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ABSTRACT: This article presents the fusion of two hitherto
unrelated fields—microbioreactors and topology optimiza-
tion. The basis for this study is a rectangular microbioreactor
with homogeneously distributed immobilized brewers yeast
cells (Saccharomyces cerevisiae) that produce a recombinant
protein. Topology optimization is then used to change the
spatial distribution of cells in the reactor in order to opti-
mize for maximal product flow out of the reactor. This
distribution accounts for potentially negative effects of, for
example, by-product inhibition. We show that the theore-
tical improvement in productivity is at least fivefold com-
pared with the homogeneous reactor. The improvements
obtained by applying topology optimization are largest
where either nutrition is scarce or inhibition effects are
pronounced.
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Introduction

In bioprocesses for industrial applications, genetically
engineered microorganisms are used for the production
of cell products of commercial interest, for example,
enzymes or antibiotics. A part of the bioprocess design is
then concerned with optimizing the growth of a chosen strain
according to criteria such as productivity, outlet product
concentration or substrate conversion efficiency. This
optimization is normally done by adjusting process variables
such as temperature or pH, by adjusting the feed profile or
by modifying the strain. Another aspect of bioprocess design
is concerned with reactor design, where focus is on obtaining
sufficient agitation and aeration to overcome mass transfer
limitations which decrease productivity and yield.

There has recently been considerable interest in the
development of microbioreactors (volume below 1mL) that
allow experimentation with microorganisms at microscale
under well-controlled conditions (Lee et al., 2006; Schäpper
et al., 2009, 2010; Szita et al., 2005; Zhang et al., 2007). When
performing fermentation experiments at microscale, the
increased design flexibility offered by the microfluidic
systems enables a wide range of reactor configurations,
potentially leading to higher productivities compared to
traditional reactor designs. In fact, the incorporation of solid
structures in the microreactor, resulting in a more complex
flow pattern, has been shown to result in a significant
metabolic rate increase for a simplified model of a
bioprocess (Okkels and Bruus, 2007b).

In this article, a new approach in designing the
microbioreactor layout is taken by the introduction of
topology optimization. This combined mathematical opti-
mization technique and simulation tool allows for the
determination of the optimal distribution of (reactor)
design structures and thus improves the engineering design
process. The methodology was first applied to the field of
structural mechanics (Bendsøe and Kikuchi, 1988; Bendsøe
and Sigmund, 2002), and has been recently implemented to
the field of microfluidic systems (Borrvall and Petersson,
2003; Gregersen et al., 2009; Højgaard-Olesen et al., 2006).
Further the method has been successfully applied to the
design of optimal catalytic microreactors (Okkels and
Bruus, 2007a), which are very analogous to simplified
models of microbioreactors.

Topology optimization puts the traditional design process
upside down: Instead of letting the ingenuity of the engineer
guide the change of the structural design to achieve the best
results, the engineer now formulates the problem, imple-
ments it in an iterative computer code, and then lets the
computer find an optimal solution. Subsequently, the
engineer may have to simplify the computer-generated
design such that it can be fabricated and is economically
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viable. A wealth of methodologies for topology optimization
has emerged (Eschenauer and Olhoff, 2001; Bendsøe et al.,
2005). Common for all these numerical methods is that they
iteratively optimize the given system according to the value
of a certain pre-defined objective function (e.g. maximum
mechanical strength of a bridge or maximal production rate
of a product in a biological system) and constraints (e.g. an
upper limit of the amount of material to be used for building
a bridge or a maximum concentration of a toxic byproduct
in the reactor). The main advantage of the method is that
it relies on the user-specified governing equations and
constraints, and not on any a priori assumptions regarding
the geometry of the structure. Often, as is also the case in this
study, the structural solutions found by topology optimiza-
tion are unexpected and better than conventional structures.

In the present work we study microbioreactors optimized
for maximal local production rate (the goal function) of a
certain soluble recombinant protein by an immobilized
microorganism, the spatial distribution (design field) of
which is found by topology optimization. To the best of our
knowledge, this is the first time topology optimization is
applied in combination with a biological model describing
nonlinear microbial kinetics in a biological case study, and
therefore we want to answer the following main question:
Is it possible to significantly improve the performance
of a conventional reactor with homogeneously distributed
immobilized biomass, by letting topology optimization
change the spatial distribution of the immobilized biomass
keeping all other parameters fixed?

In the following we first present the motivation for this
work and discuss possible gains to be expected from a
structurally optimized reactor. The topology optimization
methodology is then explained in more detail followed by
a description of the original biological model and its
adaptation to the topology optimization routine. The
simulated reactor layouts are then presented and their
performance is compared to a benchmark. Finally, we give
an outlook over the possibilities and challenges presented by
this combination of technologies.

Modeling and Optimization

There is a constant need for both strain and process
improvement within the biotechnology industry to main-
tain competiveness. In this context, mechanistic models
describing the different phenomena taking place in the
(bio)reactor are important tools for optimization and
control of the process (Gernaey et al., 2010). The interplay
between different metabolic pathways, regulation mechan-
isms, inhibition by substrates and products, and formation
of intermediate substrates and products results in complex
kinetic models. When it comes to modeling of the mass flow,
the commonly used stirred tank bioreactors are most often
assumed as ideal, and thus the existence of concentration
gradients throughout the reactor is neglected. However, in
large scale production bioreactors concentration gradients

of substrates and products do exist as demonstrated by
experimental work in combination with computational
fluid dynamics (CFD) and may have a significant influence
on the resulting yields and productivities of a process
(Enfors et al., 2001; Lapin et al., 2004).

For systems with immobilized cells, topology optimiza-
tion might allow for higher productivities by optimizing the
spatial distribution of the immobilized microorganisms
within the reactor (and thus controlling and optimizing the
concentration gradients present in the reactor). This might,
at least hypothetically, minimize the negative effects on the
process due to lack of substrate or excessive amounts of
substrate (substrate inhibition), or accumulation of a
metabolite or a product (product inhibition).

Our model for optimizing the distribution of cells
immobilized onto a carrier within a microbioreactor
consists of three parts: One part is the modeling of the
flow of the culture broth (consisting of culture medium and
suspended cells) and how it is affected by the presence of
solid structures such as walls and immobilized cells. Another
part is the modeling of the reaction kinetics of cell growth,
substrate consumption, and product formation. The third
and final part is the iteration procedure involving the
evaluation of system performance combined with sensitivity
analysis to determine the incremental change in the
immobilized cell distribution in each iteration step leading
towards optimality.

Fluid Dynamic Modeling of the Flow

Driven by a steady pressure field p [Pa], the broth perfuses
with a flow velocity u [m s�1] through the microreactor
containing carrier and immobilized cells. The broth has
density r [kgm�3] and viscosity h [Pa s], and hydro-
dynamically the presence of the cells and the carrier in the
reactor is modeled as a porous, sponge-like material. This
gives rise to an additional friction in the flow of the broth,
the so-called Darcy friction �au, which is anti-parallel and
proportional to the velocity. The porous material may be
inhomogeneously distributed, so in general the friction
coefficient a depends on position (Borrvall and Petersson,
2003; Højgaard-Olesen et al., 2006). If at some point r0 in
space no cells are present then aðr0Þ ¼ 0, and the broth flow
is unhindered at that point, while a large and dense
concentration of cells results in a high value of a, typically in
the range of 105 to 108 [Pa sm2], and thus a high flow
resistance. Mathematically, the broth velocity u can be
calculated from the steady-state Navier–Stokes equation,
including the Darcy friction of the porous material

rðurÞu ¼ �rpþ hr2u�aðrÞu (1)

and from the incompressibility condition for the broth

ru ¼ 0 (2)
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Topology Optimization: Objective Function F and
Design Field g

Contrary to conventional numerical design processes, the
final geometrical structure is not known in topology
optimization problems. Instead, starting from an arbitrary
initial structure, it gradually forms through an iterative
optimization process within a design region, denoted V. To
guide the optimization process, the value of a pre-defined
objective function F is calculated for each candidate
geometry generated during the iteration, and gradual
geometrical changes are made for each iteration step to
optimize (by convention minimize)F until convergence (global
minimization) is reached.F can depend on any aspect of a given
candidate geometry, such as structure and performance, and
to choose a proper objective function among the many
possible ones is generally not easy and constitutes a major step
in establishing a successful topology optimization procedure.

To facilitate the optimization procedure each candidate
geometry is uniquely parameterized by a set of so-called
design variables g ranging from zero to unity. This might, for
example, denote the densities of the structure at the various
points in the design space and would thus parameterize the
material distribution. Every set of design variables is unique in
the sense that for each set there exists a unique solution of the
model system which in turn can be evaluated by the objective
function F (Bendsøe and Sigmund, 2002). A different set of
design variables leads to a different geometry and a
corresponding distinct solution which may or may not be
equal to the solution of another design variable set. In our
case we use as design field gðrÞ the local volume fraction
occupied by the liquid cultivation broth at the position r

(Desmet et al., 2003). For the minimum value g¼ 0 no broth
is present due to a maximal occupancy of carrier with
immobilized cells (porous structure), while for the maximum
value g¼ 1 only broth is present (open channel). The
geometrical structure is fully determined by the design
field gðrÞ, which by the end of a successful iterative topology
optimization procedure only takes the values zero (regions
filled with porous carrier) and unity (regions of open
channels), with no regions having intermediate values. The
Darcy friction coefficient aðrÞ in Equation (1) depends
linearly on the design field gðrÞ

aðrÞ ¼ amaxð1�gðrÞÞ (3)

where amax is the maximum value of the inverse
permeability of the broth flow inside the porous structure
as described above. For simple flow problems, this linear
correlation turns out to ensure a sharp transition in space
between buffer regions and solid or densely porous material
regions (Borrvall and Petersson, 2003). This property was
observed to hold for the optimized solutions of many simple
reactor models (Okkels and Bruus, 2007a).

In the present model, the distributed material is assumed
to be a dense porous carrier with immobilized cells, which
consume substrate in order to grow and produce a

soluble recombinant protein. We have found that a suitable
objective function is (minus) the total production rate
which is the integral of the local product formation rate
Rp(t) [kg s

�1] (defined in Eq. A.10) specified for every point
in the reactor V

FðgÞ ¼ �
Z
V

RpðtÞdV (4)

where the minus sign is introduced to follow the convention
that the objective function should be minimized.

Besides defining an objective function F(g) in optimiza-
tion problems, additional constraints on the design variable
g or on other variables of the system often have to be defined
to avoid non-physical or trivial solutions to the problem.
However, this is not the case in this work as the extreme
cases of a completely full or completely empty reactor are
unfavorable. In the first case the material will act as a plug,
blocking the pressure-driven flow, and only a minimal
amount of end-product will leave through the outlet
channel, while the absence of active material in the second
case naturally will be worse, as no reaction will happen at all.

Only for very few ideal systems, it can be proven that the
obtained solution is globally optimal; however, it is easily
tested how much of an improvement it represents (Bendsøe
and Sigmund, 2002; Borrvall and Petersson, 2003; Gregersen
et al., 2009).

Implementation of the Biological Model

Heterologous protein production by the yeast Saccharomyces
cerevisiae was chosen for this study as it is one of the best-
known model systems and because S. cerevisiae is one of
the microorganisms most commonly used in the biotech
industry. Its production of the protein will be negatively
affected by, for example, too high substrate concentration
which makes spatial optimization interesting. Although
typical yeast cultivations consist of suspended cells, yeast
can also grow adsorbed onto a carrier (immobilization
support) which thus allows for a varying spatial distribution
of cells. This has been exploited in biotechnological processes
offering advantages such as increased process flow rates
(Brányik et al., 2004).

In the system presented here, the cells are both attached
onto a carrier and freely suspended in the culture medium.
The dynamics of immobilization of brewing yeast cells by
adsorption onto a carrier (spent grain particles) have earlier
been modeled by Brányik et al. (2004).

In this model a certain fraction of the yeast cells
was assumed to possess a plasmid which encodes for a
recombinant protein, the product we aimed to obtain from
the cultivation (Zhang et al., 1997). Glucose was fed to the
reactor, and was assumed to be the preferred substrate. The
yeast metabolism was simplified to a three-pathway model
suggested by Zhang et al. (1997). A new model (schema-
tically presented in Fig. 1, equations provided in Appendix
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1), based both on the work of Brányik et al. (2004) and
Zhang et al. (1997), was required in order to perform the
topology optimization. The purpose of the new model is to
simulate a cultivation in a microbioreactor where brewing
yeast, both immobilized onto a support (carrier) and
suspended in the cultivation medium, grows, and produces
an extracellular soluble recombinant protein P, which is
encoded in a plasmid.

Growth Kinetics

The model describes three metabolic events (Fig. 1): glucose
fermentation, glucose oxidation, and ethanol oxidation.
Under aerobic conditions, glucose is oxidized to carbon
dioxide along the respiratory metabolic pathways. However,
if the glucose flow becomes too large for the respiratory
capacity of the cell, excess glucose is fermented to ethanol
and the activity of the enzymes in the glucose oxidation
pathway is reduced. This phenomenon is typically referred
to as the Crabtree effect and is schematically represented by
pathways 1 and 2. When glucose approaches depletion,
ethanol begins to be metabolized by pathway 3 in the
presence of oxygen. The cells grow exclusively on ethanol
when glucose is exhausted.

The recombinant protein production is connected to
growth and is exclusively associated to the oxidative
metabolism (pathways 2 and 3) in yeast cells (suspended
or immobilized) carrying the plasmid. The fraction of
plasmid bearing cells of the total immobilized cell
population, which was set manually, was assumed to be
constant.

Additionally, the three pathways were considered
quantitatively additive, and were described by modified
Monod equations, Equations (5)–(7). Although formulat-
ed differently, the proposed expressions for growth rates are
mathematically equivalent to the implicitly defined func-
tions proposed by Zhang et al. (1997). The use of explicit

and continuous functions, rather than implicit, step-change
equations, is required in order to integrate this metabolism
model into a topology optimization routine. In comparison
to the original model proposed by Zhang et al. (1997), a
third simplification was introduced: It was assumed that the
consumption of substrate for microorganism maintenance
was negligible; thus the maintenance coefficient in themodel
becomes zero. This assumption can safely be taken as only
about 5% of the total glucose consumption goes to
maintenance (Brányik et al., 2004). It can be assumed that
the inclusion of the maintenance coefficient would lead to
an increased glucose demand which again would lead to
finer structures in the reactor.

m1 ¼ m1;max

G

K10 þ G

1þ ka0G

kb0 þ ka0G
(5)

m2 ¼ m2;max

G

K20 þ G

1þ kc0G

1þ kc0kd0G
(6)

m3 ¼ m3;max

E

K3 þ E
ð1�tanhðGÞÞ (7)

Immobilization Kinetics

Cells can attach onto and detach from the immobilization
support (carrier). Brányik et al. (2004) have argued that the
deposition rate is proportional to the dilution rate and the
detachment rate is a function of the glucose concentration.
As mentioned previously, the calculations concerning the
flow of the liquid cultivation medium are performed
separately from the ones concerning cell metabolism—thus
a dilution rate dependent term describing the deposition of
cells onto the carrier is problematic. However, as the
deposition coefficient determined by Brányik et al. (2004)

Figure 1. The new model combining the model for dynamics of the immobilization of brewing yeast cells (Brányik et al., 2004) and the three-pathway model for the yeast

metabolism where Ci is a pool of enzymes and mi is the specific growth rate (Zhang et al., 1997).
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was of a considerably lower order of magnitude than the
detachment and growth rates, the deposition was disre-
garded in the formulation of the newmodel. In order to keep
the amount of immobilized cells constant for the duration of
one simulation, the growth rate of the immobilized cells was
set equal to the detachment rate. If this was not the case, then
the amount of immobilized biomass could change during
the duration of one simulation which conflicts with the fact
that the distribution of immobilized biomass is the very
optimization parameter itself that is being used by the
routine. In short, the optimization routine would no longer
be able to control the amount of immobilized biomass.
Therefore, the distribution of immobilized biomass is kept
constant for one calculation run. In addition, it was assumed
that only a constant fraction of the immobilized biomass,
Xact
im , is actively growing, as observed experimentally by

Brányik et al. (2004).
Concerning the release of cells from the support as a result

of the flow of the culture broth, the detachment kinetics is
mathematically described by Equation (8), where C3 reflects
a switch to growth on ethanol (pathway 3) caused by glucose
depletion. It was assumed that the saturation constant Ks

was the same for both substrates (glucose and ethanol).

k�det ¼ ksstdet
G

Gþ Ks
þ C3

E

Eþ Ks
(8)

Model for Topology Optimization: Spatial Dependency

In typical bioprocess models for continuously stirred
reactors (CSTR), the reactors are assumed to be perfectly
mixed (even though they are not, as observed, e.g., by Müller
et al., 2010), and therefore, the state variables are not
dependent of their location within the reactor. However,
due to the heterogeneity in the optimized microbioreactor
space resulting from the inhomogeneous distribution of
immobilized cells and the linear flow regime, spatial
dependency now has to be taken into account. In this case,
the reactor can be considered to be a collection of local,
infinitesimally small CSTRs, where transport across the
interfaces is described by diffusion, and the fluid transport in
the reactor is described by convection. In essence, the model
reduces the size of the CSTRs to a limited number of cells
each which all experience the exact same conditions.

Assuming steady-state conditions at each position, the
total variation of a general state variable A is given by
Equation (9) where u represents the velocity vector [m s�1]
and DA [m2 s�1] is the diffusion coefficient for the variable
A. Similar equations were written for the following
model state variables: glucose concentration G [g L�1],
ethanol concentration E [g L�1], total free (suspended)
biomass Xf [g L�1], plasmid bearing freely suspended
biomass Xþ

f [g L�1], and protein concentration P [U L�1].

urA ¼ Sources�Sinksþ DAr2A (9)

It is important to note that the terms Sources and Sinks in
Equation (9) stand for the production or the consumption
of the given component but do not include any terms related
to the transport into or out from the infinitesimally small
reactors, as these are accounted for in the convective term on
the left hand side of Equation (9). These convective terms
are taken care of by the CFD calculations for the flow of the
culture broth that is considered to be a one-phase flow
(liquid only). The cells in suspension are assumed not to
significantly influence the flow characteristics of the liquid.
Consequently, when referring to the suspended biomass, the
sources are the detachment of immobilized cells, as well as
the growth of the suspended population. As cell deposition
is disregarded, there are no sinks for suspended biomass. In
the case of the glucose substrate, there are no sources to be
considered, whereas the sinks are the consumption of
glucose by immobilized and suspended cells for both glucose
oxidation and glucose fermentation. Finally, with regard to
ethanol, the sources are the production of this component
by glucose fermentation and the sink corresponds to
the ethanol consumption by the ethanol oxidation
pathway. The corresponding equations are all presented
in Appendix 1.

As the immobilized biomass is not transported, different
considerations have to be made for the variables Xim and
Xþ
im. The former can be called an actuator variable, as it is

imposed in the beginning of each iteration of the
optimization routine when the distribution of the carrier
material (and with it the distribution of the immobilized
cells) is determined, and the other state variables are
calculated based on it. The latter, Xþ

im, is directly
proportional to Xim as the fraction of plasmid bearing cells
in the immobilized population is assumed to be constant.

Thus, in summary, the overall optimization procedure
(Fig. 2) is such that:

(1) A certain initial distribution of carrier material and
immobilized cells is assumed. Most often the initial
assumption is that biomass is just homogeneously
distributed, but in theory the starting point for the
optimization can also be a completely different
situation.

(2) The steady-state flow of the culture broth (liquid with
suspended cells) through the structure is calculated.
This, for example, defines how much glucose moves
from one infinitesimally small CSTR to the other.

(3) Based on these results the cell kinetic model is run. The
results here are, for example, the product concentrations
in every small CSTR.

(4) The optimization procedure determines if the solution
is good enough, that is, if the stop criterion for the
optimization is fulfilled. If it is not, a new direction
(resulting in a new distribution of material) is
determined.

(5) The process restarts at step (1) and runs until the
resulting solution fulfills the stop criterion for the
optimization.
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Simulation Results

The topology optimization routine was implemented and
solved using the commercially available software COMSOL
(COMSOL A/S, Kgs. Lyngby, Denmark) coupled with
MATLAB (The MathWorks, Inc., Natick, MA, USA).
Simulations were carried out for a rectangular microbioreactor
of length 1.2mm, width 1.2mm, and height 1mm. Although
the reactor height was taken into account in the calculation of
the viscous friction of the flow, it was assumed that the flow is
two-dimensional. Therefore, the state variables were con-
sidered constant along the z-axis and vary only along the x- and
y-axes. The pressure drop, diffusion coefficients, and other
parameters used in the simulation are listed in Appendix 2.

The structures that result from different glucose con-
centrations in the feed can be very different—for illustration
purposes the results for a glucose feed concentration of
0.1 g/L (Fig. 3a and b) and 0.5 g/L (Fig. 4a and b) are
presented. Figures 3a and 4a show the resulting structure
and the corresponding concentrations in the reactor,
while Figures 3b and 4b show some of the rates (growth,
consumption, and production).

Some immediate observations can be done here:

(1) Apparently the formation of islands of immobilized
yeast allows for a better distribution of glucose, thus
maximizing the production of the desired protein.

(2) The effect of the glucose concentration can be seen as
larger islands of cells for higher glucose concentrations.
With higher glucose concentrations, the diffusion
driving force into the islands is larger and thus allows
for larger islands before the inner cells suffer from
nutrient limitation.

(3) The specific growth rate for glucose fermentation
follows a similar pattern to the glucose distribution,
whereas glucose oxidation was predominant in the
regions where glucose is available in lower concentra-
tions, and therefore, the respiratory metabolism is not
subject to overflow metabolism in those regions.

(4) A complementary pattern to the glucose distribution is
obtained for the ethanol oxidation, which only takes
place when glucose is depleted.

Benchmarking

In order to assess the gains in protein concentration
obtained by using structurally optimized reactors rather
than reactors where the immobilized biomass is homo-
geneously distributed throughout the microbioreactor, the
protein concentrations at the reactor outlet were determined
for the spatially optimized reactors for different glucose feed
concentrations (0.001 up to 1 g L�1). These concentrations
were compared to the maximum protein concentrations
obtained at the outlet, using the same glucose feed
concentrations, where the immobilized yeast is homoge-
neously distributed at the optimal concentration. All the
optimized reactors have an average cell concentration that is
lower than that of the corresponding homogeneous reactor.

As illustrated in Table I, the protein mass flow rate at the
outlet increased at least fivefold for all the simulated glucose
feed concentrations when topology optimization was
applied as opposed to the homogenous reactor. The increase
in protein concentration at the outlet was more than
eightfold for glucose feed concentrations between 0.005 and
0.5 g L�1. In this range of concentrations, the significant gain
in protein concentration can be explained by the fact that a
structurally optimized distribution where flow is distributed
and islands of biomass are surrounded by streams of liquid
flow, allows for a balanced distribution of glucose across the
reactor leading to higher local protein production rates.

Conclusions and Outlook

This first investigation of the potential of topology
optimization for improvement of microbial cultivation
processes at microscale has clearly shown that the use of this

Figure 2. Scheme depicting the optimization procedure.
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Figure 3. a: Resulting structure and concentrations for a glucose inflow concentration of 0.1 g L�1. a: Distribution of biomass where white¼ cells and black¼ fluid,

(b) glucose concentration [g L�1], (c) ethanol concentration [g L�1] and (d) protein concentration [U L�1]. b: Rates in the optimized design for a glucose flow concentration of

0.1 g L�1. a: Total specific growth rate [s�1], (b) glucose consumption rate [g (L s)�1], (c) ethanol production rate [g (L s)�1], and (d) protein production rate [U (L s)�1].
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Figure 4. a: Resulting structure and concentrations for a glucose inflow concentration of 0.5 g L�1. a: Distribution of biomass where white¼ cells and black¼ fluid,

(b) glucose concentration [g L�1], (c) ethanol concentration [g L�1], and (d) protein concentration [U L�1]. b: Rates in the optimized design for a glucose flow concentration of

0.5 g L�1. a: Total specific growth rate [s�1], (b) glucose consumption rate [g (L s)�1], (c) ethanol production rate [g (L s)�1], and (d) protein production rate [U (L s)�1].
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methodology can potentially lead to microbioreactors with a
significantly higher productivity than conventional reactor
designs where immobilized biomass is homogeneously
distributed. If we assume that results can be extrapolated to
larger scales, topology optimization thus holds the promise
of significant increase in the productivity compared to
existing stirred tanks. However, it also poses a number of
questions and areas for further investigation as discussed
below.

In this study we focused on one single strain under
specific operating conditions. It would be very interesting to
see if the general results also hold for other cell types, for
example, mammalian cells or filamentous fungi. Another
interesting question is the shape of the reactor itself. We
considered here a very simple rectangular reactor with one
inflow and one outflow. Is a rectangle the best shape? Or
might a design with several in- and outflows perform even
better? In this respect, if substrate inhibition is a major issue
for a reaction of interest, one should expect that a
microbioreactor design with several inflows of substrate
along the length of the reactor would be the best solution.

The question of practical applicability is of utmost
importance. To perform an experimental validation of the
simulation outcome the necessary techniques to transfer
these theoretical results into the laboratory have to be
established first. The fabrication of the sponge-like structure
and inoculation of the structure with cells has been
demonstrated (Akay et al., 2004; Karagöz et al., 2008).
Now this work has to be repeated using the optimized
structures. Then, a comparison between the effective
cultivations and the corresponding simulations has to be
done in order to prove that the simulations can reliably
predict laboratory results.

In this study we have assumed that aeration is sufficient
and have not modeled the possible effects of variations in
oxygen concentration. Adding this variable into the
simulation is possible as it basically adds another diffusion
term. In practice bubbleless aeration via the top/bottom of
the reactor could be a suitable solution for oxygen supply, a
technique that has been used widely in microbioreactor
designs (Lee et al., 2006; Schäpper et al., 2010; Zhang et al.,
2005). If one assumes, as in this model, that the reactor

height is only a few tens of micrometers, and that, for
example, both the floor and the ceiling of the reactor
consisted of a membrane for bubbleless aeration, then it
might well be possible to supply sufficient oxygen to the
cells. Other models available in the literature could be
considered instead, if one wishes to model oxygen
availability (e.g., Sonnleitner and Käppeli, 1986).

Once the issue of practicability has been addressed, then
the issue of scaling-up becomes relevant when laboratory
results have to be transferred to pilot or production scale.
Which strategy (scaling-out or scaling-up) should be
followed? For scaling-up, which parameter can be used
for comparison purposes? For conventional CSTR type
reactors, Islam et al. (2008) showed that the oxygen transfer
coefficient (kLa) is a good criterion for translation between
different scales. However, this might well not be the correct
parameter for the kind of reactors presented here. It might
just as well be the density of cells or the laminarity of the
flow. Finding the correct translation criterion is a challenge
in itself.

Whilst the results presented here show that topology
optimization can lead to significantly higher productivities
in a theoretical setting, the methodology will have to be
applied to relevant industrial problems which justify the
additional effort in moving from the laboratory to industrial
settings. For example, the results show that the methodology
is especially interesting for low concentrations of glucose in
the feed as this enhances the need for an optimal distribution
of nutrients. Even more interesting examples would, for
example, be those where the substrate or the product is
highly toxic to the cells as this would further encourage an
optimal distribution of cells.

Nomenclature

a(r) Darcy friction coefficient (Pa sm�2)

h viscosity (Pa s)

g set of design variables

V design region

F objective function

r position coordinate vector (m)

u flow velocity (m s�1)

DA diffusion coefficient for A (m2 s�1)

E ethanol concentration (g L�1)

G glucose concentration (g L�1)

p pressure (Pa)

P product/protein concentration (UL�1)

R rate of formation (U (L s)�1)

Xf total free (suspended) biomass (g L�1)

Xþ
f plasmid bearing freely suspended biomass (g L�1)

Xim immobilized cells (gcells g
�1
carrier)

Xþ
im immobilized cells with plasmid (gcells g

�1
carrier)

The PhD project of Daniel Schäpper is funded by Novozymes A/S and

the Technical University of Denmark (DTU) through a Novozymes

Bioprocess Academy PhD stipend. Fridolin Okkels is funded by the

Danish Agency for Science, Technology and Innovation (grant no.

09-065029).

Table I. Comparison of the total protein outputs for the homogeneous

and the optimized reactor at different glucose feed concentrations.

Glucose feed

conc. (mg L�1)

Protein flow at the reactor outlet (U s�1)

Homogeneous

reactor

Structurally

optimized reactor

Increase

(fold)

1 0.3 2.7 5.8

5 1.4 12.9 9.1

10 2.7 23.1 8.4

30 7.2 57.4 8.0

50 10.7 91.7 8.5

100 17.6 170.3 9.7

200 25.2 229.5 9.1

500 39.0 325.2 8.3

1,000 63.8 380.4 6.0
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Appendix 1

The model used within the topology optimization routine is
presented below. It was implemented and solved using the
commercial software COMSOL. A list of parameters and
corresponding values is given in Table AI.

The total immobilized biomass (Xim) is the actuator
variable. It is defined based on a design parameter, g, that
will be varied in the routine iterations. (1� g) represents
the fraction of carrier used by the immobilized biomass
(Eq. A.1).

Xim ¼ ð1�gÞXmax
im (A.1)

The plasmid bearing immobilized biomass, that is, the
fraction of immobilized biomass that possesses the genetic
information necessary to the production of the desired
protein, can be determined by multiplying the total
immobilized biomass by the plasmid loss factor p, thus
implying a constant factor of plasmid loss (Eq. A.2).

Xþ
im ¼ ð1�pÞXim (A.2)

The transport of the suspended (free) biomass, glucose,
and ethanol is carried out by fluid convection and diffusion,
and is mathematically described by the Equations (A.3)–
(A.6), where Xact

im = Xact
im þ Xim

� �
accounts for the fact that not

all immobilized cells are actively growing

urXf ¼ ðm1 þ m2 þ m3Þ
Xact
im

Xact
im þ Xim

XimPc

Vr
þ Xf

� �
þ DXf

r2Xf

ðA:3Þ

urXþ
f ¼ ðm1 þ m2 þ m3Þ

Xact
im

Xact
im þ Xþ

im

Xþ
imPc

Vr

þ Xþ
f

� �
þ DX

fþr2Xþ
f

ðA:4Þ

urG ¼ � m1

YF
X=G

þ m2

YO
X=G

" #
Xim
act

Xim
act þ Xim

XimPc
Vr

þ Xf

� �

þ DGr2G (A.5)

urE ¼ YE=Xm1�
m3

YX=E

� �
Xim
act

Xim
act þ Xim

XimPc
V

þ Xf

� �

þ DEr2E (A.6)

The growth rates for each of the pathways (Eqs. A.7–A.9)
consist of modified Monod equations where Ki0 and ki0 are
saturation and regulation constants which have been
recalculated in order to obtain explicitly defined functions
which are mathematically equivalent to the implicitly
defined expressions proposed in the work of Zhang et al.
(1997). ki0 in Equations (A.7) and (A.8) have no physical
meaning. The term (1� tanh(G)) in Equation (A.9)
operates as switch function that tends to 0 when the
glucose (G) concentration is high and to 1 when G
approaches zero.

m1 ¼ m1;max

G

K10 þ G

1þ ka0G

ka0G
ðA:7Þ

Table AI. List of model parameters.

Parameter Description Value Unit

Xact
im Fraction of active immobilized cells (Brányik et al., 2004) 0.62 gXimgC

�1

Pc/Vr Carrier mass/reactor volume (Brányik et al., 2004) 13.6 g L�1

p Plasmid loss factor (Zhang et al., 1997) 0.05

YF
X=G

Yield coefficient of biomass on glucose for glucose fermentation (Zhang et al., 1997) 0.12 gX g
�1
G

YO
X=G

Yield coefficient of biomass on glucose for glucose oxidation (Zhang et al., 1997) 0.48 gX g
�1
G

YE/X Yield coefficient of ethanol on biomass for glucose fermentation (Zhang et al., 1997) 3.35 gE g
�1
X

YX/E Yield coefficient of biomass on ethanol for ethanol oxidation (Zhang et al., 1997) 0.65 gX g
�1
E

a2 Protein yield coefficient for glucose oxidation (Zhang et al., 1997) 32.97 U g�1
X

a3 Protein yield coefficient for ethanol oxidation (Zhang et al., 1997) 33.80 U g�1
X

m1,max Maximum specific growth rate for glucose fermentation (Zhang et al., 1997) 0.38 L h�1

m2,max Maximum specific growth rate for glucose oxidation (Zhang et al., 1997) 0.25 L h�1

m3,max Maximum specific growth rate for ethanol oxidation (Zhang et al., 1997) 0.10 L h�1

K10 Saturation constant 1.8� 10�1 g L�1

K20 Saturation constant 10�2 g L�1

ka0 Enzyme pool regulation constant �4.0� 10�3 —

kb0 Enzyme pool regulation constant 2.3 —

kc0 Enzyme pool regulation constant 20 —

kd0 Enzyme pool regulation constant 2.9 —
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m2 ¼ m2;max

G

K20 þ G

1þ kc0G

1þ kc0kd0G
ðA:8Þ

m3 ¼ m3;max

E

K3 þ E
ð1�tanhðGÞÞ (A.9)

In a topology optimization routine, the optimization
function is, by default, minimized. As in the case of the
presented work, it is desired that the protein product rate
(Eq. A.10) is maximized rather than minimized, a negative
signal is added when writing the optimization function F
(Eq. A.11)

Rp ¼ ða2m2�a3m3Þ
Xþ
imPc
Vr

þ Xþ
f

� �
(A.10)

FðgÞ ¼ �
Z
V

RpðtÞdV (A.11)

Appendix 2

Simulation parameters are shown in Table AII.

References

Akay G, Erhan E, Keskinler B. 2004. Bioprocess intensification in flow-

through monolithic microbioreactors with immobilized bacteria.

Biotech Bioeng 90(2): 180–190.

Bendsøe MP, Kikuchi N. 1988. Generating optimal topologies in structural

design using a homogenization method. Comput Method Appl M

71:197–224.

BendsøeMP, SigmundO. 2002. Topology optimization—Theory, methods

and applications, 2nd edn. Berlin, Heidelberg: Springer.

Bendsøe MP, Lund E, Olhoff N, Sigmund O. 2005. Topology optimiza-

tion—Broadening the areas of application. Control Cybern 34:7–35.

Borrvall T, Petersson J. 2003. Topology optimization of fluids in Stokes

flow. Int J Numer Meth Fluids 41:77–107.
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Table AII. Simulation parameters.

Parameter Description Value Unit

dp Pressure drop 0.1 Pa

DXfþ Diffusion coefficient 1� 10�10 m2 s�1

DG Diffusion coefficient for glucose 1� 10�9 m2 s�1

DE Diffusion coefficient for ethanol 1� 10�9 m2 s�1

DP Diffusion coefficient for the product 1� 10�9 m2 s�1

l Reactor length 1.2�10�2 m

w Reactor width 1.2�10�2 m

h Reactor height 1�10�3 m

h Fluid viscosity 1�10�3 Pa s

Ginlet Glucose feed concentration 1�10�3–1 g L�1

The diffusion coefficient for the suspended biomass (cells) can be
estimated by the Einstein-relation for diffusion, D¼ kBT/(6pah), where
a is the radius of the cells and kB is Boltzmann’s constant. This estimates a
coefficient of 4.4� 10�14m2 s�1(a¼ 5mm, T¼ 300K). However, very small
diffusion coefficients may result in very steep concentration gradients, and
for the numerical optimization method to resolve these gradients, a lot of
computer memory is needed. As a consequence, we have had to increase the
diffusion coefficientDXfþ to 10�10m2 s�1 and DE¼DG¼DP¼ 10�9m2 s�1

for the optimization to be doable.
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