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ABSTRACT:
Acoustic handling of nanoparticles in resonating acoustofluidic devices is often impeded by the presence of acoustic

streaming. For micrometer-sized acoustic chambers, this acoustic streaming is typically driven by viscous shear in

the thin acoustic boundary layer near the fluid-solid interface. Alternating current (ac) electroosmosis is another

boundary-driven streaming phenomenon routinely used in microfluidic devices for the handling of particle suspen-

sions in electrolytes. Here, we study how streaming can be suppressed by combining ultrasound acoustics and ac

electroosmosis. Based on a theoretical analysis of the electrokinetic problem, we are able to compute numerically a

form of the electrical potential at the fluid-solid interface, which is suitable for suppressing the typical acoustic

streaming pattern associated with a standing acoustic half-wave. In the linear regime, we even derive an analytical

expression for the electroosmotic slip velocity at the fluid-solid interface and use this as a guiding principle for

developing models in the experimentally more relevant nonlinear regime that occurs at elevated driving voltages.

We present simulation results for an acoustofluidic device, showing how implementing a suitable ac electroosmosis

results in a suppression of the resulting electroacoustic streaming in the bulk of the device by 2 orders of magnitude.
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I. INTRODUCTION

Acoustofluidics is a rapidly advancing field of research

based on the integration of ultrasound and microfluidics in

lab-on-a-chip designs. Acoustic waves are used for label-

free and efficient particle handling with high bio-

compatibility, and the principle has found many applications

within biotechnology and health care. Examples include

acoustic separation,1–3 trapping,4,5 and tweezing6–8 as well

as enrichment of cancer cells9,10 and bacteria,11,12 and size-

independent sorting of cells.13

System designs for particle migration by ultrasound,

termed acoustophoresis, are typically based on long fluid chan-

nels with cross section dimensions in the range of 0.1–1 mm.

The frequency of the acoustic waves in aqueous suspensions

with wavelengths comparable to the chamber dimensions is

thus in the low MHz range. These ultrasound fields are gener-

ated by piezoelectric transducers. Two competing forces of

nonlinear origin act on particles suspended in the fluid. One

force is the acoustic radiation force induced by acoustic wave-

scattering by the particles.14–18 This force focuses particles in

nodes or antinodes of the acoustic waves, and it scales with the

particle volume.19 The other force is the viscous Stokes drag

due to the acoustic streaming,20–23 which scales linearly with

the particle radius and tends to swirl particles around. Because

of the different scalings, streaming-induced drag force is the

dominating force for particles smaller than a critical size. For

an aqueous suspension of spherical polystyrene particles in a

1-MHz ultrasound field, the critical diameter has been deter-

mined to be around 2 lm.24,25 To ease the acoustic manipula-

tion of sub-micromolar particles, such as bacteria, viruses, and

exosomes, we seek to suppress the acoustic streaming.

There are two types of acoustic streaming: the boundary-

layer-driven streaming originating from the viscous boundary

layers near the fluid-solid interfaces, as first analyzed ana-

lytically by Lord Rayleigh20 and later studied in more

detail,23,26–28 and the bulk-driven streaming generated by

attenuation of acoustic waves in the bulk of the fluid,29 an

effect that is typically negligible in microfluidics except for

rotating acoustic fields.30

Electroosmosis, the steady motion of electrolytic solu-

tions with respect to a charged surface by an external elec-

tric potential, is another type of boundary-driven

streaming.31 The principle has been used to create, say,

micropumps with no moving parts for lab-on-a-chip sys-

tems.32–35 In particular, alternating current (ac) electroos-

motic pumps have gained attention by generating relevant

flow velocities at relatively low ac-voltages without electrol-

ysis, thus circumventing the problem of gas formation.

Pumping velocities have been reported in the �100 lm/s

range,33,34 which is of similar magnitude to typical acoustic

streaming velocities.

In this study, we suggest the combination of acoustic

and ac electroosmotic streaming with a resulting net electro-

acoustic streaming close to zero. As an example of how to

achieve this, we propose a specific design of an
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electroacoustic device consisting of a microchannel with

surface electrodes for generating electroosmosis embedded

in an elastic solid with an attached piezoelectric transducer

for generating acoustics. The analysis is carried out with no

intrinsic zeta potential and thus belongs to the body of work

that assumes that the chemically generated intrinsic zeta

potential has been removed, say by means of a direct current

(dc) offset in the applied potential or by chemical surface

treatments. A thorough study of the effects of an intrinsic

zeta potential is left for future work.

The paper is structured as follows: In Sec. II, we present

the general theoretical framework. In Sec. III, we consider ac

electroosmosis at low excitation voltages, where the electroki-

netic problem can be linearized and analytical expressions for

the electroosmotic slip velocity are obtained. In Sec. IV, the

analytical solution is compared to full numerical solutions at

higher voltages, and we find that the linearized regime captures

both qualitative and quantitative behavior at surprisingly high

voltages. In Sec. V, the linearized ac electroosmotic theory is

integrated into an existing acoustofluidic simulation adapted

from Skov et al.36 Using an electrode design that could be pro-

duced by standard clean room fabrication techniques together

with an attached piezoelectric transducer, we demonstrate how

to obtain heavily suppressed streaming patterns when exciting

both an ac electroosmosis and an ultrasound acoustophoresis. In

Sec. VI, we discuss some of the limitations of the proposed

model, and finally we conclude.

II. THEORY

The core part of the system we analyze is a binary electro-

lyte in the form of a dilute aqueous suspension of ions, with a

single positive ion (subscript þ) and a single negative ion (sub-

script –) of opposite valences Z6 ¼ 6Z. The electrolyte is

placed inside a microchannel in the presence of a MHz-

ultrasound pressure resonance p1 with angular frequency xac

¼ 2pfac ¼ 2pð1=TacÞ and a kHz-ac electrical potential / with

angular frequency xeo ¼ 2pfeo ¼ 2pð1=TeoÞ. The fundamental

continuum fields in the fluid at point r and time t are the mass

density q, the pressure p, the fluid velocity v, and the viscous

stress tensor r, as well as the concentration fields of the positive

and negative ions cþ and c�, the electrical charge density qel,

and the electric potential /ðr; tÞ. The material parameters of the

system are the dynamic viscosity gfl, the bulk viscosity gb
fl, the

speed of sound cfl, the quiescent mass density qfl, the isentropic

compressibility jfl, the ionic valence number Z, the ionic diffu-

sivities D6 and mobilities l6, and the electric permittivity �fl.

The governing equations for the fluid including acoustics are

the mass continuity and Navier–Stokes equation,

@tq ¼ �$ � ðqvÞ; (1a)

@tðqvÞ ¼ �$ � ðqvÞv½ � þ$ � r� Zeðcþ � c�Þ$/; (1b)

r ¼ �pI þ gfl $vþ ð$vÞT
h i

þ 3gb
fl � 2gfl

3
$ � v I: (1c)

The electrokinetics of the ions are governed by the concen-

tration continuity, Nernst, and Poisson equation,

@tc6 ¼ �$ � J6; (2a)

J6 ¼ c6v� D6$c6 � l6c6$/; (2b)

r2/ ¼ � 1

�fl

Zeðcþ � c�Þ: (2c)

The fields Qðr; tÞ will be treated in perturbation theory writ-

ten as

Qðr; tÞ ¼ Q0ðrÞ þ Re Q1ðrÞ e�ixt
� �

þ Q2ðr; tÞ: (3)

Here, Q0 is the unperturbed field, Q1 is the first-order acous-

tic and electric time-harmonic perturbation, and Q2 is the

unsteady second-order field, which is generated by the inher-

ent nonlinearities in hydrodynamic and electrokinetic equa-

tions. The time-averaged second-order response is defined as

hQ2ðr; tÞi ¼ ðx=2pÞ
Ð 2p=x

0
Q2ðr; tÞ dt. A time-average of a

product of two first-order fields is also a second-order term,

written as hRe½A1e�ixt�Re½B1e�ixt�i ¼ 1
2

Re½A1B�1�, where the

asterisk denotes complex conjugation.

A. Combined acoustics and ac electroosmosis

We consider a microfluidic system with integrated

acoustics and electroosmosis as sketched conceptually in

Fig. 1. A piezoelectric transducer actuates the system acous-

tically and generates acoustic streaming, and electrode

arrays surrounding the fluid channel actuate ac electroos-

motic streaming, which by proper design aims to counteract

and suppress the acoustic streaming. To provide a proof of

concept of this streaming suppression, we consider a simple

long, straight rectangular fluid channel of dimensions

W � H ¼ 375� 160 lm2. The acoustic problem in this con-

figuration has previously been studied extensively both theo-

retically and experimentally,19,24,37,38 and it is known that

the physical properties of the system are well-described by

modeling restricted to the two-dimensional (2D) cross sec-

tion. We thus apply a Cartesian (y, z) coordinate system

FIG. 1. (Color online) A sketch of the proposed electroacoustic device: a

microchannel in glass with integrated acoustics and electroosmosis.

Electrode arrays with ac-voltage Veo are implemented at the fluid-solid

interface to induce the ac electroosmosis, and a piezoelectric transducer

with ac-voltage Vac is glued to the bottom of the device to generate

acoustics.
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centered in the fluid channel. The equilibrium position of

the fluid-solid interface will be denoted s0, and to describe

boundary effects, we apply a local coordinate system

ðek; e?Þ at the boundary.

Combining the two phenomena could potentially lead

to non-trivial coupled effects. When acoustic waves travel

through an ionic suspension, the ions will oscillate slightly

out of phase with respect to the solvent. The different mobi-

lities of ionic species will lead to a so-called ionic vibration

potential. These potentials normalized by the oscillatory

velocity of the fluid are typically on the order of

1 mV=ð1 m=sÞ.39 This effect is around 2 orders of magnitude

lower than what is needed for acoustic streaming suppres-

sion by electroosmosis, and it is thus ignored.

As we shall see in the following, ac electroosmotic

flows work ideally for feo � 1 kHz, whereas the acoustic

actuation frequencies are 1000 times faster in the range of

fac � 1 MHz. This separation of time scales allows us to use

the acoustomechanical responses at the time-averaged (with

respect to Tac) spatial position of the fluid-solid interface

and the oscillating fluid, when computing the electrokinetic

responses. Furthermore, the electrokinetic flow is estab-

lished through the ionic Debye layer at the fluid-solid

boundary on the short length scale kD � 10 nm, whereas the

acoustically induced velocity fields are established over a

viscous boundary layer of the much longer length scale

d � 500 nm. Thus, we assume that no significant advection

of ions in the Debye layer happens due to the acoustic

streaming or vibrational velocity. This spatiotemporal

decoupling of the electrokinetics and acoustics is further

supported by the fact that both electroosmotic and acoustic

streaming in microchannels are described by linear Stokes

flows,28,32 so we conclude that the combined electroacoustic

streaming can be derived simply by superimposing the two

flows computed separately.

Last, as the electric field extends throughout the fluid,

dielectrophoretic forces inevitably arise and act on sus-

pended particles.40 For most materials in the present con-

text, these forces are several orders of magnitude lower than

the acoustic radiation force and the drag forces from stream-

ing. We therefore ignore dielectrophoresis is this analysis.

B. Pressure acoustics with viscous boundary layers

To simulate acoustic fields, we follow the approach of

Refs. 28 and 36. The simulations of the linearized models

presented below in Secs. II, III, and V were validated by

performing mesh convergence tests as described in Ref. 24

to ensure numerical convergence below 1%. For more

details, see the supplementary material.41

The complex amplitude of the mechanical displacement

field in the surrounding solid of the fluid channel and in the

piezoelectric transducer is denoted u1. The complex acous-

tic pressure field and the associated oscillating fluid velocity

field are denoted p1 and v1, respectively. The steady time-

averaged acoustic streaming hvac
2 i and the corresponding

pressure hpac
2 i are then calculated as a Stokes flow with an

acoustic slip velocity hvac
2;slipi at the boundary,

0 ¼ $ � hvac
2 i; (4a)

0¼�$hpac
2 i þ gflr2hvac

2 i þ
Cflxac

2c2
fl

Re p�1v1

� �
; (4b)

hvac
2 i ¼ hvac

2;slipi; for r ¼ s0: (4c)

In Eq. (4b), the acoustic body force, with the small viscous

bulk damping coefficient Cfl ¼ ½43 gfl þ gb
fl�jflxac � 1, is

typically negligible for single mode operation in microchan-

nels,30 and the flow is thus mostly driven by the slip velocity

hvac
2;slipi. Throughout this work, we consider the conventional

standing half-wave mode in the acoustic pressure. As we

demonstrate later, the acoustic slip velocity for this mode

closely resembles that of the classical Rayleigh streaming in

fluid channels etched into acoustically hard materials like

Pyrex glass,

hvac
2;slipiz¼61

2
H 	 eyv

Rayl
2 sin ð2k0yÞ; (5a)

vRayl
2 ¼ 3Eac

2qflcfl

; (5b)

where Eac is the average acoustic energy density,

Eac ¼
ðW=2

�W=2

ðH=2

�H=2

1

4
qfljv1j2 þ

1

4
jfljp1j2

� �
dy dz

HW
: (6)

To determine the suppression of streaming numerically,

we seek to minimize the spatial average, the norm jjvjj, of

the steady streaming v2 in the fluid cross section,

jjvjj ¼
ðW=2

�W=2

ðH=2

�H=2

jhvðy; zÞij dy dz

HW
: (7)

Inspired by Bach and Bruus,42 the streaming suppression is

also quantified by the measure,

Sq ¼
ðW=2

�W=2

ðH=2

�H=2

H
q

100
vRayl

2 � jhvij
� �

dy dz

HW
; (8a)

HðxÞ ¼ 0; x < 0;

1; x 
 0:

(
(8b)

For the initial part of our study, we employ the analyti-

cally known acoustic resonance mode derived by Bach and

Bruus,28 where the side walls are oscillated as

u1 6
1

2
W; z

� �
¼ d0 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ iÞd

H

r
xac

cfl

z

 !
e�ixact ey:

(9)

Here, d0 is the displacement amplitude, which is tuned to

reach a desired average energy density or acoustic stream-

ing. Given the physical parameters used for our study and
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listed in the supplementary material,41 the resonance fre-

quency for water at 25 �C is f res
ac ¼ 1:993 MHz. The

well-known acoustic streaming pattern generated by this

actuation is shown in Fig. 2.

C. ac electroosmosis

We consider an aqueous solution of a simple binary

salt, say KCl, with ionic charges Z6 ¼ 6Z, concentrations

c6, diffusivities D6, and electric mobilities l6. We also

introduce the average diffusivity D ¼ 1
2
ðDþ þ D�Þ, which

turns out to be the lowest-order correction to asymmetric

ions in the linearized theory given below. All parameter val-

ues are listed in the supplementary material.41

We largely follow the presentations given in Refs. 32

and 43 but consider a more general externally applied elec-

tric potential at the fluid-solid interface,

Vextðs0; tÞ ¼ Re Veo wðs0Þ e�ixeot
� �

: (10)

Here, wðs0Þ is some complex-valued function of order unity

that describes the shape of the externally applied potential at

the boundary, whereas Veo describes its amplitude. We con-

sider flow velocities veo of sufficiently low amplitudes to

describe the fluid as incompressible and drop the nonlinear

term in the momentum equation, Eq. (1b). The electric

potential is denoted /fl in the fluid and /sl in the surround-

ing solid and piezoceramic. The full set of governing equa-

tions for the electrokinetic problem in the fluid are thus

written as

@tc6 ¼ �$ � J6; with $ � veo ¼ 0; (11a)

J6 ¼ c6v
eo � D6$c6 � l6c6r/fl; (11b)

r2/fl ¼ �
1

�fl

Zeðcþ � c�Þ; (11c)

qfl@tv
eo ¼ �$peo þ gfl$

2veo � Zeðcþ � c�Þ$/fl:

(11d)

The boundary condition for the electrokinetic problem

on electrode surfaces @Xeo is an equipotential condition and

on dielectric surfaces @Xdi a zero-charge condition. All

fluid-solid interfaces admit zero ionic flux normal to the

wall (we adopt the notation @? ¼ e? � $ and @k ¼ ek � $),

and the fluid velocity field must fulfill the no slip boundary

condition,

/flðs0; tÞ ¼ Vextðs0; tÞ; s0 2 @Xeo; (12a)

�fl@?/fl ¼ �sl@?/sl; s0 2 @Xdi; (12b)

veoðs0; tÞ ¼ 0; (12c)

e? � J6ðs0; tÞ ¼ 0: (12d)

III. LINEARIZED ANALYSIS OF AC ELECTROOSMOSIS

The nonlinear nature of Eq. (11) makes it computation-

ally and analytically challenging to work with general elec-

trokinetic problems. For most computations, we opt to use a

linearized theory, which heavily reduces the computational

footprint. In Sec. IV, we address the error introduced by

using this theory at higher voltages. A conceptual sketch of

electroosmotic flow generation is shown in Fig. 3. The gen-

eral idea is to generate an electric charge density at electrode

surfaces and then induce a boundary-driven flow by drag-

ging the ions along the surface with a parallel electric field.

A. Linearized electrokinetic equations

We consider the special case where D6 ¼ D such that

the Einstein relation implies lþ ¼ �l� ¼ l,

l6 ¼ 6
ZD6

VT

; with VT ¼
kBT

e
; (13)

where kB is the Boltzmann constant, T is the temperature,

and VT 	 26 mV is the thermal voltage. Following the treat-

ment in Ref. 43, we consider a zero intrinsic zeta potential

and the linearized dynamical Debye–H€uckel regime, which

is obtained for weak externally applied potentials Veo � VT

at the electrode surfaces. Here, the applied potential and the

corresponding changes in ionic densities act as first-order

fields. Through the nonlinear electric body force, this will

generate steady streaming as well as double-harmonic

streaming with frequency 2xeo, similar to perturbative

FIG. 2. (Color online) Numerical simulation without including electrokinet-

ics of the normalized streaming hvac
2 i=v

Rayl
2 [see Eq. (5b), cyan vectors] gen-

erated by the acoustic standing half-wave in the hard-wall rectangular cross

section W �H ¼ 375 � 160 lm2 using the side-wall actuation (9). The

color plot is the magnitude jhvac
2 ij=v

Rayl
2 from 0 (black) to 1 (white). The 5%

(green) and 2% (magenta) contour lines are shown with the corresponding

suppression values S5 and S2; see Eq. (8a).

FIG. 3. (Color online) Conceptual drawing of electroosmosis at a flat

boundary. Ions are pulled toward a charged surface, resulting in a thin layer

of excess charge density termed the Debye layer. An electric field parallel

to the surface is in turn established to pull on the charge density, which

drives a flow through the electric body force present in the Debye layer.
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acoustic calculations. Denoting the initial ionic concentra-

tion by c0, we write

c6 ¼ c0 þ Re c16 e�ixeot
� �

; jc16j � c0; (14a)

/fl¼Re /1;fl e
�ixeot

h i
; veo¼veo

2 ðr; tÞ; peo¼ peo
2 ðr; tÞ:

(14b)

The second-order electric field and ionic concentrations are

omitted, as they do not affect the electroosmotic streaming.

We then apply the linearization c6$/fl 	 c0$/1;fl and

c6v
eo 	 0 in Eq. (11b), where the latter is valid in the diffu-

sive limit, where ionic advection becomes insignificant com-

pared to diffusion. The first-order electrodynamic fields and

the steady time-averaged second-order flow are thus

obtained from43

�ixeo �1 ¼ Dr2�1 � xD�1; (15a)

r2/1;fl ¼ �
1

�fl

Ze�1; (15b)

0 ¼ $ � hveo
2 i; (15c)

0 ¼ �$hpeo
2 i þ gflr2hveo

2 i �
Ze

2
Re �1$/�1;fl
� �

; (15d)

where we have introduced the notation

�1 ¼ c1þ � c1�; xD ¼
D

k2
D

; kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�flkBT

2ðZeÞ2c0

s
:

(16)

Correspondingly, the boundary condition (12d) becomes

e? � $�1 þ
�fl

Zek2
D

$/1;fl

� �
¼ 0; for r ¼ s0: (17)

B. Effective ac electrokinetic theory

The rectangular cross section W�H of Fig. 2 only con-

tains planar fluid-solid interfaces, and the potential-shape

function wðs0Þ of Eq. (10) is assumed to vary on length

scales comparable to the chamber dimensions

@kwðs0Þ � 1
d wðs0Þ, where d � W;H. Further, we assume

that xeo � xD, which is the relevant limit for our purpose.

When an external potential is applied at the fluid-solid inter-

face, ions will accumulate at the wall in a thin layer of

length scale kD. This ionic layer will completely screen off

the wall potential for dc wall potentials, but for ac potentials

the screening is only partial. Because kD � d, we have

r2 � @2
? in Eq. (15a). The perpendicular coordinate away

from the surface is called r?, and thus

�1ðrÞ ¼ �0 wðs0Þ e�jr? ; with j ¼ 1

kD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i

xeo

xD

r
;

(18)

where �0 is a constant. The solution for /1;fl will contain a

particular solution /kD

1;fl, which reflects the partial ionic

screening in the thin Debye layer near the boundary, and a

homogeneous solution /bk
1;fl that extends into the bulk,

/1;flðrÞ ¼ /kD

1;flðrÞ þ /bk
1;flðrÞ: (19)

Combining Eqs. (15b) and (18) and inserting r2/kD

1;fl

� @2
?/

kD

1;fl, the two terms in Eq. (19) obey

/kD

1;flðrÞ ¼ ��0

Ze

�flj2
wðs0Þ e�jr? ; (20a)

r2/bk
1;fl ¼ 0: (20b)

Using boundary conditions (12a) and (17) with Eqs. (18),

(19), and (20a) inserted at Xeo, we eliminate �0 to find

/bk
1;flðs0Þ ¼ Veowðs0Þ þ

i

j
xD

xeo

@?/
bk
1;flðs0Þ; s0 2 Xeo;

(21a)

�1ðrÞ ¼ i
xD

xeo

�flj
Ze

@?/
bk
1;flðs0Þe�jr? ; (21b)

/kD

1;flðrÞ ¼ �i
xD

xeo

1

j
@?/

bk
1;flðs0Þe�jr? : (21c)

For dielectric surfaces Xdi, the boundary condition (12b) can

similarly be rewritten in terms of /bk
1;fl,

�sl@?/slðs0Þ ¼ 1þ i
xD

xeo

� �
�fl@?/

bk
1;flðs0Þ; s0 2 Xdi:

(22)

The known forms of �1 and /kD

1;fl can be inserted in Eq. (15d)

alongside the calculated /bk
1;fl. With this, to lowest order in

kD=d and xeo=xD, the steady time-averaged streaming hveo
2 i

is a simple Stokes flow with an electroosmotic slip velocity

hveo
2;slipi given by /bk

1;fl,

0 ¼ $ � hveo
2 i; (23a)

0 ¼ gflr2hveo
2 i � $hpeo

2 i; (23b)

hveo
2 is0
¼ hveo

2;slipi; (23c)

hveo
2;slipi ¼ �ek

�flxD

2gflxeo

Re
i

j
@?/

bk
1;flð@k/bk

1;flÞ
�

� �
s0

:

(23d)

This form of the slip velocity is essentially identical to the

one given in Eq. (2) of Ref. 32.

C. The analytic electrokinetic double mode

To generate an ac electroosmotic slip velocity hveo
2;slipi

opposite to the acoustic Rayleigh slip velocity (5), we use

an analytical model in the linearized regime as guidance.

We consider an idealized case, where a perfectly smooth
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potential is generated at the fluid boundary, corresponding

to the limit of implementing infinitely many infinitely thin

electrodes in our electrode arrays. The more realistic case of

a finite amount of electrodes is subsequently assessed in

Sec. V.

In an experimental setup (see Fig. 1), it would likely be

desirable to only implement electrodes at the top and bottom

boundaries y;6 1
2

H
	 


of the microchannel and thus assume

a zero-charge condition at the side walls 6 1
2

W; z
	 


. The

electric potential in the surrounding solid originates from

the same electrodes that generate the fluid potential, which

leads to /sl � /bk
1;fl. Because most relevant materials for cre-

ating microfluidic channels have �sl � �fl, Eq. (22) dictates

@?/
bk
1;fl 	 0 at a dielectric boundary.

A single sinusoidal mode in the electric potential is

studied in Ref. 43 and is shown to give a negligible steady

streaming component. Since j 	 1=kD for xeo � xD, it is

clear from Eq. (23d) that a phase difference is needed

between the perpendicular and the parallel component of the

electric bulk field Ebk ¼ �$/bk
1;fl at the boundary s0 to gen-

erate a significant steady streaming hveo
2 i. This is not possi-

ble with a single mode, so instead we combine two

sinusoidal modes with a relative phase difference #,

@?/
bk;n
1;fl 6

1

2
W; z

� �
¼ 0; (24a)

w y;6
1

2
H

� �
¼ sin ðknyÞ þ ei# sin ðknþ1yÞ; (24b)

with kn ¼
2nþ 1

W
p; for n ¼ 0; 1; 2;…: (24c)

We use j 	 1=kD and derive the analytical solution of Eqs.

(20b) and (21a) for the bulk potential /bk;n
1;fl ðy; zÞ,

/bk;n
1;fl ðy; zÞ ¼

VeocoshðknzÞ sin ðknyÞ

cosh kn
H

2

� �
þ i

xn

xeo

sinh kn
H

2

� �

þ ei#Veocoshðknþ1zÞ sin ðknþ1yÞ

cosh knþ1

H

2

� �
þ i

xnþ1

xeo

sinh knþ1

H

2

� � ;
(25a)

with xn ¼ knkDxD; for n ¼ 0; 1; 2;…: (25b)

Inserting this /bk;n
1;fl in Eq. (23d) leads to an expression for

the electroosmotic slip velocity hveo
2;slipi, with an amplitude

that depends on both # and xeo. We are interested in gener-

ating large streaming amplitudes at low applied voltages.

The phase difference that leads to the largest streaming

amplitude is denoted # ¼ #opt
n , and the optimized angular

frequency at #opt
n is denoted xeo ¼ xopt

n;eo. These can both be

found analytically and result in the electroosmotic slip

velocity,

hveo
2;slipijy¼6W=2 ¼ 0; (26a)

hveo
2;slipijz¼6H=2 ¼ �gnðyÞ veo

n ey; (26b)

gnðyÞ¼
sinhðk0HÞsinðk2nþð3=2ÞyÞþsinh knþð1=2Þ

H

2

� �
sinð2k0yÞ

1

2nþ2
sinhðk0HÞþsinh knþð1=2Þ

H

2

� � ;

veo
n ¼

p�flV
2
eo

8gflW

ð2nþ 1Þð2nþ 3Þ
nþ 1

: (26c)

The optimal phase difference #opt
n and the corresponding

optimal angular frequency xopt
n;eo are given by

#opt
n ¼ p� arctanðanÞ; (27a)

an ¼
1þ xnxnþ1

x2
eo

tanh kn
H

2

� �
tanh knþ1

H

2

� �
xnþ1

xeo

tanh knþ1

H

2

� �
� xn

xeo

tanh kn
H

2

� � ; (27b)

xopt
n;eo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xnxnþ1tanh

1

2
knH

� �
tanh

1

2
knþ1H

� �s
:

(27c)

The slip velocity hveo
2;slipi in Eq. (26) approaches the

desired acoustic slip velocity �hvac
2;slipi of Eq. (5a) for large

values of n. Even for n¼ 1, the sin ð2py=WÞ term will domi-

nate for H � W. The streaming amplitude is seen to increase

linearly with n for large values of n. This continuous growth

is caused by the increase in the transverse electrical bulk

field generated by the sinusoidal modes for a given surface

potential amplitude. By superimposing the acoustics simula-

tion of Fig. 4(a) with the electrokinetic simulation of

Fig. 4(b) using the boundary conditions (24) and n¼ 1,

where for our channel dimensions xopt
1;eo ¼ 6731 s�1 and #opt

1

¼ 1:883, we obtain the resulting suppressed electroacoustic

streaming shown in Fig. 4(c). For Eac ¼ 100 J=m3, the

streaming is optimally suppressed through the electroos-

motic mode discussed above at Veo¼ 127 mV. We see that

the streaming is suppressed below 5% of the Rayleigh

FIG. 4. (Color online) Numerical simulation of the electroacoustic stream-

ing hv2i plotted as in Fig. 2 using the linearized model of Sec. III C in a

channel with hard walls: (a) The purely acoustic streaming hvac
2 i defined in

Fig. 2 with Eac ¼ 100 J=m3. (b) The purely electroosmotic streaming hveo
2 i

generated by the boundary conditions (24) driven at Veo ¼ 127 mV. (c) The

electroacoustic streaming hv2i ¼ hveo
2 i þ hvac

2 i is suppressed by tuning

Veo ¼ 127 mV to match Eac ¼ 100 J=m3.
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streaming amplitude everywhere in the channel, and almost

the entire streaming pattern is suppressed below 2%. This

result constitutes our first proof of concept of suppression of

acoustic streaming by electroosmotic streaming.

Let us discuss the assumptions. It takes very high val-

ues of n to violate the assumption kD � d, and using high

order sinusoidal modes could be a valid strategy for creat-

ing powerful streaming. However, doing this with discrete

electrode arrays would require many electrodes, and in

practice it may be desirable to use low order modes. For

n¼ 1, we find jhveo
2;slipijmax 	 6 nm/s for Veo¼ 1 mV.

Extrapolating to higher voltages, one would need around

Veo¼ 130 mV to reach typical acoustic streaming velocities

of around 100 lm/s. This obviously violates the assumption

of Veo � VT but still remains well below the steric

regime.44

The efficiency of the electric double-mode potential

stems from a phase-matching between the charge density

generated by one mode and the electric field of the other

mode, which drags the established charge density along the

top and bottom surfaces of the channel.

Last, we note that the suggested mode combination is

not the only way of generating the desired streaming pattern.

A combination between a sinusoidal and a linear mode with

dielectric side walls also generates a useful streaming pat-

tern, albeit the analytical solution becomes more compli-

cated. If one controls the potential on the side walls, it also

becomes possible to generate clean sinusoidal modes with

an even number of half-waves. However, these possibilities

are not explored in this study.

IV. NONLINEAR ELECTROOSMOTIC FLOWS

To reach experimentally relevant streaming velocities,

one needs to apply voltages around Veo � 5VT, well into

the nonlinear regime of the electrokinetic problem. In the

following, we evaluate the capability of the linearized

theory of ac electrokinetics to predict qualitative trends for

higher voltages. We adopt a numerical approach inspired

by Muller et al.38 to compare the linear predictions to the

full nonlinear system of Eq. (11). For lower voltages,

where the linearized theory is valid, we assume the stream-

ing velocity veo and corresponding pressure peo to be of the

form38

aðr; tÞ ¼ a0
2ðr; tÞ þ a2xeo

2 ðr; tÞ cos ð2xeotÞ; (28)

where the time dependencies in a0
2 and a2xeo

2 describe a tran-

sient period. For higher voltages, a more general time

dependency could arise by significant mixing of Fourier

components through the nonlinear terms in Eqs. (11b) and

(11d). Using a fifth-order Romberg integration scheme,38,45

the time-averaged response at a given time t is computed

numerically as

haðr; tÞi ¼
ðtþð1=2ÞTeo

t�ð1=2ÞTeo

aðr; t0Þ dt0: (29)

A. Numerical implementation

The governing equations (11) are solved with the com-

mercial finite element software COMSOL Multiphysics.46

Solving the full time-dependent nonlinear equations

increases the computational footprint significantly compared

to the linearized treatment. We simulate the transient lead-

ing to the time-harmonic problem discussed in the linearized

scheme above. The boundary condition (24b) with n¼ 1 is

used directly as formulated in Eqs. (10) and (12a). The

boundary condition (24a) for the side walls is replaced by

@?/fl 6
1

2
W; z; t

� �
¼ 0: (30)

The two symmetry lines y¼ 0 and z¼ 0 were used to

reduce the computational domain by a factor of 4. This is

illustrated in Fig. 5(a) alongside the corresponding symme-

try boundary conditions. A structured mesh with 60 layers

of width 1
4
kD was placed parallel to the domain boundaries

to fully resolve the thin Debye layer, which now has to be

taken into account numerically.

As in Ref. 38, a time-dependent solver is employed

with the generalized alpha time-stepping scheme, where

the alpha factor is set to 0.5. A constant time stepping of

Dt ¼ 1
256

Teo was used for all simulations. For simulations

with Veo > 1 mV, the system Jacobian was set to update at

every time step to stabilize the solutions. The amplitude of

the external voltage ~V eoðtÞ was gradually ramped up through

the first oscillation period as

~V eoðtÞ ¼
1

2
1þ tanhð5xeot� 3Þ½ �Veo: (31)

The time-dependent solver was run for four electric periods,

0 < t < 4Teo, and as the physical system is not resonant, a

steady state was reached already for t ’ 2Teo. Here, we pre-

sent two different simulations, one linear with Veo ¼ 0:04VT

¼ 1 mV and the other nonlinear with Veo ¼ 4:8VT

¼ 125 mV. The time-averaged solution of the latter, which

took eight days to compute, turned out to contain higher-

than-second-order harmonics with a relative amplitude of

about 1%, signalling the onset of the strongly nonlinear

regime. However, due to their relatively low amplitude,

these are not discussed further.

The mesh element size in the bulk was 4:2 lm for

Veo ¼ 1 mV and 1:6 lm for Veo ¼ 125 mV, resulting in

meshes with 9547 and 28 833 elements, respectively. To

validate the nonlinear model at Veo ¼ 125 mV, the bulk ele-

ment size was reduced to 0:8 lm, and the model was run

until t ¼ 0:5 Teo. The streaming amplitudes calculated with

these two meshes were compared for each time step in a

grid of 375� 161 points, showing an average relative differ-

ence lower than 0:5� 10�6 between the two meshes at all

individual time steps.41

B. Results of time-dependent simulations

The simulation at Veo ¼ 1 mV was primarily made to

check the numerical setup. In Fig. 5(b), the time-averaged
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horizontal velocity component hveo
y i at t ¼ 3:5 Teo is shown

along the top right boundary, marked by the magenta arrow

in Fig. 5(a). Specifically, the field is shown just outside the

Debye layer at coordinates ðy; zÞ ¼ y; 1
2

H � 7kD

	 

, and the

comparison with the analytical expression (26b) for the line-

arized slip velocity hveo
2;slipi shows an almost perfect

agreement.

A similar plot is made for Veo ¼ 125 mV in Fig. 5(c),

and there a notable difference between the two theories

appears. The peak amplitude of the time-dependent simula-

tion is 88 lm/s, whereas the linearized theory predicts 95

lm/s, 8% higher. We notice, however, that clear quantitative

and even decent qualitative features remain.

Finally, in Fig. 5(d) the time-averaged nonlinear elec-

troosmotic flow hveoi at Veo ¼ 125 mV is superposed with

the idealized acoustic streaming hvac
2 i at Eac ¼ 91 J=m3, in a

case chosen to minimize the resulting electroacoustic

streaming hvi ¼ hveoi þ hvac
2 i. As for the linear case

[Fig. 4(c)], the nonlinear streaming in Fig. 5(d) is seen to be

heavily suppressed. However, in contrast to the linearized

streaming, small patches of streaming extend from the

boundary, where the time-dependent solution is seen to dif-

fer the most from the linearized theory. Nevertheless, the

streaming is less than 2% of the Rayleigh value vRayl
2 in 89%

of the domain.

This brief study of electroosmotic streaming in the

moderately nonlinear regime suggests that the linearized

theory captures the main features of the streaming to a satis-

factory degree at the suggested voltage range from 0 to

125 mV for the initial study presented in this work. We

therefore return to the computationally much simpler linear-

ized model in Sec. V, where we extend our model to include

the elastic channel walls, a small number of surface electro-

des, and the piezoelectric transducer.

V. NUMERICAL 2D DEVICE SIMULATIONS

As sketched in Fig. 1, a typical acoustophoretic device

contains a microchannel embedded in an elastic solid that is

glued onto a piezoelectric transducer. Consequently, the

acoustic response including the streaming is degraded com-

pared to the ideal hard-wall system studied above.

Moreover, it is not possible in a real electroosmotic device

to create and control a given continuous shape of the surface

potential, and instead only a limited number of finite-sized

electrodes may be fabricated. In the following, we study,

through 2D numerical simulations using the linearized elec-

trokinetic model, to what extent the introduction of these

more realistic aspects of the model will diminish the ability

to suppress the acoustic streaming by electroosmotic

streaming.

A. The design of the 2D device

We consider the 2D model sketched in Fig. 6. It con-

tains a microchannel of dimensions W � H ¼ 375�
160 lm2 filled with a dilute aqueous solution of KCl ions and

embedded in an elastic block of Pyrex glass of dimensions

HPy �WPy ¼ 3 � 1:5 mm2. The electroosmotic streaming is

actuated by voltages on the arrays of Nelec rectangular electro-

des of dimensions Welec � Helec (Helec ¼ 2 lm and Welec var-

ied) and spacings of dimension Wspace embedded in the top and

bottom fluid-solid interfaces. The acoustic streaming is actuated

by the attached piezoelectric transducer of dimensions WPz26

�HPz26 ¼ 5 � 1 mm2 modeled as the piezoelectric material

Pz26 driven by the potential 6Vac. A central cut of dimensions

Wcut � Hcut ¼ 160 � 375 lm2 is made in the bottom of the

transducer to enable antisymmetric actuation.47

To avoid excessive meshing in the numerical model

near the electrodes at the fluid-solid interface, their thick-

ness was chosen to be 2 lm, which is about 40 times larger

FIG. 5. (Color online) (a) The computational domain defined by the sym-

metry lines with corresponding boundary conditions. The magenta line at

z ¼ 1
2

H � 7kD is used in (b) and (c). (b) The time-averaged y-component

hveo
y i for 3Teo < t < 4Teo (full red line) of the time-dependent electroos-

motic velocity veoðtÞ plotted along the magenta line defined in (a) and com-

pared to the analytical slip velocity hveo
2y;slipi (26) (dashed blue line) from the

linearized model. Both are driven at Veo ¼ 1 mV using the boundary condi-

tions obtained by combining Eqs. (24b), (10), and (12a) with n¼ 1. (c) As

in (b), but for the much higher driving voltage Veo ¼ 125 mV. (d) as in Fig.

4, but now using the nonlinear model to compute hveoi at Veo ¼ 125 mV

and then tuning the acoustic energy density to Eac ¼ 91 J=m3 to optimize

the suppression of the electroacoustic streaming hv2i ¼ hveoi þ hvac
2 i.
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than standard clean-room-deposited electrodes typically

having a thickness of 50 nm. Since these enhanced electro-

des still comprise a small fraction of the glass volume, they

have a negligible effect on the resulting acoustic resonance

properties of the channel. Acoustically, the electrodes are

part of the elastic solid, and electrically, they are modeled as

ideal conductors having equipotential surfaces with the

applied voltages Veo1;Veo2;…;Veo;Nelec
, respectively, where

V1 is applied to the outermost left electrodes at the top and

bottom surfaces. The electrode and spacing widths are

always chosen such that NelecðWelec þWspaceÞ ¼ W with

Wspace ¼ 1
2

Welec. The y-coordinates of the electrode centers

ym for m ¼ 1; 2;…;Nelec and the potential Veo;m applied to

the electrode arrays, a discretized version of the potential

shape (24b) for n¼ 1, are then given by

ym ¼
2m� 1� Nelec

2Nelec

W; m ¼ 1; 2;…;Nelec; (32a)

Veo;m ¼ Veo sin ðk1ymÞ þ ei#opt

1 sin ðk2ymÞ
h i

: (32b)

The optimized parameters #opt
1 and xopt

1;eo are used in all sim-

ulations. The side walls and electrode spacings will have a

Pyrex/water interface with the boundary condition described

by Eq. (22).

The system is actuated acoustically by potentials

applied to the top and bottom boundaries of the piezoelectric

transducer at a numerically determined resonance frequency

f res
ac ¼ 2:06 MHz. A voltage difference of 2Vac is applied

between the two bottom electrodes on the transducer, while

the top electrode is grounded. Vac is chosen to reach an aver-

age acoustic energy density of Eac ¼ 100 J=m3.

B. Simulation results for the 2D device

In the following, we simulate the combined acoustic

and electroosmotic streaming as the Stokes flow (4) with its

acoustic body force and acoustic slip, but now also adding

the electrokinetics (20b) including the electroosmotic slip

velocity (23d),

0 ¼ $ � hv2i; (33a)

0 ¼ �$hp2i þ gflr2hv2i þ
Cflxac

2c2
fl

Re p�1v1

� �
; (33b)

0 ¼ r2/bk
1;fl; (33c)

/bk
1;fl ¼ Veowðs0Þ þ

i

j
xD

xeo

@?/
bk
1;fl; s0 2 Xeo (33d)

hv2i ¼ hvac
2;slipi þ hveo

2;slipi; for r ¼ s0: (33e)

One could worry about using the electroosmotic slip

velocity for discrete electrodes, where the edges of these

equipotential surfaces introduce length scales that violate

the assumptions necessary to derive Eqs. (21a) and (23d). A

2D Debye layer forms at the electrode edges, when the line-

arized system of equations (15) is solved with boundary

conditions Eqs. (12a) and (17) and a fully resolved boundary

layer. This error only occurs at a relatively small part of the

computational domain as long as Welec � kD. It was

checked numerically that the implementation of the effec-

tive boundary conditions only leads to a relative error of

0.8% in the streaming pattern for a simple simulation with

only two electrodes of widths Welec ¼ 10 lm.

The 2D device simulation was performed for an increasing

number of electrodes ranging from Nelec ¼ 6 with Welec

¼ 41:7 lm to Nelec ¼ 25 with Welec ¼ 10:0 lm. For each value

of Nelec, the voltage was changed to minimize streaming at

Eac ¼ 100 J=m3. This in turn required a decreasing amplitude

for the applied voltage from Veo ¼ 222 mV at Nelec ¼ 6 to

Veo ¼ 162 mV at Nelec ¼ 25. Unsurprisingly, it requires a

higher voltage to generate streaming through the discrete elec-

trode pattern compared to the idealized mode.

In Fig. 7, we plot the quantitative measures of the

obtained streaming suppression versus the number Nelec of

electrodes in the arrays. Notably, the initial increase from 6

to 10 electrodes yields the largest increase in the suppression

measures, after which a gradual saturation sets in. This

FIG. 6. (Color online) Sketch of the 2D cross section of the simulated elec-

troacoustic device consisting of a microchannel embedded in an elastic

solid with surface electrodes and driven acoustically by an attached piezo-

electric transducer with a split bottom-electrode for antisymmetric actua-

tion. The relevant length scales and electrode potentials are labeled.

FIG. 7. (Color online) Plots of the streaming suppression for the 2D model

defined in Fig. 6 versus the number Nelec of electrodes in terms of the quan-

tities S2 and S5 of Eq. (8), as well as the normalized streaming value

jjv2jj=jjv0
2jj, where jjv0

2jj is the norm (7) of the purely acoustic streaming

found for Nelec ¼ 0.
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suggests that one can look for a reasonable trade-off between

having many electrodes and reaching a high suppression.

The simulated suppressed streaming is shown in

Fig. 8 for Nelec ¼ 0; 6, 10, 15, 20, and 25. We notice that the

acoustic streaming at Nelec ¼ 0 is almost identical to the ide-

alized mode in Fig. 2. For Nelec ¼ 10, the entire central part

of the acoustophoretic channel is cleared for streaming

amplitudes above 5% of vRayl. At Nelec ¼ 15, a similar result

is seen for the 2% contour lines. Further increases in the

electrode count largely just bring the contour lines closer to

the boundaries. It is likely undesirable to perform particle

focusing close to the boundaries regardless, as this brings

adhesion effects into the problem, so increasing the number

of electrodes beyond a certain point appears redundant.

Right at the boundaries, high streaming velocities are still

seen, but these decay on the length scale of the electrode

widths. This is expected from the classical Rayleigh solu-

tions, which find an exponential decay in boundary-driven

streaming with a characteristic length scale identical to the

parallel variations in the slip velocity.20

VI. DISCUSSION AND CONCLUSION

We have already addressed many of the technicalities

associated with the method of combining acoustic and elec-

troosmotic streaming. Here, before concluding, we will

briefly address two critical points that were neglected in the

preceding analysis. First, our analysis of electroosmotic

streaming was based on the assumption of a vanishing

intrinsic zeta potential. However, the presence of chemically

generated charge on relevant interfaces like water/glass is

inevitable. Typical values of the zeta potential for borosili-

cate glass are on the order of f � �100 mV,48 comparable

in amplitude to the applied potentials. It is unclear whether a

dc-offset of this intrinsic wall potential at the discrete elec-

trode arrays would fully nullify its presence, as chemical

charges would still form a significant charge cloud in the

gaps between electrodes. One idea could be to make these

gaps as small as possible.

The intrinsic zeta potential is typically modeled as a

constant surface potential, and in the framework of the line-

arized theory, this would act as a zeroth-order field, yielding

non-zero gradients in c0 and generating a corresponding ini-

tial steady electric equilibrium potential /0;fl. As noted in

Ref. 49, the presence of these extra fields will lower the

acquired slip velocity. A supplemental numerical study in

the linearized regime by the authors suggests that the inclu-

sion of a relatively high intrinsic zeta potential of

f ¼ �100 mV almost halves the slip velocity of the solution

used in this paper with the shape remaining the same.

Second, we only worked with 2D systems in our present

study. Whereas the electroosmotic problem could in princi-

ple be implemented invariant along the channel, we know

from previous experimental studies50 that even long, straight

microchannels with rectangular cross sections exhibit axial

inhomogeneities in the acoustic fields, which renders a 3D

analysis necessary for complete characterization of the sys-

tem. Such a break in the 2D symmetry may yield areas of

non-suppressed streaming, which could compromise the per-

formance of the suggested chip design.

FIG. 8. (Color online) Numerical simulation of the electroacoustic streaming hv2i, Eq. (33) and Fig. 6, as a function of electrode number Nelec from 0 (purely

acoustic streaming) to 6, 10, 15, 20, and 25. Here, jhv2ij, S2, and S5 are plotted as in Figs. 2 and 4(c).
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In conclusion, we have presented the theoretical frame-

work for a method to effectively suppress acoustic stream-

ing by superposing electroosmotic streaming. We have

suggested a specific set of boundary conditions that achieves

this suppression in a typical microchannel with a resonant

standing half-wave. This idealized electroosmotic mode was

then tested in an idealized hard-walled model of the micro-

channel; in a more realistic model including the transducer,

the elastic solid, and the microchannel; and for applied vol-

tages in both the linear and nonlinear regime.

Furthermore, we have demonstrated that the electroos-

motic streaming pattern derived from a linearized theory

largely holds true for relevant amplitudes of applied vol-

tages. Last, we also evaluated numerically the capability for

suppressing streaming of a specific acoustophoretic chip,

where integrated discrete electrodes for generating electro-

osmosis were implemented. We hope that this theoretical

work will inspire the acoustofluidic community to investi-

gate experimentally the possibility of suppressing acoustic

streaming in a controlled manner by electroosmosis.
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