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Localized plasmons in point contacts
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Abstract. Using a hydrodynamic model of the electron fluid in a point contact
geometry we show that localized plasmons are likely to exist near the constriction.
We attempt to relate these plasmons to the recent experimental observation of
deviations of the quantum point contact conductance from ideal integer
quantization. As a function of temperature, this deviation exhibits an activated
behaviour, exp(−Ta/T ), with a density-dependent activation temperature Ta of the
order of 2 K. We suggest that Ta can be identified with the energy needed to excite
localized plasmons, and we discuss the conductance deviations in terms of a
simple theoretical model involving quasiparticle lifetime broadening due to coupling
to the localized plasmons.

1. Introduction

Quantized conduction through a narrow point contact is
one of the key effects in mesoscopic physics; the quantum
point contact remains an important testing ground for
the description of mesoscopic phenomena. Recently,
significant deviations from the Landauer–Büttiker theory
have been observed in quantum point contacts in the
temperature dependence of the conductance quantization
[1, 2] and as a so-called ‘0.7’ structure or quasi plateau,
appearing around 0.7 times the conductance quantum 2e2/h

[3]. Invoking a Luttinger liquid approach [4], the deviations
have been discussed in terms of interaction effects [5–7].
However, firm conclusions have been difficult to obtain
partly due to the narrow temperature range (0.1–4 K) in
which the effect can be studied in conventional split gate
quantum point contacts, where relatively close-lying one-
dimensional subbands are formed.

Important progress was provided by the appearance of
strongly confined GaAs quantum point contacts using a
combination of shallow etching and a top gate [8]. In
these new samples the conduction quantization can be
followed up to around 30 K. In subsequent work [9] these
samples were used to study the temperature dependence of
deviations from perfect conductance quantization. At low
temperature(∼0.05 K) almost ideal quantized conductance
is observed for the first conduction plateau, but deviations
develop as the temperature is increased. The enlarged
temperature range allowed for the observation of activated
temperature dependence of these deviations:δG(T ) ∝
exp(−Ta/T ). Furthermore, by changing the top gate it
was found thatTa increases with increasing density. An
explanation could not be found using the standard single-
particle picture, and in the brief theory section of [9]
we therefore suggested the inclusion of collective effects
through plasmons. In short, we identifiedTa as the energy

needed to excite localized plasmons, and we discussed
the conductance in terms of a simple theoretical model
involving the additional effect of electrons scattering off
the localized plasmons. In the present theoretical work we
elaborate on that idea. In a point contact the charge is of
course depleted. In order to study the collective excitations
of such a system, we can approach it from two limits: (i)
squeezing a homogeneous electron liquid, or (ii) connecting
two spatially separated liquids. Below we follow the first
approach, and we argue from a hydrodynamic model that
localized plasmons may exist in realistic situations.

2. Plasmons of a homogeneous electron liquid in
a cylinder

Following Fetter [10] we use a hydrodynamic model of a
weakly damped, compressible charged electron fluid placed
in a rigid, neutralizing positive background set to+en0.
The electron density is written asn0+n, wheren is a small
perturbation, and the electronic velocity field is denotedv.
Finally, we include the electrostatic potential8 and neglect
radiation effects. The basic equations for the system are the
linearized versions of the continuity equation and of Euler’s
and Poisson’s equations [10]:

∂tn = −n0∇ · v (1)

∂tv = − s
2

n0
∇n+ e

m
∇8 (2)

∇28 = en

ε
. (3)

Here s = (∂P/∂n)/m = √3/5vF is the sound velocity of
the liquid. Combining equations (2) and (3) and introducing
the plasma frequencyωp = e2n0/mε we obtain a wave
equation forn:

−s2∇2n+ ω2
pn = ω2n. (4)
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Figure 1. (a) The squeezed elliptical cylinder. High and low densities are represented by dark and light shading respectively.
(b) The effective potential V (z ) (full curve) is determined by the parameter values of [9]. For this potential a solution of the
wave equation (6) for g(z ) is found numerically (broken curve). The solution represents a localized plasmon with an energy
of the order of 10 K.

For the case of a homogeneous electron liquid confined in
a cylinder of radiusR we let all fields have the dependence
f (r, θ, z, t) = fl(r) exp[i(lθ + qz − ωt)], with fl being
a Bessel function. Outside the cylinder8(r) must decay
and fulfil equation (3) withn = 0, and so8>(r) ∝ Kl(qr).
Inside the cylinder,8<(r) can be either decaying, asIl(κr),
or oscillating, asJl(kr). The lowest lying modes are
the decaying ones reminiscent of surface plasmons. The
oscillation frequencyω is found by enforcing the boundary
conditions that8(r) and its derivative are continuous at
r = R, and that the normal componentvr of the velocity
vanishes at the surface. The solution is

ω2 = qRI ′l (qR)
(
Kl(qR)− q

κ

K ′l (qR)
I ′l (κR)

I ′l (κR)
)
ω2
p

−→
q→0

e2n1D

2πmε
q2 ln

(
2

qR

)
(5)

where we also have given the 1D limit arising asq → 0.

3. Plasmons of an inhomogeneous electron liquid
in a squeezed elliptical cylinder

Next, to approach the point contact geometry we introduce
two perturbations. First, the cylinder containing the
inhomogeneous electron liquid is squeezed geometrically in
a region of length 23 aroundz = 0, i.e. the radius becomes
a function of z, say for exampleR(z) = R0 − δR[1 +
cos(πz/3)]2(3− |z|). Similarly, a staticz-dependent dip
is imposed on the positive background charge densityn0

inside the squeezed cylinder, sayn0(z) = n0 − δn[1 +
cos(πz/L)]2(L− |z|).

In the adiabatic limit where derivatives ofR(z)
and n0(z) are neglected, the wave equation (4) remains
separable in cylindrical coordinates, and we make the ansatz
n(r, θ, z) = Jl(κr)g(z) exp[i(lθ−ωt)], whereJl is a Bessel
function andg(z) an arbitrary function to be determined.
The boundary conditionvr(R(z)) = 0 translates
into a Neumann boundary conditionJ ′l (κR(z)) = 0 and
consequently the ‘wavenumber’κ becomes a function of
z, κ = κnl(z) = γ̃nl/R(z), with γ̃nl being thenth root

of J ′l (x). Furthermore,ω2
p also becomes a function ofz,

since ω2
p(z) = e2n0(z)/mε, and similarly for the sound

velocity, s = s(z) ∝ n0(z)
1/3. As a consequence the

wave equation (4) forn is changed into the following
eigenfunction equation forg(z):

−s(z)2∂2
z g(z)+ [s(z)2κ2

nl(z)+ ω2
p(z)] g(z) = ω2g(z). (6)

This is equivalent to Schrödinger’s equation (with a
position-dependent mass) as seen by the identifications
s2 ↔ h̄2/2m and s(z)2κ2

nl(z) + ω2
p(z) ↔ V (z). Since

ω2
p(0) < ω2

p(±∞) bound states, i.e. localized plasmons,
may exist. The ‘effective potential’V (z) is a sum of
two terms; one,ω2

p, is dipping down on the length scale
L, the other, s2κ2

nl , is peaking on the length scale3.
Depending on the relative strengths, shapes and length
scales of the two terms the effective potential will appear
rather differently. However, for realistic parameters, where
the density variation dominates, we conclude that localized
plasmons may exist in the squeezed, inhomogeneous
cylindrical electron liquid as shown in figure 1.

The previous considerations dealt with a cylindrical
geometry, but it is not difficult to approach the 2D case. The
trick is simply to use elliptical coordinates(u, v, z) defined
by (x, y, z) = (η cosh(u) cos(v), η sinh(u) sin(v), z). The
parameterη relates to the eccentricity of the ellipse. With
these coordinates the wave equation separates as before.
Instead of trigonometric functions of the angleθ we now
obtain the Mathieu functions of the generalized angular
variable v, and instead of Bessel functions we obtain
the modified Mathieu functions of the generalized radial
coordinateu. By letting the eccentricityη tend to infinity
we end up with a 2D geometry close to the one realized
in the quantum point contact experiments. The conclusions
obtained for the circular cylinder can be restated for the
elliptic cylinder, and thus localized plasmons are expected
to exist in or near the constriction region of quantum point
contacts.
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4. Plasmon damping

So far we have treated only the undamped case. In real
systems the collective plasmons are damped through their
interaction with individual electron–hole pairs, the so-called
Landau damping. This effect could be simulated by adding
a damping term−v/τ to the right-hand side of the Euler
equation (2). Instead we will leave the classical level of
description and continue with a microscopic quantum treat-
ment. The classical level is adequate for demonstrating the
existence of the collective (almost classical) plasmon exci-
tations, but fails when it comes to single-particle effects.

The point contact can be approximated by a 1D region,
the constriction, connected at each end to 2D regions, the
contacts. For this 2D–1D–2D model of the point contact we
can estimate the frequency of the confined plasmon using
our insight from the classical calculations: we calculate
the dispersion relation for an infinite 1D-wire and insert
the wavevectorqc = 2π/L, L being the length of the
constriction and hence related to the size of the localized
plasmon. The long-wavelength limit of the dispersion
relation found in the random phase approximation (RPA) is

ω1D
L =

√
v2
f +

γ e2n1D

4πεm∗
qc. (7)

Note how the second term under the square root resembles
the classical result of equation (5). In [9] we used this
formula successfully to fit the measured activation temper-
atures mentioned in the introduction.

The confined 1D plasmons will be Landau damped
through their coupling to the 2D contacts outside the
constriction. Insertingqc in the RPA expression for the
polarizability χ2D we obtain the following rough estimate
of the lifetimeτ−1

p /ω1D
L of the 1D plasmon coupled to the

2D contacts of the 2D–1D–2D model:

τ−1
p

ω1D
L

≈ V 2DImχ2D ≈ 2πe2
0

qc

m∗ω1D
L

2πh̄2v2D
F qc

. 1. (8)

The plasmons are seen to be damped, but not over-damped.

5. Quasiparticle lifetime

In the Landauer–B̈uttiker formalism the conductance is
given by single-particle properties. Once a particle is
launched in a given channel of the injecting lead the
transmission probability amplitudes are governed by the
elastic scattering matrix of the system. For a quasiparticle
with a finite lifetime it is possible that a particle will
decay before completing its traversal of the system. We
propose that the observed deviation from perfect quantized

conductance is indeed due to the finite lifetime of the
quasiparticles. Furthermore we suggest that the main
contribution restricting the lifetime comes from scattering
against the localized plasmons. As demonstrated above,
the localized plasmons provide a well defined finite energy
h̄ωL. Through the Coulomb interaction the electrons will
scatter against the plasmons and hence the quasiparticle
lifetime and the transmission properties are affected. The
resulting lifetime and additional resistance is expected to
exhibit an activated behaviour,τ−1 ∝ exp(−Ta/T ), since
a finite energy is needed to excite the localized plasmon.
We are thus led to identify the activation temperature with
the energy of the localized plasmon:Ta = h̄ωL/kB .

6. Conclusion

Using a hydrodynamic description of the electron fluid, we
have shown that localized plasmons with a frequencyωL
are likely to exist near the constriction of a point contact.
We have sketched how a more complete microscopic
quantum calculation may account for a quasiparticle
lifetime broadeningτ−1 with a thermal activation behaviour
τ−1 ∝ exp(−h̄ωL/kBT ). We relate this broadening with
conductance and are led to identify the recently measured
activation temperatureTa for conductance deviations with
the frequencyωL of the localized plasmon.
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