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Abstract. – The entire energy spectrum is calculated numerically for the two-dimensional
Hubbard model on square lattices with four electrons varying the interaction strength U in a
wide range. Taking all symmetries explicitly into account a level statistical analysis is performed
on this strongly correlated 2D system. The level spacing distribution and the number variance
exhibit a random matrix (GOE) behavior for all positive values of U , the latter however only
up to a medium energy scale λ∗ ≈ 3 independent of U .

The surprising discovery of high-temperature superconductivity in complicated cuprates
containing planes of conducting electrons has renewed the interest in the study of two-
dimensional strongly correlated electronic systems. One of the simplest models describing
such systems is the Hubbard model [1], but in spite of its apparent simplicity this model turns
out to be extremely difficult to fully understand (see, e.g., the recent reviews ref. [2], [3]).
This is mainly due to the lack of a small parameter which makes the use of well-established
perturbative methods highly questionable. In this state of affairs the importance of performing
numerical calculations of the spectrum for finite clusters has grown.

We study the spectrum of the two-dimensional Hubbard model using a random matrix
analysis [4] of the spectral statistics thereby extending previous work on 1D systems [5]-[7]
to 2D. For the 1D systems there is a growing evidence for the following fact concerning the
distribution P (s) of the energy level spacings s: if the system is integrable, e.g. by the Bethe
ansatz, P (s) = e−s (the Poisson distribution as for the random diagonal matrix ensemble),
while if it is non-integrable P (s) = (sπ/2) exp[−s2π/4] (the Wigner distribution as for the
Gaussian Orthogonal Ensemble (GOE)). Our random matrix analysis is not restricted only to
comprise P (s) since several statistical processes with the same short-range correlations lead
to that level spacing distribution. We, therefore, also study the number variance Σ2(λ) which
includes long-range correlations [4].
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The model. – In this paper we study the one-band Hubbard model containing nearest-
neighbor hopping and on-site interaction:

Ĥ = −tT̂ + UÛ ≡ −t
∑
〈i,j〉,σ

ĉ†jσ ĉiσ + U
∑
i

n̂i↑n̂i↓ . (1)

We treat the case of two-dimensional L×L square lattices with periodic boundary conditions,
and to investigate the low-filling properties of the model close to but not in the integrable
dilute limit (L→∞) [8], we restrict ourselves to four electrons. We let L vary from 4 to 6 and
obtain the filling factors 0.13, 0.08, and 0.06, respectively. The periodic boundary conditions
lead to the largest possible space symmetry group, a feature essential to our study.

Group-theoretical and numerical analysis. – A careful group-theoretical analysis enables
us to sort the states with respect to all known quantum numbers. This is not only a
prerequisite for the analysis of the spectral statistics, but it also makes possible the numerical
diagonalization of the Hubbard Hamiltonian on lattices as big as the 6× 6 square lattice. We
construct the symmetry projection operators corresponding to all known symmetries of the
model and use them to project into symmetry-invariant subspaces of the full Hilbert space [9].
For our study it is essential to keep all symmetries in the model, rather than adding extra terms
to Ĥ and sorting out the symmetries after diagonalization as is commonly done. This makes
the group-theoretical analysis more complex, but it leads to larger reductions, and yields more
precise numerical results. To further facilitate the calculation of spectra for arbitrary values of
U/t, we calculate and store matrix elements of the operators T̂ and Û rather than of Ĥ. Then
for any given value of U/t the spectrum is calculated by standard numerical diagonalization
of −tT̂ + UÛ [10].

The first symmetry we consider is the space group GL of the lattice. It consists of all
permutations g mapping any neighboring sites i and j onto neighboring sites g(i) and g(j).
In a straightforward manner an operator ĝ in the Hilbert space can be associated to each
element g of GL thus forming a group ĜL of operators. For any lattice size GL has been
analyzed in detail in ref. [11]. It was found that GL = DL⊗DL©s Z2, where DL is the dihedral
group of index L, and each irreducible representation was related to the momentum of the
eigenstates. However, this result is not valid for the special case L = 4. In this work we use
the correct G4 which turns out to be isomorphic with the group of transformations of the 4D
hypercube [10], [12]. To deal with the space symmetry, we employ the projection operators
P̂(R)
k of row k in representation R of GL having the usual form lR

h

∑
g Γ

(R)∗
kk (g) ĝ [9].

Next is the SU(2) spin symmetry. Ĥ commutes with the total spin Ŝ and with the
corresponding raising and lowering operators Ŝ+ and Ŝ−, so without loss of generality we
work in the Ŝz = 0 sector; the spectra of the other sectors are trivially constructed using Ŝ+

and Ŝ−. Moreover, Ŝ commutes with all operators of ĜL, and the combination of the two
groups is a direct product. The spin symmetry of four-electron states is dealt with through
the projections P̂(S)|a ↑, b ↑, c ↓, d ↓〉 having the form

∑
π α

π
abcd|πa ↑, πb ↑, πc ↓, πc ↓〉, where π

is a permutation of the sites abcd [10].
The last of the known symmetries is the SU(2) pseudospin symmetry [13]. It exists only

for bipartite lattices, which for periodic square lattices demands L to be even. The generators
of the SU(2) pseudospin symmetry are Ĵ− =

∑
i(−1)iĉi↑ĉi↓, Ĵ+ = Ĵ†−, and Ĵz = 1

2 (N̂ − L2),
where N̂ is the electron number operator. The pseudospin Ĵ commutes with Ĥ as well as
with all ĝ ∈ ĜL and Ŝ. For Ĵ we find the projection P̂(J)|a ↑, b ↑, c ↓, d ↓〉 to be of the form∑

π β
π
abcd|πa ↑, πb ↑, πc ↓, πc ↓〉, where πaπbπcπd are sites related to abcd by the pair hopping

operator Ĵ+Ĵ− + Ĵ2
z − Ĵz [10].
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A detailed analysis shows that combining the spin and the pseudospin symmetries yields
an SO(4) symmetry rather than an SU(2) ⊗ SU(2) symmetry [14]; however, the projection
operators still form direct products. The full symmetry group for even L is G = GL ⊗ SO(4),
and in addition to the principal energy quantum number n the states are labeled with the
three quantum numbers R, S, and J corresponding to the total projection operator P̂(R)

k ⊗
P̂(S) ⊗ P̂(J). For L odd G = GL ⊗ SU(2), and only R and S are defined. In row 2 and 3 of
table I we show the dimension of the total Hilbert space and the much smaller dimension of
the largest symmetry-invariant subspace found by the group-theoretical analysis.

Finally, after numerical diagonalization of Ĥ in each invariant subspace, simultaneous
eigenstates of Ĥ and Û are discarded from the level statistical analysis since such states
are unaffected by the interaction. We note that all states with maximal spin (S = 2) are
among these states. In row 4 of table I we show that no degeneracy remains after projecting
into the symmetry-invariant subspaces and discarding U -independent states. In the following
three rows of table I we list for completeness the number of U -independent states (the Û -
eigenstates) for each of the three possible Û -eigenvalues λU . Note that among these states
some degeneracy remains even after the symmetry projection. The main result of this section
is that no degeneracy remains among the U -dependent states within each invariant subspace;
and consequently we are in a position to perform the level statistical analysis.

Table I. – For L = 4, 5, and 6 the dimension dim(H) of the total unreduced Hilbert space and the
dimension dim(I) of the largest symmetry-invariant subspace are shown. Furthermore, in the row
U-dep we show the number of U-dependent energy eigenstates while in the rows λU we show the number

of U-independent energy eigenstates also being eigenstates of Û with eigenvalue λU . The columns
non-d/deg refer to the number of (non-)degenerate states within the symmetry-invariant subspaces.

L = 4 L = 5 L = 6

dim(H) 14400 90000 396900
dim(I) 146 1794 5490

non-d deg non-d deg non-d deg

U -dep 8641 0 73639 0 280042 0

λU = 0 155 5389 860 15501 376 116167
λU = 1 176 38 0 0 99 207
λU = 2 1 0 0 0 1 8

Level statistics. – The first step in the level statistical analysis is the “unfolding” of the
spectrum in order to transform the energies En into “reduced energies” εn of constant density.
This amounts to carefully computing an average cumulative density of states Nav(E) from the
actual cumulative density of states [4]. In the limits U ¿W and U ÀW , W being the band
width, large gaps appear in the spectrum. For small U these gaps are due to the finite size of
the lattice while for large U they are due to the formation of well-separated Hubbard bands.
To unfold the spectrum we employ the method of substituting the delta-function peaks of the
density of states with Gaussian peaks of finite width σ. For each subband q separated by the
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Fig. 1. – The probability distribution P (s) of the level spacings s in the unfolded 5 × 5 Hubbard
model spectrum averaged over all symmetry sectors in the three cases of small, medium, and large
interaction strength U/t. The full line is the Wigner distribution found for GOE random matrices.

gaps we choose a Gaussian width of the form σq = C∆q, where C is a constant and ∆q is the
average level spacing within the subband. We find that the level spacing distribution P (s) is
fairly independent of the actual value of C whereas the number variance Σ2(λ) depends on
the choice of C. We, therefore, select that value of C which leads to the best fit of Σ2(λ)
to the corresponding GOE curve. This unfolding procedure was tested for an ensemble of
GOE random matrices and it was found to agree very well with the unfolding based on the
semi-circular density of states.

To study the statistical properties of the spectrum at small energy scales we calculate P (s).
The result for three different values of U/t spanning four orders of magnitude is shown in fig. 1.
In all three cases P (s) is close to the Wigner distribution; it possesses a pronounced linear
level repulsion for small s, a peak near s = 1 signaling spectral rigidity, and a Gaussian tail.
At this level of the analysis we find no significant difference between RMT and the spectrum of
the Hubbard model. We, therefore, proceed to study the statistical properties of the spectrum
on larger energy scales and higher correlation choosing to focus on the number variance Σ2(λ)
defined as the variance of the number ν(ε, λ) of unfolded energy levels in intervals of length λ
around the unfolded energy ε [4]:

Σ2(λ) =
〈
(ν(ε, λ)− λ)2

〉
ε
. (2)

The brackets denote an averaging over ε. Figure 2 shows Σ2(λ) of the Hubbard model for
U/t = 0.1, 10, and 1000 averaged over all symmetry sectors. When λ is small the rigidity of
the Hubbard spectrum is very close to that of the GOE random matrices, while for larger λ a
saturation sets in. For all three values of U/t we find the critical value λ∗ where the departure
from GOE sets in to be roughly 3. We note that this behavior is qualitatively different from
that found recently in a system consisting of two intacting particles in a disordered environment
in 1D. In the latter system Σ2(λ) were found to break away from the GOE curve at λ ≈ 1 with
a power law increase [15]. We can conclude that only up to a medium energy scale λ∗ ≈ 3 a
true RMT behavior of the Hubbard model is found. This conclusion also holds for the L = 4
and 6 lattices.
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Fig. 2. – The number variance Σ2(λ) of the unfolded 5 × 5 Hubbard model spectrum for U/t = 0.1,
10, and 1000 averaged over all symmetry sectors and compared to the results of the random diagonal
matrix ensemble (Poisson) and the random full matrix ensemble (GOE).

Conclusion and discussion. – The exact spectrum of the 2D Hubbard model at low filling
has been calculated numerically by projecting the Hamiltonian into invariant subspaces of all
the known symmetries for a wide range of U/t and for three different square lattices.

For the first time the commonly used statistical analysis of random matrix spectra has been
applied to a strongly correlated 2D fermion system. The level spacing distribution P (s) shows
an excellent agreement with RMT. However, the number variance Σ2(λ) agrees only with RMT
up to the U/t-independent medium-sized energy scale λ∗ ≈ 3. Beyond λ∗ a saturation sets in,
an effect to be studied further in forthcoming work. We stress that the GOE-like behavior at
small energy scales has been found not only for all finite values of U/t including values close
to the integrable U/t = 0 and U/t = ∞ limits, but also for filling factors as low as 0.06 close
to the integrable dilute limit (L → ∞). This emphasizes the non-perturbative nature of the
model revealed by our analysis: even the smallest deviation from the integrable limits leads to
spectral statistics usually associated with non-integrability and quantum chaos.
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