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The energy level statistics of the Hubbard modellfot L square latticesl(= 3,4,5,6) at low filling(four
electron$ is studied numerically for a wide range of coupling strength. All known symmetries of the model
(space, spin, and pseudospin symmefrsive been taken into account explicitly from the beginning of the
calculation by projecting into symmetry-invariant subspaces. The details of this group theoretical treatment are
presented with special attention to the nongeneric cade=c0f, where a particular complicated space group
appears. For all the lattices studied, a significant amount of levels within each symmetry invariant subspaces
remains degenerated, but exceptlfer 4 the ground state is nondegenerate. We explain the remaining degen-
eracies, which occur only for very specific interaction-independent states, and we disregard these states in the
statistical spectral analysis. The intricate structure of the Hubbard spectra necessitates a careful unfolding
procedure, which is thoroughly discussed. Finally, we present our results for the level spacing distribution, the
number varianc&?, and the spectral rigiditd 3, which essentially all are close to the corresponding statistics
for random matrices of the Gaussian ensemble independent of the lattice size and the coupling strength. Even
very small coupling strengths approaching the integrable zero coupling limit lead to Gaussian ensemble
statistics, stressing the nonperturbative nature of the Hubbard M&@4dl63-182@7)02613-1]

I. INTRODUCTION study of low-lying excitations and the corresponding coher-
ent part of the spectral densities, a topic we will study in
The behavior of strongly correlated electronic systems reforthcoming work. Here, we rather study the statistical prop-
mains a central problem in contemporary condensed matterties of the typical high-energy excitations which are related
physics. Several years of intense studies have made it cletw the incoherent background of the typical spectral func-
that the necessary theoretical skills and tools to deal withions. More specifically, we study the statistical properties of
strongly correlated fermion systems are lackisee, e.g., the the spectra within the framework of random matrix theory
recent reviews by Dagaft@nd Lielf). Many exotic schemes (RMT). RMT was developed for the study of neutron scat-
have been invented to accommodate a suitable theoretictdring resonances in nuclear physics in the 1950s and £960s,
framework, but the development of a predictive generabut it has since been applied to a wide range of problems in
theory does not seem to be in sight. In this state of affairs thenany areas of physits(e.g., studies of conduction
importance of performing numerical calculations of thefluctuations microwave eigenmodésand acoustical prop-
ground-state properties and the energy spectrum of a giveerties of solids’) and mathematicée.g., studies of the dis-
many-body Hamiltonian has grown. Computational resultgribution of the zeros of the Riemanh functiont!). More-
can lead to the acceptance or rejection of the proposed anaver, RMT has also been applied to various types of matrix
lytical models, and they can guide the development of nevensembles like Hamiltonian matrie@s in our caseand
analytical approaches. scattering matrice%? as well as transfer matricEsand
In the Hubbard model and related models one importanGlauber matrice®$ of statistical mechanics models. Recently,
parameter is the fillinge. Much work has been devoted to RMT has been employed in the study of strongly correlated
the high-density case near half filling, since it is believed toelectronic systems. Examples are studies of the t2D
be relevant for high-temperature superconductitityput  model® 2D tight-binding models® the 1D Bethe chaify’
also the low-filling regime is of interest; e.g., it plays an and the 1D Luttinger liquid® The work presented here with
important role in theoretical studies of the breakdown ofemphasis on mathematical and numerical methods is an ex-
Fermi liquid theory in two dimensiongD).* In this paper tension of this line of research. Preliminary results of our
we present a numerical study of the two-dimensional Hubwork have been published elsewhéte.
bard model at the low-filling regimer<0.25, a regime There are basically two ways of applying RMT. One way
where the calculation is tractable. It is natural to choose fouis to model a relevant matrix of the given physical system
particles as a generic case close to the simple two-particleith a matrix drawn from a suitable random matrix ensemble
case. The coupling strength is used as a perturbation pararand subsequently calculate average properties of the system
eter, and we address the question of universality in the reby averaging over the random matrix ensemble according to
sponse of strongly correlated electron systems to thiRMT. The other way, which we employ here, consists sim-
perturbatior? ply of characterizing the spectrum of a given physical system
We describe an efficient method which allows for numeri-by comparing various statistical properties of the spectrum
cal calculations of the exact energy spectrum. This methowvith the corresponding properties calculated within one of
can relatively easily be extended to calculations of varioughe few universal statistical matrix ensembles of RMT.
Green'’s functions and spectral functions well suited for theéWhich of these ensembles describes properly a physical situ-
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ation depends on the symmetries of the system. The given
spectrum which one analyzes is of course deterministic, but
statistical properties are given to it by considering quantities
like, for example, the distribution of the energy spacings

where all but one of the spectral variables have been inte-
grated out. This is like pseudo-random-number generators
which are perfectly deterministic and nevertheless have
many properties in common with random sequences.

The paper is organized as follows. In Sec. Il we introduce
the Hubbard model and the corresponding Hilbert space. In
Sec. lll we introduce the RMT quantities used in the charac-
terization of the spectra, and we discuss in detail the specia| . i X .
spectral unfolding technique necessitated by the intricate na]je Zero-pair Sta@’G’_z‘l‘) of the 4x4 square Iatt'F:e and ito)

. he one-pair stateh,16;13,16 of the 55 square lattice. The con-

ture of the Hubbard spectra. In Sec. IV the entire Symmetry, . o o the et motation is explained in the text. Th beri
.. . . plained In the text. € numbering
group consisting of space, spin, and pseudospin symmetry %fthe lattice sites is the one employed in our computer calculations.

the model is studied, and all the correspond_mg_ prOJect_|on|.he signs of the X4 lattice correspond to the bipartition of the
operators are calculated. In Sec. V the model is diagonalize@ice "which is only possible for even site lattices.

numerically and we study the raw spectrum, in particular the

ground state and some unexpected remaining degeneracigg., ntered whene andx’ are different. If during a calcu-
higher in the spectrum. In Sec. VI we present the result of th !

fation a state is encountered wih> b and/orc>d, the nec-

spectral statistics analysis of the model, and finally, in Secessary exchange operations including sign changes are per-

VII we discuss the results and conclude. Appendixes A_Dformed to restore it

contain mathematical details. Finally we note that for eveh a bipartition of the lattice
is possible. A given lattice sita can be identified by a set of
Il. HUBBARD MODEL Cartesian coordinates= (a;,a,) simply counting the posi-

Throughout this paper we study the simple one-bandion in the lattice[thus, e.g., site &(0,0) and $=(1,2) in
Lx L square lattice Hubbard model with periodic boundaryFig- 1(@]. Each sitea can then be assigned with a sign

~ —( _ a;ta — . —
conditions containing a nearest-neighbor hopping tertit 0.=(=1)" "2=exp(m-a), wherea=(m,m).
and an on-site interaction terbhU:

(2) (b)

FIG. 1. Two four-electron states witg,=0 are shown: in(a)

IIl. RANDOM MATRIX THEORY

2 2
" " Within random matrix theoryRMT) one can study sev-

H:_tT+UUZ_t<i2>U C;rocio+U2i NitMi;, (1) eral statistical ensembles of matrices. Three important ex-
A A 7 amples are the diagonal ensembles, the Gaussian ensembles

wherecfg andn;, are the creation operator and the numberfor Hermitian matrices as, e.g., Hamiltonians, and the circu-
operator, respectively, for an electron on siteith spin o. lar ensembles for unitary matrices as, e.g., scattering matri-
No disorder is present in the model. Below half filling the ces. Since a main object of this work is to characterize the
dimensionN,; of the Hilbert space grows rapidly as a func- spectrum of the Hubbard model within the framework of
tion of L and the numbeiN, of electrons occupying the RMT, we are led to use the diagonal and the Gaussian en-
lattice, and so we have confined ourselves to the low-fillingsembles of square matrices. The first ensemble is the en-
case of only four electrons, whereas we llevary. More-  semble of diagonal matricé3 with statistically independent
over, without loss of generality we always work in the sectordiagonal elementD;; drawn from the same distribution
where thez componentS, of the total spin is zero; the other P(Dj;). This ensemble describes situations where the eigen-
S, sectors can be reached by use of the spin ladder operatorslues are essentially independent, which empirically has
S, and S_, which commute with the Hamiltonian. The been found to be the case for integrable models. One char-
S,=0 sector is the largest of the spin sectors, and it hagcteristic feature of such systems is a “soft” spectrum with
Ny =[L?(L?—1)/2]? which forL=3, 4, 5, and 6, the lattice large probabilities of having levels close together described
sizes studied here, yields 1296, 14 400, 90 000, and 396 90Dy the Poissor(exponential distribution. The three others
respectively. The corresponding fillings=N./2L2 are 0.22, ensembles—denoted the Gaussian orthogonal ensemble
0.13, 0.08, and 0.06. (GOB), Gaussian unitary ensembl&UE), and Gaussian

In the occupation number basis we label the states asymplectic ensembléGSE—are defined by requirering sta-
follows,2° wherea andb are two lattice sites occupied with tistical independence of the matrix elements of a maitfix

spin-up electrons and andd with spin-down electrons: and invariance of the probability distributidh(H) in matrix
space under one of the three canonical similarity transforma-
|a,b;c,d>56;T&gT{;Zl&(’;l|Vac>_ (2)  tions: the orthogonal, the unitary, and the symplectic trans-

formations, respectively.Which ensemble to choose de-
Two explicit examples of such states as well as the latticpends on the symmetry of the system. In fact, the ensembles
site enumeration are shown in Fig. 1. In our work we makeare universal in the sense that no details of the physical sys-
sure thata<b and c<d, and we have ordered the basis tem play any role; only knowledge of the global symmetry is
states such that the stape;,x,;x3,Xs) comes before the needed. The three Gaussian ensembles are found to describe
state|x;,X5;X3,Xy) if X;<x{, wherei is the first position situations of very complex or chaotic systems, and one char-
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acteristic feature of such systems is a “rigid” spectrum with finite random matrix one simply uses the limiting density of
eigenvalue repulsion. In this work we need only to treat thestates as the average density. In billiard systems one can
GOE, which is found for systems with preserved time-make a Laurent series expansion\JE of N(E) and obtain

reversal symmetry. . . the Weyl law forN(E) by truncating the series after a finite
To perform a meaningful RMT analysis one has to sorthymber of terms, each of which has a physical interpretation.

the spectrum in symmetry sectors corresponding to the symg, our case, no such natural choices existNGE). We have

metry group of the Hamiltonian since the symmetry-iherefore used several methods to unfold the spectra. Each of
invariant subspaces are orthogonal to one another. Each suglb.se methods has a free parameter, but there is no unique

symmetry-invariant subspace is characterized by a specifigrascription of how to choose it. The best criterion is the
set of quantum numbers, and the RMT analysis is performeghsensitivity of the final result to the method employed and
on sets of eigenlevels having the same quantum numbers. |§ reasonable variations of the free parameter.

Sec. IV we treat the complete symmetry group of the Hub- 1 first method is polynomial interpolation. It can be a

bard model and calculate the corresponding projection operas: . . : . .
tors of the symmetry-invariant subspaces. As illustrated i%lmple linear interpolation or running average Whalge,)

Sec. VI significant errors are introduced in the analysis if, found as a linear fit oN(E) in an interval containing
: 9 ) y levels on each side of the levig] ; the free parameter is then
some of the symmetries are neglected.

the parameter. It can also be higher order polynomial in-

Another caveat in the RMT analysis of finite spectra is the, X . : .
t,erpolaﬂon, e.g., in the form of interpolating between several

notion of mixed phase space. As a function of some externa} : e . )
. ; . ... linear interpolations—a method we used in our work on sta
parameter a given system can be driven from mtegrablhty[isticall mechanics modelé22
(the diagonal ensembleéo chaos(one of the Gaussian en- The second methad:iefi.neSazs- +d,/d,, whered,
| 11— n»
;ﬁg}ﬁfﬁ;gyfr?hrg gbe&tﬂ) tehgfsifggt%engr%fag&Ctﬂeaiysbtzetﬁq is is thekth smallest spacing t&;. Heren becomes the free
studied in the middle of the transition, the spectrum is aparameter. This method works also for complex eigenvalues

mixture of two or more components, each described by onénc hon-Hermitian matrices.

of the random ensembléSIn the thermodynamic limit usu- The third method is Fourier broadening of the step func-

ally only one component survives, but for finite spectra thistlons 8(e—E;) in Eq. (3). The Fourier transforms from the

mixing calls for a further sorting of the spectrum within each energy domain to the time domain of the step functions are

symmetry-invariant subspace. For the Hubbard model usin§und- In the following back transformation yieldirig(E)
the coupling strengthJ/t as the external parameter such a©nly the slow time components are kept. Choosing a cutoff

situation does in fact arise as the analysis presented in Se€,€yond which all Fourier components are set to zero yields
VB shows. #e—E,)~Si(e+E* —E;) 7)/7—Si(e—E* +E;) 7)/7, where

When the necessary sorting of the spectrum has been pepi(X) is the sine integral anB* is an energy slightly larger
formed the RMT analysis can begin. The first step is to unihan the largest energy in the spectrum to be unfolded. The
fold the spectrum. free parameter i, and by choosing %/to be of the order of
the mean-level spacing a godE) is obtained.

The fourth method is Gaussian broadening of the delta

o ) functions 6(e—E;) in Eq. (3), leading to the following ex-
Naturally, it is necessary to make some kind of transfor-pression foN(E):

mation or normalization of the spectrum of any given physi-

cal system to be able to make comparisons with the universal o E 1 (e—E;)2

and dimensionless results of RMT. This operation is called N(E):j > exp{ .
—w i oyy2m 20

the unfolding. By local rescaling of the spectrum with the
local average level spacing the unfolding transforms the ac- . , )
tual energies; into dimensionless “unfolded energies; The standard deviation or W'dt‘hﬁ of the Gausslans can
with a local density of 1. Thus, by unfolding one subtractsbe taken as a constant for the entire spectrum; it is then the
the regular slowly varying part of the spectrum and considergre,e_ param.eter. However, due to the appearance of many
only the fluctuations. It amounts to computing from the ac-Minibands in the Hubbard spectrum for small valuesJof
tual integrated density of statégE), each havmg o!lffere_nt densities, it is desirable todgtdapt
to local variations in the spectrum. We have developed the
E following algorithm: Takea levels to each side of levé|
N(E)=| X de—Ej)de=2 6(e—E), (3 determine the local average level spacing=(E,,
! ! —Ei_)/(2a), and seto;=0.608A,. By this assignment
90% of the weight of the broadened peak falls in the interval
[Ei— aA; ,Ei+ aA,;] anda becomes the free parameter. If a
gap(defined as a very atypical spacjrfglls within the cho-
£; =N_(Ei). (4) sen range, we only take the states of the same side of the gap
asE; into account. The procedure is illustrated in Fig. 2. We
The notions of “local density” and “averaged density” are discuss how to optimize the choice afin Sec. VI. Typi-
not mathematically rigorous. For some systems there existsally, we finda~4 to be a good choice.
natural unfolding procedures. For example, it is a rigorous All four methods of unfolding yield essentially the same
result that the density of states forNex N random matrix  results. We decided to use the Gaussian broadening with
approaches a semicircular form fde— oo; thus for any given  varying width, Eq.(5), since it was better suited to the study

A. Unfolding the spectrum

de. (5)

an averaged integrated density of stal_l(eE). The unfolded
energiese; are then given by
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clearly nothing else in common with GOE spectra. To test
higher-order correlations one then looks at the two-point cor-
relation function Y(x) and various weighted averages
thereof® For the GOE in the largét limit,

Y(x)=s(x)%+ %J:S(t) dt,

with s(x) = sin(wx)/(7x). One average oY (x) often studied
is the number variancE?(\) defined as the variance of the
number of unfolded energy levels in intervals of length

around the unfolded energy:
A A 2
got 5 =Ny €0~ 5 (D
FIG. 2. Unfolding of the spectrum using the Gauss broadening €0

with variable width, choosing:=4. Shown is a part of the Hubbard \yhere Ny(e)==,6(s—¢;) is the unfolded level staircase

spectrum of the invariant subspadg, §) =(6,0) arounde/t~1.1  5hq \where the brackets denote an averaging eyeFor the

for L=5 andU/t=1. The positions of the levels; are marked by Poissonian caseEZ(A):)\ while for the GOE case

short vertical lines. For four levels marked by long vertical lines we 2(0) =\ — Zf)\()\ “X)Y(X) ,dx with a logarithmic
= 0

show the actual broadened Gaussians. Note how the widths of t . .
Gaussians change as the local density of states changes, and n'SlnCéymptOt'C behavior. . . .

how the width of the Gaussian centered near the gap ignores the Another a\{erage of the tW_O'po'm correlation function is
states beyond the gap. Also shown are the level staifgésg and ~ the spectral rigidityAs(N) defined as the least-squares de-

the averaged integrated density of Stat§&) (the smooth dotted  Viation of the unfolded level staircade,(¢) from the best-
line). fitting straight line in an interval of length:

N, Y

22<x>=<

. . .. eqgt+ N2
of thg Hubbard spectra with its many minibands at small A3(7\)=<£ minf 0 [Nu(g)—As—B]2d8> G:)
coupling strengtiJ/t (see Sec. V A N (aB)Jeo—22
A final remark on the unfolded spectrum is that it is cus- co

tomary to discard from the analysis the states closest to thegr the Poissonian case the spectral rigidity is
boundary of the spectrum or to the edges of the minibands\ ,(\)=)/15, while for the GOE caseAs(\)=[A\
The reason is that these levels in contrast to the levels in the EOY(x) dx/15,  with  £(x)= (A —X)3(2A2— 9\ X
bulk of the spectrum do not interact with levels of both —3x))/\*
higher and lower energy. Hence such levels are nongeneric.
We usually discarded a few percent of the total number of
states on that account. This effect is a size effect that is

and again with a logarithmic asymptotic behavior.

IV. GROUP THEORY AND INVARIANT SUBSPACES

expected to be negligible in the thermodynamic limit. The problem of diagonalizing the Hubbard Hamiltonian
can be reduced considerably by group theoretical analysis.
B. Quantities characterizing the spectrum Furthermore, as mentioned earlier and as illustrated by an

The simplest quantity one studies in RMT analysis is theexample in Sec. VI A it is indispensable for the RMT analy-

Y S A . sis. The symmetries are explicitly dealt with from the begin-
probability distributionP(s) of unfolded energy spacings ning of the calculation by constructing the symmetry projec-
s=g;—¢;_1, Whereg; and g;_; are two consecutive un-

. . tion operators corresponding to all known symmetries of the
folde(t:i_tenet:tglgs.ffne con;pares thte_ acR?ai) with thefstz;me model and using them to project into symmetry-invariant
quantity obtained for rancom matrices from one ot theé Ma,,syaces of the full Hilbert spat®?* The main object of
trix ensembles introduced in Sec. lll. For diagonal rando

Mhis section is to construct the three projection operators
matrices P(s) is the Poisson(exponentigl distribution pro) P

. S Pr, Pg, andP; corresponding to the space symmetry, the
P(s)=exp(—9). For NX N GOE matrices the distribution of ; t th ; t tivel
spacings is quite complicated for arbitraxy however, it is spin symmetry, and the pseudospin symmetry, respectively.

always close to the exact spacing distribution of the22

GOE matrices known as the Wigner surmise, A. Space symmetry group

The first symmetry we consider is the space gr@ypof

PGOE(g) = zsex;{ _ 332) ©) the L_>< L square lattice yvith periodic_ boundary Con_ditions. It
2 4> )’ consists of all permutatiorg of the sites such thaj(i) and

g(j) are neighbors if and only if andj are neighbors. In a

which therefore is used in practice. _ straightforward manner an operatpin Hilbert space can be
The spacing distribution probes correlations between con- . . ~ ]
ssociated with each elemerg of G, gla,b;c,d)

secutive states and is not sensitive to correlations of highear )
order. For example, an artificial spectrum constructed by=|9(2),9(b);g(c),g(d)), thus forming a grouf, of op-
adding independent variables distributed according td&q. erators, which commutes with the Hubbard Hamiltonkn
will certainly show a Wignerian spacing distribution but hasFor general values df the space grougs, has been ana-
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of the elementgt, ,r,,t,,ry,rq} is the hyperplane reflection
I, (see Fig. 3 obtained in 4D by a reflection in thez plane
while keepingy andw fixed. G, can be generated by replac-
ing rq above withry, (we note that 4=t, 't *rtyt,r,), and
a set of generators &, ,ry,ty,,ry,ry} though in fact as few
as two elements can be found that genefaie?® Instead of
128 elements found by the formulbl, =8L2, we find
N,=2%x41=384. We refer the reader to Appendix A and
Appendix B for further details concerninG, and G, , re-
spectively.

The complete table of charactey& )(g) of G, is given
in Table IV in Appendix A, while those 063, G5, andGg
are found by combining Table V in Appendix B with the

boundary conditions onto the unit hypercube in 4D. The four .
double arrows indicate the neighbor-preserving transformation method of Ref. 20. ArmAed with the character tables the char-

This transformation cannot be expressed by the ordinary translzCter projection Operatd?‘RR ) (where the subscrigR is used
tions and reflections in 2D; however, it can be interpreted as d0 distinguish fromS and J) can be constructed for each

FIG. 3. The mapping of the ¥4 square lattice with periodic

hyperplane reflection in 4D around te plane. | r-dimensional irreducible representatie:

. - . . A~ ! |R’ ’ ~
lyzed in detail in Ref. 20. Here we will restrict ourselves to PRI= XFO*(g)g. 9)
outlining this analysis and to correcting the particular cases Nig=e,

of L=2, which induces a simpler space group, dre4, AR . . .
which induces a much richer space group as briefly menEJSIng P(R for_a given representation tog_e%;lr.wnh the
tioned in Ref. 25. Van Vleck basis-function generating algorit in the

ForL#2,4 the structure o, can simply be built up by actual or a closely related Hilbert space it is straightfor-

. : S ward to construct an orthonormdk-dimensional basis
forming direct® and semi-dire& products, denotedd and (R) ,(R) R) R o )

_ i _ {37,057, ... ,¢’} and calculate an explicit irreducible

S respectively, of translation and reflection subgroups. Let R

T, (T,) be the subgroups of orderof translationgisomor- ~ fépresentation matr|>T£jR)(’g)E(¢i(R)|g|¢>§R)). Finally the

phic with Z,) in thex (y) direction, and let,, r,, andr row projection operatoP(Ri)(g) can be constructed:

be the reflection operations for tleaxis, they axis, and the |

diagonal defined by r(x)=-x, ry (y)=-y, and ~RH_ 'R (R)% [ oy 2

rq(x,y)=(y,x), while e denotes the idenytity transformation. Pric'= NLQEEGL T ™ (9)9. (10

The two subgroup&{ =T,S{e,r,} andG{=T,S{e,r,} of

order 2 (isomorphic withC_,= 2, &2,) are formed and

combined into the direct product subgro®’=G{® Gy .

Finally G, is formed by the semidirect product

G, =G"®{e,rq}. One can say thab, is generated by the

elements{t,r,t,,ry,rq although this is not the smallest  Itis easily verified that the Hubbard Hamiltonian, Edj),

possible set of generators. The ordeN, of commutes with the component of the total spin operator

GL=(C_,®C,,)® 2, is seen to beN, =8L2. §,=3" & as well as with the corresponding raising and
For L=2 we find G,=({e,r,j®{e,ry})®{e,rq}j=C,,  lowering operatorsS, and S_. The model therefore pos-

with N,=8. This result differs from that of the general casesesses a S@) spin symmetry. We can therefore restrict our

sincety=r, andt,=r,. diagonalization to thes,=0 sector, since the other sectors
For the caseL=4 a richer group appears because thecan be reached using the spin-raising and -lowering opera-

4 4 lattice with periodic boundary conditions is isomorphic tors. The spin operators also commute with any space sym-

with the group of transformations of the four-dimensionalmetry operatorg, and so the two symmetry groups form a

unit hypercube. This isomorphism is easily seen by changingirect product group. The combination of two spin-up and

the decimal enumeration of Fig(al into a binary enumera- two spin-down electrons under the constrént=0 leads to

tion such th.at the binary numbers of neighbpring si_tes differa total spin quantum numbe®’ =0, 1, or 2. The explicit

by only 1 bit as shown in Fig. 3. They can immediately be ;o ction in Appendix C wit®=&? yields the following

interpreted as the coordinates of the corners of the hyper- , . =S

cube. Thus the groug, of neighbor-preserving transforma- €€ Spin projection operatorss” *:

tions is given by combining bit inversion operations-Q ~0) N

with permutations of the 4 bits. In Appendix A we show that P<la,bic,d)= 5(+2a,b;c,d)+|a,c;b,d)~|a,d;b,c)

Both projection operator®®’ and PR will be employed
in the diagonalization of the Hubbard Hamiltonian.

B. SU(2) spin symmetry

G, is isomorphic with the _group2r<’2®22®22®22)®84_ +2|c,d;a,b)+|b,d;a,c)—|b,c;a,d)),
corresponding to the semidirect product of all combinations
of bit inversions at the four positions with the permutation (11)

group S, of the four positions. One neighbor-preserving R
transformation of the lattice which is not given by products Pda,b;c,dy= (+3|a,b;c,d)—3|c,d;a,b)), (12
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75<2)|a b;c,d)= l(+1|a b;c,d)—|a,c;b,d)+|a,d;b,c) proved useful to introduce a special notation for one-pair and
s ® T T T two-pair basis states as follows:
+1|c,d;a,b)—|b,d;a,c)+|b,c;a,d)).

(19 [Pib,d)=6pCh corchy iy vag = 6p|P.b;P.d),

O\ = toab of of __ .
These expressions are generally valid; however, one should'P’Q>_ Op0aCh|Cp1Cq|Co1 Va9 = — 0ol P Q; P,Qz.lS)

note that the Pauli exclusion principle reduces the number of
terms when electron pairs are present. For exampkes=i€ ~ For zero-pair states whewg b, c, andd are all different,
andb=d, one findsP§"|a,b;c,d)= ¢ oa,b;c,d). Finally  only 7 =% is nonzero,

we note that the spin projectors of the stpdeb;c,d) in-

volve all six states generated by permutations of the site 73330)|a,b;c,d>=|a,b;c,d>, (16)
indices. In Egs.(11)—(13) only three orthogonal states

appear. The remaining three orthogonal states are thand for one-pair states wheR b, andd are all different,
two S=1 states |a,c;b,d)—|b,d;a,c) and |a,d;b,c)  two projection operators are nonzero,

—|b,c;a,dy and the one S=0 state |a,c;b,d)

- 2Jy+1
+1|b,d;a,c)+|a,d;b,c)+|b,c;a,d). (30| p- _ < :
P;o|P;b,d) 230+ 1) |P;b,d)
C. SU(2) pseudospin symmetry -1

> IQbdy, (17

+ —_—
The pseudospin symmetry of the Hubbard model has been 2(Jg+1)o#Fbd
known for at least a quarter of centuiybut recently it was

rediscovered and put in the more generalized context of the I+ 1) 1
n-pairing mechanism®3! As discussed in Sec. Il even P, |P?b:d>:m|Pibad>
lattices can be biparted using the site si#ymas an index, and
three operatord_, J., andJ, can be defined: 1 _
+ ;b,d), (18
25T Do g |20 (19
2
37:2 aiéneu- j+:E gigi‘rlgi‘rT' jz:lE Ny— L_ while for two-pair states wher®# Q, all three projection
[ i 295 2 operators are nonzero:
(14
. 30| p. _ Zrep,oZs#pQrlIRIS) | (230+1)[P;Q)
It is seen thafl, creates a pair of electrons with phageon P, IPiQ)= 2(Jo+1)(23y+3) 2Jo+3

empty sites. These three operators form the same algebra as

S_, S, , andS,, hence the name pseudospin. Furthermore, (220t 1) Zrep ol [RIQ) R P)} (19

the J operators commute with both the space symmetry op- 2(Jo+1)(230+3) ’

erators and the spin operators; and for the symmetrized Hub- _ _

bard modeH ', trivially related to our modeH, they even PP Q)= ~ZrepisrrorlRiS) | [PIQ)

commute with the Hamiltoniahl’. Hence thesymmetrized ’ 2(Jo+1)(Jo+2) Jot2

model possesses an extra (8JJsymmetry characterized JoZrep.ol|RIQ)+|R;P)}

by the quantum numberd’ and J, analogous toS' and 200+ D) 30t2) (20

S, for the spin®® A detailed analysis shows that the combi- 0 0

nation of spin and pseudospin symmetries yieIdsA s s IR;S) IP;Q)

[SU2)®@SU(2))/Z,=S04) rather than the full S@®)  Pllo*?|p,Q)y="RIPRZSIRRR ’

®SU(2).3! The space symmetry group is completely inde- ° 2(3012)(230+3)  (Jo+2)(2J9+3)

pendet of sp e pudspin smyetcs, Ths e SmealROURR)
L (Jo+2)(235+3)

odd it is G=G ®SU(2). In our case the symmetry is low-
ered in a trivial way from spherical to cylindrical symmetry At this stage all the group theoretical ingredients are ready
in pseudospin space sinf®,J.]==*J. , but still we have for the diagonalization of the Hubbard Hamiltonian.
[H,J2]=[H,J,]=0 andJ’ andJ, both remain good quan-
tum numbers. D. Symmetry-invariant subspaces

For a given lattice with eveh containing a fixed number

Using the projection operators théy,-dimensional Hil-
N, of electrons all states have=(N,—L?)/2 (e.g.,— 6 for 9 prol P e,

2 ; bert space can be broken down into smaller symmetry invari-
L=4 and_—16 f_orL=6_). Def_'n'n9J°E|‘]Z|’ the size) of the ant subspaces. L&l be the group containing the symmetry
pseudospin in  this shuation takes trje, ValuesoperationSy, each being a product of a space symmetry
Jo.Jo+1, ... Jo+Ng/2. The projection operatorBs’) are  transformation, a spin rotation, affdr L ever a pseudospin
found using the construction of Appendix C with rotation, y=g®gs®g;. HereG thus consists of one finite
0=3%2=3,3_+32-1,. Due to the explicit reference to group and one or two compact Lie groups. lebe a multi-
pairs in the definition of the pseudospin operators, it hasndex describing an irreducible representatldf of G. For
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TABLE I. ForL=3, 4, 5, and 6 are shown the dimensip of & -dimensional orthonormal basis is found by using the pro-
the total unreduced Hilbert space and the dimension{ejdof the  jection operator
largest symmetry-invariant subspace. Since matrix diagonalization
is an_n3 operation, the numb@pa}ilNﬁ provides an estimate of the f)(OP)E*]A)(R%’)(gf)(SS’)@ﬁSJ’) , (25)
relative reduction in computer time by projecting into the invariant . ]
subspaces. which projects onto the first row of the space group repre-

sentationR’ with the spin indexS’ and pseudospin index
L=3 L=4 L=5 L=6 J'. The projection operatdP{” is applied on one basis state
N 1296 14400 90000 396900 after another while performing an ongoing Gram-Schmidt
m:1x fa} 38 146 1794 5490 orthonormalization procedure. This yields new basis states
PL%p ) i
Epaf,/Nﬁ 141105 07105 2.3x10°5 1.0x10°5 |W,>,_and whena,, such states are found, the procedure is
terminated.

The next step is to calculate the kinetic energy and poten-
even[odd] L we havep=(R’,S',J’) [p=(R’,S')]. The tial energy matrix eIement(sryi|T|wj> and(w;|U|w;). These N
“celebrated” theorer®?* states how many timea, each matrix elements are stored in the computer and thereafter it is
row of the irreducible representatiofi”) with character & Simple matter to pick any value bf/t and diagonalize the
x'?) appears in any given not necessarily irreducible repreHubbard Hamiltonianid = —tT+UU, using standard diago-
sentationl” with charactery: nalization routines. The calculation of the symmetry invari-
ant matrix blocks off andU takes the amount of time of the
order of one diagonalization.

1
a,=—2 f dgsf dg;x'* () x(y). (22
NL Gp SU(2) SU(2)

A. Spectrum and first-order perturbation theory
We now choosd” to be the followingN,-dimensional re- of the ground state

ducible representation: . . .
P In this section we discuss some features of the raw spec-

Ny trum of the Hubbard model. Only later in Sec. VI are we
T (y)=(|9i), — i1, 23 going to unfold the spectrum and look for universal features.
=D, x() 21< i) @3 As a function of the coupling strengtbl/t the spectrum

o ’ ] . ] clearly falls into three classes. In the weak-coupling limit
Inserting into Eq(22) thesex(y)'s which are directly linked  (y/t<wit), to be studied in more detail below, the spec-

to Hilbert space yield trum acquires a band widtW~32t. It consists of a number
Ny Ny M of well-separated minibands reminiscent of the huge de-
a1 A generacy at zero coupling due to size quantization. For
= (p)* —— ) : . .
a, JngXp (7)21 (il |Ri§1 (i1PeNi) intermediate-coupling strengthdU(t~W/t) the spectrum

. becomes rather featureless. No apparent gaps or bands
I o aren A emerge. In the strong-coupling limitJ(t>W/t) the spec-
:Ei21<||P(RR)®P(SS)®7)SJ i), (24 trum splits up into three well-separated bands centered
around the energigs/t=0,U/t,2U/t. These are the Hubbard
which is obtained by using x(y)=x(929s®9,) ba_nds corresponding to states containing zero, one, or two
= x(9) x(99) x(g;) and the definitions of the character pro- Pairs of electrons. In Fig. 4 are shown one typ|cal spectrum
jection operators. Note that only the space group projectioffom each of the three coupling strength regimes. .
needs a normalizing factor I%. The spin and pseudospin ~ We now focus on the weak-coupling limit where it
are both restricted to take only one value of their respectivéS natural to make Fourier transforms from real space to
z component; hence their normalizing factor is 1. momentum  space, cﬁgz(llL)Ejexpak- rJ-)c-Jr where

Jo

The initial size of the Hubbard Hamiltonian to be diago- k= (kX,k¥), with ké=27n/L and n=0,1,...,L—1. The

nalized is[L(L—1)/2]>. However, only states transforming eigenstates of the kinetic energy operatar are
according to the same row of the same irreducible represen-

tation p can have a nonzero matrix element. Hence the ko K1k, kg)=C] TE:E T&l l&l \lvag,
Hamiltonian matrix breaks up in blocks, one per representa- vorE e

tion, and within each representation a further division into 3

Iz equivalent blocks occurs. The relationship betwégn, —tﬂko,kl;kz,ka): —ZtE E(Ky)|Ko.K1;Kz,K3), (26)
ar,s,07)» andlgr isNy=2 g s ylrr@(rr 7,97y - This reduc- n=0

tion is considerable as shown in Table I.
E(k,) =cogk})+cogk?).

V. NUMERICAL DIAGONALIZATION The Pauli principle prevent&,=k; and k,=kj, and the
OF THE HUBBARD MODEL ground-state energi{®) becomes
The numerical calculation of the exact spectra of the Hub- E(Lo>: —12t—4tcog 27/L). (27)

bard model begins by determining the block s&gfor all
the irreducible representationg. Then for a given For large lattices this tends toward16t and results in a
p=(R’,S',J"), wherel’ is disregarded in case of odd an  bandwidthWw=32. For L=3, 4, 5, and 6, respectively, the
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FIG. 4. The integrated density of state§E) of the Hubbard model with four electrons on the<5 lattice for the irreducible
representationR,S)=(10,0) withU/t=0.1,10,1000. Fou/t= 0.1 the minibands are still clearly visible aN{E) is essentially featureless
for U/t=10, while forU/t=1000 the three Hubbard bands at 0, 1000, and 2000 appear. The insets are magnificilidgswfiere the
arrows point. The smootN(E) is added.

actual bandwidth§V/t are 20.0, 24.0, 26.2, and 28.0 while same form for L=3,5,6: (0,0,1,1;-1), (0,0,1-1,%),
the numbeM of minibands folU=0 are 7, 13, 42, and 29. (2#«/L,2/w/L,*,*, —1), (4=/L,0,*,1,*), (2m/L, 2w/

The limitation of perturbation theory is demonstrated by alL,*,*,1), and (0,0,1,1,), where the first set corresponds to
first-order degenerate perturbation calculation for the grounghe unique ground state. This result extends toltket lat-
state. Letp, be the one-dimensional momentum componentice when the actual space group is replaced by the one gen-
p_.=2m/L and construct the 5 two-dimensional momentumerated by{t,,ry.ty,ry,rq}. One state in thd.=4 triplet
vectors0=(0,0),9°=(p.,0), g*=(0,p,), g>=(—p,,0), and  ground state belongs to the (0,0,}511) representation and

q%=(0,—p,). The 16 statesu,\), defined as the other two states to (4L,0,1,1*). In all cases the
' " ground state is odd with respect to the diagonal reflection

|, \)=10; 050, ,qb, w,A=0,1,23, (29 rq4, which is understandable since that symmetry suppresses
) the ability of having pairs along the diagonal. Finally we
form the ground-state multiplet separated from the next mulngte that due to the aforementioned spin symmetry of the
tiplet by an energy gap EL=2t[A1—cos@L)]. In momentum  Hybbard model, the ground state of 8g=0 sector is in fact
space the interaction operatdiU takes the form a global ground state, and furthermore since it 8a&9, the
U same energy level does not exist in any otBgsector. Thus
ul= of el e 29 we can conc_lude that the global ground state in the generic
Fkl%,q ky+atkaTko—ql ¥kol @9 Case L+#4) is nondegenerate.
and after some simple algebra the matrix elements of the B. Remaining degeneracies

perturbation are found to be , .
After taking all the known symmetries into account and

" U after projecting into the symmetry-invariant subspaces, it
(MU0 &Ny = 15 (30m 8t Smeturn). (30)

0.7 T T T T
The eigenvalues can be found analytically, and we end up

with the following expression for the perturbed levels 0.6 |
E{*A(U) with degeneracies:

0.20

05} 018
(1) —g(0 U — = L=
ELp(UW) =B+ B2, B=3=7):4d=4):50=4),T(d=1)- S 04 F 016
0 0.08
(31 S o3}
Thus in first-order perturbation theory the ground-state de- L
generacy is partly lifted, leaving a sevenfold-degenerate 0.2 r
ground state fotJ >0. 041L
In Fig. 5 we compare the exact numerical calculation with
Eqg. (31) for L=5 and 6. Note especially how in the exact 0.0 L L ! .
calculation the degeneracy of the ground-state energy is 0.00 0.02 0.04 UAR 0.06 0.08 0.10

lifted completely. This is also demonstrated in Table II,
where it can be seen that also for=3 the ground Stat_e IS FIG. 5. The evolution of the 16-fold degenerated ground state
nondegenerate. However, th_e ground staté o4 remains multiplet as a function ofJ/L?. The exact numerical results for
threefold deggnerated even in the exact cglculanon. This rg-_g (dotted line andL = 6 (dashed lingsare contrasted with the
flects the particular symmetry of the# lattice, where the gt order perturbation calculatidisolid straight lines The inset is
hyperplane reflection;, leads to the existence of threefold- 5 magnification of that portion of the plot marked by a rectangle,
degenerate representations as shown in Appendix A. showing how the exact calculation leads to a splitting into three
Using the quantum numbers k(ky,by,by,c) of  submultiplets with degeneracies 1, 2, and 4 of the sevenfold-

Table V in Appendix B to interpret the representation degenerate perturbation theory ground state. The exact ground state
label R in Table Il we note that they are of the is nondegenerate. See also Table II.
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TABLE II. For U/tL2=0.02 the sevenfold-degenerate perturbation theory ground Sﬁ;gs given in
row P is compared with the exact energiEsof the 16 levels splitting off from théJ=0 ground state
E(LO) The degeneracies of the submultiplets are given by the dimehgiohthe corresponding irreducible
representatioiR of the space group. Note that except kor 4 the exact ground state is nondegenerate. Also
listed are the quantum numbeiR,§,J) of the levels.

L=3 L=4 L=5 L=6
No. Et (R,9)Ig E/t (R,S,J)g, E/t (R,9)lg E/t (R,S,J)Ig
P —9.94000 (—,—) 7 -11.94000 (—,—,—) 7 —13.17607 (—,—) 7 —13.94000 (—,—,—)7
0 -9.94122 (2,01 -11.94268 (9,063 —13.18059 (2,01 —13.94676 (4,0,16 1
1  —9.94110 (8,)4 —11.94232 (16,166 —13.18012 (4,12 —13.94617 (9,1,16 2
2 —-9.94097 (4,)2 —11.90425 (17,066 —13.18005 (10,) 4 —13.94606 (25,1,16 4
3 -9.92188 (504 —11.86560 (0,061 —13.16204 (7,004 —13.92870 (14,0,16 4
4 -9.90229 (7,0 4 - —13.14302 (9,004 —13.91032 (24,0,16 4
5  -9.86204 (0,01 - —13.10590 (0,001 —13.87494 (0,0,16 1

turns out that within each subspace some further degenera Sec. VI of the spectral statistics we throw away the inte-
cies remain. The reason is that the low filling of the latticegrable component and analyze only the generic noninte-
allows for a kind of restricted permutation symmetry for the grable component.

particle momentum components, resulting in energy eigen- The 7/() states are formed by specific superpositions of

states whiph are simultaneously eigenstqteﬁ ahdU an'd eigenstates of by permuting the eight momentum compo-
therefore independent & (though theJr Aagenvalues might nentskﬁ f=x,y andn=0, 1, 2, and 3, such that the sum of
depend onU). We denote such statddU states o),  cosines in Eq(26) remains unchanged. In the following we
where S is the spin andy the eigenvalue otJ. With four  mention some large classes of such states. The reader is re-
electronsy takes the valuey=0,1,2 corresponding to a su- ferred to Appendix D for details.

perposition of states containing exactlypairs, i.e., doubly First we note that for eveh proportionally many more
occupied sites. A generic energy eigenstate is nottastate  states remain degenerate as compared ¢ald. This differ-
and in that case we writg=*. In Table Il we show the ence is due to the momentum componkt 7, which only
number of generic energy eigenstates and states found ~eXists forL even. Because cos(-k) +cosk)=0 independent
numerically. The Hubbard model is thus partly integrable.of k, such terms drop out wheh is applied to a state con-
The spectrum of each symmetry-invariant subspace is a mixaining this combination and a certain degree of freedom is
ture of an integrable componefihe T/U stateg and a non-  left to form theT/U state superpositions. Starting with two-
integrable componergthe generic stat¢sand in the analysis pair statesy=2 we find exactly one energy eigenstate

TABLE Ill. For L=3, 4, 5, and 6 is shown the number of energy eigenstates found numerically in each
of the four main groups indexed by. The first group, denotegl=*, contains the generic energy eigenstates
that are not eigenstates 0f The three other groups, denoteet0,1,2, respectively, contain the nongeneric
T/0 states that are simultaneous eigenstated ¢ivith eigenvaluey) andT. In parentheses are given the
number of states that remain degenerated in the symmetry-invariant subspaces after taking the space, spin,
and pseudospin symmetries into account. Note howythé& states exhibit no further degeneracy. In the last
row denoted “%” are given the percentagespf * states out of the total number of states.

y S L=3 L=4 L=5 L=6
* 0 540/(0) 4169/(0) 31977/(0) 115896(0)

* 1 621(0) 4472/(0) 41662(0) 137199(0)

* 2 0/(0) 0/(0) 0/(0) 0/(0)

0 0 0/0) 1176(1143 523(316) 23555(23427
0 1 9(0) 2548/(2519 3188/(2823 60306(60160
0 2 126(80) 1820(1727 12650(12362 58905(58723
1 0 040) 94/(14) 0/(0) 408(247)

1 1 0/0) 120424) 0/(0) 6304420)

1 2 040) 0/(0) 0/(0) 0/(0)

2 0 0/0) 1/(0) 0/(0) 1/(0)

2 1 0/0) 0/(0) 0/(0) 0/(0)

2 2 0/0) 0/(0) 0/(0) 0/(0)

S

89.6% 60.0% 81.8% 63.8%
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FIG. 6. The spectral statistid(s), Az(\), andS2(\) for the invariant subspacdR(S)=(13,1) of the 5¢<5 lattice as a function of the
free parametex of the unfolding procedure using Gaussian broadening with variable width. In all three panels the valuesd&, 4, 5,
6, 8, 10, and 20. In the first panel six of the seven curves fluctuate aRtffqs), hardly visible as a smooth dotted line. In the two other
panels the Poisson case is given as a dotted straight line while the GOE case is given by a dotted smooth curve. For all data sets a few
representative error bars are shown.

|2=3). It depends on the momentum, and hence it exits question now arises as to how to choose the free parameter
only for evenL. Similarly, for one-pair states only evdn  « corresponding to how many energy levels each Gaussian
leads toT/0 states. A numbergf) of states|$2=1) can essentially spreads out over to each side. The problem we

easily be constructed. More care must be taken upon forminfc€ i illustrated in Fig. 6 where it is seen that although the
the corresponding=0 states. However, we have succeede evel spacing distributioP(s) is essentially independent of

. ; 2
. tructi Ivtically th b f st =1y ra. the ch0|c_e .ofa, both the number vquancE (\) and the
in constructing analytically the number of stafef§—) re spectral rigidityAz(\) vary with a. It is seen that\;(\) is

quired by Table Ill. Finally, for zero-pair states the existence I . 2

f th . ired to f hg /0 less sensitive to changesdnthanX“(\). The former seems
of t 1 mom_entumn IS not required to form t states, 4 saturate for large values af, while the latter continues to
but it certainly helps. Thus both even and odd value4 of

. : . row rapidly ase enhances. We have chosen that vaiye
lead to nongeneric energy eigenstates, but relatively mor f & which makesS 2(\) fit the corresponding GOE curve as
such states are found for evén It is easy to see that all

i ) i DN o well as it can. In general that leads &ag~4. We note that
states with the maximal spi6=2 areT/U states|$2=5).  for this choice ofe, As(\) is almost saturated, whilB(s)
This is a trivial consequence of choosing four different sitesemains unchanged. Thus, two of the three statistics are es-
(or momenta anci forming the superposition given in Eq. sentially independent of variations afarounda,, while the
(13). There are E( ) such states. The construction of statesthird is as close to the GOE behavior as it can be.
|df§zg/> with S'=1 or 0 is more cumbersome, and so in  To illustrate the importance of sorting the spectrum by
Appendix D we have only given two examples of classes od"OUP theqry we show in Fig. 7 the level spacing dlstr_lbutlon
such states. for L=4 with U/t= 10 for the case where all symmetries are
The main result of this section is that the degeneraciefken into account*full symm.”) and for the case with
that remain after space, spin, and pseudospin symmetry hal@wver symmetry(“low symm.”) where the spin and pseu-
been taking into account is related to a restricted permutatiodOSPin symmetries are being kept intact but where the space
symmetry of the momentum components. We have not foun§"0up has been reduced by replacing among the generators
the associated projection operators, but numerically and
partly analytically we have established the fact that the de-

generate states are simultaneously eigenstatés arfid U P(s)
with energiesE(U)=E(0)+ yU. By discarding these states
we end up with nondegeneratk-dependent states. It is the
spectral statistics of these states we analyze in the following

GOE, one spectrum
Hubbard, full symm. ——e—
Hubbard, low symm;-x--x- 7
« \GOE, two spectra -

07
0.6

section, and this analysis confirms our claim that all symme- 031,
tries indeed have been taken into account. 0.4 P
0.3
VI. SPECTRAL STATISTICS OF THE HUBBARD MODEL 0.2
Having sorted the spectrum according to all symmetries 0.1
including the restricted permutation symmetry of the mo- 0.0
mentum components the RMT analysis can be performed. As 00 o5 10 15 20 25 30

discussed in Sec. Il the first step is the unfolding of the
spectrum. There we mentioned how the unfolding procedure

is not uniquely determined, and so we turn to that problem FIG. 7. P(s) for .L:4 with U/t=10 is calculated after solrting.
first. the spectra using either the full symmetry group of the Hamiltonian

(©) or an symmetry group artificially lowered (*) as described in
the text. The full symmetry case compares well with the Wigner
surmise (smooth solid curve whereas the lower-symmetry case

We unfold the spectra by using the method of Gaussiamompares well with the distribution of two GOE spectra mixed with
broadening with variable width discussed in Sec. lll A. Therelative weights 0.72 and 0.28otted smooth curye

A. Optimization of the unfolding procedure
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FIG. 8. The probability distributiof(s) of the level spacings averaged over the largest symmetry-invariant subspaces for the Hubbard
model with four electrons on squalex L lattices. To the left is showR(s) as a function of lattice size at medium-coupling strength. The
data represenit=4, 5, and 6 ford/t=10.0. To the right is showiP(s) as a function of coupling strength at fixed low filling. The data
representy/t=0.1, 10, and 1000 fok =5. The solid line is the Wigner distribution found for GOE random matrices.

the special hyperplane reflectiop with the ordinary diago- ration sets in. For all values &f/t we find the critical value
nal reflectionry. For the full symmetry case a distribution A* where the departure from the GOE sets in to be roughly
rather close to the Wigner surmise is found, whereas th@. The precise origin ok* remains unclear.
level repulsion is partially lost for the low-symmetry case, Finally, in Fig. 10 are shown the results for the spectral
and the data fit reasonably well the distribution found byrigidity Az(\). As 32(\) alsoAg(\) displays an excellent
mixing two GOE spectrd with relative weights 0.72 and agreement with the GOE fot<\* ~2, for all fillings and
0.28. This makes sense since by lowering the symmetrjor all values ofU/t. The deviations from the GOE beyond
group artificially, spectra from the independent true\* are not so marked. The curves lie between the Poisson
symmetry-invariant subspaces are being mixed. For the moréne and the GOE curve, but rather close to the latter.
severe symmetry reduction where the pseudospin is alto- It is remarkable how the results for the three statistics
gether neglected and the space group is generated only byudied are fairly independent of the size of the lattice
{tx.ty}, we find the level spacing distribution to be the Pois-(equivalent to the filling and of the coupling strength. We
son (exponentigl distribution (not shown in the figure find GOE-like behavior not only for all finite values &f/t
including those close to the integraldle=0 limit, but also
- for filling factors as low as 0.06 close to the integrable
B. Statistics P(S), 2*(X), and Ag()) of the Hubbard model i 1o narticle limit. However, as is evident from the behav-
In this subsection we present the results of the spectrdbr of especially>2(\) at large energy scales, the Hubbard
statistical analysis of the Hubbard model at low filling. We model cannot be modeled exactly by a simple GOE random
present only results fdc=4, 5, and 6 sincé =3 yields too  matrix model.
poor statistics due to its small invariant subspaces. Besides
letting L vary we are also varying the coupling strength
U/t and present results for weak-, intermediate-, and strong-

coupling regimes fot =5. To improve on the statistics we  |n this paper the energy level statistics of the Hubbard
have averaged over the largest invariant subspaces. Fgfodel for LXL square latticesl(=3,4,5,6) at low filling
P(s) the sizesoP of the error bars shown in the figures are (four electrons has been studied numerically for a wide
estimated bysP;=C+/n;/h;, wheren; is the number of range of the coupling strength. With great care all known
points in bini of the associated histogram ahngis the width  symmetries of the modékpace, spin, and pseudospin sym-
of the bin, whileC is the normalization factor rendering a metry) have been taken into account explicitly from the be-
total probability of 1. Fors?(\) and As(\) the error bars ginning of the calculation by projecting into symmetry-
are estimated by ordinary variances obtained from the valuggvariant subspaces. The details of this group theoretical
calculated in the many contiguous intervals of length treatment were presented with special attention to the nonge-
throughout the unfolded spectrum. neric case ofL=4, where a particular complicated space
The results folP(s) are shown in Fig. 8. It is seen that for group appears. The resulting reduction of the numerical di-
all lattice sizes and for any value of the coupling strength theagonalization is significant, and the method presented can in
level spacing distribution is fairly close to the Wigner distri- a straightforward manner be extended to larger lattices and
bution of the GOE; it possesses a pronounced linear levedigher fillings and thus form the basis of improved numerical
repulsion for smalk, a peak neas=0.8, signaling spectral studies of the Hubbard model and related models without
rigidity, and a rapid falloff fors>2. disorder. In particular, this work can be used as a starting
In Fig. 9 is shown=?(\) of the Hubbard model for the point for calculating various spectral functions, for which
same parameters as fét(s) just mentioned. Whern\ is  explicit forms of the eigenstates are required. This will be
small the rigidity of the Hubbard spectrum is very close todealt with in forthcoming work.
that of the GOE random matrices, while for largea satu- For all the lattices studied a significant amount of levels

VIl. CONCLUSIONS AND DISCUSSION
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z2(1)
08t

Z2(A)

08 FIG. 9. The number variance
32(\) calculated for the same pa-
rameters as in Fig. 8. The data are
compared to the results of the ran-

dom diagonal matrix ensemble
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02 | UR=01 e | trix ensemble(GOE), shown as
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00 A A . R curved solid line, respectively.
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within each symmetry-invariant subspace remain degenethis sense the model seems always to be in the strong-
ated, but except fot =4 the ground state is nondegenerate.coupling limit.
We explained the degenerate states as a consequence of alLargely, our results show GOE behavior of the spectral
restricted permutation symmetry of the momentum compostatistics of the typical high-lying excitations of the Hubbard
nents. These states, all independentypfform an integrable model at low filling. This indicates that at least the incoher-
part of the spectrum, and after discarding them we end upnt part of the electronic spectral functiofrelated to the
with nondegenerate spectra on which the level statisticatoherent part describing the low-lying electronic excitations
analysis could be performed. through sum rulesis out of reach by standard methods. On
The intricate structure of the Hubbard spectra necessitateitie other hand, it should be possible to model this part by a
the development of a careful unfolding procedure as a prerandom matrix ansatz. This is in agreement with previous
paratory step before the level statistical analysis. The proceesults of thet-J model near half filling®> However, the
dure we arrived at tested favorably in many cases of pathosause of the deviations from the GOE we foundSiA()\)
logical spectra, and it seems to be very robust and applicabkend A;(\) beyond\* remains an open question. A similar
in general cases were no other natural unfolding procedurguestion has been answered in general for single-particle sys-
exists. tems with mean-level spacing: In disordered(metallic)
Finally, we have performed a level statistical analysis ofsystems\* A~#/rp, wherer is the time it takes a particle
the Hubbard spectra, and we presented results for the leved diffuse through the systeifi,whereas for purgballistic)
spacing distributiorP(s), the number varianc®?(\), and  systems\* A~7/r,, Wherer, is the period of the shortest
the spectral rigidityAs(\). The statistics for the different periodic orbit®® Results are also beginning to emerge for
lattice sizes and for a wide range of coupling strengths areisordered interacting lattice systems, wheteis related to
essentially the samé?(s) shows good agreement with the the ratioU/W between some interaction strendthand the
GOE. 3?(\) agrees only with the GOE up to the disorder-induced single-particle bandwidth®° For these
U/t-independent medium-sized energy scafe~2 beyond systems the deviations from the GOE are due to the prefer-
which a saturation sets i\ ;(A) also agrees with the GOE ential basis supplied by the given disorder potential. For ex-
for A<<\*. The deviation from the GOE beyond isnotso ample, the system consisting of two interacting particles in a
marked as that foE%(\). The curve falls between that of the disorder potentidf could be studied analytically by adding a
GOE and the Poissonian case, but rather close to the formerandom diagonal matrix modeling the disorder single-
We stress that these results were also obtained for very smadhrticle states to a random GOE matrix modeling the inter-
coupling strengths approaching the integrable zero-couplingctions between these states, and it was found 35éx)
limit. This emphasizes the nonperturbative nature of thdncreased as a power law far>\*. This behavior is in
model revealed by our analysis: Even the smallest deviationontrast to the saturation we fougske Fig. 9, which looks
from the integrable limits leads to spectral statistics usuallynore like the result of the ballistic single-particle cdsé.is
associated with nonintegrability and quantum chaos, and iperhaps not surprising that such a similarity exists between

83(R) Poisson Ut=10 Az(}) Poisson L=5 o
L - L FIG. 10. The spectral rigidity

A3(\) calculated for the same pa-
rameters as in Fig. 8. The data are
compared to the results of the ran-
dom diagonal matrix ensemble

02 02 |

01k '/ L=6 e 1 oal Ut = 1000 -mmrrmmm | (Poisson and the random full ma-
La5 oo 4 U204 oo trix ensemble(GOE), shown as
[T R— . - UMt = 0.001 e { the straight solid line and the
curved solid line, respectively.
0.0 . L L L 0.0
0 2 4 6 8 10 0 2 4 6 8 10
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the disorder-free chaotic single-particle case and the The first step in calculating the irreducible representations
disorder-free Hubbard model rather than between twdor G, is to construct the character tabé(a) of A. This is
strongly correlated systems one with and the other withoueasily found as the product of the character table
disorder. However, exactly what physical mechanism pro-
duces a preferential basis for the Hubbard model at low fill-
ing is not known, and neither is it known why a similar
mechanism is suppressed for thé model near half filling,  for z, with itself 4 times. The 16 irreducible representations
where much less pronounced deviations from the GOE argre identified by the indeg=(q;,9,,d3,d4), With ;=0 or
found?!® These questions are topics for future work. 1, and theqth characteryd(a) is given by the product of
a; to the powen; :

11
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The groupB is then written in a coset decomposition after

B(q'):
APPENDIX A: THE IRREDUCIBLE REPRESENTATIONS (q )
OF G, B=B(q")b®B(q')b,®---®&B(q")by:. (A4)

In Sec. IVA we showed how the grou, of the For ear_:h of theM’ coset representativdg an indexqj’ is
neighbor-conserving transformation of thex4 lattice is  determined such that
isomorphic with the point group of the four-dimensional hy- g -1
percube. In this appendix we determine the structure of this XHi=xt (bjab; ), for VaeA. (A5)
group and we sketch how the irreducible representations afgote thatb, is the identity and that; hence equalg’. The
found analytically. The fundamental simplification is the ob-set orb@’)={d;,q5, ... dy,.} is called the orbit ofq’.
servation thaiG, has the structure of a semidirect productNow pick a " outside orb@’) and repeat the procedure.
involving an invariant Abelian subgroup. The theorem of This is continued until each of the Ifs are associated with
induced representatiofican then be used to find all irreduc- an orbit. The last thing to do before constructing the irreduc-
ible representations. The theorem is stated below. The cooible representations @, is to find the irreducible represen-
dinate set of a corner in the unit hypercube in four dimen+ations A9'P of the little group B(q’). This is usually a
sions is given 8 a 4 bit binary number. Any transformation simple step due to the small size 6(q’).
of the hypercube can thus be written as a permutation of the The theorem of induced representatdnstates that all
4 bits followed by bit inversion (6-1) of all, some, or none jrreducible representationE%? of the semidirect product
of the bits. . . . A®B, A being an invariant Abelian subgroup, are found as
In what follows any quadruplexq,xz,X3,X,) iswritten in — ¢o10ws. (i) Pick oneq’ from each orbit.(ii) Construct the
shorthand notation as). The group of bit permutations is iije group B(q’) and its nF/) irreducible representations

of course the permutation groiy denoteds in the follow- P A A , )
ing to be consistent with Ref. 24, on which the group theo-A  P=1,... 0, (iii) Find theM" coset representatives

retical work in this appendix is based. Any elemért B is bjeB,] B L. M’ of f’,:wth respect to5(q’). .(IV) Then
written asb=(b,)=(by,b,,bs,by), listing the permutation the matrix elements df 9 P for elementab are given by
of the numbers 1, 2, 3, and 4. The group of bit inversions isfqrp(ab) _

denotedA. It is easily seen thatl= Z,® Z,® Z,® Z,, since KLir

bit inversions do or do not take place on each of the 4 bit Xq/(a)[Aq’p(bkbbf 1, i bkbbfleg(q,)
positions. Any elementae.A has the form a=(a;) = . o ! , v ! ’
=(a,,a,,a3,a,), with a;= =1, where+1 means no bit in- 0 if bbby “eB(q).

version and—1 means bit inversion. Any element of (A6)
€G,4 can be written ag=ab=(a;b;) and conversely all Here we will not give the explicit expressions of the irre-

productsabe G,. A contains 16 elements arflcontains 24 qycible representations @&,, but rather just briefly sketch
so thatG, contains 384 elements. It is readily verified thatthe construction of them and calculate how many there are
A is an Abelian subgroup o,. Furthermore,A is an in-  and what is the dimension of each of them.
variant subgroup since forVae4,YbeB: bab™! First we choseq’ =(0000). From Eq.(A2) it is easily
=b(a)b *=(ay;)bb '=(aps) e A. Finally, the only seen that y(©%a)=1 for VaeA. Hence
common element ofA and B is the identity. We can there- x99 hab~1) = (000 q) for Vae.4, VbeB, and ac-
fore conclude tha®G, is a semidirect product of the invariant cording to Eq.(A3) we find B(0000)=B. The coset repre-
Abelian subgroupA with B: sentation of3 consists of only one term and the single coset
representativé, is the identity. As a consequence we have
G,=ACB= (2,0 Z,8 Z,® Z,)OS,. (Al)  orb(0000)={(0000)}. Finally, the irreducible representa-



55 ENERGY LEVEL STATISTICS OF THE TWO- ... 9155

TABLE IV. The character table o6, defining the indexR for each of the 20 irreducible representations
and the indexC for each of the 20 classes. Colufi=0 contains the dimensidr, ranging from 1 to 8 of
the representations.

RCO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 11 1 1 1 1 1 1 1 1 1-12 -1 -1-1-1-1 -1 -1 -1
2 11 1 1 1 1 1-17-1-12-1 1 1 1 1-1-1-1-1 -1
3 11 1 1 1 1 1-17-1-17-1-1-1-12-1 1 1 1 1 1
4 2 2 2 2 2-1-12 0 O O O O O O O 1 1-2 -2 -2
5 2 2 2 2 2-1-12 0 O O O O O O O-12-1 2 2 2
6 3 3-1. 3-12 o o 1 1-17 1-1-1 1-1 O O 1-3 -3
7 3 3-1. 3-12. o0 0-17-172 127-172 1 1-12 1 O O 1-3 -3
8 3 3-12. 3-12. 0 0-127-17 1-1-1-1 1-1 O O-1 3 3
9 3 3-12. 3-12 0 0o 1 1-17 1 1 1-1 1 O O-1 3 3
l°o 4-4 0 0 0 1-12-2 2 O O 2-2 0 O0-12 1 0-2 2
117 4-4 0 0 0 1-1 2-2 0 0-2 2 O O-12 1 0-2 2
2 4-4 0 0 0 1-2 2-2 0 0 2-2 O O 1-1 0 2-2
3 4-4 0 0 0 1-2-2 2 O 0-2 2 O O 1-1 0 2-2
4 6 6 2-2-2 0 0 O O O 0-2-2 0 2 O O O 0 O
5 6 6-2-2 2 0O 0-2-2 0 2 0O O O O O O O o0 O
6 6 6-2-2 2 0 O 2 2 0-2 0 O O O O O O o0 O
7 6 6 2-2-2 0 0 O O O O 2 2 0-2 0 O O o0 oO
8 8-8 0 0 0-1 12 0 0 O O O O O O 1-12 0 -4 4
9 8-8 0 0 0-1 1. 0 0O O O O O O O-2 1 0 4-4

tions A% of B(0000) are simply those #=S, (or Ty asthe  orb(0111)={(0111),(1017,(1101),(1110)} andB3(1000) is
group also is Ca"e%ﬁ)’ i.e', there are ﬁve differemop ma- isomorphic W|thC3U . We end Up with three more irreducible
trices with dimensions 1, 1, 2, 3, and 3, respectively. Fronfepresentation§ (>t of G4 with dimensions 4, 4, and 8,
Eq. (A6) we find thatj,k=1 and thus we have found five hz(il\i%? entries of Ox(O11UATP, (LOILATP 5 (H1ODALP - of
irreducible representations &, with dimensions 1, 1, 2, 3, X AP )
and 3 of the formi(0%00P(g ) = (0000 ) A OP(b) The last choice fog’ turns out to bey’ =(0011), and we
! H 0011 -1y — H 0011

Next we chooseq’=(1111). We find that, forva ?bt@” X! " _f)(b%b l)—_]cakr;%)abu)’ ‘t’Vh'_Chtr?q“a'_s)él( ) )(.";‘r)]
e A VbeB yMbab Y=I.al =1 a = y11)a). or Vae Aif and only i oes not mix the pairél,2) wi
So in analogy )Jvithq’(z(ooog)) wle ki’glé)lVdgélil])_()ZB (ar)1d (3.4 It Iﬁ' eas_ll%/ ;eer%thaﬁ(gmhl) |sha fo:r-elerg_ent gr_oupI
X i N . . isomorphic with Z,® Z,, and thus has 4 one-dimensiona
U\fi?h b?jfi?rzgnvs\,/iinﬂsnd 1f|ve1 wre;duc;blea:]%pressegtfatl?hn; @% m irreducible representations?®. The coset representation of

X , B consists of six terms in this case, and
TEHP(ab) = x (@) A®(b), with the same\°P matrices o1 0011)-{(0013), (0103, (0110, (1003, (1010, (1100}
but differenty prefactors as f‘?q =(0000). _ At this point we note that all 16 possible valuesgf now

We go —on with g 2(1090%%- This yields  are a member of an orbit. The six coset representatives com-
X1 bab ™) =ay ) which equalsy*°®Xa) for Vac Aif  pined with the 4 one-dimensional irreducible representations
and only ifb(1)=1. ThusB(1000) is the six-element sub- of 5(0011) yield through Eq(A6) four new irreducible rep-
group of B which leaves the first axis invariant. The cosetresentations 06, each being six dimensional and each hav-
decomposition of3 contains four terms with coset represen-ing entries of the form 0, y(1100A2P  (1010A2p
tatives that each leaves one of the four axis invariant. Noj(100DA 2P, (0110A2p , (010DA2P - g 4 (001DAZP “|n conclu-
surprisingly we find orb(10063{(1000,(0100,(0010), sion we see thaG, has 20 irreducible representations with
(0001). The little groupB(1000) is isomorphic withC;,  the dimensions listed in the first column of the character
and has thus three irreducible representatiéf® with di-  table shown in Table IV. This result is to be contrasted with
mensions 1, 1, and 2, respectively. This combined with théhe list of representation dimensions given in Ref. 20, where
fact that indexj .k in Eq. (A6) runs over the four coset rep- Only translations and reflections are taken into account in the
resentatives means that we have found three more irreducibfalysis of the space group of the<4 lattice. Note espe-
representation§ (1°%% of G, with dimensions 4, 4, and 8, cially the three- and 'S|x—d|r'nen3|onal representations found
and with entries of the form Oy(000ALP (01005 1p here as opposed to dimensions equal powers of 2 in Ref. 20.
X(OOlO)Alp' or X(OOOl)Alp‘

Then we consideq’=(0111). The charactex? now
gives x“"bab ') =ap)apz)ana) Which as above
equalsy(®**(a) for Vae A if and only if b(1)=1. The rest The irreducible representatiorR of the space groups
of the analysis is similar as the previous case:G, with L=3,5,6 can be derived analytically following Ref.

APPENDIX B: THE IRREDUCIBLE REPRESENTATIONS
OF Gg, G5, AND Gg
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TABLE V. The irreducible representatiofsof G, for L=3, 5, and 6, their corresponding quantum numbkysk, ,b, ,b, ,c), and their
dimensiondz. The symbol * refers to indefinite reflection quantum numbers.

3X3 lattice
R 0 1 2 3 4 5 6 7 8
Ky 0 0 0 0 0 2 2w 2w 2
3 3 3 3
Ky 0 0 0 0 0 0 0 2 2
3 3
b, 1 -1 1 -1 1 * * * *
by 1 -1 1 -1 -1 1 -1 * *
c 1 1 -1 -1 * * * 1 -1
Ir 1 1 1 1 2 4 4 4 4
5X5 lattice
R 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Ky 0 0 0 0 0 2 2 41 4 2 2 A 4 2
5 5 5 5 5 5 5 5 5
Ky 0 0 0 0 0 0 0 0 0 2 2 A7 A A1
5 5 5 5 5
b)( l _1 1 _1 l * * * * * * * * *
by 1 -1 1 -1 -1 1 -1 1 -1 * * * * *
c 1 1 -1 -1 * * * * * 1 -1 1 -1 *
IR 1 1 1 1 2 4 4 4 4 4 4 4 4 8
6X6 lattice
R o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
ke 0O = 0O0@x O w O = =« O w @« @« @ 2w 27 =« =« @« @ 2w 2w 27w 27w w W
3 3 3 3 3 3 3 3 3 3 3 3 3
kk 0 # 0O0n7 O # O # O O O # O O O O = =« 0 O @ =& 27 2w @ m 2w
3 3 3 3 3
h, 1 -1 -11 1-1-1 1-1 1 1 1 -1 1 * * ook ox ok kX ¥ * ook k%
b, 1 -1 -11 1-1-1 1 1-11-1-1-11 -1 -1 1 1 -1 -1 1 * ook ox %
C 1 1 1 1 _1 _1 _1 _1 * * * * * * * * * * * * * * 1 _1 1 _1 *
lg 2.2 21 1 1 1 1 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 8

20. In Table V each of them is specified by the lattice sizeif f,=0, we are done; if not, we continue by applyifigto
L and by its representation quantum numbers g, ) and expand the result drbo), |$1). The rest term is
(kx ,ky va ,by ,C) related to the translation and reflection OpP- now denoted2| ¢2>' Where| ¢2> is a unit vector perpendicu-

erators{t,,t,,ry,ry,rq}, respectively. Furthermore, the di- |ar to both| o) and|¢,) andf, is a prefactor:
mensiond r of the representations are listed.

APPENDIX C: PROJECTION OPERATORS Ol¢1) <¢o|o|¢1>|¢o>+<¢1|0|¢1>|¢1>+f2|¢2>-(C2)

OF CONTINUOUS SYMMETRIES

Since we are working in a finite Hilbert space, this process is
uaranteed to yield a zero rest term aftdr steps, i.e.,

m=0. The setSs(|do))={|d0).|#1), ... |du-1)} thus

There exist several methods for calculating the projectio
operators corresponding to a continuous symmetry given b

a Hermitian operato0; here we think of0 as being either yields the smallesD-invariant subspace containing the start-

the spir} operatof? or the pse_eudospin operata?. In 'ghis ing vector| ¢o). The symmetry operatcfb is then diagonal-
appendix we present an algorithm based on successive appIIEed within So (| o)), vielding the eigenvalues, and eigen-

cations ofO. Let | o) be a given normalized state we want vectors| wy):

to project into O-symmetry-invariant subspaces. Whén

acts on|¢g) a term proportional with ¢,) is generated to- R M-1

gether with a rest term. The rest term is dendtgd,), and Olwy=wdwy), with o= > cald). (CI
it defines a new unit vectdkp,) perpendicular td¢) while 1=0

f, is a prefactor: o op ] - ) )
The prOjectlonpé of |¢g) into the O-symmetry-invariant

O| o) ={ po| Ol po)| o) + f1| b1)- (C1)  subspace corresponding to the eigenvalyds thus simply
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(,l)k _
P do) = Ciol wi)- (CH MW:E e aglk b1 5 la bia,d)
a

Based on this equation we find the expressions for the pro-
jections in spin space, Eq$11)—(13), and in pseudospin
space, Egs(16)—(21).

1
=2 [pkim=p.a=k) = 2 [prim—pa-r).

(D2
Note how the double sum in E€D2) involves allk vectors
APPENDIX D: SIMULTANEOUS EIGENSTATES ]?”t that it only d‘?pe“dsb_oq-_To O?ta'”ﬁzl we simply
OF T AND U orm antisymmetric combinations of such states:
In this appendix we present the analytical construction of |‘/’k7q>:|¢kq>_|’//<qfk>q>
simultaneous eigenstates Bfand U. The existence of these
states explains the remaining degeneracies in the symmetry- =2 (Ip.k;m—p,a—k)—[p,q—k;7—p,k)).
invariant subspaces, and thépund numerically are listed P
in Table Ill grouped after the) eigenvaluey (=0,1,2 for (D3)

four-electron systemsand the spirS. We denote these states First, we note thatzp[q)qﬁo if and only if g# 2k. Second,
T/U states of ). A priori, eigenstates df) are most con- since only permutations of the vectdtsand (q—k) are in-

veniently described in real space whereas eigenstatds of volved, we find that H|gy,)=E[iq). And  third,
are naturally given in momentum space. To require a state 85|} = — |#/). Thus we have found LHhT/0 states
be aT/0 state imposes severe constraints. Below we find#2-1). This yields exactly the number of states listed in the
many of these states analytically. Since in the following wey=1/S=1 row of Table III:
will be using both real space states and momentum space y=1\_ | - D4
states, we will reserve the letteas b, ¢, andd for sites in L2 _|‘/’k‘1>' (D4)
real space and the letteks g, p, andr for momenta. The stateg#%=5) must be sought among linear combina-
We begin from below in Table Il by studying two-pair tions 0f|¢k+q> defined as
states, i.e.;,y=2. In a naive sense, such a state must be a
superposition of extremely localized states in real space or |l/fk+q>=|l//kq>+|¢<q—k>q>
correspondingly of very out-spread states in momentum
space. This involves superpositions of many states with dif- => [|p.k;7m—p,q— K)+|p,q—k; 7—p,k)]
ferent wave vectork and hence different energies given by P
Eq. (26). It turns out that to obtain an energy eigenstate state 2
only states wherek enters together withm—k, where — —22 |p,r;7—p,q—r). (D5)
= (m, ), can be used since c#§+cosr—ké)=0, and L%
consequently these states only exist for eiellVe construct  The problem now, however, is that the double sum does not
the desired stathyZ=3) by superposing two-pair states: vanish, hence preventing the state of being an energy eigen-
state. Only upon forming differencégy,) —|i.o) with k’
#k can we get rid of it. But the r(zsulting sgtateg will only be
-2 i (at . . an energy eigenstate i ,[cosk®)+cos@—k?)] equals
|¢§:o>=§ el b)la,b'a'b>=k2p kpim—km=p). 5 fcoskd)+cosi—k)]. This is easily obtained if
(D1  k'=(g*—Kk*K’), since then we are only permuting the mo-
mentum components.

From the real space representation it is seen immediately that |l/f§:cl) :|'70k+q>_ | iﬁ;/q). (D6)

Olyd=8)=2|y2=5) and thatPQ)|y2=3) =|¢Z=5), while the By accident there can also exist other valueskbfwhich
momentum  space  representation  directly  yieldsyfij| the requirement, and besides combine pairs such as
T|y3=6)=0[¢Z=5). In fact, as can be seen in the rows | )~ #y,q) We can also in some cases combine three
y=2 of Table IIl, this is the onlyT/U state withy=2; e.g.,  states, 2¢/;;q>—(|</f;q>+|z/f;,q)). or four, (]lﬂ;q>+|l/fk+/q>)

it is easily seen from Eqg11)—(13) that noy=2 state can _(|¢;q>+|¢,;,q>), or even more. By a straightforward com-
have S=1 or 2. Note how|y{=5) is independent of the pinatorial search we find the number of states listed in the
coupling strengtiU, but that its energy i&) dependent and =1/S=0 row of Table IIl, and we have thus identified all

of the formE(U) =E(0)+2U. states in they=1 rows, and found them to be independent of
HaViﬂg eXplained th@/=2 rows of Table Ill we turn to U but with an energy dependence of the form

the y=1 rows. From Eqs(11)—(13) we find that there exist E(U)=E(0)+U.

no y=1 states withS=2. To find the y=1 states with Finally, we turn to they=0 rows of Table Ill. First we

S=0,1 we construct stateg,) which manifestly contains note that allS=2 states of the systems are found here. This

exactly one pair, such thﬁl|¢kq>:|¢kq): is easily proved by noting that the states with
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(S,S,)=(2,0) are formed by ap_plylng the spm-lowermg_ op- ﬂ‘g"’|kl,k2;k3,k4>=|k1,k2;k3,k4>
erator S_ (which commutes withH) twice to states with

(S,S,)=(2,2). But the latter states cannot contain any dou- + | s5(kq), m5(Ko) Ka,Ka)

bly occupied sites since that would yield a lower than maxi- _

mal value ofS,. Clearly, these states as well as their ener- ke Kz 7a(Ks), mo(Ka))

gies are independent &f. Then we consider a large class of +]ms(Ke), ma(Ka); ms(Ks), 7 5(Ka)),
energy eigenstates wit6=0,1 andy=0, which does not o

require the momentum component and which therefore f[g"’|kl,k2;k3,k4):|775(k1),k2;775(k3),k4)
accounts for degeneracies for any value lof Writing

[(K*,kY))=|k*)®|kY) we constructy=0 stateg ¢) obeying +|ms(ky) ka1 Ks, 75(K4))
U|#)=0 by symmetrizing one component, say, theom- + Ky, 7 5(Kp); 77 5(Ka) Ka)

ponent, and letting®?) act on the other:
+1ky,75(k2) kg, 7 5(Ka)).

| )= KY k3 k3, ks P [KY kS kY, KY), (D10)
[5G 5 S K= KK RS k) + KK K KS) Direct inspection show@(ﬁg"’— A?")|kl,k2;k3,k4)zo,
and by enforcing certain constraints on all eight momentum
+ K3, K1 Ks k) + K5 K K KD components this state also becomes an energy eigenstate

(D7)  with energyE =0, while applying the projectoPs’ renders

. . . the correct spirb=S':
Since only momentum permutations entes) is clearly an P

energy eigenstate. The proper spin states are found by the |¢V:°,>=ﬁ§'>(ﬁgv”—ﬁ?")|kl,k2;k3,k4>,
standard projections: =
with

[WZe) =P ¢). (D8)

Simple combinatorics yields 0, 30, 300, and 16860
states and 0, 90, 1050, and 6386 1 states folL=3, 4, 5,
and 6, respectively. In analogy with thg=1 case many

more T/U states can be constructed for=4 and 6 and
y=0 when the momentum vecter is taken into account.
We give one example of a class of such states. For a giv
momentum vectok = (k*,k¥) we define fors=x,y,xy the

K=m—k/, n=1,2,34. (D11)

Finally, we note that for lattices containing the momentum
7/2 as is the case far=4, even morel/U states can be
constructed, in accordance with Table Ill. An example of this
can be obtained from EqD11). If, for example, we let
5=x, then it suffices to enforce the constrakjt= =+ /2
nile allowing any value for thg components. The result is
energy eigenstates with enerffy=X ,cos().

functions 7 5(k), ~ ~
We conclude that many of th&/U states|4%) found
m(K)=(K+m,K), m(k)=(K'K'+7), numerically have been constructed analytically, and in agree-
ment with the numerical findings all these states are indepen-
yy(K) = (K*+ 7,k + ), (D9) dent of U, while their energies are of the form

) ) - E(U)=E(0)+ yU. The analytic constructions reveal that
based on which we introduce two operatdi;'” and  these states are due to a restricted permutation symmetry for
mge: the momentum components of states in momentum space.
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