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1.  Introduction

Synthetic image generators (SIG) are commonly used in par-
ticle image/tracking velocimetry (PIV/PTV) research studies 
to create artificial sets of images that simulate experimental 
PIV/PTV recordings [1]. The obvious advantage of synthetic 
images is that the positions and displacements of particles are 
known a priori and different experimental conditions (such 
as seeding density, illumination, particle sizes) can be easily 
realized by changing few parameters in the code. Synthetic 
images have been extensively used in PIV/PTV research: from 
classical studies to determine the precision of the method and 
the optimal design rules [2–5], to more recent works assessing 
the resolution and accuracy of tomographic-PIV [6] or single-
pixel correlation methods [7], just to give few examples. An 

attempt to provide a standardized tool for generating synth
etic images was the EUROPIV SIG [8], developed within 
the EUROPIV 2 project. Standardized synthetic images were 
used in the various editions of the PIV Challenge, a world-
wide periodical initiative to assess the current state of the art 
of PIV techniques [9].

Most SIGs use 2D Gaussian functions to model particle 
images, which is the classical approach in PIV analysis [10]. 
This approach provides realistic results in case of in-focus parti-
cles with diameter of few pixels, which represents a large part of 
conventional and multi-cameras PIV/PTV experiments. On the 
other hand, for methods using large magnification optics and 
volume illumination, such as µPIV [11] or single-camera 3D 
methods [12, 13], it is necessary to model also particles which 
are out of focus. Several models can be used for this purpose, for 
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instance using again the 2D Gaussian function approximation 
[14, 15], or the Huygens–Fresnel diffraction integral [16]. All 
these approaches, however, neglect the spherical aberration that 
has a significant effect on these setups. Spherical aberration is 
a consequence of the spherical shape of real lenses which are 
in general not able to focus rays on a single spot (see figure 1).

This technical note introduces a SIG specifically designed 
to provide realistic images of in- and out-of-focus particles 
taken with large magnification optics. The SIG consists of 
a ready-to-use software, named MicroSIG, that is available 
in Matlab and Python. MicroSIG relies on the following 
assumptions.

	 •	�Particles are spheres or spheroids emitting light uniformly 
from their surface (like fluorescent particles).

	 •	�The objective lens is a spherical lens infinitely thin.
	 •	�Only geometric optics is used (diffraction is neglected).

MicroSIG can be used as a standardized tool to test and 
develop PIV and PTV methods dealing with defocused par-
ticle images. Additionally MicroSIG allows to simulate sphe-
roidal particles and astigmatic optics. Astigmatic imaging 
emerged as one robust method for 3D PTV [15, 17] and it 
has been successfully applied in many applications [18–21], 
however up to now a standardized SIG suitable for astigmatic 
particle images was not available yet.

2.  Implementation

MicroSIG uses a three-dimensional ray-tracing approach, 
needed to deal with non-spherical particles and astigmatic 
lenses (systems that are not axisymmetric). The ray-tracing 
algorithm uses a matrix implementation, in which each ray 
crossing a plane perpendicular to the optical axis is described 
by a four-dimensional vector [22]:

r =




qx

qy

px

py


� (1)

where the vector q = (qx, qy) represents the position of the 
intersection point of the ray with the plane, and the vector 
p = ( px, py) its orientation.

If the ray travels undisturbed, the ray vector r′ corre
sponding to a different plane can be calculated as
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where t is the distance between the two planes. A lens can be 
considered as a function λ, depending on the focal length f , 
that modifies the orientation vector:

r′ =




qx

qy

px
′

py
′


 = λ(r, f ).� (3)

In MicroSIG, the function λ is constructed to simulate a 
infinite-thin, biconvex spherical lens. Rays are deflected using 
the Snell’s law, first with respect to the air–glass interface, and 
then to the glass–air interface. The radius of curvature R of 
the interface is calculated from the lensmaker’s equation for 
thin lenses:

R = 2(nl/nm − 1) f� (4)

where nl and nm are the refractive index of the lens and of the 
lens immersion medium, respectively.

The first step for creating a particle image is to generate 
a discrete light field (i.e. a discrete ensemble of ray vectors) 
originated by a sphere (or spheroid) lying at a certain distance 
z from the lens. Practically, a number Ns of equally-spaced 
points are located on the particle surface, and for each point 
a number Nr of ray vectors with random orientation is cre-
ated. In this way, the discrete light field ri is created, with 
i = 1, 2, .., N  and N = Ns · Nr .

The light field is projected into the sensor plane with the 
following transformations:

ri
′ = T1ri, i = 1, 2, .., N� (5)

rj
′′ = λ(rj

′, f ), j ⊆ i� (6)

rk
ccd = T2rk

′′, k ⊆ j� (7)

where T1 is the translation matrix from the particle to the lens, 
and T2 from the lens to the sensor. The index j  indicates the 
rays that hit the lens and are a subset of i, k indicates the rays 
that hit the sensor and are a subset of j . The sensor is com-
posed by squared pixels with fill factor equal to 1. Finally, the 
intensity (counts) measured by a single pixels is calculated by 
the number of rays hitting its area.

If the astigmatic optics is activated, equation (7) is substi-
tuted by

rk
ccd = T2LcylT2cylrk

′′, k ⊆ j� (8)

Figure 1.  (A) Ray tracing using a perfect thin lens: rays originated 
from a point source at distance so from the lens converge to a single 
point at distance si, following the formula 1/si + 1/so = 1/f , being 
f  the focal lens of the lens. (B) Ray tracing using a spherical lens: 
rays originated from a point source do not converge to a single 
point.
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where Lcyl is a linear transformation corresponding to a per-
fect cylindrical lens with focal length fcyl:

Lcyl =




1 0 0 0
0 1 0 0

−1/fcyl 0 1 0
0 0 0 1


� (9)

and T2cyl and T2 are translation matrices from the lens to the 
cylindrical lens, and from the cylindrical lens to the sensor. 
The astigmatic aberration created by the cylindrical lens can 
be adjusted either by modifying its position or its focal length 
[15]. To reduce complexity, it was decided to arbitrarily place 
the cylindrical lens at 2/3 the distance between the main lens 
and the sensor, and leave as free parameter only the focal 
length fcyl .

3. The MicroSIG software

The MicroSIG software takes as first input a setting file, which 
contains a list of 14 parameters defining the optics and the 
camera settings.

	 •	�magnification: magnification of the optics.
	 •	�numerical_aperture: numerical aperture of the optics.
	 •	�focal_length: focal length of the virtual spherical lens.
	 •	�ri_medium: refractive index of the immersion medium of 

the lens, typically air.
	 •	�ri_lens: refractive index of the lens.
	 •	�pixel_size: size of the pixels in µm.
	 •	�pixel_dim_x: sensor width in pixels.
	 •	�pixel_dim_y: sensor height in pixels.
	 •	�background_mean: constant image background value.
	 •	�background_noise: standard deviation of the Gaussian 

noise added to the images.
	 •	�points_per_pixel: number of point sources per unit area, 

calculated as Ns divided by the theoretical area of an in-
focus particle image (optimal values: 10–20).

	 •	�n_rays: number of rays on each point source, corre
sponding to Nr (optimal values: 100–500).

	 •	�gain: multiplicative factor to adjust the final image inten-
sity.

	 •	�cyl_focal_length: focal length of the virtual cylindrical 
lens. If set to 0, no astigmatism is present.

focal_length and cyl_focal_length are virtual parameters 
of the optical model and must be determined empirically. 
Recommended values, obtained from comparison with exper
imental images in the literature [13, 23] are 350 µm and 4000 µm,  
respectively. Examples are provided in the next section.

Subsequent inputs are the data files, one for each image to 
generate. The data files must be provided in ASCII format and 
are row arranged (one particle, one line).

MicroSIG allows four different input formats:

	 •	�x, y , z, dp 

	 •	�x, y , z, dp , cint
	 •	�x, y , z, dp , ep , α, β
	 •	�x, y , z, dp , ep , α, β, cint.

For each particle there are four mandatory variables: x, y , z and 
dp . x and y  are the particle’s center coordinates in the image 
and are given in pixels as units. z is the out-of-plane comp
onent and is given in µm. z  =  0 corresponds to the theoretical 
coordinate of the focal plane, which however may not corre-
spond to the position where the particle looks more in focus 
due to the spherical aberration. dp  is the particle size (in µm).

To simulate spheroidal particles (i.e. ellipsoids of revo
lution), three additional parameters are needed: ep , a factor 
which indicates the elongation along one axis of the parti-
cle (oblates for ep   <  1, prolates ep   >  1), α and β, which are 
the orientation angles as defined in figure  2. Finally, cint is 
an optional multiplication factor to simulate light intensity 
inhomogeneities.

4.  Results

Two examples of comparison between experimental and simu-
lated particle image scans along the z-direction are reported in 
figure 3. In the first example in figure 3(A), the experimental 

Figure 2.  General concept of MicroSIG. Tracer particles are spheres or spheroids, with light point-sources uniformly distributed on the 
surface. The path of each ray going through a spherical lens (and optionally also a cylindrical lens) is calculated. The intensity of one pixel 
is calculated as the count of rays hitting its area. A sketch of a spheroid particle with ep   =  3 and its respective orientation angles α and β is 
presented on the right panel.
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data are taken from [13] and correspond to a 2 µm-diameter 
particle observed with a microscope objective with magnifi-
cation M = 10× and numerical aperture NA  =  0.3. The scan 
is taken across a total height of 120 µm, with steps of 2 µm 
for a total of 61 images. The corresponding synthetic images 
were obtained using the setting parameters listed in table 1 
(Setting 1). The data files use the format [x, y , z, dp ], with 
dp   =  2 µm and z ranging from  −80 to 40 µm with steps of  
2 µm. It should be noted that MicroSIG considers a particle at 
z  =  0 always at the theoretical focal plane, and that this does 
not correspond exactly to the point of maximum intensity as 

a consequence of the spherical aberration (as shown in fig-
ure 3(C)). Also the choice of focal_length affects the rate of 
change of defocusing across the z-direction.

The second example is shown in figure  3(B) and corre-
sponds to a 1 µm-diameter particle observed with a micro-
scope objective lens with M = 63× and NA  =  0.75. The scan 
is taken across a total height of 45 µm, with steps of 1 µm for 
a total of 46 images. The experimental data are taken from 
[23]. The simulated images are taken using the setting param
eters listed in table 1 (Setting 2) and z ranging from  −40 to  
5 µm with steps of 1 µm. For both examples, a good quali-
tative and quantitative agreement between experimental and 
simulated images can be observed. Some finer structures, 
originated from the diffraction patterns, cannot clearly be 
recreated by MicroSIG, however the overall structure of the 
defocused images is well reproduced.

Further examples are shown in figure  4. Figure  4(A) 
shows experimental and simulated images of 2 µm parti-
cles randomly distributed in a 100 µm-height microchannel. 
Figure  4(B) shows the same case but this time using astig-
matic optics. In both cases the experimental images are taken 
from [13] and more detail about the experimental setup can be 
found there. The synthetic images were obtained using the set-
tings 1 and 1a in table 1. For the astigmatic case, it should be 
noted that the value cyl_focal_length  =  4000 µm is a virtual 
parameter that cannot directly be related to the focal length 
of the cylindrical lens employed in the experiment (300 mm). 
Finally, figure 4(C) shows simulations of spheroidal particles 
with different positions and orientations. This feature allows 

-80 -40 0 40

2k

4k

-40 -20 0  

200

400

Figure 3.  Comparison between experimental and simulated particle 
image scans. (A) Real and synthetic images of 2 µm spheres taken 
with a 10×/0.3 objective lens. (B) Real and synthetic images of 
1 µm spheres taken with a 63×/0.75 objective lens. (C) and (D) 
Corresponding maximum particle image intensity across the z 
direction.

Table 1.  Values for the setting files used in the simulations in 
section 4.

Unit Setting

Parameter 1 1a 2

Magnification — 10 10 63
Numerical_aperture — 0.3 0.3 0.75
Focal_length µm 350 350 350
ri_medium — 1 1 1
ri_lens — 1.5 1.5 1.5
Pixel_size µm 6.45 6.45 6.45
Pixel_dim_x pixels 752 752 141
Pixel_dim_y pixels 366 366 141
Background_mean counts 350 350 52
Background_noise counts 10 10 5
Points_per_pixel 1/pixels 18 18 12
n_rays — 500 500 250
Gain — 3.2 3.2 1.1
cyl_focal_length µm 0 4000 0

Figure 4.  (A) Real and synthetic images of 2 µm particles 
randomly distributed in a 100 µm-height microchannel observed 
with a 10×/0.3 objective lens, and (B) same setup with in addition 
an astigmatic optics. (C) Simulations of spheroidal particles with 
different positions and orientations.
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to develop and test new algorithms able to recover the position 
and orientation of non-spherical objects, which are relevant in 
many fields from cell measurements [24, 25] to anisotropic 
colloidal particles [26, 27].

5.  Conclusions

This note introduces the main features of MicroSIG, a synth
etic image generator (SIG) that provides realistic defocused 
and astigmatic particle images. MicroSIG can be used for the 
assessment of the uncertainty, under different conditions, of 
several PIV/PTV methods in which defocusing (or astigma-
tism) plays a role, including µPIV or 3D-PTV single-camera 
methods. Furhtermore, it can be used to develop methods to 
measure position and orientation of non-spherical objects, 
which is currently an open field of research in colloids or bio-
logical flows. The MicroSIG software, available in Matlab 
and Python, is included in the supplementary material (stacks.
iop.org/MST/31/017003/mmedia) and can be downloaded at 
the following link: https://gitlab.com/defocustracking.
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