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Abstract

The goal of this thesis has been to explore fundamental theoretical principles behind micro
Total Analysis Systems (4TAS), also known as lab-on-a-chip systems, as well as to make
use of computer simulations as an evaluation technique in the process of developing and
optimizing uTAS devises. This involves fundamental physics and computer science as well
as interpreting experimental input provided by others.

Most of the work has been documented in 4 peer reviewed papers, 7 conference proceed-
ings, one chapter in a text book, and one patent. The results comprise simulations of the
two-liquid chimney device and the cascade EO-pump, discovery of how to pump non-polar
liquids by electroosmosis, theory of clogging pressures of large bubbles in microchannel
contractions, and a theoretical analysis of the stability conditions for the interface between
two different dielectric liquids under influence of external electric fields.

A significant effort has been devoted to the creation of a new group at MIC, the
Microfluides Theory and Simulation Group (MIFTS). During the first year of this PhD-
study, simulation of lab-on-a-chip systems was the main topic. Later, as students were
attracted to the group the activities expanded to include the theoretical studies. At present
MIFTS consists of two postdocs, four PhD students and a number of undergraduate
students, under the leadership of prof. Henrik Bruus.
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Resumé

Malet med dette ph.d.-studium har veeret at undersgge fundamentale teoretiske princip-
per bag lab-on-a-chip systemer og at benytte computer simulationer til hjeelp for ud-
viklingen og optimeringen af sadanne systemer. Studierne har isser veeret koncentreret
om mikropumper baseret pa elektroosmose, dynamikken af gasbobler i mikrokanaler samt
stabilitetsundersggelser af skillefladen mellem to dielektriske vaesker under pavirkning af
ydre elektriske felter.

Det meste af arbejdet er blevet publiceret internationalt i lgbet af studiet i form af
4 forskningsartikler, 7 konferenceartikler, 1 patent, og 1 kapitel i en leerebog. Iszr to
hovedresultater kan fremhaeves. Det fgrste er den nu patenterede opdagelse af hvorledes
elektroosmose i en saerligt designet to-vaeske mikropumpe kan benyttes til at pumpe ikke-
poleere veesker. Det andet er pavisningen af hvorledes selv moderate elektriske spsendings-
forskelle i mikrofluide to-veeske systemer kan fgre til instabiliteter, et feenomen som ikke
iagttages i makrosystemer. Hertil kommer en reekke analyser og simuleringer af forskellige
konkrete mikrofluide systemer, som kolleger har fabrikeret og malt pa.

Endelig skal det fremhaeves, at meget arbejde i lgbet studiet er blevet brugt pa at
bidrage til etableringen af MIC’s nye gruppe, Microfluidics Theory and Simulation (MIFTS).
I dag fremstar MIFTS som en velfungerende gruppe med to postdocs, fire ph.d.-studerende
og et antal ingenigrstuderende under ledelse af lektor Henrik Bruus.



vi

RESUME



Preface
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2 CHAPTER 1. INTRODUCTION

In Chap. 6 basics of hydrodynamic stability analysis are presented with a simple ex-
ample of gravitational instability.

In Chap. 7 linear stability theory is applied to the problem of stability of the interface
between two still, immiscible dielectrics placed in an electric field (normal or tangential).
The chapter contains full derivation of the linearized perturbed equations of motion and
boundary conditions.

Chap. 8 presents the solutions of the equations derived in Chap. 7 applied to the cases
of normal and tangential E-fields. The interface instability is discussed with respect to two
microfluidic cases where either one or two characteristic lengths are of micron dimensions.

Chap. 9 concludes the report and outlines the future directions.

Finally, the most relevant publications have been attached in the Appendix.

1.1 Publications during the project

The following list comprises all of the publications that I have contributed to during my
PhD study at MIC.

1.1.1 Research papers

1. PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional
flow behavior,
Henning Klank, Goran Goranovié¢, Jorg P. Kutter, Henrik Gjelstrup, Jess Michelsen,
Carsten Westergaard,
J. Micromech. Microeng. 12, 862-869 (2002).

2. Integrating advanced functionality in a microfabricated high-throughput flourescent-
activated cell sorter,
A. Wolff, I.R. Perch-Nielsen, U.D. Larsen, P. Friis, G. Goranovié¢, C.R. Poulsen, J.P.
Kutter, P. Telleman,
Lab. Chip 3, 22-27 (2003).

3. Theoretical analysis of the low-voltage cascade electroosmotic pump,
Anders Brask, Goran Goranovié¢, and Henrik Bruus,
Sens. Actuators B Chem. 92, 127-132 (2003).

4. The clogging pressure of bubbles in hydrophilic microchannel contractions,
Mads Jakob Jensen, Goran Goranovi¢, and Henrik Bruus,
J. Micromech. Microeng. 14 (2004), (8 pages, www.mic.dtu.dk/research/MIFTS)

1.1.2 Conference proceedings

5. Three-dimensional single step flow sheathing in micro cell sorters,
Goran Goranovié¢, Ivan R. Perch-Nielsen, Ulrik D. Larsen, Anders Wolff, Jorg P. Kut-
ter, Pieter Telleman,
Proc. MSM 2001, Hilton Head Island (SC) USA, March 2001, p. 242-245.
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10.

11.

12.

Computer modeling as a design tool for microfluidic structures,

Ivan R. Perch-Nielsen, Goran Goranovié¢, Henning Klank, Ulrik D. Larsen, Anders
Wolff, Jorg P. Kutter, Pieter Telleman,

Proc. MSM 2001, Hilton Head Island (SC) USA, March 2001, p. 629-630.

Characterization of flows in laser-machined polymeric microchannels,

Goran Goranovi¢, Henning Klank, Carsten Westergaard, Oliver Geschke, Pieter
Telleman, and Jorg P. Kutter,

Proc. pTAS 2001, Monterey (CA) USA, October 2001.

Electroosmotically driven two-liquid viscous pump for nonconducting liquids,
Anders Brask, Goran Goranovi¢, and Henrik Bruus,
Proc. uTAS 2002, Nara, Japan, November 2002, vol. 1, p. 45-47.

The low-voltage cascade EOF pump: comparing theory with published data,
Anders Brask, Goran Goranovi¢, and Henrik Bruus,
Proc. pTAS 2002, Nara, Japan, November 2002, vol. 1, p. 79-81.

Dynamics of bubbles in microchannels,
Mads Jakob Jensen, Goran Goranovi¢, and Henrik Bruus,
Proc. yTAS 2002, Nara, Japan, November 2002, vol. 2, p. 733-735.

Electroosmotic pumping of nonconducting liquids by viscous drag from a secondary
conducting liquid,

Anders Brask, Goran Goranovié¢, and Henrik Bruus,

Proc. NanoTech 2003, San Francisco (CA) USA, March 2003, vol. 1, p. 190-193.

Quasi-static motion of bubbles in microchannel contractions,
Mads Jakob Jensen, Goran Goranovi¢, and Henrik Bruus,
Proc. NanoTech 2003, San Francisco (CA) USA, March 2003, vol. 1, p. 258-261.

1.1.3 A chapter in a text book

13.

Simulations in microfluidcs

Goran Goranovi¢ and Henrik Bruus,

Chap. 5 (38 pages, 21 figs., 25 refs.) in Microsystem Engineering of Lab-on-a-Chip
Devices. Eds. O. Geschke, H. Klank, and P. Telleman, (Wiley-VCH, New York,
autumn 2003)

1.1.4 Co-supervision of four M.Sc. theses

e Principles of electroosmotic pumps

Anders Brask
M.Sc. thesis, 156 pages, MIC, DTU, 2002 (www.mic.dtu.dk/research/MIFTS)

e Bubbles in microchannels

Mads Jakob Jensen
M.Sc. thesis, 155 pages, MIC, DTU, 2002 (www.mic.dtu.dk/research/MIFTS)
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e Blood flow in microchannels
Lennart Bitsch
M.Sc. thesis, 111 pages, MIC, DTU, 2002 (www.mic.dtu.dk/research/MIFTS)

e Dispersion in electrokinetically and pressure driven microflows

Flemming Rytter Hansen
M.Sc. thesis, 121 pages, MIC, DTU, 2002 (www.mic.dtu.dk/research/MIFTS)



Chapter 2

Aspects of microfluidics

In this chapter we give important aspects of microfluidics.

2.1 Descriptive overview of microfluidic systems

This section is adapted from my text-book chapter Simulations in Microfluidics[13]. When
designing new microfluidic devices, one must have a proper understanding of the physical
aspects of the problem. Some of these are given below.

¢ Dimensions

A microfluidic system is a network of fluidic channels and other components such
as valves and pumps. It typically occupies an area of one square centimeter, with
the typical channel widths on the order of 10 - 100 gm. For comparison, a human
hair has a thickness of approximately 50 um and the diameter of red blood cells are
about 7 pm. From a practical point of view even smaller dimensions in a lab-on-
a-chip are not necessarily advantageous, since the requirement for easier handling
as well as measurements can impose some restrictions. However, if the goal is to
develop systems for single molecule detection, the sub-micrometer is unavoidable,
and one enters the new and exciting field of nanofluidics.

o Geometry
The basic component in a microfluidic network is a channel. Main features include
length, cross-section and surface properties such as roughness. After a channel is
made in a substrate it is covered with a bonded lid that can be made from a different
material. Long channels are usually needed if a reaction of several mixed chemicals is
to occur (in laminar flow regime diffusion is the main mixing mechanism and it takes
time). Also, when a chemical compound consisting of several components needs to
be analyzed, usually by electrical separation techniques, the separation channel is
made longer in order to allow for the proper separation of the components. Since
microchips are confined to a small area, the extra length is achieved by meander or
spiral structures, Fig. 2.1. Such channel bending, however, induces dispersion of
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Figure 2.1: (a) A mask of an integrated microsystem for detecting chemical reactions via
chemiluminescence. Before entering the mixing region, a sample is passed through the
long spiral for a prolonged reaction with immobilized enzyme. Then, a product, usually
H50Os, is entering the mixing region and in catalyzed reaction with reagent produces light.
Back-side photodiodes, used for the light detection, are not shown. The dimensions of the
chip are 20 mm x 10 mm, and width of the enzyme reactor is 400 ym. Courtesy of A. M.
Jgrgensen.

a chemical species since molecules travel different distances inside the turn (race-
track effect, Fig. 2.2. The dispersion lowers the concentration resulting in reduced
resolution, i.e. larger overlaps of the concentration peaks, and diminished detection
signals. Another common source of the geometrical dispersion are interconnections,
such as tubings, between a chip and external liquid reservoirs.

Channels can have different cross-sections depending on the material in which they
are embedded. In silicon, the typical profiles are rectangular, or actually slightly
trapezoid due to underetching. In polymers, laser beams can produce rectangular,
triangular and Gaussian-like shapes. Circular cross-sections as in capillaries are also
encountered. In addition, channels can have various degrees of surface roughness
depending on the fabrication process. Geometrical features are important since they
determine the characteristic resistances of a channel. The hydraulic resistance, a
concept used in the uniform flow regime, relates an applied pressure to the corre-
sponding flow rate, while the electrical resistance of a channel filled with a conducting
liquid relates an applied voltage to the passing current.

e Surface

Chemical groups at the surface of channel walls, such as silanol (SIOH) groups in
glass, can react with the ions in an electrolyte solution and create very thin polarized
layer. This electric double layer, or Debye layer, has a length scale of 1-10 nm and
is responsible for electroosmotic flow (EOF) in an applied electric field. Surface
double-layers are characterized by the zeta potential. Different surfaces, such as the
lid and the bottom of a channel, can have different zeta potentials. The characteristic
EOQOF velocity depends on the zeta potential through electroosmotic mobility which
is largely an empirical value.
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(b) 'l

Figure 2.2: The race-track effect in a turn in an electrokinetically driven flow, with a
voltage ~10 V applied at the ends. The width of the channel is 50 yum. The motion starts
at the top left figure and goes clockwise. The concentration contours of a sample are
displayed, obtained from a simulation. The inside track has shorter path as well as higher
electrical field inducing faster movement of the inner molecules, and therefore enhancing
sample dispersion.

e Fluid properties

The channels are filled with liquids which can have different properties such as
density, viscosity, electrical and thermal conductivity, diffusion coefficients, surface
tension etc. In many cases there are two types of liquids in the system - a buffer and
a sample. The buffer is usually the transporting liquid resisting the changes in pH-
value which can for example be induced close to electrodes or in chemical reactions.
A sample is a liquid of interest which needs to be analyzed. Both buffer and sample
are usually placed on the chip through separate reservoirs, with the buffer finally
surrounding the sample. A sample confined to a specific region is called a sample
plug. In separation science, the sample consists of several chemical species such as
a positively charged, a negatively charged and a neutral. As mentioned above, the
sample plug lowers its initial concentration by dispersing through the system. In
addition to the geometrical constrictions, dispersion is caused by velocity profiles,
such as the parabolic in the pressure driven flows, and by diffusion. Fluids such
as blood or gels are so-called non-Newtonian liquids, for which the viscosity is not
constant but is a function of the local shear stress. Since the shear stresses are
pronounced at the walls more than in the middle of the channels, the resulting flow
profile is a blunted one rather than the usual parabolic one.

e Heating
Joule heating is generated when an electrical current flows through a channel. In
some applications such heating may destroy biological samples. It may also induce
changes in viscosity and thus affect the velocity profile. Moreover, due to enhanced
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the Brownian motion, heating may increase the dispersion of a sample plug. Heating
may also increase the mobility of the ions in electric double layers leading to enhanced
flow rates in electroosmotic flows. Finally, heating will stimulate production of
bubbles of the gases dissolved in the liquid. The bubbles are usually unwanted and
can block the flow if getting stuck in narrow contractions.

2.2 The Continuum Hypothesis

In this thesis all fluids discussed are Newtonian and are generally treated as continuous
isotropic matter (mean molecular fields). The continuum description could however be
questioned because of the small length scales present in microfluidics.

A way of defining deviations from the continuum description is through the Knudsen
number [58]

where A is the mean-free-path of the molecules and L is a characteristic length scale. L
should be chosen to include gradients in the velocity field. For liquids A is approximately
the intermolecular length Ly, (bond length). The volume occupied by one molecule L3 |

is easily approximated, yielding
Y 1/3
Lo = ( mol) ) (22)

pNa

where p is the density, Mo the molar mass, and N4 is Avogado’s number. For water
A = Lo = 0.3lnm. The Knudsen number identifies the continuum regimes and the
governing equations.!

A more intuitive way of justifying the use of the continuum approximation is through a
precision criterion. At sufficiently high precision fluids are never continuous. The concept
of a continuous velocity field does, e.g., only makes sense for small changes in the center of
mass, of a small characteristic volume, due to random fluctuations in velocities. Another
example could be to determine the mass density to a certain relative precision 7.

e Example

Determining the mass density p = mN/V to the relative precision r, with N the
number of molecules of mass m in a small volume V. There are only fluctuations
in the relative number of molecules AN due to random walk which is typically
AN =~ +/N. For 7 = 1% the requirement AN/N < r yields N > 1/r? = 10%. The
given volume hence needing dimensions L > 22L,,,. For the case of water L > 7nm
which is a factor 10 smaller than the geometric dimensions of the microfluidic
systems analyzed in this thesis.

'For 0 < Kn < 0.01 the continuum approximation is applicable and the Navier-Stokes equation usable,
this regime is generally in use in microfluidic flows. For 0.01 < Kn < 0.1 the Navier-Stokes equation is still
applicable however with use of so-called slip conditions to account for microscopic phenomenon at solid
boundaries.
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2.3 Conservation of mass and momentum

Let us consider a volume V on which external forces f act. The equations of motion can
be derived by considering the flow of fluid out of the volume, Landau-Lifshitz [14]. Integral
conservation laws of mass and momentum are respectively

4 pdV—l—/pu-ndS’zO, (2.3)
dt Jy g
a4 pudV + /[,ou(u-n) —7'n] dS = / fdv, (2.4)
dat Jv s %

where u(z,y, z,t) = (u,v,w) is the velocity field, p is mass density and n a normal vector
directed out of the volume. For Newtonian fluids the stress tensor 7/ is

Tik = —POy, + Tik, (2.5)
where the normal component p is pressure and 7 the viscous stress tensor
2
Tie = 1 (Opu; + ) + (A — g“)az“z‘;ik' (2.6)

The scalars p and A are called coefficients of viscosity.
By applying Gauss’ theorem to Egs. (2.3) and (2.4) we obtain the equation of conti-
nuity and the Navier-Stokes equation

D
35 = —pV-u, (2.7)
D

pFI::—Vp—i—V'T—Ff, (2.8)

with D/Dt = 0, + u-V being the convective derivative.
In case of incompressible fluids Dp/Dt = 0 and Egs. (2.7) and (2.8) simplify to

V-u=0, (2.9)
Du 9
p—=—-Vp+uV-u+f. (2.10)
Dt
while the viscous stress tensor becomes
Tie = 1 (Opu; + Ouy) - (2.11)

2.4 Conservation of energy

In viscous flows the energy is dissipated through irreversible processes into heat. The
temperature of the system will increase until an equilibrium between heat generation and
heat transport is obtained. The conservation of energy is given by, Landau-Lifshitz, [14],

1 1
8t<§pu2+pe) =-V. [pu(§u2—i—h) —u-7—rsVT|, (2.12)
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Here e and h are respectively internal energy and enthalpy per unit mass, x(7") thermal
conductivity and 7" temperature. The left hand side of Eq. (2.12) is the rate of change
in mechanical and thermal energy respectively, while the right hand side is the divergence
of the energy flux. The first term in the brackets represents the mass transfer due to the
fluid motion (kinetic energy pu?/2 and enthalpy ph, per unit volume); the second term
is the internal friction due to the viscosity. The last term represents the heat conduction
due to temperature gradients.
The thermodynamic relations for e and h are

de = Tds — pdV = Tds + “dp, (2.13)
P
1

dh ="Tds +Vdp =Tds + _dp. (2.14)

s being the entropy per unit mass and V = 1/p specific volume. If these expressions are
used together with the continuity and momentum equations, Eq. (2.12) can be trans-
formed into the equation of heat transfer, [14]

Dq

"Dt

Left side of Eq. (2.15) represents the amount of heat gained per unit volume. The term
v

=TV + V- (kVT), (2.15)

V=r7-Vv (2.16)

is called the dissipation function and gives the amount of energy dissipated into heat by
viscosity. It is always positive and for incompressible fluids equal to

1
U = i (O, + Ouy)?. (2.17)

2.5 Electrostatic fields

In the thesis we will treat phenomena where only electrostatic fields are applied. When ex-
ternal magnetic fields are absent, magnetic effects can be completely ignored, [15]. Maxwell
equations for electric fields reduce to

V-D = /", (2.18)
VXE =0, (2.19)

where D = €E is the electric displacement vector. Thorough discussion of the electric
forces in dielectrics will be made in Chap. 5.

2.6 Reynolds and Bond number

A measure for the ratio between inertial and viscous forces is the Reynolds number defined
as

Re = =—, (2.20)

14
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where L and wu is a characteristic length and velocity, respectively. The Reynolds
number at the transition between laminar and turbulent flow is of the order 102, depending
on the geometry and type of flow?. For a Poiseuille flow in a tube the critical Reynolds
number Reci > 2000. In microfluidics the flow is almost always laminar due to the
micro length scales L ~ 100 pm, small velocities © ~ 1 mm/s and kinematic viscosity
1.00 x 107% m2/s yielding a Reynolds number of Re = 0.1.

If the flow is free of vorticity, the governing equations simplify considerably. This
type of flow is called potential flow. Viscous flow is generally not potential flow, but in
some special cases it may be described as such. Given the appropriate boundary conditions
electroosmotic flow can be described as potential flow independent of the Reynolds number,
[16].

A measure of the surface tension force to the gravitational force is given by the Bond
number
%
T o

Bo (2.21)

The characteristic length L may, for example, be the height of meniscus, the curved upper
surface of a column of liquid. When the Bond number is large the surface pressure effects
may be neglected in the liquid at rest.

A length scale for surface tension governed phenomenon is derived from the Bond
number Eq. (2.21). Having

1

3

L< <i> =A.= Bo< 1 (2.22)
P9

where A, is the so-called capillary length. For L = A, the Bond number is 1. A, provides

a measure (length scale) for when phenomena are either controlled by gravity (> A.) or

surface tension < A..

We will return to characteristic dimensionless numbers for the problem of two dielectric
fluids places in E-field in Chap. 8.

2For example, the wave boundary layer in an ocean wave may not be fully turbulent before Re = 10°
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Chapter 3

Electroosmotic driven microflows

In this chapter! we will present the phenomena behind the electroosmotic (EQ) microflows
[18, 19, 20, 21]. Tt was already mentioned that surface reaction between electrolytes and
glass walls lead to the charge separation close to the walls. In an axial E-field these charges
will move and by viscous drag set the bulk liquid in motion as well.

In microsystems, surface-to-volume ratios are large. Since EOF is governed by surface
reactions, it will be more efficient than ordinary pressure driven flows, a feature exploited
in EO pumps [17]. Micropumps play a key role in the quest for fabricating versatile,
cheap, and highly efficient microfluidic lab-on-a-chip devices. In particular, EO pumps
are attractive since they contain no moving parts and are relatively easy to integrate in
microfluidic circuits during fabrication [22, 23, 24, 25, 26, 27]. Design of these pumps
requires the understanding of the underlying physical theory outlined below. We have
used our theoretical insight to analyze the low-voltage EO pump invented by Takamura
et al. [23]. Our results are presented in a research paper [3] enclosed in Appendix B.

3.1 The Electric Double Layer

As a starting point, we consider the charge transport in a liquid. The flux J of a charged
species is driven by the gradient of a general potential, which is a function of pressure,
temperature, electric state, concentrations, composition of phases, etc. An analytical
description, however, is not feasible due to the nonlinear characteristics of this potential.
However, if the electrolyte is dilute this is not a problem, because then the transport
effects may be linearly superposed.

The involved transport processes are electromigration due to electrical fields, diffusion
due to density gradients, and convection due to velocity fields. If we neglect the effects
of external and induced magnetic fields, we obtain for dilute concentrations the following
form of the Nernst-Planck equation [18]

Ji = —;2i¢;iV$ — Dass i Ve + ciu, (3.1)

'The chapter is adapted from the M.Sc. thesis by A. Brask [17], supervised by Goranovié¢ and Bruus.

13



14 CHAPTER 3. ELECTROOSMOTIC DRIVEN MICROFLOWS
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where J; is the molar flux of the i-th species due to electromigration, mass diffusion, and
convection, respectively. The i-th mobility «; is related to the mass diffusivity Dyassi and
the thermal energy kT as o; = €Dmags,i/(kT). In the following analysis the electrolytes
are assumed to be dilute.

If we consider a charged surface in contact with a dilute, fully dissociated salt, the
charged surface will attract the ions of the opposite charge, the so-called counterions.
Hence, a region will exist where the concentration of counterions is larger than that of
the coions 2. This phenomena leads to the formation of an electric double layer, or Debye
layer. In Fig. 3.1 the wall charge is assumed negative. The term ”double” refers to the fact
that there are two layers: the inner layer, which is immobile due to strong electrical forces,
and the outer layer (the diffusive layer) which may be affected by an external electric field.
The surface charge arises from chemical reactions as discussed in Sec. 3.5.

3.2 Thickness \p of the Double layer

The thickness Ap of the electrical double layer is governed by a balance between diffusion
and electrical forces. The Ap is also known in the literature as the Debye length. It is
a characteristic length scale for the electrical screening. First we introduce the electro-
chemical potential figep ;» Which is the free energy of the last arrived particle. It consists
of an electric and chemical potential. The gradient of the electrochemical potential must
be zero in equilibrium. If this were not the case, a flow would be induced. The chemical
potential is given as

Hchem,i = /«Lghenm' + kT Inn;, (32)

where n; = ¢;/ c? is the concentration of ions relative to a reference concentration. ,ughem ;
is the standard chemical potential which is equal to the chemical potential when n; = 1.

2The charges of the coions have the same sign as the charges of the surface.
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The Debye length is found by balancing repulsive diffusive forces with attractive electrical
forces, which is the same as requiring Vi; = 0.

Vi, = Vichemi + 2ieV, (3.3)
Viichemi = —z2ieV9, (3.4)
In one dimension we get
dlu’CheIID { dﬁb
- = —Zit . 3.5
dx Zzedx ( )

Inserting Eq. (3.2) into Eq. (3.5) yields
1dn;  zedp

=——— 3.6
n; do kT dx (3.6)
Integrating this and requiring that ¢ = 0 when n; = 1 we obtain
zZ;€e
ny = eXp(—ﬁ@v (3.7)
0 Zie
= 28, 3.8
c CZ eXp( kT¢) ( )

The Debye layer is not electrically neutral because the neutralizing charges are at the
wall. Hence, the Poisson equation,

V- (eVe) = —pp, (3.9a)

is invoked. For simplicity the dielectric constant € is assumed spatially invariant, and
hence

Vi = J’?E (3.9b)

This approximation needs further discussion because of the strong polarization effects in
the Debye layer, see Sec. 3.4. The charge density is now inserted in the Poisson equation
Eq. (3.9b) along with the Boltzmann distribution, Eq. (3.8), which leads to

d*¢ 1 1 0 zie
W = —EZCzZ'Le = _EZCZ zi€ eXp(_k_T¢) (310)

This is a nonlinear differential equation, due to the exponential terms on the right-hand
side. The general solutions will be discussed in Sec. 3.3. For now we will use the Debye-

Hiickel approximation ‘Zﬁ < 1, in which case exp(‘?ﬁ) ~1-— ‘217? leading to
d*¢ 1 0 ziep
1 ¢
= —E(Zecgzi - chzge2ﬁ)zie (3.11Db)
2
e
= ek—T(Z Z)e (3.11¢)

= K. (3.11d)
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In Eq. (3.11b), the first sum is zero because the bulk liquid is electrically neutral. In the
last equation, the factor 2 in front of ¢ is by definition related to the Debye length since
1/,‘4u = ADZ

1 ekT
Ap=—- = R 3.12
b=y ez 22y (8-122)
ekT
= — 3.12b
2e222¢ ( )
In Eq. (3.12b), the salt is assumed symmetric for simplicity, i.e. —z_ = z; = z and
0 0
g =cl.

The thickness of the double layer depends on the temperature 7', concentration ¢ and
valence number z of the ions, but normally it is of the order 10 nm. At a distance of
approximately 3\ p, the potential will be reduced to 2% of its near surface value.

At high temperatures the ions move quickly which leads to a decrease in the shielding
since they are dispersed more. For high concentrations the shielding is more effective
because the charge density is larger.

Moreover, since Ap o (z2¢)~1/2 the double layer is compressed if the buffer concen-
tration or the ionic strength? is increased. This affects the potential distribution, and the
zeta potential is reduced.

The zeta potential is expected to become larger (in magnitude) for small electrolyte
concentrations.

Example: The thickness of the double Layer
At a temperature of 25°C in water with e = 78.3¢(, the above expression computes

to A\p = (9.61 x 1079(2%¢)~%/?) nm, with ¢ in units of mol/m®. For a mono-

valent concentration of 102 mol/m3 (0.1M), Ap = 0.961 nm. So in this case, the
EDL is no more than approximately 10 atomic diameters wide.

3.3 The Electric Potential

Consider a circular capillary filled with an aqueous solution. At the solid-liquid interface
an EDL is formed. The ion concentrations ¢; are connected with the electric potential ¢
through the Poisson equation, Eq. (3.9b). Adopting cylindrical coordinates with x as the
axial coordinate, the ;—;—terms may be neglected because variation is very small compared
to the radial variation. Furthermore, the solution is assumed symmetric, so the angular
variation is also disregarded, so we get

13( 8¢> _ _rE (3.13a)

rOr TE

= ——/(ey —co). (3.13b)

3Tonic strength is a quantity representing interactions of ions with water molecules and other ions in a
solution I = 3 3" z7n,.
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It is convenient to split up the potential in two parts: a radial component ¥ (z,r) and an
axial component ®(z),

o(x,r) = () +Y(x,r). (3.14)

In order to find the concentrations, the ion flux is considered. In equilibrium the radial
flux of ions must be zero. This requirement is inserted into the Nernst-Planck equation,
Eq. (3.1),

Fz oY Oc4

RTDrnassFCi E — Diass W

By integration of this equation and using that the diffusivity is Dmpass = RT <, the Boltz-
mann distribution is obtained for ¢ (z) and c¢_(z),

zF
c+ = cpexp (qZR—;b) (3.16)

0 = (3.15)

By inserting this result into Eq. (3.13b) and making the variable dimensionless according

to

r _)\_D zFY

Y= A d t = 1
=1 D and =k (317
the following nonlinear second order ordinary differential equation (ODE) arises:
1 0 o™
* 2 = * — o *
A el (r 8r*> sinh(y*). (3.18)

In combination with the boundary conditions this forms a nonlinear boundary value prob-

lem (BVP).

oY*
= * = -1
5 0, at r*=0, (3.19)
Pr=(" at =1 (3.20)

The zeta potential will be explained in Sec. 3.5 for now it is simply the potential at the wall
interface. In Fig. 3.2 the potentials have been calculated numerically for different values
of A\* using a shooting algoritm in MatLab. Two geometries are considered. A circular
capillary in Fig. 3.2(a), and a one dimensional parallel plate geometry in Fig. 3.2(b).
In the case of large A, the potential equals the zeta potential across the entire channel
width. For small values of A the potential is zero everywhere except near the boundaries.
This illustrates the different shielding effects. For small ratios the bulk flow is completely
shielded, refer to Sec. 3.2. This will often be the case, since the Debye length being less
than 10 nm is very small compared to most capillaries.

An analytical solution for the potential may be obtained by linearizing the right-hand
side of Eq. (3.18), and the double layer thickness A\p < a must be small compared to
the radius of the capillary. Hence curvature effects can be neglected. This is termed the
Debye-Hiickel approximation. The result is a simple exponential function ¢ (r),

B(r) = Cexp ( - “A‘D’"), (3.21)
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Figure 3.2: Nondimensional screening potential ¢* in two different geometries: (a) In a
radial channel where the length scale is the radius of the channel. (b) Potentials between
two planes where the length scale is half the spacing of the planes.

a result that also emerges from the linearized parallel planes case, since the curvature
effects here are manifestly zero.

3.4 The Helmholtz-Smoluchowski velocity

The purpose of this section is to find the velocity as a function of an external electric
field. The concepts introduced here are essential for a description of electroosmotic flow.
Electroosmosis is the movement of liquid relative to a stationary charged surface (e.g., a
capillary or porous plug) by an electric field. The pressure necessary to counterbalance
electroosmotic flow is termed the electroosmotic pressure. The equation governing the
flow is the Navier-Stokes equation (see Sec. 2.3).

Since the length scale of the Debye layer is very small A\p &~ 1—10 nm the corresponding
Reynolds number is very small for normal velocities and viscosities. Hence the inertial
forces may be neglected here. For a further discussion of inertial forces and Reynolds
numbers see Sec. 2.6. So the problem is reduced to a balance between electric forces and
viscous forces. The maximum velocity in the boundary layer is then used as a boundary
condition for the bulk flow. Introducing Poisons equation to eliminate the charge density
pE we obtain a relation between the velocity u = (u,v,0) and the applied axial potential

Ga(x):

uVia = ppVe, (3.22)
= —€e(V?¢) Ve, (3.23)

To identify nonessential terms the x and y coordinates are scaled to £ and 7 by the radius
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a and the Debye length Ap, respectively,

& = z/a, (3.24)
n = y/Ap. (3.25)

The Laplace operator of the intrinsic potential ¢; and the gradient of the applied potential
¢q in Eq. (3.23) are computed separately in Eqgs. (3.26b) and (3.26¢) below. Note that
the tangential term in the gradient of the intrinsic potential is expressed by means of the
applied potential. Its magnitude is proportional to the applied field by the factor x. This
is a correction factor due to the polarization of the dielectric liquid within the Debye layer.
The electric field in the Debye layer E ~ 107 V/m is much larger than the applied field
E ~10* V/m. The terms computes to

0P,  10¢;
Vo (% ;2, 5 (‘;f]’ 0>, (3.26a)
2 X 82¢a 1 82¢i
V= ge Txap (3.260)
1 0%u 1 0%u 1 0%v 1 0%
2
Viu = <a23—52+ﬁa—nw 2oe T o ) (3.262)

A value of the y-factor is difficult to obtain. A more detailed physical description of the
Debye layer is required. This is beyond the scope of the this analysis, but the y-factor
can be incorporated in an suitable choice of the dielectric constant for the Debye layer, in
the following just denoted e.

Collecting terms in the axial direction z, and neglecting terms of order \/a or higher
Eq. (3.23) becomes

2 2
Mg_; — B, %—7;;5;, (3.27)

where F, = —d¢,/dx is the applied electric field. Note that the gradient of the applied
field is given in the x-y coordinates. By double integration with respect to n and use of
the conditions ‘3—:7’“ = % =0 as y — oo and that ¢; = ( at u = 0, the integrated equation
yields the very important Helmholtz-Smoluchowski relation (see also Fig. 3.3),

Usy = u(oo)_gdjj = Qo Fy, (3.28)
€C

Qe = ——, 3.29
. (3.29)

where ue, is the so-called electroosmotic velocity, and where ag, is the EO mobility. Recent
research has shown that the zeta potential is ambiguous in that sense that for one mobility
there may be two corresponding zeta potentials [31]. It is therefore important to emphasize
that it is the EO mobility ae, that is important with respect to EO pumps.

The electric field is given by the potential and the electrode separation. If a dielectric is
present the field is unchanged, but the charges at the electrodes are increased in magnitude.
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Diffuse layer troosmotic velocity ue, is given by
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One should be careful not to confuse this setup with an isolated capacitor, with fixed
charges, in which the field is reduced because of the dielectric.

Example: FO velocity

In an experiment conducted by Cummings et al. [16], the applied electric field is
50 V over 20 mm, thus £, = 2.5 x 10> V/m. The zeta potential, ( = —100 mV,
the dielectric constant is € = 78.3 ¢y, and the dynamic viscosity u = 1.0 x
1073 kg (m s)~! are those of water at room temperature. This yields ue, =
200 pm/s

3.5 The Zeta Potential

The thickness of the double layer is given by the Debye length Ap. The derivation of the
Debye length was based on the assumption that the ions are points. In real life the ions
are not that small compared with the Debye length. So when considering the boundary
condition for the potential, we must have a more accurate description. The center of the
inner most ions are in a finite distance from the surface. This inner layer is called the Stern
layer, Fig. 3.4. This layer is bounded by strong electrostatic forces £ ~ 107 —10% V /m and
hence is immobile. The counterions are attracted to the surface and in this way screening
the surface charge. The zeta potential is defined as the potential difference across the
Debye layer from the shear surface between the charged surface and the electrolyte to the
far field (zero) [18]. The zeta potential is typically of the order ( &~ 1 — 200 mV. The
system, liquid and surface, is electrically neutral. So the wall charge must equal that of the
fluid charge with opposite sign. Far away from the wall, the fluid is electrically neutral [32].

We are considering glass as the main material that the capillaries are made of. Other
materials such as polymers (e.g., PMMA) can also be used. Such materials are interesting
with respect to mass production and fast prototyping, but glass/siliconoxide offers the
highest level of refinement available, i.e., the most accurate and reproducible structures.
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OH mediums with different pH. Silanol groups react with
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If siliconoxide (silica or quartz) is immersed in water, the potential is generated by a
chemical reaction at the surface. The silanol groups SiOH are changed to either SIOHZ
or SiO~ depending on the buffers pH value, Fig. 3.5.

In this way the zeta potential may be varied by the pH of the buffer solution. At the
some pH-level, point of zero charge, the wall potential is zero. For high pH levels the
change in EO mobility is marginal. A suitable choice of the buffers pH-value must be
considered in order to have effective electroosmotic pumping.

SiOH +HT — SiOHj (3.30)
SiOH + OH™ — SiO~ + Hy0 (3.31)
pKa(—SiOH) =~ 6 (3.32)
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3.6 Flow in a Circular Capillary

In this section we shall find the velocity distribution w(z,y) without the infinitely thin
Debye layer assumption. An analytical solution is possible due to the simple geometry.
The electric potential and the corresponding charge distribution were found in Sec. 3.3.

The Navier-Stokes equation is applied to derive the velocity distribution in a circular
capillary. The inertia terms vanish identically due to the high symmetry of the problem:
only u; # 0, but uy = uy(y) so uz0yuy = 0. Pressure on the other hand needs to be
included, because the entire capillary flow may not be driven solely by electroosmosis. For
stationary flow we therefore end up with

0=—-Vp+uV*u—F(zicy +2.¢ )V, (3.33)

where the electric field has been replaced by minus the gradient of the applied potential
¢q- Using cylindrical coordinates for the axisymmetric capillary, we adopt (r, 6, z) with =
being the axial direction, i.e. the direction of the flow. The azimuthal and radial directions
are described by the coodinates # and r, respectively. We are solving for the velocity
component u in z-direction, u = (0,0, u).

Eq. (3.33) is a sexond order partial differential equation. Due to the rotational and
translation invariance of both the differential equation and the boundary conditions, the
solution u depends only on r, thus u = u(r) and Eq. (3.33) becomes

wd du dp dog
——|r—)=—+F —c_ . .34
rdr <rdr> dx +Fa(er —c) dx (3:34)

Using Eq. (3.13b) to eliminate the charge densities, one obtains the modified Navier-Stokes
equation, which is then integrated with the appropriate boundary conditions.

pod ey _ o e d [ dvY s,
r dr <T dr> T d rar\'dr) dz (3:35)
du i
% —0 = 0, and % —0 = 0, (33519)
u(a) = 0, and ¢(a)=_C. (3.35¢)

The solution is

€ dog 7‘2—a2@
dp  dx

(3.36)

Here the Debye-Hiickel approximation Eq. (3.21) may be utilized for ¢ (r), or more cor-
rectly the potentials given in Fig. 3.4. If the Debye-Hiickel approximation is used, the
solution becomes

a—r)}dd)a r2—a2d_p (3.37)

29
= 21— - :
u(r) i [ <P ( AD dx dp  dx
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From this the flow rate @ is easily obtained by integration

@ uodx

Two important conclusions can be derived from Eq. (3.38):

g%mﬁ( >\D> mat dp.

23

(3.38)

(1) The flow rate, @ is reduced in the case of channel dimensions comparable with the

Debye layer thickness. However Eq. (3.38) is not valid for a = Ap.

(2) The flow rate induced by EO is proportional to @ o a?, whereas the pressure

driven flow is proportional to Q o« a*

. Scaling of a capillary will therefore make EOF

more effective in small capillaries. In the extreme case of uniform charge distribution
(total Debye layer overlap), a parabolic flow profile will be induced, identical to that of

pressure driven flow and Q o a*.
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Chapter 4

Simulations of interfaces in
two-fluid systems

In this chapter we give an account on several microfluidic systems which make use of two-
fluid interfaces in their operating principles. The applications are interesting since each
comprises a number of phenomena characteristic for microfluidics - an advantage with
respect to one aspect can sometimes mean a disadvantage with respect to another. All of
these systems have been simulated on a CFD software. One device has been microfabri-
cated and measurements performed in order to test the simulations. This chapter is an
overview of principles described in my four publications [1, 4, 10, 11] in Appendices A, C,
D, and E, respectively.

4.1 Miscible streams in micro cell sorters

The first example that we are going to consider is a type of device called micro-fabricated
cell sorter (uFACS), Fig. 4.1 (a), which is used to focus a stream of cells inside a microflu-
idic system, [2, 33]. When three separate adjacent streams enter a long microchannel, the
width of the middle stream can be regulated (focused) by adjusting the flow rates of two
outer streams. The idea is to use the focusing effect so that cells, carried by the middle
stream, can be better manipulated, e.g. counted and sorted in an easier manner.

In a traditional cell sorting system, the focusing is done only sidewise, while using
a so-called chimney structure it is done from all sides i.e. coaxially, the middle stream
being now completely surrounded by the outer liquid, Fig. 4.1 (b). The flows thus represent
submerged jets of one viscous liquid within another, producing a viscous drag schematically
shown in Fig. 4.2 (a). This issue will be discussed further below when viscous pumping is
considered.

Since the two streams are miscible liquids, the boundary between them will be a
diffused one. The focusing effect will be more pronounced as the difference of the flow
rates between the outer and the middle streams is increased [5]. This is because the
convective term, depending on the higher velocity of the outer stream, will dominate the
lateral diffusion. This can be seen in Fig. 4.2 (b) where the cross-sections of the focused

25
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Figure 4.1: (a) A schematic view of a micro cell sorter, [2]. (b) Schematic differences in
focusing of the middle stream. The sheathing from the sides (left) as compared with the
coaxial sheathing using chimney (right). In a chimney set-up, only one sheathing stream
is needed. Courtesy of I.R. Perch-Nielsen.
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middle stream are shown for two sheath-to-samplestream flow rate ratios.

The middle stream coming out of chimney is peculiar in that it is not clear whether it
will remain positioned vertically in the middle for all times. Issues such as stability and
the Coanda effect deflecting the jet to nearby geometry, play important role. In Ref. [1],
the chimney is embedded in a basin lowered from the main channel, see Appendix A. A
pressure drop will occur inside the basin below the middle stream, causing the stream to
be deflected downwards. Concentration contours extracted from simulations predict that
the stream will tend to stick to the bottom wall Fig. 4.2 (b).

The measurements in microfluidic systems are hard to obtain due to their small size.
In a set of experiments using microPIV (Particle-Image-Velocimetry) measurements, the
velocity profiles obtained by simulations were compared with experiments. The results
differ mainly due to numerical diffusion.

From a practical point of view, a chimney embedded in cavity-like basin will tend to
collect bubbles which are unwanted. The reasons for this we address next.

4.2 Bubbles in microchannels

Another example of two-fluid interfaces in microfluidic systems are gas bubbles. Such
bubbles present a significant problem: they can block the microchannels, disrupt the flow,
and disturb measurements in an uncontrolled manner.

4.2.1 Formation of bubbles

The following are the most common reasons for bubble formation:

e Cavitation (or, nucleation). When the local pressure p(x) drops below the vapor
pressure p, of a fluid, a bubble containing mainly the vapor molecules spontaneously
develop. The liquid is said to ”break” at the point of cavitation. The effect can be
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Figure 4.2: (a) Schematic view of the viscous drag by two outer streams. (b) Simulations
of concentration contours for different focusing ratios R (R=sheath-flow rate/sample-flow
rate). On the left, the cross-sections of the outer channel are shown with the middle
stream being more (top) and less (bottom) focused. On the right, the corresponding top
view of a part of the chimney structure, see Appendix A. The middle stream contains a
sample species that can diffuse into the sheathing liquid. The focusing is better for higher
R, and confined to the bottom of the channel.

( a) chimney

enhanced either by raising the temperature and thus increasing the vapor pressure!,

or by decreasing the local pressure. The latter effect is particularly pronounced
at junctions of microfluidic systems when changes in pressure occur due to sudden
contractions/expansions.

e Solubility. The solubility of a gas in a liquid is governed by Henry’s law, which
states that the partial pressure of a gas above a solution is directly proportional
to the concentration of that gas in the solution, [32]. The solubility decreases with
increasing temperature. A common practice with respect to lab-on-chip systems is to
push helium (which itself does not nucleate under ordinary conditions) through the
system to lower the partial pressure of other gases and therefore their concentration
inside the liquids. Such a degassing procedure is usually good for several hours.

e Electrolysis. In microfluidic systems containing electrodes and operating under DC
voltages, e.g. some types of EO micropumps, gases will form next to the electrodes
due to electrolysis. The buffers are usually water solutions, and so hydrogen and
oxygen will develop. The problem will be circumvented if AC fields are applied (and
design allows it).

e Heating. As mentioned, heating of devices will cause bubbles to form: liquid might
evaporate or dissolved gases expand.

Apart from the degassing method, the removal of unwanted bubbles might involve high-
frequency sound vibrations or control of surface tension. However, in spite of such efforts
gas bubbles may still be present, and once there it often requires large driving pressures
to push them out of the system, [35].

LAt 20 °C the vapor pressure for water is 0.023 bar, but at 100 °C it is 1 bar and the water boils, [34].
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(a) (b)

liquid

solid

Figure 4.3: (a) A bubble passing through a sudden contraction. The curvatures at both
ends are different and constant while the bubble is in the contraction. (b) A bubble in a
tapered channel. Appropriate names have been given to different lengths and angles in
use. The curvatures depend on the position of the bubble because of the tapering. See
Appendix D.

4.2.2 Clogging of microchannels

If a slowly moving bubble is present in a circular capillary of diameter d, the gas-liquid
interface has a spherical shape, [36], as sketched in Fig. 4.3. This is true as the spherical
shapes provide a minimal pressure drop and thus a minimum surface energy. The pressure
drop over each of the interfaces is given by Young-Laplace equation

1 1 cosf
AP, = — +— ) =4 , 4.1
0<R1+R1> o— (4.1)

where 6 is the contact angle, and the two main curvatures are identical due to symmetry,
Ry = R = R. In a straight channel the total pressure drop, due to curvature, over the
bubble is obviously zero. AP; is identical with different sign at each end of the bubble. To
move the bubble through a straight channel only the friction needs to be overcome. The
required pressure is

AP = =L (4.2)

where o is a frictional surface tension parameter. However, if there is a sudden change
in the capillary radius the pressures AP; on two sides of the bubble will not balance each
other. The pressure drop over the bubble is

1 1

Apgudden — 45 <E - 5) : (4.3)

and acts as a blocking pressure, in addition to APy, making it harder to push the bubble
into the part of a smaller radius. A bubble in a sudden contraction is shown in Fig. 4.3 (a).
If on the other hand the contraction is tapered, the pressure drop is given by

cos(0 +0;) cos(d — Gt))

APtapered — 4 (
b 7 d D

(4.4)
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(a)
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Figure 4.4: (a) A sketch of the trap geometry where the central length scales are marked:
the width d of the main channel, the size [y of the offset between the upper and lower wall,
and the width [; of the narrow trapping channels. (b)-(e) Four snapshots of the simulated
trapping procedure near the offset and trap regions. (b) A bubble moving towards the
offset region. (c) Detaching of one side of the bubble by the offset effect. (d) The bubble is
pushed towards the trapping region. (e) The bubble gets trapped. See also Appendix D.

where 0, is tapering angle, Fig. 4.3 (b). The pressure contribution AP, due to the curvature
effects will be smaller in case of the tapered channels than in the case of sudden contraction.
Therefore, it may be beneficial to use tapered constrictions in microfluidic networks where
the presence of bubbles poses a problem.

However, some interesting and non-intuitive behavior appears when the full analysis
is made about the dependence of APbsudden on arbitrary tapering angle. A systematic
study of a bubble passing through tapered constriction in a quasi-static motion has been
conducted and presented in the paper enclosed as Appendix C.

4.2.3 Passive bubble trap

The curvature effects described above can be used to manipulate the bubbles by directing
them away from the main flow into specific locations from which they could be removed.
For this purpose a special passive bubble trap is developed, using a combination of ge-
ometry and surface tension effects. Fig. 4.4 (b)-(e) show a 2D CFD simulation of a
bubble-trapping process allowing unhindered flow. In a real system, several bubble traps
could be placed at locations where there is a tendency of bubble creation. Using special
semi-permeable materials (e.g. Gore-Tex), the bubbles could then be extracted from the
region and out of the system.
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4.3 Two-liquid viscous pump

As a final example of systems with two fluid interfaces, we will present a device operating
with two immiscible liquids such as water and oil; namely, a unique EO pump able to
pump non-conducting liquids. Non-conducting liquids do not form the electric double
layer at channel walls since they have very low conductivity (< 107%S/m) i.e. very low
amount of dissociated ions. Therefore, they cannot be pumped by ordinary EO pumps.

The device has been developed during the PhD project together with A. Brask, and
is even patented (provisional US Patent application; see the conference paper enclosed in
Appendix E.).

4.3.1 Submerged jets

Before the attempt to explain the mechanism of this two-liquid viscous pump, we will
expose a known phenomenon called entrainment of one fluid by another, [37]. If a fluid
jet, say water, is submerged in another fluid, say air, such as the stream from a water tap,
the jet will drag with itself the air not only from the border where the fluids are in direct
contact, but also the air within the boundary layer of a finite thickness. This phenomenon
is exploited in so-called filter pump used in chemical laboratories, Fig. 4.5 (a). The more
air is entrained with the streaming water, the more air will flow from the side channel to
replace it, creating a significant suction. The emphasis here is on the viscous drag within
the boundary layer. If a water jet is submerged within water the same phenomenon will
appear; this is precisely what happens in uFACS using the chimney except that the outer,
faster jets do the drag.

In microfluidics the boundary layer can occupy large portions of channels, so the same
type of filter pump could, in principle, be possible to build in microsystems. The problem
is, however, to pump the driving jet in the first place.

4.3.2 EOF induced viscous drag

An idea was proposed by O. Geschke, MIC, to possibly use an EOF as a driving mechanism
to drag other liquids. The intention was to direct a conducting, so-called pumping liquid,
through two side-channels, and then try to drag any, in particular non-conducting, working
liquid into the main channel, Fig. 4.5 (b). The original design was not successful since it
basically did not enable the pressure build-up, due to the equal flow resistances of the
outer channels. Three features have been introduced in the improved design, Fig. 4.6.

e The EOF is more efficient than pressure in microflows, Eq. (3.38). By increasing the
flow resistance of the side channels, the conducting pumping liquid is able to flow
through them, while the working liquid is largely prevented from entering - a built
pressure will not "leak” (as much) through these side pressure valves.

e The conducting liquid needs to be confined close to the walls to provide a free
boundary to enable the entrainment effect i.e. to enhance the amount of working
liquid through the main channel. This is achieved by lowering EO mobility in the
side channels as compared to the main channel.
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Figure 4.5: (a) The water-jet pump creates suction effect by entrainment of the air within
the boundary layer at the free air-water interface, [37] (b) The original but not usable idea
of a two-liquid viscous pump. The pumping liquid driven by EOF enters through inlet B
and the working liquid at inlet A. Inlet/outlet B are connected to external reservoirs, [17].

e In order to achieve the largest possible E-field in the main channel, and thus to
increase the driving velocity, Eq. (3.28), the pressure valves are made short (small
electric resistances). This will enable a desirable low voltage operation.

The performance of the pump has been analyzed using two methods, [11]. The pressure
and flow rates have been calculated by equivalent circuit theory, and in addition, a set
of CFD simulations was carried yielding more detailed information on the distribution of
pressures and velocities. The two methods were applied to the cases of both immiscible
and miscible liquids. Pumping of an immiscible liquid is shown in Fig. 4.7. Three sets
of resulting backpressures and corresponding flow rates are shown in Table 4.3.3. The
generated pressures are not very large, but the pump Q-p characteristic largely depends on
the geometrical factors and can be significantly enhanced by advanced etching techniques.
The pump still works for miscible liquids, but here the working liquid gets mixed with
the pumping liquid. Because of the possibility to pump all types of liquids, the described
concept seems very promising.

4.3.3 Instability problem

Our analysis of the pump did not, however, include a stability analysis. The interface
between two immiscible liquids will be subject to flow disturbances which are always
present in the flow. It is therefore important to estimate the flow regimes under which the
instabilities, that lead eventually to flow disruption, can develop in course of time.

The analysis, however, is a comprehensive task. It requires the understanding of elec-
trohydrodynamics (EHD) i.e. the way how electric fields couple with hydrodynamics. We
will dedicate the next four chapters to address to some extent the aspects of electrohydro-
dynamic instability. This is then applied to two-liquid microfluidic systems which bring
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Figure 4.6: A schematic view of our two-liquid viscous pump, Appendix E. The pumping
liquid and the working liquid are shown in light gray and dark gray, respectively. The
expected velocity profiles are shown as inserts to give an idea of the overall flow. Internal
friction gives rise to a counter pressure, which induces the parabolic flow profiles. The
thickness of the pumping liquid layer is Djayer.

into light some interesting features.
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Figure 4.7: A CFD simulation of an immiscible two-phase flow. The pumping liquid of
mass fraction 1 is introduced through inlet B. At outlet B the mass fraction drops to 0.87
and lower as shown, and a part of the pumping liquid continues in the main channel.

EO mobility Max flow rate | Backpressure

Qeo/pm?(V s) 71 Q / nL/s Pa

Model 0 0.296 31.6
Simulation 0 0.290 30.6
Deviation 2% 3%
Model 5000 0.267 28.5
Simulation 5000 0.260 27.4
Deviation 3% 4%
Model 10000 0.237 25.3
Simulation 10000 0.230 24.3
Deviation 3% 4%

Table 4.1: Comparisons between the circuit model and a CFD simulation. The results for
three different EO mobilities in the valve channels are shown. The agreements are within
4%. Parameters: ¢, = 10 V and pin = pout = 0.
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Chapter 5

Fluid dielectrics and the Maxwell
stress tensor

In the following chapter we investigate the effects of the electric fields on fluid dielectrics.
In microfluidic systems large E-fields can be achieved by applying relatively small voltages,
due to the smaller length-scales involved. The effect of E-fields, therefore, will be quite
significant.

We first introduce the electrical, Maxwell, stress tensor in vacuum, a useful concept in
expressing the electrical body forces, [15].

We then define thermodynamic properties of dielectrics placed in an electric field to
understand how does the presence of the field affect these properties, Landau and Lif-
shitz [38].

The thermodynamical approach leads to important general expressions for the stress
tensor and the resulting electrical force on a dielectric placed in an electric field. The
various terms in the force equation are then explained.

Finally, the stress conditions on the boundary between two fluid dielectrics are dis-
cussed and the non-trivial condition on the pressure difference derived.

5.1 The Maxwell stress tensor in free space

Consider a system of stationary charges inside a volume V placed in an electrostatic field
in vacuum. We assume that the volume is free of any neutral dielectric material. If p is
the charge density, the force acting on it is

Fe:/VpE dV:/V[V-(eOE)]EdV. (5.1)

By the following transformation, the integrand can be written as the divergence of a tensor.
Since VxE = 0 we can subtract ¢, Ex(V xE) and obtain the i-th component of the force

35
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// S(¢)
/ E(9)
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Figure 5.1: The electric stress S¢ acting on a surface enclosing charges placed in an electric
field. For an arbitrary angle 6, the E-field bisects the angle between the stress and the
normal n. In a perpendicular E-field, the stress is normal to the surface, pointing outwards.
In a tangential E-field, the stress is directed inwards.

per unit volume in the following form [15]

ElpEi — E,(V-E)-[Ex(VxE)], (5.22)
0
= EiakEk_ [Ej<az'Ej - 8jEi)_Ek(8kEi - azEk)] (5.2b)
1
= 0,(E? - §E2) +0,(E,E,) + 0,(E,E,) (5.2¢)
= iakz;.?f . (5.2d)
€o

This is divergence of a tensor. Applying Gauss theorem, the i-th component of the total
force can therefore be written as a surface integral

Fe = [ oBav = [ T dho= [ Tinar (5.3)
\%4 S S

where the normal vector n = (n,,n,,n,) is directed out of the volume. The tensor TZ.],Z[ is

called the Maxwell stress tensor,
1
TV = _EGOEQ% + B, E,. (5.4)

Note that the force on an empty volume placed in a static E-field vanishes while the
stress tensor T, l],‘f does not. From Eq. (5.3) we see that the force on a stationary charge
distribution can be determined by calculating the electric stress over a surface surrounding
the charges. The force acting on a unit area of the volume in vector notation is

1
S¢ = ——¢.E’n + ¢,(n-E)E. 5.5
9 0 0

It is useful to express the applied E-field in terms of the normal and tangential components
with respect to the surface
E=Fcosfn+ Esinft, (5.6)
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where 6 is the angle between the E-field and the normal, Fig. 5.1 (a). Inserting the above
field into Eq. (5.5) we get
S¢= —1eyE?n+ ¢y(E cosd)(E cosf n+ Esin t)
= — 26 E?(1 —2cos’ @) n+ Le,E?sin20 t (5.7)

= 2€eyE?(cos20n +sin26t),

so that E bisects the angle between the stress and the normal. The following cases are of
special interest:

1

S¢ = 560E2n, (6 =0,7), (5.8a)

s° = —%GOE%, 0 = 7/2), (5.8b)
1 2

|S| = EEOE ) (all @). (5.8¢)

If the E-field is perpendicular to the surface (§ = 0, 7), the stress is in the direction of the
normal (and the field) pulling the element; if the field is parallel to the surface (0 = 7/2),
the stress is directed inwards i.e., pushes the surface in the opposite direction of n. In all
cases the total magnitude of the stress is constant and equal to €,E?/2.

To understand the true meaning of the Maxwell stress tensor, one needs to consider
the total force on a system of charges moving within variable EM-fields i.e. the Lorentz
force

d
F¢+F" = / p(E+vxB)dV = - P (5.9)
14

F¢ and F™ are electric and magnetic forces, respectively, and we have expressed the total
force as the rate of change of linear mechanical momentum P__ . After somewhat
involved transformations, similar to the one giving Egs. (5.2a) - (5.2d), we arrive at [15]

d

—Pech + @/ ¢ExB dv = / M df,. (5.10)
dt 1% v

where now Ti],‘c/[ includes also the magnetic contribution

2

1 1
™ — -3 [egE? + poB?] 6, + o BB, + N—Bin. (5.11)
0

From Eq. (5.10) we see that, unlike for the static fields, the time-varying fields will exert
a force 0, fV egEEx B dv over an empty volume, that is, when F¢ = F™ = 0. The quantity

g = ¢ ExB, (5.12)
has dimension of momentum density and is interpreted as the momentum density of elec-
tromagnetic field. Eq. (5.10) now can be written

d

E(Pmech + sz'eld)i = / sz;i;/lnkdf, (513)
\%4
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expressing the conservation of linear momentum of particles and fields. The term Tijl‘f n,
measures therefore the momentum flux per unit area into the volume.

We have seen that Maxwell stress tensor, T’ Z],\C/‘[ , can be used to calculate the electric force
on the system of particles and fields enclosed inside a volume V. However, an important
aspect discussed in Ref. [39] is worth of attention. In the early days of electromagnetic
theory, Maxwell and Faraday have considered these stresses primary over the fields in de-
termining the electrical forces. In particular, propagation of electromagnetic fields through
an empty space could not be conceived and an elastic medium, the ether, was postulated.
The stresses in Egs. (5.3) and (5.10), were then associated with deformations of the ether
and the electric force propagated via the contact with it. It was then confirmed that
electric fields are primary quantities and that the electric force in a point in space solely
depends on the E-field at that point, without any underlying support. In that sense, the
stress formulation is rather a convenience than (essential) physical reality. What Egs. (5.3)
and (5.10) really mean is that the bulk force on the system of charges can be correctly
calculated assuming the existence of a fictitious state of stress at the surface, [39].

5.2 Fluid dielectrics in electric field

We will now investigate some of the interesting phenomena arising when a dielectric is
placed in an electric field. Unlike with conductors, external E-fields do not vanish inside
the dielectrics and that greatly affects their thermodynamic properties. Of a particular
interest to us are electric forces acting on a dielectric material as well as stresses on
boundaries between two dielectrics.

Because of its generality we will follow the free-energy approach developed in Landau
and Lifshitz [38]. The formalism is rather comprehensive and instead of deriving it all,
we will borrow some of the main results. When necessary, the terms will be explained in
more detail.

5.2.1 The internal and the free energy of a dielectric

Let a thermally insulated dielectric be placed in an external electric field produced by a
set of charged conductors. If now the field undergoes an infinitesimal change, due to a
slight change in the charges on the conductors, a work done in the process is

5W:/¢5pdv (5.14a)
1%
_ / 6V -5D dV (5.14b)
|4
:/ _V¢.5de+/¢5D~nda (5.14c)
A7 S

:/ E-6D dV. (5.14d)
\%
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where we made use of V-D = p and the fact that the surface integral in Eq. (5.14c) vanishes
for a localized charge density p when S is taken to infinity. The volume integration is over
the whole volume outside the conductor including the vacuum if the dielectric does not
occupy all the space.

The well-known integral Eq. (5.14d) represents the increment of energy stored in the
electrostatic field. Now both the total energy and the total free energy of the dielectric
(each including also the energy of the electric field), change by this amount. The change
of the internal energy U and the free energy F' per unit volume are then

dU = TdS — pdV + pedp + E-dD, (5.15a)
dF =—SdT — pdV + p.dp + E-dD, (5.15b)

where fi, is the chemical potential with respect to unit mass'. A Legendre transforamtion

from variable D to variable E is performed to get the new thermodynamic potentials U(E)
and F(E)

U=U-E-D, (5.16a)
F=F—-E-D, (5.16b)
for which the thermodynamic relations become
dU = TdS — pdV + pedp — D-dE, (5.17a)
dE =—SdT — pdV + pedp — D-dE. (5.17Db)

To find the internal and free energies per unit volume stored in a field, Eqs. (5.15a)
and (5.15b) have to be integrated from the initial state D = 0 till the final D. If the
medium is linear, D = ¢E, we get

1
U=U,(S,V,p)+ 2—€D2, (5.18a)
1

where U, and Fj are zero-field quantities. In similar way

1
U =Uy(S,V,p) — §eE2, (5.19a)
- 1

F=F,(T,V,p) - 5eEQ. (5.19b)

The total internal and free energies, Ui and Fio, are obtained by integration of Egs. (5.18a)
and (5.18b) over all space.

Various thermodynamic potentials describing a system acquire minimal values in a
state of thermal equilibrium, with respect to infinitesimal changes in the state of the

Mn Chap. 3 chemical potential pichem Was defined with respect to concentration. These two differ by a
constant factor since p = ¢ m, where concentration ¢ = n/V is the number of particles per unit volume
and m the mass of one particle
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system, Landau and Lifshitz [40]. The thermal equilibrium in an electric field will depend
whether the changes of the state are happening at the constant charges or the constant
potentials. When the charges (and temperature) are held constant, the state of thermal
equilibrium is characterized by the minima of U and F'; when the potentials are constant,
the state of equilibrium is described by the minima of U and F. By inspecting Egs. (5.18a)
and (5.19a) we note that for linear dielectrics

6U = —oU. (5.20)

The usefulness of the formalism can be illustrated by considering the change in the
internal energy if the dielectric constant € is changed. From Eq. (5.18a) we get

1 1
Ut = / ~D-0DdV — | ——deD*dV (5.21a)
V4 € % 2€
1
= / E-dDdV — —/ 5eE? dV. (5.21b)
% 2 )y

If the charges are held constant, the first term in Eq. (5.21b) vanishes, being the charge
contribution from Eq. (5.14a), and we get

1
Ut = —= / SeE? dV. (5.22)
2 )y

Eq. (5.22) says that an increase in the dielectric constant somewhere inside the system
reduces the electrostatic energy (with charges being fixed). On the other hand, when the
potentials are kept constant, the energy increases by the same amount, Eq. (5.20).

5.2.2 The Maxwell stress tensor in fluid dielectrics

We have seen in Sec. 5.1 that a force acting on a finite volume can be represented as a stress
applied to the surface of the volume. This general fact stems from the conservation of linear
momentum, since the rate of change of momentum inside a volume can be represented as
the momentum flux through its surface [41]. To find the force on a fluid dielectric placed
inside an electric field we will have identical approach; that is, we want to find the stress
tensor J% satisfying

/V f,dvV = /S olln,df. (5.23)

As before, o% df is the i-th component of the force acting on a surface element df, with

n being directed out of the volume. Once af\k/[ is determined the force f; can be found as,
Eq. (5.2d)

fi =00 (5.24)

There are several approaches to determine the stress tensor J% in dielectrics, [39, 42,

38]. The most general method is described in Landau and Lifshitz [38]. Here we briefly
describe the procedure?. A fluid dielectric is placed between two conducting planes held at

2The terms appearing in the stress tensor and in the resulting force are discussed below.
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a constant potential. The planes are then subjected to an isothermal virtual displacement
which causes the homogeneous deformations within the dielectric. The work done on the
conducting planes is equal to the decrease in the free energy F of the dielectric. The
result of the procedure is the stress tensor 0% , which in case of isotropic and linear media,
becomes the symmetric tensor

~ 1
o)l = —Pody, — 56 [1 _ L (0p6T)T] E?5, + e, ¢oE,E,. (5.25)

€r

Here 150(,0, T) is the pressure present in the dielectric when E = 0, while 0, 1s the partial
derivative with respect to mass density. If we consider vacuum, €, = 1, and neglect the
pressure we recover Eq. (5.4). The term

Co = L (8per)

5.26
2 (0,60); (526)

is called the electrostriction term and is in connection with the deformations imposed by
the electric field.

5.2.3 Electric force in fluid dielectrics
Differentiating Eq. (5.25) according to Eq. (5.24) we get for the force per unit volume

1

260E2V6T + peE, (5.27)

. 1 )
£° = —VPo(p.T) + 56V [E P (aper)T} _
where p. is the density of free (external) charge. Eq. (5.27) is a very important result
and represents the most general expression for the force on dielectric media placed in an
electric field. Therefore, it is worth now to investigate how the terms came about.

Pressure
Generally, the pressure in compressible fluids is a function of mass density and tempera-
ture and a separate equation of state is needed to fully characterize the fluid systems. By
the additional equation the pressure value is completely determined. We will investigate
only incompressible liquids and therefore the pressure will appear only in the pressure
gradient term in the force density of Eq. (5.27). This means that any constant pressure
added to Py would yield the same motion. If we look at Eq. (5.25) we realize that the
pressure term does play a role in the determination of stresses on a boundary between two
media (to be considered later); however, there again it will enter as a pressure difference.
In passing we remark that non-unique pressure solutions in incompressible liquids is
a known problem from computational fluid dynamics. Numerical algorithms are thus de-
vised to deduce the pressure field in an iterative process, starting with a guessed initial
value until a converged solution is reached.

Electrostriction
The electrostriction term of Eq. (5.26) gives rise to the second term in Eq. (5.27). As
pointed, it arises due to the deformations of a dielectric in an electrostatic field.
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Let us assume that the dielectric constant depends on position as well as density,
e = ¢(r, p). When a dielectric is placed in an electrostatic field it undergoes a deformation
since material points are displaced due to dipole formation. As a result, the mass density
changes.

We introduce the displacement field s(r); a point inside the dielectric at a position
r before the deformation, finds itself at the new position r + s(r) afterwards. An initial
small volume dV becomes a deformed dV’

dV'=(1+V:s)dV, (5.28)

where Vs is the volume dilatation up to the first order in s, [Stratton]. Since mass is
conserved we have

pdV = p'(1+ V-s)dV, (5.29)

where p and p’ are the densities before and after the deformation, respectively. For an
infinitesimal change

op=p —p=-p(V:s), (5.30)

which results in the corresponding change of the dielectric constant
dp€ = (0,€)0p = —p(0,€)V -s. (5.31)

If the above variation is inserted into the change of the electrostatic energy, Eq. (5.22),
we eventually obtain the second term in Eq. (5.27).
The electrostriction term c for liquids could be estimated from Clausius-Mossotti equa-
tion?
Na

P 5.32
_ %Na ( )

€ —1=
where N is number of atoms per unit volume and a molecular polarizability. Since N = p
is proportional to the density, after a quick manipulation we get
1
co = —(6. —1)(e, +2). (5.33)
3¢

The relative dielectric constant €, is always bigger than 1 resulting in a positive elec-
trostriction term c. It is worth mentioning that in Ref. [43] performed a set of experiments
with perpendicular and tangential electric fields imposed on the boundary between two
liquid dielectrics. The electrostriction effects, although present, were much less than sug-
gested by Eq. (5.33).

Generally, the electrostriction involves change in shape of the dielectric. For a slight
deformation, that is for small E-fields, the first order effect include a volume expansion
without the change in shape. Therefore, the effect can be described as an effective pres-
sure on the dielectric. Due to the large E-fields present in microfluidic systems, order of
10° V/m, the effects of the electrostriction could be quite significant. In case of incom-
pressible liquids, however, we can in first approximation treat the deformation as small

3For water, or polar molecules in general, the equation does not apply and the approach developed by
Onsager must be used, [44].
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(p = const.) and so group the electrostriction term with Py into a redefined pressure.
As already mentioned, such a procedure will not affect the equations of motion. We can
rewrite Eq. (5.27)

~ 1 1
f=-V |Py— 560E2p (Ope,,)T - §€OE2V€T + p°E. (5.34)

Inhomogeneity
The term proportional to Ve gives the force contribution due to the non-homogeneous
dielectric constant. Since € = €(r, p), the small element of the dielectric positioned at r
after the deformation was at the point r — s before; the contribution to de due to the
inhomogeneity is

dre = —s-Ve, (5.35)

which together with Eq. (5.22) leads to the third term in Eq. (5.27).
In general € is a function of density, temperature and (mixture) concentration ¢ which
generally depends on position. We have

Ve=(0,6)1.Vp+ (07€)p VT + (9.€)prVe. (5.36)

For incompressible, non-homogeneous liquid at constant temperature the force will depend
on the concentration gradient. In microfluidics, the systems used for analytical methods,
for example separations, consist of usually two miscible liquids - a buffer and a sample.
Due to diffusion, their interface will eventually acquire transitional dielectric constant (and
conductivity), which will contribute to the force in proportion to Eq. (5.36).

5.2.4 Alternative form of the force density

The equation Eq. (5.27) has been derived from the energy principle. The derivation was
first proposed by Korteweg and later developed by Helmholtz in 1881.

An alternative way to obtain the force on a dielectric placed in an E-field is to sup-
pose that the electric forces exerted on free charge and polarization charge (dipoles) are
transferred directly to the dielectric, [45, 46]. Since the force on a single dipole is p-VE,
then for single-species material with Ny dipoles per unit volume we have

f=N,p-VE = P.VE, (5.37)

where P = N, p is the polarization density. Now, P = (e — ¢;)E and VxE = 0. With the
use of known vector identities

V.VV = (VxV)xV+%V(V.V), (5.38a)
V(g) = ¢V +9Vo, (5.38D)

we can transform Eq. (5.37) into

1 1
f=56V (e, — 1 E?] — §EOE2V€T. (5.39)
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€, D E=(E,.E)

Figure 5.2: A disturbed interface between two liquid dielectrics. In case of perfect di-
electrics, the stresses are normal to the interface causing a change in pressure,

1 2
1Py =1 3¢ (En — E7) .

Comparing Eq. (5.27) (without the free-charge term) and Eq. (5.39) we see that they
are not identical. It is not surprising since Eq. (5.27) is not restricted to dipoles - multipoles
could in principle be present?. The two expressions will be equal when

(ﬁpeT)T =c¢ = 6T; 1, (5.40)

or, when
€, =1+ ¢qp. (5.41)

But Eq. (5.41) is just the first term in the expansion of €, in terms of p. So if the compres-
sions are assumed small, the two equations could be made identical. This is in support
of the previous statement that in the case of incompressible liquids, the deformations,
manifesting themselves as a pressure, do not affect the motion.

However, if the compressibility is significant the approach leading to Eq. (5.39) will not
give correct results. Once calculated, the polarization force could indeed be used to predict
the corresponding deformation; but in turn the deformation affects the polarization, and
if this change is not included the prediction will be only approximative. Such an erroneous
attempt is discussed in Ref. [39]. If a force description is used it is important to account
for all possible contributions which is usually difficult. The difficulties are circumvented
in the (free) energy approach, used to obtain Eq. (5.27).

5.2.5 The boundary between two dielectrics

We will now consider the boundary conditions at the interface between two incompressible
liquid dielectrics placed next to each other, Fig. 5.2. Let us first introduce a notation
which will be of extensive use in later chapters. The ”jump” in a function f(z,y, z) at the
boundary z = 2, between two media represents the change in the function f across the

“The relationship between vectors D and E can be written as D, = ¢,E, + (P, — 20;0,Qi + ),
where Q7 is the macroscopically averaged electric quadrupole moment, [15]. The higher terms containing
derivatives, however, are vanishingly small in comparison with the terms that do not contain them.
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boundary
HfHE f(xvyaz = Z(J)r) - f(fU,y,Z = Za) = (f2 - fl);;:zo 9 (542)

where + and — refer to the different sides, 2 and 1 respectively, of the boundary.
If the normal vector n is directed from the medium 2 into the medium 1, we can write
the known conditions imposed on E and D fields at the boundary between two media as

nx [E| = [ E | = 0, (5.43)
n-[|[D]| =[[ Dy [l ==gs, (5.44)

expressing the continuity of the tangential component E, across the interface, and the
jump in the normal component D,, due to a surface charge density.

The forces at each side of the interface are equal and opposite. In terms of the stress
tensor a% we have

||Uf\k4 | n, = 0. (5.45)

In Eq. (5.25) we can put the electrostriction term into a redefined pressure P, and express
the E-field in terms of normal and tangential components. We get for the normal stresses

1 1 1
| Poll=ll e (B2 - E2) = 5 l|eB2 | =5 B2 el (5.46)
and for the tangential stresses
1 ED, [|= E; || Dy [l= —Eygs, (5.47)

where the use has been made of Egs. (5.43) and (5.44).

Several important remarks need to be underlined. We have already seen in Sec. 5.1
that an E-field acts as an effective pressure with the normal and tangential components
suppressing each other’s contribution, and that is what the balance of normal stresses in
Eq. (5.46) reveals.

In case of perfect dielectrics, ¢gs = 0, or in case when the interface is perfectly con-
ducting, E, = 0, the equality of tangential stresses in Eq. (5.47) is satisfied identically.
This means, that for these cases the electric stresses are always perpendicular to the in-
terface. Alterations of interface shape together with the surface tension serve to balance
the electric stress.

If there are free charges accumulated at the interface, a tangential E-field acting on
the charge will produce a net tangential stress. In case of liquids, a viscous flow will result
to produce the stresses to balance the action. This will be shown in Chap. 7. In other
words, an inviscid approximation in the case of free charge at the interface will not be a
valid one. This is the mechanism behind realistic, leaky dielectrics with small but finite
conductivities, Saville [46].



46 CHAPTER 5. FLUID DIELECTRICS AND THE MAXWELL STRESS TENSOR



Chapter 6

Hydrodynamic stability analysis:
basics

By a dynamical system we mean any physical system that evolves in time; it could be
an atom, a swinging pendulum or a general hydrodynamic flow to which we will focus
our attention. A dynamical system is said to be unstable if a small perturbation of its
equilibrium state increases exponentially in time [37].

For any viscous flow that is subject to steady conditions the equations of motion,
Eq. (2.8), will yield in principle the exact steady solutions, Landau-Lifshitz [14]. Simple
examples of the exact (analytical) steady solutions of the flow equations are Poiseuille and
Couette flows. However, these stationary solutions exist only within certain range of the
relevant flow parameters defined by Reynolds’ or other dimensionless numbers. Within
this stable range any fluctuation imposed on the stationary flow will decay in time leaving
the steady solution unaltered. Outside the range, the small fluctuations which are always
present within the flow will destabilize the flow and the stationary solution will seize to
exist. The outside regime is termed wunstable. Such transitions from stable to unstable
regimes are the topic of hydrodynamic stability analysis and have been the centerpiece of
enormous number of research studies dating all the way from 19-th century, [47, 48, 49, 50],
to name a few.

The flow instabilities have a big practical impact. In large systems they result in
turbulence and big energy losses associated with fluid transport, and are thus undesirable.
In microfluidic systems, devices such as EOF pumps require operational stability while
some of them, such as mixers or microdispensers, would benefit from the instability.

In this chapter we will try to introduce general concepts of the linear stability analysis.
We would like to find a systematic way to quantitatively separate stable from unstable flow
regimes. In later chapters, the analysis will be applied to a specific problem of interface
stability between two immiscible liquids in microfluidic systems.

47
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Figure 6.1: Typical potential energy ¢ of a conservative system. The points R, S, and T
characterize the stable, neutral and unstable equilibrium, respectively.

6.1 General concepts

Conservative systems

If we consider a one-dimensional conservative system, its equation of motion is described
by )
) (6.1)
where m is a constant parameter having different meaning for different conservative sys-
tems and f(z) is an analytical function.

In a mechanical system m represents a point mass and f(x) force which can be ex-
pressed as negative gradient of the potential energy ¢(x). Generally, the potential energy
consists of local minima and maxima and can be depicted as in Fig. 6.1. The force ap-
pearing when a system is moved the distance §zp away from an arbitrary but fixed point
can be found by a Taylor expansion

(ax¢)xp+5xP = (8x¢)xp + (axz¢)xP6xP + (62)

Discarding the terms higher than linear and expanding around the points where 9,¢ = 0
(any of the three marked points in Fig. 6.1), we have

m

(am¢)xp+6acp ~ (axm¢)xpéxpa (63)
which gives the equation of motion of a point mass in terms of small displacement 6z p:
matt(sxP = _(8zx¢)xPxP' (64)

The solutions of the above equation can be expressed as
0z p(t) = L0z py exp(—iwpt), (6.5)

where wp, is the frequency of oscillations given by
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Figure 6.2: (a) Buckling of a solid rectangular beam upon exerting a vertical force. The
displacement u increases with F'. (b) ”Pitchfork” bifurcation diagram: maximal displace-
ment u(F') as function of the force F. After critical F,., two stable states appear. The
former stable (undistorted) state exists but has become unstable (dashed line).

From Eq. (6.6) we notice that the frequency wp depends on the curvature of the
potential energy, given by the second derivative or generally the Laplacian. The point x
in Fig. 6.1 is the local minimum, and so the curvature is positive resulting in real wp.
The point mass m experiences an oscillatory behavior, since the restoring force is directed
towards the stable equilibrium point z,. For the point ., however, the curvature is
negative and w;, is a complex number. In this case (or whenever the imaginary part of the
frequency is positive) Eq. (6.5) shows that the displacement dx, will exponentially grow
in time. At the point T" the system is in an unstable state of higher energy, the restoring
force now directed away from it.

A system can undergo a change from a stable to an unstable state, passing through
the point of marginal or neutral stability where the frequency is equal to zero i.e., the
curvature changes the sign. In our case this is valid for the point x4. In order to find the
force on the mass m at that point, we need to include the higher terms in the expansion
of Eq. (6.2).

The instability transitions can be visualized in parameter space by means of bifurcation
diagrams. For that we use another example of a solid beam on which a vertical force is
applied. After a certain critical force (Euler force), the beam will buckle and will deform
as depicted in Fig. 6.2 (a).

If we now plot the maximal displacement u(F') as a function of the force F', then the
qualitative graph looks like the one in Fig. 6.2 (b). After a critical force F, is applied two
new stationary states appear; the former equilibrium state, although still exists, becomes
unstable. This outlines the principle of exchange of stabilities manifested when at the
onset of instability stationary solutions prevail [49].
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Dissipative systems

Unlike the conservative systems, dissipative systems, such as viscous fluids, exchange en-
ergy, volumes, particles, etc. with their surroundings, resulting in fluctuations of these
variables. The concept of stable and unstable equilibria is still valid, [37], with mass par-
ticles now being subjected to a dissipative retarding force; oscillations are damped, and
the system, driven by fluctuations, cannot infinitely stay in an unstable state of highest
energy.

In order for a flow to be stable, it has to be stable with respect to every possible
disturbance to which it can be subject; contrary, it will be unstable if only one particular
disturbance grows in time. The conditions under which instability starts are usually
expressed in terms of some critical parameters governing the flow.

Of a special interest are marginal stability states marking the onset of instability and
thus dividing stable from unstable regimes. Unlike the conservative systems, dissipative
systems have two different types of the marginal states, depending on the way the flow
perturbations grow/decay, [49]. In stationary marginal states perturbations grow/decay
aperiodically and the principle of the exchange of stabilities is applicable - the instability
is manifested as a secondary flow e.g. Bénard cells appearing in the case of thermal
instability. In oscillatory marginal states perturbations oscillate with growing/decaying
amplitudes. An oscillatory growth transition is termed overstability. A tangential electric
field imposed on the boundary between two viscous, conducting liquids can cause the
oscillatory marginal states.

6.2 Standard procedure in linear stability analysis

We will now summarize the usual procedure in hydrodynamic linear stability analysis in
terms of four basic steps.

1. The equations are set for the initial, stationary (unperturbed) flow resulting in the
velocity field vy. The hydrodynamic equations include the continuity equation, the
momentum and energy equations. In case of electrohydrodynamics the Maxwell
equations for electroquasistatic fields need to be included as well. The equations are
simplified if incompressible liquids are considered.

2. A small (infinitesimal) perturbation v’ is superposed to the main velocity v and the
equations governing the perturbation are obtained. The equations and the boundary
conditions are then linearized neglecting the terms with quadratic and higher terms
in v/ 1.

3. The small disturbance v’ is expanded into a complete set of normal modes charac-
teristic for the system with given boundary conditions. For example, if a system is
confined between two infinitely long horizontal planes with normals in z direction,
and the flow parameters (density, viscosity etc.) depend only on the z coordinate,

!The general case of finite disturbances would require inclusion of non-linear (higher order) terms.



6.2. STANDARD PROCEDURE IN LINEAR STABILITY ANALYSIS 51

the expansion in term of two-dimensional normal modes is

v/(r,t) = /dk vk (z) exp(—iw,t) expli(k-r)]. (6.7)

where we have separated the space and the time dependence of normal modes.

4. Finally, a normal mode
v (r,t) = vk (2) exp(—iwt) expli(k-r)], (6.8)

where k serves as a parameter, is put into the system of linearized equations. By
choosing the solution in the form of Eq. (6.8), the linear PDE system of equations
and boundary conditions describing v/ becomes a simpler linear ODE system?. The
problem is then transformed to an eigenvalue problem for w, which is generally a
complex number.

We have mentioned that in unstable systems the disturbances exponentially grow in
time, whereas in stable systems they decay. Different stability regimes impose different
conditions on w,. These can be found by considering the time dependence exp(—iwt)
given by Eq. (6.8). If w, = Rew, +ilmw, is inserted into Eq. (6.8), the stability regimes
can be distinguished as follows:

>0 — instability,
Imw, { =0 — marginal (neutral) stability for k., (6.9)
<0 — stability.

The critical wave number k. marks the border between the stable and unstable states, see
Fig. 6.2 (b). We can also make the distinction between the oscillatory and the stationary
marginal states. Let Rew, # 0. Then in accordance with Eq. (6.9)

>0 — overstability,
Rew, #0 A Imw, { =0 — stability or marginal overstability for ks, (6.10)
<0 — stability.

An oscillatory marginal state exists when the real part of the frequency w,, which de-
termines oscillatory behavior, is different from zero when the imaginary part is zero. If
Im w, = 0 for all k-s, we are in a stable regime; when Im w, > 0 at some value ks, , then
overstability sets in. On the other hand, if Im w, = 0 implies Re w, = 0 for every k, the
marginal state is stationary and the principle of exchange of stabilities is valid [49].

Our main goal in the next chapters is to determine the characteristic frequency w, as
well as the critical wave number k. manifested at the onset of instability. In electrohydro-
dynamics, the k. will depend on the applied voltage.

2The formal analysis is presented in Chap. 7.
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Figure 6.3: Two liquids of different densities confined between two infinite planes. The
distances from the interface are a and b for the liquids 1 and 2, respectively. The vertical
displacement of the interface during perturbations is {(x, ).

6.3 Example: The Rayleigh-Taylor instability

To illustrate some of the outlined ideas we will now give a simple example of gravitational
instability. A note to the reader is that the boundary conditions on interface and wave
numbers used here will be borrowed from the chapter ahead, where the general treatment
is made.

Consider two ideal incompressible liquids on top of each other and confined between
two infinitely long, horizontal planes, Fig. 6.3. The densities of the upper and lower liquids
are p1) and p@, respectively, and the surface tension is o. The liquids are assumed to
be motionless in the beginning. We want to find the characteristic frequencies when the
interface is slightly perturbed i.e. z = ((x,t).

The ideal liquids which are vorticity-free in the beginning, are vorticity-free in sub-
sequent times by the conservation of circulation i.e. Kelvin’s theorem, [14]. The flow is
therefore potential and the velocity in each of the liquids given by

v = vl (6.11)

where i = 1,2 and ¢ = ¢(t). Inserting the above velocity into the Euler’s equation
for incompressible flow, Eq. (2.8) with zero viscosity, we get generalization of Bernoulli’s
theorem for time dependent flow

: N B : .
p V0,00 + §,o(z)v(z)2 + pDgz +p(i) = f(t). (6.12)

Since the potential ¢(t) is not uniquely determined, it can be redefined by a time trans-
formation ¢(t) = ¢(t) + tf(t)/p without loss of generality®. We can thus eliminate f(t)
from Eq. (6.12). If the velocities are small the quadratic term can also be neglected and
we get for the pressures anywhere in the liquids

P = —pWgz — pD9,60). (6.13)

3Adding an arbitrary function of time to ¢ in Eq. (6.11) does not change the velocity.
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At the rigid boundaries a and b, the vertical velocities w® and w® are zero; from
Eq. (6.11) we then find

#M) = A cosh k(z — a) expli(kx — wt)],

¢?) = Bcosh k(z + b) expli(kz — wt)], (6.14)

for the waves propagating in the x-direction.
The conditions at the interface z = (, Egs. (7.13a) and (7.13b), and Eq. (7.13e),
become

[w(0)[|=[19.4(0) || = 0, (6.15a)
0.¢(0) = 9,0(0) = 9¢, (6.15b)
|=p| = oV, (6.15¢)

where we evaluated the derivatives at z = 0 since the oscillations are small. Inserting the
pressure from Eq. (6.13) into Eq. (6.15¢) we get

lpg¢ + p 0,9(Q) ||= oV, (6.16)

which after differentiation with respect to time and using Eq. (6.15b), gives the condition
on the potential ¢

1p90.6(0) + p0,,$(0) |= 00, [0,.,6(0) + 0,,,$(0)] - (6.17)

Inserting the solutions from Eq. (6.14) into the conditions Egs. (6.15a) and (6.17)
we arrive at two algebraic equations for two unknowns A and B. The frequency w, is
determined when the determinant of the system vanishes:

(p® — pD)gk + ok®
pW coth(ka) + p2 coth(kb)’

wi = (6.18)

If p@ > pM) w is always positive and the oscillations are stable, Eq. (6.10). However,
if p@ < p(M) | the first term in Eq. (6.18) changes the sign and the system becomes unstable
for a range of k-s. From the condition w? = 0 we find for the critical wave number and
wavelength,

1) — 52
ko = u’ (6.19)

(2

27 o

For perturbations with k < k., or A > A., Imw; < 0 and the interface is unstable. From the
energy point of view, the decrease in the gravitational potential energy is larger than the
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Figure 6.4: The onset of instability of the system with a heavier liquid on top of a lighter
one. In a container of length L, the smallest non-zero wave number consistent with
the boundary conditions is k; = m/L corresponding to A\;, = 2L. Instability starts when
AL = A¢, and is present when Ay, > A, i.e. when L exceeds the critical length L., Eq. (6.21).

increase in the surface energy, and so the system goes into the more stable configuration.
The elegant energy argument leading to the same Eqgs. (6.19) and (6.20) is outlined in [37].

In finite-size systems not all of the wavelengths can be realized. The boundary condi-
tions on possible wave numbers imposed in a rectangular channel are given by Eq. (8.27).
We imagine now that the vertical boundaries are far apart, ka, kb > 1 in Eq. (6.18), and
that the liquids are confined between walls at * = 0 and x = L, as in Fig. 6.4.

The wavelength associated with the smallest allowable wave number k, = 7 /L is
A; = 2L. The instability will happen if this wavelength becomes greater than the critical
A i.e. if the length L of the system exceeds the smallest length enabling the onset of
instability

o
(P = p)g’

For a water-oil system L. = 15 mm, and for water-air L., = 8.9 mm. In microfluidic
channels typical widths are 100 ym while lengths can vary. For the systems shorter than
L. the Rayleigh-Taylor instability will not appear.

L>L.=m (6.21)

6.3.1 A note on viscosity

The stability analysis involving two superposed wviscous fluids is substantially more in-
volved. Here we only mention an important conclusion of the analysis made in Ref. [49]
which says that the critical wavelength A\., Eq. (6.20), at which the gravitational instabil-
ity sets in, is not affected by the presence of viscosity. In other words, ”the wave numbers
stabilized by the surface tension are independent of viscosity”, [49].

In microfluidic regime gravity effects can be neglected since the surface tension is the
dominant force. From Eq. (6.18) we see that the onset of instability in such case starts
at k = 0 4, with the other wave numbers being stabilized by the surface tension. It was
just mentioned that these wave numbers are not affected by viscosity. In this limit also

41t will be more evident in Chap. 8.
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the beginning of instability is independent of viscosity. Even though the viscous stresses
are important in microfluidics, Re < 1, as far as the onset of instability is concerned, the
inviscid approximation will suffice. For any realistic and thorough analysis, however, the
viscosity must be included.
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Chapter 7

Interfaces in
electrohydrodynamics: theory

In this chapter we will apply the theory and concepts of the previous two chapters to the
problem of hydrodynamic stability of the interface between two dielectric liquids. The
results of the electrohydrodynamic (EHD) instability analysis will later be applied to two
immiscible liquids placed in an E-field in a microfluidic devices. As already mentioned the
influence of the electric fields is very important in microsystems since very large electric
fields can be achieved with applying small voltages. To give an idea, a voltage of 10 V
applied across the typical 100 pm will give 10° V/m. As far as the stability is concerned,
the different situations will occur depending whether the F-field is applied perpendicular
or tangential to the interface.

The problem of electrohydrodynamic (EHD) instability is not new. Many studies
have been conducted over the years. The pioneering theoretical work started with Lord
Rayleigh in 1882, [51], but the foundations of the EHD could be credited to Taylor and
Melcher, namely for establishing the leaky dielectric model and extensively developing the
theory, [52]. Many later contributions are listed in Saville [46]. With the development of
microfluidic systems through 1990s, the EHD aspects are reappearing in the light of new
applications.

7.1 Two immiscible liquids between infinite planes

In Chap. 4 we introduced a pump where a conducting liquid driven by EOF is used to
pump a non-conducting liquid by viscous drag.

Although the actual design and characteristics of the pump have been investigated,
no stability analysis has been performed yet. The full stability analysis of the system,
however, is a rather involved procedure: the liquids differ in densities, viscosities, dielec-
tric constants, and conductivities; they are moving and are subject to both normal and
tangential E-fields in a finite-size system. In addition, the electrokinetic effects generally
play the role since the pump is driven by EOF. Actually, the pump represents a jet of oil
(i.e. the two interfaces) entering the surrounding water, Fig. 7.1 (a).

o7
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Figure 7.1: Two-liquid instabilities in electrohydrodynamics (a) Schematic view of the jet
instability present in the two-liquid viscous pump. (b) Two moving or still liquids placed
in an E-field between infinitely long planes spaced by L, = a + b.

In order to get the insight how various physical parameters affect the stability of the
interface, we will restrict our initial analysis. This will give us a good starting point for a
later, more realistic one.

As sketched in Fig. 7.1 (b) we will consider two immiscible, non-moving liquids one
above the other, which are confined between two horizontal planes. Liquids are assumed
incompressible and homogeneous perfect dielectrics separated by a plane interface. The
effects of gravity, surface tension, the electrical and viscous forces will then successively be
added. Each of these forces will eventually contribute a term in the characteristic equation
for the normal mode frequencies. In this chapter we want to find general solutions and
boundary conditions resulting when the interface is slightly perturbed.

The following notation will be in place: superscripts (1) and (2) are used for the
two regions, while subscripts are used for vector components. The exceptions are the
superscript / indicating a perturbed variable, and the subscript 0 relating exclusively to
the unperturbed variables.

Our analysis will distinguish two cases: the case in which the imposed E-field is normal
to the (still) interface, and the case in which the E-field is tangential. To shorten the
notation, the variables pertaining to the two cases will be presented in the curly brackets

) o )

where the upper values correspond to the case of normal E-field and the lower values to
the case of tangential E-field.

Finally, in this chapter the symbol TZ],\C/[ will be used for the Maxwell stress tensor
containing only the electrical terms. We will lump together the electrostriction term into
the zero-field pressure p which will be pulled out of Eq. (5.25) for the sake of transparency.
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7.1.1 The governing equations

For each of the liquids in Fig. 7.1 (b), we summarize the equations of motion and of the
electric fields

(i Du

T ~Vp' 4 OV 4 pOg 4 v.TM O (7.2)

V-ul =0, (7.3)
V- (€DE®) =0, (7.4)
V xE® =0, (7.5)

where u® (r,y,2) = (u(i), v, w(i)). In homogeneous perfect dielectrics the electric force
per unit volume (inside the bulk) in Eq. (7.2) is zero. This can be seen from Eq. (5.27)
as the terms including Ve and free charge p. both vanish. So the coupling with the
electric fields happens at the interface, and for that we will need to specify the boundary
conditions. The only remaining body force in Eq. (7.2) is gravity.

7.1.2 General boundary conditions: rigid boundaries

On the rigid horizontal boundary planes at z = a and z = —b the no-slip condition is
assumed for the velocities

u=0 (2= a), (7.6a)
u® =0 (z=-b). (7.6b)

The boundary conditions on E and D-fields are given by Egs. (5.43) and (5.44), re-
spectively. In case of a normal E-field, Fig. 7.2 (a), it is assumed that both rigid planes
are perfectly conducting electrodes kept at a constant potential V', and in direct contact
with the liquids. The two electrodes are large enough so that the fringing fields close to
the edges are not important. For small microfluidic systems the electrodes could always
be made in such a way as to ensure a uniform field. From Eq. (5.43),

nxEMN =0 (z= a), (7.7a)
nxE® =0 (z=-b). (7.7b)

In case of imposed tangential fields, Fig. 7.2 (b), the situation is different. We assume
that the liquids are placed in a uniform horizontal field produced from two large electrodes
spaced far apart. This is particularly valid for microfluidic case where the distance between
the confining planes is very small. The plane boundaries are assumed insulating. Thus.
the tangential component is continuous across all the boundaries and it will suffice to
consider the normal E-field component

n-ED =0 (z = 00), (7.8)
n-E® =0 (z = —00).



60 CHAPTER 7. INTERFACES IN ELECTROHYDRODYNAMICS: THEORY

wall

0P L

—_— X
wall

Hy Py & B P, &, small perturbation
z a
E, b E,
—/\-/CT\& interface -
L
x =V
Hy P, & small perturbation
-b E, wall

[

Figure 7.2: Two-liquid interface perturbations (a) in a normal E-field (b) and in a tan-
gential E-field.

<

7.1.3 General boundary conditions: the interface

We will now describe main features of deformable interface between two fluids, Fig. 7.1 (b).
General expressions provided below will be linearized later since we are interested in small
deformations.

When unperturbed, the interface is described by the equation z = 0. Upon deformation
it is given by

z=((x,y,t), (7.10)

where ( is the vertical displacement from the equilibrium position z = 0.

To determine the velocity of a particle which moves with the surface we evaluate the
rate of change of ¢ with respect to a fixed coordinate system

d d
% Q) = % = (O u0,C + 08,0 (7.11)

At fixed coordinates = and y the surface (and particles on it) move up and down with
velocity 0,¢. An important variable characterizing a surface deformation is vector normal
to the surface. From differential geometry the unit vector n normal to the surface defined
in Eq. (7.10) is

1
o V(002 + (0,02 + 1 (=06, =0,G, 1). (7.12)

We can now formulate the boundary conditions for velocities, electric fields and stresses
at the interface between two dielectric viscous fluids. We will recall the notation and
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discussion at the end of Chap. 5. At z = ( we have,

velocity BCs : |ull=|lv]=]w]| =0, (7.13a)
dg

= —_ — ¢1 b

wy Wy dt’ (7 3 )

electric fields BCs : nx||E| =0, (7.13c)

n-|D|=n-||cE| =0, (7.13d)

stress BCs : | =p I nit || 7 + T || ne = oV2C 0y, (7.13e)

where V2 is two-dimensional (surface) Laplacian expressing the surface curvature for small
deformations.

The interface is characterized by a surface tension introduced through Young-Laplace
equation. There is an abrupt change (jump) in liquid properties at z = (. Formally,
the surface tension is represented by a delta-function and the above boundary conditions
obtained by integration of the bulk Eqgs. (7.2) - (7.5) across the interface, Chandrasekhar,
[49].

Eq. (7.13a) expresses the continuity of the velocities while Eq. (7.13b) follows from
Eq. (7.11). The boundary conditions on the electric fields are Egs. (5.43) and (5.44) with
the surface charge density ¢, equal to zero (no free charge present). Eq. (7.13e) represents
the balance of the surface stresses. Pressure and surface tension contribute only to normal
stresses while viscous and Maxwell stress tensors contribute also to tangential stresses.

7.2 Perturbation equations and boundary conditions

The procedure outlined in Sec. 6.2 will now be used to linearize equations of motion,
Egs. (7.2) - (7.5), and the boundary conditions Egs. (7.6a) and (7.6b), Egs. (7.7a) and (7.7b),
and Egs. (7.13a) - (7.13e).

7.2.1 The stationary solution for still liquids

We are considering the situation depicted in Fig. 7.2, i.e. two immiscible still liquids on
top of each other with an electric field present. The vector n normal to the unperturbed
interface is given by

n, = (0,0,1), (7.14)

while the stationary solutions in each region ¢ = 1,2 are

py) = —pDga+ B, (7.15)

u) =0, (7.16)

{EON} f,0,B9) _—
Ey ) |(E.0,0)
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EB/ and E(})I are the unperturbed vertical and horizontal fields shown in the two cases in
Fig. 7.2, respectively. The curly brackets will be used throughout the chapter to represent
the quantities corresponding to the two cases: the upper value always representing a
quantity in the case of imposed vertical field (i.e. normal to the unperturbed interface)
and the lower value always representing a quantity in the case of imposed horizontal field
(i.e. tangential to the unperturbed interface).

As expected, the equilibrium pressure is the hydrostatic pressure resulting after the
integration of Eq. (7.2). In motionless liquids there are only normal contributions to the
stress, coming from pressure and electric fields. We can use results for electric stress
obtained for a plane interface in Chap. 5. The stress balance at the interface is

12y mo, = 1| 2yl mgy, = 0, (7.18a)
1 2
3 lleEx |
HPO H Ny, = { 1 : 2 ) (718b)
—3llell B

where we have used the fact that in the case of imposed horizontal field, E_ is the same
in the two dielectrics.

7.2.2 Linearization of the perturbed equations

A slight disturbance of the interface corresponds to a small perturbation of the stationary
solutions. Expanding the perturbed fields u, p and ¢ we get

u=u,+u +.., (7.19a)
p=py+p+.., (7.19b)
p=q¢y+¢ + ..., (7.19c¢)

where we kept only linear terms in the increments u’, p’ and ¢'. Putting the perturbed
variables into the equations of motion, Egs. (7.2) and (7.3), and subtracting the stationary
solutions we get the equations for the perturbations:

pou’ = —Vp' + Vi, (7.20)
V' =0, (7.21)
V3¢ =0, (7.22)

where u’ = (v/,v’,w’). By applying V- to Eq. (7.20) and using Eq. (7.21) we see that p’
satisfies the Laplace equation
v =o0. (7.23)

To get the equations for electric fields we apply 9, to Eq. (7.22),

V2E! =0. (7.24)
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The other components of E' are determined from
VxE =0, (7.25)

which is a consequence of Eq. (7.5).
As can be noticed we have not considered the changes in the density or viscosity since
in each region they are assumed constant.

7.2.3 Linearization of the perturbed boundary conditions

Rigid boundaries
At the rigid boundaries the normal vector is n;, from Eq. (7.14). When perturbed variables
from Eqgs. (7.19a) - (7.19c) are put into the boundary conditions, we get for the velocity
perturbations

w=u=v=0 (z =a,-b), (7.26)

and for the E-field perturbations
n,xE =0 (z=a,-Db)
o , (7.27)
n,-E =0 (z ==+ 0)

where in the case of imposed tangential field we evaluate the perturbations at the infinity,
in accordance with Eqgs. (7.8) and (7.9).

The perturbed interface

Linearization of the interface BCs is a more complicated procedure. The perturbed values
given by Egs. (7.19a) - (7.19¢) have to be evaluated, strictly speaking, at z = . However,
since ( is assumed small, for the first order approximation it will suffice to consider the
conditions at z = 0. For example, the approximation

E,(¢) = E,(0) + 0,E,(0)¢ + ... = E,(0), (7.28)
is valid if both E; and ¢ remain small. In addition, the normal vector is now
n=n,+n, (7.29a)
where n’ is according to linearized Eq. (7.12)
n = (-0,(,-0,(,0). (7.29b)

With the above remarks in mind the linearized BCs at the interface, z = 0, come as
follows. The conditions on the velocities, Egs. (7.13a) and (7.13b), become

[u'[|=]lv"[|=]lw"| =0, (7.30a)
w1 (0) = wa(0) = 9,C. (7.30b)

The perturbed electric fields for the normal and tangential case in each of the regions are

EN (E,,E,, E +E.)
= , (7.31)
ET (B, + E,, E|, E.)
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which together with Eqgs. (7.29a) and (7.29b) yields

B+ E00,C =0
{ 12 ol (7.32a)
[eEL | =0 (7.32b)
”76E10833<+6E;H =0 , .

instead of Egs. (7.13c) and (7.13d), respectively.

Linearized stresses

The perturbed stress condition is given by Eq. (7.13e). Expanding the pressure according
to Eq. (7.19b), with p, defined in Eq. (7.15), we arrive at

— 12/l ni = I Byl mi+ [l o1l 9¢ i + e + T || mge = 0VEC 1, (7.33)

where, of course, n is given by Eq. (7.29a) and therefore has components in all three
directions. A useful thing is now to consider the stress components from the above equation
separately.

We have mentioned earlier that the variables at the interface z = ¢ will be approxi-
mated with the values at z = 0. However, in the above term || p|| g¢ we cannot immediately
put ¢ = 0 since the time derivative of the displacement ( equals the vertical velocity w,
Eq. (7.30b). In other words, to account for the gravity effects, the above equation would
first need to be differentiated with respect to time, after which we can put { = 0. In terms
of the components, both the gravity and the surface tension term have only z components
up to the first order.

We saw in Eq. (7.18b) that || P, || n; has only the z component in the stationary case.
It will however have the first-order components in x and y directions after the interface is
perturbed

f slleE% ]
| Byl ne = 1 9 (—0,0), (7.34a)
—3llell B
2
1Bl my = %IEEZOQH (—=9,0), (7.34D)
—zllell B3
1 2
3 eEZ |l
[Pl mz=19 | ) (- (7.34c)
2 |€||E:E0

Comparing the above equations with the Eqs. (7.18a) and (7.18b) we see that after the
stationary solution is subtracted from the perturbed pressure, the only contributions that
are left from the pressure P, will be in = and y direction! It is crucial to realize the
importance of the P, contribution, if the stress balance is to match consistently.

Since the stationary velocity u, is zero, the perturbed velocity u from Eq. (7.19a) is
just u/. The perturbed viscous stresses reduce to the stresses for perturbations

Tk = T = (B, + 0. (7.35)
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We now wish to linearize the components of the stress in the three directions. Up to the
first order we have

Terny = (0,1’ + 0 w'), (7.36a)
Ty = p (0,0 4+ 0,uw') (7.36b)
Toeng = 20w, (7.36¢)

in x, y and z direction, respectively.

In similar way the perturbed components of the Maxwell stress tensor are
M €
T = —§E2ni + E,D, ny. (7.37)

In this case the stationary stresses have non-zero values, Eqgs. (7.18b) and (7.18a). After
the linearization of Eq. (7.37) the perturbation components are

1 2 !
, seb2,0,.( + eE E
TM ny = { DN 0 "f} (7.38a)
1 2 !
, sek2,0,( + eE E
TN ny = {2 07 0 y}, (7.38b)
1 2
§6E1,08yC
, eE E!
T™ 1y, = =L (7.38¢)
zk ’
—eb L,

All of the above stresses are to be evaluated at z = 0.

Grouping the above perturbation stress components together, we have in x, y and z
direction, respectively,

leEZ | } | €E, oL ||
(0:0) + [l (0.0 + 9,w') || + =0, (7.39a)

{—IlellEio leEoEL |

|eE: leB.o By |

{’ OOH (0,0) + Il (80" + o) || + (;”’ =0, (7.39D)

, ) B, . | )
— 1" + 1 2p0,w'|| + |—cE B | +(lpll g — V5 =0. (7.39¢)

S0
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7.2.4 Expansion into normal modes

We will now expand the perturbations into the normal modes, assuming the two liquids
are confined between two infinite planes having the normal in z direction (see Chap. 6):

¢ = Cexpli(kux + kyy) — iwt], (7.40a)
u' = 0(2) expli(kpz + kyy) — iwt], (7.40D)
P = p(2) expli(ker + kyy) — iwt], (7.40¢)
E. = E.(2) expli(kyx + kyy) — iwt]. (7.40d)

The above solutions are put into the governing Egs. (7.2) and (7.3)

—iwptl = —ikyp + p(—k* + 02)a, (7.41a)
—iwpd = —ikyp + p(—k* + 02)0, (7.41b)
—iwph = —0,p + pu(—k* + 02)w, (7.41c)
ik, + tky® + 0,0 = 0, (7.41d)
and into the stress boundary conditions Egs. (7.39a) - (7.39¢)
leEZ | leE.o Lyl
o ( (ko) + [ (920 + ko) || + - =0 (7.41¢)
7||€||E:r0 ||6EIOEZ||
| eEgo .. - L | eEzOEy |
0 (ikyQ) + || (0:0 + ikyw) || + 0 =0, (7.41f)
A [ B »
— 2l + 12n0-0 ] + | B | +(lpll g+ ok*)¢ =0, (7.41g)
—eE

where k =, /k2 + k:g Note that the above equations do not have the time dependence.
In addition, from Egs. (7.40c) and (7.23) we get

a2p =0. (7.42)
Let us now obtain the form of solutions. Egs. (7.40c) and (7.42) give for pressure p
p(z) = exp(Lkz), (7.43)
which together with Eq. (7.41c) gives for w

w = exp £(kz) and exp +(qz), (7.44)
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where ¢ = /k% — % In case of inviscid liquids the terms with ¢ vanish. Finally,

Eqs. (7.24) and (7.25) give for E

E, = exp(£k2), (7.45a)
.k

E, = k—yEz (7.45Db)
- 1

E,=—0,E,. 7.45

Elimination of 4, 0, p

We will now simplify Egs. (7.41a) - (7.41g) by eliminating dependence on @, v and p.
From Eq. (7.41d) the conditions imposed on @ and ¢ can be expressed by conditions

imposed on 0,w, since k is a continuous variable. The no-slip conditions at rigid bound-

aries, Eqgs. (??) and (??), and the continuity of velocities at the interface, Eq. (7.30a),

now become

w=0=0,w (z =a,—b), (7.46a)
loll=0=a.2] (z=0) (7.46b)

Multiplying Egs. (7.41c) and (7.41g) by k2 and 9., respectively, adding them and making
use of Eq. (7.41d) we get for the stress in z direction

= 0. (7.47)

2l

. [ leBL .|
| liwp + u(0? — 3k2)]d.0 || =k | (]| g + ok*)E + 0
| =B, E

Finally, we multiply Egs. (7.41e) and (7.41f) by ik, and ik,, respectively, and add them
together. Using Eqs. (7.41d) and (7.22) we arrive at

—eE2 k2 — €E_ 0. E,
” 20 C 20 H} _ 0’ (748)

—Hu<k2+az>w||+{ RV
H 6E:1:0kmc + kaeExOEz H

which comprises the continuity of x and y stresses across the interface.

7.2.5 Summary of solutions and linearized boundary conditions

For the sake of easier reading we will now finally summarize relevant solutions and all of
the linearized boundary conditions.

Solutions
velocities:

wy = Ajexp(kz) + Az exp(—kz) + Az exp(qz) + Asexp(—qz), (7.49a)
Wy = By exp(kz) + By exp(—kz) + Bz exp(qz) + Byexp(—qz), (7.49Db)
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E fields:
E,; = Crexp(kz) + Cy exp(—kz), (7.49¢)
E,y = = [Crexp(kz) — Cpexp(~kz)], (7.49d)
E,, = Diexp(kz) + Dy exp(—kz), (7.49¢)
. k
B,y = o~ [Diexp(kz) — Dz exp(—kz)]. (7.49f)

xT

BCs at rigid boundaries

velocities:
wy(a) =0=0,w(a), (7.50a)
Wy(—b) = 0 = 0wy (—b), (7.50b)
E fields:
E (a)=F (a)=0
acl( A) yl( ) : (7500)
Ezl (OO) =0
2 9(—b) = E5(—b) =0
{ o A) 42(—0) } (7.50d)
EZQ(_OO) =0
BCs at interface z=0
velocities:
[ @(0)[|=0=[|2.w(0)|], (7.50e)
surface displacement:
A 0, (0
=00 (7.50f)
w
E and D fields:
k2B, 29 9 B (0)|=0
| E,(0)[|=0
leE,(0)[|=0
;(0) ) , (7.50h)

(7.50i)



7.2. PERTURBATION EQUATIONS AND BOUNDARY CONDITIONS 69

stresses:
: ) . (0 leEoE.(0) |
[ iwp + (92 — 3k*)]0.0(0) || —k* [Z(Hp\ g+ 01{72)# + { . =0,
| —€E oL (0) |
(7.505)
—ieB2 k2 _ e 6. E.(0
— || p(k? + 82)(0) || + I =iePz e o O _, (7.50k)
e Bk + ik,e B B (0) |




70 CHAPTER 7. INTERFACES IN ELECTROHYDRODYNAMICS: THEORY



Chapter 8

Interfaces in
electrohydrodynamics:
applications in microfluidics

Having summarized the solutions and the boundary conditions we can now start solving
some special cases. It is important to say that many aspects of the electrohydrodynamic
instability of two-inviscid-dielectric systems have already been discussed, [42]. The equa-
tions Egs. (7.49a) - (7.50k) include the viscous effects and for zero viscosity recover the
results stated in [42].

We will consider three types of regimes in our analysis: re-derived macro regime con-
sidered in [42], as a reference point for comparison, with no micro length-scales involved;
microfluidic-plane regime with only one micro dimension L, (the case of two infinitely
long planes spaced by L,); and microfluidic-channel regime, with two or even three micro
dimensions involved - L, L, and L, - being the height, length and width of a channel,
respectively. The analysis will provide reasonable estimates with respect to the onset of
instability in case of two-liquid viscous pump previously considered.

All numerical calculations will include the oil-water system from Table 8.1. Notation
will follow Chap. 7.

We will treat only the case which is stable when E = 0. This means that oil will be
always upper liquid 1 of thickness a, and water the lower liquid 2 with thickness b.

8.1 Zero viscosity and perpendicular E-field

In the inviscid case the viscous stresses are neglected. The E-field is perpendicular to
the interface and therefore the upper values in the curly brackets in Chap. 7 need to be

71
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P €, Ac o
kg/m? S/m J/m?
corn oil 920 | 3.1 | 5 x107H —
water, distilled 1000 | 80.1 | 2 x10~* —
copper - o0 5.8 x107 —
oil-water interface - — — 18 x1073

Table 8.1: Parameters for the oil-water system. p is mass density, €, is the relative
dielectric constant, A, is the conductivity, and o is the surface tension, [45].

considered. From Egs. (7.50a) - (7.50d) velocities and fields are of the form

o) = Asinh k(z — a), (8.1a)
w? = Bsinh k(z + b), (8.1b)
BV = Csinhk(z — a), (8.1c)
B = Dsinhk(z +b). (8.1d)

The four constants A, B, C and D can be determined from the interface BCs, Egs. (7.50e) -
(7.50j), which reduce to

[ @(0)[[= 0, (8.2a)

| kQEzow +DE,(0)]=0, (8.2b)

I€E.(0)[|=0, (8.2¢)
M (0)

I=pnDw(0)[| =k* | (I o]l g + ok?) +leBE(0)]|| = 0. (8.2d)

n

8.1.1 Dispersion relation w(k): general case

Inserting the solutions Egs. (8.1a)- (8.1d) into Egs. (8.2a) - (8.2d) defines an eigenvalue
problem from which we can determine the eigenfrequency. From the condition that the
determinant of the system vanishes we obtain

ok 1 (e — )2 (1)

[0 —pN)g ok 2
L, p  pel® tanh(kb) + @ tanh(ka) O

p

W=k

g 2
T ED, (8.3)

where p = p(I) coth(ka) + p® coth(kb). As a reminder, the electrostriction effect does not
appear in the above equation since we included it into the pressure term, see Sec. 5.2.
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Eq. (8.3) can be cast into the non-dimensional form by introducing the following set
of variables marked with a prime

‘=2 I
yo-p, B0 = %}Lo (8.4)
k' = kL, i :w\/@,
which lead to " )
= o (K* — (K YW _ k' + Bo) = =Y (K) (8.5)
In Eq. (8.5) we have
o= p'(l) coth(k'a’) + p’(z) coth(k'b), (8.6a)
gl(k/) . (6$‘2) _ 6&1))2E(;§1)E/(2) | (8.6b)
& tanh(k'b') + ¢ tanh(k'a’)
with the non-dimensional (measures of) electric fields
EL — _ 769) (8.7a)
eﬁl)b’ + 69)@” '
E@ — _ L) (8.7b)
egl)b’ + eq(nz)a" .
The two characteristic non-dimensional numbers which appear are
2 2
Wee = GOEUOLO = GUOZ)) , (8.8a)
Bo— (7 _5(1))9L3. (8.8b)

The ”electrical” Weber number! We . and the BOnd number Bo represent the ratio be-
tween the corresponding energy density, electric and gravitational respectively, and the
surface energy density. For a typical voltage V[, = 1 kV and a length L, = 100 ym, we
find for the oil-water system Wee ~ 5 and Bo ~ 4 x 1074, The effect of gravity can
be completely ignored in microfluidics. For the (capillary) length L, = 4.8 mm the Bond
number Bo = 1.

It is worth to highlight four main aspects of Eq. (8.3).

! The electrical Weber number is obtained from the ordinary Weber number by substituting the kinetic
energy density %pv2 with the electric energy density %eoeTEQ. The dependence on €, we have included in
Eqgs. (8.7a) and (8.7b).
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1. The dimension of each of the terms in brackets is [(I/t)%]. Each of the factors

represents the square of the corresponding phase velocity for the gravity waves,
Vg2, the surface-tension or capillary waves, V.2, and the electrohydrodynamic (EHD)
waves, V.2, respectively. If the field is zero we have only the gravity and the capillary
waves, the situation described in Chap. 6. A non-zero normal E-field produces
stresses which result in the third term in Eq. (8.3). There will be a contribution
only if two fluids with different dielectric constants are present.

. For a given wave vector k the E-field can be made large enough so that its phase

velocity contribution, V2, prevails over those of gravity and capillary waves. Con-
versely, for a given field strength (before the instability sets in), there is always a
k value for which either gravity or capillary waves prevail. The effects of electric
fields on long or short waves, therefore, cannot be considered without the inclusion
of gravity or capillary forces in one of the two important limits, k — 0 and k — oo.

The phase velocities for Bo = 39 are shown in Fig. 8.1 (a). The increase in voltage
increases VZ2; at V = 5.83kV, V2 is just slightly smaller than (V,? + V?), meaning
that the frequency w is just slightly positive, see Fig. 8.1 (c). For Bo = 4 x 1075,
both Vg2 and V2 are constant for the k-range shown in Fig. 8.1 (b). If the voltage is
increased in small steps from the value V = 0.1V, there will come a point when the
two phase velocities exactly cancel each other. This happens when

(2)

(1)
b+ e a
V= g (o) = pV)g (8.9)
1 2 1) (2
(67(» ) _ 6£ ))2 67(~ )e,(ﬂ )60
3
a
~ () g, (8.10)
&€

where the approximation holds if 67(»2) > 69), and yields V = 0.17 V.

. Each of the three terms in the brackets, Vg2, V2 and V2, have dependence on the

wave vector k i.e. the waves are dispersive. We have just seen in Fig. 8.1 (b)
that for ka,kb < 1 (and small Bo values), the gravity and the EHD waves both
become dispersionless. But also, the EHD waves become dispersionless in the short-
wavelength limit when ka, kb > 1. This effect can be seen in Fig. 8.1 (a) or directly
from Eq. (8.3). An important conclusion is that in the limits when a phase velocity
becomes constant, the minimum of the total phase velocity does not depend on
that particular contribution. Furthermore, the wave vector ki, for which the total
phase velocity is both minimal and zero also does not depend on the constant phase-
velocity contributions.

. The point when instability sets in is when the total phase velocity, and therefore

w, becomes zero. If the E-field is not present there can only be the gravitational
instability if a heavier liquid is on top of a lighter one, Sec. 6.3. However, Eq. (8.3)
shows that the normal field always destabilizes the interface by reducing the phase
velocity; this happens even in the absence of the ordinary gravitational instability.
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Figure 8.1: Phase velocities and eigenfrequencies as function of wave number for the two-
lquid oil-water system with parameters given in Table 8.1 and layer thickness denoted
a and b, respectively. (a) Phase velocities for large Bo = 39 corresponding to the limit
ka,kb > 1. The velocity V, is dispersionless for large k. For V =5.83kV, V2 < ng + V2
just before the instability sets in, see panel (c). (b) Phase velocities for microfluidic
Bo = 4 x 107 corresponding to the limit ka,kb < 1. Both V, and V, are dispersionless.
Instability starts for V' = 0.17 V when V. = V. (c) The frequency w for Bo = 39. For
V = 5.92 V there is a range of k-values yielding instability. Note the region of negative
group velocity dw/dk. (d) The frequency w for Bo = 4 x 1075, The instability sets in at
k = 0, a characteristic of microfluidic systems.

If the E-field is increased beyond the onset of instability, the frequency becomes
negative for a range of k values. In Fig. 8.1 (c¢) this happens for V' = 5.92 V.
Comparing Fig. 8.1 (c) with Fig. 8.1 (d) we notice that in the case of very small Bond
number the position of the ki, is shifted towards very long wavelengths (smaller
k’s). This is one of the characteristics of the microfluidic regime - instability starts
from the limit £ = 0. This, of course, is to be expected since the surface tension,
which is the dominant force, has negligible effect on the long wavelengths.

8.1.2 The onset of instability: limiting cases for infinite planes

We will now quantify the conditions for the onset of instability by considering Eq. (8.5).
To observe the change in the sign of the frequency w’ it is sufficient to consider the behavior
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of Y (k')
Y (k') =k? €& (K)Weq K + Bo. (8.11)

If there is no E-field, We = 0 and Y (k") becomes a parabola displaced vertically by Bo,
Fig. 8.2 (a). Y (k') acquires the negative values only if Bo < 0. The instability is present
for the k' values smaller than k! = v/—Bo which is just the critical wave number for the
Rayleigh-Taylor instability, Eq. (6.19).

The effect of the field is described by the EHD term —e&’(k') We k' which acquires
different values in the two limits of short and long wavelengths. If a//b' ~ 1, we have
(1)
T Eoe Ka' KV > 1,

(k) = (8.12)

@

Hred™ Ka K'Y < 1.

corr

ot and gy are functions of 67(}) / 652) and b'/d’, and they are close to 1

oo
for 67(«1) / 67(«2) < 1. When the thickness-ratio o'/’ differs significantly from 1 we need to
evaluate Eq. (8.5) numerically.

Using Eq. (8.12) we can easily determine the function Y (k') in the limits:

The factors €

k/2 _ k‘/ B k‘/ / k/b/ 1
Y(k’)—{ Gool? F B0 MR (8.13)

| #¥?—ay+ Bo Ka kY <1,

where o = «a(We,)) is independent of k’. The two parabolas will have the extremum
(minimum) at the point

- (% Bo— =) WKV >1,

T (Kmmin (8.14)
(0,0) Ka' K'Y < 1.
The onset of instability happens when Y (k[ . ) in Eq. (8.13) first becomes zero, i.e.
Qo = 2V Bo Kad K'Y > 1, (5.15)
oy = Bo Kad Kb < 1. '
In terms of Weg Eqgs. (8.14) and (8.15) give
2V B
Koiw = VBo, Wea="3— Kakb> 1, (8.16)
o0
/ Bo P
kmin = 07 Weel = 8_, k a, E'b < 17 (817)
0

where ¢, and ¢/ are constants given in Eq. (8.12).

In Fig. 8.2 (b), Y (k') is plotted for a large Bond number, Bo = 25, and different values
of Weg. Eq. (8.16) predicts k ;= 5 for We¢ = 0.97. The actual &/ ; = 4.535 is obtained
numerically, see Fig. 8.3 (a). Further increase in We ) leads to negative Y (k') values.
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Figure 8.2: Dependence of Y (k') on We and Bo. (a) Without E-field present, instability
is possible when the heavier liquid is on top of the lighter one (negative Bo). The unstable
wave numbers are k' < k’. = v/Bo (dashed region). If a finite-size system is characterized
by a k7, the system will be stable as long as k7 > k|, (bold region). (b) For a large Bond
number the onset of instability happens at &/ ; ~ v/ Bo. Further increase in the voltage
causes a range of unstable k’-s. For Weg = 1.31, the K} shown is within the unstable
region. (c) Shifting of k! ; towards zero as the Bond number is lowered, Eq. (8.17). To
make the effect more apparent, the surface tension has been varied (not the length scale) at
a constant voltage. (d) The effect of the voltage increase in microfluidic regime. Instability
starts at longer wavelengths. In order to reach the size-dependent k7, the applied voltage
has to be increased substantially .
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Small Bond numbers correspond to the the large values of surface tension. If the Bond
number is lowered the minimum is shifting towards smaller k’-values. As mentioned earlier,
in terms of Y (k') this is shown in Fig. 8.2 (¢)?. The larger surface tension stabilizes small
wavelengths pushing the instability to the longer ones. We can apply Eq. (8.17) which
shows that the instability begins at &/, = 0 when the Bond number exactly cancels the
electric term. This corresponds to the cancellation of the V., and V, phase velocities in
this limit as already discussed earlier. If the Bond number is lowered beyond that point,
the electric term will prevail over Bo and there will be a range of k’-values for which Y (k')
is negative.

So if we have a small Bond number to begin with, as in microfluidic systems, raising the
voltage from zero to the value giving 66 We 1, the instability is first induced at the infinitely
long wavelength; raising the voltage further, more and more of the longer wavelengths
become unstable - a situation completely analogous to the negative Bond number (heavier
liquid on top of the lighter one) without E-field, as shown in Fig. 8.2 (d) and (a).

We have seen in Chap. 6 that finite size microfluidic systems impose constraints on
the possible wavelengths. In order to generate the instability, the voltage will need to
be raised so that the unstable wave numbers fall in the range below the critical k.. We
will return to this important point later where the finite-size effects in microfluidics are
considered in detail.

8.1.3 The onset of instability: general case for infinite planes

We will now numerically determine the value &, for which the instability first occurs.
The wave number satisfies the requirements

) ( :nin) = Oa (818&)
dY(k/ . ) d2Y(k/ ) )
min/ _ . min ) 1
—ar 0; a2 <0 (8.18b)

As an illustration consider two boundaries equally spaced from the interface, i.e. a’ = b =
0.5, then Eq. (8.11) can be written in the form

Y (k') = k" — ok’ coth(0.5%") + Bo, (8.19a)

where o = oy /2 and @ = @ in the respective limits. Applying the conditions Egs. (8.18a)
and (8.18b) on Eq. (8.19a) yields

k. + Bo
= min 8.19b
T K coth(05 k) (8.19b)
sinh(k),i) (K2, — Bo) + kb (K2, + Bo) =0, (8.19¢)

which in the limits of short and long wavelengths, k'a’ > 1 and k’'a’ < 1, recover Eq. (8.15).

2To emphasize the effect the voltage is kept constant and the Bond number was lowered by increasing
the surface tension.
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Figure 8.3: Wave number &/ . of marginal stability as function of Bo, Eq. (8.19a). Stable
and unstable wave numbers cannot be directly deduced. (a) Equal layer thicknesses, a = b.
For Bo < 12 the onset of instability starts at ' = 0 (b) Unequal layer thicknesses, a # b.
The case a = b shown as a dashed line. Due to the stronger field thin-oil configurations

are less stable, see the discussion in the text.

The dependence of k! . on Bo obtained from Egs. (8.19b) and (8.19¢) is shown in
Fig. 8.3 (a). The solid curve approaches v/ Bo (zero) for large (small) Bo as it should. The
numerical analysis shows that at a particular finite value of the Bond number, Bo = 12,
the Bond number exactly cancels the EHD term, and the onset of instability is shifted to

k" = 0. To emphasize this point we write:
for %: 1 and Bo=12 = —&(K)Weqk'=Bo = Y(K)=k2.  (8.20)

The graph in Fig. 8.3 (a) (solid line) represents the wave numbers of the states with
marginal stability, and yet it does not divide stable from unstable k’-values.

It is important to note that the stable and unstable k’-values cannot be deduced
directly from Fig. 8.3 (a). For example, for Bo > 12, the onset of instability happens at

a k., (a value on the solid line) while the values of k' both above and below kI . are
stable (analogous to the k" values left and right from & . in Fig. 8.2 (b) for We¢ = 0.97).

Unstable wave numbers exist after the voltage is raised further, and need to be found by
solving the condition Y (k') < 0, where Y (k') is given by Eq. (8.11). In case of Bo < 12,
unstable wave numbers are present when the EHD term exceeds the Bond number, similar
to Fig. 8.2 (b) for V' = 300 or 400 V.

The governing factor in the EHD term from Eq. (8.11) is the E-field inside the dielectric
with smaller €,. In Fig. 8.3 (b), the dependence of k] ., on Bo is shown for four different
layer-thickness ratios. If the oil layer is thicker than the water layer, a/b = 1.5, the E-
field within the oil layer is smaller compared to the case of equal thicknesses a/b = 1 3.
This yields a smaller EHD term - a smaller Bond number is required to cancel the EHD
contribution. If the oil layer is slightly thinner than the water layer, the Bond number
needed to cancel now larger EHD term is larger. The graphs will be shifted left or right,
respectively, from the case a/b = 1.

3Keeping the voltage constant.
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To see (qualitatively) which of the two configurations (represented by the curves left or
right from the a/b = 1 curve) is more stable, we now apply a voltage to bring the thicker-
oil ("left”) configuration to the onset of instability for e.g. Bo = 12. The same voltage will
produce a range of unstable wave numbers for the thinner-oil ("right”) configurations, since
in this case the EHD contribution in Eq. (8.11) prevails over the Bond number Bo = 12,
making Y (k') < 0. The discussion will be illuminated further when the instability voltages
are found.

8.1.4 Instability voltages for infinite planes, kL > 1 (macrofluidic limit)

The limits ka, kb > 1 correspond to the cases where the wavelength is much shorter than
the distances a and b between the interface and the boundaries. In other words, there
is a small interaction between the short-wavelength disturbances at the interface and the
electrodes. In this limit surface tension is the dominant force.

Large values of the Bond number correspond to the small values of surface tension (or
large distance between the electrodes). As the Bond number is increased we expect that
stability border is shifted further towards larger k’-s, i.e. smaller wavelengths, where the
stabilizing effect of the surface tension is still significant (or where the more pronounced
gravity effect did not yet take over). This is revealed in Eq. (8.16).

From Eq. (8.16) we further observe that the wavelength A, = 27 /kpin at which the
instability sets in is the same as in the ordinary gravitational instability i.e. given by
the Rayleigh-Taylor condition, Eq. (6.20). This is a consequence of the fact that V.2 is
dispersionless in this limit, as already mentioned earlier, see Fig. 8.1 (a). From Eq. (8.16)
we also obtain the voltage at the onset of instability:

(8.21)

Qoo

1
4o(p® — o)’
Vo = Lo [T :

Since microfluidics is characterized with extremely low Bond numbers this voltage
is irrelevant for microfluidic regime. For the sake of comparison we evaluate the above
voltage for the symmetric, oil-water system: for Ly = 2a = 2 cm, V;; = 5.76 kV.

In [43], a set of the instability experiments was performed in a large apparatus in the
regime of Bo ~ 25. The dimensions were confined basically in one direction by electrodes
whose distance (~ c¢m) could be adjusted to remove the boundaries from the interface.
The instability in the short-wavelength limit could then be well tested; both A,,;, given
by Eq. (6.20) and the linear dependence on L in Eq. (8.21) were confirmed.

8.1.5 Instability voltages for infinite planes, kL < 1, (microfluidic limit)

We now turn to the limit relevant for microfluidics. When ka, kb < 1, the wavelengths are
much longer than the boundary distances and there will be a strong interaction between
the waves and the electrodes.

We can investigate this limit by lowering the characteristic distance L, = a + b which
corresponds to the regime of small Bond numbers. We have seen in Fig. 8.3 that for small
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Bond numbers instability is shifted towards longer wavelengths (since destabilizing effects
of gravity become less and less pronounced).

When o' = b/, Fig. 8.3 (a) shows that for Bo =12 (L, = 1.66 cm), instability starts at
the infinitely long wavelength. For the oil-water system this happens when V; = 4.45kV.
We wish to find the condition on the voltage causing the onset of instability for any Bond
number smaller than 12. For all these Bond numbers we are in the limit where the results
of Eq. (8.17) hold, and so the voltage condition is obtained by equalizing the EHD term
with the given Bond number. The result is Eq. (8.9), or slightly rewritten

s [(p® —pM)g
R e

(8.22)
For Bo =4 x 107* (L, ~ 100 um), Eq. (8.22) gives the voltage on the order of 2 V.

Inducing the instability in microfluidic systems with a small voltage can be used to
enhance the mixing of fluids. Although the above analysis is based on still, perfectly
insulating (immiscible) liquids, the order of magnitude cannot be far off. An active mi-
cromachined mixer applying the electrical fields has already been realized in literature,
[53]. The electrodes were arranged so that a normal field could act on the surface of two
conducting, streaming fluids. The characteristic distance was L, = 200 um. At a flow rate
of 10 pul/min, two liquids, one with a low and the other one with much higher conductivity,
were fully mixed with a low voltage of 7V (over a distance of 500 pm).

The instability experiments in microfluidic regime have not yet been performed sys-
tematically. To illustrate how could the instability manifest itself for dielectric liquids
we quote Melcher, [42], who performed the experiments with rounded electrodes down
to a = 0.4 cm: "For close plate-interface spacings, the surface remains rounded until the
interface arcs over to the electrode.”

8.1.6 Finite-size effect on instability in microfluidics

So far we have been concerned with the instability between two infinitely long plates. But
microfluidic systems, or actually the channels, are always finite in size, usually long and
narrow, and behave more like resonators, Fig. 8.4. We have seen already, Sec. 6.3, that
the finite size will impose restriction on the possible wavelengths and therefore on the
instability requirements.

In some microfluidic systems, such as micro cell-sorters, liquid streams are parallel to
each other, and gravity does not play any role. The Bond number does not enter the
equations. However, the shape of the interface between such immiscible streams (in a
closed microchannel) will be curved due to the strong capillary forces, Fig. 8.4 (b). The
same reasoning goes if a gas bubble is stuck inside a channel in which an E-field is present.
The meniscus will be especially pronounced in the smaller dimensions. The assumption
of a field normal to the interface in such case will therefore not be a valid one, to say at
least. Also, small parasitic capillary waves will develop on the surface of the meniscus.

A more thorough analysis is needed to address these issues. For now, in order to get
some estimates, we will proceed as though the field is normal to the interface and the
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Figure 8.4: Two liquids in finite size microfluidic channels. The liquids will align themselves to
minimize the surface free energy. (a) High aspect ratio microfluidic channel, Ly > L,. Capillary
effects will be pronounced in the smaller dimension i.e. y direction. E-field produced by the
electrode configuration is not normal to the meniscus shown. The voltages inducing instability
in y direction are substantially larger, since the allowed smaller wavelengths are stabilized by
surface tension. (b) Low aspect ratio microfluidic channel, Ly < L,. The two liquid configuration
is similar to the two-infinite-planes case. However, the configuration shown is unstable due to
increased interface area, and the liquids will spontaneously position themselves next to each other.

contact angle does not affect the unstable wavelengths. The latter approximation would
be of some validity at least for the waves propagating in z direction, Fig. 8.4 (a).

Our analysis from Chap. 7 included the disturbances in both z and y-direction, but
did not impose any restrictions on the wave numbers. To establish the conditions on k,
and k, we consider the normal modes of Egs. (7.40b) and (7.40c) in a rectangular cavity
of length L,, width L, and height L.

Consider the perturbation pressure p’ in the top 4 layer filling the cavity. The pressure
satisfies the Laplace equation Eq. (7.23) with the solution given by Eq. (7.40c). Because of
the inviscid approximation, the perpendicular velocities at each of the walls vanish; that
is, v’ and v’ vanish at the boundaries x = 0, L, and y = 0, L, respectively, and w’ vanish
at z = a. By Eqgs. (7.41a) - (7.41c) these conditions are equivalent to

o,p)=0 (z=0,L,), (8.23)
9,0 =0 (y=0,L,), (8.24)
0.0 =0 (2=a). (8.25)

We therefore choose the solution for p’ in the form
p' = coszcosycoshk(z — a). (8.26)

Inserting the above solution into the Laplace equation Eq. (7.23) with the boundary con-
ditions Eqgs. (8.23) and (8.24) lead to the familiar relations

hp = £22, n=0,1,23..

8.27
ky=+35, m=0,1,23.. (8.27)

“The layer with thickness a in z-direction.
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The magnitude of the total wave number k is given by

n\? m\?

el — 8.28
(2)+(2)], 629
where integers n, m differ from zero at the same time. For any given mode defined by n

and m, the wave numbers k, and k,, and therefore k are fixed. The dispersion relation
for w(k), Eq. (8.3), shows that for a given (n,m) mode w? is linearly proportional to V.

K=k 4k =x°

8.1.7 Instability voltages in microfluidic channels

We will identify two different instability voltages for L, > Ly, > L,: Vyo and Vi in the
and y directions, respectively.

The instability will occur when the voltage is raised so that the size dependent kj, falls
in the range of unstable k-values, see Fig. 8.2 (b). For a given k; from Eq. (8.28), the
onset of instability starts when

Y(kp) =k — €' (k) Wea kj, + Bo =0, (8.29)

where k7 = kpL,. Inserting We. from Eq. (8.8a) into Eq. (8.29) we obtain for the

impending voltage
Ly(K? + B
V, = \/w. (8.30)

coe' (k) k7,

To evaluate Eq. (8.30) in the long- and short-wavelength limits, we consider distur-
bances in a long and narrow rectangular microchannel with L, > L, > L,, Fig. 8.4 (a).
As before, it is filled with an oil (liquid 1) of thickness @ in the z-direction, and the water
of thickness b.

The k-mode (1,0) represents the wave travelling down the channel in z-direction i.e.
k = k;. From Egs. (8.4) and (8.27) we get the value of &’ for which the onset of instability

is reached
T

K =
L= T

L. (8.31)

To catch the essential features, we will assume that ¢ = b and 67(»1) < 69). For k'd’, k't <«

1, €'(k}) is found from Eq. (8.12) to be

o 1 e,(ﬂl)
e'(ky) = K, a3 (8.32)
which together with Eq. (8.30) gives
om2 2) — p(1)
V= a?, | — L L )9 (8.33)
HONNS ON
T 0 €T T 0

When L, — oo, the above result goes into the familiar Eq. (8.9).
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Figure 8.5: Instability voltages as function of the oil-thickness a. Instability is easier to
induce in a longer dimension. The full solution, Eq. (8.30), is plotted with dashed line.
(a) The voltage V ~ a%/? in the long-wavelength limit. (b) The voltage V ~ a in the short
wavelength limit.

The voltage dependence on the oil-thickness a is shown in Fig. 8.5 (a). For L, = 1mm
and Ly = 2a = 100 um, V., = 28.5 V. This is two orders of magnitude higher than the
pure Bond number contribution of 0.17 V for the instability when L, — oo (Eq. (8.9) or
second term in Eq. (8.33)). We now see if V,; = 10V is applied across L, = 2a = 100 pm,
the instability of the (1,0) mode will happen for L, > L, = 2.9 mm.

To find Vi we proceed as follows. The (0,1) mode represents a disturbance in y-
direction. If the channels are such that L, < a we are in the limit k'a’,k’b’ > 1 and

g = 67(~1) /a"?. We finally get
om

(1)

v -
€ €yLy

o (8.34)

=a

where we have neglected the Bond number. For a choice, say L, = a = 50 um, Eq. (8.34)
gives Vi, = 321 V. Even smaller Ly lengths will lead to higher voltages. This conclusion,
as well as the linear dependence of Viyo on a is shown in Fig. 8.5 (b). As expected, the
disturbances in the smaller dimension are more stable (higher instability voltages needed)
since the shorter wavelengths are stabilized by the surface tension.

When egl) < 69) we have seen that the voltage primarily depends on the thickness a of
the ”weaker” dielectric 1 (the characteristic length in such systems is really a). Therefore,
Egs. (8.33) and (8.34) can be used to predict the voltages also in the asymmetric cases,
a # b. To confirm that, the full voltage solution from Eq. (8.30) is plotted next to the
approximate solutions in Fig. 8.5 (dashed line). If L is held fixed, e.g. 100 pm, the
impending voltages for 0 < a < L, can be read directly from the figure®. The graphs from
Fig. 8.5 complement Fig. 8.3 (b).

One final remark about the voltages. Eq. (8.30) is an important result. In deriving it,
we did not put any restrictions on the Bond number. Indeed, if &} in Eq. (8.30) is replaced

5The results obviously do not hold at @ = 0 or b = 0 since this corresponds to one dielectric being
present i.e. when the EHD term vanishes.
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Figure 8.6: Instability voltage from Eq. (8.30) as function of the oil-thickness a. The
length of the system (channel) is L. = 1lmm. The general expression (dashed line) goes
into the limiting cases of Eqgs. (8.33) and (8.34) for small and large a respectively.

by one of the limiting values, 0 or v/Bo from Egs. (8.16) and (8.17), we recover the voltages
for the onset of instability for large and small Bo, Eqgs. (8.21) and (8.22), respectively. From
Eq. (8.30) therefore, we can find the impending voltages for any Bond number and any
finite size system having an arbitrary liquid-thickness ratios. To emphasize this, a graph
is shown for a larger range of thicknesses a in a separate Fig. 8.6. As mentioned earlier,
Eq. (8.30) does not account for the capillary (meniscus) effects.

8.1.8 Low aspect-ratio microchannels, L, > L,

For many applications, microfluidic channels are of small height-to-width aspect ratios,
Fig. 8.4 (b). When two streams of liquid go into such a channel they will adjust to flow
next to each other rather than on top of each other. By energy argument, surface will
position itself to minimize the free energy; by instability argument, the smallest dimension
allows (relatively) the most stable disturbances.

The question is whether the two liquids could at all be forced on top of each other,
so that the meniscus effect is less pronounced. This could in fact be achieved in the two-
liquid viscous pump described in Chap. 4. The conducting liquid introduced at the top
(or bottom) is driven by EOF producing a sheet of width L, as sketched in Fig. 8.7. By
a connection to a reservoir with a non-conducting liquid, the non-conducting liquid could
then be dragged by the boundary layer as explained before. Such system will be more
prone to the instabilities not only in the z but also in the y direction. If there is a normal
component of the E-field inside the non-conducting liquid, the voltage in Eq. (8.30) could
then be used as an estimate for the impending instability in the x or y direction.

However, in the configuration of Fig. 8.7 the more significant contribution will be from
the tangential component of the E-field,® and this is what we investigate next.

50n the boundary between two conductors with conductivities o1 and o2, the current normal to the
boundary is conserved i.e. 01 F1, = 02F2,. Therefore, on the interface between a conductor and a perfect
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Figure 8.7: A modification of two viscous-liquid pump, Chap. 4, enabling two liquid layers
to slide on top of each other in a low-aspect-ratio microfluidic channel. With L, > L,
the capillary effects at the boundaries in the y-direction are less pronounced, and the
instability-voltage estimate from Eq. (8.30) can be applied.

8.2 Zero viscosity and parallel E-field

The influence of a parallel E-field on a two-dielectric system can be found by considering
the lower values in the curly brackets of Egs. (7.50a) - (7.50d). For a tangential E-field in
the x-direction, we arrive at

w? =k [V} + V2 + cos® V7], (8.35)

where V;; and V. are the gravitational and capillary phase velocity from Eq. (8.3), § = k;/k
is the angle between the direction of the wave propagation and the E-field, while V2 is

now )
o lleza)lp (8.36)
p € t¢

From Eq. (8.35) we see that the influence of a tangential E-field on the waves depends
on the direction of the waves. The waves travelling perpendicular to the field, § = 0,
are not affected by it; the waves travelling in the direction of the field, § = 1, will have
the phase velocity increased by V2. In addition, V, is dispersionless due to the fact that
boundaries where the field perturbations vanish are at infinity, see Eq. (7.27). A typical
wave front for a radial disturbance will be an ellipsoid elongated in the direction of the
E-field. Such wave fronts were confirmed experimentally in Ref. [43].

Because of the positive EHD term in Eq. (8.35) the frequency will not acquire any
negative values (within the linear approximation). Unlike a normal E-field, a tangential
field acts to enhance the interface stability.

With regard to the two-liquid viscous pump, the above analysis gives an idea that at
least in a (fictitious) ”stationary” pump-mode, instability of the waves travelling down the
main channel will be suppressed. Instability of the waves propagating in the y-direction
will not be influenced by the tangential field. However, for these waves L. = L, < L,
and substantially larger normal fields are needed to induce the flow disruption.

A wvalid criticism of the above analysis is that the conductivities of the liquids (par-
ticularly water) were neglected. Such treatment is much more involved, especially in the
case of an applied tangential field, as it has to properly account for the charge movement.
It is planned for the future work.

dielectric, the normal E-field inside the conductor vanishes.



Chapter 9

Conclusion

The following report serves to highlight a variety of relevant topics in the field of microflu-
idics, from a theoretical and a simulation perspective. I hope that my investigations, in
collaboration with my colleagues, helped to resolve some of the multidisciplinary ” myster-
ies” behind lab-on-a-chip systems.

The thesis consists of essentially two parts. Chapters 1-4 give a general introduction to
microfluidic systems and a brief description of microfluidic applications further developed
in the research papers (Appendices A,B,C,D,E). In the second half, chapters 4-8, a detailed
description of electrohydrodynamic (EHD) effects is presented with the accent on the
instability between two immiscible dielectric liquids.

Chapter 1 is an outline of the manuscript. Chapter 2 underlines the important physics
at work in microfluidic systems, and a section of it is adapted from my chapter published
in a text-book (under references). Chapter 3 gives a thorough introduction to steady-state
electroosmosis, an important phenomenon of driving liquids at the microscale. In chapter
4, the three different micro applications further analyzed in appendices A, C+D and E,
are briefly reviewed.

Appendix A reports a study of the focusing effect of a chimney-like structure in a
microchannel geometry, a system used in micro cell-sorters. Experimental PIV measure-
ments are compared to the CFD simulations for a similar geometry, showing reasonable
agreement. The small discrepancies are mainly due to numerical diffusion.

In Appendix B, an EOF micropump, recently built by Takamura et al., has been
analyzed by means of equivalent electric and hydraulic circuits, backed by CFD simu-
lations. The results of the combined theory/simulation technique are confronted to the
experimental findings and suggest a need for stronger theoretical efforts in microfluidics.

Appendix C investigates a quasi-statical motion of a bubble in microfluidic axisym-
metric contractions, based on the interplay between the surface energies and geometry.
Capillary forces and partial-wetting concept were further used in a CFD simulation in
Appendix D, where a passive bubble-trap is designed to ease the bubble removal from
microchannels.

In Appendix E a preliminary study is presented on performance of patented two-liquid
viscous pump. The pump uses a conducting liquid driven by the electroosmotic flow,
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to drag a nonconducting liquid. A pressure/flow-rate characteristics are calculated using
CFD and equivalent circuit theory.

The second part of the thesis starts with a general theoretical description of electric
fields in dielectrics and how they couple to hydrodynamics. Next, a general discussion of
hydrodynamic stability is presented.

The equations are then applied to study EHD instability of a flat interface between
two perfect dielectric liquids in an electric field (perpendicular and parallel to it). The
liquids are described by Stokes’ equation with the electrical forces acting on the interface.
The expansion of linearized perturbations into normal Fourier modes allows a description
in terms of dispersion relations, which easily discriminate the unstable modes. The main
generalization from the previous work lies in the inclusion of viscous terms, finite-size
effects and the long-wavelength limit relevant for instabilities in microfluidics.

It was found that gravity is completely irrelevant in microsystems and that finite-size
of microchannels can significantly suppress a number of unstable modes. In addition,
normal electric fields always act to destabilize, while tangential fields act to stabilize the
interface between two dielectrics (within linear stability approximation). Because of small
dimensions of microfluidic systems, relatively small applied voltages (~ 10 V) can induce
EHD instability and cause flow disruption.

Finally, all of my research details and more, including the thesis in PDF format, can
be obtained from the group’s web-page: http : //www.mic.dtu.dk/research/MIFTS.

9.1 Outlook

The work in the immediate future will be focused on several topics that were not treated
in the thesis. In brief, they are:

(1) Viscous streaming liquids.

The convective terms in Navier-Stokes equations will give first-order contributions in the
linear stability analysis of two streaming viscous liquids. For parallel flows, the analysis
involves solving of the Orr-Sommerfeld equation

4 — 2k20% + k*p = ikRe | (U — %)(aﬁw ~ k%) — anw] , (9.1)

where 1(z, z) is the stream function and U(z) the velocity of a primary flow. My attempt
will be to find the solutions when electric fields are included. The work in this direction
applied to the microfluidics will extend the existing literature, e.g. [54], and will give a
definite answer on the stability of the two-liquid viscous pump.

(2) Finite conductivities.

We notice from Table 8.1 that the liquid conductivities, although small in comparison
with metals, are finite i.e. the liquids are leaky dielectrics. As stated before, this will
have an impact in balancing the shear stresses. Inclusion of the conductivities requires
a proper treatment of the charge relaxation. In the case of a perpendicular field applied
to a system where charges reside on the interface effectively all the time (short charge-
relaxation times), the stress conditions Eqs. (7.50j) and (7.50k) can still be used if the
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condition on D-field is modified to include the surface charge density, as in Eq. (5.44).
The full treatment, however, involving the Nernst-Planck equation for charged species,
is needed in the case of tangential fields acting on the streaming fluids. Such study will
answer the problems of the so-called electrokinetic instability.

(3) Electrowetting effects.
The effects of a finite contact angle on the electric stresses need to be examined.

(4) Electrostriction term.

The electrostriction, Eq. (5.26), which has been put as a redefined pressure, plays a more
important role in case of tangential fields, [43]. In combination with the Clausius-Mossotti
dependence, Eq. (5.32), the contribution actually makes V.2 negative. However, in the
experiments made by Melcher [43], large electrostriction causing negative phase velocity
V2 has not been observed. Whether such a conclusion is valid in microfluidics, remains
an open question.
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Abstract

The design and production time for complex microfluidic systems is
considerable, often up to several months. It is therefore important to be able
to understand and predict the flow phenomena prior to design and
fabrication of the microdevice in order to save costly fabrication resources.
The structures are often of complex geometry and include strongly
three-dimensional flow behaviour, which poses a challenge for the micro
particle image velocimetry (micro-PIV) technique. The flow in a
microfluidic 3D-sheathing structure has been measured throughout the
volume using micro-PIV. In addition, a stereoscopic principle was applied to
obtain all three velocity components, showing the feasibility of obtaining full
volume mapping (x, y, z, U, V, W) from micro-PIV measurements. The
results are compared with computational fluid dynamics (CFD) simulations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Along with the requirements for more advanced liquid
handling capabilities, the layout of microstructures becomes
more and more complex. Computer modelling can accelerate
and help in the labour intensive and time consuming process
of intuitive design, fabrication and testing. However, in order
to use simulations reliably as a design tool, the software used
for modelling must initially be validated experimentally, e.g.
with particle image velocimetry (PIV).

A microstructure that allows coaxial sheathing of a sample
stream with a buffer stream was chosen as a demonstrator
and is shown in figures 1 and 2. This so-called chimney
structure is a crucial part of a micro cell sorter (Wolff et al
2000). The purpose of the cell sorter is to select cells according
to specific biochemical and physical properties, e.g. whether
they are leukaemia cells, or according to their size. For the
cells to be recognized and selected, they have to be marked

0960-1317/02/060862+08$30.00 © 2002 IOP Publishing Ltd  Printed in the UK

with fluorescent labels before they can be detected by the
system. The detection system is typically organized like an
epi-fluorescent microscope.

In a conventional cell sorter the sample fluid containing
the labelled cells enters the sorter centrally in such a way that
a buffer stream surrounds the sample. This sheathing of the
sample ensures that cells are only travelling within the very
narrow field of view of the detection system. Sheathing can
only work under laminar flow conditions, which prevents the
premature mixing of buffer and sample.

The type of sample sheathing as described above is
difficult to achieve within micro cell sorters due to the
two-dimensional, planar character of the fabricated devices.
First-generation micro cell sorters therefore reverted to using
two-dimensional sample sheathing. Such sample sheathing,
however, has the disadvantage of signal and speed variations.
Since the sample is neither sheathed on top nor sheathed on
the bottom, cells can travel at any height within the fluidic
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Figure 1. Overview of the chimney structure. The laminating buffer
flow is entering the basin (b) from the left through the inlet (i), while
the sample flow is entering the basin through the centre of the
chimney (c). The total flow is leaving the basin over a step into the
exit channel (e), where the lamination of the samples is completed.
PIV measurements were performed in the outlined dashed areas.
Stereoscopic PIV recombination was performed in an overlapping
area from two camera positions over the chimney entrance, as
indicated by shading.

channel of the micro cell sorter. Cells travelling outside the
focal plane of the detection system will generate a lower
signal than those travelling within the focal plane. Cells
will also travel at different speeds due to the parabolic flow
profile that develops in the channel. These speed differences
diminish the accuracy of the cell sorter. To overcome
these two disadvantages, second-generation micro cell sorters
were developed that were able to sheath the sample three
dimensionally, for example by Larsen (2000) and Tashiro et al
(2000). The chimney structure, which has been developed
at MIC (Larsen 2000) and is discussed in this paper, used
only one input for the buffer to achieve coaxial sheathing of
the sample. The chimney structure was described in more
detail by Goranovic et al (2001). It should be noted that the
flow within a microfluidic system is always laminar under all
practical conditions due to the extraordinary low Reynolds
numbers. The above mentioned condition for a cell sorter
that the sheathing flow should always be laminar is therefore
fulfilled in all microfluidic cell sorters.

As shown in figures 1 and 2, the chimney structure
consists of an inlet channel, the chimney itself, a basin and
an exit channel. The sheathing buffer flow enters the basin
through the inlet channel, where it merges with the sample flow
entering through the chimney. The sheathing of the sample
is gradually completed as the fluids exit through the outlet

channel. The chimney basin was designed to take care of
the laminating part of the buffer stream underneath the sample
stream. At the end of the basin, the reduction in cross sectional
area leads to an increase in flow velocity, which is especially
high just at the basin corner. This layer of high-velocity buffer
stream ensures sheathing at the bottom of the sample stream.
Sheathing at the top of the sample stream is ensured as long
as the buffer stream is fast enough to avoid being pushed
backwards by the incoming sample stream.

Particle image velocimetry (PIV) has been applied in a
number of microscopic devices with nozzle- or channel-like
shapes, for instance by Meinhart ez al (1999). In micro-PIV,
where microscopes are used for imaging, all three important
variables, spatial resolution, the equivalent of the light
sheet thickness and field of view, are intertwined. The
micro-PIV technique therefore has to balance these variables.
Especially, the chimney structure provides additional
challenges, since the structure is characterized by a complex
geometry with a strongly three-dimensional flow.

The flow is visualized in figure 2 by introducing a tracer
into the sample flow. The strongest out-of-plane movement
is found near the outlet of the chimney and at the exit of the
basin.

2. Experimental set-up

The chimney structure was fabricated in silicon by reactive ion
etching. The top of the structure was closed with a glass cover,
which was bonded directly to the silicon. The thickness of the
cover glass was 0.75 mm. The fluid was purified water, which
for the purpose of the PIV measurement was seeded with
1.0 pum ‘orange fluorescent’ polystyrene particles
(Fluospheres, Molecular Probes). The excitation maximum
of these particles was at around 540 nm, while the emission
maximum was at around 560 nm. Sample and buffer were
infused with one syringe pump (Pump 22, Harvard Apparatus)
each. The flow rate for the sample flow through the chimney
was kept constant at 0.02 ml min~!, while the flow rate
of the laminating flow was varied. Three flow cases were
investigated giving a volume flow ratio of R = 0.5, 5 and 25,
where R is the ratio of the laminating flow over the sample
flow, also shown in table 1. The coordinates were placed
with their origin in the centre of the chimney and the z-axis
pointing out of the structure. The y-axis was positive in the
main flow direction.

A Dantec HiSense camera with a 1280 by 1024 pixel
array was used in conjunction with a NewWave Solo Nd:YAG

Figure 2. Outline of the chimney structure as modelled with the buffer fluid coming from the left. The shaded contours represent
concentration of tracer fluid injected through the chimney illustrating how the buffer fluid laminates the sample fluid in the middle of the exit

channel. The buffer to sample volume flow ratio was R = 25.
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Table 1. Flow setting and key parameters for the cases investigated.

Inlet Flow in Flow in exit Maximum Time between
Flow flow chimney (total flow)  velocity in exit  light pulses
ratio (mlmin~") (mlmin~") (ml min~") (mm s~) (us)
R=05 0.01 0.02 0.03 ~24 250
R=5 0.1 0.02 0.12 ~90 60
R=25 05 0.02 0.52 ~400 12

laser emitting at A = 532 nm. The maximum energy used
was 10 mJ. The light from the laser was delivered into the
microscope illumination path with an optical fibre fitted to the
microscope. The seeding was sufficiently efficient to apply
an adaptive (multi-pass) PIV algorithm with 32 by 32 pixel
interrogation areas. Only average velocities are presented in
the paper. Ensemble correlation, as presented by Meinhart
et al (1999), was also tested. Although the ensemble
correlation is known to provide better results in a sparsely
seeded flow, this technique did not provide additional
information in our case, apparently because the flow was
efficiently seeded.

The imaging was done using an epi-fluorescent
microscope (DMLB, Leica) with a 20x /0.40 planachromatic
objective and a 0.5x relay lens, resulting in a tenfold
magnification and a field of view of 857 by 686 um.
Complementary measurements were also made with a 63 x
/0.7 semi-apochromat objective. =~ Both objectives were
designed to have a relatively long working distance of up
to 3.2 mm and 2.6 mm, respectively, which allowed practical
room for the clamping of the holder of the chimney structure.
The comparatively thick cover glass of 0.75 mm could be
compensated for with adjustable optics integrated in both
objectives.

Although oil-immersion objectives are beneficial to the
light budget and to the quality of the imaging, these were not
applicable in this case due to the fact that the working distances
of the oil-immersion objectives were limited to a maximum of
0.22 mm.

With a magnification of 10, the 32 by 32 pixel
interrogation area corresponded to 21 by 21 um. This was
a satisfactory size compared to the width of the channel. The
focal depth of the microscope objective defines the thickness
of the measurement plane. This was calculated to be 16 um
according to Meinhart (2000), which then gives a measurement
volume of 21 x 21 x 16 um?. Although the 16 wm present a
relatively large fraction of the 60 pm channel depth, this was
part of a practical trade-off.

The uncertainty of the measurement is estimated to be
0.45mm s~! for the flow case R = 5. The value is justified by
observing the rms velocity of the U-velocity component of 50
vector maps in an area of the flow, which can be expected to be
undisturbed by actual flow phenomena, i.e. in the vicinity of the
walls in the exit channel, where disturbance from the shedding
process is small. The value of 0.45mm s~! corresponds to
an absolute uncertainty of 0.04 pixel displacement based on
50 samples. For one single measurement realization, this
corresponds to 0.28 pixel (0.04 x +/50). This is slightly
higher than ordinary PIV experiments, where a typical absolute
uncertainty between 0.1 and 0.2 pixel displacement on a
single measurement realization can be found. The uncertainty
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Table 2. Volume flow in the exit channel from PIV data and
nominal volume flow of the syringe pumps. The PIV based volume
flow was derived by integration of the velocities over the area of the
exit channel.

Nominal flow rate ~ Flow rate from PIV data

(ml min~") (ml min~")
0.030 0.028
0.12 0.12

0.52 0.48

for the two other flow cases in table 1 is estimated to
be 0.11mm s~' and 2.3mm s~! for the cases R = 0.5
and R = 25, respectively. The absolute accuracy of the
measurement depends on a number of scaling factors, i.e.
the optical magnification. A direct indication of the absolute
accuracy is seen in table 2 by the fine agreement between the
flow rates shown.

The PIV measurements were done in two regions as
outlined in figure 1. In the exit channel, the measurements
were performed at five planes spaced 10 um apart with the
857 by 686 um field of view, as shown in figure 3. The
first plane was estimated to be located approximately 10 um
below the glass surface, placing the volume that was mapped
in the vertical centre of the channel. The 10 um spacing
provides a vertical overlap of 40%, given the focal depth of
the microscope of 16 um. Hence, the vertical overlap was
similar to the overlap used for the in-plane PIV processing.
Using the velocities from each measurement plane, velocities
were extracted in the x—z-plane, as illustrated in figure 3.

The measurement area outlined in figure 1 in the central
region around the chimney and upstream towards the step
into the exit channel is composed of images originating from
several camera positions. From each camera position, the field
of view was 857 by 686 um, resulting in a combined area of
857 by 1646 pum.

3. Stereoscopic micro-PIV measurements

A translation stage was used to map a larger area of the
microstructure outlined in figure 1. The stage could also be
used to obtain stereoscopic information from the flow in the
same manner as cartographic information is gathered by flying
over a terrain. In the shaded area of figure 1, two successive
camera positions have significant overlap. The translation
between these two positions was 320 um or approximately
half of the field of view. Inside the overlapping area, it was
possible to perform stereoscopic recombination of the results,
assuming the flow was stationary or more precisely that the
average of several realizations was stationary. In this case, the
flow measured at each camera position was an average of 50
samples, each sample recorded at statistical unrelated times.
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Figure 3. PIV measurements in the exit channel were performed in five x—y-planes spaced 10 m in depth (z-direction). The measurement
area is indicated in the inset. There were 63 by 79 vectors in each plane originating from an interrogation area of 21 by 21 um. The
thickness of the measurement plane was defined by the focal depth of the microscope objective to be 16 pm. Stream traces on the top plane
indicate the end of the contraction and the beginning of the exit channel.

The most common technique used to compute
stereoscopic PIV results is to pre-calibrate the two camera
views with a known calibration target placed at different
z-positions.  From the calibration a transfer function is
generated, which is often a direct linear transform. This
approach would also have worked satisfactorily for this
application, except for the obvious access problems, making it
impossible to position a calibration target in situ. Alternatively,
an analytical approach could be chosen as described by
Prassad and Adrian (1993). The two main parameters are
the translation between the camera positions and the optical
path from the measurement plane to the principal plane of
the optical imaging system. Although the translation was
accurately known, the optical path was only known in coarse
details.

Mapping the entire parameter set needed for the
stereoscopic combination would have been a complicated task.
It requires that refraction of light in the air/glass interface of
the cover glass on the microstructure be taken into account. In
particular, the orientation of the microstructure surface must
be well known in order to determine the refraction of light in
the cover glass. A scheme to map the various parameters failed
in the measurement campaign presented here and therefore a
more pragmatic approach was chosen. Ignoring the air/glass
interface and pretending the set-up to appear in a medium with
a uniform refractive index, the equations for recombination
were significantly reduced. Ignoring the interface and cover
glass (750 pum thick) seemed reasonable, since it was less
than one-third of the optical path from the objective to the
measurement plane. Further, the stereo view angle was less
than 6° and the imaging was sharp all over the field of view of
the camera. Prassad and Adrian (1993) present three equations
for fluid displacement in air (equations (11)—(13)). Of these
we work with the equation for the z-velocity component:

Az 1 —dy(AX; — AX»)
At At MpS — (AX| — AX>)

()

where Az is the displacement, Ar is the time between the
two laser pulses, S is the displacement between the two
camera positions, dy is the object to lens distance, M, is
the magnification and AX; and AX, are the displacements
measured by the camera in the two view positions.

Observing that MyS > (AX,; — AX>), equation (1) may
be simplified to

W dy (AX, — AXy)  do

S Myar S

Hence the W-velocity component may be expressed as

the difference between the velocities measured from each

camera in the translation direction (x-direction) scaled with

a factor (dy/S). This means the W-component may always

be visualized qualitatively, and additionally be quantitatively

estimated, except for the scaling factor. For this case using a

qualified guess, an absolute velocity magnitude was obtained.

Compared to the result from computational fluid dynamics

shown in figure 7, the factor was underestimated by at least

20%. The correction was included in the PIV plot shown in
figure 7.

U, = Uy). @)

4. Simulations

Flow in the chimney structure was simulated using the
commercial software package CFD-ACE+ 6.4 from CFD
Research Corporation, Huntsville, AL, for computational fluid
dynamics (CFD). This piece of software is a multi-physics
package based on the finite-volume method. The program
was run on an 800 MHz Pentium III processor with 512 MB
of RAM. Although the experiments were carried out in
the laminar flow regime, simulations were done on a fine
mesh of about 100000 cells to account for the complex
geometry of the fabricated design. The geometry used in the
simulations included some simplifications compared to the
actual microstructure used for the experiments. The sidewalls
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65 um

’>
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Figure 4. V -velocity component shown in x—z-planes. The data were extracted from the PIV results shown in figure 3 at four y locations.
Note that channel height and width are scaled differently. Colour coding of V-component was the same in figures 4 and 6.

65 um

600 um |

Figure 5. Realistic dimensions of the x—z-planes of figure 4.

=154 5um | Y=1845um

Vimm/s)

Figure 6. V-velocity component shown in x—z-planes. The data were extracted from the CFD results shown in figure 3 at two y locations.

Colour coding of V-component was the same in figures 4 and 6.

of the structure have a slope originating from the underetching
during the manufacturing process. This slope was not taken
into account in the simulations; i.e. the exit channel was
modelled as being rectangular. Furthermore, the width to
depth ratio in the exit channel was 7.8, whereas the actual
ratio was 9.5. The actual channel dimensions are depicted in
figure 5.

The CFD-ACE+ 6.4 software offers several different
boundary conditions for the buffer and sample streams to be
set, the initial flow rate, the average velocity or the velocity
profile.  The small dimensions of microsystems usually
mean that velocity profiles do not develop fully within the
microsystem. Therefore, we chose to run the simulations with
both the set flow rates and the average velocities instead of the
fully developed profile. Since the results using a set average
velocity boundary condition were far more stable, only these
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are presented in this paper. The known flow rates for buffer
and sample stream listed in table 1 were used to derive one set
of boundary conditions. The initial velocity of the sheathing
stream was set to 44mm s~! and the velocity of the sample
stream was set to 11 mm s~!. Results from the simulations

can be seen in figures 6 and 7.

5. Results and discussion

As mentioned above, the measurement volume was about
21 x 21 x 16 um® (H x W x D). The horizontal dimensions,
i.e. the dimensions of the interrogation area, are given by
the number of pixels chosen, their size and the magnification
of the microscope. The vertical dimension was given by
the depth of field of the microscope and depends on the
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Figure 7. All three velocity components are shown in a plane 30 um above the chimney. CFD results are shown to the left and PIV to the
right. The colour indicates the magnitude of the W-velocity component. In the PIV results, the U, V -velocity vectors were obtained from
several camera positions. Stream traces of the U, V-component were shown. The W-component was obtained by combining the results

from two overlapping camera positions with a stereoscopic technique.

magnification and the numerical aperture. The higher the
magnification of the system the smaller both the interrogation
area as well as the depth of field. This means that an increase
in magnification produces in principle an overall decreased
measurement volume, which would increase the resolution of
the PIV measurements.

Nevertheless, opting for an objective with a low
magnification has several practical advantages over choosing
a high-magnification objective. Low magnification objectives
have larger working distances and provide a larger field of
view as well as a stronger irradiance onto the light detector.
In our set-up it was not easily possible to use a high-
magnification objective due to the thick cover glass of the
chimney. Apart from this, a second reason for not choosing
a high magnification was that the field of view of the system
is decreasing with increasing magnification. In our case, the
field of view was chosen to cover the entire exit channel width
of 600 um conveniently within one measurement. Therefore,
the system magnification for the PIV measurements was set to
be tenfold.

This magnification was achieved using a 20 x /0.40
objective in combination with a 0.5x relay lens, which is
better than using the 10x /0.25 objective of the microscope,
since the higher numerical aperture of the 20x objective
provides a smaller depth of field and an image of higher
contrast. The signal strength measured by the detector is
given by the irradiance of an imaged particle within the image
plane. This irradiance is proportional to the square of the ratio
of the numerical aperture to the linear magnification of the
chosen objective (Schroder 1998). At a given magnification, a
higher numerical aperture value results, therefore, in increased
signal strength, which makes the 20x objective/0.5x relay
lens combination superior to the 10x objective.

The reliability of the PIV results was examined by
comparing the volume flow of the PIV data in the exit channel
to the nominal volume flow given by the syringe pumps.

The flow rate was calculated by integration of the
velocities over an exit channel cross section, where a standard
numerical method (Simpson’s rule) was used. A systematical
error of about 10% was found, as presented in table 2. The
error probably originates from uncertainty in the magnification
of the system, since it was not calibrated, and the limited
number of planes used for the integration. During all PIV
measurements, the flow in the chimney structure was observed
to be laminar and without separations, i.e. no convection due
to flow separation in the microsystem could be found.

Figures 4 and 6 show the axial velocity in the exit channel
at different y locations for R = 5. Note that the z-axis in
the images is stretched in comparison to the x-axis. A more
realistic view of the dimensions is depicted in figure 5.

The PIV data presented in figure 4 show a pair of higher
axial velocity streams at all four y locations. The stream
pair moves from the bottom of the channel upward passing
through the channel. At the same time the two streams were
approaching each other slowly up to the point where they begin
to join in the last x—z-slice.

The high-velocity stream pair was a result of the five times
higher volume flow rate of the sheathing stream interrupted by
the sample stream. The highest measured speed of the pair is
about 84 mm s~! as indicated by the colour code in figure 4.
At first the stream pair flows low in the exit channel, since the
sheathing stream acceleration was a result of the reduced cross
section at the end of the chimney basin. Within the basin the
maximal V-component of the stream velocity was measured
to be 78 mm s~!, which is 8% less than the highest speed
in the exit channel. Further along the channel, the sheathing
stream pair accelerated the sample stream until an equilibrium
velocity distribution was reached. This equilibrium profile
was not yet fully developed within the measurement range.

The simulated data show similar axial velocity profiles.
The cross section at y = 1545 um, in figure 6, contains the
high-velocity stream pair, while the downstream cross section
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shows the already merged pair. The colour codes that were
used in figures 4 and 6 are equal and it can be seen that in
both cases the maximum V-component of the stream velocity
is the same, about 84 mm s~'. In contrast to the measured
cross sections, the high-velocity areas in the simulated cross
sections are closer to the sidewalls. Measuring between the
highest speed and a speed of about 20mm s~!, the distance
to the sidewall is 40 and 70 pum in the simulations and about
90 pm in the measurements.

There are two main differences between the PIV and
simulation results, the facts that the PIV data show a certain
asymmetry and that the stream pair merges earlier in the
simulations than in the PIV results. The simulated data are
necessarily symmetric, since they have been computed in a
symmetrical way to save computing power. The measured
data on the other hand reflect the fact that the sheathing buffer
stream is pushed up at the end of the basin.

The second main difference between the PIV and
simulation results was that the stream pair merged about
300 um earlier in the simulations. While the simulated cross
section at y = 1545 pm can best be compared to the measured
cross section at y = 1560 um, the simulation results show an
equilibrium already at y = 1845 um, where the measurements
still show two distinct high-speed streams. The reason for the
early stream merger in the simulations was due to numerical
diffusion.

The speeds of the two sheathing streams and the sample
stream differ where the two streams meet. The slower sample
stream exerts a viscous drag on the sheathing streams, which
flow next to it on both sides. The resulting acceleration
of the sample stream can be described as a diffusion of
momentum from the high-speed sheathing streams to the slow
sample stream. The numerical computing method used in
the presented simulations adds an additional equalizing term,
which can also be described as a diffusion. This numerical
diffusion is an intrinsic part of all numerical calculations. It
can only be alleviated by defining a finer mesh or by choosing
a different, more complex, method. In both cases a smaller
numerical diffusion is bought at the cost of either longer
computing time or increased instability. We therefore decided
to accept a certain numerical diffusion, which can be found in
our results.

The velocity cross sections shown in figure 4 provide
information that would otherwise not be easily obtainable
without PIV. Although the distribution of the sample flow
concentration can be visualized by injecting a dye
(Perch-Nielsen et al 2001), it is not straightforward to measure
the concentration quantitatively. It is even more difficult
to make a statement about the flow velocities in the
microstructure. PIV on the other hand is designed to measure
the flow velocities and with a slight modification of the
experiment, the concentration information can be extracted.
To achieve this, only the sample flow is seeded with tracer
particles, after which it is possible to observe the sample
stream qualitatively and quantitatively using the PIV system
components.

Observing the chimney structure at different locations
with overlapping field of view allowed the construction of a
three-dimensional vector field in the area of the actual chimney
as shown in figure 7. Both CFD simulation results and PIV
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measurement results are shown in the figure, where the U-
and V-velocity components are rendered as streamlines while
the W-velocity components, normal to the plane shown, are
encoded in colour. The in-plane velocities were almost zero
inside the area of the chimney. In the vicinity of the chimney,
the in-plane velocities were in the range of 10— 20 mm s~' and
the flow through the plane (W-component) had a maximum of
about 5Smm s~!. The forward flow sped up towards the exit of
the basin and reached about 70 mm s~! within the area shown
in figure 7.

Since the absolute value of the W-velocity components
was adjusted following the CFD results, only the relative
PIV measurement results for the W-velocity components can
be compared. These results compare reasonably, with the
medium W-velocity components between approximately 13
and 30mm s~! coming up from the chimney in a roughly
530 pum broad and 190 pum long area in the simulation
image, while being 480 pm broad and 120 um long in the
measurement image.

Outside the stereoscopic area, the two-dimensional data
were also in agreement. From the chimney structure one would
expect the average flow velocity to rise somewhere above the
actual chimney due to the increase in volume flow and also
at the end of the chimney basin, where the cross sectional
area decreases. Both speed increases are observed in both
the simulation and PIV results. An interesting result of both
simulation and PIV measurement was that the highest sample
flow velocity was concentrated at the exit-facing rim of the
chimney.

In section 3, stereoscopic recombination was discussed
and a method was presented to find the scaling factor
between the difference in U-component velocities and the
W -component velocity. Another approach to find the scaling
factor would be to integrate the volume flow over the entire
chimney, since the volume flow is known from the pump
settings given in table 1. Within the area presented in figure 7,
the volume flow is computed to be 0.011 ml min~!. However,
the field of view does not cover the entire exit. Using the CFD
result, it is seen that the majority (about 80%) of the volume
flow exits the chimney within the field of view from the
measurement area. Using this fact confirms that the assumed
scaling factor was underestimated by more than 20%.

Observing figure 7, it is fairly obvious that the accuracy
of the W-velocity component was only limited, given that it
was based on the average of 50 samples. The main sources for
this large uncertainty are the very small stereoscopic view
angles used. The translation of 320 um corresponds to
a stereoscopic view angle of approximately 2 x 6 degrees,
which challenges the accuracy of the measurement. The
measurement could be significantly improved by using a
higher magnification with shorter working distance, including
larger stereo view angles into the measurement. Additionally,
a large-format CCD camera could be used to increase the
stereoscopic viewing angle, since it allows exploitation of
the full viewing capability of the objectives. Finally, more
advanced recombination schemes, which take into account
the image distortion introduced by the thick cover glass,
could be included in the computation of the W-velocity
components.

The most desirable measure for improvement of the
experimental results would be to equip the examined
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microfluidic structure with a thinner cover glass. This would
decrease the distortions and make it possible to use objectives
with higher numerical aperture. A cover glass thickness of
170 um would be desirable, since most objectives are designed
to be used with such cover glasses.

6. Conclusion

The flow velocities of a microstructure used in cell sorting were
mapped in several planes using PIV. The PIV measurements
had an adequate resolution and a good field of view.
The quantitative results from measurements and simulations
were in reasonable agreement, considering the difference
in geometry. Furthermore, it was possible to expand the
micro-PIV technique to stereoscopic viewing. Combining
the stereoscopic technique with mapping of several planes, the
possibility of full volume mapping (x, v, z, U, V, W) micro-
PIV was demonstrated.

Micro-PIV results can be used to evaluate and validate
the simulation results of micro-fluidic flows. In case of the
chimney basin, the PIV results support the simulation results.
While comparing simulation and PIV data of the exit channel,
a certain difference was found, which was helpful as it points
out the care that has to be exercised when simulating flow. To
improve the agreement between simulation and measurement,
the simulation can in principle be improved by using more
complex algorithms or by defining a denser mesh at the cost of
increased instability or computation time. The measurement
can be improved by employing a higher aperture objective,
which would increase the viewing angle as well as collect
more light. One crucial step towards this end would be the use
of a thinner cover glass.

In general, the good agreement between simulation and
PIV will allow the simulation software to be used as an efficient
tool to speed up the microstructure design cycle.
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Abstract

The recently published experimental results obtained by Takamura et al. [Y. Takamura, H. Onoda, H. Inokuchi, S. Adachi, A. Oki, Y.
Horiike, in: J.M. Ramsey, A. van den Berg (Eds.), Proceedings of the uTAS 2001, Monterey, CA, USA, Kluwer Academic Publishers,
Drodrecht, 2001, p. 230], on their low-voltage cascade electro-osmotic pump are analyzed using two different theoretical approaches. One is
the semi-analytical equivalent circuit theory involving hydraulic resistances, pressures, and flow rates. The other is a full numerical simulation
using computational fluid dynamics. These two approaches give the same results, and they are in good qualitative agreement with the
published data. However, our theoretical results deviate quantitatively from the experiments. The reason for this discrepancy is discussed.

© 2003 Elsevier Science B.V. All rights reserved.

PACS: 47.11.4j; 47.60.+i; 47.85.Dh; 82.45

Keywords: Electro-osmotic pump; Equivalent circuit model; CFD simulation

1. Introduction

Micropumps play a key role in the quest for fabricating
versatile, cheap, and highly efficient microfluidic lab-on-a-
chip devices. In this growing field especially micropumps
based on electroosmotic flow (EOF) [1-3] are becoming
important [4-9]. They contain no moving parts and are
compact. Moreover, they are relatively easy to integrate
in microfluidic circuits during fabrication.

One major drawback in the conventional design of EOF
micropumps is the use of high voltage to drive the pump. The
invention in 2001of the low-voltage cascade EOF pump by
Takamura et al. [5] therefore marks an interesting develop-
ment in the field. In the future, EOF pumps may be powered
by battery; and hence, portable.

The aim of our work is two-fold. (1) We want to provide
the first theoretical analysis of the experimental results
obtained by Takamura et al. [5,10]. (2) Using computational
fluid dynamics (CFD) we want to demonstrate that the
complex EOF pump is adequately described by the semi-
analytical equivalent circuit theory involving hydrodynamic
resistances, pressures, and flow rates. Both calculational
methods are approximate, but since they are independent

* Corresponding author. Tel.: +45-4525-6399; fax: +45-4588-7762.
E-mail address: bruus @mic.dtu.dk (H. Bruus).

and yield comparable results, we have gained confidence in
our theoretical results.

2. Principles of the EOF pump

To set the stage for our analysis we briefly recapitulate the
working principles of the low-voltage cascade EOF pump
[5]. The pump is designed to work as an effective pressure
source for low applied voltages. The layout of the pump is
shown in Fig. 1.

The main principle is to connect multiple EOF pumps in
series in order to accumulate pressure. Each elementary EOF
pump (denoted a step) consists essentially of a narrow
channel section, marked B in Fig. 1, containing 10 parallel
channels, followed by a wide channel section, marked C in
Fig. 1, containing a single channel. The EOF in the narrow
channel section acts as a high pressure pump with forward
electric field. In the wide channel section the electric field is
reversed, but here the channel is so wide that the induced
back pressure is small compared to the previous pressure.
After flowing through one such pump step the accumulated
voltage is thus zero, while an appreciable pressure is main-
taining a net flow. This ensures EOF pumping using a
low operating voltage, indeed an attractive feature allowing
the pump to be operated with a battery and thus to be
portable. Furthermore, it is more safe to use low voltages.

0925-4005/03/$ — see front matter © 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/50925-4005(03)00130-8
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Fig. 1. Top view of the low-voltage cascade EOF pump with three steps
(adapted from Fig. 3 in [5]). The total pressure is proportional to the number
of steps. The EOF is driven through many parallel narrow channels by a
forward electric field and through one wide channel with a reversed electric
field. A net flow is thus generated without accumulation of voltage.

The disadvantage of a cascade pump is the extra complexity
of the many electrodes.

We begin our analysis by noting that water at room
temperature has the kinematic viscosity v = 107% m?/s,
and when, as in the experiment, it flows with the velocity
u =~ 1073 m/s through a channel of width D = 50 um, the
Reynolds number, Re, is minute:

D
Re — ”7 — 0.05. (1)

For such a low Reynolds number the flow is laminar and the
viscous forces are dominant. In the case of uniform flow, i.e.
zero spatial derivatives in the flow direction, the Navier-
Stokes equation becomes linear.

In this limit, for a steady-state flow through a channel with
a hydraulic resistance Ryyq, the flow rate Qyyq induced by the
pressure drop Appyq is

Ap hyd
Rhya

Ohya = 2

Polar liquids offer another possibility beyond pure hydro-
dynamics to generate a flow: namely the electrically driven
EOF [1-3]. Ions in the liquid form a thin (<100 nm) electric
double layer, the Debye layer, at the walls of the channel,
and when an electric potential drop A¢,,, is applied along the
channel an EOF is initiated. In the limit of infinitely thin
Debye layers, the flow velocity u., at the walls is given by
the Smoluchowski expression

A
L
where (i, is the so-called electroosmotic mobility, and L the
length of the channel. For a pure EOF, the flow rate O, in a
channel with cross-sectional area A is given by
Adeo 4 Roya _ Apeo
L " Rua Ry’

3)

Ueo = Heo

Qco = UeoA = [, €]

where Ryyq and the EOF pressure Ap,, is introduced in the
second and third equality, respectively, so that Q., appears as
Onya in Eq. (2). Inaccordance with [6], Ap,, is thus defined by:

A S
Apeo = Heo A<ZbeoRhyd Z = Heo A(peoRhyd % ) (5)

where the geometry ratio A/L equals the ratio between the
electric resistivity p,, of the liquid phase and the electric
resistance R of the channel.

Equivalently, Ap., can be defined as the hydraulic back
pressure needed to balance an EOF, i.e.|Qco| = |QOnya|- The
total flow rate Q of a channel with both a pressure-driven
flow and an EOF is simply

Ap eo T AP hyd
Rhiya

0 =0+ thd = (6)
Likewise, the resulting velocity profile is given by a super-
position of the velocity profiles of the EOF and the pressure-
driven flow, respectively [2].

Consider a pump in a fluidic network. If the back pressure
Apnyq is zero, the flow is denoted a ”free run flow” and the
corresponding flow rate is termed Qpn.x. The counter pres-
sure needed to stop the flow (i.e.Q = 0) through the entire
pump is denoted the maximum back pressure ppax.

3. Analysis of the EOF pump

From Eq. (5), it follows that the EOF-induced pressure
buildup is very large in the narrow channel section, and thus
the flow profile in this section becomes only slightly deformed
under the influence of the actual back pressure. The resulting
velocity profile u;, shownin Fig. 2, is a sum of a large, positive

gel anode gel anode
(salt bridge) (salt bridge)
inlet 'l outlet
A |
UWHIIHHH Do | 1
Yy
narrow Dy wide
channel channel
section section
D4 «—>
D3
A
gel cathode
(salt bridge)

Fig. 2. Simplified schematics of one step of the cascade EOF pump shown
in Fig. 1. The flow profiles in both narrow and wide channels are shown.
There are 10 channels in the narrow channel section, but for clarity only 4
are depicted. Even though the flow is reversed near the wall in the wide
channel, the net flow is still positive. The parameters taken from [5] are:
D; =800 um, D, = 1230 um, D3 = 170 pm, and D4 = 185 pm.
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and flat EOF velocity profile and a small, negative and
parabolic back pressure velocity profile. The pressure buildup
in the narrow channel section is denoted ApY.

In the wide channel the electric field is reversed. A part of
the pressure generated in the narrow section is therefore used
both for overcoming the reversed, small, and flat EOF profile
and for driving the flow by pressure. The resulting velocity
profile is the large, forward parabolic-like velocity profile u,
shown in Fig. 2. It is evidently imperative to make the
channel width considerably larger in this section to keep its
back pressure to a minimum. The pressure drop in the wide
channel section is denoted Apg.

The final pressure buildup Ap{ZH along the whole step is
the EOF pressure buildup in the narrow channel section
minus the back pressure drop in the wide channel section,
APy = Apgy — Apey. (7)

step

3.1. Equivalent circuit theory

The concepts from the previous section can be used to
analyze the pump using the so-called equivalent circuit
theory. In this theory, the hydraulic resistance of a fluidic
network is calculated by representing individual sections with
equivalent hydraulic resistors using the usual rules for series
and parallel resistors. The flow rate and the pressure drop for a
hydraulic resistor are related by Eq. (2). For details see [6].

The equivalent circuit theory is only exact for a uniform
and laminar flow. Hence, it is not possible to analyze the flow
near a bend. In the following analysis the bends are neglected,
an approximation justified in Section 3.2 by CFD simulation.

The first step is to find the equivalent diagram for the
pump. It consists of a parallel coupling of N = 10 identical
resistors Rpyq; followed by Ryyg3 and Rpygo in series as
shown in Fig. 3b. For a single rectangular channel of width
W and height H, Ryyq is given by [6],

12nLH*

since Rpyd3 < Rhuyd,1, Rnya2. The total hydraulic resistance
Ri%4' is therefore given as

R;“;S' = N"'Ruya1 + Rnyaz- 9

To drive the EOF an external electrical potential, A, is
applied to the resistor network (Fig. 3a). Only a fraction o of
A¢g, is dropped over the EOF channels. This effective
potential drop is denoted A¢

Ay, = 0 Ay, (10)

Using the circuit diagram we determine o. The electrical
resistance of a single rectangular channel with length L,
width W, and height H is given by

R L

= Pel HW .
Combining this with the actual geometry of Fig. 1, it follows
that

(1)

-1
ye  (N/RiH I/Rj) — 0.885. (12)
(N/Ri+1/Ry)" +Rs

The actual applied potential A¢,,, does not equal A,
because further potential drops occur in the gel electrodes.
Hence, A¢,, is unknown but could have been estimated if
the electrical current and conductivity of the liquid had been
measured experimentally.

At this point the EOF pressures ApY, ApN | and Apgp, can
be found for a given potential. However, it remains to verify
the validity of the approximate equivalent circuit theory.
This is done by numerical simulations in the following.

3.2. Computational fluid dynamics

A full numerical simulation was performed using the
commercial computational fluid dynamics program Coven-

Rpya =

where 7 is the dynamic viscosity. Ryyq,1 and Rpyq2 are then
computed using Eq. (8). The short channel connecting the
narrow and wide channel sections can safely be neglected,

(@ + + (b)
0D
R1||Ry g g
- )
Rs Riyas

Fig. 3. (a) The equivalent electrical circuit used in the calculation of
potential drop across the EO section. (b) The slightly different equivalent
circuit for the fluidic network used in the calculation of flow rates. There
are N = 10 narrow channels each with the hydraulic resistance Rpyq,i. In
our calculations Rpyq;3 is neglected.

(W/H) — S22 ,(192/(z5(2m + 1)) tanh [((2m + )W) /2H]

®)

tor 2001.3. The program can simulate EOF in the limit of
infinitely thin Debye layers. The electric potential is calcu-
lated first, and by the Smoluchowski relation Eq. (3) it is
used to establish the boundary conditions for the velocity
field at the walls. The accuracy of the CFD could be
measured for straight channels with rectangular cross-sec-
tion, since there the equivalent circuit model gives analytical
answers.

In order to save calculation time, it is important to identify
the minimal computational domain. Only one pump step
needs to be analyzed. Further simplifications can be
achieved by symmetry considerations. Clearly, the pump
is symmetric about the horizontal plane at half the channel
depth. Due to the very low Reynolds number, Re < 0.05, the
flow is said to be creeping. Numerical investigation by Yang
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et al. [11] showed that for a 90° bend, inertial effect was
negligible for Re < 5. Consequently, it does not matter
which way the liquid flows. The flow pattern in the first
half of a pump step (e.g. between A and B in Fig. 1) therefore
equals that in the second half (e.g. between B and C in
Fig. 1). Hence, only half of the computational domain needs
to be considered. This was verified by a full-geometry
simulation. The flow rate and pressure buildup for the
complete pump step are twice the values obtained using
the symmetry-reduced geometry.

The CFD simulation was done with various grids to find
those yielding grid-independent results. We focused espe-
cially on problems at the corners, since they are known to be
problematic [12]. We ended using a grid containing 10°
rectangular cells with 14 x 7 cells in each cross-section. The
CFD results for this grid matched the analytical circuit
model within 5%.

4. Results and discussion
4.1. Velocity profiles

A simulation of the low-voltage cascade EOF pump gave
the velocity profiles depicted in Fig. 4. There is one profile
for the wide channel, and one for a single narrow channel.
The profiles have been extracted from the symmetry plane.
The CFD program solves the Poisson equation for a given
potential drop A¢., and finds that the electric fields are
slightly different in the wide and narrow channels. In the
circuit model they are assumed to be the same. The
calculated velocity profiles at two positions are sketched
in Fig. 2.

0o/
1000 / \
/
/

800

600

velocity / um/s

— — — narrow channel
-400 —— wide channel

0 0.2 04 06 038 1
distance / width

Fig. 4. CFD simulated velocity profiles at the symmetry plane in a wide
and a narrow channel. The velocity at the walls is the EOF velocity. The
parameters are: 77 = 1.00 x 1073 Pas, y,, = 0.06 mm?/(V s), and A¢y, =
10 V.

4.2. Comparison with experiments

The circuit model is now used to calculate the back pressure
Pmax and the EOF velocity u., as a function of the potential
drop. Unfortunately, neither the actual potential drop A¢,;, nor
the EOF mobility p,, was measured in the experiment.
However, both back pressure and flow velocity depend lin-
early on the product ., Ay, and, as we shall see, this makes
a comparison between experiments and theory possible.

In the case of a 15-step cascade pump, Takamura et al. [5]
measured a max back pressure of 800 Pa and for the same
voltage and under free run conditions, a max velocity
Umax = 0.50 mm/s. The velocity measurements were con-
ducted in the last wide section, which had no electric field.
Hence, the flow is solely pressure driven.

The relation between the back pressure and the product
Ueo A, 1s found using Eqgs. (5) and (7), and it is plotted in
Fig. 5. From the figure, it is found that the measured 800 Pa
corresponds to i, A¢., = 0.114 mm?/s. Using this value
the model predicts the flow rate Qpax = 0.110 nl/s. From
this flow rate, the maximum velocity u,,x may be calculated
in the wide channel section.

Using the aspect ratio as a variable parameter, we per-
formed a general analysis of the relation between flow rates
and maximal flow velocities in rectangular channels with
cross-section area A. For the actual aspect ratio W/H = 2.5
we found a numerical factor 0.52:

u — Qmax
0524

where A = 50 x 20 pm?. This velocity, found both by simu-
lation and by the circuit model, deviates by a factor 2.4 from
the measured 0.50 mm/s.

In [5], results from a 6-step and 15-step pump are pre-
sented. The back pressure measurements give 380 and 860 Pa
for the 6-step and 15-step pump, respectively, at ¢,,, = 25 V.
The corresponding ratio is then 860/380 = 2.26 which
should be compared with 15/6 = 2.5. Hence, it can be
concluded that the pressure is not accumulated linearly with
the number of steps in contrast to theoretical expectations.
The deviation may be within the range of uncertainty for the
pressure measurements.

To obtain realistic estimates for the absolute values of the
EOF pump parameters, we use some typical values for p,
and A¢,,. The results for Qnax, Pmax, and Rpyq obtained by
model calculations and simulations are compared in Table 1

=0.21 mm/s, (13)

Table 1
Comparisons between equivalent circuit model and numerical simulation
for a single pump step

Omax (0l/s) Pmax (Pa) Ruya (kg/(m* s))
Model 0.577 281.0 4.88 x 10"
Simulation 0.560 274.0 4.89 x 10"
Deviation 3% 2% 0%

Parameters: pto, = 0.06 mm>/(V s), n=10 x107> Pas, Ap, =10 V.
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Fig. 5. Maximum back pressure as a function of ., A¢,. The pressures are calculated using the equivalent circuit theory. The one step slope is 468 Pa's /
mm? for = 1.00 x 1073 Pas, = 0.885. The measured pressure of 800 Pa leads to a value pi., Ag, = 0.114 mm?/s.

for a given set of parameters. The two sets of results agree
well. Calculations with p., = 0.06 mm?/(V s) give consid-
erably larger pressures than those measured, e.g. 4200 Pa for
the 15-step pump with A¢,, = 10 V. This indicates the
possibility for improving the performance of the pump.

5. Discussions and conclusions

Discussions with Takamura [10] have led to the following
conclusions regarding the discrepancies between experi-
ment and theory.

(1) The velocity mismatch of a factor of 2.4 is probably
due to fabrication difficulties. The actual width of the
narrow channels may have been as large as 8 um
instead of the design value of 5 pum [10]. Since
Apeo < W2 for W < H, the pressure for a 8 um wide
channel is (8/5)% = 2.6 times smaller than for a 5 pm
channel. This would lower the slopes of the lines in
Fig. 5 and instead of reading off 0.114 mm?/s on the
abscissa, we would get 0.296 mm?/s. Using this
number for ., A¢y, we obtain wup, = 0.55 mm/s.
This result agrees better with the observed 0.5 mm/s. A
source for minor inaccuracies is the actual shape of the
channel cross-section.

(2) The pressure does not increase linearly with the
number of stages. Two possible explanations of this
observation are: (a) due to the design of the pump the
individual gel electrodes do not have the same
potential; (b) pressure-dependent hydraulic resistances
of the gel electrodes, i.e. leaks in the gel electrodes
increases with increasing pressure.

(3) The experimental accuracy of the velocity and pressure
measurements is 15-30%. Part of the discrepancies
could therefore simply arise from inaccurate measure-
ments.

The above explanations can account for the large quanti-
tative deviations between theory and experiment, and the
problems will be addressed in coming improved version of
the low-voltage cascade EOF pump [10].

In summary, we have presented a simple analytical model
for the low-voltage EOF pump obtained by using equivalent
circuit theory. This approximate model has proved sufficient
for making good estimates of the performance of the
pump. Full CFD numerical simulations were made to verify
the model and to provide more detailed information about
the flow. The model and the simulations agree within 3%.
Our theoretical analysis was compared to experimental
results obtained by Takamura et al. [5], and good qualitative
agreement was observed. However, a considerable quanti-
tative deviation (a factor of 2.4) was found for values of
calculated versus measured maximum velocity. The possible
sources for this discrepancy were identified as inaccuracies
in the measurement of various parameters (channel widths,
velocities, and pressures) and pressure leakages.

Our work shows the advantage of theoretical analysis as a
supplement to the experimental approach in the study of
EOF pumps. Our pressure calculations indicate, for exam-
ple, that there is room for improving the performance of the
pump. We have also shown that, although approximate, the
equivalent circuit model is applicable to the cascade EOF
pump. This is mainly because the corrections from electrical
and hydraulic corner effects are negligible. Use of the circuit
model facilitates the analysis of the pump enormously.
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Abstract

We present a theoretical and numerical study of the quasi-static motion of
large wetting bubbles in microfluidic channels with contractions. In most
cases the energy of a bubble increases when it is moved from a wide channel
to a narrow one, and the bubble thus tends to clog the flow of the fluid. A
certain pressure, the so-called clogging pressure, is needed to push the
bubbles out of the contraction. However, we show that in the case of a
hydrophilic channel contraction there exists a range of parameter values
where the bubble actually gains energy by moving into the narrow part. For
these specific cases we analyze how the clogging pressure depends on
channel geometry, surface tension and contact angle. Based on our analysis
we establish design rules for minimizing the clogging pressure of

microchannel contractions.

1. Introduction

Many microfluidic networks on modern lab-on-a-chip devices
contain channel contractions. These tend to become
problematic if, as is often the case, gas bubbles are introduced
into the liquid at the inlets or by electrochemical processes.
Due to the small channel dimensions gas bubbles can easily
be large enough to span the entire channel cross-section.
Such ‘large’ bubbles are prone to get stuck at the channel
contraction, whereby they can clog the flow and disturb
measurements or functionality of the system in an uncontrolled
manner. To clear the clogged channel an external pressure,
the so-called clogging pressure, has to be applied to push
the clogging bubble out of the system. Although already
identified nearly a decade ago [1, 2], this important problem
in microfluidic systems has not been studied theoretically
to a wide extent, a situation we would like to amend with
this paper. The present work is a substantial extension of a
preliminary and specialized study presented at the NanoTech
2003 conference, [3] now including an analysis of the bubble
energies in general cases, inclusion of compressibility effects
and the use of different parameter values.

A complete analysis of the motion of a large bubble
through a microchannel contraction involves many different
physical effects, some which are not completely understood.
Any comprehensive analysis would at least require detailed

modeling of the liquid—gas, liquid—solid and solid—gas
interfaces as well as the dynamics in the bulk fluids. But
also more complicated processes near the contact lines need
to be addressed, e.g. wetting [4—6], contact line pinning and
hysteresis [4, 7], dynamic contact angles and contact lines
[8—10] and static and dynamic friction [11-13]. It should be
stressed that many of these surface effects are hard to control
precisely, therefore dynamical systems where the lubrication
assumption is used are also widely analyzed [14, 15].

In this work, however, we will restrict our analysis to
quasi-static motion of bubbles. By this we mean that the
velocity of the bubble is nearly zero and that the entire
model system remains arbitrarily close to equilibrium for all
bubble positions. All dynamic aspects are thus neglected,
and basically the model involves only the free energy of the
internal interfaces of the system and external pressures. This
is motivated by the fact that it is difficult to experimentally
control surface related properties. We thus only study
geometry related effects. We also choose to work only with
axisymmetric channels of smooth (but otherwise arbitrary)
contraction geometries free from any sharp corners and
other singularities. With these simplifications the forces or
pressures needed to push a bubble through the system can be
calculated accurately without losing the essential physics of
the problem. This in turn enables us to formulate design rules
for microchannel contractions to prevent or reduce clogging.

0960-1317/04/000001+08$30.00 © 2004 IOP Publishing Ltd Printed in the UK 1
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liquid (1)

solid (s)

Figure 1. A bubble with internal pressure P; and center of mass X,
in a hydrophilic axisymmetric channel. The left (right) contact line
has the coordinate x;, (xg) and contact angle 6. The channel is
contracting from a straight part of radius R to one of radius . The
specific channel profile is defined by some function r (x).
Throughout this paper we have chosen r(x) to be a sloped straight
line joined to the straight parts by two circle arcs. The tapering
angle 6, is given by tan 6, = —r'(x). The pressure left (right) of the
bubble is denoted as P (Pgr) and the pressure difference across the
bubble is AP,

To our knowledge similar analyses have only been made on
channels of constant cross-sections [16] and for the special
case of sudden contractions [17].

2. The model and basic physical assumptions

Consider a hydrophilic microfluidic channel or capillary, such
as the one depicted in figure 1, which is axisymmetric about
the x axis with a position dependent channel radius r(x). The
channel is filled with a liquid. A large bubble of some other
fluid (we think mainly of a gas such as air) is present in the
liquid. By large we mean that the volume of the bubble is
larger than the volume V™ of the largest inscribed sphere
that can be placed anywhere in the microchannel. A large
bubble divides the liquid into two disconnected parts, left and
right of the bubble. The bubble itself consists of a bulk part in
direct contact with the walls of the channel and of two menisci,
in contact with the liquid, capping the ends of the bubble.

The bubble is assumed to be in quasi-static equilibrium. In
that case it is relatively simple to combine mass conservation
with geometric constraints to determine, as a function of the
bubble position, the pressure drops over the two menisci
needed to maintain this equilibrium. We define our central
concept, the clogging pressure, as the maximum of the position
dependent pressure drop across the bubble, i.e. the minimal
external pressure that must be supplied to push the bubble
through the microchannel.

2.1. The Young and Young—Laplace equations

Our model system consists of a solid channel containing a
liquid and one large gas bubble. Therefore, the essential
physical parameters are the three surface tensions (surface
free energy per area) oig, 0 and oy, for the liquid—gas, solid—
liquid and solid—gas interfaces, respectively. In equilibrium

2

the contact angle 6 is determined by the surface tensions
through the Young equation [18, 19]

Ogg — Ol = 013 COSB. @))

In the following the contact angle is taken as the equilibrium
angle or rather as an average contact angle. Because contact
angle hysteresis is very sensible to surface effects, we do not
address these questions in this work.

To sustain a curved interface with the main radii of
curvature R{ and R; between a gas of pressure P, and a liquid
of pressure Pj, the pressure difference AP = P, — P, must
obey the Young-Laplace equation [20]

1 1
AP = O']g (F + F)

1 2
where the last equation is applicable for a constant circular
cross-section of radius 7. We use the standard convention that

these radii are taken as positive if the interface is concave when
seen from the gas.

=201y —— @

2.2. Isothermal motion and compressibility

In the rest of the paper we consider a ‘large’ bubble having the
initial position ‘1’ in the widest part of the channel. The initial
volume is V; = y Vi, where y > 1 and VIR = 4nr} /3,
and the corresponding internal pressure is P; ;. At alater stage
the bubble is moved to a position ‘2’, where the volume is
V, and the internal pressure is P;,. In the quasi-static case
the bubble motion is isothermal and hence the compressibility

condition applies,
Pi1Vi = PiaVa. (3)

The pressure P; within the bubble is given as the external
pressure Py plus the pressure change AP across the curved
interface, given by equation (2).

The most extreme compression is obtained by pressing a
large bubble, which floats without geometrical constraints in
a bulk liquid of pressure Py, into a narrow circular channel of
radius r. Combining equations (2) and (3) yields

V] Pi,2 N Pi.2 20|g cos 6

V. Py P ’ rPy
For example, moving a large spherical air bubble in water
(o1g = 0.0725] m~?) at the ambient pressure Py = 10° Pa
into a channel of radius r = 25 um leads to V;/V, = 1.06,
i.e. a volume compression of 6%. Moving, as in section 6,
a bubble from a 300 um to a 190 um wide channel yields a
compression of about 0.2%.

In the case of laser ablated microchannels in plastic
chips, compressibility effects are negligible as the smallest
dimensions typically are greater than 100 um. However, for
silicon based micro- or nanofluidic devices, compressibility
may play a significant role.

=1

“

2.3. Quasi-static motion and geometry

For a bubble positioned in a microchannel contraction, the
total internal energy E, is the sum of the surface free energy,
gravitational energy, kinetic energy and frictional energy. We
regard the surrounding pressures as external energy. By our
definition quasi-static motion of an incompressible bubble
implies that the kinetic energy is zero and friction is also
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zero because of hydrostatic and thermodynamic equilibrium.
Finally, we treat channels of characteristic dimensions 2r less
than 300 pm, which is significantly smaller than the capillary
length of water, A, = ,/o1z/p,g ~ 2700 um, where p, =
10° kg m—3 and g = 9.82 m/s?. So the gravitational energy
can also be neglected, which ensures that the menisci may be
approximated by spherical caps.

The total internal energy Ey of the microchannel
containing a quasi-statically moving bubble is given only by
the surface free energy, i.e. the sum of interfacial energies o;
times interfacial areas A;,

Eio = Z 0iA; = O'IgAlg + O'sgAsg +0gAgl. (5)
The pressure-related applied external force F needed to
balance the bubble is given by the gradient of the total internal
energy with respect to the center of mass coordinate of the
bubble x.,,. Hence
dE
F = tot (6)

9
dxem

which thus depends on the bubble position x., and, through
the areas A;, on the geometry of the channel.
2.4. The clogging pressure

The Young-Laplace pressure drops (cf equation (2)) at the
menisci are given by,

APL=P — P,
AP = P, — P

(7a)
(7b)

The total pressure drop A Py (X, ) over the bubble as a function
of its center of mass x., is given by

APb(-xcm): PR_PL:APL(xcm)_APR(xcm)- (8)

The clogging pressure P, is defined as the maximal position
dependent pressure drop across the bubble,

Pclog = max {~A Py(xcm)}. )

The clogging pressure expresses the minimal amount by which
the left-hand-side pressure P, must exceed the right-hand-side
pressure Py to push the bubble through the contraction quasi-
statically from left to right.

3. General energy considerations for axisymmetric
microchannels

Consider a bubble placed in a cylindrical channel of radius R.
We want to determine the change in energy resulting from
moving it into a smaller channel of radius r < R, e.g.
by moving it from left to right in the channel depicted in
figure 1. Intuitively, we would expect the energy to increase
as a result of the movement. In most cases this intuition is
correct; however, we shall see that in some cases the system
gains energy by the move, solely due to geometric conditions.

The bubble has the initial volume V, = y Vi, where
y > land V™ = 4m R?/3. With this constraint the bubble is
forced to touch the walls regardless of its position. According
to equations (2) and (7b) the internal pressure of the bubble is

cos 6
Pi,l = PR + 201g

(10)

30

207

AF;ot (nJ)

Figure 2. Plot of the energy change AE as a function of the ratio
r/R. The bubble is moved from a wide channel of radius R =

150 um to a narrow channel of radius r. Five curves are shown
corresponding to the volume ratio y = 1, 2, 3, y, and 8, respectively,
y. & 4.75. For ‘small’ volumes 1 < y < y, the system can gain
energy by moving the bubble to the narrow channel, if the width of
the latter is not too small. For y > y, the movement requires energy
in all cases.

The volume of the bubble is the sum of two spherical cap
volumes and the volume of a cylinder of initial length L. Once
the length L is known, the relevant interfacial areas Aj, and
A, may be found.

The gas bubble is now moved to the cylindrical channel
of radius r, and according to equations (2), (3) and (7b) the
pressure P;, and volume V, are

6
Piy = Py + 201 a1
r
v, = Dty (12)
2 = [),"2 1-

By solving equation (12) itis straightforward to find the change
in total free surface energy,

AE = Eio2 — Eor,1 = 01g(Alg,2 — Ajg 1)

+o01g2m cosO(rl — RL), (13)

where / is the length of the bubble in the channel of radius
r < R (situation 2). In equation (13) the Young relation
(1) has been used to eliminate the solid—liquid and solid—gas
interfacial energies.

Based on equation (13) we can analyze the energy change
when moving the bubble from the wide channel of radius R to
the narrow channel of radius r. First we give the limiting values
of AEy. In the limit /R — 1 we obviously get AE,; — 0.
In the opposite limit, /R — 0, the compressibility of the
bubble results in convergence of A Eyq,

3
—_— <4yRPR — 0y

4 +sin(360) — 3tan 6
cos2 6 ’

lim AE =
%0
(14)

To discuss A E for general values of 7/ R we use a numerical
example: an air bubble in a water filled PMMA channel for
which we have the parameter values Pr = 10° Pa, ol =
72.5 mJ and 6 = 72°. The radius ratio »/R and the volume
parameter y are then varied.

In figure 2 the energy AFE,y, (equation (13)) is plotted
as a function of the ratio r/R for given values of y. The

3
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Figure 3. The energy AE,y as a function of the ratio r/R for
different values of the wide channel radius, R = 100, 150, 200, 250
and 300 um. The plain curves correspond to the smallest bubble for
y = 1 and the dotted curves correspond to a larger bubble with

y =3.

figure shows that for large values of y, i.e., large bubbles,
it requires energy (AEy > 0) to move the bubble from
the wide to the narrow channel. However, there exists a
critical value y, ~ 4.75 below which the system can gain
energy by moving the bubble, if the radius ratio r/ R is not too
small. This behavior is generic for a bubble in a contracting
channel, but the specific shape of the curve and the optimal
minimum depend on the material parameters and the external
pressure Pg.
The critical value y., above which energy gain is
impossible, is given by 0 AE,/d(r/R) =0atr/R =1,
(3 — cos(30) +2sin0) (201, cos O + R Py)
B 2R Py cos O(1 + sin6) ’

Figure 3 depicts the energy AEy as a function of the
ratio r/R for y = 1 and y = 3, and for five values of the
wide channel radius, R = 100, 150, 200, 250 and 300 zem.
From equation (13) it may be seen that min{A E} R? as
the area is proportional to R? and L is proportional to R.
Deviations from this proportionality arise for small values
of R because of compressibility. For y = 1 in figure 3
we find max{—AE,} = kR* with k = 0.159Tm~2. This
proportionality is illustrated as the energy at a given r/R
point is increased by a factor 4 when R is doubled, e.g. from
R =150 um to R = 300 pum.

The previous calculations clearly show that for some
geometries it is favorable to place the bubble in the narrow
rather than in the wide part of the channel. In the following
we shall address the question of whether for such geometries
the bubble will move spontaneously or it must cross an energy
barrier to arrive at the low-energy state in the narrow channel.

as)

C

4. Analytical results for contractions with
energy gain

Combining the geometry defined in figure 1 with equations (2)
and (8), the central expression of our analysis is easily derived,
cos[@ — B (x1)]  cos[O + O (xr)]
— . (16)
r(xp) r(xr)
From the discussion in section 2.4 it follows that if AP, < 0
then the contraction causes bubble clogging, whereas for

Apb = 2(71g <

4

(@) (b)

X X XX

Figure 4. Two generic situations for a bubble of length L = xg — xr
near a microchannel contraction of length x, — x;. (@) The
contraction is long enough to contain the entire bubble, i.e.

XR — XL < X — Xx1. (b) The contraction is so short that the bubble
can span it completely, i.e. xg — x> x, — xy, which is a class S,
bubble.

AP, > 0 the bubble tends to move spontaneously through
the contraction toward the narrow part.

Based on equation (16) a number of design rules may be
established specifying the geometric features that may prevent
or decrease clogging. Consider a bubble that starts out in the
wide straight section left of the contraction, where it has a
length Ly = xgr — xr.. The pressure drop A P, is zero to begin
with, but depending on the shape of the contraction, such as the
two examples shown in figure 4, A P, changes as the bubble
advances quasi-statically through the contraction.

The first part of any contraction can always be
approximated by a circle with an arc angle which is the local
tapering angle ;. As the right contact line xg just enters the
contraction, equation (16) can be expanded to first order in 6
yielding

201 sin @
N —=

AP, 6, > 0. (17)

Thus initially the bubble tends to move spontaneously into
the contraction. The physical reason for this is that the local
tapering angle allows the meniscus to flatten a little, which
reduces the costly gas—liquid interface energy.

Once the bubble moves inside the contraction defined in
figure 1, a complicated interplay between the initial bubble
length Ly, the contact angle 0, the channel radii r(xy) and
r(xg) at the contact lines and the local tapering angle 6;(x)
decides whether bubble clogging occurs or not. We classify
our systems into two main classes:

Class o comprises all cases where no clogging occurs,
i.e. where the bubble can move spontaneously through the
contraction without applying an external pressure.

Class B contains all cases with clogging, i.e. where
AP, < 0 at some point or, equivalently, where Pos > 0.

For class B four sub-classes can be identified depending on
where the bubble is when A P, becomes negative and clogging
occurs. This bubble position is classified by the position of
the contact lines x| and xg relative to the beginning x; and the
end x; of the contraction region (see figures 1 and 4):

class B : xp <x; and x| < xR < X2,

class o : x; <xp <xp, and x; < xr < xp, (18)
class B3 : x; <xL <x; and x; < xg,

class B4 : xL <x; and xy < xg.

A detailed analysis of equation (16) yields important
relations for some of the clogging classes.
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Table 1. Physical parameters for air bubbles in water flowing
through PMMA microchannels.

Parameter values Reference
0l =725 107 Tm™?  [21]
0w =389 x 102Jm™2 [21]
0g=165x103Tm™2% [21]
0 ="172° [18]

A B, clogging only occurs if the bubble can move entirely
within the tapered region as shown in figure 4(a), and if at
some point it has a length L = x — xg such that

r(xL) cos( — 6,)
L > 1 — .
tan 6; cos(6 + 6,)

In B4 where the bubble in fact spans the entire contraction
as sketched in figure 4(b), there is always clogging and the
clogging pressure is maximal. The value for A P, is negative

19)

and independent of the shape of the contraction. From
equation (16) we get
AP, =2 0 L1 0 (20)
- —_ ) <o
b Ol COS .

The nonclogging class o will in general occur if the bubble is
small enough. According to the class B4 analysis a necessary
(but not sufficient) condition for avoiding clogging is that the
bubble is small enough to be completely contained in the
contraction region. An analysis of the 8, and 3 classes shows
that it should also be short enough to avoid clogging while
the left meniscus is still in the tapered region. The f; class
furthermore puts upper limits on tapering angles that allow
for clog-free flow. Examples from class o and B4 are treated
further by detailed numerical analysis in sections 5.2 and 5.3.

5. Numerical simulations

To illustrate the analysis given above a detailed simulation is
made in the following. The aim is to minimize the clogging
pressure AP, with respect to a given parameter. We are
limiting our analysis so that the variation comprises only one
parameter: the tapering angle 6;.

5.1. The numerical algorithm

In order to find the force and clogging pressure acting on a
large bubble for a given geometry, a semianalytical model
of the contracting channel is implemented in MatLab. A
numerical Romberg integration scheme is used together with
a Newton solver to determine the location of the right and left
contacts line (xg and x1 ) for a given position of the center of
mass coordinate x.,,. The respective interface areas A; are
then found. For a specific geometry defined through r(x),
the maximal force is found through equations (5) and (6)
and the pressure drop AP, is found through equation (16).
The heaviest calculation ran for approximately 4 h on a
standard PC.

To be specific we use the geometry defined in figure 1 and
take PMMA as the solid material, water as the liquid and air as
the gas. This configuration has the physical parameters given
in table 1.
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Figure 5. Five positions (a)—(e) of a large bubble with y = 1.02
inside a 1000 pm long hydrophilic channel with a tapering angle
6, = 10°. The black dots indicate x.,,. The contact angle is 8 = 72°.

5.2. A specific system without clogging, class o

The first example is the system with a bubble placed in a
relatively gentle contraction depicted in figure 5. The total
length of the channel is 1000 um. The wide straight channel
to the left has a radius R = 150 um and length 200 um. The
contraction has a length x, — x; = 350 um and circle arc
lengths of 30 wm, which results in a tapering angle 6, = 10°.
The narrow straight channel to the left has a radius r = 95 um
and length 500 um. The bubble starts out in the wide channel
to the left. It has a relative volume of y = 1.02 (cf section 3)
and an initial length Ly = 180 um.

Figure 5 shows the bubble at five different positions (a)—
(e). As the bubble advances through the channel it is seen
how its length xg — x. changes and how the curvatures of the
menisci vary. The black dots inside the bubble indicate the
center of mass X¢n.

In figure 6(a) the total internal energy of the system is
plotted as a function of center of mass position x.,. The zero
point of the energy is chosen as the energy of the system when
the entire bubble is positioned completely within the narrow
part of the channel. The five positions (a)—(e) in figure 5 are
also marked here.

It is seen that the energy decreases monotonically. This
means that without a negative external pressure holding it back,
it would move spontaneously through the channel from the left
to the right. Aslong as the bubble moves completely within the
wide part of the channel, the energy is constant (about 4 nJ).
Then as the right edge enters the contraction, position (a),
the energy drops rapidly in accordance with the pressure drop
equation (17). This trend continues as the entire bubble moves
inside the contraction, as is the case in position (b). The energy
continues to drop, but now less rapidly, as the right edge of the

5
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Figure 6. (a) A plot of the total internal energy E,, versus the
center of mass coordinate x.,, for the same bubble as in figure 5.
(b) The balancing external force F' and the pressure drop across the
bubble A P, versus x.,. The five dots correspond to the five bubble
positions in figure 5. Note that —A P, < 0 for all positions, i.e. no
clogging occurs (a class « system).

bubble enters the narrow channel, see position (¢). However,
as the left bubble edge approaches the narrow channel, the
energy drop picks up again, see position (d). Finally,
the bubble moves completely inside the narrow section and
the energy becomes zero (per definition), see position (e).

In figure 6(b) the corresponding balancing external force F’
from equation (6), and the clogging pressure across the bubble
—A Py, equation (16), are plotted as functions of x.,. The
balancing external force is seen to be negative, which means
that to maintain the bubble at quasi-static equilibrium, it is
necessary to hold it back. Without this force, the bubble would
of course, as mentioned above, move spontaneously toward
the narrow segment. At position (c¢) where the right edge of
the bubble enters the narrow channel, both force and pressure
reach local maxima, but even here they are both negative. No
clogging occurs in this system, and it therefore belongs to class
« as defined in section 4.

5.3. A specific channel with clogging, class 34

The second example is nearly the same as the first. Only
the length of the contraction region has been reduced from
350 um to 180 pum. This leads to an increase of the tapering
angle from 10° to 6, = 20°. In figure 7 four positions (a@)—(d)
of the large bubble are depicted. Note that since 6 + 6, = 92°,
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Figure 7. Four positions (a)—(d) of a bubble with y = 1.02 inside a
1000 pm long hydrophilic channel with the tapering angle 6, = 20°.
The black dots indicate x,,. The contact angle is 6 = 72°.

the right meniscus in the tapered section of the channel in
panel (a) is nearly flat. In fact it has a slight inward bend.

In figure 8(a) the energy is shown as a function of x¢p.
The four positions (a)—(d) are also marked. We immediately
note a qualitative difference between this graph and that in
figure 6(a). The energy no longer drops monotonically but
exhibits a marked increase between positions (b) and (c¢). This
corresponds to the case where the bubble spans the entire
contraction, i.e. the left bubble edge is still in the wide channel
segment when the right edge enters the narrow segment.

This effect is of course also visible in figure 8(b) where the
balancing external force F and the clogging pressure —A P,
are plotted as functions of xn,. Around position (b) both F and
—A P, become positive, which means that external pressure
forces need to be applied to move the bubble through the
system. Using equation (20) the clogging pressure is found
to be 173 Pa. Without this external force the bubble would
tend to move backwards out of the channel, i.e. the system
is clogging, and in fact it is an example of class B4 clogging.

5.4. Clogging pressure versus tapering angle 0

The previous two examples showed the behavior for a
particular channel contraction from R = 150 um to r =
95 pum with tapering angles 6; = 10° and 20°, respectively. We
now extend this analysis to the entire interval 0° < 6, < 60°.
For each tapering angle we calculate the maximal external
force F' and the clogging pressure Pcjo;. The result is shown
in figure 9.

The graph clearly shows that some tapering angles ease the
passage of bubbles. For the geometrical configuration defined
by R = 150 um, r = 95 um and C = 30 um a small window,
the interval 9.5° < 6; < 11°, with optimal tapering angles can

Q3
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Figure 8. (a) A plot of the total internal energy E,, versus the
center of mass coordinate x.,, for the same bubble as in figure 7.

(b) The balancing external force F and the pressure drop across the
bubble A P, versus x.,,. The four dots correspond to the four bubble
positions in figure 7. Note that —A P, > 0 for x.,, around 300 pm,
i.e. clogging occurs (a class B system).
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Figure 9. The maximal balancing force F,,,, and clogging pressure
Peiog = —A Py max plotted as functions of the tapering angle 6,.
Detailed figures illustrating the situation for 6, = 10° (marked A)
are given in figures 6(a) and (b), and for 6, = 20° (marked B) in
figures 8(a) and (b). The B3, B4 and « classes are described in
section 4. The maximal clogging pressure occurs in class f4. It is
found by equation (20) to be P, = 173 Pa.

be identified. In this window Pgoe < O corresponding to the
clogging-free class o behavior.

For angles greater than about 11° the maximal force is
seen to increase dramatically. This transition corresponds to a

configuration where the bubble can span the entire contraction
region, i.e. class B4. We clearly see that once the bubble is
able to span the entire contraction, the specific geometry of
the contraction (in this case the tapering angle) plays no role.
We get the same clogging pressure, Pl = 173 Pa.

Finally, we note, that class 83 behavior sets in for small
tapering angles below 9.5°. A small clogging pressure is
observed, less than 30 Pa.

6. Conclusion

The effects of geometry on the quasi-static motion of
large bubbles through a hydrophilic microchannel (capillary)
contraction are modeled. The simplicity of the model leads to
a good physical understanding of bubble clogging. We have
shown that in most cases it requires energy to move a bubble
from a wide to a narrow channel. However, we have also found
that certain bubble sizes and specific channel geometries lead
to a gain in energy.

We have specifically studied the contractions where such
an energy gain is achieved. Using the central equation for
the pressure drop AP, across the bubble, equation (16),
we analyzed a specific contracting axisymmetric hydrophilic
channel, and we identified four different classes, denoted as 3,
to B4, leading to bubble clogging, and one clogging-free class
denoted as «. The details of the analysis are quite complicated
due to the large number of parameters: the tapering angle 6;,
the contact angle 6, the initial bubble length L, the radii R and
r of the wide and narrow channel segments, etc. However, one
general trend is clear. The tendency for clogging increases as
the bubbles become larger.

Based on our analysis, some important design rules can
be established for making microchannel contractions with
minimal or even vanishing clogging pressures. These rules
only apply for channel contractions where the energy is lowest
in the narrow part.

First, if the typical size Ly of the bubbles present in
the microfluidic system is known, it is important to design
contractions which are larger than Ly. The highest clogging
pressures occur namely for bubbles spanning the entire
contraction, the so-called B, class.

Second, the combined effect of the tapering angle and
contact angle has to be taken into account to make sure that L
is shorter than the critical length leading to clogging of class
B> being entirely within the tapered region.

Third (not presented here), to smoothen out and lower
any unavoidable positive clogging pressure, it helps to make
the curved parts of the contraction as large as possible, thus
decreasing their curvature.

The method of analyzing the bubble clogging problem
in microchannels presented in this paper is very general.
It is straightforward to extend it to other geometries
(such as nonmonotonic contractions) and to hydrophobic
microchannels. With the presented design rules at hand it
is possible to design a system that may filter or sort bubbles
of different volumes—one simply places contractions with
different tapering angles in properly arranged series. A
comparable system designed to sort bubbles is presented in
[17]. The model may also be extended to include wetting
layers as used in [16], and it may be used to model two phase

7
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flows in porous media as in [22, 23]. Some of the dynamical
effects such as those briefly mentioned in the introduction may
be included as well.
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DYNAMICS OF BUBBLES IN MICROCHANNELS

Mads Jakob Jensen, Goran Goranovi¢, and Henrik Bruus
Mikroelektronik Centret, Technical University of Denmark, DK-2800 Lyngby
(group web-page: www.mic.dtu.dk/research/MIFTS)

Abstract

We present a thorough theoretical study of quasi-static motion and dynamics of bub-
bles in microchannels. We investigate the effects of geometry and surface physics
on the behavior of bubbles, and we propose a set of design rules to minimize the
clogging of the channels by bubbles.

Keywords: bubble dynamics, microchannels, CFD simulations

1. Introduction

Due to the large surface to volume ratio, surface effects become very pronounced
and even dominant in microchannels. One important example is the formation of
gas bubbles in microfluidic systems. Such bubbles present a significant problem:
they can block the microchannels, disrupt the flow, and disturb measurements in an
uncontrolled manner. For that reason, the sample liquids are usually pretreated by
various methods before they enter a microfluidic chip. Examples of pretreatment
methods are degassing, control of surface tension or high-frequency sound vibrations.
However, in spite of such efforts gas bubbles may still be present, and once there it
often requires large driving pressures to push them out of the system [1].

In this paper, based on the interplay between geometry, surface tension, and
contact angle, we propose and analyse two designs: one that eases the motion of big
bubbles through contracting microchannels, and one that traps the bubbles aside
from the main fluid flow.

2. Theory of bubblemotion in a microchannel constriction

The first design concerns contraction of a channel. In order to push a bubble through
the sudden and the tapered contractions shown in Fig. 1(a) and 1(b), respectively,
a total pressure drop AP,y is needed to overcome the sum of two pressure drops:
(1) APy arising from the solid-gas interface at the walls as well as from the curved
liquid-gas surface, and (2) AP due to friction. For the quasi-static motion studied
here, the friction is vanishingly small, and the total pressure drop over the bubble
in the sudden contraction and the tapered contraction is given by the surface con-
tribution alone.



liquid

solid

Figure 1: (a) A bubble passing through a sudden contraction. The curvatures at
both ends are different and constant while the bubble is in the contraction. (b) A
bubble in a tapered channel. Appropriate names have been given to different lengths
and angles in use. The curvatures depend on the position of the bubble because of
the tapering.

Using two different analytical methods, total energy considerations and the
Young-Laplace equation, respectively, we have derived the following expressions for
the pressure drop over bubbles in the two constrictions:

1 1
Apsidden — 45 COSH(E — 5), (1)

surf (2)

APta]C)EI‘ed — 40_(COS(9 + 9,5) _ COS(G — Ht) ) ‘

d D

Here o is the gas-liquid surface tension and € is the contact angle describing the
influence of the walls on the bubble dynamics. For any taper angle 6; the driv-
ing pressure APP"* for the tapered channel is smaller than the driving pressure

Apsudden for the sudden contraction, hence lowering the threshold pressure to drive
bubbles out of the contraction. It may thus be beneficial to use tappered constric-

tions in microfluidic networks where the presense of bubbles poses a problem.

3. A bubbletrap design

Sometimes it is beneficial to collect the bubbles in one place away from the main flow.
For this purpose a special passive bubble trap is developed, using a combination of
geometry and surface tension effects. Figs. 2a-2d show a 2D CFD simulation of a
bubble-trapping process allowing unhindered flow. In a real system, several bubble
traps could be placed at locations where there is a tendency of bubble creation.
Using special semi-permeable materials (e.g. Gore-Tex), the bubbles could then be
extracted from the region and out of the system.



. trap
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Figure 2: (a) A sketch of the trap geometry where the central length scales are
marked: the width d of the main channel, the size [, of the offset between the upper
and lower wall, and the width [, of the narrow trapping channels. (b)-(e) Four
snapshots of the simulated trapping procedure near the offset and trap regions. (b)
A bubble moving towards the offset region. (¢) Detaching of one side of the bubble
by the offset effect. (d) The bubble is pushed towards the trapping region. (e) The
bubble gets trapped.

4. Results and discussion

In our study of bubble dynamics in microchannels, theoretical concepts based on
surface tension, geometry, and contact angle are considered. Numerical simulations
are performed using commercial software CFD-ACE+ ver. 6.6 containing a special-
ized Volume-Of-Fluid (VOF) module. They are in good agreement with analytical
results and are thus a reliable tool for analyzing bubble behavior in microchannels.
The simulation approach is particularly useful for optimization and development of
more complicated designs aiming at diminishing the problem of bubbles.
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Electroosmotic Pumping of Nonconducting Liquids
by Viscous Drag from a Secondary Conducting Liquid

Anders Brask, Goran Goranovi¢, and Henrik Bruus
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ABSTRACT

A novel electroosmotic pump design relying on two-
liquid viscous drag to pump nonconducting liquids is
presented and analyzed theoretically. We denoted the
pump a two-liquid viscous EOF pump. A conducting
pumping liquid driven by electroosmotic flow (EOF)
drags a nonconducting working liquid by viscous forces.
In particular liquids such as oil, which normally can-
not be moved by EOF, may be pumped. This allows for
new types of analysis in the field of micro Total Analysis
Systems (4 TAS) which may prove important in the drug
industry and for environmental monitoring. The charac-
teristic flow rate @Q and pressure p of the pump is in the
range nL/s and kPa, respectively, but depends largely
on achievable geometrical dimensions and applied volt-
age. This paper presents a theoretical and modeling
study of the novel design.

Keywords: electroosmotic pump, viscous drag, two-
phase flow, circuit modeling, CFD simulation

1 INTRODUCTION

Electroosmotic pumps are suitable for microfluidic
applications since (1) they do not have moving parts,
(2) they do not produce pulsating flows, and (3) they
are easier to integrate. The liquids are pumped by ap-
plying an electric field to the electric double layer which
forms in the liquid by Debye screening of the immobile
charges on the pump walls. In order for such a double
layer to form, the liquid needs to have significant elec-
trical conductivity i.e. a sufficiently high concentration
of dissociated ions. Nonpolar liquids with very low con-
ductivity (< 1076 S/m), such as oil, cannot form the
necessary double layer and therefore cannot be pumped
in this way [1]. However, this problem is circumvented
in our design by introducing a secondary conducting lig-
uid.

2 DESCRIPTION

The aim is a to have a thin layer of conducting liquid
surrounding and dragging the nonconductive liquid. A
schematic view of the novel viscous pump is shown in

Fig. 1. To realize this we have developed three new fea-
tures that are essential for the design: pressure valves,
reduced flow, and optimized potential drop.

2.1 Pressure Valves

Two pressure valves, the two sets of four narrow
channels shown in Fig. 1, prevent the working liquid
from entering the electrode reservoirs. The electrode
reservoirs are open and thus bubble formation from elec-
trolysis is not a problem. Furthermore the pressure
valves allow for placing the pump anywhere in a flu-
idic network, which is usually not possible. The pres-
sure valves have a width a, and the design utilizes the
fact that the electroosmotic flow rate Qoo o a2, whereas
the hydraulic flow rate Qunya o a*. Hence the pressure
driven flow will be effectively reduced for small values
of a. Reactive ion etching systems can deliver narrow
and deep channels with aspect ratio as high as 40. So if
a valve channel is 1 gm wide it can be 40 um deep.

2.2 Reduced Flow

The flow from the side channels must be reduced
compared to that of the main channel in order to enable
pumping between Inlet A and Outlet B in Fig. 2. The
reduced flow may be obtained in two different ways.

(1) A lower EOF mobility can be present in the pres-
sure valves in comparison to the main channel to opti-
mize the amount of the working liquid going through
the pump, see Fig. 1.

(2) A flow reduction can also be achieved by making
the channel dimensions so small that the Debye layers
overlap. Typically the Debye layers are 1-100 nm wide.

2.3 Electric Potential Drop

One narrow valve channel have a large flow resis-
tance but also a large electrical resistance. This means
that the main potential drop would occur in the valve
channels and thus not contribute to any pressure build
up. The electrical resistance is inversely proportional to
the area of the cross section. So by making many short,
and narrow channels a low electrical resistance and high
hydraulic resistance is obtained.
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Figure 1: Layout of one half of a two-liquid viscous EOF pump. The pump is mirror-symmetric around the central
vertical plane, and only one half is shown. The working liquid A is driven by the pumping liquid, B. The pumping
liquid enters at inlet B, goes through the narrow valves, moves along the wall, and exits through the valve and finally
through outlet B. The two electrode compartments each have four narrow channels of width W3. The channels/valves
ensure that the working liquid does not enter inlet or outlet B. Two regions with different EO mobilities are identified.
The ratio between the mobilities roughly governs the layer thickness of the pumping liquid. The high EO mobility
area between the valves is the EO section. The valve regions should be given a coating with low EO mobility.
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Figure 2: The working liquid is shown in dark gray. It is being dragged by the EOF driven pumping liquid (shown in
light gray) that flows along the edge of the main channel. The pump is mirror-symmetric around the central vertical
plane, and only one half is shown. The following specific parameters are chosen to predict the performance of the
pump. The displayed micro-channels are all etched 40 ym down into the substrate (either siliconoxide or plastic), and
after etching the entire structure is closed with a lid. The main channel were the working liquid flows is 150 pm long
and 10 pm wide. The narrow valve channels are 1 ym wide and 42 pm long. The uncoated walls are marked as the
thick edges of the main channel. Coated walls are marked with thin edges (see also Fig. 1).
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Figure 3: The equivalent electric circuit of the two-liquid
viscous EOF pump. Note that the whole pump/circuit
is depicted. The overall resistance is calculated as
Riotal = 2Rop + R4, where R, is the electrical resis-
tance between node point o and 3. Ry is the resistance
of the EO section.

2.4 Flow Profiles

The resulting flow will be a superposition of an EOF
and a pressure driven flow. Since the Debye layer is
roughly 10* times smaller than the total width of the
channel, we do not resolve it in the following modeling
of the pump. The EO velocity appears simply as a non-
zero velocity wue, at the walls. In the absence of any
backpressure the velocity would simply be constant e,
across the channel. However the presence of pressure
gradients induces the characteristic parabolic velocity
profiles in the laminar regime, Re ~ 0.01. For such
low Reynolds numbers the flow is said to be creeping,
i.e., inertia can be neglected. Some velocity profiles are
shown in Fig. 2. A characteristic feature for creeping
flow is that it is free of vorticity. This means that the
valve channels may be positioned perpendicular to the
main channel without generating any eddies. For a more
detailed discussion see Ref. [2].

3 RESULTS

We have analyzed the performance of the pump using
two methods. The pressure and flow rates have been cal-
culated by equivalent circuit theory, and in addition, a
set of computational fluid dynamics (CFD) simulations
was carried yielding more detailed information about
the distribution of pressures and velocities. The two
methods, which yield the same results within a few per-
cent, were applied to the cases of both immiscible and
miscible liquids.

3.1 Equivalent Circuit Model

The aim is to establish a model that can predict the
Q-p characteristic. In this respect, the pumping layer
thickness, Diayer, is important. The EOF depends on
the electric field, which depends on the flow in the case
of different conductivities. A rigorous model of the two-
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Figure 4: The velocity field in the pump near inlet B
calculated by use of CFD. The velocity vectors are po-
sitioned in the symmetry plane. The transition from
pressure driven flow to EOF is clear: in the regions with
low EO mobility, the flow profile is a positive parabolic,
but after the last junction, inlet iy, the EOF drags the
liquid, which results in a negative parabolic profile.

liquid pump is therefore a complex matter. In this con-
text only an outline will be presented.

The first step is to find the effective potential drop
across the EO section. The procedure is to analyze the
equivalent electric circuit shown in Fig. 3. The result is
that 52% of the applied voltage is dropped over the EO
section, Ry in Fig. 3.

The next step is to find the hydraulic resistance Ryyq
of each of the channel segments. The channel cross sec-
tions are all rectangular with width W and height H.
The channel length is denoted L.

192
Riya = 12uL {H3W — %H‘*x
Vs
-1
o0
_ 2m + D)mW
2 1)7% tanh @m + )rW 1
P | IREC

where 1 is the dynamic viscosity. Rpyq is calculated us-
ing Eq. (1), remembering that there are four channels
in the valves. For the present geometry, the overall hy-
draulic resistance of the valves is 26 times larger than
that of the EO section, implying that the unintended
cross flow is small.

The electroosmotic pressure buildup Ape, is given by

Apeo = aeoveffRﬁ;d¥a (2)
where ., is the electroosmotic mobility, V.g the effec-
tive potential drop, and Rfy; the hydraulic resistance of
the EO section. In Eq. (2) the Debye layer is assumed
infinity thin.

3.2 Computational Fluid Dynamics

To obtain more detailed information a more advanced
tool such as CFD is advantageous. The presented sim-
ulations are made with Coventor 2001.3. The program
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Figure 5: Visualization of the pressure distribution.
The floating figure above the pump also displays the
pressure. The float shows that the pressure varies
linearly from junction to junction, implying uniform
flow. There are no external pressure difference. So
the pressure gradients originate from internal friction
in the pump. Parameters: dimension as in Fig. 2,
alow = 5000 pm? (V s)~1, ahish = 50000 pm? (V s)71,

Pin = Pout = 0, V=10V.

solves the Laplace equation for the potential and the
Navier-Stokes equation for the velocity field.
In Fig. 4 the simulated velocity vectors are shown
near the inlets to the main channel i3 and i4, see Fig. 1.
If the pumping liquid is chosen to be water the EOF

mobility along uncoated walls is typically 0.05 mm?/(V s).

In the valve channels the walls are coated to lower the
EOF mobility by a factor 10. With these parameters nu-
merical simulations yield a maximal flow rate per volt of
0.03 nL/(s V) and a backpressure capacity per volt of 3
Pa/V. The value for the flow rate is specific for the given
geometry whereas the backpressure is independent of
the length of the pump, refer Eq. (2). Visualizations of
the pressure distribution and the streamlines are shown
in Figs. 5 and 6 respectively.

4 CONCLUSION

The Q-p characteristic of the two-liquid viscous EOF
pump largely depends on the geometrical factors and
can be significantly enhanced by advanced etching tech-
niques. The pump still works for miscible liquids, but
here the working liquid gets mixed with the pumping
liquid.

With these parameters numerical simulations yield a
maximal flow rate per volt of 0.03 nL/(s V) and a back-
pressure capacity per volt of 3 Pa/V. These values are
quite small and the pump is therefore suited for precise
flow manipulation rather than pumping bulk volumes.

Future work involves time dependent two-phase sim-
ulations. Such work could perhaps give valuable in-
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Figure 6: Streamlines at the anode junctions. Even
though the channels are orthogonal, the lamination is
clear. The Reynolds number is very small Re ~ 0.01,
thus indicating creeping flow. In the case of immiscible
two-liquid flow, the expected pumping layer thickness
would be about 20% of the half-width. Please note that
the figure is composed of three figures, so the density of
the streamlines is not meaningful. The parameters are
as in Fig. 5.

formation about stability and position of the pumping
layer, and how to make the initial filling of the pump.
Finally a prototype should be manufactured. Because
of the possibility to pump all types of liquids in a pre-
cise and controlled manner, the described concept seems
very promising.
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Chapter 1

Introduction

Microfluidics is fluid dynamics on the micrometer (107% m) scale. A microfluidic system
has at least one characteristic length of that order.

The revival of microfluidics began in early ’90s with the attempts to miniaturize
systems for use in analytical chemistry. The terms lab-on-chip or pTAS (micro-Total-
Analysis-Systems) emerged indicating the trend of shrinkage in bio/chemical sciences, as
well as the intention to make integrated systems capable of performing desirable analy-
ses. The integration has, however, brought forward a whole spectrum of problems and the
need for a true multidisciplinary research involving process specialists, chemists, biologists,
material scientists and physicists.

In such a colorful community, it is not surprising that microfluidics is many times
regarded, erroneously, as a new field. The fundamentals of microfluidics have been laid
in 19th century with works of Stokes, Rayleigh and others. The true novelty, however,
lies in application prospects which are indeed wide, in particular within the fields of
environmental and medical monitoring.

The accent in this report will be put on understanding how do electric fields couple
to hydrodynamics in microfluidic regime. Also, various aspects of two-fluid interfaces in
microfluidic devices will be examined. Both fundamental (theory) and applied (simulation)
angles will be shown. In combination, the two approaches lead to a good understanding
of microfluidic systems.

In Chap. 2 a descriptive overview of the features of microfluidic systems is given, after
which the fundamental flow equations and relevant dimensionless numbers follow.

In Chap. 3 the microscopic theory of the electroosmotic flow is presented on a thorough,
but introductory level. EOF is the driving principle behind electroosmotic pumps. The
advanced topics of non-equilibrium thermodynamics are out of the scope of this report.

In Chap. 4 examples are described of how two-fluid systems behave in microsystems
and can be advantageously applied: miscible streams in case of micro cell-sorters, bubble
behavior in microchannels, and particularly interesting viscous-drag between two immis-
cible liquids.

Chap. 5 gives a general, in depth analysis on the interaction between electric fields and
dielectrics. The electric force is described in terms of the Maxwell stress tensor.
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