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Abstract

This is a numerical study of an acoustofluidic device with an imposed temperature gradient
in the horizontal direction. The device simply consists of a water-filled microchannel
embedded in an elastic solid, which is actuated in the MHz-range to induce standing
acoustic waves inside the channel.

The imposed temperature gradient induced gradients in the density and compressibility
of the fluid, which gave rise to an acoustic body force in the bulk in the direction of the
high temperature region. This force changed the acoustic streaming for the vertical half-
wavelength mode, while hardly affecting those of the horizontal modes—although, for
these two, the streaming did increase in the high temperature region and decrease in the
low temperature one slightly. The streaming for the vertical mode transitioned from the
characteristic four stream rolls along the sides of the channel to a horizontal streaming
via the anti-nodes toward the high temperature region and a streaming via the node back
to the low temperature region. The streaming via the anti-nodes was driven by the body
force, but the streaming via the node occurred due to mass conservation. The body force
was strongest in the anti-nodes because the compressibility of water is more temperature
sensitive than its density.

Finally, the prospect of using this streaming to separate particles in the horizontal
direction based on their acoustic contrast factor was discussed. At best, it could improve
the succes rate at separating particles of different contrast factors by also separating them
in the horizontal direction.
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Resumé

I dette bachelorprojekt studeres en akustofluidisk mikrochip med en p̊atrykt temper-
aturgradient i den horisontale retning i simuleringsværtøjet COMSOL Multiphysics 5.6.
Mikrochippen best̊ar af en vandkanal, der er omsluttet af et elastisk materiale, der aktueres
i MHz-omr̊adet, s̊a st̊aende akustiske bølger fremkommer i kanalen.

Den p̊atrykte temperaturgradient fremkaldte gradienter i vandets massefylde og kom-
pressibilitet, hvormed en akustisk kraft i retningen af den høje temperatur fremkom.
Denne kraft ændrede den akustiske strømning for den vertikale halvbølge-egentilstand,
mens strømningerne for de horisontale egentilstande var hovedsagligt uberørte. Strømningen
for den vertikale egentilstand ændrede sig fra de karakteristiske fire ruller langs siderne
p̊a kanalen til to horisontale strømninger via bølgetoppene i retningen af den høje tem-
peratur, hvorefter de vendte tilbage via knudepunktet i retningen af den lave temperatur.
Kraften var stærkest i bølgetoppene, for kompressibiliteten af væsken var mere følsom
overfor temperaturændringer end dens massefylde.

Til sidst blev strømningen kort diskuteret i kontekst af at anvende den til mikropartikel-
adskillelse baseret p̊a deres kontrast faktor. Strømningen kan adskille partiklerne i den
horisontale retning, hvilket potentielt kan forbedre allerede etableret metoder for adskil-
lelse af mikropartikler.
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Chapter 1

Introduction

Acoustofluidic technology uses standing ultrasonic waves to manipulate particles and fluids
on a sub-millimeter scale in lab-on-a-chip systems [1]. The acoustic waves are typically
generated by the vibrations of an elastic solid, which is actuated in the MHz-range by a
piezo-electric transducer [2]. The technology is regularly applied within cell biology and
medicine for handling, sorting, mixing, and trapping of cells and bio-molecules [2–6].

Recent research has demonstrated the importance of thermoviscous effects in acoustoflu-
idic microsystems. Notably, the thermoviscous treatment of the acoustic radiation force
by Karlsen and Bruus [7] predicts forces which are several orders of magnitude larger
than those of the ideal-fluid theory. Additionally, the effective thermoviscous model by
Jørgensen and Bruus [8] shows that an in-homogeneous stationary temperature field in-
fluences the acoustic streaming by inducing a body force density in the bulk. The force is
also supported by experimental evidence [9].

Inspired by Jørgensen and Bruus, this thesis is a numerical study of the effects of
an imposed horizontal temperature gradient across an acoustofluidic device. The device
consists of a water-filled microchannel enclosed by silicon on its sides and pyrex glass on its
top and bottom. The superior thermal conductivity of silicon compared to water confines
the temperature gradient to the microchannel. On the basis of a thermoviscous model
by Muller and Bruus [10], both the microchannel and surrounding solids are modelled,
but the transducer is represented by an imposed displacement field on parts of the outer
boundaries of the solid.
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Chapter 2

Theory

This chapter aims to provide the reader with the minimum knowledge of thermoviscous
acoustofluidics required to follow this thesis. First, it introduces the governing equations of
fluid dynamics, thermodynamics and heat transfer, and elastodynamics in Sections 2.1, 2.2,
and 2.3. Then a thermoviscous acoustofluidic model, which was formulated by Muller and
Bruus [10], is presented in Section 2.4. The field of acoustofluidics has progressed far since
the conception of this model with the formulation of the viscous boundary layer theory
by Bach and Bruus [11] as well as the thermoviscous boundary layer theory by Jørgensen
and Bruus [8]. In spite of this, I use a full-scale model which can be run on my computer
because I work in 2D and not 3D. Finally, in Section 2.5, the acoustic wave equation is
derived.

2.1 Fluid dynamics

The governing equations of fluid dynamics are the continuity and the Navier–Stokes equa-
tions. They express the conservation of mass and momentum of an arbitrarily shaped
body Ω of fluid, respectively. In terms of the mass-density field ρ(r, t) of the fluid, the
local center-of-mass velocity field v(r, t), and the stress-tensor field σ(r, t), the equations
are given by [12, 13]

∂tρ = −∇ · (ρv) , (2.1a)

∂t(ρv) = ∇ · (σ − ρvv) . (2.1b)

The continuity equation (2.1a) reads that any change in the total mass inside Ω is related
to a mass-flux through the surface ∂Ω of the body by the mass current ρv. Likewise,
from Eq. (2.1b), a change in the total momentum inside Ω is related to a momentum-flux
through ∂Ω by the current ρvv or to stresses σ acting on ∂Ω [13, 14].

By convention, the fluid stress-tensor is resolved into a pressure term and a viscous
term τ [13],

σ = −p1+ τ , τ = η
[
∇v + (∇v)†

]
+
(
ηb − 2

3η
)
(∇ · v)1 . (2.2)

Here η and ηb are the shear and bulk viscosities, respectively, and 1 is the unit tensor.

3
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A viscous fluid does not slip along solid materials, and so we apply the standard no-
slip condition at every fluid-solid boundary [12] (where the brackets denote the difference
between the two sides of a boundary),

[v] = 0 , at the fluid-solid boundaries. (2.3)

2.2 Thermodynamics

All material parameters of a thermoviscous fluid depend on the temperature T and the
density ρ of the fluid. Representing any such parameter by q, this may be written as [8, 10]

dq =

(
∂q

∂T

)
ρ

dT +

(
∂q

∂ρ

)
T

dρ . (2.4)

The temperature field T (r, t) couples to the other fields via the equation for conservation
of energy [7, 8, 10, 15],

∂t

(
ρε+

1

2
ρv2
)
− P = ∇ ·

[
v · σ + kth∇T − ρ

(
ε+

1

2
v2
)
v

]
. (2.5)

Here ε is the specific internal energy, kth the thermal conductivity, and P the power density
from local heat sources and sinks.

The internal energy is related to the temperature and pressure by [10]

ρdε = (ρcp − αpp) dT − (κT p+ αpT ) dp , (2.6)

where cp is the specific isobaric heat capacity, αp the thermal expansivity, and κT the
isothermal compressibility. The isentropic compressibility κs is related to κT by [10, 16]

γκs = κT , (2.7)

where γ is the ratio of heat capacities cp and cV ,

γ ≡ cp
cV

= 1 +
Tα2

p

ρcV κs
, (2.8)

which, for solids, equals unity within a few percent.
Finally, everything is reconciled to the temperature and pressure by the following

equation of state [8, 10, 12]:
dρ

ρ
= κTdp− αpdT . (2.9)

2.3 Elastodynamics

The deformation of a solid body subjected to stresses acting on its surface is governed
by Newton’s second law. The state of deformation is described by the displacement field
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u(r, t) = r′(t) − r(t) where r′ is the position of point r after the deformation. In terms
of this, the mass-density field ρ(r, t) of the solid, and the solid stress-tensor field σ(r, t),
Newton’s second law takes the form [12, 14, 17]

ρ∂2
t u = ∇ · σ , (2.10a)

where the anisotropic solid stress-tensor is given by

σ = ρc2T
[
∇u+ (∇u)†

]
+ ρ
(
c2L − 2c2T

)
(∇ · u)1 . (2.10b)

In absence of body forces, the solutions take the form of waves which may be resolved into
two components: a curl-less longitudinal component uL and a divergence-free transverse
component uT. Hence, the parameters cL and cT are the longitudinal and transverse
speeds of propagation of said waves through the body, respectively. [12]

The boundary conditions express continuity of the displacement field and the stress-
vector across material interfaces [12],

[u] = 0 , (2.11a)

[σ · n̂] = 0 . (2.11b)

Here Eq. (2.11b) is a consequence of Newton’s third law.

2.4 A thermoviscous acoustofluidic model

The system under consideration is a liquid-filled microchannel embedded in an elastic solid.
The solid is actuated at a frequency f in the MHz range by a piezo-electric transducer,
which induces standing acoustic waves inside the channel. The transducer is represented
by an imposed displacement field d0 on parts of the outer boundary.

The model by Muller and Bruus [10] is formulated within the framework of pertur-
bation theory. Perturbation theory aims to find an approximate solution to a complex
problem by representing the solution as a power series in some small parameter ϵ ≪ 1. In
acoustofluidics, this small parameter is Qd0ω

c , where Q is the Q-factor at resonance, d0 the
actuation displacement amplitude, and ω = 2πf the angular frequency.

To zeroth order, the system is at rest. Then, assuming time-harmonic first-order fields
with angular frequency ω arising from the actuation, the fields to second order take the
following form:

Q(r, t) = Q0(r) +Q1(r)e
−iωt +Q2(r, t) , (2.12)

with v0 = 0 and u0 = 0. For the expansion (2.12) to be valid, we will need to verify
that Q2 ≪ Q1 ≪ Q0 at the end of computations. Additionally, material parameters are
written as

q(r, t) = q0(T0) + q1(T1, ρ1)e
−iωt , (2.13a)

q1(T1, ρ1) =

(
∂q

∂T

)
ρ0

T1 +

(
∂q

∂ρ

)
T0

ρ1 . (2.13b)
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On substituting Eqs. (2.12) and (2.13) into the governing equations (2.1), (2.5), and (2.10)
and only keeping the first-order terms, the first-order equations become

ρ0cp∂tT1 − αpT0∂tp1 = ∇ · (kth0 ∇T1) , (2.14a)

ρ0(κT∂tp1 − αp∂tT1) = −∇ · (ρ0v1) , (2.14b)

ρ0∂tv1 = ∇ · (τ1 − p11) , (2.14c)

−ρslω2(1 + iΓsl)2u1 = ∇ · σ1 , (2.14d)

where τ1 and σ1 are

τ1 = η0
[
∇v1 + (∇v1)

†]+ (ηb0 − 2
3η0
)
(∇ · v1)1 , (2.15a)

σ1 = ρslc2T
[
∇u1 + (∇u1)

†]+ ρsl
(
c2L − 2c2T

)
(∇ · u1)1 . (2.15b)

The boundary conditions (2.3) and (2.11) become

v1 = −iω(1 + iΓsl)u1 , at the fluid-solid boundaries; (2.16a)

u1 = d0 , at the place of actuation; (2.16b)

σ1 · n̂ = (τ1 − p11) · n̂ , at the fluid-solid boundaries. (2.16c)

Proceeding to second order, all second-order fields and products of two first-order fields
are time-averaged over an oscillation period, τosc =

2π
ω . This is denoted by angled brackets,

but the notation gets suppressed on the second-order fields for the sake of brevity. The
equations for the fields T2 and u2 get omitted because the two fields do not enter the
second-order continuity and Navier–Stokes equations. The second-order equations are
thus

0 = ∇ ·
[
ρ0v2 + ⟨ρ1v1⟩

]
, (2.17a)

0 = ∇ ·
[
τ2 − p21− ρ0 ⟨v1v1⟩+ τ11

]
. (2.17b)

where τ2 and τ11 are

τ2 = η0
[
∇v2 + (∇v2)

† ]+ (ηb0 − 2
3η0
)
(∇ · v2)1 , (2.18a)

τ11 =
〈
η1
[
∇v1 + (∇v1)

† ]+ (ηb1 − 2
3η1
)
(∇ · v1)1

〉
. (2.18b)

Evidently, the force—in both the literal and the figurative sense of the word—behind the
acoustic streaming v2 is the time-averaged products of first-order fields [13, 18]; thus, we
define the acoustic body force as [8]

f̂ac = −∇ ·
[
ρ0 ⟨v1v1⟩ − τ11

]
. (2.19)

The boundary condition on v2 become [10, 19]

0 = n̂ ·
[
ρ0v2 + ⟨ρ1v1⟩

]
, at the fluid-solid boundaries. (2.20)

The time-averaged products of two first-order fields, Re[A1] and Re[B1], may be cal-
culated by ⟨Re[A1]Re[B1]⟩ = 1

2Re[A1B
∗
1 ], where the asterisk denotes complex conjugation

[8].
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2.5 The acoustic wave equation

We derive the acoustic wave equation starting from the first-order equations (2.14). First
we recognize that the acoustic time-scale, τosc ∼ 0.1 µs, is much shorter than that of heat
diffusion, τdiff ∼ l2c/D

th = 0.1 s, where lc ∼ 0.1mm is the length-scale of the system and
Dth ∼ 0.1×10−6m2 s−1 the thermal diffusivity. The diffusive term in Eq. (2.14a) may thus
be neglected. Additionally, for small thermal gradients the advective term in Eq. (2.14b)
becomes insignificant and may be neglected. The first-order equations thus become

ρ0cp∂tT1 − αpT0∂tp1 = 0 , (2.21a)

κT∂tp1 − αp∂tT1 = −∇ · v1 , (2.21b)

ρ0∂tv1 = −∇p1 + η0∇2v1 + βη0∇
(
∇ · v1

)
, (2.21c)

where β = ηb0/η0 − 2/3.
We eliminate ∂tT1 in Eq. (2.21b) using Eq. (2.21a) and differentiate this with respect

to time as well as apply the divergence to get

ρ0

(
κT −

T0α
2
p

ρ0cp

)
∂2
t p1 = ∇2p1 − (1 + β)η0∇2(∇ · v1) . (2.22)

We then use Eq. (2.21b) to eliminate v1 in Eq. (2.22) and rewrite κT − T0α
2
p/ρ0cp to κs

using Eqs. (2.8) and (2.7), whence we obtain the wave equation for the acoustic pressure
with propagation speed cs =

√
1/ρ0κs,

1

c2s
∂2
t p1 =

(
1 +

(1 + β)η0
ρ0c2s

∂t

)
∇2p1 . (2.23)

For a time-harmonic acoustic pressure field, Eq. (2.23) becomes the Helmholtz equa-
tion,

∇2p1 = −k2p1 , with k = (1 + iΓ)k0 , (2.24)

where k0 = ω
cs

is the wavenumber and Γ = (1 + β)η0/2ρ0c
2
s a small damping coefficient.

Inside a hard-walled rectangular box of width w and height h, the eigenmodes of Eq. (2.24)
occur at the frequencies [13]

fn,m =
cs
2

√( n
w

)2
+
(m
h

)2
, with n,m = 0, 1, 2, . . . (2.25)

Thus, a mode is characterized by its pair of integer indices n and m.
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Chapter 3

Numerical simulation in COMSOL
Multiphysics

This chapter concerns itself with the simulation software COMSOL Multiphysics 5.6. In
Section 3.1, the finite element method for obtaining numerical solutions to partial differen-
tial equations (PDEs) is introduced. This is the numerical method employed by COMSOL
to simulate physics-based systems. Then, in Section 3.2, the thermoviscous model pre-
sented in Section 2.4 is implemented in COMSOL, and in Section 3.3 a mesh convergence
test is conducted to select a mesh.

3.1 The finite element method

The information presented in this section is obtained from a lecture note by Bruus [14].

3.1.1 The strong formulation of PDEs

Conservation laws are a recurring theme in physics. For this reason, many governing
equations of physics take the same general form,

∇ · J [u(r, t)]− F (r, t) = 0 , for r ∈ Ω , (3.1)

where J is a generalized flux and F a generalized force driving said flux.
The form (3.1) is the strong formulation of a PDE on the domain Ω. The so-called

strong solutions u(r, t) to Eq. (3.1) with specified boundary conditions on ∂Ω solve the
problem exactly, on all of Ω. These solutions, however, are seldom obtainable analytically.
Instead we seek weak solutions to the problems, which approximate the strong solutions
on a discretized Ω.

3.1.2 Discretization of the computational domain

To discretize the domain Ω, a finite number N of points rn, n = 1, 2, . . . , N are selected
from it. Then a mesh is developed using these as vertices for the mesh elements as shown
for a triangular mesh in Fig. 3.1.

9
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Figure 3.1: Illustration of a triangular mesh in the 2D domain Ω. It consists of the mesh
vertices (red points), the mesh elements (light blue), the nth mesh cell (dark blue) with
its center point rn (yellow) and 1. order test function ûn (yellow line). Adapted from Ref.
[14] with permission.

The node in rn and its collection of mesh elements constitute the nth mesh cell. The
nth mesh cell is associated with the test function ûn, which is a piecewise but continuous
polynomial of order p with compact support on the cell and which becomes unity in
its node, rn. The set of test functions {ûn}Nn=1 constitutes a basis by which we can
approximate the strong solutions,

u(r) ≈
N∑

n=1

C(u)
n ûn(r) . (3.2)

Here C
(u)
n are unknown coefficients to be computed numerically.

3.1.3 The weak formulation of the PDE

Naturally, exchanging the strong solution for an approximate solution produces a non-zero
defect,

d(r) = ∇ · J [u(r)]− F (r) . (3.3)

By demanding that the projection of the defect on every basis function vanishes,∫
Ω
ûm(r)

{
∇ · J [u(r)]− F (r)

}
dV = 0, for r ∈ Ω , (3.4)

we obtain the weak form of Eq. (3.1) with a solution u(r) of the form (3.2). For a linear

flux operator, this is recast into a matrix problem for the unknown coefficients C
(u)
n ,

KmnC
(u)
n = Fm , (3.5)

by defining the stiffness matrix Kmn and force vector Fm by

Kmn ≡
∫
Ω
ûm(r)∇ · J [ûn(r)] dV , (3.6a)
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and

Fm ≡
∫
Ω
ûm(r)F (r) dV . (3.6b)

Hence, the coefficients C
(u)
n are determined by matrix inversion.

3.1.4 Imposing boundary conditions

Two types of boundary conditions are relevant to us in this study; they are the Neumann
and Dirichlet boundary conditions. But to impose them, Eq. (3.4) requires a little more
work. Applying the product rule of differentiation, ûm(∇ · J) = (∇ûm) · J −∇ · (ûmJ),
in conjunction with Gauss’s theorem,

∫
Ω∇ · (ûmJ) dV −

∫
Ω (∇ûm) · J dV =

∮
∂Ω ûm(n ·

J) dA−
∫
Ω (∇ûm) · J dV , reveal the flux going across the boundary ∂Ω,∮

∂Ω
[ûmn · J ] dA+

∫
Ω
[(−∇ûm) · J − ûmF ] dV = 0 . (3.7)

Hence, a Neumann boundary condition is imposed by specifying n ·J(r) in the integrand
of the surface integral.

Any other type of boundary condition is written as R [u(r, t),J(r, t)] = 0, and they
are implemented by introducing the auxiliary field λ(r) and its corresponding set of test
functions {λ̂m}Mm=1—the Lagrange multipliers—on the boundary. This turns Eq. (3.7)
into∮

∂Ω

{
ûmλ(r) + λ̂mR[u(r, t),J(r, t)]

}
dA+

∫
Ω
[(−∇ûm) · J − ûmF ] dV = 0 . (3.8)

A Dirichlet boundary condition, then, is imposed by choosing R [u(r, t),J(r, t)] = u(r)−
D(r) and specifyingD(r), which is the desired value of u(r) on the boundary. Accordingly—
from its mathematical context in Eq. (3.8)—we infer that the auxiliary field λ(r) is the
surface flux that maintains the imposed value of u(r) on the boundary.

3.2 Model implementation

The model presented in Section 2.4 is implemented in COMSOL using the software’s PDE
module. Here the governing equations (2.14) and (2.17) are specified in their weak forms
by their generalized forces and fluxes; these are:

T0 : J = kth0 ∇T0 , F = 0 , (3.9a)

T1 : J = kth0 ∇T1 , F = iω(αpT0p1 − ρ0cpT1) , (3.9b)

p1 : J = 0 , F = ∇ · (ρ0v1)− iωρ0(κT p1 − αT1) , (3.9c)

v1 : J = τ1 − p11 , F = iωρ0v1 , (3.9d)

u1 : J = σ1 , F = −ρslω2(1 + iΓsl)2u1 , (3.9e)

p2 : J = ρ0v2 + ⟨ρ1v1⟩ , F = 0 , (3.9f)

v2 : J = τ2 − p21− ρ0 ⟨v1v1⟩+ τ11 F = 0 . (3.9g)
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y

z

tbot

ttop

hsl
hfl

wsl

wfl

dΘ

Figure 3.2: Sketch of the geometry. It depicts the yz-plane of a water-filled channel (light
blue) going along the x-axis with silicon (gray) on its sides and pyrex glass (yellow) on
its top and bottom. The red and the blue lines indicate where the system is heated and
cooled, respectively, to produce a temperature gradient across the device. The dimensions
are given in Table 3.1.

Table 3.1: Dimensions of the geometry in Fig. 3.2 [20].

wsl wfl hsl hfl tbot ttop dΘ Units

4.0 0.375 1.4 0.15 0.75 0.50 2.2 mm

The geometry of the water-filled microchannel and surrounding solids is shown in
Fig. 3.2; the dimensions are given in Table 3.1.

The boundary conditions are

T0 = Ta +∆T0/2 ,
at every outer boundary if ∆T0 = 0K;
otherwise, the red and blue lines in Fig. 3.2;

(3.10a)

T1 = 0 , same as the above; (3.10b)

v1 = −iω(1 + iΓsl)u1 , at the fluid-solid boundaries; (3.10c)

u1 = d0(y/wsl − 1/2)êz , at the bottom outer boundary; (3.10d)

σ1 · n̂ = (τ1 − p11) · n̂ , at the fluid-solid boundaries; (3.10e)

σ1 · n̂ = 0 , at the outer boundaries; (3.10f)

0 = n̂ ·
[
ρ0v2 + ⟨ρ1v1⟩

]
, at the fluid-solid boundaries. (3.10g)

Here Ta = 298K, d0 = 0.1 nm, and, initially, ∆T0 = 0K.
Note the actuation expression (3.10d): it contains both a symmetric term, d0

2 , and an
anti-symmetric one, d0

y
wsl

. This asymmetric mode of actuation ensures that every acoustic
eigenmode, irrespective of its symmetry, can be excited.

In addition to the above conditions, it is necessary to fix the average of the second-order
pressure p2 by placing the following constraint on p2:∫

Ωfl

p2 dydz = 0 . (3.10h)
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This becomes necessary in order to attain numerical convergence because p2 only enters
the governing equations through its gradient ∇p2.

The first-order equations are solved in the frequency domain, and the stationary
second-order equations are solved using a stationary solver. This is carried out in three
steps: (1) the zeroth-order thermal field is determined, fixing the zeroth-order water pa-
rameters; (2) the first-order fields are determined using the fully coupled approach, which
achieves robustness at the expense of memory and time; and (3) the second-order time-
averaged fields are determined, again using the fully coupled approach.

Prior to conducting a mesh convergence study, the maximum and the minimum mesh
element size are set to hmax

xl = hxl
3 and hmin

xl = 0.3hmax
xl , respectively, with x = s in the solids

and x = f in the fluid. Additionally, boundary layer meshes are added at the interfaces
between the solids and the fluid. The thickness of the initial layer in a domain is 0.5 δt of
the material in said domain, and the thickness of each subsequent layer is 1.3 times that
of the preceding layer, for a total of 10 layers in the solids and 15 in the fluid. The thermal
boundary layer thickness was chosen as the length scale for this because it was the shortest
one of it, δt ∼

√
2Dth/ω = 0.15 µm, and the viscous one, δs ∼

√
2η0/ρ0ω = 0.40 µm, in

water.

3.3 Mesh convergence study

A mesh convergence study was conducted to ensure that simulation results are reliable
and independent of the mesh. This was done by performing a parametric sweep of the
mesh size and comparing each solution g of the sweep to a reference solution gref by

C(g) =

√∫
Ω|g − gref |2 dydz∫

Ω|gref |2 dydz
. (3.11)

The refinements made to the mesh in the sweep were controlled through a mesh refinement
factor, 1/CONV, on the mesh element sizes. CONV was swept through values 1, 2, . . . , 10
with 10 thus corresponding to the most refined mesh of the sweep. The reference solution
was the solution obtained using this mesh. A plot of C(g) vs. CONV is shown in Fig. 3.3,
which was produced with the actuation frequency f = 1.96MHz.

As the mesh is made finer, the computing time increases. Sometimes the improved
accuracy of the solutions from using a finer mesh does not outweigh the longer computing
times. The mesh corresponding to CONV = 5 provides a solution with errors smaller than
1.0 percent of the reference solution and keeps the computing times relatively short (53 s,
as against 2min for CONV = 10). Thus, this mesh is employed from this point on, and
each mesh element size and initial boundary layer thickness is 1/5 of its specified value in
Section 3.2.
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Figure 3.3: Semilog plot of the mesh convergence parameters C vs. the mesh refinement
factor CONV. Exponential convergence is observed for CONV > 3. The shading in the
background indicates the upper limit on the percentage error.



Chapter 4

Simulations without a
temperature gradient

This chapter investigates the system described in Section 3.2 without an imposed temper-
ature gradient. In Section 4.1, the resonance frequencies are determined for the horizontal
half-wavelength (1,0), whole-wavelength (2,0), and vertical half-wavelength (0,1) eigen-
modes from the time-averaged acoustic energy-density spectrum.1 Then, in Section 4.2,
an asymmetry in the acoustic streaming for the (1,0) mode, which is encountered in Sec-
tion 4.1, is investigated. Finally, in Section 4.3, the performance of the device is evaluated
for different placements of the microchannel. The chapter may come across as superficial,
but it is short because it does not tie to the primary interest of this thesis directly.

4.1 Resonance analysis

Resonance frequencies are identified by large, narrow peaks in the time-averaged acoustic
energy-density spectrum. This spectrum is obtained by performing a parametric sweep of
the frequency to calculate the time-averaged acoustic energy-density, as given by [10, 21]

Eac =
1

4
κs|p1|2 +

1

4
ρ0|v1|2 , (4.1)

for a range of frequencies and plotting the energy-density vs. the frequency.
A sweep was carried out in steps of 1.0 × 10−4MHz, producing the energy-density

spectrum in Fig. 4.1. By these means, the resonance frequencies were determined to 4
decimals accuracy; they and other relevant parameters and quantities derived from Fig. 4.1
are given in Table 4.1. Of note, the Q-factors, which were calculated by Q =

fn,m

∆f [18],

are ∼ 103, thus yielding ϵ ∼ 10−4—well below unity.
The acoustic eigenmodes and streaming are shown in Fig. 4.2. For the most part,

the eigenmodes in Fig. 4.2(a)–(c) appear as expected, except for an asymmetry in the
vertical direction, which is present in all of them. In Fig. 4.2(d)–(e) the (1,0) and (2,0)
streaming expectedly contain 4 and 8 stream rolls, respectively. The rolls, however, are

1The numbers in the parantheses are the integers n and m which characterize the different modes.

15
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highly asymmetrical in both the vertical and horizontal directions, which, in Section 4.2,
is found to be caused by the actuation (3.10d). Finally, the (0,1) streaming in Fig. 4.2(f)
is a mess: it does not resemble the expected four stream rolls like Fig. 4.2(d) but along the
sides of the channel. It appears to result from only actuating the system in the bottom.

Figure 4.1: The time-averaged acoustic energy-density (4.1) vs. actuation frequency. The
sweeps were conducted in steps of 1.0 × 10−4MHz for intervals of 0.01MHz around the
resonance frequencies of the relevant eigenmodes, which are visualized by the superimposed
images. The ticks on the Frequency-axis indicate the resonance frequencies; the dashed
lines indicate the bounds of the full-width at half-maxes.

Table 4.1: Summary of the resonance frequencies, the full-width at half-maxes (FWHMs),
the Q-factors, and the acoustic energy-densities of the (1, 0), (2, 0), and (0, 1) eigenmodes.
The analytical (ana.) frequencies were calculated by the formula (2.25), while the other
parameters and quantities were derived from Fig. 4.1.

Mode,
(n,m)

Ana. frequency,
fana
n,m (MHz)

Num. frequency,
fnum
n,m (MHz)

Full-width at half-max,
∆f (kHz)

Q-factor,
Q (1)

Acous. energy-density,
Eac (Jm−3)

(1,0) 2.0 1.9616 3.6 540 9.58
(2,0) 4.0 3.9207 4.3 910 21.6
(0,1) 5.0 5.1177 3.2 1600 228
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(a) (d)

(b) (e)

(c) (f)

Figure 4.2: The acoustic eigenmodes, (a)–(c), and their respective acoustic streaming,
(d)–(f), as indicated by the horizontal lines between the rows. Generally, colored lines in
graphics indicate lines along which a quantity has been evaluated.

4.2 Acoustic streaming asymmetry

This is a short investigation of the asymmetry in the acoustic streaming, which was en-
countered in the previous section. As mentioned earlier, the cause to the asymmetries
was the actuation (3.10d). Specifically, the asymmetric expression d0 = d0

( y
wsl

− 1
2

)
êz

produced the horizontal asymmetry, while only actuating the system in the bottom pro-
duced the vertical one. The vertical asymmetry was foreseeable, but the horizontal one
came as a surprise because the off-resonance modes supposedly are negligible compared
to the resonance modes at resonance. For this short investigation, we focus on the (1,0)
streaming in Fig. 4.2(d).

Since the acoustic body force ⟨Π⟩ = ρ0∇ · ⟨v1v1⟩ is responsible for the stream rolls in
the boundary layer which drive the stream rolls in the bulk [18], we inspect the body force.
In Fig. 4.3, the horizontal component of the force ⟨Π⟩y/ρ0 = ∂y⟨v1,yv1,y⟩ + ∂z⟨v1,zv1,y⟩ is
evaluated along the red line in Fig. 4.2(d) at 3 δs from the top of the channel. We find
an asymmetry in the body force which emerges in the ∂z⟨v1,zv1,y⟩-term. Apparently, the
asymmetric actuation produced a non-negligible symmetric term in v1,z. Upon further
investigation, the symmetric (+) term in v1,z was found to be |v+1,z| = 2.1mms−1 contra
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Figure 4.3: The horizontal component of the acoustic body force ⟨Π⟩y/ρ0 = ∂y⟨v1,yv1,y⟩+
∂z⟨v1,zv1,y⟩ evaluated along the red line in Fig. 4.2(d) at 3 δs from the top of the channel.
The two terms of the component are also plotted individually, revealing that the asym-
metry emerges in the ∂z⟨v1,zv1,y⟩-term of the component.

the anti-symmetric (−) one |v−1,z| = 11mms−1; hence, they are comparable to each other.

The v+1,z-term appeared to be enhanced by the off-center placement of the channel in
the vertical direction. This was discovered by placing the channel in the center and
subsequently observing that the asymmetry was reduced. The reason for this is related to
the subject of the next section, so it is revealed there.

4.3 Microchannel placement investigation

The performance of the device is now investigated in relation to the placement of the
microchannel. The performance is evaluated by measuring the acoustic energy-density of
the system. The energy-density is relevant because it is related to the acoustic radiation
force, which is used to manipulate microparticles [3]. The radiation force can be calculated
from the potential U rad by [21]

F rad = −∇U rad , U rad =
4π

3
b3
(
f0

1

4
κfl|p1|2 − f1

3

8
ρfl|v1|2

)
, (4.2)

where f0 and f1 are monopole and dipole scattering coefficients, respectively.

In this numerical experiment, we define a reference position of the microchannel by
the system described in Section 3.2. Every other channel placement is defined by a small
displacement ∆ of the channel relative to this reference position denoted by ∆ = 0.
The channel was displaced by ∆y = ±50 µm along the y-axis or ∆z = ±20 µm along
the z-axis. The resonance frequencies and corresponding acoustic energy-densities of the
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relevant eigenmodes for each channel placement are visualized in Fig. 4.4 and summarized
in Tables 4.2 and 4.3, respectively.

For all three eigenmodes, the resonance frequencies were shifted to higher frequencies
when the channel was moved down. The shifts, however, were typically small—about 0.1%
relative to the reference frequencies—so further investigation of this is not imperative.
Displacements in the horizontal direction did not produce any noticeable change to the
resonance frequencies for any of the modes.

The resonance frequencies hardly changed, but the energy-densities certainly did. The
energy-density was increased by 45% for the (1,0) mode in −∆y, but it was decreased by
50% in ∆y. This was because the actuation (3.10d) resembled a hinge, which was fixed
in y = wfl

2 . The energy-density of (2,0) mode was less affected by it, but that of the (0,1)
mode was reduced by 34% in ∆y. When the hinge was removed, no difference between
moving the channel to the right and moving it to the left was observed, as expected. In
−∆z, the energy was increased for the (1,0) and (0,1) modes, while it was decreased for
the (2,0) mode. In ∆z, the opposite happened. This is consistent with Fig. 4.5 where we
see that the strain in the solid increases beneath the channel for the (1,0) and (0,1) modes,
but decreases for the (2,0) mode. Above the channel, however, the strain increased for
the symmetric mode and decreased for the anti-symmetric one. This was the cause to the
symmetric v+1,z-term being relatively large in the previous section and the reason that the
asymmetry in the streaming was reduced, when the channel was moved downward.
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Table 4.2: Summary of the resonance frequencies fn,m and relative frequency shifts δfn,m =(
f
(∆)
n,m − f

(0)
n,m

)
/f

(0)
n,m of the (1,0), (2,0) and (0,1) eigenmodes for several placements of the

microchannel. ∆ = 0 denotes the system described in Section 3.2, and ±∆y and ±∆z
denote channel placements in the ±y and ±z directions relative to ∆ = 0 by ∆y = 50 µm
and ∆z = 20 µm.

Displacement,
∆

f1,0
(MHz)

δf1,0
(×103)

f2,0
(MHz)

δf2,0
(×103)

f0,1
(MHz)

δf0,1
(×103)

0 1.9616 3.9207 5.1177
−∆y 1.959 −1.3 3.9203 −0.102 5.1204 0.5
+∆y 1.959 −1.3 3.9203 −0.102 5.1204 0.5
−∆z 1.9666 2.5 3.9211 0.102 5.1344 3.3
+∆z 1.9571 −2.3 3.9188 −0.4846 5.1084 −1.8

Table 4.3: Summary of the acoustic energy-densities E
ac,(∆)
n,m and their relative differences

δE
ac,(∆)
n,m =

(
E

ac,(∆)
n,m − E

ac,(0)
n,m

)
/E

ac,(0)
n,m of the (1,0), (2,0), and (0,1) eigenmodes for several

placements of the microchannel.

Displacement,
∆

Eac
1,0

(Jm−3)
δEac

1,0

(1)
Eac

2,0

(Jm−3)
δEac

2,0

(1)
Eac

0,1

(Jm−3)
δEac

0,1

(1)

0 9.56 21.6 228
−∆y 13.9 0.451 21.8 0.0100 225 −0.0121
+∆y 4.77 −0.500 19.6 −0.0897 150 −0.341
−∆z 11.0 0.152 18.7 −0.132 249 0.0962
+∆z 8.02 −0.161 25.2 0.168 180 −0.210
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(a)

(b)

(c)

Figure 4.4: The resonance frequencies and acoustic energy-densities in relation to the
placement of the microchannel. The reference placement is in the center, (∆y,∆z) = (0, 0).
The sizes of the points indicate the energy-density of the channel placement relative to
that of the reference placement. The point sizes scale non-linearly to emphasize change.
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(a)

(b)

(c)

Figure 4.5: The displacement fields for the three eigenmodes indicated by the superim-
posed images in the graphics. Yellow signifies high amounts of strain, while black signifies
low amounts. The red arrows represent the displacement vectors in different points.



Chapter 5

Simulations with a temperature
gradient

In this chapter a horizontal temperature gradient is imposed across the device. First the
system is investigated without acoustics in Section 5.1. Here a stationary flow establishes
in presence of gravity because the density of the fluid varies across the channel width. In
Section 5.2 the acoustics are turned on, and the effects of the temperature gradient on
the acoustic streaming are investigated without gravity. The reason for neglecting gravity
here is twofold: (1) the effects of gravity are small; and (2) mathematical consistency,
as the fluid is assumed to be quiescent to zeroth order in the perturbation expansion
(2.12). In Section 5.3 the velocity profile of the acoustic streaming with the temperature
gradient is approximated for the (0,1) mode, and in Section 5.4 the prospect of using the
temperature-gradient-influenced streaming to separate particles based on their contrast
factors is discussed.

5.1 Temperature gradient without acoustics

Rayleigh-Bénard convection is an example of fluid motion driven by a temperature gra-
dient. Here a confined fluid layer is heated from below which makes it rise upward by
buoyancy, when the temperature difference between the bottom and top exceeds a critical
value [22].

In our setup, a temperature gradient Θ is imposed in the horizontal direction instead.
Under the influence of gravity, this system is not in hydrostatic equilibrium due to the
horizontal density gradient arising from Θ. This is because the hydrostatic equation,
∇p = ρg, implies that the surfaces of constant density coincide with the equipotential
surfaces of gravity [12]:1

0 = −∇ρ×∇Φ . (5.1)

Here Φ is the gravitational potential defined by g = −∇Φ.

1This is obtained by applying the curl to the hydrostatic equation, ∇×
(
∇p− ρg

)
= 0, and using that

the curl of a gradient field is zero.

23



24 CHAPTER 5. SIMULATIONS WITH A TEMPERATURE GRADIENT

The condition (5.1) is not satisfied in the presence of Θ. Thus, the system is not in
hydrostatic equilibrium and must have fluid motion. The simulation results of the system
with the imposed temperature difference ∆T0 = 1K are shown in Fig. 5.1: in (a) we
find that the temperature gradient is effectively confined to the water channel by the
superior thermal conductivity of silicon compared to that of water; in (b) we see the fluid
flow, which has a maximal magnitude of U = 217 nm s−1, resulting from the temperature
gradient.

The physical mechanism behind the fluid motion—I suspect—is the continuous jump-
ing of the pressure in the horizontal direction due to a horizontal density gradient. Under
this assumption, the pressure difference between y and y + dy is

dp = −gzdρ = gzρaαpΘdy , (5.2)

where the last equality was obtained by applying the thermodynamic equation of state
(2.9) (while neglecting the pressure-term due to its comparative smallness): dρ = −ρaαpdT =
−ρaαpΘdy, where ρa is the fluid density at ambient temperature Ta. The pressure gradient
in the horizontal direction thus becomes

∂p

∂y
= ρaαpΘgz . (5.3)

Using this we estimate the velocity profile along the green line in Fig. 5.1(b) by a 1D
pressure-driven channel flow [12], where a no-slip condition is applied in both z = 0 and
z = hfl/2, and the pressure gradient is evaluated in2 z = hfl/4. This yields

U =
ρaαΘgz(2z − hfl)hfl

16η
. (5.4)

On the grounds of Fig. 5.1(a), we assume that the temperature gradient is Θ = ∆T0
wfl

.
The expression (5.4) has been plotted in Fig. 5.2 together with the numerical result. In it
we find that the two resemble each other in magnitude, deviating only by 9.4%. However,
using the numerical temperature gradient in the approximation lowers the approximation
quite significantly. This is because heat escapes from the channel to the surrounding
glass, as the conductivity of glass is similar to that of water. I also suspect some of the
deviation occurs because the numerical temperature gradient is not entirely confined to
the horizontal direction; hence, some buoyancy-driven flow do occur in the simulation,
while the approximation assumes an entirely horizontal temperature gradient. Finally,
the shape deviates, which—I assume—is because we try to estimate a 2D flow by a 1D
calculation. It does not account for the vertical flow as well as the back-flow in the bottom,
except for the no-slip condition in 0.

2This is the average of the pressure gradient between z = 0 and z = hfl/2.
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(a)

(b)

Figure 5.1: (a) The imposed temperature field which induces a horizontal density gradient.
(b) The stationary flow which arises from the horizontal density gradient.

Figure 5.2: A comparison between the numerical result and the estimate (5.4) (using both
Θ = ∆T0

wfl
and the numerical gradient) along the green line in Fig. 5.1(b). Here “w/” is an

abbreviation of “with”.
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Figure 5.3: Time-averaged acoustic energy density vs. the actuation frequency with an
imposed temperature difference ∆T0 across the device. The system was actuated on both
the top and bottom to produce the (1,0) and (0,1) eigenmodes and on both sides to produce
the (2,0) mode.

5.2 Temperature gradient with acoustics

Starting from this section, both the acoustics and temperature gradient are present. In
Chapter 4 we found that the geometry and means of actuation caused asymmetries in
the acoustic streaming which, at worst, ruined the streaming. For this reason, we carry
on with a system with tbot = ttop = 0.625mm and idealized actuations which take place
on both the top and bottom of the system for the (1,0) and (0,1) eigenmodes and on
both its sides for the (2,0) mode. The time-averaged acoustic energy-density spectrum
was produced for this new system and actuation-strategy with an imposed temperature
difference ∆T0 across the device; that and the acoustic streaming are shown in Figs. 5.3
and 5.4, respectively. Compared to Fig. 4.2, the streaming in Fig. 5.4 without ∆T0 look
more like they should with four large rolls for every node in p1. The (2,0) streaming,
however, is weakened in its outermost stream rolls, and, underneath the (0,1) streaming,
the streaming of another mode is present.

In Fig. 5.3, we find that imposing a temperature difference hardly affected the acoustic
energy of the system—although, the energy did decrease marginally as ∆T0 was increased.
For this reason, I did not make any further inquiries into the spectrum. Regarding the
streaming in Fig. 5.4, we do not observe any palpable differences between the streaming
for the two horizontal modes, (1,0) and (2,0), with ∆T0 = 1K and those without it. The
vertical eigenmode (0,1), however, boasts a new streaming pattern for ∆T0 = 1K where
streaming occurs from left to right via the anti-nodes and returns via the node. This new
streaming pattern emerges due to an acoustic body force density, described several times
before [8, 23, 24], which arises from the gradients in the density and compressibility of
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∆T0 = 0K ∆T0 = 1K

(a) (d)

(b) (e)

(c) (f)

Figure 5.4: The acoustic streaming for the (1,0), (2,0), and (0,1) eigenmodes with ∆T0 =
0K, (a)–(c), and ∆T0 = 1K, (d)–(f). In (b) the outermost stream rolls are weakened, and
in (c) the streaming of another mode is present underneath the (0,1) streaming.
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an in-homogeneous fluid. For temperature-induced gradients, the experimentally verified
expression for the acoustic body force acting on the bulk of the fluid is [8, 9]

fac ≈ −1

4
|v1|2∇ρ0 −

1

4
|p1|2∇κs

= −1

4

(
aρρ0|v1|2 + aκsκs|p1|2

)
αp∇T0 ,

(5.5)

where aq =
(∂ ln q/∂T )ρ

αp
is the temperature sensitivity of the material parameter q.

Both the density and compressibility decrease with temperature, so the force (5.5)
points in the direction of the high temperature region. The |v1|2∇ρ0-term is strongest in
pressure nodes because the first-order bulk velocity field is related to the pressure field by
[8] v1 = −∇

(
i1−iΓs

ωρ0
p1
)
, whereas the |p1|2∇κs-term is strongest in anti-nodes. In view of

this, the fact that the acoustic streaming toward the high temperature region in Fig. 5.4(f)
occurs in the anti-nodes rather than the node indicates that |p1|2∇κs is the larger term of
the two. Since κs|p1|2 ∼ p2e/ρ0c

2
s and ρ0|v1|2 ∼ k20p

2
e/ρ0ω

2 = p2e/ρ0c
2
s, it becomes a matter

of which material parameter, ρ0 or κs, is more sensitive to a temperature change than the
other. The compressibility is 10 times more temperature sensitive than the density3, so
|p1|2∇κs becomes the dominant term.

The velocity profile of the horizontal component v2,y of the acoustic streaming in
Fig. 5.4(f) is shown in Fig. 5.5. An outflow from the high temperature region can be
observed in the pressure node. This is water being expelled to maintain the steady stream
of fluid by making space for it. As it cannot pass through the wall in y = wfl

2 , it leaves in
the pressure node where the acoustic body force (5.5) is weaker than anywhere else. The
streaming between the high and low temperature regions is significant because particles
are potentially displaced by a Stokes drag which is exerted on them by the streaming.
Particles which are suspended via acoustophoresis or other such processes will experience
a drag force in the direction of low temperature region in the node and high temperature
region in the anti-nodes. This is further discussed in Section 5.4.

In Fig. 5.5(b), we see that the maximal outflow velocity increases linearly with the
imposed temperature difference ∆T0. This is not surprising because the temperature
gradient ∇T0 enters the equations linearly through the acoustic body force which drives
the inflow to the high temperature region and mass conservation requires that

∫
v2,y dz ≈

Uavg
in lin −Uavg

out lout = 0, implying that Uavg
out = lin

lout
Uavg
in . We can determine the ratio lin

lout
by

first locating the interfaces between the inflows and outflow. These are found numerically—
later analytically—in z = ±a where a ≈ 32 µm. Hence, we compute lin

lout
= hfl−2a

2a = 1.3,
and so Uavg

out /U
avg
in = 1.3, which also is verified by comparing the streaming magnitudes

in the simulations. Mass conservation thus explains why the outflow magnitude both
increases linearly with ∆T0 and is greater than that of the individual inflows.

We can make a coarse estimate of the inflow velocity magnitude by balancing the
acoustic body force on the fluid with frictional force of viscosity. If we neglect the |v1|2∇ρ0-

3The temperature sensitivities of several parameters are summarized in Table A.1 in Appendix A.
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(a)

(b)

Figure 5.5: (a) Velocity profiles of the horizontal acoustic streaming induced by the acous-
tic body force (5.5) with different ∆T0. It was evaluated along the red line in Fig. 5.4(f)
at y = 0. The interfaces between the inflows to the high temperature region and the
outflow to the low temperature one are located in a. (b) The maximal outflow velocity
vs. the imposed temperature difference. The gray shading around the fit indicates the
95% confidence interval of the fit. Quantities with tildes are non-dimensionalized, e.g.,
∆T̃0 = ∆T0/1K.
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term in Eq. (5.5) and assume that ∂z ∼ 2
hfl
, then for ∆T0 = 1K we get

Uin ∼ −1

4

aκsκsαpΘp2ah
2
fl

4η0
≈ 2.4mms−1 . (5.6)

Compared to the number 39 µms−1 from the simulations, this greatly overestimates the
magnitude. The biggest culprit behind this is perhaps the disregard of a pressure gradient
acting against the body force related to the outflow. Also, the viscous dissipation is
underestimated because the shear strains in the fluid are smaller without the outflow than
with it, and thus the velocity is overestimated. A better estimate is obtained in Section 5.3
where the outflow is taken into account.

Although the acoustic streaming for the horizontal eigenmodes, (1,0) and (2,0), appear
unaffected by the acoustic body force (5.5), the streaming magnitudes for both modes
increase in the high temperature region and decrease in the low temperature one. The
streaming magnitude was evaluated in (y, z) = (±wfl/4, 0) and plotted against ∆T0 for the
(1,0) mode, which is shown in Fig. 5.6(a). It is surprising because the acoustic body force
(5.5) points in the opposite direction of the streaming in the high temperature region and
in the same direction as the streaming in the low temperature one. By investigating the
horizontal component of the body force ∇ · ⟨ρ0v1v1⟩ in 3 δs from the top of the channel,
Fig. 5.6(b), we find a skewing in the force which is also present in the first-order velocity
field, Fig. 5.6(c). I found that the speed of sound cs was largely responsible for the skewing
as setting cs to a constant reduced the skewing significantly. This is supported by the fact

that acs =
(∂ ln cs/∂T )ρ

αp
= −aκs+aρ0

2 = 5.5; hence, cs is more temperature sensitive than
the density. Using the results of the simulation, the ratio was determined by evaluating∣∣∆cs/cs
∆ρ0/ρ0

∣∣ yielding ≈ 6.7. Otherwise, this part remains inconclusive.

5.3 Streaming approximation

To describe the acoustic streaming induced by the body force (5.5) in Fig. 5.4(f), we
approximate its velocity profile along the red line in the figure. We consider the water-filled
channel in the yz-plane, which is assumed wide. The temperature gradient ∇T0 = Θêy
and standing acoustic wave pac = pe sin(k0z) with k0 = π

hfl
give rise to the acoustic body

force4 f = −F
2

[
1− cos(2k0z)

]
êy with F = 1

4aκsκsαpΘp2e , which drives the steady stream
of fluid along the width of the channel. Due to the assumed “wideness” of the channel and
the fact that f is a function of z only, we assume the following form of the velocity field:
U = Uy(z)êy.

5 This implies that ∇ · U = 0 and (U ·∇)U = 0, and the Navier–Stokes
equation becomes

∂p

∂y
= η0

d2Uy

dz2
− F

2

[
1− cos(2k0z)

]
, (5.7a)

∂p

∂z
= 0 . (5.7b)

4The squared sine function was rewritten using the trigonometric identity sin2(x) = 1
2
[1− cos(2x)].

5If ∂y ∼ 1/wfl, then we find that ∂y → 0 in the limit wfl → ∞. Hence, U effectively becomes independent
of y.
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(a)

(b)

(c)

Figure 5.6: (a) Streaming magnitude for the (1,0) mode vs. imposed temperature dif-
ference. (b) The horizontal component of ∇ · ⟨ρ0v1v1⟩ evaluated along the red line in
Fig. 5.4(d) at 3 δs from the top of the channel. (c) The vertical velocity component v1,z
along the same line as before.
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Figure 5.7: Velocity profile of the horizontal acoustic streaming induced by the acoustic
body force (5.5) for the (0,1) mode with ∆T0 = 1K. The numerical profile was evaluated
along the red line in Fig. 5.4(f) at y = 0.

(a), ∆T0 = 0.0K (d), ∆T0 = 0.6K

(b), ∆T0 = 0.1K (e), ∆T0 = 0.7K

(c), ∆T0 = 0.3K (f), ∆T0 = 0.8K

Figure 5.8: The acoustic streaming for the (0,1) mode with different imposed temperature
differences ∆T0 across the device.
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From Eq. (5.7), it follows that ∇p = Gêy where G is a constant; hence, the problem
reduces to a single ordinary differential equation,

η0
d2Uy

dz2
=

F

2

[
1− cos(2k0z)

]
+G , Uy(±hfl/2) = 0 . (5.8)

Here G is determined by a no-discharge rate condition,

∫ hfl
2

−hfl
2

Uy dz = 0 , (5.9)

which is imposed because the fluid cannot pass through the walls of the channel in y =
±wfl

2 .
To solve Eq. (5.8), we integrate it twice and apply the no-slip condition,

Uy =
2F cos(2πz/hfl)h

2
fl − (hfl − 2z)(hfl + 2z)(F + 2G)π2 + 2Fh2fl

16η0π2
. (5.10)

Using this in Eq. (5.9) yields an expression for G,

G = −F

2

(
π2 − 3

π2

)
≈ −0.35F . (5.11)

This is inserted into Eq. (5.10), yielding the profile

Uy = U0

[
2 cos

(
2π

hfl
z

)
+ 12

(
z

hfl

)2

− 1

]
. (5.12)

where U0 =
F
η0

(
hfl
4π

)2
is the outflow streaming magnitude.

As seen in Fig. 5.7, the analytical expression for the horizontal streaming profile com-
pares reasonably well to the numerical one. It overestimates the streaming, but this can
partly be attributed to the |v1|2∇ρ0-term in Eq. (5.5), which was disregarded: the term
would have constituted 1/11 of the total body force and impeded the outflow from the
high temperature region to the low temperature one and consequently slowed down the
streaming everywhere. The largest deviation from the numerical result occurred in z = 0
with 9%. This error was reduced to 4% by making the density constant in the simula-
tion, which effectively removed |v1|2∇ρ0-term in the body force. Unfortunately, using
the numerical temperature gradient lowers the predicted streaming even more. The same
thing occured in Section 5.1, and so perhaps it is the disregard of the y-dimension causing
the discrepancy because ∂y ∼ 1

wfl
and wfl ∼ hfl, and thus ∂yvy ̸= 0. This, however, is

conjecturing.
An analytical expression for the slope in Fig. 5.5(b) can be obtained by simply evalu-

ating Eq. (5.12) in z = 0 and using that Θ ≈ ∆T0
wfl

,∣∣∣∣ U0

∆T0

∣∣∣∣ = ∣∣∣∣aκsκsαpp
2
eh

2
fl

64π2wflη0

∣∣∣∣ = 58.7 µms−1K−1 . (5.13)
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This deviates from the numerical result by 17%; however, as just mentioned, the approx-
imation (5.12) neglects the density-term in the acoustic body force, which would have
slowed down the streaming. Also, using the numerical temperature gradient lowers the
slope significantly, but it does not make the analytical slope better.

In the interfaces between the inflows to the high temperature region and the outflow
to the low temperature one, the velocity is zero. Hence, the interfaces are located in the
points z = ±a where the forces on the fluid are balanced:

F

2

[
1− cos(2k0a)

]
= −G . (5.14)

Solving the above equation for a yields

a =
arccos(3/π2)

2π
hfl = 30 µm , (5.15)

which only deviate from the numerical result by 6%. The deviation, however, appeared to
be related to the finite spatial resolution of the simulation as well as its limited precision,
because when a was determined from the approximation evaluated within COMSOL, the
analytical approximation predicted the same as the numerical result. Note also that
Eq. (5.15) is independent of the force magnitude F , as is observed in Fig. 5.5(a).

The characteristic rolls in the bulk, as seen in Fig. 5.4(e), are driven by small rolls
inside the boundary layer [18]. The small rolls produce a pressure in the bulk [18] p2 =
− 3

2cs
u20 cos(2k0z)η0k0e

−2k0y with u0 = pe
ρ0cs

, which is negative in the anti-nodes of the
acoustic wave. This pressure maintains the large stream rolls in the low temperature
region, while the body force density F

2 [1−cos(2k0z)]+G drives the streaming away to the
high temperature one. The onset of the streaming between the low and high temperature
regions should thus occur when the body force density equals the pressure gradient ∂p2/∂y
in an anti-node, i.e., in z = ±hfl/2:

− 3η0
c3s

(
pek0
ρ0

)2

e−2k0y = F +G . (5.16)

An upper bound on Θ is obtained by evaluating the above in y = 0 and solving for Θ:

Θ0 = − 24π4η0
aκsαpcsρ0h2fl(π

2 + 3)
= 1.87Kmm−1 . (5.17)

Computing the corresponding temperature difference, ∆T = Θ0wfl, yields 0.7K. In
Fig. 5.8 the onset of the streaming due to the body force density is shown. Already
at ∆T0 = 0.3K a streaming between the low and high temperature regions is observed;
however, there is hardly any outflow from the high temperature region, suggesting that
the streaming between the two regions is weak.

5.4 Separation using the imposed streaming

As mentioned in Section 5.2, the acoustic streaming induced by the acoustic body force
(5.5) will exert a Stokes drag force on the particles suspended in the liquid. Often, particles
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are suspended via acoustophoresis where the acoustic radiation force (4.2) moves them to
a node or an anti-node of the acoustic wave, depending on the scattering coefficients
f0(κp) and f1(ρp), where κp and ρp are the compressibilities and densities of the particles,
respectively [21]:

f0 = 1− κp
κfl

, f1 =
2(ρp − ρfl)

2ρp + ρfl
. (5.18)

For the acoustic wave p1 = pe sin(k0z) and corresponding velocity field v1 = −i pe
ρ0cs

cos(k0z)êz,
the radiation force (4.2) on a particle of radius b becomes

F rad = 4πb3EacΦk0 sin(2k0z)êz , (5.19)

where Eac = p2a
2ρ0c2s

is the acoustic energy-density6 and Φ = 2f0+3f1
12 the contrast factor. It

is through Φ that f0 and f1 determine whether the particles go to a node or an anti-node
[3].

The Stokes drag force on a particle is [21]

F drag = 6πη0b
(
U −Up

)
(5.20)

where U is the acoustic streaming evaluated at the particle center and Up the center-of-
mass velocity of the particle.7 The part of F drag which results from the imposed streaming
due to the body force (5.5) is denoted by the subscript “imp” for “imposed streaming”:

F drag
imp .
The resultant force on a particle is going to be the sum of Eqs. (5.19) and (5.20), and

so the equation of motion for the particle becomes

dP

dt
= F drag + F rad (5.21)

where P = mUp is the momentum of the particle and m its mass.
Depending on the sign of Φ, the radiation force F rad moves the particle to the node

(Φ > 0) or an anti-node (Φ < 0). Simultaneously, the drag force F drag
imp moves the particle

in an horizontal direction, and it ultimately arrives and stays in the low temperature region
if Φ > 0 and high temperature region if Φ < 0. This is because the imposed streaming in
the node goes to the low temperature region and that in the anti-nodes goes to the high
temperature region. Hence, particles with different signs on Φ would not only be separated
in the vertical direction by the radiation force but also in the horizontal direction by the
drag force.

In Fig. 5.9(d)–(e), the resultant force (5.21) on a particle with radius b = 3 µm is
shown for Φ > 0 and Φ < 0, respectively. In (d), we find that the particle is forced via the
node to the low temperature region, where—judging from the force vectors—it reaches
an equilibrium position. In (e), the particle is instead forced to the high temperature

6Since ρ0|v1|2 ≈ κs|p1|2, the acoustic energy-density (4.1) becomes Eac = 2κs|p1|2
4

=
p2e

2ρ0c2s
.

7Since U is not asymtotically uniform, it would be more correct to use Faxén’s correction [25] which

contains an additional term: b2

6
∇2U . However, b ≪ hfl for particles with a radius of a few microns and

∇2 ∼ 4/h2
fl, so the correction would be negligible: b2/h2

fl ≪ 1.
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region via the anti-nodes; but, unlike the case in (d), there is no equilibrium position.
The problem in (e) is that the particle not susceptible enough to F rad. This highlights

a major flaw with trying to separate particles by a combination of F rad and F drag
imp : it

requires a very specific balance between the two forces, which, in turn, requires a specific
set of values of the particle radius b, contrast factor Φ, and imposed streaming magnitude
U0 in the node. While b and Φ are intrinsic to the particles and liquid medium, U0 may
be adjusted per Eq. (5.13) by changing ∆T0.

The balance that one wants atleast is that |F rad| > 2a
hfl−2a |F

drag
imp (z = 0)| for every

particle. This is to ensure that the imposed streaming does not carry the particles away
from their desired destination. The streaming can do this when it makes a turn from,
e.g., the high temperature region to the low temperature region, as highlighted by the
green box in Fig. 5.9(a) and (e). Here F drag

imp acts almost entirely against F rad. The front-

factor 2a
hfl−2a ≈ 0.77 occurs as a result of mass conservation8, but one may as well omit

it, because this just makes the condition more strict. As |F rad| ∝ b3 and |F drag
imp | ∝ b, this

becomes very relevant for small particles. Hence, one should evaluate the inquality using
the parameters of the smallest particle under consideration.

Another problem arises if F rad has a horizontal component and the component is
greater than F drag

imp . This namely hinders the migration of the particles in the horizontal

direction. In Fig. 5.9(e), F rad has a horizontal component, but 2a
hfl−2a |F

drag
imp (z = 0)| >

|F rad|, so the particles are not stopped; instead they are carried away with the stream.
Within the realm of particle separation by free-flow acoustophoresis, the length dimen-

sion of the channel is reserved for a continuous flow along the length in the x-axis. Since
the temperature gradient evidently need to be orthogonal to the radiation force in the
z-axis, the temperature gradient is limited to the y-axis in a rectangular channel. This
adds another spatial dimension in which to perform the particle separation, but it does not
sort particles any differently than existing devices—at best, it improves the succes rate at
particle separation at the cost of a more complex device. Finally, it could be interesting
to consider alternative channel geometries like a cylindrical one and, in this geometry,
investigate the effects of applying the temperature gradient at an angle to the radiation
force.

8This was discussed in Section 5.2.
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(a)

Φ > 0 Φ < 0

(b) (c)

(d) (e)

Figure 5.9: (a) The acoustic streaming (surface plot) for the (1,0) eigenmode with ∆T0 =
7K and the drag force (arrows) from the acoustic streaming. (b)–(c) The radiation force
(arrows) and the pressure magnitude (surface plot) for Φ > 0 and Φ < 0, respectively.
(d)–(e) The resultant force (5.21) (arrows) and pressure magnitude (surface plot) for Φ > 0
and Φ < 0, respectively. Particle had a radius of b = 3 µm. Scattering coefficients were
f0 = −0.075 and f1 = 0.25 in (d) and f0 = −0.135 and f1 = 0.05 in (e).
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Chapter 6

Conclusion and outlook

The effects of an imposed temperature gradient on the acoustic streaming for several
acoustic eigenmodes in a water-filled microchannel have been studied in this thesis. The
temperature gradient induced gradients in the density and compressibility of the fluid by
which it gave rise to an acoustic body force acting on the bulk of the fluid. The body
force pointed in the direction of the high temperature region because both the density
and compressibility decrease with increasing temperature. Also, the force was strongest in
the acoustic pressure anti-nodes, because the compressibility of water is more temperature
sensitive than its density.

For the horizontal eigenmodes (1,0) and (2,0), the streaming was intensified in the high
temperature region and weakened in the low temperature region. This was related to a
skewing in the first-order fields and thus the acoustic body force driving the small stream
rolls inside the boundary layers, which, in turn, drive the characteristic stream rolls in
the bulk. The skewing was caused by the speed of sound being different between the high
and low temperature regions; although, the exact physical mechanism behind it remains
unknown.

For the vertical mode (0,1), the acoustic streaming was forced by the acoustic body
force to the high temperature region via the anti-nodes and subsequently back by mass
conservation to the low temperature region via the node. The potential of using the acous-
tic streaming induced by the temperature gradient to separate particles in the horizontal
direction according to their contrast factor was discussed in a specific setup. For this
setup, the conclusion is that it should be possible for very specific—bordering to ideal—
conditions: the radiation force should be confined to the vertical direction only and be
greater than drag force on the particles from the temperature gradient induced streaming.
Achieving separation in the horizontal direction could improve the succes rate of separat-
ing particles of different contrast factors. However, this calls for a new design, which is
oriented toward applying a temperature gradient to achieve separation.

39
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Appendix A

Thermodynamic derivatives and
sensitivities

Table A.1: Thermodynamic derivatives [10] and temperature sensitives aq = 1
αp

∂ ln q
∂T [8]

at temperature 25 °C and pressure 0.1013MPa.

Symbol Value Units

Thermodynamic derivatives:
∂ ln η
∂T −2.278× 10−2 K−1

∂ ln η
∂ρ −3.472× 10−4 kg−1m3

∂ ln ηb

∂T 2.584× 10−2 K−1

∂ ln kth

∂T 2.697× 10−3 K−1

∂ ln kth

∂T 2.074× 10−3 kg−1m3

Temperature sensitivities:
aρ −1 1
aη −89 1
aηb −100 1

akth 11 1
aαp 145 1
aκs −10 1

41
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Appendix B

Thermal boundary layer

(a)

(b)

Figure B.1: (a) Temperature field associated with the acoustic wave. (b) Thermal bound-
ary layer in silicon and water in y = −wfl/2. Dashed line indicates the interface between
the two materials with silicon on the left and water on the right. Thermal boundary layer
thicknesses of the two materials are indicated on the horizontal axis.
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