may set εµ = 0 and ερ = 0.
Thus, in fluid 1 according to Eq. (4.28) we have,




r̃Re∂ũ
∂t̃

r̃Re∂ṽ
∂t̃

0


 + ∇̃ ·




r̃
(
2∂ũ

∂z̃ − p̃
)

r̃
(

∂ũ
∂r̃ + ∂ṽ

∂z̃

)

r̃
(

∂ũ
∂r̃ + ∂ṽ

∂z̃

)
r̃
(
2∂ṽ

∂r̃ − p̃
)

0 0




=




r̃Re
(
ṽ ∂ũ

∂r̃ + ũ∂ũ
∂z̃

)

r̃Re
(
ṽ ∂ṽ

∂r̃ + ũ∂ṽ
∂z̃

)− p̃ + 2 ṽ
r̃

ṽ + r̃
(

∂ṽ
∂r̃ + ∂ũ

∂z̃

)


 . (4.33)

Where p̃ is the pressure in the liquid. The only reference to the gas is now through the
pressure p̃2 in Eq. (4.29). After rearranging the terms in the boundary condition the
pressure in the gas p̃2 appears and we have

Γ̃11n1 + Γ̃12n2 = r̃

(
1

Ca
κ̃− p̃2

)
n1 (4.34)

Γ̃21n1 + Γ̃22n2 = r̃

(
1

Ca
κ̃− p̃2

)
n2, (4.35)

where

p̃2 =
pgasL

µU
, (4.36)

and pgas is the dimensional pressure in the gas. In practice we may set pgas equal to a
constant or make if obey the ideal gas law.

4.8 Stokes-flow

In the problems that are studied in this thesis the flow is generally viscous at has small
Reynolds numbers Re ¿ 1. In practice when implementing the equations numerically
we will be assuming that the flow is laminar an set Re = 0. This reduces the governing
Eqs. (4.28) and (4.29) to the Stokes-flow equations. When Re = 0 the nonlinear convective
terms disappear as well as the time dependent terms. The governing equations are thus
linear in the dependent variables (u, v, p). In a Stokes-flow system involving a free surface
the only time dependence is through the kinematic boundary condition Eq. (4.15) at the
interface. Moreover, the only nonlinearity is introduced via the curvature term Eq. (4.32)
of the dynamic boundary condition Eq. (4.31). Thus even though the governing equations
are linear in the dependent variables the dynamics are still nonlinear. The systems that we
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will be studying are listed below with governing equations, dynamic boundary conditions,
and re-scaled parameters:

Liquid-liquid axisymmetric

∇̃ ·




r̃
(
2∂ũ

∂z̃ − p̃1

)
r̃
(

∂ũ
∂r̃ + ∂ṽ

∂z̃

)

r̃
(

∂ũ
∂r̃ + ∂ṽ

∂z̃

)
r̃
(
2∂ṽ

∂r̃ − p̃1

)

0 0


 =




0

−p̃1 + 2 ṽ
r̃

ṽ + r̃
(

∂ṽ
∂r̃ + ∂ũ

∂z̃

)


 (4.37)

∇̃ ·




r̃
(
2εµ

∂ũ
∂z̃ − p̃2

)
εµr̃

(
∂ũ
∂r̃ + ∂ṽ

∂z̃

)

εµr̃
(

∂ũ
∂r̃ + ∂ṽ

∂z̃

)
r̃
(
2εµ

∂ṽ
∂r̃ − p̃2

)

0 0


 =




0

−p̃2 + 2εµ
ṽ
r̃

ṽ + r̃
(

∂ṽ
∂r̃ + ∂ũ

∂z̃

)


 (4.38)

njΓ̃2,ij − njΓ̃1,ij = r̃
1

Ca
κ̃ni (4.39)

xi = x̃iL, ui = ũiU, t = t̃
L

U
, p = p̃

µ1U

L
, εµ =

µ2

µ1

, Ca =
µ1U

γ
(4.40)

Liquid-gas axisymmetric

∇̃ ·




r̃
(
2∂ũ

∂z̃ − p̃
)

r̃
(

∂ũ
∂r̃ + ∂ṽ

∂z̃

)

r̃
(

∂ũ
∂r̃ + ∂ṽ

∂z̃

)
r̃
(
2∂ṽ

∂r̃ − p̃
)

0 0


 =




0

−p̃ + 2 ṽ
r̃

ṽ + r̃
(

∂ṽ
∂r̃ + ∂ũ

∂z̃

)


 (4.41)

njΓ̃ij − njΓ̃ij = r̃

(
1

Ca
κ̃− p̃2

)
ni (4.42)

xi = x̃iL, ũi = ũiU, t = t̃
L

U
, p = p̃

µU

L
, Ca =

µU

γ
, p̃2 =

pgasL

µU
(4.43)

Liquid-gas 2D rectangular

∇ ·




(
2∂ũ

∂x̃ − p̃
) (

∂ũ
∂ỹ + ∂ṽ

∂x̃

)
(

∂ũ
∂ỹ + ∂ṽ

∂x̃

) (
2∂ṽ

∂ỹ − p̃
)

0 0


 =




0

0
∂ũ
∂x̃ + ∂ṽ

∂ỹ


 (4.44)
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njΓ̃ij − njΓ̃ij =
(

1
Ca

κ̃− p̃2

)
ni (4.45)

xi = x̃iL, ui = ũiU, t = t̃
L

U
, p = p̃

µU

L
, Ca =

µU

γ
, p̃2 =

pgasL

µU
(4.46)

4.9 Non-Newtonian liquid: power-law model

The fluid described in the previous sections was treated as a Newtonian fluid, that is, a
fluid where there is a linear relation between the stress tensor τ and the rate of strain
tensor γ̇. The constant of proportionality is the dynamic viscosity µ. The stress tensor τ
is given as

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi

)
(4.47)

that is τ = σ + pI, see Eq. (4.9). To be specific σ is called the total stress tensor while τ
is the stress tensor [36]. The rate of strain tensor is

γ̇ij =
(

∂ui

∂xj
+

∂uj

∂xi

)
. (4.48)

In a non-Newtonian fluid the viscosity is not constant. A model for such a fluid is
given by the generalized Newtonian fluid where the dynamic viscosity, now denoted η, is
a function of the shear rate γ̇ and we write η = η(γ̇). The shear rate is given by

γ̇ =

√
1
2
γ̇ij γ̇ij . (4.49)

One of the most commonly used expressions for η(γ̇) is the so-called power-law model
containing two free parameters,

η = mγ̇n−1 (4.50)

where m has units Pa sn and n is dimensionless. When n = 1 and m = µ the Newtonian
fluid is recovered. If n < 1 the fluid is said to be shear thinning (pseudo elastic) and when
n > 1 the fluid is shear thickening (dilatant). Further details about this model and any
others are found in Ref. [36].

Using the power law model Eq. (4.50) for the viscosity of the liquid the governing
equations in dimensionless form for the axisymmetric liquid-gas system are

∇̃ ·
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

r̃
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∂ũ
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∂z̃
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∂z̃

)
r̃
(
2η̃ ∂ṽ
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)

0 0
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 =


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0

−p̃ + 2η̃ ṽ
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(

∂ṽ
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∂z̃

)


 (4.51)

where

η̃ =

√
2

(
∂ũ

∂z̃

)2

+
(

∂ṽ

∂z̃
+

∂ũ

∂r̃

)2

+ 2
(

∂ṽ

∂r̃

)2

, (4.52)
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and it is now obvious that Eq. (4.51) is no longer linear in the dependent variables (ũ, ṽ, p̃)
because of γ̃. The dynamic boundary conditions is again

njΓ̃ij − njΓ̃ij = r̃

(
1

Ca
κ̃− p̃2

)
ni. (4.53)

The dimensionless parameters, here marked with a star superscript, are as follows

xi = x̃iL, ui = ũiU, t = t̃
L

U
, p = p̃ m

(
U

L

)n

, (4.54)

p̃2 =
pgas

m

(
U

L

)−n

, Ca =
Lm

γ

(
U

L

)n

, η = η̃ m

(
U

L

)n−1

. (4.55)

Note: The tilde on the dimensionless variables are dropped in the following two chapters.
They are naturally reintroduced in Chap. 7.
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Chapter 5

Numerics: implementation

A considerable part of the work of producing the numerical results presented in this thesis
was put in developing the free surface program itself. Even though the basic concepts
behind free-surface flow simulations are rather simple, the implementation poses many
practical challenges. The main purpose of this chapter is thus twofold: firstly, to describe
how the code works and, secondly, to point out and detail all the schemes and numerical
tricks developed to make the code reliable and accurate.

Many different methods exist to solve a free surface problem. They rely on either
a level-set like approach where the interface is more or less smeared out or on a well
defined interface location defined by grid points. The first class include the level-set
method [37, 38], the volume-of-fluid VOF methods [27, 39, 19, 40, 41], and free-surface
lattice-Boltzman methods [42]. Common for these methods is that the interface is defined
through a single valued function F (x) ∈ R. The last class of methods comprise boundary
integral methods [21], finite element (FEM) arbitrary Lagrange–Euler (ALE) methods
[43, 44], and the Runge–Kutta specified free interface FEM method we have implemented
and present here. Generally said, the first class of methods is relatively faster but the
physics at the free interface are not always precisely described while the second class is
slower but simulate the full physics at the free interface.

Chiefly our code solves for the full dynamics of an axisymmetric Stokes-flow problem
involving a free fluid-fluid interfaces. The numerical solver is based on an in-house Mat-
lab [45] free surface and second order Runge–Kutta time integration code that interfaces
with the commercial Femlab FEM solver [46]. The governing equations and the bound-
ary conditions at the free interface were presented in Chap. 4.

This chapter is introduced by a problem formulation and a presentation of the main
aspects of the method. This first part is concluded by a program algorithm flow-chart.
From this point on every aspect presented in the algorithm flow-chart is discussed sepa-
rately and in detail: the governing equations and boundary conditions, the meshing, the
curvature scheme, and the time integration algorithm.
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Figure 5.1: Sketch of the flow-focusing device geometry with computational domain Ω. The
boundaries are denoted ∂Ωi, for i = 1, ..., 13, the free surface boundary is ∂Omega1. There is
rotational symmetry about the z-axis.

5.1 The problem and method

The main goal of the present work is to study the time-dependent dynamics of the two-
phase Stokes-flow in an axisymmetric flow-focusing device. We have thus chosen to present
the code using the flow-focusing device as a concrete example.

Figure 5.1 depicts the geometry used for the axisymmetric flow-focusing device. We
wish to solve the Stokes flow Eq. (4.41) in the computational domain Ω while applying
the liquid-gas dynamic boundary condition Eq. (4.42) at the moving boundary ∂Ω1. The
time dependent evolution of the boundary is given by the kinematic boundary condition
Eq. (4.15).

As the Stokes flow has zero Reynolds-number Re = 0 there is no inertia in the system.
This fact reduces the time dependence of the problem such that it is only present in the
kinematic boundary condition at the free surface. The problem is hence reduced to a quasi-
stationary problem in the following sense: given an interface shape x = (z(S), r(S)) we
solve for the flow field (u, v, p) and the stress field σ in the liquid. If the stress is non-zero
at any point on the liquid-gas interface this interface will move according to the velocity
data. The problem of evolving the interface in time is thus a question of subsequently
solving the flow, computing the interface velocity, and then evolve the interface according
to the kinematic boundary condition Eq. (4.15) using a specific time integration scheme
(we use a second order Runge–Kutta scheme).

We utilize the commercial FEM program Femlab to solve the flow equations. The
main idea of the FEM method is to approximate the solution (u, v, p) of the PDE by using
a linear combination of basis functions, i.e.,

[u(x), v(x), p(x)] =
∑

i

[uiϕi1(x), viϕi2(x), piϕi3(x)] , (5.1)
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where ϕil are the basis functions, l = 1, 2, 3 the dependent variable indic, i the node
number, and (ui, vi, pi) are the coefficients to be solved for. The discretization of the
problem is introduced by only choosing a finite number of basis functions. In the FEM
method the basis functions are chosen such that they have a compact support. The
computational domain Ω is divided into a triangular mesh, and a given basis function is
now only nonzero on the triangular elements surrounding a given node i. The computation
of the coefficients (ui, vi, pi) is done, by Femlab, by solving a large matrix problem. In the
case where the governing equations are linear in the dependent variables and stationary
the Femlab linear solver femlin is used [81]. Some further details on the FEM method
are given in Appendix B.

The Femlab program is very flexible and see-through and it interfaces nicely with
Matlab via a scripting language. It is consequently possible to include in-house Matlab
functions into the equation systems solved by Femlab , see Secs. 5.2 and 5.4. We have
coded the time integration procedure, the interface evolution scheme, and the curvature
scheme in Matlab , while we use Femlab to solve for the flow field (u, v, p) and pro-
vide the interface velocities at the free surface. To solve the PDEs Femlab is feat with
information about the geometry and it is given mesh parameters so that it can mesh the
computational domain, see Sec. 5.3. This information is also provided by the Matlab
code.

An algorithm flow-chart of the main program is given in Fig. 5.2. I this chart we refer
to the following sections for in-dept information about certain schemes and program pieces.
The full Matlab program is found in Appendix A together with relevant subroutines and
functions.

5.2 Governing equations and boundary conditions

When interfacing with Femlab it is possible to enter the governing equations in two very
general forms: (1) using a weak formulation (see Appendix B and Refs. [75, 76] for more
details) or (2) using a general PDE formulation or strong form [81]. In the case of the a
liquid-gas system discussed here it is straight forward to use the general formulation. A
particular PDE is here given on the form

da

dU

dt
+ ∇ · Γ = F in Ω, (5.2)

in terms of the variable vector U = (U1, U2, U3) = (u, v, p), the flux tensor Γ, the gener-
alized source term F , and da is a parameter. Comparing this to the governing Eq. (4.41)
we immediately recognize

Γ =




r
(
2∂u

∂z − p
)

r
(

∂u
∂r + ∂v

∂z

)

r
(

∂u
∂r + ∂v

∂z

)
r
(
2∂v

∂r − p
)

0 0


 , F =




0

−p + 2v
r

v + r
(

∂v
∂r + ∂u

∂z

)


 , (5.3)

and da = 0 as we have no time dependency here. Again note that Γ = rσ, where σ is
the Cauchy stress-tensor Eq. (4.9). The above formulation is in the Femlab scripting
language given as:
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set constants
geometry parameters
physical parameters
numerical parameters
initial interface shape

define Femlab environment
curvature user functions (? Sec. 5.4)
finite elements (order and shape)
governing equations (? Sec. 5.2)
boundary conditions (? Sec. 5.2)

start time-loop (while t < Tend & i < M)
set geometry
mesh (? Sec. 5.3)
modify mesh structure: make St arc-length (? Sec. 5.3)
calculate curvature approximating splines (? Sec. 5.4)
solve flow

start of Runge–Kutta gradient computation
compute interface normal n(St) and velocity u(St)
compute δt

evolve interface (Euler step) x(St+δt/2) := x(St) + (u · n)n(St)
δt
2

compute interpolating interface splines (? Sec. 5.3)
re-mesh (? Sec. 5.3)
modify mesh structure: make St+δt/2 arc-length
compute arc-length map St+δt/2 = f(St) (? Sec. 5.5)
calculate curvature approximating splines (? Sec. 5.4)
solve flow
end of Runge–Kutta gradient computation

compute interface normal n(St+δt/2) and velocity u(St+δt/2)
evolve interface (Runge–Kutta step) (? Sec. 5.5)

x(St+δt) := x(St) + (u · n)n(St+δt/2)δt, with St+δt/2 = f(St)
compute interpolating interface splines (? Sec. 5.3)
collect and save data
i := i + 1, t := t + δt

end time-loop (end while)

post processing and data plot

Figure 5.2: Algorithm flow-chart, passages marked with a star ? are further discussed in the
sections below.
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fem.sdim = {’z’ ’r’};

fem.dim = {’u’ ’v’ ’p’};

fem.shape ={shlag(2,’u’) shlag(2,’v’) shlag(1,’p’)};

fem.form = ’general’;

fem.equ.ga = {{{’r*(2*uz-p)’ ’r*(ur+vz)’} {’r*(ur+vz)’ ’r*(2*vr-p)’} {’0’ ’0’}}};

fem.equ.f = {{{’0’} {’-p+2*v/r’} {’r*(uz+vr)+v’}}};

The matrix Γ is entered in fem.equ.ga and F in the structure fem.equ.f. The
field fem.sdim defines the shape and order of the basis functions used for u, v, and p,
respectively. Finally, the dependent and independent variables are defined in fem.dim
and fem.sdim, respectively.

The boundary conditions corresponding to the general form of Eq. (5.2) are

njΓlj = Gl +
∂Rlm

∂Ul

µm on ∂Ωm (5.4)

0 = Rlm on ∂Ωm (5.5)

where l = 1, 2, 3 is the variable counter, m = 1, ..., 13 is the constraint number (the
boundary number), j = 1, 2 is the space dimension number (z and r), nj is the outward
surface normal component n = (n1, n2) = (nz, nr), see Fig. 5.1, and Γ = [Γlj ]. The
coefficients µm are Lagrange multipliers calculated by Femlab such that the constraint
in Eq. (5.5) is fulfilled. Equation (5.4) is the Neumann condition and Eq. (5.5) is the
Dirichlet condition or constraint.

In the flow-focusing device sketched in Fig. 5.1 we are using five different types of
boundary conditions: (1) free surface condition on boundary ∂Ω1, (2) symmetry condition
on ∂Ω2, (3) fixed pressure and straight out on ∂Ω3, (4) no slip conditions on ∂Ωm, m =
4, 5, 6, 7, 8, 9, 10, 12, 13, and (5) a fixed inlet velocity on ∂Ω11. In terms of the Neumann
and Dirichlet conditions formulated in Eqs. (5.4) and (5.5) are as follows.

Free surface dynamic boundary condition:

(R1, R2, R3) = (0, 0, 0) (5.6)

G1 =
(

rp2 +
1

Ca
κ(s)

)
n1 (5.7)

G2 =
(

rp2 +
1

Ca
κ(s)

)
n2 (5.8)

G3 = 0 (5.9)

Symmetry ar r = 0:

(R1, R2, R3) = (v, 0, 0) (5.10)
G = 0 as r = 0 (5.11)



32 Numerics: implementation

Fixed pressure p0 and u · t = 0:

(R1, R2, R3) = (0, v, 0) (5.12)
G1 = rp0n1 = rp0 (5.13)
G2 = rp0n2 = 0 as n = (1, 0) (5.14)
G3 = 0 (5.15)

Fixed inlet velocity:

(R1, R2, R3) = (u− Uin(s), v, 0) (5.16)
G = 0 (5.17)

No slip u = 0:

(R1, R2, R3) = (0, 0, 0) (5.18)
G = 0 (5.19)

Where the parameter s ∈ [0, 1] and is defined on every boundary ∂Ωm in the specified
boundary orientation, see arrows in Fig. 5.1. In Femlab scripting language the boundary
conditions are simply given as:

fem.bnd.ind = {[11] [3] [2] [4:10 12:13] [1]};

fem.bnd.g = {{0 0 0} {0 0 0} {0 0 0} {0 0 0} ...

{{’(r*p2+1/Ca*(kappa20_rz(s)+kappa20_rt(s)))*nz’} ...

{’(r*p2+1/Ca*(kappa20_rz(s)+kappa20_rt(s)))*nr’} 0}};

fem.bnd.r = {{{’u-Ui*s*(1-s)’} {’v’} 0} {0 {’v’} 0} {{’v’} 0 0} ...

{{’u’} {’v’} 0} {0 0 0}};

5.3 Meshing and interface representation

In the main program the free interface ∂Ω1 (see Fig. 5.1) is defined by a number of discrete
points (zi, ri) with corresponding arc-length parameter Si, with i = 1, .., M , see Fig. 5.3.
In the Matlab program presented in Appendix A these are named zint, rint, and
S, respectively. The location of the interface points and corresponding values of Si are
updated every time the domain Ω is meshed, i.e., every time the governing equations are
solved. In this way we avoid the classical problems with conglomeration or spreading of
the interface points [21].

While developing the code we found that the values of Si were not corresponding to
the correct arc-length values. This gave rise to a great deal of confusion when, e.g., in-
terpolating interface velocities. Fortunately Femlab is a very flexible and it is possible
to correct the mesh structure by using the Femlab meshenrich command in a clever
way. In a few lines of Matlab code we extract the new interface locations (zi, ri) from
the Femlab mesh structure fem.mesh.p and update the values for Si in the structure
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Figure 5.3: Interface represented by i = 1, ...,M points and Mext extra ghost points to ensure
symmetry of the interface interpolating splines.

fem.mesh.e, the corresponding code lines are:

Idex=find(fem.mesh.e(5,:)==2);

Is=fem.mesh.e(1,Idex); Ie=fem.mesh.e(2,Idex); Izr=[Is Ie(end)];

zint=fem.mesh.p(1,Izr);

rint=fem.mesh.p(2,Izr);

dL=sqrt((zint(1:end-1)-zint(2:end)).^2+(rint(1:end-1)-rint(2:end)).^2);

S=[0 dL*triu(ones(length(dL)))]/sum(dL);

mesh_temp.p=fem.mesh.p; mesh_temp.t=fem.mesh.t; mesh_temp.e=fem.mesh.e;

mesh_temp.e(3,Idex)=S(1:end-1); mesh_temp.e(4,Idex)=S(2:end);

fem.mesh=meshenrich(mesh_temp);

As the interface is moving the geometry is changing. To communicate the change of
the geometry boundary to Femlab the geometry is defined in a user defined geometry
function geomfile.m. As input this file gets a boundary number m and the arc-length
parameter S, and as output it provides an (z, r) coordinate. The source code is provided in
Appendix A. To provide an (z, r) value for any given S value the interface (zi(Si), ri(Si))
is interpolated by a cubic spline. For that purpose we use the Matlab build-in spline.m
function. The spline information is stored in the ppz and ppr Matlab structures. When
creating the splines Mext extra ghost points are added near the symmetry line r = 0 to
ensure symmetry of the interface spline, see Fig. 5.3.

The meshing of the computational domain is performed with the Femlab meshing
algorithm meshinit. An example of a mesh is given in Fig. 5.4. Creating a mesh of good
quality is paramount for good numerical results and stability. Moreover, the resolution of
the mesh near the free interface is crucial for modelling the free-surface dynamics correctly.
The spacial resolution of the interface (zi, ri) is directly influenced by the mesh quality.
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Figure 5.4: Example of a meshing of the computational domain Ω. The insets show zoom of the
grid where it is refined. The resolution of a narrow region with hnarrow=4 is also shown.

The typical mesh command is:

fem.mesh = meshinit(fem,’Hmaxedg’,[1 3 6 8; zeta 0.25 0.004 0.02], ...

’Hgrad’,1.18,’Report’,’off’,’Hpntedg’,[2; length(S)],’Hnarrow’,4, ...

’Hmax’,0.3,’Hcurve’,10);

In the above piece of code the mesh parameters are the following:

• Hmaxedg: is the maximal element size on a given boundary segment. The free-
interface mesh-size ζ is a program variable and is called zeta. The mesh size on
the rounded corners (∂Ω6 and ∂Ω8 in Fig. 5.1) of the orifice region is also set. This
ensures reliable results when the gas-jet is exiting the orifice region, as depicted in
Fig. 5.4.

• Hgrad: is the mesh-element size growth-rate away from a boundary. Typical good
values are between 1.15 and 1.2.

• Hpentedg: is the number of initial points used in the mesh algorithm to resolve the
free interface. It is important for this number to be roughly equal to the number of
boundary points M . If it is not the mesh quality decreases drastically near the free
surface.
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• Hnarrow: is the number of elements used to resolve narrow parts on the mesh, see
the insert in Fig. 5.3. This parameter is typically set equal to 4.

• Hmax: is the overall maximal element size of the grid in the computational domain
Ω.

• Hcurve: is the curvature resolution parameter. It was found that it is extremely
important for this parameter to have a large value (≥ 10). A small value is used to
prescribe a large amount of resolution for curved boundaries. However, as we are
using interpolating splines to describe the free interface small un-physical wiggles
may appear. These errors grow significantly if the wiggles ”get caught” by the mesh
algorithm. The resolution of the interface is thus controlled lonely by the interface
mesh size ζ.

5.4 Curvature scheme

In the way we have implemented the free surface model the curvature κ enters the dynamic
boundary condition explicitly.1 The curvature is very important as it is the only term
responsible for the nonlinearity of the system, see Sec. 4.4;

κ =
żr̈ − ṙz̈

(ṙ2 + ż2)3/2
− ż

r(ṙ2 + ż2)1/2
, (5.20)

where a dot represents differentiation with respect to S and κ = κ(S). Because second
order derivatives of the interface shape (z(S), r(S)) enter the curvature expression one
should be very careful when treating it numerically as it is very sensitive to numerical
noise. In Fig. 5.5 this is exemplified by showing that only a slight move of an interface
point changes the curvature of the interpolating spline. The key to avoiding this is to use
an approximating cubic spline to determine the curvature. One of the foremost elements
in our code is the decoupling of the curvature approximating splines from the boundary
interpolating splines.

Within Femlab the curvature enters as κ(S) and has to be defined for all S on the
free boundary. This is mainly due to the way Femlab numerically handles integration by
using Gauss quadrature. In the program we have defining two functions kappa20_rz.m
and kappa20_rt.m corresponding to the two contributions κrz(S) and κrφ(S) with input
S and the curvature as output. These enter in the expression for the boundary condition.

As mentioned the curvature computation is based upon cubic approximating splines.
For that purpose we used the spaps.m smoothing spline function from the Matlab splines
library. This function produces a piecewise cubic spline f ∈ C2 of, e.g., the z coordinate
z = fz(S). The spline fz minimizes the roughness measure

F

(
d3fz

dS3

)
=

∫ 1

0

∣∣∣∣
d3fz

dS3

∣∣∣∣
2

dS (5.21)

1In Appendix B we shortly describe how it is possible to project the curvature onto the FEM basis
functions. In this way it is not necessary to include it explicitly. This method is not as numerically stable
as the one we use but mathematically it is very neat.
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Figure 5.5: Sketch of a boundary with boundary mesh points. If one of these points is moves
slightly the curvature of the interpolating spline changes drastically.

over all piecewise C3 functions fz ∈ C2 for which the error

E(fz) =
∑

i

wi|zi − fz(Si)|2 < tolsp, (5.22)

where wi are weights and tolsp is the overall tolerance. Now, because f is C2 the dif-
ferentiations in Eq. (5.20) are done exactly on f . The curvature κ(S) becomes smooth
because small numerical errors in the interface position (zi, ri) are filtered out, see exam-
ple in Fig. 5.6. We typically use tolsp = 10−7, we have w1 = wM = 100, and wi = 1
for i 6= 1,M . The computation of the splines fz, fr, and their derivatives is done in the
function kappadata20.m presented in Appendix A.

5.5 Time integration scheme

As mentioned earlier the time dependency in the problem boils down to the kinematic
boundary condition Eq. (4.15) at the free interface,

dx(S)
dt

= u(x(S), t) for x ∈ ∂Ω, (5.23)

where the velocity u is provided by the Femlab solution of the Stokes-flow problem and
S is the arc-length parameter re-scaled with the total interface length. The presence of the
the curvature Eq. (5.20) in the dynamic boundary condition introduce terms that have a
large number of spatial derivatives. If Eq. (5.23) is solved by an explicit time integration
method strong time stability-constraints are introduced [60, 62]. These constraints are
generally time dependent and become more severe due to point clustering on the free
interface [60]. Such constraints are referred to as stiffness. To avoid these problems our
free interface is re-meshed at every solution step and we have chosen to solve the first order
ordinary differential (ODE) Eq. (5.23) by using a second order Runge–Kutta scheme [63].
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Figure 5.6: Example of the curvature results obtained with the approximating splines κ(S) =
κrz + κrφ for the interface shape shown in the inset.

The algorithm is extended such that the problem of the free interface changing length over
time is taken into account. Moreover, as we are not interested in the tangential movement
(u ·t)t of the interface points along the interface [21, 60] we use the classical reformulation
of Eq. (5.23) to

dx(S)
dt

= (u · n)n = F (x(S), t) for x ∈ ∂Ω, (5.24)

where u and n are functions of x(S) and t.

In a classical Runge–Kutta scheme an ODE dy/dt = F (t, y) is discretized by

k1 =
∆t

2
F (t, y(t))

k2 = ∆t F (t +
∆t

2
, yt + k1)

y(t + ∆t) = y(t) + k2 + O(∆t3) (5.25)

where ∆t is the discrete time step and the method is second order in time t. We have taken
this method and extended it to Eq. (5.24) to include a mapping S(t + ∆t/2) = f(S(t))
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because our interface stretches and thus changes in time, S = S(t). In this way we have

k1 =
∆t

2
(u · n)n

∣∣∣
x(S(t))

k2 = ∆t (u · n)n
∣∣∣
x(S(t+∆t

2
))+k1

with S(t +
∆t

2
) = f(S(t))

x(t + ∆t) = x(t) + k2 + O(∆t3), (5.26)

the mapping f is a spline made on basis of the values Si(t) and Si(t+∆t/2). The value of
the solution variables are interpolated on the boundary by using the postinterp Femlab
function. At every time time step ∆t is chosen so that,

∆t = δt min
i

[
ζi

u · ni

]
(5.27)

where δt < 1 and ζi is the local mesh size at the site i.
To validate the time integration scheme a series of numerical test were performed.

Figure 5.7 shows a comparison of six different time integration set-ups, the code was run
for Ca = 0.5 and p2 = 90 until the snap-off point.2 The reference interface shape (marked
with stars) was obtained by implementing a simple Euler first order scheme and running
it with very small time steps δt = 0.003. Secondly, an Adams predictor-corrector method
[62] was implemented and run for δt = 0.3: the method is seen to fall close to the reference
but it was computationally quite heavy as it is based on an iterative method. Thirdly, the
Runge–Kutta algorithm was implemented without the mapping S(t + ∆t/2) = f(S(t))
and run for both tolSP = 10−4 and 10−6: clearly this was a bad idea and the results fall
far from both the reference and the Adams curves. Finally, the full Runge–Kutta scheme
with mapping was run for two FEM configurations. The numbers in brackets refer to the
odder of the basis functions used for u, v, and p respectively. The results clearly shows
that the method is reliable. Most importantly of all the computational cost is very low
compared to the other methods. Less than 200 times steps where used for the Runge–
Kutta methods (solving twice every time step), about 250 for the Adams method (solving
3 to 6 times every time step), and 3800 time steps were used for the Euler method. Clearly
the time integration scheme that we have implemented seems very reliable. Moreover, the
test shows the importance of the mapping f that handles the problems associated with
the interface elongating and the shifting of the interface points xi. In the next Chap. 6
we present a validation of the code by numerically studying three problems that have
analytical solutions.

2Results and discussions about snap-off and bubble generation are presented in Chap. 7.
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Figure 5.7: Comparison of four different time integration schemes: (1) First order Euler (stars),
(2) Adams predictor-corrector scheme (full line), (3) Runge–Kutta (RK) without mapping f (doted
lines), and (4) full Ringe–Kutta with mapping (lines with open circles).
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Chapter 6

Numerics: validation

To assess the validity of the code described in Chap. 5 we have performed a series of
numerical tests. A description of the tests and their results are presented in this chapter.
The code is implemented for both 2D rectangular geometries and for 2D axisymmetric
geometries. Both types of problems are tested and analyzed in this chapter.

Firstly, the code is tested on a standard benchmark problem: the surface tension driven
Stokes-flow coalescence of two infinitely long parallel cylinders of unit radius. Secondly
the steady state shape of gas bubbles in a cylindrical capillary tubes is studied, and thirdly
the viscous drop in extensional flow problem is treated. Some further examples a then
shortly presented and, finally, conclusions are drawn.

6.1 Coalescence of liquid cylinders

To validate the code described in Chap. 5 it has been applied to a standard 2D benchmark
problem: the surface tension driven Stokes-flow coalescence of two infinitely long parallel
liquid cylinders of radius one. This problem is set in a 2D rectangular geometry. The main
advantage using this problem is that an exact analytical solution is known for this problem
[47, 48, 49, 50, 51]. As we do not use the full axisymmetric model we are mainly testing
the time scheme and parts of the curvature scheme. The volume conservation properties
of the code are verified along with mesh dependency and convergence rate.

6.1.1 Problem set-up and analytical solution

When testing a numerical scheme or a new code it is always very convenient to compare
the numerical results to known analytical solution. As we are working with Stokes-flow
problems the work of R. W. Hopper is of paramount interest as his papers [47, 48, 49, 50]
describe exact analytical solutions for a number of surface-tension driven 2D Stokes-flow
problems in simply-connected geometries.

Figure 6.1 depicts a cross section view of two infinitely long liquid cylinders in contact at
(x, y) = (0, 0). The system reduces to a 2D problem because of the translational symmetry.
The governing equations for the 2D flow are given in Eqs. (4.44) and (4.45). Note that
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Figure 6.1: Cross-section view of two infinite cylinders of radius r = 1 touching at (x, y) = (0.0).
The closed curve describing the shape is given by x(θ, ν).

this may be physically unrealistic as the possibility of instabilities in the third dimension
are removed. Nevertheless the problem is perfectly fitted for conducting numerical tests.
As we assume the cylinders are suspended in zero-gravity surface-tension forces are the
only driving the system, and they are thus pivotal in the analysis.

To solve the free-surface problem analytically Hopper used a time dependent conformal
mapping from the domain Ω depicted in Fig. 6.1 to the unit circle. In the formulation of
Hopper the cylinders had a radius of 1/

√
2, details of the method are found in Ref. [47].

For the case of cylinders of radius r = 1 the location x = (x, y) of the free surface is given
in Ref. [51] and is,

x(θ, ν) =
(1− ν2)(1− ν)

√
2 cos θ

(1− 2ν cos 2θ + ν2)
√

1 + ν2
(6.1)

y(θ, ν) =
(1− ν2)(1 + ν)

√
2 sin θ

(1− 2ν cos 2θ + ν2)
√

1 + ν2
, (6.2)

where θ is the angle defined in Fig. 6.1 and ν is a decreasing function of time t, with
0 ≤ ν(t) ≤ 1. The liquid opening appearing where the two cylinders are coalescing is
called the neck, from Eq. (6.2) the neck height Hneck is fond as

Hneck = y(
π

2
, ν) =

(1− ν)
√

2√
1 + ν2

. (6.3)

This height is an important observable that is easily compared to the numerical results.
The time t is given as

t(ν) =
π√
2

∫ 1

ν

dk

k
√

1 + k2K(k)
, (6.4)

where K(k) is the complete elliptic integral of the first kind,

K(k) =
∫ π

2

0

ds√
1− k2 sin2 s

. (6.5)
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Figure 6.2: Evolution of the shape of two coalescing infinite liquid cylinders. The shapes are
obtained using the analytical solution Eqs. (6.1) and (6.2).

The evolution of the shape of the two coalescing cylinders is depicted in Fig. 6.2. The
shapes have been calculated using Eqs. (6.1) and (6.2). The elliptic integral is evaluated
using the Matlab function ellipke.m and the integral of Eq. (6.4) is evaluated using a
simple trapeze formula.

6.1.2 Numerical results

The system of the two liquid cylinders has three symmetries (a) the translational sym-
metry, (b) a symmetry about the x-axis, and (c) a symmetry about the y-axis. In the
simulations we utilize all the symmetries, such that the computational domain is reduced
to the upper right quadrant. An example of the computational domain with mesh is
depicted in Fig. 6.3.

As initial condition for the shape of the interface we used the curve generated by
Eqs. (6.1) and (6.2) at a small time t > 0. The five different sets of mesh parameters used
to test the program are seen in Table. 6.1. The code ran until t = 11 at which point the
shape is virtually constant and the neck height assumes a constant value Hneck =

√
2.

A zoom of the region near the neck of the two coalescing cylinders is seen in Fig. 6.4.
The figure shows the interface with interface mesh points and the velocity field for three
different times.

In Fig. 6.5 the neck height Hneck is plotted as function of time t. The analytical result
from Eq. (6.3) are depicted together with the numerical results obtained with the five
different mesh parameter sets given in Table. 6.1. For all the simulations the initial neck
height was Hneck = 0.2 corresponding to time t = 0.16. The computation time ranged
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Figure 6.3: Example of a mesh used for the simulations. The mesh is refined around the interface
at the neck where the curvature is large, near (x, y) = (0, 0.2).

mesh nr. δt tolSP ζ ζvtx Hcurve # elements
1 0.33 10−7 0.05 0.005 0.1 1062
2 0.5 10−7 0.05 0.005 0.1 1062
3 0.5 10−7 0.05 0.05 0.2 953
4 0.5 10−7 0.1 0.1 0.2 752
5 0.5 10−7 0.1 0.1 10 399

Table 6.1: Table of the mesh parameters used for the numerical tests includes: the time-step
parameter δt, the curvature spline-tolerance parameter tolSP, the free interface mesh size ζ, the
mesh size at the neck vertex ζvtx, the Femlab mesh curvature parameter Hcurve, and the number
of triangular mesh elements.

from 60 min for mesh 1 to 15 min for mesh 5. From the graph it is seen that the numerical
and analytical solutions are nearly identical. For the finer grids 1 and 2 the error was less
than 0.1%. There are no significant differences due to the choice of δt. For grids 3 and
4 the initial evolution is in good agreement but discrepancies are noted for t > 2.5. For
larger times wiggles in the interface splines (ppx and ppy, see Sec. 5.3) are caught by the
Femlab mesh routine as Hcurve is small. These wiggles are discussed in detail in Sec. 5.3
of Chap. 5. It is worth noticing that mesh 5 does not produce these wiggles as Hcurve is
set equal to 10 and thus does not influence the meshing. Finally it is also interesting to
note that all five mesh produce nearly equally good results for small times. At small times
the curvature in the neck region is large and one could expect a coarser mesh to be less
good. As the curvature scheme of this code utilizes approximating splines and symmetry
points the curvature of the neck region is nicely represented even for few interface points.

The area conservation properties of the code are also investigated. In Fig. 6.6 the
relative variation in area |A(t)−A0|/A0, where A0 is the area at time t = 0, is plotted as
function of time. For meshes 1 and 2 the error is very small and constant while for meshes
3, 4 and 5 the error is a factor 4 larger but still less than 0.1%, which is very small.
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Figure 6.4: Zoom near the neck region showing the interface with mesh points and the velocity
field for three different times t = 0.16, 0.26, and 0.48.

The results are very good and gives great confidence in the performance of the code.
Especially the time stepping algorithm and the curvature algorithm seem very reliable.
These ensure correct dynamics at the free surface and in turn ensures good area/volume
conservation properties of the code.
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Figure 6.5: The neck height Hneck plotted as function of time. The circles represent the analytical
results from Eq. (6.3) and the lines are simulation results with the different mesh parameters given
in Table. 6.1.

0 2 4 6 8 10

−2

−1

0

1

2

3

4

5

6

7

8

Simulation 1
Simulation 2
Simulation 3
Simulation 4
Simulation 5

|A
(t

)
−

A
0
|/

A
0

(×
1
0
−

4
)

t

Figure 6.6: The relative variation in area |A(t) − A0|/A0, where A0 is the area at time t = 0,
plotted as function of time.



6.2 Bubble translating steadily in a capillary tube 47

6.2 Bubble translating steadily in a capillary tube

The main application of the code is with axisymmetric systems, specifically the axisym-
metric flow-focusing device studied in detail in the later Chap. 7. As a simple test of the
axisymmetric version of the code we will numerically study the steady-state shape of a
long non-wetting gas-bubble translating in a cylindrical capillary filled with liquid. The
first theoretical treatment of a bubble moving steadily at velocity V in a circular capillary
tube was done by Bretherton in his classical work from 1960 [52]. His analysis is limited to
infinitely long bubbles and is an asymptotic result for low capillary numbers Ca = µV/γ,
where γ is the liquid-gas interfacial-tension and µ the dynamic viscosity of the liquid. Later
in 1983 Parker and Homsy [53] formalized Bretherton’s approach by using perturbation
and asymptotic matching theory. Work on bubbles of finite length was done by Schwartz
et al. (1986) [54], and by Ratulowski and Chang [55] in 1989. The latter work introduced
a very cunning arc-length representation of the liquid-gas interface enabling the treatment
of bubbles of arbitrary size. The theoretical results where compared to experiments and
were seen to be valid for Ca < 0.1. The previously mentioned studies utilize Stokes flow
with appropriate boundary conditions. These are no-slip at solid walls and the use of
the Young-Laplace equation on the bubble interface to describe the discontinuity in the
normal stress.

6.2.1 Theoretical results

We will now shortly present some of the theoretical results obtained in Refs. [52, 53, 54, 55].
Consider a bubble of length L moving at speed V in a long cylindrical capillary of radius
R filled with liquid. The bubble is driven by the liquid flow, which far from the bubble is
simple poiseuille flow. The mean velocity of the liquid is U = Umax/2, where Umax is the
maximal velocity. The thickness of the liquid film around the bubble is denoted h0, see
Fig. 6.7(a).

In deriving the expressions presented here the governing equations were re-scaled
slightly differently from the ones we present in Chap. 4. In this numerical test the gov-
erning equations and the BC at the interface are

0 = −∇p + Ca∇2u (6.6)
0 = ∇ · u (6.7)

σ · n = (p2 − κ)n at ∂Ωbubble, (6.8)

where we have re-scaled the velocity with V , lengths with R, and the pressure with γ/R,
see also Fig. 6.7(a). Using this scaling and the governing equations Eq. (6.6) and (6.7)
Bretherton [52] found the thickness h0 of the wetting film to be given by

h0 = 0.643(3Ca)2/3, (6.9)

where the pre-factor of 0.643 is found by fitting numerical data.1 The speed of the bubble
exceeds the mean velocity of the liquid by an amount wV , where the relation between V

1In this example we assume that the bubble is non-wetting. We are not interested in the problems
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Figure 6.7: Sketch of a system comprising a gas bubble translating at speed V in a capillary
tube. (a) the physical system with the wetting film thickness h0, the velocity BCs at the inlet and
outlet, the no-slip condition at the tube wall, the pressure ps at the surface of the bubble found by
applying Eq. (6.8), and the surface normal n. (b) Sketch of the computational domain including
bubble length L, channel re-scaled radius R = 1, and the boundary orientations and numbers.

and U is
U = (1− w)V, w = 1.29(3Ca)2/3, (6.10)

It has been shown numerically that Eq. (6.10) is valid for bubbles of volume Vb > 0.95Vc,
where Vc = 4/3πR3 is a critical bubble volume [56]. Finally, the pressure drop across the
bubble ∆pb is given by

∆pb = 9.40Ca2/3 − 12.6Ca0.95. (6.11)

The last term in this expression is a correction to the original Bretherton formula ∆pb =
9.40Ca2/3. The correction corresponds to the next-order correction one would expect from
an asymptotic analysis [55]. Note that the pressure drop is independent of the bubble
length. This results from the zero shear stress condition at the liquid-gas interface. The
pressure drop is only function of the curvature of the bubble front and rear, respectively.

6.2.2 Model set-up

The axisymmetric version of the code, described in Chap. 5, is applied to the problem of
finding the steady state shape of a gas bubble in a capillary. The code is here utilized in
a slightly different way than in the previous example. As we wish to find the steady state

arising when the wetting film becomes very thin, i.e., with dynamic contact angles [34, 35], film drying
[57], non-hydrodynamic forces etc. Note that forces such as long-range van der Waals typically become
important for length scales less than about 10 to 100 nm [56].



6.2 Bubble translating steadily in a capillary tube 49

shape of the interface we are not simulating actual dynamics of the gas bubble but rather
using the code to find the minimal energy configuration of the system.

We initiate the code with a bubble shaped like a cylinder with two hemispherical
caps. The code is then ran by succeedingly advancing one time step and then moving the
bubble back to the initial location. By employing this strategy we evolve the initial shape
to a steady state shape. The convergence to the steady state shape is easily assessed by
monitoring one of several parameters as, e.g., the bubble length L, the interface length
Lint, the difference between rear and front interface velocity ∆u, or simply the shape of
the bubble interface xint.

In Fig. 6.7(a) all the physical boundary conditions of the system are depicted. On the
solid walls the no-slip condition is applied u = 0. At the inlet and outlet of the capillary
identical velocity BCs are applied, i.e.,

u = (Uio, 0) with Uio = 2(1− r)(1 + r), (6.12)

as r ∈ [0, 1], this yields a mean liquid velocity U = 1. By applying these inlet and
outlet boundary conditions we force the bubble to be incompressible because of volume
conservation of the incompressible liquid, condition given in Eq. (6.7). The pressure in
the system is defined on the bubble surface through the stress BC Eq. (6.8). The pressure
p2 in the gas depicted on Fig. 6.7(b) only serves as zero point and is set equal to zero.

Figure 6.7(b) depicts the computational domain used in the simulations. At r = 0 on
boundaries 1 and 3 we obviously apply symmetry conditions. The length of the distance
at the left and right of the bubble WL and WR, respectively, are chosen such that WL =
6R = 6 and WR = 6R = 6. This ensures that the bubble shape is not influenced by
boundary effects.

6.2.3 Numerical results

The aim of this test is mainly to test the time-step algorithm for volume conservation
properties and the coupling to the mass conservation properties of the Femlab solver.

Single parameter run

In this first example we have chosen a given set of parameters namely (a) the physical
parameters L = 6, WL = WR = 6, and Ca = 6.5×10−2, and (b) the numerical parameters
ζ = 0.03, δt = 0.33, and tolSP = 10−7.

The evolution of the interface from the initial cylinder with hemispherical caps (dotted
line) to the steady state shape (bold full line) is depicted in Fig. 6.8. The steady state
shape has the characteristic bump of just at the rear just before the end cap [52, 55].
The convergence to the steady state shape was achieved in 450 time steps (corresponding
to 3.5 h of calculation time) and was assessed by the parameters depicted in Fig. 6.9.
Figure 6.9(a) shows the thickness of the wetting layer h0 together with the Bretherton
limit of Eq. (6.9). As expected they do not agree as the Bretherton theory only is valid
for Ca ¿ 1. In Fig. 6.9(b) the excess speed parameter w is ploted as function of time,
again, together with the Bretherton limit of Eq. (6.10). The graphs in Fig. 6.9(c) show
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Figure 6.8: Evolution of the interface from the initial shape of a cylinder with hemispherical caps
(dotted line) to the final steady state shape (bold full line). The aspect ratio of the axis is 1 to 4
such that the details of the shape near the wall are more pronounced.

the relative change in bubble volume (Vb−V0)/V0, where V0 is the initial volume at t = 0,
and in (d) the normal velocity u · n of the interface at the symmetry axis r = 0 at the
front and rear of the bubble, respectively. It is seen that h0, w, and the relative volume
error converge to a constant value, while the normal velocities also are seen to become
identical and equal to the bubble speed V . It is also very interesting to note that the
change in bubble volume is less than 0.1 %. The very small change may be due to drift
in the time-step algorithm or in the fact that Femlab may not be fulfilling the volume
conservation Eq. (6.7) exactly.

Small parametric run

The previous example is now extended to include four values of the capillary number
namely Ca = 6.5× 10−2, 3.7× 10−2, 1.7× 10−2, and 9.0× 10−3. All the other parameters
are unchanged. The steady state shapes of of the four bubbles are depicted in Fig. 6.10.
For decreasing Ca, that is for increasing surface tension, the bubbles fill the channel more.

In Fig. 6.11 the simulated values of h0, w, and ∆p (circles) are compared to the
theoretical results of Eqs. (6.9) to (6.11) (lines). In Fig. 6.11(c) the original Bretherton
model is depicted together with the extended result of Eq. (6.11). From the three graphs
it is evident that the theory diverge from the simulated ”exact” results for larger values of
the capillary number. This trend is consistent with the results from Ref. [55]. Note that
the pressure drop ∆p fits well with the extended theory for a larger range of Ca numbers.

While performing the simulations to obtain the results discussed above we noted that
the time step parameter δt (see Sec. 5.5) had to be decreased, for decreasing values of the
capillary number, to avoid heavy wiggling of the interface. This observation is consistent
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Figure 6.9: The convergence towards steady state is assessed by (a) the thickness of the wetting
layer h0, the Bretherton limit of Eq. (6.9) is also depicted, (b) the excess speed parameter w,
Bretherton limit of Eq. (6.10) also depicted, (c) the relative change in bubble volume (Vb−V0)/V0,
where V0 is the initial volume at t = 0, and (d) the normal velocity of the interface at the symmetry
axis r = 0 at the front and rear of the bubble, respectively.

with existing numerical schemes. Rider et al. [19] introduce a maximally allowed time
step δtγ ∝ h

3/2
min/γ, where hmin is the minimal resolution of the interface and γ is the

surface tension. This factor is related to the oscillation period of capillary waves and
is derived from the dispersion relation of capillary waves [28, 31]. When wiggles where
observed, especially in the interface velocities, the time step was decreased and the wiggles
disappeared.

The shapes of two small bubbles have been calculated for Ca = 9.0× 10−3 and 6.5×
10−2, their shapes are depicted in Fig. 6.12. In this case the volumes of the bubbles Vb are
less than the critical volume mentioned earlier: Vb = 0.45 and Vc = 0.52. The thickness
h0 and the parameter w are still relatively close to the Bretherton results, within 10%,
while pressure drop across the bubble ∆p compares very well to the theoretical result of
Eq. (6.11).
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Figure 6.11: Comparison of theoretical and numerical results of (a) the wetting film thickness h0,
(b) the excess speed parameter w, and (c) the pressure drop across the bubble ∆p.

This test further confirm the very good qualities of the code. Particulary the volume
conservation properties and the time-step algorithm show their reliability. If the code had
to be ran for even smaller values of the capillary number δt would have had to be decreased
even further and the simulations would have become very time consuming. In practice it is
possible to numerically include so-called hyper viscosity terms that dampen the capillary
waves. This ensures that the time steps may be chosen large and the computation time
thus remain reasonable [27].
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6.3 Viscous drop in extensional viscous flow

As a final numerical test we will study the steady deformation of a neutrally-buoyant
viscous-drop in a viscous extensional-flow. To this purpose the code has been extended
to include two fluids of different viscosities. The governing equations of this system are
given in Sec. 4.8. The system has two free parameters: (1) the viscosity ratio εµ between
the drop and the external fluid, and (2) the capillary number Ca (both defined below).

The subject of deformation of drops in viscous flows was initially studied by G. I. Taylor
and traces back to 1932 [58, 65, 66]. A very good review of the subject is given by Stone in
Ref. [67]. Acrivos [68, 69] give a summary of theoretical results for long slender drops in his
paper from 1978. More recently two papers compare experimental and theoretical results
and also discuss breakup of the drops [70, 71]. The introduction of simple non-Newtonian
fluids obeying the power-law is discussed in Ref. [72]. Generally the deformation problem
has been the subject of many numerical and experimental studies for varying external flow
properties and complexities [67].

The present test more has the nature of a small study or example than that of an
actual numerical test-case. This is mainly due to the fact that theoretical results for this
system only exists for specific limits in the parameter space. We explore these limits to
some extend but do also present more qualitative results for parameters with values in
intermediate ranges. Firstly, we shortly present the theory and the model set-up and
secondly we present the numerical results.

6.3.1 Theory

A drop placed in a simple axisymmetric extensional flow is depicted in Fig. 6.13. The
external forcing extensional flow is given by,

u = Uext =
(

Gz,−1
2
Gr

)
(6.13)

where G is the shear rate. The ratio between the viscosity of the drop µ2 and the viscosity
of the external fluid µ1 is denoted εµ = µ2/µ1. The capillary number of the system is
defined as Ca = µ1U/γ with U = aG, where γ is the interfacial tension and a is the
radius of the initial spherical drop of same constant volume. In the following all lengths
are rendered dimensionless with a, pressures with µ1G, and velocities with U = aG. As a
measure of the deformation of the drop is given by either

df =
L−R0

L + R0

for small deformations (6.14)

Df =
L

a
for large deformations. (6.15)

The capillary number Ca and the viscosity ratio εµ are the two free parameters of the
present system. The problem now consists of determining the final steady shape of an
initial spherical drop of dimensionless radius 1. It is important to note that for many
choices of the free parameters Ca and εµ the drop is unstable and will elongate to a point
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where it will eventually break-up. There are two regimes where theoretical results exist
these are the small and the large deformation regimes:

The small deformation regime

The work with small deformations of a drop in extensional flow was pioneered by G. I. Tay-
lor. In this regime the drop only deforms slightly from spherical and the domain pertur-
bation method may be applied [71]. In our case this regime exist for Ca ¿ 1 and for all
values of εµ. In this regime it was first demonstrated by Taylor that the deformation df

is linear in Ca for a given εµ.

The large deformation regime

This regime exist when the drop is very elongated and has a small slenderness ratio R0/L.
In this regime a theory exist when the viscosity ratio is small actually when (5εµ)1/2 ¿ 1,
see Refs. [68, 71]. In this large deformation regime a so-called deformation relation exists,

f = 20−1/2 g1/2

1 + 4
5g3

, (6.16)

where g = Lε
1/3
µ is the re-scaled steady state length of the bubble and f = Ca ε

1/6
µ is a

measure of the flow strength.
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Figure 6.13: Sketch of the drop in an extensional flow. The drop length is L and the radius at
z = 0 is R0. The light gray area represents the total computational domain Ω = Ω1∩Ω2, where we
have used all possible symmetries. The outer dottel line represents the boundary where we impose
the extensional flow condition u = Uext = (Gz,−1/2 Gr). The arrows illustrate the nature of the
extensional flow.
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capillary number Ca, for εµ = 10−3. The numerical data-points deviate from the linear behavior
for increasing values of Ca.

6.3.2 Model set-up

Numerically the computational domain Ω = Ω1 ∩ Ω2 is reduced using symmetry about
the z and r-axis, see Fig. 6.13. At the boundary between liquid 1 and 2 the free surface
boundary condition is applied, see Eq. (4.39). At the outer boundary of Ω1 the velocity
boundary condition given in Eq. (6.13) is applied. To ensure that no numerical drift occurs
in the pressure the pressure is fixed at (z, r) = (0, 0) such that p(0, 0) = 0.

6.3.3 Numerical results

To assess the convergence the drop shape to a steady state shape the deformation param-
eter df and the interface velocity at r = 0 and z = 0 where monitored. This strategy
resembles the one employed for the bubble in capillary problem discussed above. Results
for the large and the small deformation regimes are here discussed separately.

Small deformation regime

In Fig. 6.14 the small deformation parameter df of Eq. (6.14) is plotted as function of the
capillary number Ca, for constant εµ = 10−3. It is seen that the relation is linear for small
values of Ca as predicted by Taylor [65]. For Ca > 0.1 the numerical data points are seen
to deviate from the linear relation.

Moreover, for two constant values of the capillary number the deformation df is plotted
as function of the viscosity ration εµ, see Fig. 6.15. From comparing the two figures
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Figure 6.15: The small deformation parameter df as function of the viscosity ratio εµ for two
values of the capillary number Ca = 10−2 and 10−1.

(Ca = 10−2 and Ca = 10−1) it is seen that the generic behavior is the same: for small
and large values of εµ the deformation is constant and a transition occurs around εµ =
100. In Ref. [65] Taylor shows that the small deformation parameter follows the relation
df = Ca(19εµ +16)/(16εµ +16). This relation does not correspond to the extensional flow
given in Eq. (6.13) but to a flow given by u = (Gz,−Gr). Anyhow, this relation produces
the same behavior for df as the one depicted in Fig. 6.15.

Large deformation regime

In the large deformation regime the re-scaled length g is related to the re-scaled flow
strength f through Eq. (6.16). This relation is depicted in Fig. 6.16 together with labelled
numerical results corresponding to the parameters given in Table 6.2. In the figure the
solid line represents stable steady state solutions solutions while the line with added crosses
represents the unstable branch of the solutions that, hence, have no physical relevance [68].
This means that for a given maximal value of f named fmax given by the two free flow-
parameters the drop will be unstable and break-up. This is obviously only valid in the
large deformation regime discussed above.

In Table 6.2 the parameters (5εµ)1/2 and R0/L are given. It is seen that points 3, 6,
7, and 10 are those closest to the large deformation regime. The points 3, 6, and 7 are
seen to follow the deformation curve relatively well while point 10 is spot on. Point 10
also fulfilling the large deformation criterion best.

In all of the above simulations the relative deviation in the volume of the bubble was
less that 0.01%. This is mainly due to the fact that the incompressibility condition is
enforced in the drop and outside the drop. The only small drift may be due to the time
stepping algorithm or to small errors in the curvature scheme. The computation time
and the fineness of the grid varied very much depending on what flow parameters where
chosen. For small values of Ca a fine grid and small time-steps are typically needed. But
this also depends on the viscosity ratio and hence the amount of viscous damping in the
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system.

Intermediate range

Finally we present two figures one of a drop in the intermediate range between large and
small deformations and one of a bubble doomed to break up. Firstly, Fig. 6.17 represents
the steady state shape for the drop with parameter set # 4 from Table 6.2. The vector
plot represents the normalized velocity field and the gray scale plot the pressure field (light
gray is low pressure and dark gray is hight pressure). Here it is, e.g., interesting to note
the recirculation inside the drop. Secondly, the evolution of the shape of an unstable drop
is depicted in Fig. 6.18, where Ca = 0.5 and εµ = 10. The shape of the drop is still
evolving but the simulation was terminated after about 100 min of computation time.

6.4 Concluding remarks outlook

From the results obtained in the three test cases it is evident that the code is reliable and
produces correct numerical results. The coupling between time-step algorithm, curvature
algorithm and the Femlab solver works perfectly.

The code has also shown that it is very versatile and easy to use. It was easily modified
to suit the different geometries and physical systems relevant for the three tests. The
flexibility of the code certainly lies in the way Femlab and Matlab communicates.
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# Ca εµ (5εµ)1/2 R0/L f g

1 10−1 10−2 0.2236 0.6893 0.0464 0.2760
2 10−1 10−1 0.7071 0.6760 0.0681 0.6019
3 10−1 10−3 0.0707 0.6986 0.0316 0.1269
4 10−1 100 2.2361 0.5567 0.1000 1.4671
5 10−1 101 7.0711 0.0205 0.1468 20.169
6 2× 10−1 10−3 0.0707 0.3842 0.0632 0.1901
7 3× 10−1 10−3 0.0707 0.1640 0.0949 0.3457
8 3× 10−1 10−2 0.2236 0.0901 0.1392 1.0734
9 3× 10−1 10−1 0.7071 0.0716 0.2044 2.4452

10 5× 10−1 3× 10−4 0.0358 0.1001 0.1260 0.3365
11 100 10−2 0.2236 0.1402 0.4642 0.8094

Table 6.2: Numerical data obtained for different combinations of the two free parameters: the
capillary number Ca and the viscosity ratio εµ. The data points are plotted together in Fig. 6.16.

Regarding the geometry the very clever geometry function geomfile is to be praised,
as it is very easy to change geometries or simply build new ones from scratch.

In the case of all three test cases it would have been possible to include many interesting
figures and plots depicting a large variety of flow parameters and variables. However, as it
was mainly the scope of this chapter to assess the validity of the code we mainly restricted
the results to those that could be compared with the theoretical results.

Outlook

In the case of the bubbles in the capillary tube it would have been relatively easy to
include: several consecutive bubbles, two different liquids, or liquids having non-Newtonian
behavior (see Sec. 4.9 and the final results in Chap. 7). Moreover it could have been
very interesting to include a convection diffusion equation at the interface to model the
dynamics of surfactants. A system involving many bubbles is analyzed and presented in
the main results chapter. The flow-focusing device produces a series of four gas bubbles
which compress due to large viscous drag and numerically exaggerated compressibility.
Regarding the drops in extensional flow the introduction of a non-Newtonian fluid in the
drop could have been compared to the theoretical results of Favelukis et al. [72].
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Chapter 7

The flow-focusing device

This chapter contains the main results of this thesis. Using the code described in the
previous chapter we present a first in depth numerical study of an axisymmetric flow-
focusing device. The results are presented by the inclusion of our most recent paper A
numerical study of two-phase Stokes flow in an axisymmetric flow-focusing device [80],
submitted to Physics of Fluids in August.

In the following we have firstly inserted the article in its full length. Secondly, addi-
tional information not given in the article is presented and, finally, in the last section we
present the new results regarding non-Newtonian liquids in the flow-focusing device.

7.1 Paper by Jensen et al. 2005

A numerical study of two-phase Stokes flow in an
axisymmetric flow-focusing device

Mads Jakob Jensen∗, Howard A. Stone∗∗, and Henrik Bruus∗
∗ MIC - Department of Micro and Nanotechnology, DTU Bldg. 345 East, Technical University of

Denmark, DK-2800 Kongens Lyngby, Denmark
∗∗ Division of Engineering and Applied Sciences (DEAS), Harvard University, 308 Pierce Hall,

Cambridge, MA 02138, USA

Abstract

In this paper we present a numerical investigation of the time-dependent dynamics of
the creation of gas bubbles in an axisymmetric flow-focusing device. The liquid motion
is treated as a Stokes flow, and using a generic framework we implement a second-order
time-integration scheme and a free-surface model in Matlab which interfaces with the
finite-element software Femlab. We derive scaling laws for the volume of a created bubble
and for the gas flow rate, and confirm them numerically. Our results also confirm existing
experimental results by Garstecki et al., Phys. Rev. Lett. 94, 164501 (2005), and predict a
scaling yet to be observed: the bubble volume scales with with the outlet channel radius to
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the power 4 and the surface tension. Our axisymmetric simulations further show that the
collapse of the gas thread before bubble snap-off is different from the recent experimental
results. We suggest that this difference is caused by differences in geometry between
experiments and the simulations.
PACS numbers: 47.55.Dz, 47.60.+i, 68.03.Cd

7.1.1 Introduction

Studying the generation of bubbles and drops on the micrometer scale in a predefined
geometry makes it possible to investigate a variety of physical phenomena, such as capil-
larity, dripping, and bubbling processes. The initial work on this topic has mainly been
experimental and often it has been driven by industrial applications of such devices, e.g.,
drop formation in ink-jet printing [17]. To better understand experimental results, and
possibly aid design of microfluidic devices for controlling multiphase flow, numerical mod-
elling of drop and bubble formation is also necessary. Modelling the free-surface dynamics
includes the use of direct numerical techniques such as the volume of fluid methods, tracer
methods, and boundary-integral methods [20, 21, 73, 74]. A wide variety of analytical
and semi-analytical models have also been introduced such as, for example, the thin jet
approximation [18, 22, 23, 24, 25].

In recent years studies have been concerned with the so-called flow-focusing configura-
tion [14, 3, 4, 5, 15, 16]. One implementation possible with microfluidic devices allows for
the generation of controlled multi-phase flows; this has mainly been investigated experi-
mentally. Many interesting physical phenomena have been described, including flow-rate
controlled breakup of gas threads [4], but also the appearance of chaotic behavior as
reported in other bubbling devices [3, 5, 18].

In this paper, which is inspired by the experimental work of Garstecki et al. [3,
4], we present a numerical study of a microfluidic flow-focusing device. The study is
restricted to the Stokes flow regime (low Reynolds number) in axisymmetric geometries
[13]. We derive a scaling law for the volume of created bubbles, which is in agreement
with those observed experimentally. We also predict a new scaling: the bubble volume is
linearly proportional to the liquid-gas surface tension an effect hitherto not observed in the
experimentally realized geometry. Finally, we observe compressibility of gas bubbles in our
system. Nevertheless, it is important to note that we do not produce a direct verification
of experimental results as our axisymmetric geometry is different from the planar one used
in experiments.

To simulate the free-surface dynamics, we have implemented a second-order Runge–
Kutta time algorithm in Matlab [45] coupled to the commercial finite-element program
Femlab [46] to solve the incompressible Stokes flow equations for the velocity and pressure
fields. This approach enables us to account for the full geometry of a device including
walls, inlets, and free liquid-gas interfaces. At the location of a free surface, the normal
and tangential stress conditions are enforced including the Young–Laplace pressure jump
associated with a curved interface. We describe the governing equations and the numerical
model in Sec. 7.1.2, we discuss the results in Sec. 7.1.3, and finally conclude in Sec. 7.1.4.
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Figure 7.1: Sketch of the axisymmetric flow-focusing device with liquid domain Ω (white), rigid
boundaries (dark gray), gas bubbles (light gray), liquid-gas interfaces ∂Ωi, interface normal n,
pressure in the gas pgas, and the inlet velocity u = Uin(r) of the liquid. The azimuthal angle ϕ is
depicted to emphasize the axisymmetric geometry.

7.1.2 The model and numerical formulation

The system

The axisymmetric flow-focusing device is depicted schematically in Fig. 7.1. A gas thread
(light gray) under constant pressure pgas is focused into an orifice (dark gray) by a liquid
stream (white). It is natural to use cylindrical (z, r, ϕ) coordinates, whereby the liquid
flow-rate at the inlet is

Qin =
∫

∂Ωin

u · ndA = 2π

∫

∆r
Uin(r)rdr (7.1)

where ∂Ωin is the inlet boundary, u = Uin(r)ez is the flow profile at the inlet, n = ez is the
surface normal, and ∆r is the width of the inlet in the radial direction r. As the system
is axisymmetric about the z-axis the liquid is focusing the gas thread uniformly from all
sides, i.e., for all ϕ ∈ [0, 2π[. Over a large range of flow parameters the gas thread breaks
periodically and bubble snap-off occurs. The bubbles flow downstream into the outlet.

The sketch in Fig. 7.1 also shows the boundary conditions: (a) at the liquid inlet the
fluid velocity Uin(r) is specified, see Eq. (7.1), (b) at the outlet the pressure is set to zero,
(c) on all solid walls we assume no slip u = 0, (d) at the liquid-gas interfaces ∂Ωi the full
stress condition is fulfilled, including the Young–Laplace pressure jump associated with a
curved interface, and (e) at the line r = 0 a symmetry condition is applied.

Governing equations

Compared to the liquid, the shear stress and the viscosity of the gas are negligible and
the pressure variations are expected to be small, so we only need to specify a pressure in
the gas domains. Moreover, we assume that the gas is an isothermal ideal gas that does
not exchange molecules with the surroundings. In the gas thread the pressure is constant
pgas and in the isolated ith bubble we set the pressure pi according to

piVi = pgasVsnap = constant, (7.2)
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where Vi is the volume of bubble i and Vsnap is the volume of a bubble at snap-off.
As the liquid involved in this system is Newtonian the flow field satisfies the Navier–

Stokes equation

ρ

(
∂u

∂t
+ (u ·∇)u

)
= ∇ · σ, (7.3)

where t is time, u = uez +ver the velocity field, ρ the constant density, and σ the Cauchy
stress tensor. A Newtonian fluid in an axisymmetric system is effectively a 2D system and
the four components of the stress tensor are

σij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
− pδij . (7.4)

where (x1, x2) = (z, r), p is the pressure, and µ is the dynamic viscosity of the fluid. Apart
from the momentum equation given in Eq. (7.3) and the constitutive stress tensor, the
continuity equation is needed,

∇ · u = 0. (7.5)

To make parametric studies of physical variables in a dimensionless setup we introduce
the dimensional length d and the velocity U , the values of which will be discussed later.
Using this we now re-scale time, pressure, position, and velocity and obtain the following
expressions

x = x̃d (7.6a)
u = ũ U (7.6b)

t = t̃
d

U
(7.6c)

p = p̃
µU

d
, (7.6d)

as well as the Reynolds number Re given by

Re ≡ ρUd

µ
. (7.7)

The tilde is used to identify non-dimensional parameters t̃, p̃, ũ, and x̃. Introducing the
re-scaling Eq. (7.6) of the flow parameters it is possible to reformulate Eqs. (7.3), (7.4),
and (7.5) into a divergence form. Using the axisymmetric form of the governing equations
and some algebra yields




r̃ Re∂ũ
∂t̃

r̃ Re∂ṽ
∂t̃

0


 + ∇ ·




r̃
(
2∂ũ

∂z̃ − p̃
)

r̃
(

∂ũ
∂r̃ + ∂ṽ

∂z̃

)

r̃
(

∂ũ
∂r̃ + ∂ṽ

∂z̃

)
r̃
(
2∂ṽ

∂r̃ − p̃
)

0 0




︸ ︷︷ ︸
Γ

=




r̃ Re
(
ṽ ∂ũ

∂r̃ + ũ∂ũ
∂z̃

)

r̃ Re
(
ṽ ∂ṽ

∂r̃ + ũ∂ṽ
∂z̃

)− p̃ + 2 ṽ
r̃

ṽ + r̃
(

∂ṽ
∂r̃ + ∂ũ

∂z̃

)


 , (7.8)

where ∇ = ( ∂
∂z̃ , ∂

∂r̃ ). The first two rows in the system represent the momentum equations
and the third row is the incompressibility condition. Note that the matrix denoted Γ at the
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left of the equal sign contains r̃ times the Cauchy stress tensor. Rewriting the governing
equations into the somewhat unusual form of Eq. (7.8) is beneficial for the numerical
implementation of the governing equations into Femlab as discussed in the next section.

At the location of the free interface ∂Ωi (see Fig. 7.1) the stress is continuous in the
tangential direction but exhibits a discontinuity in the normal direction n given by the
Young-Laplace pressure. Thus at the free interface the stress condition is

n · σ = (2γlgκ− pgas)n. (7.9)

where, γlg is the surface tension of the liquid-gas interface, and κ is the mean curvature
of the surface. At the free surface, the interface must move at the speed of a fluid particle
just next to it, which is the kinematic boundary condition

dx

dt
= u(x)

∣∣
x∈∂Ωi

, (7.10)

where we take the total time derivative.
To simplify our treatment we only study the Stokes flow regime and we may hence set

Re = 0 in Eq. (7.8). In this limit the time-dependent problem reduces to a quasi-stationary
problem in the following sense. Given an interface shape we solve for the velocity field u
and the stress field σ in the liquid. If the stress is non-zero at any point on the liquid-
gas interface this interface will move. Mathematically the time dependence only enters
through the kinematic boundary condition Eq. (7.10) at this free surface. The flow is
thus implicitly a function of the interface shape. Although we are in the Re = 0 limit,
nonlinearity is nevertheless introduced to the dynamics of the problem by the curvature
of the free interface appearing in the dynamic boundary condition Eq. (7.9) [60].

In the following the length scale d introduced in Eq. (7.6) is set equal to the gas inlet
diameter depicted in Fig. 7.2. The velocity scale U for the liquid is chosen when there is
no gas flow as Qin/Aor, where Aor = π(αd/2)2 is the area of the orifice cross section. In
terms of these scales the dimensionless inlet velocity is given as

Ũin(s) =
3α2

(
din
d

)2
+ 3din

d

s(1− s), (7.11)

where s ∈ [0; 1[ is a curve parameter on the inlet boundary. The dimensionless pressure
p̃2 in the gas and the capillary number Ca are defined as

Ca ≡ µU

γlg

, (7.12)

p̃2 ≡
pgasd

µU
. (7.13)

Typical parameter values for the various physical quantities are listed in Table 7.1. In
terms of the re-scaled variables and parameters, the dynamic boundary condition Eq. (7.9)
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Figure 7.2: Sketch of the axisymmetric flow-focusing device with all relevant lengths shown. Most
important are the gas inlet diameter d, the orifice diameter αd, the distance from the orifice to the
gas inlet βd, and the length of the orifice γd.

in component form is

Γ11n1 + Γ12n2 = r̃

(
1

Ca
κ̃− p̃2

)
n1 (7.14a)

Γ21n1 + Γ22n2 = r̃

(
1

Ca
κ̃− p̃2

)
n2 (7.14b)

where κ̃ is the dimensionless curvature and Γij are the components of the modified Cauchy
stress matrix in Eq. (7.8).

The liquid-gas interface is represented as a parametric curve x̃(S) = (z̃(S), r̃(S)),
where S is the arc-length parameter scaled by the total length of the given interface. The
dimensionless curvature κ̃ of the interface is given by the non-linear expression

r̃κ̃ = r̃
żr̈ − ṙz̈

(ṙ2 + ż2)3/2
− ż

(ṙ2 + ż2)1/2
, (7.15)

where a dot is the derivative with respect to S, and we have multiplied with r̃. The last
term in the expression is equal to the r-component n2 of the surface normal and is related
to the curvature in the azimuthal direction.

Numerical method

As mentioned above the Stokes problem effectively reduces to a quasi-stationary problem,
where at any given time the flow field (u, v, p) is a function of the shape of the liquid-gas
interface. This fact is utilized for the numerical treatment of the problem. The problem
is solved numerically by using the commercial finite-element program Femlab together
with a Matlab code that we have developed comprising the time evolution and numerical
schemes for representing the curvature of the interface. The method is inspired by the
boundary-integral method [21, 20] and classical finite-element methods [75, 76]. At every
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parameter typical value
d 200 µm

Qin 0.05 µL/s
pgas 5 - 100 kPa
µ 1 - 10 mPas
γlg 30 and 73 mJ/m2

U 2 mm/s
Re 0.02 - 0.2
Ca 10−3-10−1

Table 7.1: Typical physical parameter values used in experiments where the flow-focusing device
is planar [3, 4].

time step we begin with a given position of the liquid-gas interface and solve for the
flow field, then based on the new velocity information at the interface the position of the
liquid-gas interface is updated.

To evolve the interface in time we use a second-order Runge–Kutta time step algorithm.
This algorithm is extended such that the elongation of the free interface is taken into
account. The interface is given by the curve x(S) which is described by a cubic spline
that interpolates all the mesh points on the interface. Points on the boundary are only
moved normal to the interface such that Eq. (7.10) is transformed to

dx(S)
dt

= (u · n)n
∣∣
x∈∂Ωi

, (7.16)

where n is the surface normal. Whenever the interface is evolved the finite-element mesh
is regenerated to find a new solution of the fields, and as a consequence the boundary
points shift from one time step to the next. Hence, to determine the correct Runge–Kutta
gradient (u ·n)n, we have introduced a mapping S = f(S′), which ensures that the correct
gradients, found at time t + ∆t/2, are used at the original interface points at time t to
evolve the interface to the next time t + ∆t; see the sketch in Fig. 7.3. Moreover, the
mapping also handles the problem of the interface changing length [62].

The form of Eq. (7.8) and the dynamic boundary condition Eqs. (7.14a) and (7.14b)
are suited for direct use in Femlab. At each new time step the system is re-meshed, a new
curve parameter S is found, and the flow equations with the correct boundary conditions
are solved in Femlab. The number of points used to track the interface varies from 30,
initially, up to 400 at snap-off. The number increases when narrow liquid regions appear
that need to be well resolved. The curvature κ of the interface is found by using an
approximating least square cubic spline. This ensures the curvature to be smooth and it
eliminates numerical noise introduced by the Femlab meshing algorithm. Moreover, the
time step ∆t is determined such that no boundary point is moved more than a third of
the local mesh size.

A series of tests were performed to verify the time evolution algorithm and the code in
general. The time evolution algorithm was compared with a simple Euler method, where
the time step was chosen to ensure stability [60, 62, 61]. The solutions were identical but
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Figure 7.3: Schematic representation of an interface segment with associated grid points. The
interface is represented by a curve x(S) at time t and x(S′) = x(f−1(S)) at the intermediate time
t + ∆t/2. The gradient n(n ·u) of the interface position x(S) used to evolve the interface to time
t + ∆t is derived at the intermediate time, according to a Runge–Kutta scheme.
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Figure 7.4: The shape r̃(z̃) of the bubble just before snap-off (solid line) and the new shape after
snap-off (dotted line and black points). The length scale δcut (dashed line) determines where to
cut the initial shape.

our method was ten times faster. The code was also tested for stability regarding mesh size
and the choice of basis functions. Finally, the code was tested on three specific problems
and performed very well in all three cases: (1) a drop in an extensional flow [67, 77, 71],
(2) the coalescence of two cylindrically shaped liquid bodies [47], and (3) the steady-state
shape of a gas bubble translating in a liquid-filled capillary [52].

Snap-off mechanism

When a bubble snap-off occurs, the curve representing the shape of the gas thread (solid
line in Fig. 7.4) has to be divided into two curves (dotted line in Fig. 7.4). In this model
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we define a length scale δcut (marked by the dashed line in Fig. 7.4) that determines where
to cut the original shape. The curve is cut at the nearest interface grid point and a cubic
spline with vertical tangent at r = 0 caps the gas-jet and the new bubble. The spatial
resolution of the dynamics near the breakup are restricted by the mesh size hm, hence
we have chosen δcut > 2hm. This method might seem crude however the specific shape
near the breaking point does not influence the overall dynamics of the system. Just after
the snap-off discontinuities are registered in the liquid pressure at the orifice region as the
breakup event is a singular event in itself.

7.1.3 Results and discussion

The time-dependent dynamics of the liquid-gas system evolving in the flow-focusing device
sketched in Fig. 7.1 are controlled by many parameters. In the following we have restricted
our analysis to the dependence on four parameters: (1) the pressure of the gas thread,
(2) the inlet liquid flow-rate Qin = AorU , (3) one geometry component namely the outlet
channel radius H, see Fig. 7.2, and (4) the liquid-gas interfacial tension γlg characterized
by the capillary number Ca. The rest of the geometry parameters depicted in Fig. 7.2 are
constant and set to (α, β, γ, din/d,W/d) = (0.5, 1.5, 2, 1, 15). An important parameter to
control and observe experimentally is the volume Vb of the created bubbles. The bubble
volume is also the focus of our analysis as it is straightforward to determine numerically.

We begin by studying various aspects of the creation of the first bubble in a bubbling
sequence and show how Vb scales with the four parameters analyzed. Finally, we study a
sequence of four bubbles in a specific geometry. Our results on the axisymmetric geometry
are compared to experimental findings on the planar geometry given in Refs. [3, 4].

Bubble growth morphology

The snapshots depicted in Fig. 7.5(a)-(e) represent the creation of a typical bubble. Panel
(a) shows the initial insertion of the gas thread into the orifice, (b) the exit from the
orifice region of the bursting head of the gas thread, (c) the blocking of the inlet liquid
flow as the bubble inflates into the outlet channel, (d) appearance of a clear collapse region
and collapse of the gas thread, and finally (e) the snap-off event where the thread radius
vanishes h̃thr = 0. In this case the flow and geometry parameters are (p̃2, Ca, H/d) =
(350, 0.1, 1), and the total time simulated is t̃ = 1.0. The time-dependent distance from
the tip of the bursting head of the gas thread to the outlet, where p̃ = 0, is denoted
` = `(t), while W is the constant length of the outlet region, see Fig. 7.5(c). The length
h̃thr = hthr/d is the dimensionless minimal diameter of the gas thread and is located at
z̃ = zthr/d. The volume Vb of a bubble at snap-off is simply calculated as

Vb = π

∫ zmax

z=zthr

r2(z)dz, (7.17)

where zmax is the z-coordinate of the front of the gas-thread and r(z) is a representation of
the interface curve. We will mainly be concerned with bubbles of relatively large volume,
for which snap-off occurs when ` < W . For some choice of parameters small bubbles may
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Figure 7.5: A sequence of five snapshots from the simulations representing the creation of a
bubble: (a) the initial insertion of the gas thread into the orifice, (b) the exit of the gas thread
from the orifice region, (c) the blocking of the inlet liquid flow to the outlet, (d) the controlled
collapse of the gas thread, and finally (e) the snap-off event where h̃thr = 0. The length `(t̃) is
measured from the tip of the bursting head of the gas thread to the outlet where p̃ = 0, W is the
length of the outlet region, and h̃thr = hthr/d is the minimal dimensionless diameter of the gas
thread. The simulations made for (p̃2, Ca,H/d) = (350, 0.1, 1).

snap-off when they are still in the orifice, i.e., when ` > W . At the time of snap-off zthr is
generally located at the left end of the orifice.

Bubble growth time τ

The time it takes a bubble to grow is denoted τ . It is defined as the time between the
onset of the gas-thread collapse Fig. 7.5(c), when the emerging bubble blocks the liquid



7.1 Paper by Jensen et al. 2005 71

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Q
g

`/
(U

d
3
)

t̃

0 1 2 3 4
−1

−0.5

0

0.5

1

0 1 2 3 4
−1

−0.5

0

0.5

1

0 1 2 3 4
−1

−0.5

0

0.5

1

@@R

HHHj

6

-�
τ̃

Figure 7.6: Plot of Qg`/(Ud4) as function of time for Ca = 0.1, p̃2 = 350, and H/d = 1. The
gas dimensionless flow-rate is found numerically and calculated as Q̃g = dṼg/dt̃, where Ṽg is the
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flow, and the snap-off of the bubble Fig. 7.5(e). When the blocking of the orifice sets in
the liquid flow fills the orifice volume Vor = Aorγd at the rate Qin, squeezes the gas thread,
and induces the collapse leading to bubble snap-off. As described in Ref. [4], for a fixed
orifice geometry and surface tension, the bubble growth time τ therefore scales as

τ ∝ Vor

Qin

∝ 1
U

, (7.18)

Numerically we found that the dimensionless time τ̃ was constant ∼ 0.3, and hence that
τ ∝ d/U . For a constant geometry the numerics confirmed the linear dependence.

Gas flow rate Qg

The gas flow-rate Qg is not set explicitly but it can be determined as follows. When the
emerging gas bubble begins to block the orifice, it interrupts the liquid flow from the inlet
to the outlet. The liquid flow-rate Qout at the outlet is therefore, by volume conservation,
equal to the flow-rate Qg of the gas. Assuming the liquid flow in the outlet region to be
a Poiseuille flow, we obtain

Qg = Qout =
π

8
1
µ

GH4 ∝ GH4, (7.19)

where G is the pressure gradient. A good approximation for G is given by the pressure
drop from the tip of the thread to the outlet divided by the distance `, see Fig. 7.5(c).
As the emerging bubble blocks the liquid flow the pressure in front of it is approximately
pgas − γlgκ, where κ ≡ 2/R. If we furthermore assume that the bubbles being created are
big, i.e., of size comparable to H, we have,

G ≈ 1
`

(
pgas −

2γlg

H

)
, (7.20)
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Figure 7.7: Collapse speed us/U at snap-off of the gas thread as function of Ca. The inset depicts
h̃thr(t̃) corresponding to the evolution from Fig. 7.5(d) to (e). The dashed line corresponds to the
linear fit made to determine us/U .

where the radius of curvature R ≈ H because of the axisymmetric nature of the geometry
studied. Combining Eqs. (7.19) and (7.20) leads to

Qg` ∝ H4

(
pgas −

2γlg

H

)
. (7.21)

Consequently, for constant geometry, gas pressure, and surface tension we expect Qg` to
be constant. To verify this expression numerically, the length ` is found as the difference
between W and the position of the gas front, and Qg is found as dVg/dt where Vg is
the volume of the gas. The dimensionless quantity Qg`/(Ud4) is plotted as function of
dimensionless time t̃ in Fig. 7.6, where we see that Qg` indeed is constant for t̃ > 0.7
after the gas bubble begins to block the orifice. From Fig. 7.6 it is also seen how τ̃ was
determined numerically as Qg`(t̃) changes abruptly when the blocking of the orifice is
initiated.

Gas thread collapse speed us

The collapse speed of the gas thread just before snap-off is defined as

us ≡
dhthr

dt

∣∣∣∣
t=t0

, (7.22)

where t0 is the time of snap-off. Figure 7.7 shows us/U as function of 1/Ca. The insert
in Fig. 7.7 shows the dimensionless thread thickness as function of time h̃thr(t̃), which
corresponds to the evolution from Fig. 7.5(d) to (e). The collapse speed us/U is determined
by a linear fit to the curve h̃thr(t̃) near its intersection with the t̃-axis. The spread in the
calculated values around the linear fit is due to uncertainties in the linear fit to h̃thr(t̃).
Even though hthr(t) does not have a significant linear regime us it is interesting to find
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that us/U depends linearly on 1/Ca, for Ca > 0.1. This means that us ∝ γlg/µ. Studies
of breakup of viscous threads (see Refs. [23, 24, 25, 26]) show that just before snap-off the
thread thickness hthr ∝ (t0 − t) γlg/µ, this seems to agree with our numerical findings.

In the experimental work of Garstecki et al. [3, 4] hthr(t) had a large linear region near
t0 (that is hthr(t) ∝ (t0 − t)). Numerically we do not have this large linear region. We
speculate that this disagreement is due to the anisotropic confinement of the gas thread
in the planar geometry of the experiments versus the axisymmetric confinement in our
model. This most probably influence the dynamics of the collapse differently [78].

Bubble volume V b

The volume of a bubble at snap-off is given by Vb in Eq. (7.17). It is proportional to
the time τ that the gas thread stays open times the flow-rate Qg of the gas. Combining
Eqs. (7.18), (7.19) and (7.20) and having ` nearly constant leads to

Vb ∝
H4

µQin

(
pgas −

2γlg

H

)
. (7.23)

For the experimental results, presented in Refs. [3, 4], it was determined that for a fixed ge-
ometry and surface tension the volume of the bubbles is proportional to the ratio pgas/µQin.
This scaling is directly given by Eq. (7.23) for constant geometry. We also confirm this
scaling with our numerical results shown in Fig. 7.8, where for H/d = 0.8, 1, and 1.2
(fixed geometry) the dimensionless volume Vb/d3 of the bubble at snap-off is seen to scale
as p̃2 ∝ pgas/µQin. Note that there is a deviation from this scaling for small bubbles that
do not emerge from the orifice before snap-off, i.e., when ` > W and our assumptions do
not hold.
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In Fig. 7.9 we have depicted Vbd/H4 as function of p̃2 and see that they fall on one
line, hence that Vb ∝ pgasH

4/µQin. This scaling also follows directly from our general
expression Eq. (7.23).

Finally, we study the scaling of the bubble volume as function of the capillary num-
ber Ca for constant dimensionless pressure p̃2. In Fig. 7.10 the volume Vb/d3 is plotted
as function of Ca for p̃2 = 300 and H/d = 1, meaning that we plot it as function of
pgasd/300γlg. We note a linear relation for values of Ca larger than some critical value
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Ca∗ ≈ 0.1. In this regime we have Vb ∝ µU/γlg or after multiplication by the constant
dimensionless pressure Vb ∝ pgasd/γlg for pgasd/γlg > 30. This last critical value relates
to wether a bubble is large ` < W os small ` > W when it snap-off, see Fig. 7.5. When
the gas pressure cannot overcome the Young–Laplace pressure in the orifice the bubble
snap-off occurs for ` > (W + γd) and we have pgas < 2γlg/(αd/2) yielding pgasd/γlg < 8.
Values of pgasd/γlg between 8 and 30 correspond to the situation where the gas front is in
the orifice or just left of it when bubble snap-off occurs.

The inset in Fig. 7.10 represents the velocity us/U as function of 1/Ca for the same
parameters. From the figure it is seen that us/U ∝ 1/Ca. For Ca < Ca∗ the linearity in
1/Ca is not clear, this scattering of the data points could be due to numerical noise.

Multi-bubble sequence

In this section we describe a system where four bubbles are created in a sequence. There
are three snap-off events and the simulation ends just before the fourth bubble snaps
off. The parameters for this model are: Ca = 0.1, p̃2 = 320, W/d = 15, H/d = 0.6,
(α, β, γ) = (0.5, 1.5, 2). The total computation time for the simulation was one week on
an Intel Pentium 4, 3.2 GHz with 1 GB of RAM.

Snapshots of the bubble shape at selected times t̃ are depicted in Fig. 7.11. The size
of the bubbles are measured in terms of p̃V/d3, which is constant for each of the four
bubbles and has the value 80.8, 232.7, 208.1, and 195.3, respectively. The data indicates
that the system exhibits a transient behavior before reaching a stable period-one bubbling.
The snapshots at Fig. 7.11(b), (d), (f), and (h) are taken just before a bubble snap-off
occurs. It is clearly seen how a preceding bubble shrinks when a new bubble is about to
be released. As discussed earlier a bubble blocks the liquid flow out of the orifice before
it snap-off. The blocking occurs on a short time-scale leading to an immediate pressure
increase in the liquid in front. The pressure in the liquid in front of the bubble equals the
pressure p̃2 in the bubble minus the curvature contribution, see Eq. (7.20). The preceding
bubbles can not escape because of the large viscous drag in the Stokes-flow regime. This
results in a very pronounced compression of the preceding bubbles. The compression is
seen graphically in Fig. 7.11: the first bubble is, e.g., seen to shrink from figure (c) to (d)
and then enlarge from (d) to (e).

The volumes Vb/d3 of the three released bubbles are plotted as function of time in
Fig. 7.12(a). From the graph it is seen how preceding bubbles are compressed when a new
bubble is released. The bubbles are released at the times marked by the vertical doted
lines. These correspond to the events shown in Figs. 7.11(b), (d), and (f). In Fig. 7.12(b)
the mean pressure on a bubble

〈p̃i〉 =
∫

∂Ωi

n · σ · ndA

(∫

∂Ωi

dA

)−1

(7.24)

is depicted as function of time. We clearly see how the volume of a bubble increases as
the pressure around it decreases and vice versa. In our model the compressibility of the
the bubbles is further enhanced as we have a relatively short outlet channel and because
the reference pressure at the outlet is zero. In experiments where the outlet channel is
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very long compared to a typical bubble length the compressibility effects are not very
pronounced.1 The bubbles are however seen to expand as they travel far in the outlet [79].

In Fig. 7.13 the gas thread thickness h̃thr is plotted as function of the time t̃ − t̃0.
We see that for all four bubbles h̃thr(t̃) has the same shape and hence the same collapse
speed dhthr/dt. This indicates that the snap-off event is local and not influenced by the
hydrodynamic interactions of bubbles further downstream. This results is supported by
experimental results [4], in terms of the so-called flow-rate controlled breakup of the gas-
thread: the collapse velocity of the liquid thread is only a function of Qin for a given orifice
geometry.

7.1.4 Conclusion

In this work we have performed a numerical study of the dynamics of bubble formation in
an axisymmetric flow-focusing device in the Stokes-flow limit. For this purpose a generic
numerical model for solving free-surface flows in an axisymmetric geometry was developed.
The model is based on a second-order Runge–Kutta time integration algorithm and free
surface scheme implemented in Matlab which are coupled to the commercial finite element
solver Femlab.

The analysis of the flow-focusing device was restricted to four parameters: the inlet
liquid flow-rate Qin, the gas pressure pgas, the outlet channel radius H, and the liquid-gas
surface tension γlg. Based on these parameters we derive scaling laws for the volume Vb

of a created bubble and for the gas flow-rate Qg. By physical analysis and numerical
simulation we have shown that the bubble growth time τ scales proportionally to the

1If Lb is the length of a bubble then the pressure drop along its length is ∆pb ≈ (pgas − pout)Lb/W ,
where pout is the pressure at the outlet. The relative change in the bubble volume over the length Lb will
be pgas/(pgas − ∆pb), using Eq. (7.2). Compressibility effects are hence pronounced if ∆pb/pgas is large,
i.e., if Lb/W is large or if pgas and pout are lowered by the same amount.



78 The flow-focusing device

inverse liquid flow rate 1/Qin.

The collapse speed us of the gas thread immediately prior to the snap-off event was
found to be proportional to the ratio γlg/µ. This scaling was not observed experimentally
[3, 4] but is supported by other studies of the breakup of viscous axisymmetric threads. The
behavior of the thread thickness as function of time hthr(t) deviates from the experimental
data. We speculate that this difference in the collapse dynamics is due to the difference
in geometry of the devices. In the experiments the gas thread is confined anisotropically
while it is confined equally from all sides in our axisymmetric model. In the experimental
work [4] the collapse region of the gas thread was seen to extend from the gas inlet to the
right of the orifice. In our axisymmetric model the collapse region is localized to an area
just left of the orifice, see Fig. 7.5(d) and (e). In the simulated geometry the thread can
minimize surface area (energy) in two dimensions simultaneously as it is not restricted by
a top and bottom lid as in the planar case [78].

The above mentioned scaling law for the bubble volume is presented in Eq. (7.23). For
a constant geometry it reduces to the scaling law Vb ∝ pgas/µQin described by Garstecki
et al. [3, 4]. We confirm this law by means of simulations for various constant values
of H. For a varying outlet channel radius our extended scaling law also predicts an H4

dependence namely Vb ∝ H4pgas/µQin. We confirm this dependence by means of the
numerical results presented in Fig. 7.9. Our numerical investigation further reveals that
critical values exist for the dimensionless product p̃2Ca determining where the bubble
is located when snap-off occurs. These values are determined by the ratio between the
Young–Laplace pressure and the gas pressure.

Using a simple mechanism to account for the snap-off we model a sequence of four
consecutive bubbles and show that the flow-focusing device does not produce bubbles
of constant volume straight away. The results suggests that there is a certain transient
behavior before reaching steady state. Bubbles that are located upstream of the orifice
influence the pressure drop in the outlet channel. The pressure gradient along the outlet
channel is an important factor in the scaling of the bubble volume. Bubbles of constant
volume may hence only be created when a constant pressure drop exists in the outlet.
This could for example be the case if the outlet region is large compared to the bubbles
or if large bubbles are filling the entire outlet region, just as happens in experiments [3].

In the multi bubble sequence we confirm that the collapse speed of the gas thread is
not influenced by hydrodynamic interactions of bubbles downstream of the snap-off event.
Finally, we see a large compression of the created free gas bubbles in the Stokes-flow regime.
The effect is amplified due to the numerical set-up but it is also seen experimentally,
however, much less pronounced.

The numerical model we have implemented is versatile, and consequently the work
presented in this paper facilitates the study of other features in flow-focusing devices. This
could include other geometries of the orifice, liquid-liquid systems, or even non-Newtonian
fluids. Results from such studies would be very useful when designing future experiments.
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7.2 Further details for the paper

Flow field in the flow-focusing device

Figure 7.14 illustrates how the liquid flow is blocked when the gas bubble emerges at the
right of the orifice. The figure depicts a sequence of six blowups of the orifice region with
stream lines entering from the inlet (white lines) and the velocity magnitude |u| in the
background contour plot. On every view graph the dimensionless time t̃, the dimensionless
liquid flow rate Q̃or (through the orifice in a plane at z̃ = 1.75), the dimensionless outlet
flow rate Q̃out, and the gas flow rate Q̃g are indicated. In all the situations the inlet
dimensionless flow-rate is Q̃in = 0.196 due to the chosen scaling.

The stream lines very elegantly illustrate how the liquid flow is blocked by the emerging
gas thread for t̃ > 0.7 until snap-off at t̃0 = 1.00. The numerically integrated data for Q̃or

supports the graphics. Stream lines that end on the free interface corresponds to areas
where the gas thread is compressed by the liquid flow. Notice also that Q̃g + Q̃in = Q̃out

as expected from continuity.

The shape of hthr(t)

In the results discussed in the paper it is mentioned that hthr(t) could not generally be
approximated by (t0 − t)α with some constant α. In Fig. 7.15 we have, in a double
logarithmic plot, depicted hthr as function of t0 − t and the different symbols correspond
to different realizations. From the figure it is evident that the value of α, the slope of the
graphs, is not generally well defined. The linear behavior hthr ∝ (t0 − t) suggested from
theoretical studies is only true for times t0 − t < 10−2. The dynamics for relatively large
times t are most probably more complicated than first supposed. For times close to t0 we
find the results predicted by viscous theory, i.e., that us ∝ γ/µ. Unfortunately the author
had not enough time to study this most interesting problem in more detail. Such a study
would, among other things, include an increased temporal and spatial resolution of the
problem.

7.3 Non-Newtonian liquid and gas system

For typical flow parameters in microfluidics the rate of strain γ̇ can be relatively large
103 − 104 s−1. These values are sufficient to cause non-Newtonian rheological effects
in suspensions [6]. Because of these considerations and because of the flexibility of im-
plementing complicated physics in Femlab we have chosen to study the dynamics in a
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flow-focusing device where the liquid has non-Newtonian properties. No experimental re-
sults have been published about this matter to our knowledge.

The model

The governing equations for a liquid-gas system where the liquid viscosity follows the
power-law model

η = mγ̇n−1 (7.25)



7.3 Non-Newtonian liquid and gas system 81

10
−3

10
−2

10
−2

10
−1

h
t
h
r

t0 − t

α = 1.0

α = 0.5

Figure 7.15: A double logarithmic plot of the gas thread thickness hthr as function of time. The
different symbols correspond to values of εu varying from 0.5 to 1.8. The two solid lines correspond
to a slope of 1 and 0.5 respectively.

are presented in Sec. 4.9. The studied flow-focusing geometry is the same as the one
presented in the paper presented above as well as the geometry described in Chap. 5. The
new flow model introduces an additional nonlinearity to the free surface system through
the dependent variables (u, v, p), specifically through the strain dependent viscosity η̃.
This requires the use of an iterative method to solve for the flow field at every time
step. In Femlab we utilize the nonlinear solver femnlin which is based on a damped
Newton iterative method [81]. This added non-linearity increases the computation time
at every time step. The model also includes one extra dimensionless parameter namely
the exponent n defining the degree of ”non-Newtoniannes” of the system. These last two
facts have restricted the number of parameters n, Ca, p̃2, and geometry that we have
studied, the specific choices are discussed below.

Bubbles in non-Newtonian liquids

For the values of n = 0.9, 0.8, and 1.3 studied the system did not directly show any highly
nonlinear behavior through the morphology of the interface. In Fig. 7.16 we depict the
shape of two bubbles with the same volume Vb/d3 = 2.45. One is created for n = 0.8
(shear thinning, full line) and the other for n = 1.3 (shear thickening, dashed line). The
shape of the shear thinning bubble is slightly more rounded than the one of the shear
thickening. It is difficult to compare the shapes as the flow parameters are different for
the two bubbles.

A more general morphological study of the bubbles would require far more parameters
analyzed. The final shapes of the bubbles at snap-off in Fig. 7.16 were determined after
approximately 14 hours of computation on an Intel Pentium 4, 3.2 GHz machine with
1 GB of RAM.

The evolution of the gas thread thickness h̃thr is depicted in Fig. 7.17 both in a double
logarithmic and a linear plot. It is interesting to note how the slope and behavior near
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t0 differs for the two exponents n. For large values of n the effective viscosity η is large
meaning that the the collapse speed us is small if we assume that the proportionality
us ∝ γlg/η holds. This is supported by the slope of the two graphs near t̃ = t̃0.

Scaling of the bubble volume Vb

In the paper presented above we argued that the volume of a bubble was equal to the time
the gas thread stayed open τ times the gas flow-rate Qg. This flow rate was found by using
volume conservation such that Qg = Qout. The liquid flow-rate Qout at the outlet was in
turn found by assuming simple Poiseuille flow with a driving pressure gradient given by
the Young–Laplace pressure at the front of the bubble.

In the present non-Newtonian model we again assume that τ ∝ 1/Qin. This seems
reasonable as this time is determined only by the volume Vor of the orifice (here fixed) and
the flow rate of the supplied liquid Qin. The steady state flow rate of a liquid obeying the



7.3 Non-Newtonian liquid and gas system 83

power law model is in a cylinder of radius H given analytically as,

Q =
πH3

1/n + 3

(
∆pH

2m`

)1/n

, (7.26)

where ∆p/` is the pressure gradient [36]. We have following the arguments given in the
paper that ∆p ≈ pgas − 2γlg/H which for the created bubble volume scaling yields

Vb ∝
H3

Qin(1/n + 3)

[
H

m

(
pgas −

2γlg

H

)]1/n

, (7.27)

this equation is general and is applicable if snap-off occurs when the bubble front is at the
right of the orifice, i.e., ` < W in the notation of the paper. The dimensionless parameters
determining the physics of the system are,

p̃2 =
pgas

m

(
U

d

)−n

, (7.28)

Ca =
d m

γlg

(
U

d

)n

, (7.29)

the geometry factor H/d, and the power law exponent n.

Results

In order to verify the scaling law Eq. (7.27) for the volume of a created bubble we present
two figures that are based on 310 hours of computation. As mentioned the computational
cost is very large in this non-Newtonian system.

In the first Fig. 7.18 we depicted the dimensionless bubble volume Vb/d3 as function
of the dimensionless quantity Ca−1/n which is proportional to 1/U × (γlg/m)1/n. From
the figure it is evident that the dimensionless volume scales linearly with Ca−1/n for both
choices of exponent n. This linear behavior also follows from the scaling law Eq. (7.27)
which predicts that for a constant geometry Vb is linear in 1/Qin × (γlg/m)1/n. Even
though this result is only based on a few data points the scaling law seems to be correct.

Finally in Fig. 7.19 we have depicted the dimensionless bubble volume Vb/d3 as function
of the dimensionless parameter p̃1/n for a constant choice of the capillary number Ca = 0.1.
This means that we actually depict Vb/d3 as function of (10pgasd/γlg)

1/n which is a measure
of the ratio between the surface tension forces and the gas pressure. The scaling law
includes the term (pgas− 2γlg/H)1/n that connects the gas pressure to the surface-tension
related Young–Laplace pressure. Hence, if one of those terms is dominant we expect a
linear behavior of Vb/d3. In Fig. 7.19 we see that for large values of p̃1/n where the gas
pressure is dominant the bubble volume seems to scales linearly (more point would make
it more clear). For small values of p̃1/n surface tension is dominant and bubbles snap off
when ` > W , see Fig. 7.5(c). The dimensionless collapse speed us/U of the gas thread
prior to snap-off was found to be constant ∼ −1.1. This finding is consistent with the
results from the paper and the fact that the capillary number is constant.
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Figure 7.18: Dimensionless volume Vb/d3 of a created bubble as function of the dimensionless
quantity Ca( − 1/n), for n = 0.8 and n = 0.9, shear thinning.
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Figure 7.19: Dimensionless volume Vb/d3 of a created bubble as function of the dimensionless
quantity p̃(1/n) for constant capillary number Ca = 0.1 and exponent n = 1.3, shear thickening.



Chapter 8

Conclusion and outlook

Conclusion

In the present thesis, we have been concerned with the numerical and theoretical study
of multi phase flows in microfluidic devices and especially the case of liquid-gas systems.
The work can roughly be divided into the study of bubbles in microchannel contractions
and the study of the bubbling dynamics in a flow-focusing device.

We have shortly presented two of our papers concerned with the passage of gas bubbles
through microchannel contractions. The first paper is purely theoretical and presents a
simplified physical model. It enables us to calculate the forces and pressures needed to
push a bubble through a contraction, of arbitrary shape, very accurately without losing
the essential physics of the problem. The model enabled us to formulate geometrical design
rules for microchannel contractions to reduce or prevent clogging. The second paper was
made in collaboration with the experimental group of D. Attinger at the State Univeristy
of New York, Stony Brook, USA. They measured the pressure needed to push gas bubbles
through different axisymmetric micro contractions in liquid filled capillaries. The results
were compared to our model predictions and we found good agrement. We further present
possible explanations for the discrepancies which are mostly dynamic in nature.

A survey of the microfluidic flow-focusing device was then presented and used for
motivation for the subsequent study. The main goal of the work presented in this thesis
was to numerically study the full free-surface dynamics of the bubbling process in the
special flow-focusing geometry. The study was initiated while on a five month research
stay in the group of Prof. Howard A. Stone at Harvard university. Computational fluid
dynamics is an important tool in microfuidics as it provides detailed information when
theoretical models and experimental results are unavailable or difficult to obtain.

We have developed a generic numerical model for solving free-surface Stokes flows in
an axisymmetric geometry. The model is based on a second-order Runge–Kutta time-
integration algorithm and a free-surface scheme implemented in Matlab which are cou-
pled to the commercial finite-element solver Femlab. The model also comprises a mapping
handling problems related to surface elongation as well as an automatic re-meshing and
redistribution of interface points. The numerical code was then applied to three test cases
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and the results discussed in detail. From the results it was evident that the code is reliable
and produces correct numerical results. The coupling between the time integration algo-
rithm, the curvature algorithm, and the Femlab solver works perfectly. Moreover, the
code is seen to be very versatile and was easily modified to suit the different geometries
and physics of the three test systems. The development and thorough testing of a new
numerical code are necessary and time consuming.

The model was then utilized to study the two-phase dynamics in an axisymmetric
flow-focusing device. Based on a simple physical model we present a general scaling law
for the volume Vb of the created bubbles that depends on four parameters: the inlet liquid
flow-rate Qin, the gas pressure pgas, the outlet channel radius H, and the liquid-gas surface
tension γlg. By physical analysis and numerical simulation we have shown that the bubble
growth time τ scales proportionally to the inverse liquid flow rate 1/Qin.

The collapse speed us of the gas thread immediately prior to the snap-off event was
found to be proportional to the ratio γlg/µ. This scaling was not observed experimentally
by Garstecki et al. [3, 4] but is supported by other studies of the breakup of viscous
axisymmetric threads. The behavior of the thread thickness as function of time hthr(t)
deviates from the experimental data. We speculate that this difference in the collapse
dynamics is due to the difference in geometry of the devices. In the experiments the
gas thread is confined anisotropically while it is confined equally from all sides in our
axisymmetric model. In the simulated geometry the thread can minimize surface area
(energy) in two dimensions simultaneously as it is not restricted by a top and bottom lid
as in the planar case.

The above mentioned scaling law for the bubble volume is presented in Eq. (7.23). For
a constant geometry it reduces to the scaling law Vb ∝ pgas/µQin described by Garstecki
et al. We confirm this law by means of simulations for various constant values of H. For
a varying outlet channel radius our extended scaling law also predicts an H4 dependence
namely Vb ∝ H4pgas/µQin. This dependence is also confirmed by means of the simulations.
Our numerical investigation further reveals that a critical values exist for the dimensionless
product p̃2Ca determining where the bubble is located when snap-off occurs. This value is
determined by the ratio between the surface tension related Young–Laplace pressure and
the gas pressure.

Using a simple mechanism to account for the snap-off we model a sequence of four
consecutive bubbles and show that the flow-focusing device does not produce bubbles
of constant volume straight away. The results suggests that there is a certain transient
behavior before reaching steady state. Bubbles of constant volume are only created when
a constant pressure drop exists in the outlet. This could for example be the case if the
outlet region is large compared to the bubbles or if large bubbles are filling the entire
outlet region, just as happens in experiments.

Using the flexibility of defining the governing equations in Femlab we chose as a
last model to study the dynamics in a flow-focusing device where the liquid has non-
Newtonian properties. We chose for simplicity to model the rheological properties of the
fluid according to the power-law model. This model introduces the exponent n as an extra
free parameter in the system. Based upon simple physical assumptions we derive a scaling
law for the volume Vb of the created bubbles Eq. (7.27). As the power-law model introduces
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nonlinearities into the governing equations the computational times were very long. The
scaling law was partially confirmed by a restricted number of simulations corresponding
to 310 hours of computational time. This study that includes rheological effects produces
all new results that have not yet tested experimentally.

Outlook

The code that I have developed is very flexible and generic and allows for the inclusion of
many interesting physical phenomena such as the studied non-Newtonian effects. It would
also be possible to for example include transport of surfactant at the liquid interface or to
include heat transport. The flexibility of the code was proven when it was used to verify
the stability and shape of a liquid-liquid interface in a novel design for a electro-osmotic
micro pump. The work is presented in the paper: A novel electroosmotic pump design
for nonconducting liquids: theoretical analysis of flow rate-pressure characteristics and
stability by A. Brask, G. Goranovic, M. J. Jensen, and H. Bruus [11] (it is presented in its
full length in Appendix D).

It would further be interesting to use the code to study the effect the orifice geometry
has on the bubbling dynamics in the flow-focusing device. Moreover, a study of the effects
of confinement of the gas thread would be very useful and enlightening. This last study
would require the implementation of a full 3D free-surface model.
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[15] A. M. Gañán-Calvo and J. M. Gordillo, Phys. Rev. Lett. 87, 274501 (2001).
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Appendix A

Source code and program variables

A.1 Main program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% FEMLAB Model for zero Re interface evolution

% Mads J. Jensen

% MIC - Department of Micro and Nanotechnology, DTU

% DEAS - Division of Engineering and Applied Sciences, Harvard

%

% Verion 20: 2.order Runge Kutta.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

close all;

tic;

cd(’C:\Documents and Settings\mjj\My Documents\FEMLAB ff-model’);

%%%%%%%%% Parameters %%%%%%%%%

global d H Hfac W L ppz ppr alpha beta gamma sp_z sp_r sp_dz sp_dr sp_ddz sp_ddr

%Geometry parameters

d=0.5; H=2; Hfac=0.5; W=15; di=H-3*d; alpha=0.5; beta=1.5; gamma=2;

%Physical parameters scaling

Re=0; Ca=1.5; p2=300;

Ui=6*(alpha*d)^2/(di^2+6*d*di); %ui(s)=Ui*s*(1-s), yielding Uo=1

Tend=100; %End time

%Changing U (\propto Q)

X=1; Re=Re*X; Ca=Ca*X; p2=p2/X;

% Numerical parameters

Ndat=27; %datafile number

name=’pA’; %datafile name

M=5000; %maximal number of timesteps

dM=10; %save data every dM steps

save_data=1; %save data (yes (1) or no (0))

Mext=10; %extra symmetry points

tol_sp=1e-7; %smoothing spline tolerence

delta=0.33; %timestep size dt=delta*dT

zeta=0.03; %Hmax on interface



A.1 Main program 97

% Initial drop shape and data

i=1; isave=1; time=0; disp(’-------------------------------------’);

S=linspace(0,1,35); %initial S

zint=d*sin(pi/2*S); %initial z

rint=d*cos(pi/2*S); %initial r

%load(’data-pA24-011’,’zint’,’rint’,’S’,’time’,’dt’,’L_front’,’i’,’isave’,’Re’,’Ca’,’p2’,...

’L_front’,’L_int’,’h_thr’,’z_thr’,’V_bub’,’delta’,’zeta’,’tol_sp’);

isave=isave+1; i=i+1; L=zint(end);

%%%%% PDE system and parameters %%%%%

fem.const = {’Re’ Re ’Ca’ Ca ’p2’ p2 ’Ui’ Ui};

fem.functions{1}.type = ’inline’;

fem.functions{1}.name=’kappa20_rz(s)’;

fem.functions{2}.type = ’inline’;

fem.functions{2}.name = ’kappa20_rt(s)’;

fem.sdim = {’z’ ’r’};

fem.dim = {’u’ ’v’ ’p’};

fem.shape ={shlag(2,’u’) shlag(2,’v’) shlag(1,’p’)};

%fem.sshape = 3;

fem.gporder = 5;

fem.form = ’general’;

fem.equ.ga = {{{’r*(2*uz-p)’ ’r*(ur+vz)’} {’r*(ur+vz)’ ’r*(2*vr-p)’} {’0’ ’0’}}};

fem.equ.f = {{{’0’} {’-p+2*v/r’} {’r*(uz+vr)+v’}}};

%%%%% PDE boundary conditions %%%%%

fem.bnd.ind = {[12] [4] [3] [1 5:11 13] [2]};

fem.bnd.g = {{0 0 0} {0 0 0} {0 0 0} {0 0 0} ...

{{’(r*p2+1/Ca*(kappa20_rz(s)+kappa20_rt(s)))*nz’}...

{’(r*p2+1/Ca*(kappa20_rz(s)+kappa20_rt(s)))*nr’} 0}};

fem.bnd.r = {{{’u-Ui*s*(1-s)’} {’v’} 0} {0 {’v’} 0} {{’v’} 0 0} {{’u’} {’v’} 0} {0 0 0}};

%Initializing

h_thr(1)=1; L=zint(end);

ppz=spline([S 1+(1-S(end-1:-1:end-Mext))],[zint zint(end-1:-1:end-Mext)]);

ppr=spline([S 1+(1-S(end-1:-1:end-Mext))],[rint -rint(end-1:-1:end-Mext)]);

%%%%% Caclulations loop %%%%%

while time(end)<Tend & i<=M & L(end)<=0.95*W & h_thr(end)>0

% Geometry, Meshing

L=zint(end); d=rint(1);

fem.geom = ’geom20cur’;

fem.mesh = meshinit(fem,’Hmaxedg’,[1 2 3 7 9; 0.2 zeta 0.25 0.004 0.02],...

’Hgrad’,1.18,’Report’,’off’,’Hpntedg’,[2; length(S)],’Hnarrow’,3,...

’Hmax’,0.3,’Hcurve’,10);

% Modifying mesh

Idex=find(fem.mesh.e(5,:)==2);

Is=fem.mesh.e(1,Idex); Ie=fem.mesh.e(2,Idex); Izr=[Is Ie(end)];

zint=fem.mesh.p(1,Izr);

rint=fem.mesh.p(2,Izr);

dL=sqrt((zint(1:end-1)-zint(2:end)).^2+(rint(1:end-1)-rint(2:end)).^2);

S=[0 dL*triu(ones(length(dL)))]/sum(dL);

mesh_temp.p=fem.mesh.p; mesh_temp.t=fem.mesh.t; mesh_temp.e=fem.mesh.e;

mesh_temp.e(3,Idex)=S(1:end-1); mesh_temp.e(4,Idex)=S(2:end);

fem.mesh=meshenrich(mesh_temp);

[sp_z,sp_r,sp_dz,sp_dr,sp_ddz,sp_ddr]=kappadata20(S,zint,rint,Mext,tol_sp);
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% Solving

fem = femdiff(fem);

fem.xmesh = meshextend(fem);

fem.sol = femlin(fem,’Report’,’off’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Start Runge-Kutta time step

S_temp=S;

nz=-spval(sp_dr,S)./sqrt(spval(sp_dz,S).^2+spval(sp_dr,S).^2); nz(end)=1;

nr=spval(sp_dz,S)./sqrt(spval(sp_dz,S).^2+spval(sp_dr,S).^2); nr(end)=0;

un=nz.*postinterp(fem,’u’,S,’Dom’,2)+nr.*postinterp(fem,’v’,S,’Dom’,2); un(1)=0;

% Time step size dt

dt(i)=delta*min(dL./abs(un(2:end)));

% Making RK step

zint_temp=zint+un.*nz*dt(i)/2; zint_temp(1)=0;

rint_temp=rint+un.*nr*dt(i)/2; rint_temp(end)=0;

dL=sqrt((zint_temp(1:end-1)-zint_temp(2:end)).^2+...

(rint_temp(1:end-1)-rint_temp(2:end)).^2);

S=[0 dL*triu(ones(length(dL)))]/sum(dL);

pp_SS=pchip(S_temp,S);

ppz=spline([S 1+(1-S(end-1:-1:end-Mext))],[zint_temp zint_temp(end-1:-1:end-Mext)]);

ppr=spline([S 1+(1-S(end-1:-1:end-Mext))],[rint_temp -rint_temp(end-1:-1:end-Mext)]);

% Geometry, Meshing

L=zint_temp(end); d=rint_temp(1);

fem.geom = ’geom20cur’;

fem.mesh = meshinit(fem,’Hmaxedg’,[1 2 3 7 9; 0.2 zeta 0.25 0.004 0.02],...

’Hgrad’,1.18,’Report’,’off’,’Hpntedg’,[2; length(S)],’Hnarrow’,3,...

’Hmax’,0.3,’Hcurve’,10);

% Modifying mesh

Idex=find(fem.mesh.e(5,:)==2);

Is=fem.mesh.e(1,Idex); Ie=fem.mesh.e(2,Idex); Izr=[Is Ie(end)];

zint_temp=fem.mesh.p(1,Izr);

rint_temp=fem.mesh.p(2,Izr);

dL=sqrt((zint_temp(1:end-1)-zint_temp(2:end)).^2+...

(rint_temp(1:end-1)-rint_temp(2:end)).^2);

S=[0 dL*triu(ones(length(dL)))]/sum(dL);

mesh_temp.p=fem.mesh.p; mesh_temp.t=fem.mesh.t; mesh_temp.e=fem.mesh.e;

mesh_temp.e(3,Idex)=S(1:end-1); mesh_temp.e(4,Idex)=S(2:end);

fem.mesh=meshenrich(mesh_temp);

[sp_z,sp_r,sp_dz,sp_dr,sp_ddz,sp_ddr]=kappadata20(S,zint_temp,rint_temp,Mext,tol_sp);

% Solving

fem = femdiff(fem);

fem.xmesh = meshextend(fem);

fem.sol = femlin(fem,’Report’,’off’);

% End Runge-Kutta timestep: dt/2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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S=S_temp; S_RK=ppval(pp_SS,S);

% Evolving interface with gradiaent evaluated at dt/2

nz=-spval(sp_dr,S_RK)./sqrt(spval(sp_dz,S_RK).^2+spval(sp_dr,S_RK).^2); nz(end)=1;

nr=spval(sp_dz,S_RK)./sqrt(spval(sp_dz,S_RK).^2+spval(sp_dr,S_RK).^2); nr(end)=0;

un=nz.*postinterp(fem,’u’,S_RK,’Dom’,2)+nr.*postinterp(fem,’v’,S_RK,’Dom’,2); un(1)=0;

zint=zint+un.*nz*dt(i); zint(1)=0;

rint=rint+un.*nr*dt(i); rint(end)=0;

ppz=spline([S 1+(1-S(end-1:-1:end-Mext))],[zint zint(end-1:-1:end-Mext)]);

ppr=spline([S 1+(1-S(end-1:-1:end-Mext))],[rint -rint(end-1:-1:end-Mext)]);

%Data collected/updated at each timestep

L_front(i)=zint(end); time(i)=sum(dt(1:i)); L_int(i)=postint(fem,’1’,’Edim’,1,’Dl’,2);

I=find(kappa20_rz(S(2:end-1))>0);

if isempty(I)==0

rkn=rint(I); zkn=zint(I); [h_thr(i),I]=min(rkn); z_thr(i)=zkn(I);

I_m=find(zint==z_thr(i)); un_thr(i)=un(I_m);

V_bub(i)=pi*0.5*sum(diff(zint(I_m:end)).*(rint(I_m:end-1).^2+rint(I_m+1:end).^2));

else

h_thr(i)=1; z_thr(i)=0; V_bub(i)=0; un_thr(i)=0;

end

disp(sprintf(’Time t=%0.2d, i=%0.5g, dt=%0.2d, h_thr=%0.2d’,time(i),i,dt(i),h_thr(i)));

disp(L);

if find(i==[0:dM:M]) & save_data==1; % Saving data in file

txt=sprintf([’data-’ name ’%0.2d-%0.3d’],Ndat,isave);

save(txt,’zint’,’rint’,’S’,’time’,’dt’,’L_front’,’i’,’isave’,...

’Re’,’Ca’,’p2’,’L_front’,’L_int’,’h_thr’,’z_thr’,’V_bub’,’un_thr’,...

’alpha’,’beta’,’gamma’,’X’,’delta’,’zeta’,’tol_sp’,’Hfac’);

isave=isave+1;

disp(txt);

end

i=i+1;

% Freeing memory

fem.xmesh=0; flgc;

% Exiting time loop:

clear halt; halt;

end

%Save last data

i=i-1;

txt=sprintf([’data-’ name ’%0.2d-%0.3d’],Ndat,isave);

save(txt,’zint’,’rint’,’S’,’time’,’dt’,’L_front’,’i’,’isave’,...

’Re’,’Ca’,’p2’,’L_front’,’L_int’,’h_thr’,’z_thr’,’V_bub’,’un_thr’,...

’alpha’,’beta’,’gamma’,’X’,’delta’,’zeta’,’tol_sp’,’Hfac’);

Tsim=toc;

disp(’-------------------------------------’);

disp(sprintf(’Total computation time %0.4g min’,Tsim/60));

disp(sprintf(’Re=%0.5g, Ca=%0.5g, p_2=%0.3d, and X=%0.5g’,Re,Ca,p2,X));

disp(’-------------------------------------’);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% Post Processing and Plots %%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fem.xmesh = meshextend(fem);

figure(1)

subplot(2,2,1);

postplot(fem,’tridata’,’p’,’arrowdata’,{’u’ ’v’},’trirefine’,1,...

’arrowyspacing’,25,’arrowxspacing’,35,’arrowcolor’,’k’,...

’arrowstyle’,’normalized’,’arrowscale’,1); axis image;

xlabel(’z’); ylabel(’r’);

subplot(2,2,2)

data=postinterp(fem,’-nz*u-nr*v’,S,’Dom’,2);

plot(S,data,’.-’); xlabel(’S’); ylabel(’Normal velocity: u_n=u\cdotn’);

subplot(2,2,3)

plot(S,kappa20_rz(S)+kappa20_rt(S),’k.-’); hold on;

plot(S,kappa20_rz(S),’r.-’); plot(S,kappa20_rt(S),’g.-’);

xlabel(’S’); ylabel(’r \cdot curvature’);

legend(’\kappa’,’\kappa_{rz}’,’\kappa_{r\theta}’,1)

subplot(2,2,4) plot(time,L_front,’.-’);

xlabel(’Time: t’); ylabel(’Position of front: L’);
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A.2 Additional functions

kappa20 rz.m

function kappa20_rz=kappa20_rz(s)

global sp_r sp_dz sp_dr sp_ddz sp_ddr

kappa20_rz=spval(sp_r,s).*(spval(sp_dz,s).*spval(sp_ddr,s)-spval(sp_dr,s).*...

spval(sp_ddz,s))./(spval(sp_dz,s).^2+spval(sp_dr,s).^2).^(3/2);

kappa20 rt.m

function kappa20_rt=kappa20_rt(s)

global sp_r sp_dz sp_dr

kappa20_rt=-spval(sp_dz,s)./(spval(sp_dz,s).^2+spval(sp_dr,s).^2).^(1/2);

kappadata20.m

function[sp_z,sp_r,sp_dz,sp_dr,sp_ddz,sp_ddr]=kappadata20(s,z,r,Mext,tol)

M=length(s); wz=ones(1,M+Mext); wz([1 M-8 M-4 M M+4 M+8])=100;

wr=ones(1,M+Mext); wr([1 M-8 M-4 M M+4 M+8])=100;

sp_z=spaps([s1+(1-s(end-1:-1:end-Mext))],[z z(end-1:-1:end-Mext)],tol,wz,3);

sp_r=spaps([s 1+(1-s(end-1:-1:end-Mext))],[r-r(end-1:-1:end-Mext)],tol,wr,3);

sp_dz=fnder(sp_z,1);

sp_ddz=fnder(sp_z,2);

sp_dr=fnder(sp_r,1);

sp_ddr=fnder(sp_r,2);
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geom20cur.m

function [z,r]=geom20cur(bs,s)

global d H Hfac W L ppz ppr alpha beta gamma

cdel=0.02; nbs=13;

if nargin==0

z=nbs; return

end

dl=[0 0 0 0 0 0 0 0 0 0 0 0 0;

1 1 1 1 1 1 1 1 1 1 1 1 1;

1 1 1 1 1 1 1 1 1 1 1 1 1;

0 0 0 0 0 0 0 0 0 0 0 0 0];

if nargin==1

z=dl(:,bs); return

end

z=zeros(size(s)); r=zeros(size(s)); [m,n]=size(bs);

if m==1 & n==1

bs=bs*ones(size(s));

elseif m~=size(s,1) | n~=size(s,2)

error(’bs must be scaler or of same size as s’);

end

%Boundary segment indices

I1=find(bs==1); I2=find(bs==2); I3=find(bs==3); I4=find(bs==4);

I5=find(bs==5); I6=find(bs==6); I7=find(bs==7); I8=find(bs==8);

I9=find(bs==9); I10=find(bs==10); I11=find(bs==11); I12=find(bs==12); I13=find(bs==13);

%Boundary coordinates

z(I1)=0;

r(I1)=3*d*(1-s(I1))+d*s(I1);

z(I2)=ppval(ppz,s(I2));

r(I2)=ppval(ppr,s(I2));

z(I3)=L*(1-s(I3))+W*s(I3);

r(I3)=0;

z(I4)=W;

r(I4)=Hfac*H*s(I4);

z(I5)=W*(1-s(I5))+(beta+gamma)*d*s(I5);

r(I5)=Hfac*H;

z(I6)=(beta+gamma)*d;

r(I6)=Hfac*H*(1-s(I6))+(alpha*d+cdel)*s(I6);

z(I7)=(beta+gamma)*d-cdel + cdel*cos(pi/2*s(I7));

r(I7)=(alpha*d+cdel) - cdel*sin(pi/2*s(I7));

z(I8)=((beta+gamma)*d-cdel)*(1-s(I8))+(beta*d+cdel)*s(I8);

r(I8)=alpha*d;

z(I9)=(beta*d+cdel) + cdel*cos(pi/2*s(I9)+pi/2);

r(I9)=alpha*d+cdel - cdel*sin(pi/2*s(I9)+pi/2);

z(I10)=beta*d;

r(I10)=(alpha*d+cdel)*(1-s(I10))+H*s(I10);

z(I11)=beta*d*(1-s(I11))-1*s(I11);

r(I11)=H;

z(I12)=-1;

r(I12)=H*(1-s(I12))+3*d*s(I12);

z(I13)=-1*(1-s(I13));

r(I13)=3*d;
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A.3 Program variables description

The most important variables found in the source code above are here list and describe.

Constants

Ca: capillary number Ca
p2: gas pressure p̃2

X: scaling of flow rate (corresponds to εu)
zeta: mesh size on moving boundary

zeta_vtx: mesh size at the bubble tip vertex
tol_sp: approximating spline tolerance
Mext: additional ghost symmetry points Mext

Program variables

zint: interface points z-coordinates
rint: interface points r-coordinates

S: interface points arc length parameter
ppz: interface z-coordinates interpolating spline
ppr: interface r-coordinates interpolating spline
dL: distance between interface points |xi − xi+1|

sp_z: approximating spline for z(S)
sp_dz: approximating spline for ż(S)
sp_ddz: approximating spline for z̈(S)
sp_r: approximating spline for r(S)

sp_dr: approximating spline for ṙ(S)
sp_ddr: approximating spline for r̈(S)

nz: surface normal z-component nz(S)
nr: surface normal r-component nr(S)
un: interface normal velocity u · n(S)
dt: time step ∆t

time: time t
L_int: total interface length
h_thr: gas thread thickness hthr

V_bub: emerging bubble volume Vb = 2π
∫ zmax

zthr
r(z)rdz
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Femlab structures

fem.const: constant used in femlab
fem.function: identifies user defined Matlab functions

fem.sdim: independent variables (z, r)
fem.dim: dependent variables (u, v, p)

fem.shape: finite element shapes
fem.form: form of the governing equations

fem.equ.ga: contains Γ from the governing equation
fem.equ.f: contains F from the governing equation
fem.bnd.g: contains G from the BC
fem.bnd.r: contains R from the BC
fem.mesh: contains mesh information created with the meshinit function
fem.sol: contains the solution solved with femlin



Appendix B

More Femlab and FEM

B.1 Finite element analysis

When solving a PDE with the finite element method the solution field (u(x), v(x), p(x))
is approximated by a linear combination of a finite number of basis functions

[u(x), v(x), p(x)] =
∑

i

[uiϕi1(x), viϕi2(x), piϕi3(x)] . (B.1)

where (ui, vi, pi) are the coefficients solved for. The basis functions ϕil, l = 1, 2, 3 have
a compact support, i.e., they are only nonzero on the mesh elements in the immediate
neighborhood of the mesh node i, see Fig. B.1. The steady state PDE we wish to solve is
given on the strong form

∂jΓljk = Flk in Ωk, (B.2)

where we use the Einstein summation rule, ∂j means partial differentiation with respect
to independent variable j, k is the domain number and Γk = [Γlj ]k as in Chap. 5. The

i

¶Wm

x

n

W

Figure B.1: Sketch of a computational domain Ω with boundary ∂Ω =
⋃

m ∂Ωm. The domain is
divided into a triangular mesh. A basis function ϕi has the compact support marked in gray.
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boundary conditions are

−njΓlj = Gl +
∂Rm

∂Ul

µm on ∂Ωm (B.3)

0 = Rm on ∂Ωm. (B.4)

where j = 1, 2 is the independent variable (dimension z and r), l is the dependent variable
counter, m is the boundary number, U = (u, v, pk) is the dependent variable field, k is the
domain number, and n = (n1, n2) is the outward normal. It is however only possible to
satisfy this equation using infinitely many basis functions. To remedy this issue Eq. (B.2)
is multiplied by the basis function ϕil and is integrated over the entire domain Ωk,

∫

Ωk

ϕil∂jΓljk dA =
∫

Ωk

ϕilFlk dA, (B.5)

this form is known as the weak form of Eq. (B.2) because we solve the problem only on
average. Partial integration of Eq. (B.5) further yields

−
∫

Ωk

∂jϕilΓljk dA +
∫

∂Ω
ϕil(njΓljk) d` =

∫

Ωk

ϕilFlk dA, (B.6)

where we identify the boundary integral as the Neumann condition of Eq. (B.3). We may
thus rewrite as

−
∫

∂Ωm

ϕil

[
Gl +

∂Rm

∂Ul

µm

]
d` =

∫

Ωk

[
∂jϕilΓljk + ϕilFlk

]
dA. (B.7)

If the BC is a Dirichlet condition 0 = Rm it is fulfilled by choosing the Lagrange multiplier
µm accordingly. When solving a PDE by the FEM method Eq. (B.7), which now includes
all BCs, transforms to a large algebraic matrix system. Note that for a given i the
integrals are only nonzero on the support of ϕil and are typically computed using a Gauss
quadrature scheme. Ample details are found in Refs. [75, 76, 59].

B.2 Two fluids implementation: weak form

In the case of a system containing two fluids (k = 1, 2) the governing Eqs. (4.37) and
(4.38), and the boundary conditions Eq. (4.39) are implemented in the weak from. This
system was studied in the numerical test case of the viscous drop in viscous extensional
flow, Sec. 6.3. For such a two domain system the equation corresponding to Eq. (B.6) is

−
∫

Ωk

∂jϕilΓljk dA +
∫

∂Ω
ϕilnj(Γlj1 − Γlj2) d` =

∫

Ωk

ϕilFlk dA, k = 1, 2 (B.8)

where k is the indic of the domain and the line integral includes both terms Γljk only on
a boundary ∂Ω = Ω1 ∩ Ω2. On such a fluid-fluid boundary we have

∫

∂Ω
ϕilnj(Γlj1 − Γlj2) d` =

∫

∂Ω
ϕil

1
Ca

(rκ)nj d` (B.9)
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when using Eq. (4.39) and n is the normal pointing from domain 1 into domain 2. In the
Femlab script language the basis functions are referred to with the variable name followed
by _test. The area integrals are defined in the fem.eq.weak fields and the boundary in-
tegrals are entered directly in the fem.bnd.weak field. The governing equations and BCs
are as follows:

%%%%% PDE system and parameters %%%%%

fem.const = {’Re’ Re ’Ca’ Ca ’e_mu’ e_mu ’e_rho’ e_rho ’G’ G};

fem.functions{1}.type = ’inline’;

fem.functions{1}.name = ’kappa2L_rz(s)’;

fem.functions{2}.type = ’inline’;

fem.functions{2}.name = ’kappa2L_rt(s)’;

fem.sdim = {’z’ ’r’};

fem.dim = {’u’ ’v’ ’p1’ ’p2’};

fem.shape = {shlag(2,’u’) shlag(2,’v’) shlag(1,’p1’) shlag(1,’p2’)};

fem.sshape = 3;

fem.gporder = 5;

fem.form = ’weak’;

fem.equ.expr = {’G1zz’ ’r*(2*uz-p1)’ ’G1rr’ ’r*(2*vr-p1)’...

’G1zr’ ’r*(ur+vz)’ ’G2zz’ ’r*(e_mu*2*uz-p2)’...

’G2rr’ ’r*(e_mu*2*vr-p2)’ ’G2zr’ ’r*e_mu*(ur+vz)’...

’F1’ ’-p1+2*v/r’ ’F2’ ’-p2+e_mu*2*v/r’...

’cont’ ’r*(uz+vr)+v’ ’p’ {’p1’ ’p2’}};

fem.equ.shape = {[1 2 3] [1 2 4]};

fem.equ.weak{1} = {’uz_test*G1zz+ur_test*G1zr+vz_test*G1zr+...

vr_test*G1rr+v_test*F1+p1_test*cont’};

fem.equ.weak{2} = {’uz_test*G2zz+ur_test*G2zr+vz_test*G2zr+...

vr_test*G2rr+v_test*F2+p2_test*cont’};

%%%%% PDE boundary conditions %%%%%

fem.bnd.ind = {[1] [2] [3] [4] [5] [6]};

fem.bnd.shape = {[1 2 3] [1 2 3] [1 2 3 4] [1 2 3] [1 2 4] [1 2 4]};

fem.bnd.constr = {{’u-G*z’ ’v+0.5*G*r’ 0 0} {’u’ 0 0 0} {0 0 0 0}...

{’v’ 0 0 0} {’u’ 0 0 0} {’v’ 0 0 0}};

fem.bnd.weak = {0 0 ’-1/Ca*(kappa2L_rz(s)+kappa2L_rt(s))*(nz*u_test+nr*v_test)’ 0 0 0};

fem.pnt.ind = {[3 5] [2 4] [1]};

fem.pnt.shape = {[1 2 3] [1 2 3 4] [1 2 4]};

fem.pnt.constr = {{0 0 0 0} {0 0 0 0} {0 0 0 ’p2’}};

B.3 Curvature projection onto test function

When implementing the weak form of Eq. (B.9) in the code the curvature term rκ was
added as a user defined function, see Sec. XXX. It is however possible to implement the
term using the weak formulation and the definition Eq. (4.17). This concept was first
thought off by fellow PhD student and FEM guru Laurits H. Olesen. As in Eq. (B.9) we
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have

∫

∂Ω
ϕilnj(Γlj1 − Γlj2) d` =

∫

∂Ω
ϕil

1
Ca

(rκ)nj d`

=
∫

∂Ω
ϕil

1
Ca

(rκ)nj d` =
1

Ca

∫

∂Ω
ϕilr

(
∂tj
∂`

+ κrφ

)
d`

=
1

Ca

[
[tjϕilr]

max(`)
min(`) −

∫

∂Ω
tj

∂rϕil

∂`
d` +

∫

∂Ω
ϕiln2 d`

]
(B.10)

here we have used classical the result from 2D differential geometry ∂t/∂` = κrz Eq. (4.17)
and the fact that rκrφ = n2 Eq. (4.20). Note that Eq. (B.10) is only true for l = 1, 2 as
Γj3k = 0. In the last step we have used integration by parts. The interface tangent is
t = (t1, t2) and ` is the arc-length parameter. The first term in the last equation is zero
when r = 0 at the symmetry z-axis and it has no influence at the symmetry line defined
by the r-axis because of the Dirichlet constraints enforced here, see Fig. 6.13. Moreover,
we have

∂rϕil

∂`
= t2ϕil + r

∂ϕil

∂`
(B.11)

as ∂x/∂` = t. Inserting Eq. (B.11) into Eq. (B.10) yields

1
Ca

[∫

∂Ω
tj

(
t2ϕil + r

∂ϕil

∂`

)
d` +

∫

∂Ω
ϕiln2 d`

]
(B.12)

where

∂ϕil

∂`
= t · ∇ϕil = t1

∂ϕil

∂z
+ t2

∂ϕil

∂r
. (B.13)

All in all this transformation may seem to complicate the problem more than simpli-
fying it. Nonetheless, it is now possible to express the BC at the free surface in terms of
the test functions ϕil, the surface normal, and the surface tangent. These quantities are
all available internally to Femlab . The curvature which includes higher order derivatives
of the interface shape has, by this method, been projected onto the test functions. The
weak form of the boundary conditions and the governing equations are in Femlab script
language given as:
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%%%%% PDE system and parameters %%%%%

fem.const = {’Re’ Re ’Ca’ Ca ’e_mu’ e_mu ’e_rho’ e_rho ’G’ G};

fem.sdim = {’z’ ’r’};

fem.dim = {’u’ ’v’ ’p1’ ’p2’};

fem.shape = {shlag(3,’u’) shlag(3,’v’) shlag(2,’p1’) shlag(2,’p2’)};

fem.form = ’weak’;

fem.equ.expr = {’G1zz’ ’r*(2*uz-p1)’ ’G1rr’

’r*(2*vr-p1)’ ’G1zr’ ’r*(ur+vz)’...

’G2zz’ ’r*(e_mu*2*uz-p2)’ ’G2rr’ ’r*(e_mu*2*vr-p2)’...

’G2zr’ ’r*e_mu*(ur+vz)’ ’F1’ ’-p1+2*v/r’...

’F2’ ’-p2+e_mu*2*v/r’ ’cont’ ’r*(uz+vr)+v’ ’p’ {’p1’ ’p2’}};

fem.equ.shape = {[1 2 3] [1 2 4]};

fem.equ.weak{1} = {’uz_test*G1zz+ur_test*G1zr+vz_test*G1zr+vr_test*G1rr+...

v_test*F1+p1_test*cont’};

fem.equ.weak{2} = {’uz_test*G2zz+ur_test*G2zr+vz_test*G2zr+vr_test*G2rr+...

v_test*F2+p2_test*cont’};

%%%%% PDE boundary conditions %%%%%

fem.bnd.ind = {[1] [2] [3] [4] [5] [6]};

fem.bnd.expr = {’phi_u’ ’(tr*u_test+r*(tz*uz_test+tr*ur_test))*nz’ ...

’phi_v’ ’(tr*v_test+r*(tz*vz_test+tr*vr_test))*nr’};

fem.bnd.shape = {[1 2 3] [1 2 3] [1 2 3 4] [1 2 3] [1 2 4] [1 2 4]};

fem.bnd.constr = {{’u-G*z’ ’v+0.5*G*r’ 0 0} {’u’ 0 0 0} {0 0 0 0}...

{’v’ 0 0 0} {’u’ 0 0 0} {’v’ 0 0 0}};

fem.bnd.weak = {0 0 [’1/Ca*(tz*tr*u_test+r*uTz_test + tr*tr*v_test+r*vTr_test)’ ’+’ ...

’1/Ca*nr*(nz*u_test+nr*v_test)’] 0 0 0};

fem.pnt.ind = {[3 5] [2 4] [1]};

fem.pnt.shape = {[1 2 3] [1 2 3 4] [1 2 4]};

fem.pnt.constr = {{0 0 0 0} {0 0 0 0} {0 0 0 ’p2’}};

The implementation of the free interface boundary condition in this ”projection” formula-
tion was mostly a small FEM experiment. One result obtained for the drop in extensional
flow, with Ca = 0.1 and εµ = 10−3, is compared with the standard method in Fig. B.2.
The circles are the projection results and the line the standard results. Steady state was
reached after 250 and 80 time steps, respectively, as the time step parameter δt had to be
chosen three times smaller to ensure stability in the projection method. Anyhow, the two
solutions were in quite good agreement

For simulations of systems with large capillary numbers the projection method agreed
with the standard method but a lot of numerical noise was introduced for longer runs (large
times t). In the case of small capillary numbers the projection method was unstable and
noisy even for short times. The problem most certainly lies with un-physical amplification
of interface wiggles. The comparison was done with the same grid and time stepping
parameters.
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Figure B.2: Comparison of the projection (circles) and the standard (full line) method to handle
the curvature at the free interface.
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Abstract
We present a theoretical and numerical study of the quasi-static motion of
large wetting bubbles in microfluidic channels with contractions. In most
cases the energy of a bubble increases when it is moved from a wide channel
to a narrow one, and the bubble thus tends to clog the flow of the fluid. A
certain pressure, the so-called clogging pressure, is needed to push the
bubbles out of the contraction. However, we show that in the case of a
hydrophilic channel contraction there exists a range of parameter values
where the bubble actually gains energy by moving into the narrow part. For
these specific cases we analyze how the clogging pressure depends on
channel geometry, surface tension and contact angle. Based on our analysis
we establish design rules for minimizing the clogging pressure of
microchannel contractions.

1. Introduction

Many microfluidic networks on modern lab-on-a-chip devices
contain channel contractions. These tend to become
problematic if, as is often the case, gas bubbles are introduced
into the liquid at the inlets or by electrochemical processes.
Due to the small channel dimensions gas bubbles can easily
be large enough to span the entire channel cross-section.
Such ‘large’ bubbles are prone to get stuck at the channel
contraction, whereby they can clog the flow and disturb
measurements or functionality of the system in an uncontrolled
manner. To clear the clogged channel an external pressure,
the so-called clogging pressure, has to be applied to push
the clogging bubble out of the system. Although already
identified nearly a decade ago [1, 2], this important problem
in microfluidic systems has not been studied theoretically
to a wide extent, a situation we would like to amend with
this paper. The present work is a substantial extension of a
preliminary and specialized study presented at the NanoTech
2003 conference [3], now including an analysis of the bubble
energies in general cases, inclusion of compressibility effects
and the use of different parameter values.

A complete analysis of the motion of a large bubble
through a microchannel contraction involves many different
physical effects, some which are not completely understood.

Any comprehensive analysis would at least require detailed
modeling of the liquid–gas, liquid–solid and solid–gas
interfaces as well as the dynamics in the bulk fluids. But
also more complicated processes near the contact lines need
to be addressed, e.g. wetting [4–6], contact line pinning and
hysteresis [4, 7], dynamic contact angles and contact lines
[8–10] and static and dynamic friction [11–13]. It should be
stressed that many of these surface effects are hard to control
precisely, therefore dynamical systems where the lubrication
assumption is used are also widely analyzed [14, 15].

In this work, however, we will restrict our analysis to
quasi-static motion of bubbles. By this we mean that the
velocity of the bubble is nearly zero and that the entire
model system remains arbitrarily close to equilibrium for all
bubble positions. All dynamic aspects are thus neglected,
and basically the model involves only the free energy of the
internal interfaces of the system and external pressures. This
is motivated by the fact that it is difficult to experimentally
control surface related properties. We thus only study
geometry related effects. We also choose to work only with
axisymmetric channels of smooth (but otherwise arbitrary)
contraction geometries free from any sharp corners and
other singularities. With these simplifications the forces or
pressures needed to push a bubble through the system can be
calculated accurately without losing the essential physics of
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Figure 1. A bubble with internal pressure Pi and center of mass xcm

in a hydrophilic axisymmetric channel. The left (right) contact line
has the coordinate xL (xR) and contact angle θ . The channel is
contracting from a straight part of radius R to one of radius r. The
specific channel profile is defined by some function r(x).
Throughout this paper we have chosen r(x) to be a sloped straight
line joined to the straight parts by two circle arcs. The tapering
angle θt is given by tan θt = −r ′(x). The pressure left (right) of the
bubble is denoted as PL (PR) and the pressure difference across the
bubble is �Pb.

the problem. This in turn enables us to formulate design rules
for microchannel contractions to prevent or reduce clogging.
To our knowledge similar analyses have only been made on
channels of constant cross-sections [16] and for the special
case of sudden contractions [17].

2. The model and basic physical assumptions

Consider a hydrophilic microfluidic channel or capillary, such
as the one depicted in figure 1, which is axisymmetric about
the x axis with a position dependent channel radius r(x). The
channel is filled with a liquid. A large bubble of some other
fluid (we think mainly of a gas such as air) is present in the
liquid. By large we mean that the volume of the bubble is
larger than the volume V max

sph of the largest inscribed sphere
that can be placed anywhere in the microchannel. A large
bubble divides the liquid into two disconnected parts, left and
right of the bubble. The bubble itself consists of a bulk part in
direct contact with the walls of the channel and of two menisci,
in contact with the liquid, capping the ends of the bubble.

The bubble is assumed to be in quasi-static equilibrium. In
that case it is relatively simple to combine mass conservation
with geometric constraints to determine, as a function of the
bubble position, the pressure drops over the two menisci
needed to maintain this equilibrium. We define our central
concept, the clogging pressure, as the maximum of the position
dependent pressure drop across the bubble, i.e. the minimal
external pressure that must be supplied to push the bubble
through the microchannel.

2.1. The Young and Young–Laplace equations

Our model system consists of a solid channel containing a
liquid and one large gas bubble. Therefore, the essential
physical parameters are the three surface tensions (surface

free energy per area) σlg, σsl and σsg for the liquid–gas, solid–
liquid and solid–gas interfaces, respectively. In equilibrium
the contact angle θ is determined by the surface tensions
through the Young equation [18, 19]

σsg − σsl = σlg cos θ. (1)

In the following the contact angle is taken as the equilibrium
angle or rather as an average contact angle. Because contact
angle hysteresis is very sensitive to surface effects, we do not
address these questions in this work.

To sustain a curved interface with the main radii of
curvature Rc

1 and Rc
2 between a gas of pressure Pg and a liquid

of pressure Pl, the pressure difference �P = Pg − Pl must
obey the Young–Laplace equation [20]

�P = σlg

(
1

Rc
1

+
1

Rc
2

)
= 2σlg

cos θ

r
, (2)

where the last equation is applicable for a constant circular
cross-section of radius r. We use the standard convention that
these radii are taken as positive if the interface is concave when
seen from the gas.

2.2. Isothermal motion and compressibility

In the rest of the paper we consider a ‘large’ bubble having the
initial position ‘1’ in the widest part of the channel. The initial
volume is V1 = γV max

sph , where γ > 1 and V max
sph = 4πr3

1

/
3,

and the corresponding internal pressure is Pi,1. At a later stage
the bubble is moved to a position ‘2’, where the volume is
V2 and the internal pressure is Pi,2. In the quasi-static case
the bubble motion is isothermal and hence the compressibility
condition applies,

Pi,1V1 = Pi,2V2. (3)

The pressure Pi within the bubble is given as the external
pressure P0 plus the pressure change �P across the curved
interface, given by equation (2).

The most extreme compression is obtained by pressing a
large bubble, which floats without geometrical constraints in
a bulk liquid of pressure P0, into a narrow circular channel of
radius r. Combining equations (2) and (3) yields

V1

V2
= Pi,2

Pi,1
≈ Pi,2

P0
= 1 +

2σlg cos θ

rP0
. (4)

For example, moving a large spherical air bubble in water
(σlg = 0.0725 J m−2) at the ambient pressure P0 = 105 Pa
into a channel of radius r = 25 µm leads to V1/V2 ≈ 1.06,
i.e. a volume compression of 6%. Moving, as in section 6,
a bubble from a 300 µm to a 190 µm wide channel yields a
compression of about 0.2%.

In the case of laser ablated microchannels in plastic
chips, compressibility effects are negligible as the smallest
dimensions typically are greater than 100 µm. However, for
silicon based micro- or nanofluidic devices, compressibility
may play a significant role.

2.3. Quasi-static motion and geometry

For a bubble positioned in a microchannel contraction, the
total internal energy Etot is the sum of the surface free energy,
gravitational energy, kinetic energy and frictional energy. We
regard the surrounding pressures as external energy. By our
definition quasi-static motion of an incompressible bubble
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implies that the kinetic energy is zero and friction is also
zero because of hydrostatic and thermodynamic equilibrium.
Finally, we treat channels of characteristic dimensions 2r less
than 300 µm, which is significantly smaller than the capillary
length of water, �c = √

σlg/ρlg ≈ 2700 µm, where ρl =
103 kg m−3 and g = 9.82 m/s2. So the gravitational energy
can also be neglected, which ensures that the menisci may be
approximated by spherical caps.

The total internal energy Etot of the microchannel
containing a quasi-statically moving bubble is given only by
the surface free energy, i.e. the sum of interfacial energies σi

times interfacial areas Ai ,

Etot =
∑

i

σiAi = σlgAlg + σsgAsg + σslAsl. (5)

The pressure-related applied external force F needed to
balance the bubble is given by the gradient of the total internal
energy with respect to the center of mass coordinate of the
bubble xcm. Hence

F = dEtot

dxcm
, (6)

which thus depends on the bubble position xcm and, through
the areas Ai , on the geometry of the channel.

2.4. The clogging pressure

The Young–Laplace pressure drops (cf equation (2)) at the
menisci are given by,

�PL = Pi − PL, (7a)

�PR = Pi − PR. (7b)

The total pressure drop �Pb(xcm) over the bubble as a function
of its center of mass xcm is given by

�Pb(xcm) = PR − PL = �PL(xcm) − �PR(xcm). (8)

The clogging pressure Pclog is defined as the maximal position
dependent pressure drop across the bubble,

Pclog = max {−�Pb(xcm)}. (9)

The clogging pressure expresses the minimal amount by which
the left-hand-side pressure PL must exceed the right-hand-side
pressure PR to push the bubble through the contraction quasi-
statically from left to right.

3. General energy considerations for axisymmetric
microchannels

Consider a bubble placed in a cylindrical channel of radius R.
We want to determine the change in energy resulting from
moving it into a smaller channel of radius r < R, e.g.
by moving it from left to right in the channel depicted in
figure 1. Intuitively, we would expect the energy to increase
as a result of the movement. In most cases this intuition is
correct; however, we shall see that in some cases the system
gains energy by the move, solely due to geometric conditions.

The bubble has the initial volume V1 = γV max
sph , where

γ > 1 and V max
sph = 4πR3/3. With this constraint the bubble is

forced to touch the walls regardless of its position. According
to equations (2) and (7b) the internal pressure of the bubble is

Pi,1 = PR + 2σlg
cos θ

R
. (10)

The volume of the bubble is the sum of two spherical cap
volumes and the volume of a cylinder of initial length L. Once
the length L is known, the relevant interfacial areas Alg and
Asg may be found.

The gas bubble is now moved to the cylindrical channel
of radius r, and according to equations (2), (3) and (7b) the
pressure Pi,2 and volume V2 are

Pi,2 = PR + 2σlg
cos θ

r
, (11)

V2 = Pi,1

Pi,2
V1. (12)

By solving equation (12) it is straightforward to find the change
in total free surface energy,

�Etot = Etot,2 − Etot,1 = σlg(Alg,2 − Alg,1)

+ σlg2π cos θ(rl − RL), (13)

where l is the length of the bubble in the channel of radius
r < R (situation 2). In equation (13) the Young relation
(1) has been used to eliminate the solid–liquid and solid–gas
interfacial energies.

Based on equation (13) we can analyze the energy change
when moving the bubble from the wide channel of radius R to
the narrow channel of radius r. First we give the limiting values
of �Etot. In the limit r/R → 1 we obviously get �Etot → 0.
In the opposite limit, r/R → 0, the compressibility of the
bubble results in convergence of �Etot,

lim
r
R

→0
�Etot = πR3

3

(
4γRPR − σlg

4 + sin(3θ) − 3 tan θ

cos2 θ

)
.

(14)

To discuss �Etot for general values of r/R we use a numerical
example: an air bubble in a water filled PMMA channel for
which we have the parameter values PR = 105 Pa, σlg =
72.5 mJ and θ = 72◦. The radius ratio r/R and the volume
parameter γ are then varied.

In figure 2 the energy �Etot (equation (13)) is plotted
as a function of the ratio r/R for given values of γ . The
figure shows that for large values of γ , i.e. large bubbles,
it requires energy (�Etot > 0) to move the bubble from
the wide to the narrow channel. However, there exists a
critical value γc ≈ 4.75 below which the system can gain
energy by moving the bubble, if the radius ratio r/R is not too
small. This behavior is generic for a bubble in a contracting
channel, but the specific shape of the curve and the optimal
minimum depend on the material parameters and the external
pressure PR.

The critical value γc, above which energy gain is
impossible, is given by ∂�Etot/∂(r/R) = 0 at r/R = 1,

γc = (3 − cos(3θ) + 2 sin θ)(2σlg cos θ + RP0)

2RPR cos θ(1 + sin θ)
. (15)

Figure 3 depicts the energy �Etot as a function of the
ratio r/R for γ = 1 and γ = 3, and for five values of the
wide channel radius, R = 100, 150, 200, 250 and 300 µm.
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Figure 2. Plot of the energy change �Etot as a function of the ratio
r/R. The bubble is moved from a wide channel of radius R =
150 µm to a narrow channel of radius r. Five curves are shown
corresponding to the volume ratio γ = 1, 2, 3, γc and 8, respectively.
γc ≈ 4.75. For ‘small’ volumes 1 � γ < γc the system can gain
energy by moving the bubble to the narrow channel, if the width of
the latter is not too small. For γ > γc the movement requires energy
in all cases.
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Figure 3. The energy �Etot as a function of the ratio r/R for
different values of the wide channel radius, R = 100, 150, 200, 250
and 300 µm. The plain curves correspond to the smallest bubble for
γ = 1 and the dotted curves correspond to a larger bubble with
γ = 3.

From equation (13) it may be seen that min{�Etot} ∝ R2 as
the area is proportional to R2 and L is proportional to R.
Deviations from this proportionality arise for small values
of R because of compressibility. For γ = 1 in figure 3
we find max{−�Etot} = kR2 with k = 0.159 J m−2. This
proportionality is illustrated as the energy at a given r/R

point is increased by a factor 4 when R is doubled, e.g. from
R = 150 µm to R = 300 µm.

The previous calculations clearly show that for some
geometries it is favorable to place the bubble in the narrow
rather than in the wide part of the channel. In the following
we shall address the question of whether for such geometries
the bubble will move spontaneously or it must cross an energy
barrier to arrive at the low-energy state in the narrow channel.

4. Analytical results for contractions with
energy gain

Combining the geometry defined in figure 1 with equations (2)
and (8), the central expression of our analysis is easily derived,

L

Dd

(a) (b)

x1 x1x2 x2

Figure 4. Two generic situations for a bubble of length L = xR − xL

near a microchannel contraction of length x2 − x1. (a) The
contraction is long enough to contain the entire bubble, i.e.
xR − xL < x2 − x1. (b) The contraction is so short that the bubble
can span it completely, i.e. xR − xL > x2 − x1, which is a class β4

bubble.

�Pb = 2σlg

(
cos[θ − θt(xL)]

r(xL)
− cos[θ + θt(xR)]

r(xR)

)
. (16)

From the discussion in section 2.4 it follows that if �Pb < 0
then the contraction causes bubble clogging, whereas for
�Pb > 0 the bubble tends to move spontaneously through
the contraction toward the narrow part.

Based on equation (16) a number of design rules may be
established specifying the geometric features that may prevent
or decrease clogging. Consider a bubble that starts out in the
wide straight section left of the contraction, where it has a
length L0 = xR − xL. The pressure drop �Pb is zero to begin
with, but depending on the shape of the contraction, such as the
two examples shown in figure 4, �Pb changes as the bubble
advances quasi-statically through the contraction.

The first part of any contraction can always be
approximated by a circle with an arc angle which is the local
tapering angle θt. As the right contact line xR just enters the
contraction, equation (16) can be expanded to first order in θt

yielding

�Pb ≈ 2σlg sin θ

R
θt > 0. (17)

Thus initially the bubble tends to move spontaneously into
the contraction. The physical reason for this is that the local
tapering angle allows the meniscus to flatten a little, which
reduces the costly gas–liquid interface energy.

Once the bubble moves inside the contraction defined in
figure 1, a complicated interplay between the initial bubble
length L0, the contact angle θ , the channel radii r(xL) and
r(xR) at the contact lines and the local tapering angle θt(x)

decides whether bubble clogging occurs or not. We classify
our systems into two main classes:

Class α comprises all cases where no clogging occurs,
i.e. where the bubble can move spontaneously through the
contraction without applying an external pressure.

Class β contains all cases with clogging, i.e. where
�Pb < 0 at some point or, equivalently, where Pclog > 0.

For class β four sub-classes can be identified depending on
where the bubble is when �Pb becomes negative and clogging
occurs. This bubble position is classified by the position of
the contact lines xL and xR relative to the beginning x1 and the
end x2 of the contraction region (see figures 1 and 4):

class β1 : xL < x1 and x1 < xR < x2,

class β2 : x1 < xL < x2 and x1 < xR < x2,

class β3 : x1 < xL < x2 and x2 < xR,

class β4 : xL < x1 and x2 < xR.

(18)
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Table 1. Physical parameters for air bubbles in water flowing
through PMMA microchannels.

Parameter values Reference

σlg = 72.5 × 10−3 J m−2 [21]
σsg = 38.9 × 10−3 J m−2 [21]
σsl = 16.5 × 10−3 J m−2 [21]
θ = 72◦ [18]

A detailed analysis of equation (16) yields important
relations for some of the clogging classes.

A β2 clogging only occurs if the bubble can move entirely
within the tapered region as shown in figure 4(a), and if at
some point it has a length L = xL − xR such that

L >
r(xL)

tan θt

[
1 − cos(θ − θt)

cos(θ + θt)

]
. (19)

In β4 where the bubble in fact spans the entire contraction
as sketched in figure 4(b), there is always clogging and the
clogging pressure is maximal. The value for �Pb is negative
and independent of the shape of the contraction. From
equation (16) we get

�Pb = 2σlg cos θ

(
1

R
− 1

r

)
< 0. (20)

The nonclogging class α will in general occur if the bubble is
small enough. According to the class β4 analysis a necessary
(but not sufficient) condition for avoiding clogging is that the
bubble is small enough to be completely contained in the
contraction region. An analysis of the β2 and β3 classes shows
that it should also be short enough to avoid clogging while
the left meniscus is still in the tapered region. The β1 class
furthermore puts upper limits on tapering angles that allow
for clog-free flow. Examples from class α and β4 are treated
further by detailed numerical analysis in sections 5.2 and 5.3.

5. Numerical simulations

To illustrate the analysis given above a detailed simulation is
made in the following. The aim is to minimize the clogging
pressure �Pb with respect to a given parameter. We are
limiting our analysis so that the variation comprises only one
parameter: the tapering angle θt.

5.1. The numerical algorithm

In order to find the force and clogging pressure acting on a
large bubble for a given geometry, a semianalytical model
of the contracting channel is implemented in MatLab. A
numerical Romberg integration scheme is used together with
a Newton solver to determine the location of the right and left
contacts line (xR and xL) for a given position of the center of
mass coordinate xcm. The respective interface areas Ai are
then found. For a specific geometry defined through r(x),
the maximal force is found through equations (5) and (6)
and the pressure drop �Pb is found through equation (16).
The heaviest calculation ran for approximately 4 h on a
standard PC.

To be specific we use the geometry defined in figure 1 and
take PMMA as the solid material, water as the liquid and air as
the gas. This configuration has the physical parameters given
in table 1.

5.2. A specific system without clogging, class α

The first example is the system with a bubble placed in a
relatively gentle contraction depicted in figure 5. The total
length of the channel is 1000 µm. The wide straight channel
to the left has a radius R = 150 µm and length 200 µm. The
contraction has a length x2 − x1 = 350 µm and circle arc
lengths of 30 µm, which results in a tapering angle θt = 10◦.
The narrow straight channel to the left has a radius r = 95 µm
and length 500 µm. The bubble starts out in the wide channel
to the left. It has a relative volume of γ = 1.02 (cf section 3)
and an initial length L0 = 180 µm.

Figure 5 shows the bubble at five different positions (a)–
(e). As the bubble advances through the channel it is seen
how its length xR − xL changes and how the curvatures of the
menisci vary. The black dots inside the bubble indicate the
center of mass xcm.

In figure 6(a) the total internal energy of the system is
plotted as a function of center of mass position xcm. The zero
point of the energy is chosen as the energy of the system when
the entire bubble is positioned completely within the narrow
part of the channel. The five positions (a)–(e) in figure 5 are
also marked here.

It is seen that the energy decreases monotonically. This
means that without a negative external pressure holding it back,
it would move spontaneously through the channel from the left
to the right. As long as the bubble moves completely within the
wide part of the channel, the energy is constant (about 4 nJ).
Then as the right edge enters the contraction, position (a),
the energy drops rapidly in accordance with the pressure drop
equation (17). This trend continues as the entire bubble moves
inside the contraction, as is the case in position (b). The energy
continues to drop, but now less rapidly, as the right edge of the
bubble enters the narrow channel, see position (c). However,
as the left bubble edge approaches the narrow channel, the
energy drop picks up again, see position (d). Finally,
the bubble moves completely inside the narrow section and
the energy becomes zero (per definition), see position (e).

In figure 6(b) the corresponding balancing external force F
from equation (6), and the clogging pressure across the bubble
−�Pb, equation (16), are plotted as functions of xcm. The
balancing external force is seen to be negative, which means
that to maintain the bubble at quasi-static equilibrium, it is
necessary to hold it back. Without this force, the bubble would
of course, as mentioned above, move spontaneously toward
the narrow segment. At position (c) where the right edge of
the bubble enters the narrow channel, both force and pressure
reach local maxima, but even here they are both negative. No
clogging occurs in this system, and it therefore belongs to class
α as defined in section 4.

5.3. A specific channel with clogging, class β4

The second example is nearly the same as the first. Only
the length of the contraction region has been reduced from
350 µm to 180 µm. This leads to an increase of the tapering
angle from 10◦ to θt = 20◦. In figure 7 four positions (a)–(d)
of the large bubble are depicted. Note that since θ + θt = 92◦,
the right meniscus in the tapered section of the channel in
panel (a) is nearly flat. In fact it has a slight inward bend.

880



The clogging pressure of bubbles in hydrophilic microchannel contractions

−100

0

100 x
CM

=120.59

−100

0

100 x
CM

=337.02

−100

0

100 x
CM

=371.15

−100

0

100 x
CM

=600.21

0 200 400 600 800 1000

−100

0

100 x
CM

=795.16

(e)

(d)

(c)

(b)

(a)
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θt = 10◦. The black dots indicate xcm. The contact angle is θ = 72◦.
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i.e. clogging occurs (a class β system).
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Figure 9. The maximal balancing force Fmax and clogging pressure
Pclog = −�Pb,max plotted as functions of the tapering angle θt.
Detailed figures illustrating the situation for θt = 10◦ (marked A)
are given in figures 6(a) and (b), and for θt = 20◦ (marked B) in
figures 8(a) and (b). The β3, β4 and α classes are described in
section 4. The maximal clogging pressure occurs in class β4. It is
found by equation (20) to be Pclog = 173 Pa.

In figure 8(a) the energy is shown as a function of xcm.
The four positions (a)–(d) are also marked. We immediately
note a qualitative difference between this graph and that in
figure 6(a). The energy no longer drops monotonically but
exhibits a marked increase between positions (b) and (c). This
corresponds to the case where the bubble spans the entire
contraction, i.e. the left bubble edge is still in the wide channel
segment when the right edge enters the narrow segment.

This effect is of course also visible in figure 8(b) where the
balancing external force F and the clogging pressure −�Pb

are plotted as functions of xcm. Around position (b) both F and
−�Pb become positive, which means that external pressure
forces need to be applied to move the bubble through the
system. Using equation (20) the clogging pressure is found
to be 173 Pa. Without this external force the bubble would
tend to move backwards out of the channel, i.e. the system
is clogging, and in fact it is an example of class β4 clogging.

5.4. Clogging pressure versus tapering angle θt

The previous two examples showed the behavior for a
particular channel contraction from R = 150 µm to r =
95 µm with tapering angles θt = 10◦ and 20◦, respectively. We
now extend this analysis to the entire interval 0◦ < θt < 60◦.
For each tapering angle we calculate the maximal external
force F and the clogging pressure Pclog. The result is shown
in figure 9.

The graph clearly shows that some tapering angles ease the
passage of bubbles. For the geometrical configuration defined
by R = 150 µm, r = 95 µm and C = 30 µm a small window,
the interval 9.5◦ < θt < 11◦, with optimal tapering angles can
be identified. In this window Pclog < 0 corresponding to the
clogging-free class α behavior.

For angles greater than about 11◦ the maximal force is
seen to increase dramatically. This transition corresponds to a
configuration where the bubble can span the entire contraction
region, i.e. class β4. We clearly see that once the bubble is
able to span the entire contraction, the specific geometry of

the contraction (in this case the tapering angle) plays no role.
We get the same clogging pressure, Pclog = 173 Pa.

Finally, we note, that class β3 behavior sets in for small
tapering angles below 9.5◦. A small clogging pressure is
observed, less than 30 Pa.

6. Conclusion

The effects of geometry on the quasi-static motion of
large bubbles through a hydrophilic microchannel (capillary)
contraction are modeled. The simplicity of the model leads to
a good physical understanding of bubble clogging. We have
shown that in most cases it requires energy to move a bubble
from a wide to a narrow channel. However, we have also found
that certain bubble sizes and specific channel geometries lead
to a gain in energy.

We have specifically studied the contractions where such
an energy gain is achieved. Using the central equation for
the pressure drop �Pb across the bubble, equation (16),
we analyzed a specific contracting axisymmetric hydrophilic
channel, and we identified four different classes, denoted as β1

to β4, leading to bubble clogging, and one clogging-free class
denoted as α. The details of the analysis are quite complicated
due to the large number of parameters: the tapering angle θt,
the contact angle θ , the initial bubble length L0, the radii R and
r of the wide and narrow channel segments, etc. However, one
general trend is clear. The tendency for clogging increases as
the bubbles become larger.

Based on our analysis, some important design rules can
be established for making microchannel contractions with
minimal or even vanishing clogging pressures. These rules
only apply for channel contractions where the energy is lowest
in the narrow part.

First, if the typical size L0 of the bubbles present in
the microfluidic system is known, it is important to design
contractions which are larger than L0. The highest clogging
pressures occur namely for bubbles spanning the entire
contraction, the so-called β4 class.

Second, the combined effect of the tapering angle and
contact angle has to be taken into account to make sure that L0

is shorter than the critical length leading to clogging of class
β2 being entirely within the tapered region.

Third (not presented here), to smoothen out and lower
any unavoidable positive clogging pressure, it helps to make
the curved parts of the contraction as large as possible, thus
decreasing their curvature.

The method of analyzing the bubble clogging problem
in microchannels presented in this paper is very general.
It is straightforward to extend it to other geometries
(such as nonmonotonic contractions) and to hydrophobic
microchannels. With the presented design rules at hand it
is possible to design a system that may filter or sort bubbles
of different volumes—one simply places contractions with
different tapering angles in properly arranged series. A
comparable system designed to sort bubbles is presented in
[17]. The model may also be extended to include wetting
layers as used in [16], and it may be used to model two phase
flows in porous media as in [22, 23]. Some of the dynamical
effects such as those briefly mentioned in the introduction may
be included as well.
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Abstract
We present the design and theoretical analysis of a novel electro-osmotic
(EO) pump for pumping nonconducting liquids. Such liquids cannot be
pumped by conventional EO pumps. The novel type of pump, which we
term the two-liquid viscous EO pump, is designed to use a thin layer of
conducting pumping liquid driven by electro-osmosis to drag a
nonconducting working liquid by viscous forces. Based on computational
fluid dynamics, our analysis predicts a characteristic flow rate of the order
nL/s/V and a pressure capability of the pump in the hPa/V range depending
on, of course, achievable geometries and surface chemistry. The stability of
the pump is analyzed in terms of the three instability mechanisms that result
from shear-flow effects, electrohydrodynamic interactions and capillary
effects. Our linear stability analysis shows that the interface is stabilized by
the applied electric field and by the small dimensions of the micropump.

1. Introduction

Electro-osmotic (EO) pumps are suitable for microfluidic
applications due to their integrability and compatibility with
conventional microtechnology, and moreover they can produce
a pulse-free flow without containing any moving parts [1–3].
In EO pumps a liquid is pumped by applying an electric field
to the Debye layer. This is formed by the ions in the liquid
due to electric screening of the immobile charges on the walls
of the pump. In order for such a Debye layer to form, the
liquid needs to have significant electrical conductivity, i.e., a
sufficiently high concentration of dissociated ions. Nonpolar
liquids with very low conductivity (<10−6 S m−1), such as oil,
cannot form the necessary double layer and therefore cannot
be pumped in this way [4]. However, as analyzed below,
this problem is circumvented in our design by introducing a
conducting secondary liquid. By presenting our design and
the theoretical analysis of it, we hope to inspire experimental
groups to test our ideas and fabricate a device.

The paper is organized in the following way. In section 2,
we introduce the general concept of the pump and its novel
features. In sections 3 and 4, we turn to a particular, realizable
pump geometry and analyze it in terms of flow rate–pressure
(Q–p) characteristics by means of CFD simulations and
equivalent circuit theory. Then, in section 5, we assess the
stability of the pump by performing a linear stability analysis
of the two-liquid interface. Finally, we draw conclusions in
section 6.

2. General concept

There are two main types of inline EO pumping schemes in use
today. In direct EO pumping, [5, 6], electrodes are in direct
contact with a conducting buffer. The buffer enables both
the driving force in an electric field, and, due to the charge
separation at the walls of a channel, also a bulk-liquid motion,
the actual electro-osmotic flow.

0960-1317/05/040883+09$30.00 © 2005 IOP Publishing Ltd Printed in the UK 883
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Figure 1. (a) The top half of a symmetric channel containing a conducting liquid (light gray), where the EO mobility on the top wall
changes step-wise from zero (thin line) in the first section to αeo (thick line) in the middle section and back to zero (thin line) in the last
section. The pressure drops and hydraulic resistances in the three sections are 0 − p1 and R1, p1 − p2 and R, and p2 − pext and R2,
respectively. The flow profile is shown in each of the sections. (b) A nonconducting working liquid (dark gray) of flow rate Q flowing
through the three-section channel of panel (a), but in addition a conducting pumping liquid (light gray) of flow rate q enters and exits from
two side-channels with hydraulic resistances r1 and r2. In both panels are shown the applied voltage V that generates the EO flow. The
symmetry plane is indicated by the dashed horizontal line in the bottom.
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Figure 2. Top view of a possible design of the two-liquid viscous pump. The nonconducting working liquid (dark gray) is being dragged by
the EO-driven pumping liquid (light gray) that flows along the edge of the main channel. The pump is mirror-symmetric around the central
vertical plane, and only one half is shown. The following specific parameters are chosen to predict the performance of the pump. The
displayed microchannels are all 40 µm deep. The main channel where the working liquid flows is 150 µm long and 10 µm wide. The
narrow valve channels are 1 µm wide and 42 µm long. The un-coated walls are marked as the thick edges of the main channel. Coated
walls are marked with thin edges. In inlet A and outlet A the flow is parabolic, while in the valves and in the main channel it is a
superposition of parabolic and an EO-induced plug flow.

In the so-called indirect EO pumping the liquid in which
the electrodes are separated by some barriers from the liquid
where the EO flow takes place. The barriers allow ions
but not bulk liquid to pass from the electrode chamber to
the EO flow region. The barriers between the two regions
can be achieved in several ways. (i) A channel filled with
a conducting gel with a large hydrodynamic resistance [2].
(ii) An ion-exchange membrane allowing only positive or
negative ions to pass [3]. (iii) A nanometer-sized gap (to
allow for the Debye layer overlap) in which bulk EO flow
can be suppressed allowing practically only flow of ions [7].
Common for these separation methods is that they are based
on the Donnan exclusion principle.

Our novel two-liquid viscous pump can be regarded as
a hybrid of the two types of EO pumping. There is still a
direct contact between the driving and the bulk layers but
they now originate from two different liquids. EO flow is
used indirectly as it drives layers of conducting secondary
liquids, introduced from some side-channels, to pump a
nonconducting liquid through the main channel by viscous
forces, see figure 1. Such an arrangement, resembling a
conveyor belt, allows the pump to be conveniently positioned
anywhere within a microfluidic circuit. To our knowledge it is
the only EO pumping mechanism that enables inline pumping
of nonconducting liquids. In the following subsections we
highlight general principles for the operation of the pump:

pressure valves, under-pressure induced by spatial variations
in EO mobility and optimized potential drop. These principles
are sketched in figure 2.

2.1. Ideal EO flow and pressure valves

In the case of an infinitely thin Debye layer the EO flow rate
in a rectangular microchannel of length L, height D, and width
a is given by

Qeo = ueoDa = αeoVeff
Da

L
∝ a. (1)

Here ueo is the electro-osmotic velocity, αeo is the electro-
osmotic mobility and Veff is the electric potential drop inside
the channel. We refer to this situation as ideal EO flow. The
associated EO pressure peo is given by

�peo = QeoRhyd = αeoVeff
aD

L
Rhyd. (2)

For high aspect ratios D � a, the hydraulic resistance is

Rhyd = 12µL

a3D

1

1 − 0.63 a
D

, (3)

where µ is the dynamic viscosity. The pressure-driven flow
rate Qp through the channel is given by

Qp = �p

Rhyd
∝ a3, (4)

where �p is the pressure drop along the channel.
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From equations (1) and (4) it follows that the pressure-
driven flow will be negligible compared to the EO flow for
small values of a. This can be used to obtain a kind of pressure
valves in the two-liquid viscous pump: if narrow channels are
placed on the sides of the main channel, their large hydraulic
resistance prevents a significant loss of the pressure from the
pump into the sides, while at the same time allows the driving
EO flow to pass through them. The pressure valves offer
two additional advantages. The electrode reservoirs separated
by the valves can be exposed to atmospheric pressure. Thus
bubble formation from electrolysis will not enter the pump
and cause problems. Furthermore, this allows for placing the
pump anywhere in a fluidic network.

2.2. Under-pressure due to changes in EO flow rate

In order for a nonconducting liquid to enter the pump an under-
pressure needs to be induced at the entrance of the pump. This
can be achieved by allowing for spatial variation in the EO
flow rate Qeo. Mass conservation ensures that the total flow
rate Q = Qeo + Qp is constant, so a change in Qeo implies a
change in Qp and hence a change in pressure. The change in
Qeo can be obtained either by variations in the EO mobility or
by variations in the channel width a large enough to induce a
varying degree of the Debye layer overlap. In this paper we
will focus on the first method.

The EO flow given in equation (1) corresponds to a
constant EO mobility, in which case no under-pressure is
generated inside the channel. If, however, the EO mobility is
allowed to change along the channel, a more complex pressure
field is obtained. To simplify the discussion without loosing
the main physics, we study the three-section channel shown
in figure 1(a), where the EO mobility changes from zero to
αeo and back to zero. It is the inhomogeneity of the EO
mobility that is important, not its specific functional form.
The hydraulic resistances of the three sections are R1, R and
R2, respectively. The pressure changes from 0 to p1, from
p1 to p2, and from p2 to pext along the first, second and third
section, respectively. Thus the EO pump is set up to work
against an external backpressure pext. The expressions for the
total constant flow rate Q in each of the three sections are

Q = (0 − p1)

R1
= (p1 − p2)

R
+ Qeo = (p2 − pext)

R2
. (5)

By straightforward algebra this yields

Q = RQeo − pext

R1 + R + R2
, (6)

p1 = R1

R1 + R + R2
(pext − RQeo), (7)

implying that a positive flow rate will be induced once RQeo is
larger than the backpressure pext. Moreover, an under-pressure
p1 is induced over the first section of the pump, which ensures
that liquid is sucked into the pump.

In figure 1(b) this principle of generating an under-
pressure is applied to the two-liquid viscous pump. We study
the case of immiscible liquids with a stable interface pinned
at the corners of the side-channels. In this case the individual
flow rates of the pumping and working liquids are constant.
For the sake of simplicity we neglect the curvature effects due

to surface tension and postpone this study until sections 4.1
and 5.

The nonconducting working liquid (dark gray) enters the
first section of the large, three-section main channel of the
hydraulic resistance R1 and leaves the section of the hydraulic
resistance R2 with the same flow rate Q given by

1

R1
(0 − p1) = Q,

1

R2
(p2 − pext) = Q. (8)

The conducting pumping liquid (light gray) enters with the
flow rate q through the inlet side-channel having the hydraulic
resistance r1, and exits with the same flow rate q through the
outlet side-channel having the hydraulic resistance r2. Since
we are neglecting the Young–Laplace pressure drops from the
curved interfaces the pressures p1 and p2 are as above, and
the flow rate q is seen to be

1

r1
(0 − p1) = q,

1

r2
(p2 − 0) = q. (9)

In the active part of the pump, the middle section with the
hydraulic resistance R, the expression for the total flow rate
is simplified, if we assume that the two liquids have the
same viscosity (this assumption is easily relaxed in numerical
simulations):

1

R
(p1 − p2) + Qeo = Q + q. (10)

The expressions for Q,p1 and q become

Q = RQeo − pext

R1 +
(
1 + R1

r1

)
R + R2

, (11)

p1 = −R1Q, (12)

q = R1

r1
Q. (13)

Like for the simple channel equation (6), a positive flow
rate Q appears once RQeo > pext, and in this case an under-
pressure p1 is generated thus making it possible to suck the
nonconducting working liquid into the EO pump. A simulation
of the induced under-pressure in the regions below the pressure
valves is shown in section 4. In the limit of very high
resistance of the side-channel, r1 � R1, equation (11) reduces
to equation (6). Note, that because we have neglected the
Young–Laplace pressure drops, and assumed a stable interface,
the external pressure is fixed to be pext = [R1(r2/r1) − R2]Q.
Once the full dynamics of the free interface is introduced, the
interfaces will adjust its shape to a given pext, see section 4.1.

As mentioned, a favorable under-pressure can also be
achieved for constant EO mobility by reducing the cross
section of the valve region compared to the main channel
if the reduction is so large that the Debye layer overlap occurs.
The overlap will reduce the EO velocity in the valves and
change the flow profile from a plug-like to a parabolic-like
one [8]. Since typically the Debye layers are 1–100 nm
wide, the pressure valves in this case consist of nanochannels.
Depending on the fabrication techniques, the nanochannels can
be realized as channels with very high aspect ratio [9], very
shallow channels [4], or as parts of nanoporous frits [10].

Regardless of the pump realization, the flow profiles
will have some common characteristics. Due to the induced
pressures the valve regions and the inlet/outlet regions of the
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Figure 3. (a) The geometry used in the simulation of the immiscible case, were edges with arrows indicate an EO slip velocity
ueo = 2mm s−1, (b) The pressure p = p∗µcond ueo/a, (c) the interface position ξ and (d) velocity profile across the channel. Viscosities are
µcond = 1.0 × 10−3 Pa s and µnoncond = 300 × µcond. The pressure is plotted along the symmetry axis. The deflection of interface is
multiplied by a factor 100 for the purpose of visualization. The velocity profile is taken along x = L/2 + a.

main channel of the pump will have parabolic flow profiles.
In the active part of the main channel the resulting flow
is a superposition of an EO flow and an adverse pressure-
driven flow, the latter resulting from the mass conservation
given in equation (10). Schematic flow profiles are shown in
figures 1(b) and 2, while a simulated one is shown in figure 3.

2.3. Optimized potential drop

A larger potential drop is needed in the main channel of the
pump as compared to the valves in order to generate a higher
pressure, equation (2). A single narrow valve channel has
a large flow resistance but also a large electrical resistance.
This means that the main potential drop would occur in the
valve channels and thus not contribute to any pressure build
up. The electrical resistance is inversely proportional to the
area of the cross section. So, by making many short and
narrow channels a low electrical resistance and high hydraulic
resistance is obtained. However if the potential drop in the
main channel is too large, it could cause instabilities of the
two-liquid interface, see section 5.

2.4. Priming of the pump

In order for the pump to work an initial positioning of the liquid
streams must be taken care of. This is termed as priming of the
pump. The priming could happen in different ways depending
on the viscosities, surface tensions and the surrounding fluidic
network. One way of doing it would be to apply a pressure-
driven flow to the side-channels q and the main channel Q
simultaneously. This would generate a stream of focused
nonconducting liquid along the main channel. If the driving
pressures are then relaxed at the same time, the interface
moves to the pinning points on the side-channels. Computer
simulations or experiments may suggest other methods.

3. An example of a possible realization

A possible realization with realistic length scales of the two-
liquid viscous pump is shown in figure 2. Two sets of four
narrow channels are introduced from each side of the main
channel as pressure valves. In figure 2 only one side with

inlet/outlet valves is shown, since the device is symmetric
around the center plane. Reactive ion etching systems can
deliver narrow and deep channels with the aspect ratio as
high as 40. So if a valve channel is 1 µm wide it can be
40 µm deep. The overall hydraulic resistance of the valves,
equation (3), is 26 times larger than that of the EO section.

The Reynolds number is Re ∼ 0.01 and in this creeping
flow regime inertia can be neglected. A characteristic feature
for creeping flow is that it is free of vorticity. This means
that the valve channels may be positioned perpendicular to
the main channel without generating any eddies. For a more
detailed discussion see [11].

The Debye layer is roughly 104 times smaller than the
total width of the main channel so we do not resolve it in the
following modeling of the pump. The EO velocity appears
simply as a nonzero slip velocity ueo at the walls. The reduced
EO flow in the valves is, therefore, realized by a reduction in
the EO mobility as discussed in section 2.2.

4. Theoretical and computational analysis

We have analyzed the performance of the pump described
in section 3 using computational fluid dynamics (CFD)
simulations and equivalent circuit theory.

4.1. Computational fluid dynamics

The simulation effort is divided into two parts: (1) simulations
with immiscible liquids, simplified geometry, free surface
and velocity boundary conditions, and (2) simulations with
miscible liquids, full geometry and EO mobility boundary
conditions.

The problem depicted in figure 2 is simulated including the
full free surface dynamics. The model is based on the FemLab
3.1 FEM solver and an in-house MatLab based free surface
code [12]. The model solves the 2D Stokes equation while
enforcing the full free surface stress condition including the
Young–Laplace contribution to the pressure. As the problem
is very complex only two side-channels are considered, in
order to reduce computational time, which still ended to be
of the order 24 h on a high performance computer. At the
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Figure 4. (a) The equivalent electric circuit of the two-liquid viscous EO pump. Note that the whole pump/circuit is depicted. The overall
resistance is calculated as Rtotal = 2Rab + R4, where Rab is the resistance between node point a and b. R4 is the resistance of the EO section.
(b) The calculated pressure distribution inside the pump obtained by numerical simulation in the miscible case with the uniform viscosity
µ = 1 × 10−3 Pa s. The inset floating above the pump shows how the pressure varies linearly in the main channel between the pressure
valves, implying uniform flow. There is no external pressure difference, but note the pressure drop in the pressure valve region (i1 − i4)
which sucks the working liquid into the main channel. Parameters: the dimensions are as in figure 2, while αlow

eo = 0.005 mm2 V−1 s−1,

α
high
eo = 0.05 mm2 V−1 s−1, pin = pout = 0, V = 10 V. The peak pressure levels are p = ±10 Pa.

walls we use velocity boundary conditions to account for
the electro-osmotic effects. Figure 3 depicts the simulated
geometry with boundary conditions.

The insets (a), (b) and (c) in figure 3 show the
dimensionless pressure p∗ along the symmetry axis, the
interface position ξ , and a velocity profile along the vertical
symmetry line, respectively. From the results we see that
the interface is only slightly deformed and has a thickness
comparable to the inlet valve dimensions. The curved shape is
a result of the pressure balance including the Young–Laplace
pressure. Moreover, we notice that the slip velocity at the
interface is about 10% of the wall velocity.

CFD simulations with miscible liquids were made using
Coventor 2001.3. The program solves the Laplace equation for
the electrical potential and the Navier–Stokes equation for the
velocity field. These simulations are complementary to the
more complicated free surface simulations. If the pumping
liquid is chosen to be water the EO mobility along un-coated
walls is typically αeo = 0.05 mm2 V−1 s−1. In the valve
channels the walls are coated to lower the EO mobility by
a factor 10. With these parameters numerical simulations
yield a maximal flow rate per volt of 0.03 nL s−1 V−1 and a
backpressure capacity of 3 Pa V−1. The value for the flow rate
is specific for the given geometry. According to equations (2)
and (3) the backpressure is independent of the length of the
pump but strongly dependent on the width of the main channel
and the viscosities in the two liquid case. Visualization of
the pressure distribution is shown in figure 4(b). Note the
under-pressure in the region between valve i1 and i4. The
pressure distribution from the immiscible (figure 3(a)) and the
miscible case (figure 4(b)) agree qualitatively. Note, that in
the miscible case the liquids will mix due to diffusion. Two
time scales are involved: (1) the time it takes for the liquid to
pass through the pump Tpump = L/ueo, (2) and time it takes
for the two miscible streams to mix Tdiff = D2

b

/
D, where D is

the diffusion constant. The ratio Tpump/Tdiff = 1.5 indicates
that the liquids will be completely mixed downstream of the
pump.

4.2. Equivalent circuit model

The aim is to establish a model that can predict the Q–p
characteristic of the pump. The creeping flow regime allows
us to analyze the flow by the equivalent circuit method. We
only give an outline here as the detailed procedure is described
in [13].

The first step is to find the effective potential drop across
the EO section by analyzing the circuit in figure 4(a). In the
miscible case with uniform conductivity the result is that 52%
of the applied voltage is dropped over the EO section, R4 in
figure 4(a). This value represents a worst case since the main
channel is full of conducting liquid leading to a lower voltage
drop. In the immiscible case the analysis is complicated by
the fact that the resistance R4 is dependent on the position of
the free interface, and an exact result is not obtainable due to
lack of computational power. However, our simulations in the
two-channel case, section 4.1, indicate that the width of the
conducting layer is the same as the width of the side-channels.
Since most of the electric field is inside the conducting layer,
it is easy to obtain a rough estimate, and we find that 90% of
the voltage is dropped over the EO section.

The next step in the equivalent circuit model procedure
is to find the hydraulic resistance Rhyd of each of the channel
segments. Since the channel cross sections are all rectangular
we make use of equation (3). We then find the backpressure
analogous to the treatment in section 2.2.

5. Stability analysis

The interface between the two immiscible liquids in the two-
liquid viscous pump is generally prone to instabilities. Small
perturbations can grow and eventually break-up the surface and
disrupt the pumping operation. As sketched in figure 5 there
are altogether three types of instability mechanisms at play:
shear-flow, electrohydrodynamic and capillary instability. In
the following we shall describe and assess the most relevant
aspects of each mechanism.
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Qin Qout

q1 q2

V

symmetry

Figure 5. A schematic diagram of instabilities in the two-liquid
viscous pump. Three main mechanisms of instability are at play:
shear-flow and electrohydrodynamic instability are relevant in the
main channel and in the outlet valve, while capillary instability
plays a role below the valves where the interface curves to
compensate for the induced pressures. In the case of break-up of the
interphase q1 and q2 as well as Qin and Qout may differ in contrast to
the case of figure 1(b).

5.1. Approximations and methods

As long as the conducting layers are thin compared to the
nonconducting region, the (in)stability modes on the two
interfaces of the symmetric pump from figure 2 will be
decoupled from each other. In addition, the symmetric pump
can sustain larger adverse pressures known to stabilize the
flow [14]. Thus, it suffices to determine the instability
window of the simpler asymmetric configuration containing
only one interface, i.e., a pump with only one conveyor
belt. We further notice that for the high aspect ratio channels
under consideration the problem is effectively reduced to two
dimensions.

Perturbations of the interface are assumed to be small, and
we subject the governing equations and boundary conditions
to the usual hydrodynamic linear stability analysis, [15]. The
unperturbed interface lies in the xy plane given by z = 0.
Any slight disturbance of the interface is described as a
displacement z = ζ(x, y). We expand all perturbed field
f (velocity u, pressure p, electric potential φ and vector
n normal to the interface) in terms of the small interface
position ζ

f = f0 + αf1 + α2f2 + · · · , (14)

where f0 represents the unperturbed steady-state solution, α

is the perturbation strength, and f1 is the first-order solution.
Putting the perturbed variables f into the governing equations
and boundary conditions, the steady-state solution cancels out,
and by maintaining only terms up to linear order in α we arrive
at the linearized equations which govern the perturbations. The
first-order solutions are further expressed in terms of normal
modes with the wave vector k = (kx, ky) and frequency ωk

f1(x, y, z, t) = f̂ 1(z) exp[i(kxx + kyy) − iωkt]. (15)

By inserting the normal modes back into the linearized
equations, the problem is eventually transformed into an
eigenvalue problem for the frequency ωk, generally a complex
number of the form ωk = Re(ωk) + i Im(ωk). It is seen from
equation (15) that

f1 ∝ exp[−i Re(ωk)t] exp[+Im(ωk)t]. (16)

Therefore, an instability (exponential growth in time) is present
when Im(ωk) > 0. In some cases ωk is real for a while before
developing a positive imaginary part. In other cases the onset
of instability is right at ωk = 0. The former case is known as
overstability while the latter as static instability.

z

x
Da

Db

µa, σa, εa
µb, σb, εb

E0

U0

ζ
small

perturbation

interface

Figure 6. The simplified model with a single interface (a single
‘conveyor belt’) used to assess the instability regimes of our pump.
Two shearing liquids are confined between two large (high aspect
ratio) parallel plates in a Couette–Poiseuille flow. The liquids differ
in dynamic viscosities, dielectric constants and conductivities. They
are further exposed to a tangential electric field. The Debye layer is
assumed negligibly thin so the driving EO velocity appears only as a
boundary condition.

5.2. Shear-flow instability

Shear-flow instability is particularly relevant in the active
part of the main channel, where the liquids are exposed
to mutual stresses. Microfluidic shear flows between two
viscous, immiscible liquids can result in a variety of regular
droplet patterns, as the shear force (constant for a given relative
velocity and a fixed geometry) overcomes the cohesive surface
tension force, [16].

In our case, due to the conveyor-belt action, the two liquids
flow between two large parallel plates in a Couette–Poiseuille
setup, figure 6. In each liquid the governing equations are the
Navier–Stokes equation and the continuity equation

ρ(i)(∂tu(i) + u(i) · ∇u(i)) = −∇p(i) + µ(i)∇2u(i), (17)

∇ · u(i) = 0, (18)

where i = a, b indicates liquid a and b, ρ is the density, p
is the pressure, µ is the dynamic viscosity, and u(x, y, z) =
(u, v,w) is the velocity field. Note that we did not include the
gravitational body force as it is negligible in our microfluidic
system1.

When the linear stability analysis is performed on
equations (17) and (18), we arrive at the Orr–Sommerfeld
equations for two liquids, [17], and a set of eight boundary
conditions. These include the no-slip velocity conditions at
rigid boundaries and fairly complicated interface conditions—
continuity of velocities and tangential stresses, and balance
of normal stresses. The whole system is then solved
for eigenfrequencies as mentioned earlier. The analytical
procedure is rather involved. Here we apply the full
description, found in [18–21], in the relevant limits.

An important conclusion from the analysis is that a
difference between the viscosities of the two liquids cause
the instability in shear flows at low Reynolds number. Once
the viscosities differ, the relative thickness of the liquid layers
becomes important, too.

We have estimated the onset of instability in the long-
wavelength limit for the water–oil (a–b) system of figure 6. In
figure 7 Im(ωk) is shown as a function of the viscosity ratio
µb/µa . The graphs are shown for three different thickness

1 The ratio between gravitational and capillary force in the system is the
Bond number, Bo = (ρ(2) − ρ(1))ga2/γ . If we consider oil and water, and
a = 10 µm is the width of the main channel in the pump, we get Bo ∼ 10−6.
This allows the liquids in the pump to flow sidewise.
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Figure 7. A shear-flow stability study of a water–oil system (liquids
a and b, respectively, in figure 6). For three different values of the
thickness ratio Db/Da the imaginary part of the frequency Im[ωk] is
plotted as a function of the viscosity ratio µb/µa for an EO velocity
ueo = 1 mm s−1, a surface tension γ = 18 × 10−3 N m−1, and a zero
counter-pressure. For Db/Da = 1.5, instability sets in for
µb/µa > 20 where Im[ωk] > 0. This is an example how an increase
in viscosity actually enhances instability. Increasing the oil
thickness, the window of stability is increased.

ratios Db/Da . Keeping Da constant, stability increases with
increasing thickness ratio, while it decreases with increasing
viscosity ratio, except that in the limit of very large viscosity
ratios the system becomes stable again.

The above results can be used to operate the pump within a
given stability window. If Da is as thin as a few Debye lengths,
the pump will practically always be stable with respect to the
shear flow.

5.3. Electrohydrodynamic (EHD) instability

Another important aspect is electrohydrodynamic (EHD)
instability present when liquids of different dielectric constants
and conductivities are exposed to electric fields. Numerous
studies of EHD instability have been published over the years,
e.g. [22–27], and more recently with special attention to
microfluidics [18, 19, 28].

In this brief account of EHD instability we use the
formalism from [18, 25], and apply it in the relevant limits
with regard to our pump. Essentially, the equations governing
electric fields and charge transport in each liquid need to be
added to equations (17) and (18)

∇ · (ε(i)E(i)) = ρ
el
(i), (19)

∇ × E(i) = 0, (20)

∇ · (
σ(i)E(i) + ρ

el
(i)v(i)

)
+ ∂tρ

el
(i) = 0, (21)

where ε is the dielectric constant, σ is the conductivity, ρel is
the free charge density and E is the electric field in each liquid.
In equations (19)–(21) it is assumed that magnetic effects are
negligible and that Ohm’s law of conduction is valid. The
interface boundary conditions are expanded to account for
electric stresses and conservation of free charge.

There are two main effects which influence the behavior
of the interface between two liquids in an electric field.
First, there are polarization forces that act normally on the
interface, due to a difference in the dielectric constants. And
second, there are tangential shear forces resulting from the free
charges that relax at the interface, due to a difference in the
conductivities. Relevant in microfluidics are effects involving

z

x

µa, σa � σb

µb � µa, σb
E

Figure 8. Overstability mechanism in the pump. A perturbation of
the interface between a conducting and a nonconducting liquid
results in the accumulation of free surface charge. As it screens the
imposed field from the conducting region, the charge is shifted in
phase with respect to the perturbation [25]. Charge motion in a
tangential field induces shear stresses in the liquids above and
below, which can either stabilize or further destabilize the interface.
In the depicted case µb � µa and σa � σb ≈ 0, so the interface
will be stabilized.

Debye layers, but these are out of the scope of this preliminary
account.

In our pump a thin layer of conducting liquid drags a
viscous nonconducting dielectric liquid. There is a huge
difference in conductivities and the liquids are exposed to
a tangential electric field. Therefore, the shear forces due to
free charges will play the most important role, possibly causing
overstability or oscillatory instability, which we now assess.

In equilibrium no current passes through the unperturbed
interface and no free charges accumulate on it. However,
interface perturbations cause a change in the fields which in
turn attract free charges at the interface. The charges position
themselves to shield out the imposed field from the high
conductivity region. As the charges move under the influence
of electric field, shear stresses are passed onto the liquids below
and above the interface, creating fluid cells, figure 8. If the
liquids have the same viscosity these effects will cancel each
other, but a difference in viscosities will make these cells to
further deform or possibly suppress the perturbations.

We now make a use of the general eigenvalue solution
(equation (34) in [25]) applicable to our problem sketched
in figure 6. In the two-liquid viscous pump the two liquids
are such that the conductivities σa � σb which results in a
very short charge relaxation time τ = (εa + εb)/σa . We are
interested in the viscosity limit µa � µb, i.e., when the more
conducting liquid is much less viscous. An involved analysis
gives for the critical field that induces overstability

E2
c = − 2µbσa

εb(εa + 3εb)
. (22)

The minus sign indicates that in this limit no field can
induce the instability. In light of figure 8, the imparted viscous
stresses, pronounced in the more viscous liquid, act to suppress
the interface deformation. On the other hand, if the conducting
liquid is the one with a much higher viscosity (e.g. pumping
of a gas), the critical field is positive and given by

E2
c = 2µaσa

εb(εb + 3εa)
, (23)

or, for εa � εb,

Ec =
(

2µaσa

3εaεb

) 1
2

. (24)
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When equation (24) is evaluated for common fluids, the fields
are on the order of 106 V m−1. In the studied example
(operating voltage 10 V), the electric field within the main
channel is E = 4 × 104 V m−1, a much lower value.

The above results show that our viscous liquid pump is
stable with respect to the EHD overstability. In the case when
a more viscous, nonconducting liquid is pumped, stability is
always present whereas in the case of low-viscosity dielectrics
the critical fields are much higher than the operating ones. In
passing we remark that the normal polarization forces also
stabilize the interface when the liquid of higher conductivity
has also a higher dielectric constant, which is usually the case.

5.4. Capillary instability

The pressure drop over the interface between two immiscible
fluids is given by the Laplace equation

�P = γ

(
1

r1
+

1

r2

)
, (25)

where γ is the surface tension while r1 and r2 are the principal
radii of curvature. We take the width a and depth D of a valve
channel to correspond to 2r1 and 2r2, respectively. In a high
aspect ratio valve a � D, hence only the width a contributes
to the capillary pressure.

The pressure induced below the valves in the two-liquid
pump will tend to deform the interface according to
equation (25), as simulated in figure 3(c). We now estimate
under which conditions the breaking of two streams sketched
in figure 5 could occur and why. For an oil–water interface
γ = 18 × 10−3 N m−1 and a valve width of a = 1 µm it takes
a pressure of 36 kPa to push an oil droplet through the valve
opening.

The backpressure capacity of the pump is �p = 30 Pa for
10 V using a conducting liquid. In the case of the water–oil
interface the pressure increases to 9 kPa × 0.1 = 900 Pa at
10 V due to the higher viscosity of oil (µoil = 300µwater)

and the reduced oil velocity, see figure 3(d). This value is
still lower than the capillary pressure thus the interface will be
stable in normal operation.

If the interphase breaks due to instabilities, e.g., in the
case of lower surface tension, oil droplets may enter the
outlet valve to account for the mass conservation (q1 �= q2).
Hence the pinched-off conducting droplets shown in figure 5.
Similar effects of variable flow resistance on droplet break-
up is demonstrated in [29]. Obviously, such behavior would
eventually disrupt the pumping operation.

We conclude this section by saying that the pressure valves
will prevent an immiscible liquid from entering them if the
backpressure capacity of the pump is smaller than the capillary
pressure associated with the valve openings.

6. Conclusion

We have presented a novel electro-osmotic pump which can
be used to pump nonconducting liquids by the viscous drag
of a conducting secondary liquid. In order to achieve a

viable pump, the liquids must be immiscible, stability must
be ensured and three main features need to be employed: a
favorable under-pressure, pressure valves and an optimized
potential drop.

The flow rate–pressure characteristic of the two-liquid
viscous EO pump largely depends on the geometrical factors
and can be significantly enhanced by advanced etching
techniques. The pump design still works for miscible liquids,
but here the working liquid gets mixed with the pumping liquid
due to diffusion.

Numerical simulations and the equivalent circuit model of
the design presented here yield a maximal flow rate per volt
of 0.03 nL V−1 s−1 and a backpressure capacity per volt of
3–90 Pa V−1 depending on the liquids in the pump. These
values are quite small and the pump is therefore suited for
precise flow manipulation rather than pumping bulk volumes.

Three effects play a role with regard to the stability of the
pump: (1) shear-flow instability happens only when the liquids
differ in viscosities and is suppressed when the conducting-
liquid layer is thin compared to the nonconducting one.
(2) Electrohydrodynamic overstability is suppressed when
the conducting liquid has a much smaller viscosity than the
nonconducting liquid. (3) Capillary instability is suppressed
by a large surface tension and by a large value of the capillary
pressure stemming from a small width of the pressure valves.

Future work involves time-dependent two-phase
simulations. Such work could give valuable information
about priming of the pump. We are currently preparing
papers containing the detailed mathematical analysis of the
stability mechanisms [19, 20]. Finally a prototype should be
manufactured. Because of the possibility of pumping all types
of liquids in a precise and controlled manner, the described
concept and design appear promising.
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Abstract. We present the first transient pressure measurements and high-speed
visualization of gas bubbles passing through liquid-filled microchannel contractions.
We have studied contractions ranging from 100 to 500 µm in glass tubes of main
diameter 2 mm and compared the experimental results with the recent model of quasi-
stationary bubble motion by Jensen, Goranović, and Bruus [J. Micromech. Microeng.
14, 876 (2004)] valid for low flow rates. The influence of the wetting angle is studied
by coating a tube with a hydrophobic solution. Transient pressure measurements,
bubble deformations, and the influence of the bubble length on the so-called clogging
pressure ∆Pc are shown to be in good agreement with the model, both in terms of
maximum values and in terms of transient evolution. Some deviations from the model
are also observed and possible reasons for this are investigated, such as (a) contact line
pinning, (b) thin liquid film along the bubble modifying capillary pressure, and (c)
viscous pressure drop in the contraction. Experiments with increasing flow rates show
that two regimes govern the pressure transients of the bubbles passing the contractions:
a quasi-stationary regime for low capillary number, and a viscosity-influenced regime
for non-negligible capillary numbers. We propose a criterion based on a modified
capillary number to discriminate between these two regimes.
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1. Introduction

In a typical microfluidic system [1], the fluid flows into channels with diameters ranging

from 3 mm to 50 µm, along a path involving multiple branching and contractions.

The cross-section of these channels is either round (tubing) or rectangular (due to

microfabrication techniques), with some branching, e.g., in the valving part. Materials

range from ceramic and stainless steel, to polymer (PTFE, Tygon, Peek) and silicon,

each having different wetting properties. Bubbles may appear in microfluidic systems

due to cavitation, electrochemistry, or priming (filling) of the microchannels, and they

may become problematic if they get stuck in contractions, which are present in the

microfluidic system due to some functionality such as valves, tree-branching, or nozzles.

The pressures needed to move a bubble through a contraction of minimum diameter

d, filled with a liquid of viscosity µ and surface tension σ is related to the laminar friction

and the free surface forces. In the laminar regime, the friction contribution for flow rates

Q is proportional to µQ`con/d
4, where `con is the contraction length, while the free surface

contribution due to the Young-Laplace pressure is non-zero and proportional to σ/d as

soon as the tube diameter or its wetting properties changes [2]. The resulting pressure

transient may be several kPa, and if the bubbles are large enough to span across the

microchannel this may block the flow. The minimal external pressure needed to drive

such bubbles out of the channel is called the clogging pressure ∆Pc. In other cases, e.g.,

when a bubble is stuck in a corner or in a dead-flow zone, it can be extremely difficult

to dislodge it, resulting in a reduction in performance or accuracy of the microfluidic

device. Therefore, an entire batch of MEMS microfluidics devices can be ruined by only

one problematic geometric feature. These problems were already identified a decade

ago [3, 4], but were not studied in depth before the problem was picked in the recent

theoretical study of Jensen, Goranović, and Bruus [5].

The goal of our work is to contribute to the solution of this important technological

problem by studying bubble dynamics in a well-defined microchannel contraction. We

begin by presenting the experimental setup and describe the measurement method.

Then we give a short review of the theoretical and numerical model used. We move

on to compare and discuss the numerical and experimental results, and finally we give

some concluding remarks.

2. Capillaries and experimental setup

For the experimental part of the work different capillary glass tubes of circular cross

section were used, see table 1. The tubes with contractions as shown in figure 1 were

manufactured in the glass shop of Stony Brook University. The tubes have typical

internal main diameters D = 2 mm and contraction diameter d ranging between 100

and 500 µm. In a given experiment a single capillary tube was connected via stiff

polymer (FEP) connection tubes to a syringe pump and a large reservoir, as shown in

figure 2.
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Table 1. List of the tubes used in this work: tube ID, the main diameter D, the
contraction diameter d, bubble length L, measured and simulated clogging pressure
∆Pm

c and ∆P s
c , respectively, and the relative deviation DEV between them defined as

DEV = (∆P s
c −∆Pm

c )/∆Pm
c .

ID D d L ∆Pm
c ∆P s

c DEV
[mm] [µm] [mm] [Pa] [Pa]

A7 1.78 490 0.6 330 420 21%
3.1 420 500 16%

13.8 420 500 16%

A8 1.70 264 1.1 877 790 -11%
4.7 877 750 -17%

12.0 877 840 -4%

A19 1.83 103 1.5 2720 2400 -13%
3.1 2720 2410 -13%
3.5 2720 2670 -2%

10.0 2720 2450 -11%

A27 2.20 196 4.0 460 510 10%
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Figure 1. (a) Sketch of the gas-liquid-solid system with channel profile r(x), main
diameter D, contraction diameter d, left and right contact angles θL and θR, left
and right contact line position xL and xR, length of the contraction `con, and local
tapering angle θt. (b) Photograph of a gas bubble (dark gray) entering from the left
into a liquid-filled (white) tube with a 490 µm contraction. The flow rate Q of the
liquid is 0.33 µL/s.
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Figure 2. Measurement setup allowing for transient visualization and pressure
measurement during the transport of a microbubble in a microchannel.

A single bubble was inserted in the tube and moved at steady flow rates ranging

from 0.1 to 200 µL/s. Most experiments were performed at 0.33 µL/s to keep the laminar

friction contribution to the pressure drops negligible. A MEMS-based piezoresistive

pressure sensor (Honeywell 143PC03D) was connected through a Y-connection between

the syringe pump and the tube. The pressure difference across the bubble was measured

with a resolution of ±20 Pa. The pressure signal was acquired with an HP multimeter

and Labview, at a maximum sample rate of 100 Hz. The motion of the bubble was either

observed through the stereo microscope visible in figure 2, or through a microscope

objective and a Firewire high-speed camera.

While performing experiments several precautions were taken to ensure that the

measurements were reproducible. The interior of the glass tubes was soaked in a solution

of 5% Contrad (Fisher Scientifics) overnight and then abundantly rinsed with deionized

water. No other solvents nor alcohol where put in the tubes as any residue might

change surface properties, e.g., the wetting angle. The water used in the experiments

was deionized with a Millipore Milli-DI purification system. The wetting angle was

measured for a bubble at equilibrium and for velocities corresponding to flow rates of

17.0, 3.33 and 0.33 µL/s. The pressure sensor was calibrated with a digital pressure

controller (Druck DPI 530) accurate to 0.1% full scale. The geometry of the tubes was

measured from the camera pictures, and corrected for the magnification effect induced

by the curved walls of the glass tube. The latter effect was tested by matching the

volume injected in the tube with the experimental and numerical position of the left

and right meniscus of the bubble.

3. Theory and numerics

The model for the quasi-stationary motion of a bubble in a microchannel contraction

discussed by Jensen, Goranović, and Bruus [5] was implemented and adapted to the

channel geometries discussed in this paper. On the basis of a microscope picture of a

given tube a spline was fitted to obtain the shape r(x) of the contraction, see figure 1.
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This shape is in turn used to predict the pressure ∆Pb(x) across a bubble as a function

of its position. A bubble is defined by its volume Vb and the value of the receding

and advancing contact angles defined at the contact lines of the left and right menisci,

respectively.

The contribution of the pressure change due to capillary forces (simulated by the

above model) and the laminar friction pressure drop can be written as follows:

∆Pb = Pin − Pout = ∆Pσ + ∆Pfric

= 2σ

[
cos[θR − θt(xR)]

r(xR)
− cos[θL − θt(xL)]

r(xL)

]
+ αβ

128µ`con

πd4
Q, (1)

where Pin and Pout are the pressure at the tube inlet and outlet, respectively. Moreover,

∆Pσ and ∆Pfric are the contributions to the capillary pressure change and the

laminar friction pressure, respectively, θL and θR are the left and right contact angles,

respectively, θt(x) is the local tapering angle, r(x) is the tube shape, α is a factor close

to unity that depends on the shape of the contraction, β is a constant between unity (for

a bubble outside the contraction) and zero (for a bubble spanning the contraction), and

`con is the length of the contraction. The measurements are made at low flow rates Q so

the contribution ∆Pfric can therefore be neglected in the simulations. An exception to

that are the measurements presented in figure 8, which specifically address the influence

of increasing flow rates.

4. Results and discussion

In the following we present and discuss our results in five parts: Transient pressure

and interface curvature, transient pressure and bubble breakup, clogging pressure as a

function of tube diameter, influence of wetting angle, and influence of flow rate.

4.1. Transient pressure and interface curvature

In figure 3 is shown the measured and simulated pressure drop ∆Pb across the bubble,

according to the definition of equation 1, as a function of the displaced liquid volume

in the tube. Two peaks are seen: a positive one at Vin ≈ 51 µL and a negative one at

Vin ≈ 72 µL. They correspond to the passage through the contraction of the left and

right bubble meniscus, respectively. Before and after the two menisci have passed the

contraction, the pressure difference across the bubble vanishes, because the advancing

and receding wetting angles are equal at such low capillary number, and the laminar

viscous contribution is negligible.

In the simulation the two peaks are symmetrical. For the first peak, the agreement

between the measured and simulated pressure is good. Peak heights (within 20%),

widths (5 µL) and shapes are comparable.

The magnitude of the second (negative) pressure peak is much smaller in the

measurement than in the simulation. Two possible reasons for that are (1) that the

rear meniscus of the bubble is flattened by interactions with impurities on the glass
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Figure 3. Direct measurements with the MEMS pressure sensor (dots) and simulation
based on measured shape (full line) of the pressure across a long L = 8 mm bubble in
tube A7 for Q = 0.33 µL/s as a function of displaced liquid volume Vin = Qt, where t

is the time. The observed values of the advancing and receding wetting angle used for
the simulations are 10◦ and 9◦, respectively. The inset indicates the bubble length L

and the liquid flow rate Q.

surface, or by interactions with a film left by the front meniscus, and (2) that a thin

liquid film between the bubble and the glass participates significantly in the pressure

drop. Since the measured values of the advancing and receding wetting angle were

relatively low (respectively 10◦ and 9◦, without influence of the velocity), it appears

that our system can be considered as hydrophilic. It is therefore worth investigating if

a thin water film is formed along the bubble and interacts with the two menisci of the

moving bubble. The thickness h of a film left behind a fully-wetting meniscus moving at

velocity U with low capillary number Ca = µU/σ in a tube of radius r, can be described

by the Bretherton law [6],

h

r
= Ca

2
3 . (2)

For tubes with diameters of 2.0 to 0.1 mm and flow rate 0.33 µL/s the meniscus velocity

is U = 0.1 to 40 mm/s and Ca = 10−6 to 5 × 10−4. The thickness h of the water film

left behind is therefore between 200 and 600 nm.

The first hypothesis, i.e., that the rear meniscus is flattened, has been tested by

measuring with a high-speed camera the temporal evolution of the menisci curvature. In

figure 4, the pressure calculated from the meniscus curvature (white points) is compared

with the direct pressure measurement (black points). The symmetrical shape of the

indirect pressure curve is a good sign that flattening of the meniscus is not responsible

for the dissymmetry in the peaks of the direct pressure curve measured with the MEMS

pressure sensor. However, when the tube is contaminated, we have observed flattening

of the rear meniscus and a corresponding change in measured pressure. This stick-slip
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Figure 4. Direct measurements with the MEMS pressure sensor (black dots) and
calculation from measured curvatures (white dots) of the pressure across a short
L = 1 mm bubble. The tube and flow conditions are the same as in figure 3.

motion of the meniscus corresponds to a sawtooth profile of the measured pressure across

the bubble.

The second hypothesis, i.e., interactions with a thin film, has been tested to some

extent by observing interferences of white light with the bubble-tube contact surface.

A diffraction pattern was observed and evolved to a steady pattern over a time of

approximately 60 s: this transient phenomenon is likely to indicate the presence of a

thin film and its dewetting. It has been shown by Redon et al. [7] that such a thin film

contracts or dewets as a function of viscosity µ, surface tension σ, and contact angle θ

with the approximate contraction velocity V given by

V =
1

120
√

2

σ

µ
θ3, (3)

provided that the film thickness h is much smaller than a critical film thickness

hc = 2λcap sin(q/2) = 400 µm, where λcap = 2.7 mm is the capillary length. In our

case the film thickness is indeed much smaller than hc. For the water-glass system, we

obtain V = 2 mm/s. During the observed dewetting time of approximately 60 s, the

meniscus in our experiments travels a distance between 6 mm (in the main channel)

and 2400 mm (in the smallest contraction). Interactions between the dewetting film, its

geometry or disjoining pressure [8], and one of the two bubble menisci are therefore very

likely, and might be responsible for discrepancies between the measured and simulated

pressure, as in figure 3, but these considerations are outside of the scope of this study.

It must be noted that a laser fringe probing has recently been used to quantitatively

monitor the liquid film thickness along a bubble in a liquid-filled capillary [9].



Transient pressure drops of gas bubbles passing through microchannel contractions 8

70 75 80 85 90

−2000

−1000

0

1000

2000

∆
P

b
(P

a
)

Vin (µL)

· · · experiment

| simulation

d = 103 µm

Figure 5. Measurements (dots) and simulation (full line) of the pressure drop ∆Pb

across a L = 3.1 mm bubble in tube A19 for Q = 0.33 µL/s as a function of
displaced liquid volume Vin = Qt. Note that this tube has the most narrow contraction
(d = 103 µm) studied in this work.

4.2. Transient pressure and bubble breakup

Experiments have been made with a tube exhibiting a more narrow contraction (tube

A19, 110 µm contraction), as shown in figure 5. The magnitude of the first pressure

peak is comparable with the numerical simulation, however the shape is not in a good

agreement with the simulation. Also, oscillations of the pressure occur during the entire

phase where the bubble is spanning the contraction. The discrepancy in the shape of

the first pressure peak can be explained by the fact that our measurement system is not

infinitely stiff. We have measured that the volume of our measurement system increases

by about 1 µL per kPa internal pressure. Although this deformation is negligible with

respect to the overall system volume of about 12000 µL, it is enough to reduce the

ascending slope of the first pressure peak observed in figure 5.

The saw-tooth pressure profile is due to instabilities occurring when the bubble

passes through a long contraction with large aspect ratio: the single bubble breaks

into several smaller bubbles that can merge back and separate with a given frequency.

This mechanism is shown in figure 6, where the position of these sub-bubbles have been

visualized with our high-speed camera at 600 fps and measured. This instability involves

the creation and destruction of interfaces and induces saw-tooth perturbations in the

pressure measurement. Comparison between figures 5 and 6 shows a good agreement

in terms of the frequency of the perturbation. It is not known for now if the breakup is

due to the elongated shape of the contraction itself or to the large diameter ratio.
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Figure 6. (a)-(d) Pictures of an L = 1 mm bubble advancing in tube A19 under the
same flow conditions as in figure 5. The positions xL,1, xR,1, xL,2, and xR,2 of the
left and right menisci are indicated on the snapshots extracted from a visualization
at 600 fps. The circle in snapshot (c) at time t = 5.8 s shows the initiation of the
instability generating the menisci. (e) The positions plotted as function of Vin. The
vertical lines represent the start and end of a period.

4.3. Clogging pressure as a function of tube diameter

The clogging pressure ∆Pc is defined as the minimum pressure needed to push a bubble

through the contraction [5]. We have measured the clogging pressure for four different

micro-tubes with contractions and for different length L of the bubbles. The results are

summarized in table 1.

The tubes have contraction diameters d between 103 and 490 µm, and the

corresponding range of clogging pressure ∆Pc is from 2.7 to 0.3 kPa. The experimental

and numerical pressure values agree within 20%. For a given contraction the amplitude

of the first pressure peak is constant for bubbles larger than the contraction length. For

small bubbles this is no longer true since both menisci are in the contraction when the

pressure reaches its maximum value [5].

4.4. Influence of wetting angle

The influence of the wetting angle was tested by coating the inside of a tube, A27, with

a hydrophobic layer of rainX and passing a L = 4 mm bubble through this tube. As seen

in figure 7 the measured and simulated pressure drop are in agreement. The simulated
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Figure 7. Measured (points) and simulated (full and dotted line) pressure drops ∆Pb

across a L = 4 mm bubble for Q = 0.33 µL/s as a function of displaced liquid volume
Vin = Qt. The bubble moves in tube A27 covered with a hydrophobic layer of rainX,
and the observed wetting angles used in the simulation are θR = 39◦ and θL = 89◦.
For comparison is shown a simulation (dashed line) based on the wetting angles for
the untreated (hydrophilic) tube.

curve is based on the measured wetting angles: θR = 39◦ and θL = 89◦. In both

simulation and experiments the first pressure peak is much larger than the second, and

the qualitative features of the first and second peak are well matched. The numerical

simulation with wetting angles corresponding to a non-coated tube is also plotted for

comparison, and it shows large discrepancies with the other two curves.

4.5. Influence of the liquid flow rate

A long L = 10 mm bubble was moved in tubes A7, A8, and A19 with contraction

diameters of 490, 103 and 264 µm, respectively, at flow rates ranging from 0.1 to

160 µL/s. The maximum amplitude |∆P | of the positive and negative pressure peaks

observed as the bubble passes through each contraction are plotted in figure 8(a) as a

function of the flow rate Q.

Two regimes are visible in the figure: (i) For flow rates smaller than a critical

value, which depends on the contraction diameter, the positive and negative pressure

peak amplitudes are constant, the positive peak being slightly larger than the negative

one, as, e.g., in Figure 3. (ii) For flow rates larger than the critical value, the amplitude

of the positive pressure peak decreases and ultimately vanishes, while the value of the

negative pressure peak increases exponentially, without bound. This means, that in this

high flow-rate regime the bubble is pushed through more easily. Further tests on two

tubes with different contraction diameters explain how the transition between the two

regimes occur. The first (positive) pressure peak is mostly due to the Laplace pressure,

when the bubble is pushed through the contraction, as detailed in equation 1. As a first
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Figure 8. (a) Maximum amplitude |∆P | of the positive and negative pressure peak
observed as the bubble passes through the contraction versus flow rate Q for a long
L = 10 mm bubble tubes A7, A8, and A19 with contraction diameters of 490, 103 and
264 µm, respectively. (b) Same data as in panel (a), but now expressed in terms of the
re-scaled variables ∆P ∗ versus Ca∗, see equations (8) and (7). The negative pressure
peak is represented by the open symbols and the positive pressure peak by the filled
symbols.

approximation the Laplace pressure drop is

∆Pσ ≈
4σ

d
. (4)

This is true for low flow rate situations, as seen, e.g., in figure 3, by the good agreement

between measurements and simulation based on the quasi-stationary model. However,

at higher flow rates the pressure drop ∆Pfric due to friction can no longer be neglected.

This contribution to the total pressure drop ∆Pb is of magnitude

∆Pfric ≈
128µ`con

πd4
Q. (5)

The observed change in regime, where the positive pressure-peak transient vanishes,

therefore occurs when ∆Pfric ≈ ∆Pσ. Using this together with the expressions for the

flow rate, Q = π(d/2)2v, and the capillary number, Ca = µv/σ, the transition condition

can be written as

Ca ≈ d

8L
. (6)
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Based on this equation it is convenient now to define a re-scaled capillary number Ca∗

as

Ca∗ ≡ 8L

d
Ca. (7)

In terms of the re-scaled capillary number the transition happens at Ca∗ ≈ 1. Likewise,

it is convenient to introduce the re-scaled pressure drop amplitude of the pressure

transient ∆P ∗ as

∆P ∗ ≡ P (Q)

P (0)
, (8)

i.e., the ratio between the observed amplitude of the transient pressure drop at high

flow rate Q and the amplitude of the positive pressure transient at negligible flow rate

Q = 0.

In figure 8(b) the data of panel (a) are re-plotted using the re-scaled variables ∆P ∗

and Ca∗. It is seen how the transition between the capillary pressure drop regime, with

a large positive peak amplitude, and the viscous pressure drop regime, with a vanishing

positive peak amplitude, occurs for Ca∗ ≈ 1. In other words, this criterion has practical

implications: it discriminates between the case of bubbles clogging the flow through the

contraction or not.

5. Conclusion

An experimental and numerical study of a bubble passing through a microchannel

contraction has been performed. Transient measurements have quantified the pressure

and bubble shape during its motion through the contraction. The agreement between

the experiments and a numerical modeling is generally good, but some deviations have

been observed and discussed. The influence of the wetting angle has been studied.

High-speed visualization reveal that some departures from the simulations are due to

instabilities and break-up of the bubble. Experiments varying the flow rate show that

two regimes govern the pressure transients when the bubble passes the contraction:

a quasi-steady regime for low capillary number, and a viscosity-influenced regime for

non-negligible capillary numbers. A criterion based on a modified capillary number is

proposed to discriminate between these two regimes, and it shows the existence of a

critical flush velocity above which clogging by bubbles at contractions is avoided.
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[5] M. J. Jensen, G. Goranović, and H. Bruus, J. Micromech. Microeng. 14, 876 (2004).
[6] F. P. Bretherton, J. Fluid Mech. 10, 97 (1961).
[7] C. Redon, F. Brochart-Wyart, and F. Rondelez , Phys. Rev. Lett. 66, 715 (1991).
[8] P.-G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena: Drops,

Bubbles, Pearls, Waves Springer (New York, 2003).
[9] X. S. Wang X.S. and H.-H. Qiu, Meas. Sci. Technol. 16, 594 (2005).




