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Forces acting on a small particle in an acoustical field in a thermoviscous fluid
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We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either
a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting
fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the
viscous and thermal boundary-layer thicknesses δs and δt relative to the particle radius a, but it assumes the particle
to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves
from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary
layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we
predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices
of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical
particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly
relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip
systems.

DOI: 10.1103/PhysRevE.92.043010 PACS number(s): 47.35.Rs, 43.25.Qp, 43.20.Fn, 43.20.+g

I. INTRODUCTION

The acoustic radiation force is the time-averaged force
exerted on a particle in an acoustical field due to scattering
of the acoustic waves from the particle. Theoretical studies of
the acoustic radiation force date back to King in 1934 [1] and
Yosioka and Kawasima in 1955 [2], who considered the force
on an incompressible and a compressible particle, respectively,
in an inviscid ideal fluid. Their work was summarized and
generalized in 1962 by Gorkov [3], with the analysis, however,
still limited to ideal fluids and valid only for particles with a
radius a much smaller than the acoustic wavelength λ.

In subsequent work, Doinikov developed general the-
oretical schemes for calculating acoustic radiation forces
including viscous and thermoviscous effects [4–6]. The direct
applicability of these studies is hampered by the generality
of the developed formalism, and analytical expressions are
given only in the special limits of δ � a � λ and a � δ � λ,
where δ is the boundary-layer thickness. Similarly, the work of
Danilov and Mironov, including viscous effects, only provides
analytical expressions in these two limits [7]. However,
micrometer-sized particles in water at MHz frequency used in
lab-on-a-chip systems for trapping [8–10] and separation [11–
21], or in gases at kHz frequency used for separation [22–24]
and levitation [25–28], often fall outside of these limits as
δ ∼ a � λ. For example, in water at 2 MHz the viscous
and thermal boundary layers are of thickness δs = 0.4 μm
and δt = 0.2 μm, respectively, while in air at 50 kHz one
finds δs = 10 μm and δt = 12 μm. Consequently, the acoustic
radiation force on nanometer- and micrometer-sized particles
is not well described by the limited expressions for small
and large boundary layers. The more general case of arbitrary
viscous boundary-layer thicknesses compared to the particle
size was subsequently studied analytically by Settnes and
Bruus in the adiabatic limit where thermal boundary layers
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are neglected [29]. Their asymptotic study demonstrated that
small changes in the scattered field may significantly affect the
acoustic radiation force exerted on the particle. Since a thermal
boundary layer may also lead to such changes for physically
relevant parameters, an extension of the theory in Ref. [29] to
include nonadiabatic effects from heat conduction is desirable.
Moreover, it is also of interest to extend the treatment of
compressible solid particles in Ref. [29] to include droplets
or elastic particles for which viscous or elastic shear must be
taken into account.

In this work we extend the radiation force theory for
droplets and elastic particles to include the effect of both
viscosity and heat conduction, thus accounting for the vis-
cous and thermal boundary layers of thicknesses δs and δt,
respectively, and we give closed-form analytical expressions
in the limit of δs,δt,a � λ with no further restrictions between
δs, δt, and a. Our approach to the full thermoviscous scattering
problem follows that of Epstein and Carhart from 1953 [30].
The scope of their work was a theory for the absorption
of sound in emulsions such as water fog in air. In 1972,
Allegra and Hawley further developed the theory to include
elastic solid particles suspended in a fluid in order to calculate
the attenuation of sound in suspensions and emulsions [31].
The seminal work of those authors has become known as
ECAH theory within the field of ultrasound characterization
of emulsions and suspensions, and combined with the multiple
wave scattering theories of Refs. [32,33] it has been applied to
calculate homogenized complex wave numbers of suspensions
and emulsions [34,35].

The field of ultrasound characterization driven by engineer-
ing applications and the field of acoustic radiation forces have
developed in parallel with little overlap. Indeed, the scopes
of the work in the two fields are very different. In the works
of Epstein and Carhart and Allegra and Hawley, there is no
mention of acoustic radiation forces [30,31]. However, the
underlying scattering problem of a particle suspended in a fluid
remains the same, and having once solved for the amplitude
of the propagating scattered wave, the acoustic radiation force
on the particle may be obtained from a far-field calculation.
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FIG. 1. (Color online) Sketches of the physical mechanisms responsible for various multipole components in the scattering of an incident
acoustic wave on a particle. (a) Compressibility contrast: the incident periodic pressure field compresses the particle relative to the fluid, which
leads to monopole radiation. (b) Thermal contrast: the incident periodic temperature field leads to thermal expansion of the particle relative to
the fluid, which also gives rise to monopole radiation and the development of a diffusive thermal boundary layer (pink). (c) Density contrast: a
difference in inertia between particle and fluid causes the particle to oscillate relative to the fluid, which gives rise to dipole radiation and the
development of a viscous boundary layer (blue). (d) Particle resonances: acoustic wavelengths comparable to the particle size lead to complex
shape changes, which give rise to multipole radiation and a complex thermoviscous boundary layer (pink and blue).

In the far field, the propagating scattered field changes when
taking into account the thermoviscous scattering mechanisms,
including boundary-layer losses and excitation of acoustic
streaming in the vicinity of the particle. In this work we will
elucidate this approach, as it leads to a particularly simple and
valuable formulation for the acoustic radiation force in the
long-wavelength limit [29].

Considering the success of the ECAH method to describe
attenuation of sound in emulsions and suspensions, we can
with great confidence apply the method to analyze the
consequences of thermoviscous scattering on the acoustic
radiation force. Nevertheless, we find a need to re-examine
the problem of thermoviscous scattering in order to apply the
theory to the problem of acoustic radiation forces in a clear
and consistent manner. One point of clarification relates to
an ambiguity in the thermoelastic solid theory presented by
Allegra and Hawley [31], where no clear distinction is made
between isothermal and adiabatic solid parameters, thus tacitly
implying γ = cp/cV = 1 in solids. Here, we will provide
a self-consistent treatment of thermoviscous scattering that
clarifies this issue and allows easy comparison with existing
acoustic radiation force theories.

Before proceeding with the mathematical treatment, we
refer the reader to Fig. 1, which illustrates the physical

TABLE I. References to analytical expressions derived in this
paper for the monopole and dipole scattering coefficients f0 and f1 in
the long-wavelength limit δ,a � λ. For any given incident acoustic
field, the acoustic radiation force Frad is calculated using Eq. (5) with
these expressions for f0 and f1.

Size of particle and boundary layers f0 f1

Thermoviscous droplet:
Arbitrary-width boundary layers Eq. (59) Eq. (68)
Small-width boundary layers Eq. (60) Eq. (69)
Zero-width boundary layers Eq. (61) Eq. (72)
Point-particle limit Eq. (62) Eq. (73)

Thermoelastic particle:
Arbitrary-width boundary layers Eq. (64) Eq. (70)
Small-width boundary layers Eq. (66) Eq. (71)
Zero-width boundary layers Eq. (67) Eq. (72)
Point-particle limit Eq. (65) Eq. (73)

mechanisms responsible for the monopole, dipole, and multi-
pole scattering from a particle subject to a periodic acoustic
field [35]. The final results for the acoustic radiation force are
presented in terms of corrected expressions for the monopole
and dipole scattering coefficients f0 and f1. This approach
allows an easy comparison with ideal-fluid theory; moreover,
as shown by Settnes and Bruus [29], it provides a simple way
of evaluating acoustic radiation forces for any given incident
acoustic field. To this end, Table I provides an overview of
the equations needed to evaluate the thermoviscous acoustic
radiation force on small droplets or solid particles.

II. BASIC CONSIDERATIONS ON THE ACOUSTIC
RADIATION FORCE

We consider a single particle or droplet suspended in an
infinite, quiescent fluid medium with no net body force, but
perturbed by a time-harmonic acoustic field with angular
frequency ω. The density, velocity, and stress of the perturbed
fluid is denoted ρ, v, and σ , respectively. The region �(t)
occupied by the particle, its surface ∂�(t), and the outward-
pointing surface vector n depend on time due to the acoustic
field. The instantaneous acoustic radiation force is given by
the surface integral of the fluid stress σ acting on the particle
surface. However, since the short time scale corresponding
to the oscillation period τ is not resolved experimentally, we
define the acoustic radiation force Frad in the conventional
time-averaged sense [1–4,7,29],

Frad =
〈∮

∂�(t)
σ · n da

〉
, (1)

where the angled bracket denotes the time average over one
oscillation period. Notice that this definition includes the
acoustic streaming generated locally near the particle, since
the stresses leading to this streaming are contained in the fluid
stress tensor σ . In contrast, by considering an infinite domain,
we are excluding effects of what Danilov and Mironov refer
to as external streaming [7], which would be generated at the
boundaries of any finite domain. For a given finite domain,
the external streaming can be calculated [36], and the total
force acting on a particle is the sum of the radiation force and
the external-streaming-induced Stokes drag. This approach
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has been used in studies of particle trajectories and has been
validated experimentally [37,38].

We consider a state, which is periodic in the acoustic
oscillation period τ , tantamount to requiring that any nonpe-
riodic phenomenon, such as particle drift, is negligible within
one oscillation period. Usually, this requirement is not very
restrictive, as discussed in more detail in Sec. VII. For a
time-periodic state, any field can be written as a Fourier series
f (r,t) =∑∞

n=0 fn(r) e−inωt , with ω = 2π/τ , and the time
average of any total time derivative is zero, 〈 d

dt
f (r,t)〉 = 0.

A useful expression for Frad is obtained by considering the
momentum flux density σ − ρvv entering the fluid volume
between the particle surface ∂�(t) and an arbitrary static
surface ∂�1 enclosing the particle. The total momentum P
of the fluid in this volume is the volume integral of ρv,
and because the net body force on the fluid is zero, the
time-averaged rate of change 〈 d

dt
P〉 is〈

d P
dt

〉
=
〈 ∮

∂�1

[σ − ρvv] · n da

〉
+
〈 ∮

∂�(t)
σ · (−n) da

〉

=
〈 ∮

∂�1

[σ − ρvv] · n da

〉
− Frad. (2)

Here, n is the surface vector pointing out of ∂�1 (out of the
fluid) and out of ∂�(t) (into the fluid). The advection term
ρvv is zero at ∂�(t), since there is no advection of momentum
through the interface of the particle. Finally, using that the
time average of the total time derivative 〈 d P

dt
〉 is zero in the

time-periodic system, we obtain

Frad =
〈 ∮

∂�1

[σ − ρvv] · n da

〉
. (3)

Thus, even before applying perturbation theory, the acoustic
radiation force can be evaluated as the total momentum flux
through any static surface ∂�1 enclosing the particle. To
second order in the acoustic perturbation, using the expansions
ρ = ρ0 + ρ1 + ρ2, v = 0 + v1 + v2, and σ = σ 0 + σ 1 + σ 2,
the radiation force (3) becomes

Frad =
∮

∂�1

[〈σ 2〉 − ρ0〈v1v1〉] · n da, (4)

where we have used that the time average of the time-harmonic,
first-order fields is zero.

In regions sufficiently far from acoustic boundary layers, the
acoustic wave is a weakly damped propagating acoustic mode,
for which viscous and thermal effects are negligible. Thus
the result of Ref. [29], obtained by analytically integrating
Eq. (4) by placing ∂�1 in the far field, remains valid in the
thermoviscous case. In the long-wavelength limit, where the
particle radius a is assumed much smaller than the wavelength
λ, i.e., for k0a � 1 with k0 = 2π/λ, it was shown that
the acoustic radiation force may be evaluated directly from
the incident first-order acoustic field and the expressions
for the monopole and dipole scattering coefficients f0 and
f1 for the suspended particle, as [29]

Frad = −πa3

[
2κs

3
Re[f ∗

0 p∗
in∇pin] − ρ0Re[f ∗

1 v∗
in ·∇vin]

]
.

(5)

Here, pin and vin are the incident acoustic pressure and
velocity fields evaluated at the particle position, the asterisk
denotes complex conjugation, and κs and ρ0 are the isentropic
compressibility and the mass density of the fluid medium,
respectively.

Equation (5) is valid for any incident time-harmonic
acoustic field, and consequently the problem of calculating the
radiation force on a small particle reduces to calculating the
coefficients f0 and f1. Closed analytical expressions for these
are given in the literature for small particles in the special cases
of compressible particles in ideal fluids [2,3] and compressible
particles in viscous fluids [29]. Moreover, f0 and f1 can be
extracted from Refs. [5,6] for rigid spheres and liquid droplets
in thermoviscous fluids for the limiting cases of very thin and
very thick boundary layers. The main result of this paper is
the derivation of analytical expressions for f0 and f1 for a
spherical thermoviscous droplet and a thermoelastic particle
suspended in a thermoviscous fluid without restrictions on the
boundary-layer thicknesses, see Table I. Moreover, we provide
an analysis of how Frad is affected by thermoviscous effects
in these cases.

Finally, we note that since f0 and f1 depend only on
frequency and material parameters, expression (5) for the
radiation force remains valid for any incident wave composed
of plane waves at the same frequency. In the case of a
superposition pin(r,t) =∑N

n=1 pn(r)e−iωnt of acoustic fields
pn(r) (and similarly for vin) at different frequencies ωn, the
resulting radiation force is obtained by summing over the
forces obtained from Eq. (5) for each frequency,

Frad = − πa3
N∑

n=1

[
2κs

3
Re[f ∗

0,n p∗
n∇pn]

− ρ0 Re[f ∗
1,n v∗

n · ∇vn]

]
. (6)

This generalization of Eq. (5) provides a way to evaluate the
acoustic radiation force on a single particle regardless of the
complexity of the incident field.

III. THERMOVISCOUS PERTURBATION THEORY
OF ACOUSTICS IN FLUIDS

The starting point of the theory is the first law of ther-
modynamics and the conservation of mass, momentum, and
energy. Introducing the thermodynamic variables temperature
T , pressure p, density ρ, internal energy ε per mass unit,
entropy s per mass unit, and volume per mass unit 1/ρ, the first
law of thermodynamics with s and ρ as independent variables
becomes

dε = T ds − p d

(
1

ρ

)
= T ds + p

ρ2
dρ. (7)

For acoustic wave propagation it is often convenient to use
T and p as independent thermodynamic variables. This is
obtained by a Legendre transformation of the internal energy
ε per unit mass to the Gibbs free energy g per unit mass,
g = ε − T s + p 1

ρ
.

Besides the first law of thermodynamics, the governing
equations of thermoviscous acoustics require the introduction
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of the velocity field v and the stress tensor σ of the fluid.
The latter can be expressed in terms of v, p, the dynamic
shear viscosity η, the bulk viscosity ηb, and the viscosity ratio
β = ηb/η + 1/3, as

σ = −p I + τ , (8a)

τ = η[∇v + (∇v)T] + (β − 1)η(∇ · v) I. (8b)

Here, I is the unit tensor and the superscript “T” indicates
tensor transposition. The tensor τ is the viscous part of the
stress tensor assuming a Newtonian fluid [39].

Considering the fluxes of mass, momentum, and energy
into a small test volume, we use Gauss’s theorem to formulate
the general governing equations for conservation of mass,
momentum, and energy in the fluid under the assumption of
no net body forces and no heat sources,

∂tρ = ∇ · [−ρv], (9a)

∂t (ρv) = ∇ · [σ − ρvv], (9b)

∂t

(
ρε + 1

2ρv2
) = ∇ · [v · σ + kth∇T − ρ

(
ε + 1

2v2
)
v
]
.

(9c)

Here, we have introduced the thermal conductivity kth assum-
ing the usual linear form for the heat flux given by Fourier’s
law of heat conduction.

A. First-order equations for fluids

The zeroth-order state of the fluid is quiescent, homoge-
neous, and isotropic. Then, treating the acoustic field as a
perturbation of this state in the acoustic perturbation parameter
εac, given by

εac = |ρ1|
ρ0

� 1, (10)

we expand all fields as g = g0 + g1, but with v0 = 0. The
zeroth-order terms drop out of the governing equations,
while the first-order mass, momentum, and energy equations
obtained from Eqs. (7) and (9) become

∂tρ1 = −ρ0∇ · v1, (11a)

ρ0∂tv1 = −∇p1 + η0∇2v1 + βη0∇(∇ · v1), (11b)

ρ0T0∂t s1 = kth∇2T1. (11c)

It will prove useful to eliminate the variables p1, ρ1, and s1 to
end up with only two equations for the variables v1 and T1. To
this end, we combine Eq. (11) with the two thermodynamic
equations of state ρ = ρ(p, T ) and s = s(p, T ). The total
differentials of ρ and s are

dρ =
(

∂ρ

∂p

)
T

dp +
(

∂ρ

∂T

)
p

dT , (12a)

ds =
(

∂s

∂p

)
T

dp +
(

∂s

∂T

)
p

dT , (12b)

which may be linearized so that the partial derivatives of ρ

and s refer to the unperturbed state of the fluid. This leads
to the introduction of the isothermal compressibility κT , the

isobaric thermal expansion coefficient αp, and the specific heat
capacity at constant pressure cp,

κT = 1

ρ

(
∂ρ

∂p

)
T

, αp = − 1

ρ

(
∂ρ

∂T

)
p

,

cp = T

(
∂s

∂T

)
p

. (13)

Moreover, (∂s/∂p)T = −αp/ρ, which may be derived as a
Maxwell relation differentiating g after p and T . Thus, the
linearized form of Eq. (12) is

ρ1 = ρ0 κT p1 − ρ0 αp T1, (14a)

s1 = cp

T0
T1 − αp

ρ0
p1. (14b)

We further introduce the isentropic compressibility κs and the
specific heat capacity at constant volume cV ,

κs = 1

ρ

(
∂ρ

∂p

)
s

, cV = T

(
∂s

∂T

)
V

. (15)

Then the following two well-known thermodynamic identities
may be derived [40]:

κT = γ κs, γ ≡ cp

cV

= 1 + α2
pT0

ρ0cpκs

. (16)

To proceed with the reduction of Eq. (11), we first
differentiate Eq. (11b) with respect to time and substitute
∇2v1 = ∇(∇ · v1) − ∇ × ∇ × v1. Then, Eq. (14) is used to
eliminate p1 and s1 in Eqs. (11b) and (11c), followed by
elimination of ∂tρ1 using Eq. (11a). The resulting equations
for v1 and T1 are

∂ 2
t v1 −

(
1

ρ0κT

+ (1 + β)ν0∂t

)
∇(∇ · v1) + ν0∂t∇ × ∇ × v1

= − αp

ρ0κT

∂t∇T1, (17a)

γDth∇2T1 − ∂tT1 = γ − 1

αp

∇ · v1, (17b)

where we have introduced the momentum diffusion constant
ν0 and the thermal diffusion constant Dth,

ν0 = η0

ρ0
, Dth = kth

ρ0cp

. (18)

B. Potential equations for fluids

The velocity field v1 is decomposed into the gradient of
a scalar potential φ (the longitudinal component) and the
rotation of a divergence-free vector potential ψ (the transverse
component),

v1 = ∇φ + ∇ × ψ, with ∇ · ψ = 0. (19)

Inserting this well-known Helmholtz decomposition into
Eq. (17a) leads to the equation

∇
[
∂2
t φ −

(
1

ρ0κT

+ (1 + β)ν0∂t

)
∇2φ + αp

ρ0κT

∂tT1

]

= ∇ × [−∂2
t ψ + ν0∂t∇2ψ

]
. (20)
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In general, both sides of the equation must vanish separately,
which leads to two equations. Combining these with Eq. (17b),
into which Eq. (19) is inserted, leads to the following form of
Eq. (17):

∂2
t φ =

(
1

ρ0κT

+ (1 + β)ν0∂t

)
∇2φ − αp

ρ0κT

∂tT1, (21a)

∂tT1 = γDth∇2T1 − γ − 1

αp

∇2φ, (21b)

∂tψ = ν0∇2ψ . (21c)

In the adiabatic limit, for which Dth = 0, the well-known
adiabatic wave equation for φ is obtained by inserting Eq. (21b)
into (21a), from which the adiabatic speed of sound c for
longitudinal waves is deduced,

c = 1√
ρ0κs

. (22)

In the isothermal case, for which T1 = 0, the wave equa-
tion (21a) instead describes waves traveling at the isothermal
speed of sound c/

√
γ = 1/

√
ρ0κT . For ultrasound acoustics,

sound propagation in the bulk of a fluid is generally very close
to being adiabatic.

IV. THERMOELASTIC THEORY OF ACOUSTICS
IN ISOTROPIC SOLIDS

A thermoelastic solid may be deformed by the action of
applied forces or on account of thermal expansion. Following
Landau and Lifshitz [41], we describe the deformation of
a solid elastic body using the displacement field u, which
describes the displacement u(r,t) of a solid element away
from its initial, undeformed position r to its new temporary
position r + u(r,t). Any displacement away from equilibrium
gives rise to internal stresses tending to return the body to
equilibrium. These forces are described using the stress tensor
σ , which leads to the force density ∇ · σ . In the description of
the thermodynamics of solids, it is advantageous to work with
per-volume quantities denoted by uppercase letters, in contrast
to the per-mass quantities given by lowercase letters. The first
law of thermodynamics reads

dE = T dS + σij duij , (23)

where E is the internal energy per unit volume, S is the entropy
per unit volume, and T is the temperature. The work done
by the internal stresses per unit volume is equal to −σij duij ,
where we have introduced the strain tensor uij , which for small
displacements is given by

uij = 1
2 [∂iuj + ∂jui]. (24)

Transforming the internal energy per unit volume E to the
Helmholtz free energy per unit volume F = E − T S, where
temperature T and strain uij are the independent variables, the
first law becomes dF = −SdT + σij duij .

Consider the undeformed state of an isotropic, thermoelas-
tic solid at temperature T0 in the absence of external forces.
The free energy F is then given as an expansion in powers
of the temperature difference T − T0 and the strain tensor uij .

To linear order, the stress tensor σij = ( ∂F
∂uij

)T and the entropy

S = −( ∂F
∂T

)uij
become

σij = −αp(T − T0)

κT

δij + E

1 + σ

[
uij + σ

1 − 2σ
ukkδij

]
,

(25a)

S(T ) = S0(T ) + αp

κT

ukk, (25b)

where S0(T ) is the entropy of the undeformed state at
temperature T , while E and σ are the isothermal Young’s
modulus and Poisson’s ratio, respectively. The isothermal
compressibility κT of the solid is given in terms of E and
σ as

κT = 3(1 − 2σ )
1

E
. (26)

A. Linear equations for solids

In elastic solids, advection of momentum and heat cannot
occur, so the momentum equation in the absence of body forces
takes the linear form ρ∂2

t u = ∇ · σ . Assuming the material
parameters αp, κT , E, and σ to be constant, it becomes

ρ∂2
t u = −αp

κT

∇T + E

2(1 + σ )

[
∇2u + 1

1 − 2σ
∇(∇ · u)

]

= − αp

ρκT

∇T + c2
T∇2u + (c2

L − c2
T

)∇(∇ · u), (27)

where we have introduced the isothermal speed of sound of
longitudinal waves cL and of transverse waves cT,

c2
L = (1 − σ )

(1 + σ )(1 − 2σ )

E

ρ
, c2

T = 1

2(1 + σ )

E

ρ
. (28a)

Using the decomposition u = uT + uL in the transverse
and longitudinal displacements uT and uL with ∇ · uT = 0
and ∇ × uL = 0, respectively, it immediately follows from
Eq. (27) that in the isothermal case, transverse and longitudinal
waves travel at the speed cT and cL, respectively. Combining
Eqs. (26) and (28a) one obtains an important relation con-
necting the isothermal compressibility κT of the solid to the
isothermal sound speeds cL and cT,

1

ρκT

= c2
L − 4

3
c2

T. (28b)

Turning to the energy equation, the amount of heat absorbed
per unit time per unit volume is T (∂tS). If there are no heat
sources in the bulk, the rate of heat absorbed is given by the
influx −kth∇T of heat by conduction, and the heat equation
thus becomes

T (∂tS) = −∇ · [−kth∇T ] = kth∇2T , (29)

where the heat conductivity kth is taken to be constant. We
rewrite this equation using expression (25b) for the entropy,
and using that the time derivative of S0 may be written as

∂S0

∂t
=
(

∂S0

∂T

)
V

∂T

∂t
= CV

T

∂T

∂t
, (30)

where the heat capacity CV per unit volume at constant volume
enters through the relation CV = T (∂S0/∂T )V with the
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derivative taken for the undeformed state at constant volume,
that is, for ukk = ∇ · u = 0. Combining these considerations
with the identity for γ equivalent to Eq. (16), the heat
equation (29) becomes

CV ∂tT + (γ − 1)CV

αp

∂t∇ · u = kth∇2T . (31)

Finally, having eliminated all extensive thermodynamic vari-
ables, we return to per-mass quantities, such as cV = CV /ρ,
and thus arrive at the coupled equations for thermoelastic
solids,

∂2
t u1 − c2

L∇(∇ · u1) + c2
T∇ × ∇ × u1 = − αp

ρ0κT

∇T1,

(32a)

γDth∇2T1 − ∂tT1 = γ − 1

αp

∂t∇ · u1,

(32b)

with γ and Dth defined in Eqs. (16) and (18), and the
linearity emphasized by the addition of subscripts “1” to the
field variables. In this form, the thermoelastic equations (32)
correspond to the fluid equations (17).

B. Potential equations for solids

The time derivative ∂t u1 of the displacement field u1

describes the velocity field in the solid. Analogous to the fluid
case, we make a Helmholtz decomposition of this velocity
field in terms of the velocity potentials φ and ψ

∂t u1 = ∇φ + ∇ × ψ, with ∇ · ψ = 0. (33)

Inserting this into Eq. (32) and following the procedure leading
to Eq. (21) for fluids, we obtain the corresponding three
equations for solids:

∂2
t φ = c2

L∇2φ − αp

ρ0κT

∂tT1, (34a)

∂tT1 = γDth∇2T1 − γ − 1

αp

∇2φ, (34b)

∂2
t ψ = c2

T∇2ψ . (34c)

The main difference between the fluid and the solid case is
in Eq. (34c) for the vector potential ψ , which now takes the
form of a wave equation describing transverse waves traveling
at the transverse speed of sound cT instead of the diffusion
equation (21c).

The usual adiabatic wave equation for the scalar potential
φ is obtained in the limit of Dth = 0 combining Eqs. (34a)
and (34b), and the speed c of adiabatic, longitudinal wave
propagation in an elastic solid becomes

c2 = c2
L + γ − 1

ρ0κT

. (35)

For most solids, γ − 1 � 1, leading to a negligible difference
between the isothermal cL and the adiabatic c, the latter being
closest to the actual speed of sound measured in ultrasonic
experiments.

V. UNIFIED POTENTIAL THEORY OF ACOUSTICS
IN FLUIDS AND SOLIDS

The similarity between the potential equations (21) and (34)
allows us to write down a unified potential theory of acoustics
in thermoviscous fluids and thermoelastic solids. The main
result of this section is the derivation of three wave equations
with three distinct wave numbers corresponding to three
modes of wave propagation, namely, two longitudinal modes
describing propagating compressional waves and damped
thermal waves and one transverse mode describing a shear
wave, which is damped in a fluid but propagating in a solid.

We work with the first-order fields in the frequency domain
considering a single frequency ω. Using complex notation, we
write any first-order field g1(r,t) as

g1(r,t) = g1(r) e−iωt . (36)

Assuming this form of time-harmonic first-order field,
Eqs. (21a) and (34a) lead to expressions for the temperature
field T1 in a fluid (fl) and a solid (sl), respectively, in terms of
the corresponding scalar potential φ

T fl
1 = iωρ0κT

αp

[
φ + c2

ω2

1 − iγ �s

γ
∇2φ

]
, (37a)

T sl
1 = iωρ0κT

αp

[
φ + c2

L

ω2
∇2φ

]
. (37b)

Here, we have introduced the dimensionless bulk damping
factor �s accounting for viscous dissipation in the fluid. For
convenience, we also introduce the thermal damping factor �t

accounting for dissipation due to heat conduction both in fluids
and in solids. These two bulk damping factors are given by

�s = (1 + β)ν0ω

c2
, �t = Dthω

c2
. (38)

Substituting expression (37a) for T fl
1 into Eq. (21b), or

expression (37b) for T sl
1 into Eq. (34b), and assuming time-

harmonic fields [Eq. (36)], we eliminate the temperature field
and obtain a biharmonic equation for the scalar potential φ,

αxl∇2∇2φ + βxlk
2
0∇2φ + k4

0φ = 0, with k0 = ω

c
,

(39a)

where we have introduced the undamped adiabatic wave
number k0 = ω/c, and where the parameters αxl and βxl for
fluids (xl = fl) and solids (xl = sl) are

αfl = −i(1 − iγ �s)�t, βfl = 1 − i(�s + γ�t), (39b)

αsl = −i(1 + X)�t, βsl = 1 − iγ �t. (39c)

Here, we have used relation (35) for solids and further
introduced the parameters X and χ ,

X = (γ − 1)(1 − χ ), (39d)

χ = 1

ρ0κsc2
= 1 − 4

3

c2
T

c2
, (39e)

the latter equality following from combining Eq. (35) with
Eq. (28b) and using κT = γ κs from Eq. (16). Note that for
fluids, χ = 1, cT = 0, and X = 0.
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The biharmonic equation (39a) is factorized and written on
the equivalent form

(∇2 + k2
c

)(∇2 + k2
t

)
φ = 0, (40a)

and thus the wave numbers kc and kt are obtained from k2
c +

k2
t = βxlk

2
0/αxl and k2

c k
2
t = k4

0/αxl, resulting in

k2
c = 2k2

0

[
βxl + (β2

xl − 4αxl
)1/2
]−1

, (40b)

k2
t = 2k2

0

[
βxl − (β2

xl − 4αxl
)1/2
]−1

, (40c)

with “xl” being either “fl” for fluids or “sl” for solids.
In the frequency domain, the equation for the vector

potential ψ , Eq. (21c) for fluids and Eq. (34c) for solids, can
be written as ∇2ψ + k2

s ψ = 0, which describes a transverse
shear mode with shear wave number ks. By introducing a shear
constant η0, which for a fluid is the dynamic viscosity, and for
a solid is defined as

η0 = i
ρ0c

2
T

ω
(solid), (41a)

the shear wave number ks is given by the same expression for
both fluids and solids,

k2
s = iωρ0

η0
(fluid and solid). (41b)

A. Wave equations and modes

The general solution φ of the biharmonic equation (40a) is
the sum

φ = φc + φt (42)

of the two potentials φc and φt, which satisfy the harmonic
equations

∇2φc + k2
c φc = 0, (43a)

∇2φt + k2
t φt = 0, (43b)

where φc describes a compressional propagating mode with
wave number kc, while φt describes a thermal mode with wave
number kt. These two scalar wave equations together with the
vector wave equation for ψ , describing the shear mode with
wave number ks,

∇2ψ + k2
s ψ = 0, (43c)

comprise the full set of first-order equations in potential
theory. These wave equations, coupled through the boundary
conditions, govern acoustics in thermoviscous fluids and
thermoelastic solids. The distinction between fluids and solids
is to be found solely in the wave numbers of the three modes.

1. Approximate wave numbers for fluids

For most systems of interest, �s,�t � 1 allowing a simpli-
fication of the expressions for kc and kt in Eq. (40). To first

order in �s and �t one finds

kc = ω

c

[
1 + i

2
[�s + (γ − 1)�t]

]
, (44a)

kt = (1 + i)

δt

[
1 + i

2
(γ − 1)(�s − �t)

]
, (44b)

ks = (1 + i)

δs
, (44c)

where we have introduced the thermal diffusion length δt and
the momentum diffusion length δs. Heat and momentum dif-
fuses from boundaries, such that the characteristic thicknesses
of the thermal and viscous boundary layers are δt and δs,
respectively, given by

δt =
√

2Dth

ω
, δs =

√
2ν0

ω
. (45)

For water at room temperature and 2 MHz frequency, δs �
0.4 μm, δt � 0.2 μm, and λ � 760 μm. Consequently, the
length scales of the thermal and viscous boundary-layer
thicknesses are the same order of magnitude and much smaller
than the acoustic wavelength. With k0 = ω/c we note that

�s = 1
2 (1 + β)(k0δs)

2, �t = 1
2 (k0δt)

2, (46)

and consequently

�s ∼ (k0δs)
2 ∼

∣∣∣kc

ks

∣∣∣2 � 1, (47a)

�t ∼ (k0δt)
2 ∼

∣∣∣kc

kt

∣∣∣2 � 1. (47b)

In the long-wavelength limit of the scattering theory to be
developed, we expand to first order in k0δs and k0δt, and thus
neglect the second-order quantities �s and �t. For water at
room temperature and MHz frequency one finds k0δs ∼ k0δt ∼
10−3, and �s ∼ �t ∼ 10−6.

Clearly, the compressional mode with wave number kc

describes a weakly damped propagating wave with Im[kc] �
Re[kc] � ω/c. In contrast, Im[kt] � Re[kt] for the thermal
mode and Im[ks] = Re[ks] for the shear mode, which cor-
respond to waves that are damped within their respective
wavelengths. Hence, these modes describe boundary layers
near interfaces of walls and particles, which decay exponen-
tially away from these interfaces on the length scales set by δt

and δs.

2. Approximate wave numbers for solids

Similar to the fluid case, we use the smallness of the thermal
damping factor, �t � 1, to expand the exact wave numbers of
Eq. (40). To first order we obtain

kc = ω

c

[
1 + i

2
(γ − 1)χ�t

]
, (48a)

kt = (1 + i)

δt

1√
1 − X

[
1 + i

8

γ 2�t

(1 − X)

]
, (48b)

ks = ω

cT
. (48c)
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An important distinction between a fluid and a solid is that a
solid allows propagating transverse waves while a fluid does
not. This is evident from the shear mode wave number ks,
which for solids is purely real, ks = ω/cT, while for fluids
Im[ks] = Re[ks] = 1/δs.

B. Acoustic fields from potentials

For a given thermoacoustic problem, the boundary condi-
tions are imposed on the acoustic fields v1, T1, and σ 1 and
not directly on the potentials φc, φt, and ψ . We therefore need
expressions for the acoustic fields in terms of the potentials in
order to derive the boundary conditions for the latter.

The velocity fields follow trivially from the Helmholtz
decompositions and are obtained from the same expression
in both fluids and solids:

v1 = ∇(φc + φt) + ∇ × ψ, (49)

where v1 = −iωu1 for solids.

A single expression for T1 in terms of φc and φt, valid for both
fluids and solids, is obtained from Eq. (37) in combination
with Eqs. (40)–(43) by introducing the material-dependent
parameters bc and bt,

T1 = bcφc + btφt, (50a)

bc = iω(γ − 1)

αpc2
, bt = 1

χαpDth
. (50b)

Here, we have neglected �s and �t relative to unity. Note that
the ratio bc/bt ∼ �t � 1.

In a fluid, the pressure field p1 is obtained by inserting
Eq. (19) into the momentum equation (11b) and using the
wave equations (43),

p1 = iωρ0(φc + φt) − (1 + β)η0
(
k2

c φc + k2
t φt
)
. (51)

Inserting this expression into Eq. (8a), the stress tensor for
fluids becomes

σ 1 = η0
[(

2k2
c − k2

s

)
φc + (2k2

t − k2
s

)
φt
]
I

+ η0[∇v1 + (∇v1)T], (52)

where v1 can be expressed by the potentials through Eq. (49).
This expression also holds true for the solid stress tensor
in Eq. (25a) using the shear constant η0, Eq. (41a), and
the velocity field v1 = −iωu1, Eq. (33). This conclusion is
obtained by inserting Eq. (37b) for T sl

1 into Eq. (25a) for σ 1
and using the wave equations (43).

VI. SCATTERING FROM A SPHERE

The potential theory allows us in a unified manner to treat
linear scattering of an acoustic wave on a spherical particle,
consisting of either a thermoelastic solid or a thermoviscous
fluid. The system of equations describing the general case
of an arbitrary particle size is given, and analytical solutions
are provided in the long-wavelength limit a,δs,δt � λ. In
this limit, the particle and boundary layers are much smaller
than the acoustic wavelength, but the ratios δs/a and δt/a

are unrestricted. This is essential for applying our results to
micro- and nanoparticle acoustophoresis. In particular, we

derive analytical expressions for the monopole and dipole
scattering coefficients f0 and f1, which together with the
incident acoustic field serve to calculate the acoustic radiation
force as shown in Sec. II and summarized in Table I.

A. System setup

We place the spherical particle of radius a at the center of the
coordinate system and use spherical coordinates (r,θ,ϕ) with
the radial distance r , the polar angle θ , and the azimuthal angle
ϕ. We let unprimed variables and parameters characterize the
region of the fluid medium, r > a, while primed variables and
parameters characterize the region of the particle, r < a. For
example, the parameter κ ′

s is the compressibility of the particle,
while κs is the compressibility of the fluid medium. Ratios
of particle and fluid parameters are denoted by a tilde, e.g.
κ̃s = κ ′

s/κs . Due to linearity, we can without loss of generality
assume that in the vicinity of the particle, the incident wave
is a plane wave propagating in the positive z direction, φi =
φ0 eikcz = φ0 eikcr cos θ . The fields do not depend on ϕ due to
azimuthal symmetry.

B. Partial wave expansion

The solution to the scalar and the vector wave equations
[Eq. (43)] with wave numbers k [Eqs. (44) and (48)] in
spherical coordinates is standard textbook material. Avoiding
singular solutions at r = 0 and considering outgoing scattered
waves, the solution is written in terms of spherical Bessel
functions jn(kr), outgoing spherical Hankel functions hn(kr),
and Legendre polynomials Pn(cos θ ). As a consequence of
azimuthal symmetry, only the ϕ component of the vector po-
tential is nonzero, ψ(r) = ψs(r,θ ) eϕ . The solution is written
as a partial wave expansion of the incident propagating wave
φi, the scattered reflected propagating wave φr, the scattered
thermal wave φt, and the scattered shear wave ψs:

In the fluid medium, r > a

φi = φ0

∞∑
n=0

in(2n + 1)jn(kcr)Pn(cos θ ), (53a)

φr = φ0

∞∑
n=0

in(2n + 1)Anhn(kcr)Pn(cos θ ), (53b)

φt = φ0

∞∑
n=0

in(2n + 1)Bnhn(ktr)Pn(cos θ ), (53c)

ψs = φ0

∞∑
n=0

in(2n + 1)Cnhn(ksr)∂θPn(cos θ ). (53d)

In the particle, r < a

φ′
c = φ0

∞∑
n=0

in(2n + 1)A′
njn(k′

cr)Pn(cos θ ), (53e)

φ′
t = φ0

∞∑
n=0

in(2n + 1)B ′
njn(k′

tr)Pn(cos θ ), (53f)

ψ ′
s = φ0

∞∑
n=0

in(2n + 1)C ′
njn(k′

sr)∂θPn(cos θ ), (53g)
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FIG. 2. (Color online) A compressional wave φi propagating in a thermoviscous fluid medium with parameters ρ0,η0,κs,αp,cp,γ, and kth,
is incident on a thermoviscous fluid droplet with parameters ρ ′

0,η
′
0,κ

′
s ,α

′
p,c′

p,γ ′, and k′
th, which results in a compressional scattered wave and

highly damped thermal and shear waves both outside in the fluid medium (φr,φt,ψs) and inside in the fluid droplet (φ′
c,φ

′
t ,ψ

′
s). Viscous and

thermal boundary layers are described by the highly damped waves both outside and inside the fluid droplet. In the long-wavelength limit the
droplet radius a and the boundary-layer thicknesses δs,δt,δ

′
s,δ

′
t are mutually unrestricted, but all much smaller than the acoustic wavelength λ.

For a thermoelastic particle, the shear mode ψ ′
s describes a propagating transverse wave instead of an internal viscous boundary layer.

where the parameter φ0 is an arbitrary amplitude of the
incident wave with unit m2 s−1. The different components of
the resulting acoustic field are illustrated in Fig. 2.

C. Boundary conditions

Neglecting surface tension, the appropriate boundary con-
ditions at the particle surface are continuity of velocity, normal
stress, temperature, and heat flux. Assuming sufficiently small
oscillations, see Sec. VII C, the boundary conditions are
imposed at r = a,

v1r = v′
1r , v1θ = v′

1θ , T1 = T ′
1, (54a)

σ1rr = σ ′
1rr , σ1θr = σ ′

1θr , kth∂rT1 = k′
th∂rT

′
1. (54b)

The boundary conditions are expressed in terms of the
potentials using Eqs. (49), (50), and (52). The components
of velocity and stress in spherical coordinates are given in
Appendix A.

It is convenient to introduce the nondimensionalized wave
numbers xc, xt, and xs for the medium, and x ′

c, x ′
t , and x ′

s for
the particle:

xc = kca, xt = kta, xs = ksa, (55a)

x ′
c = k′

ca, x ′
t = k′

ta, x ′
s = k′

sa. (55b)

Inserting the expansion (53) into the boundary conditions (54),
and making use of the Legendre equation (C1), we obtain the
following system of coupled linear equations for the expansion
coefficients in each order n:
av1r = av′

1r

xcj
′
n(xc)+Anxch

′
n(xc)+Bnxth

′
n(xt)−Cnn(n+1)hn(xs)

= A′
nx

′
cj

′
n(x ′

c) + B ′
nx

′
tj

′
n(x ′

t ) − C ′
nn(n+1)jn(x ′

s), (56a)

av1θ = av′
1θ

jn(xc) + Anhn(xc) + Bnhn(xt) − Cn[xsh
′
n(xs) + hn(xs)]

= A′
njn(x ′

c) +B ′
njn(x ′

t ) −C ′
n[x ′

sj
′
n(x ′

s) + jn(x ′
s)], (56b)

T1 = T ′
1

bcjn(xc) + Anbchn(xc) + Bnbthn(xt)

= A′
nb

′
cjn(x ′

c) + B ′
nb

′
tjn(x ′

t ), (56c)

akth∂rT1 = ak′
th∂rT

′
1

kthbcxcj
′
n(xc) + Ankthbcxch

′
n(xc) + Bnkthbtxth

′
n(xt)

= A′
nk

′
thb

′
cx

′
cj

′
n(x ′

c) + B ′
nk

′
thb

′
tx

′
tj

′
n(x ′

t ), (56d)

a2σ1θr = a2σ ′
1θr

η0[xcj
′
n(xc) − jn(xc)] + Anη0[xch

′
n(xc) − hn(xc)]

+ Bnη0[xth
′
n(xt) − hn(xt)]

− 1

2
Cnη0

[
x2

s h
′′
n(xs) + (n2 + n − 2)hn(xs)

]
= A′

nη
′
0[x ′

cj
′
n(x ′

c) − jn(x ′
c)] + B ′

nη
′
0[x ′

tj
′
n(x ′

t ) − jn(x ′
t )]

− 1

2
C ′

nη
′
0

[
x ′2

s j ′′
n (x ′

s) + (n2 + n − 2)jn(x ′
s)
]
, (56e)

a2σ1rr = a2σ ′
1rr

η0
[(

x2
s − 2x2

c

)
jn(xc) − 2x2

c j ′′
n (xc)

]
+ Anη0

[(
x2

s − 2x2
c

)
hn(xc) − 2x2

c h′′
n(xc)

]
+ Bnη0

[(
x2

s − 2x2
t

)
hn(xt) − 2x2

t h′′
n(xt)

]
+ 2n(n + 1)Cnη0[xsh

′
n(xs) − hn(xs)]

= A′
nη

′
0

[(
x ′2

s − 2x ′2
c

)
jn(x ′

c) − 2x ′2
c j ′′

n (x ′
c)
]

+ B ′
nη

′
0

[(
x ′2

s − 2x ′2
t

)
jn(x ′

t ) − 2x ′2
t j ′′

n (x ′
t )
]

+ 2n(n + 1)C ′
nη

′
0[x ′

sj
′
n(x ′

s) − jn(x ′
s)]. (56f)

Here, primes on spherical Bessel and Hankel functions indicate
derivatives with respect to the argument. The equations are
valid for both a fluid and a solid particle, with η′

0 being the
viscosity for a fluid particle and the shear constant [Eq. (41a)]
for a solid particle.

For n = 0, the boundary conditions for v1θ and σ1θr are
trivially satisfied because there is no angular dependence in
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the zeroth-order Legendre polynomial, P0(cos θ ) = 1. Conse-
quently, ψs = 0, and we are left with four equations with four
unknowns, namely, Eqs. (56a), (56c), (56d), and (56f) with
C0 = C ′

0 = 0.
The linear system of equations (56) may be solved for each

order n yielding the scattered field with increasing accuracy
as higher-order multipoles are taken into account, an approach
referred to within the field of ultrasound characterization of
emulsions and suspensions as ECAH theory after Epstein
and Carhart [30] and Allegra and Hawley [31]. However,
care must be taken due to the system matrix often being ill
conditioned [42].

The long-wavelength limit is characterized by the small
dimensionless parameter ε, given by

ε = k0a = 2π
a

λ
� 1. (57)

In this limit, the dominant contributions to the scattered field
are due to the n = 0 monopole and the n = 1 dipole terms,
both proportional to ε3, while the contribution of the nth-order
multipole for n > 1 is proportional to ε2n+1 � ε3.

D. Monopole scattering coefficient

To obtain the monopole scattering coefficient f0 in Eq. (5),
we solve for the expansion coefficient A0 in Eq. (56) and
use the identity f0 = 3i x−3

c A0. The fn coefficients are
traditionally used in studies of acoustic radiation force, while
the An coefficients are used in general scattering theory.

The solution to the inhomogeneous system of linear equa-
tions for n = 0 involves straightforward but lengthy algebra
presented in Appendix B 1. In Eq. (B8) is given the general
analytical expression for f0 in the long-wavelength limit valid
for any particle. In the following, this expression is given in
explicit, simplified, closed analytical form for a thermoviscous
droplet and a thermoelastic particle, respectively.

1. Thermoviscous droplet in a fluid

For a thermoviscous droplet in a fluid in the long-
wavelength limit, the particle radius a and the viscous and
thermal boundary layers both inside (δ′

s, δ′
t ) and outside

(δs, δt) the fluid droplet are all much smaller than the
acoustic wavelength λ, while nothing is assumed about
the relative magnitudes of a, δs, δ′

s, δt, and δ′
t . Thus, using the

nondimensionalized wave numbers of Eq. (55) and ε = k0a,
the long-wavelength limit is defined as

|xc|2,|x ′
c|2 ∼ ε2 � 1 and (58a)

|xc|2,|x ′
c|2 ∼ ε2 � |xs|2,|x ′

s|2,|xt|2,|x ′
t |2, (58b)

which implies

�s,�t,
|bc|
|bt| ,

|b′
c|

|bt| ∼ ε2 � 1. (58c)

To first order in ε, the analytical result for the monopole
scattering coefficient f fl

0 obtained from Eq. (B8) is most

conveniently written as

f fl
0 = 1 − κ̃s + 3(γ − 1)

(
1 − α̃p

ρ̃0c̃p

)2

H (xt,x
′
t ), (59a)

H (xt,x
′
t ) = 1

x2
t

[
1

1 − ixt
− 1

k̃th

tan x ′
t

tan x ′
t − x ′

t

]−1

, (59b)

where H (xt,x
′
t ) is a function of the particle radius a through

the nondimensionalized thermal wave numbers xt and x ′
t .

Epstein and Carhart obtained a corresponding result for A0

but with a sign error in the thermal correction term [30],
while the result of Allegra and Hawley [31] is in agreement
with what we present here. The factor (γ − 1) quantifies the
coupling between heat and the mechanical pressure waves.
This factor is multiplied by [1 − α̃p/(ρ̃0c̃p)]2, where the
quantity ξp = αp/(ρ0cp), with unit m3/J, may be interpreted
as an isobaric expansion coefficient per added heat unit. The
thermal correction can only be nonzero if there is a contrast
ξ̃p = 1 in this parameter.

In the weak dissipative limit of small boundary layers the
function H (xt,x

′
t ) is expanded to first order in δt/a and δ′

t/a,
and using tan(x ′

t ) � i, we obtain

f fl
0 = 1 − κ̃s − 3

2

(1 + i)(γ − 1)

1 + D̃
1/2
th k̃−1

th

(
1 − α̃p

ρ̃0c̃p

)2
δt

a

(small-width boundary layers). (60)

In the limit of zero boundary-layer thickness δt/a → 0, the
thermal correction vanishes, and we obtain

f fl
0 = 1 − κ̃s (zero-width boundary layers), (61)

which is the well-known result for a compressible sphere in an
ideal [3] or a viscous [29] fluid.

In the opposite limit of a point particle, a/δt,a/δ′
t → 0, we

find H (xt,x
′
t ) = −(1/3)ρ̃0c̃p, yielding

f fl
0 = 1 − κ̃s − (γ − 1)ρ̃0c̃p

(
1 − α̃p

ρ̃0c̃p

)2

(point-particle limit). (62)

Since γ > 1, the correction from thermal effects in the
point-particle limit is negative. This implies that the thermal
correction enhances the magnitude of f fl

0 for acoustically
soft particles (κ̃s > 1), while it diminishes the magnitude and
eventually may reverse the sign of f fl

0 for acoustically hard
particles (κ̃s < 1).

Importantly, an inspection of the point-particle limit
[Eq. (62)] leads to two noteworthy conclusions not previously
discussed in the literature. First, the thermal contribution
to f fl

0 allows a sign change of the acoustic radiation force
for different-sized but otherwise identical particles. Second,
the thermal contribution may result in forces that are orders
of magnitude larger than expected from both ideal [3] and
viscous [29] theory. For example, ρ̃0 � 1 for particles or
droplets in gases leads to a thermal contribution to f fl

0 two
orders of magnitude larger than 1 − κ̃s . These predictions are
discussed in more detail in Sec. VIII.
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2. Thermoelastic particle in a fluid

For a thermoelastic particle in a fluid, the long-wavelength
limit differs from that of a thermoviscous droplet [Eq. (58)]
by the shear mode describing a propagating wave and not
a viscous boundary layer. The wavelength of this trans-
verse shear wave is comparable to that of the longitudinal
compressional wave, and in the long-wavelength limit both are
assumed to be large,

|xc|2,|x ′
c|2,|x ′

s|2 ∼ ε2 � 1 and (63a)

|xc|2,|x ′
c|2,|x ′

s|2 ∼ ε2 � |xs|2,|xt|2,|x ′
t |2, (63b)

which implies

�s,�t,
1

|η̃0| ,
|bc|
|bt| ,

|b′
c|

|bt| ∼ ε2 � 1. (63c)

To first order in ε, the result Eq. (B8) for f sl
0 may be

simplified as outlined in Appendix B, and one obtains after
some manipulation

f sl
0 =

1 − κ̃s + 3(γ − 1)

[(
1 − α̃p

ρ̃0c̃p

)(
1 − χ ′α̃p

ρ̃0c̃p

)
− 4

3

χ ′α̃pκ̃s

c̃p

c′2
T

c2

(
1 − α̃p

ρ̃0c̃pκ̃s

)]
H (xt,x

′
t )

1 + 4(γ − 1)
χ ′α̃2

p

ρ̃0c̃2
p

c′2
T

c2
H (xt,x

′
t )

, (64)

where the function H (xt,x
′
t ) is still given by the expression in Eq. (59b) with x ′

t being the nondimensionalized thermal wave
number in the solid particle obtained from Eq. (48b). In the limit of a point particle, a/δt,a/δ′

t → 0, we find

f sl
0 =

1 − κ̃s − (γ − 1)ρ̃0c̃p

1 − X′

[(
1 − α̃p

ρ̃0c̃p

)(
1 − χ ′α̃p

ρ̃0c̃p

)
− 4

3

χ ′α̃pκ̃s

c̃p

c′2
T

c2

(
1 − α̃p

ρ̃0c̃pκ̃s

)]

1 − 4

3

γ − 1

1 − X′
χ ′α̃2

p

c̃p

c′2
T

c2

(point-particle limit). (65)

Remarkably, in the point-particle limit, f sl
0 and f fl

0 differ in
general. However, as expected, letting c′

T → 0 in Eq. (64), f sl
0

reduces to f fl
0 [Eq. (59)] for all particle sizes.

In the weak dissipative limit of small boundary layers,
δt,δ

′
t � a, the second term in the denominator of Eq. (64)

is small for typical material parameters. An expansion in δt/a

and δ′
t/a then yields in analogy with Eq. (60),

f sl
0 = 1 − κ̃s − 3

2

(1 + i)(γ − 1)

1 + (1−X′)1/2D̃
1/2
th k̃−1

th

×
(

1 − α̃p

ρ̃0c̃p

)2
δt

a

(small-width boundary layers), (66)

simplified using Eq. (39e). In the limit δt/a → 0, the thermal
correction term vanishes,

f sl
0 = 1 − κ̃s (zero-width boundary layers). (67)

In this limit, where boundary-layer effects are negligible, f sl
0

and f fl
0 are identical and, as expected, equal to the ideal [3]

and viscous [29] results.

E. Dipole scattering coefficient

To obtain the dipole scattering coefficient f1 in Eq. (5),
we solve for the expansion coefficient A1 in Eq. (56) and use
the identity f1 = −6i x−3

c A1. In the long-wavelength limit, the
terms involving the coefficients B1 and B ′

1 are neglected to first
order in ε. This reduces the system of equations (56) for n = 1
from six to four equations with the unknowns A1, A′

1, C1, and
C ′

1. In Appendix B 2 we solve explicitly for A1. Physically, the
smallness of the B1 and B ′

1 terms means that thermal effects are

negligible compared to viscous effects. This is consistent with
the dipole mode describing the center-of-mass oscillations of
the undeformed particle.

1. Thermoviscous droplet in a fluid

The analytical expression for A1 in the long-wavelength
limit for a thermoviscous droplet in a fluid, as defined in
Eq. (58), is given in Eq. (B23) of Appendix B 2. This ex-
pression for A1 was also obtained by Allegra and Hawley [31]
and, with a minor misprint, by Epstein and Carhart [30] in their
studies of sound attenuation in emulsions and suspensions. We
write the result for the dipole scattering coefficient f1 in a form
more suitable for comparison to the theory of acoustic radiation
forces as presented by Gorkov [3] and Settnes and Bruus [29],

f fl
1 = 2(ρ̃0 − 1)[1 + F (xs,x

′
s) − G(xs)]

(2ρ̃0 + 1)[1 + F (xs,x ′
s)] − 3G(xs)

, (68a)

G(xs) = 3

xs

(
1

xs
− i

)
, (68b)

F (xs,x
′
s) = 1 − ixs

2(1 − η̃0) + η̃0x
′2
s (tan x ′

s − x ′
s)(

3 − x ′2
s

)
tan x ′

s − 3x ′
s

. (68c)

Even though no thermal effects are present in f fl
1 , Eq. (68)

is nevertheless an extension of the result by Settnes and
Bruus [29], since we have taken into account a finite viscosity
in the droplet entering through the parameters η̃0 and x ′

s. In
the limit η̃0 → ∞ of infinite droplet viscosity, the function
F (xs,x

′
s) tends to zero, and we recover the result for f1 obtained

in Ref. [29].
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In the weak dissipative limit of small boundary layers,
δs,δ

′
s � a, the dipole scattering coefficient for the thermo-

viscous droplet reduces to

f fl
1 = 2(ρ̃0 − 1)

2ρ̃0 + 1

[
1 + 3(1 + i)

1 + ν̃
1/2
0 η̃ −1

0

ρ̃0 − 1

2ρ̃0 + 1

δs

a

]

(small-width boundary layers). (69)

2. Thermoelastic particle in a fluid

In the long-wavelength limit Eq. (63) of a thermoelastic
solid particle in a fluid, we obtain the result

f sl
1 = 2(ρ̃0 − 1)[1 − G(xs)]

2ρ̃0 + 1 − 3G(xs)
, (70)

with the function G(xs) given in Eq. (68). In this expression,
the only particle-related parameters are density and radius,
and it is identical to that derived by Settnes and Bruus [29],
who included the same two parameters in their study of
scattering from a compressible particle in a viscous fluid using
asymptotic matching.

In the small-width boundary layer limit, δs � a, the dipole
scattering coefficient for the thermoelastic solid particle f sl

1
reduces to

f sl
1 = 2(ρ̃0 − 1)

2ρ̃0 + 1

[
1 + 3(1 + i)

ρ̃0 − 1

2ρ̃0 + 1

δs

a

]
(small-width boundary layers), (71)

which closely resembles Eq. (69) for f fl
1 .

3. Asymptotic limits

In the zero-width boundary layer limit, the dipole scattering
coefficients f fl

1 and f sl
1 both reduce to the ideal-fluid expres-

sion [3],

f fl
1 = f sl

1 = 2(ρ̃0 − 1)

2ρ̃0 + 1
(zero-width boundary layers). (72)

In the opposite limit of a point particle, F (xs,x
′
s) = 1/(2 +

3η̃0) is finite and the expression for f fl
0 and f sl

0 is dominated
by the G(xs) terms, with both cases yielding the asymptotic
result

f fl
1 = f sl

1 = 2
3 (ρ̃0 − 1) (point-particle limit). (73)

It is remarkable that for small particles suspended in a gas
where ρ̃0 � 1, the value of f1 in Eq. (73) is three to five
orders of magnitude larger than the value f1 = 1 predicted by
ideal-fluid theory [3].

VII. RANGE OF VALIDITY

Before turning to experimentally relevant predictions de-
rived from our theory, we discuss the range of validity of
our results imposed by the three main assumptions: the
time periodicity of the total acoustic fields, the perturbation
expansion of the acoustic fields, and the restrictions associated
with size, shape, and motion of the suspended particle.

A. Time periodicity

The first fundamental assumption in our theory is the
restriction to time-periodic total acoustic fields, which was
used to obtain Eq. (3) for the acoustic radiation force evaluated
at the static far-field surface ∂�1. Given a time-harmonic
incident field, as studied in this work, a violation of time
periodicity can only be caused by a nonzero time-averaged
drift of the suspended particle. Denoting the speed of this drift
by vp(t), we consider first the case of a steady particle drift. The
assumption of time periodicity is then a good approximation if
the displacement �� is small compared to the particle radius
a during one acoustic oscillation cycle τ = 2π/ω used in the
time averaging. A nonzero, acoustically induced particle drift
speed vp must be of second or higher order in εac, vp/c ∼ ε2

ac,
as all first-order fields have a zero time average. Thus

��

a
� vpτ

a
= 2πvp

ωa
= 2π

k0a

vp

c
= λ

a
ε2

ac � 1, (74)

and time periodicity is approximately upheld for reasonably
small perturbation strengths εac � √

a/λ, which is not a severe
restriction in practice. In a given experimental situation, it is
also easy to check if a measured nonzero drift velocity fulfills
vpτ � a.

In the case of an unsteady drift speed vp(t), the time-
averaged rate of change of momentum 〈 d P

dt
〉 in the fluid volume

bounded by ∂�1 in Eq. (2) is nonzero, thus violating the
assumption 〈 d P

dt
〉 = 0 leading to Eq. (3). Only the unsteady

growth of the viscous boundary layer in the fluid surrounding
the accelerating particle contributes to 〈 d P

dt
〉, since equal

amounts of momentum are fluxed into and out of the static
fluid volume in the steady problem. For Eq. (3) to remain
approximately valid, we must require 〈 d P

dt
〉 to be much smaller

than Frad. To check this requirement, we consider a constant
radiation force accelerating the particle. When including the
added mass from the fluid, this leads to the well-known time
scale τp for the acceleration,

τp = 2ρ̃0 + 1

9π

a2

δ2
s

τ. (75)

Thus, small particles (a � δs) are accelerated to their steady
velocity in a time scale much shorter than the acoustic
oscillation period (τp � τ ), while the opposite (τp � τ ) is
the case for large particles (a � δs). The unsteady momentum
transfer to the fluid bounded by ∂�1 is obtained from the
unsteady part F unst

drag (t) of the drag force on the particle as

〈 dP
dt

〉 = 1
τ

∫ τ

0 F unst
drag (t) dt . Using the explicit expression for

Fdrag(t) given in problems 7 and 8 in §24 of Ref. [43], we
obtain to leading order

1

F rad

〈
dP

dt

〉
=

⎧⎪⎪⎨
⎪⎪⎩

4

2ρ̃0 + 1

δs

a
� 1, for a � δs,

2

π

a

δs
� 1, for a � δs.

(76)

We conclude that 〈 dP
dt

〉 � F rad in both the large and small
particle limits, and hence the assumption of Eq. (3) is fulfilled
in those limits.

Considering typical microparticle acoustophoresis exper-
iments, the unsteady acceleration takes place on a time
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scale between micro- and milliseconds, much shorter than
the time of a full trajectory. Typically, the unsteady part
of the trajectory is not resolved and it is not important to
the experimentally observed quasisteady particle trajectory.
In acoustic levitation [25–28], where there is no drift, the
assumption of time periodicity is exact. We conclude that
the assumption of time periodicity is not restricting practical
applications of our theory.

B. Perturbation expansion and linearity

The second fundamental assumption of our theory is the
validity of the perturbation expansion, which requires the
acoustic perturbation parameter εac of Eq. (10) to be much
smaller than unity. For applications in particle handling in
acoustophoretic microchips [12,14], this constraint is not very
restrictive because typical resonant acoustic energy densities
of 100 J/m3 result in εac ∼ 10−4.

Given the validity of the linear first-order equations, the
solutions we have obtained for f0 and f1 based on the particular
incident plane wave φi = φ0 eikcz are general, since any
incident wave at frequency ω can be written as a superposition
of plane waves.

C. Oscillations of the suspended particle

The third fundamental assumption of our theory is the
assumption of small particle oscillation amplitudes, allowing
the boundary conditions to be evaluated at the fixed interface
position r = a. In general, the oscillation amplitudes must
be small in comparison to all other length scales. For small
particles, a � δs,δt, the smallest length scale is set by the
particle radius a. In the opposite limit of small boundary
layers, a � δs,δt, thermoviscous theory reduces to ideal-fluid
theory, and the boundary-layer length scales drop out of the
equations, again leading to the smallest relevant length scale
being the particle radius a. The assumption of small particle
oscillation amplitudes leads to physical constraints on the
volume oscillations, Figs. 1(a) and 1(b), and the center-of-mass
oscillations, Fig. 1(c), discussed in the following.

The volume oscillations of the particle are due to me-
chanical and thermal expansion. From the definition of the
compressibility κ ′

s and the volumetric thermal expansion
coefficient α′

p, we estimate the maximum relative change in
particle radius �a/a to be

�a

a
� κ ′

s

3
p1 = κ̃s

3
εac � 1, (77a)

�a

a
� α′

p

3
T1 � 1

3
(γ − 1)α̃pεac � 1. (77b)

Here, we have used κsp1 = εac and T1 = (γ−1)κs

αp
p1 obtained

from Eq. (14) in the adiabatic limit s1 = 0 combined with
Eq. (16). Except for gas bubbles in liquids, for which κ̃s � 1,
these inequalities are always fulfilled for small perturbation
parameters εac.

The velocity of the center-of-mass oscillations is found
from Eq. (37) of Ref. [29] to be vosc

p = 3
2

f1

ρ̃0−1vin. In the
large-particle limit, f1 is given by Eq. (72), which implies
0 < vosc

p < 3vin, where the lower and the upper limit is
for ρ̃0 � 1 and ρ̃0 � 1, respectively. In the point-particle

limit, Eq. (73), vosc
p = vin independent of ρ̃0. The relative

displacement amplitude ��/a is hence estimated as

��

a
� vosc

p

ωa
�

⎧⎪⎪⎨
⎪⎪⎩

3

2ρ̃0 + 1

λ

2πa
εac � 1, for a � δs,

λ

2πa
εac � 1, for a � δs,

(78)

and thus the general requirement is that εac � 2πa/λ. For
large particles in typical experiments, this restriction is not
severe. However, for small particles it can be restrictive. For
example, to obtain ��/a < 0.05, we find for particles of
radius a = 100 nm in water at 1 MHz and particles of radius
a = 1 μm in air at 1 kHz, that εac � 10−5 and εac � 10−6,
respectively.

VIII. MICROPARTICLES AND DROPLETS
IN STANDING PLANE WAVES

The special case of a one-dimensional (1D) standing plane
wave is widely used in practical applications of the acoustic
radiation force in microchannel resonators [8–21] and acoustic
levitators [25–28]. The many application examples as well as
its relative simplicity make the 1D case an obvious and useful
testing ground of our theory. In the following, we illustrate the
main differences between our full thermoviscous treatment
and the ideal-fluid or viscous-fluid models using the typical
parameter values listed in Table II.

We consider a standing plane wave of the form pin =
pa cos(k0y), vin = i

ρ0c
pa sin(k0y)ey , with acoustic energy den-

sity Eac = 1
4κsp

2
a = 1

4ρ0v
2
a , where pa and va are the pressure

and the velocity amplitude, respectively. Expression (5) for the
radiation force then simplifies to

Frad
1D = 4π �aca

3k0Eac sin(2k0y)ey, (79a)

�ac = 1
3 Re[f0] + 1

2 Re[f1], (79b)

where �ac is the so-called acoustic contrast factor. The
radiation force is thus proportional to �ac, which contains
the effects of thermoviscous scattering in f0 and f1. Note
that for positive acoustic contrast factors, �ac > 0, the force is
directed towards the pressure nodes of the standing wave, while
for negative acoustic contrast factors, �ac < 0, it is directed
towards the antinodes.

The acoustic contrast factor �ac may be evaluated directly
for an arbitrary particle size by using the expressions for the
scattering coefficients, either f fl

0 and f fl
1 for a fluid droplet

or f sl
0 and f sl

1 for a solid particle. For ease of comparison
to the work of King [1], Yosioka and Kawasima [2], and
Doinikov [4–6], we give the expression for the acoustic
contrast factor �fl

ac of a fluid droplet for small boundary layers
and in the point-particle limit. In the small-width boundary
layer limit one obtains

�fl
ac = 1

3

(
5ρ̃0 − 2

2ρ̃0 + 1
− κ̃s

)
+ 3

1 + ν̃
1/2
0 η̃ −1

0

(
ρ̃0 − 1

2ρ̃0 + 1

)2
δs

a

− 1

2

γ − 1

1 + D̃
1/2
th k̃−1

th

(
1 − α̃p

ρ̃0c̃p

)2
δt

a

(small-width boundary layers). (80)
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TABLE II. Material parameter values at ambient pressure 0.1 MPa and temperature 300 K used in this study, given for water (wa) [44–47],
an average liquid food oil [48], air [49], and polystyrene (ps) [50–53]. Parameter values for water and oil at other temperatures are obtained
from the fits in Refs. [44,48].

Parameter Symbol Value (wa) Value (oil) Value (air) Value (ps) Unit
Longitudinal speed of sound c 1.502 × 103 1.445 × 103 3.474 × 102 2.40 × 103 m s−1

Transverse speed of sound cT 1.15 × 103 m s−1

Mass density ρ0 9.966 × 102 9.226 × 102 1.161 × 100 1.05 × 103 kg m−3

Compressibility κs 4.451 × 10−10 5.192 × 10−10 7.137 × 10−6 2.38 × 10−10 Pa−1

Thermal expansion coefficient αp 2.748 × 10−4 7.046 × 10−4 3.345 × 10−3 2.09 × 10−4 K−1

Specific heat capacity cp 4.181 × 103 2.058 × 103 1.007 × 103 1.22 × 103 J kg−1K−1

Heat capacity ratio γ 1.012 × 100 1.151 × 100 1.402 × 100 1.04 × 100 1
Shear viscosity η0 8.538 × 10−4 4.153 × 10−2 1.854 × 10−5 Pa s
Bulk viscositya ηb

0 2.4 × 10−3 8.3 × 10−2 1.1 × 10−5 Pa s
Thermal conductivity kth 6.095 × 10−1 1.660 × 10−1 2.638 × 10−2 1.54 × 10−1 W m−1 K−1

aThe bulk viscosity is negligible for scattering in the long-wavelength limit but has been included for completeness. Values for water, oil,
and air are estimated from Refs. [54], [55], and [56], respectively. For oil, ηb

0 is obtained from the attenuation constant α0 at 298.15 K and
10 MHz [55] using α0 = 2π 2f 2/(ρ0c

3)[ηb
0 + (4/3)η0 + (γ − 1)kth/cp].

The first term is the well-known result given by Yosioka
and Kawasima [2], which reduces to that of King [1] for
incompressible particles for which κ̃s = 0. The second term is
the viscous correction, which agrees with the result of Settnes
and Bruus [29] for infinite particle viscosities, but extends it
to finite particle viscosities. Note that the viscous correction
yields a positive contribution to the acoustic contrast factor,
while the thermal correction from the third term is negative.
The result given in Eq. (80) is in agreement with the expression
for the radiation force in a standing plane wave given by
Doinikov [6] in the weak dissipative limit of small boundary
layers. However, this is not seen without considerable effort
combining and reducing a number of equations. Although we
find Doinikov’s approach rigorous, it lacks transparency and
is difficult to apply with confidence.

In the point-particle limit of infinitely large boundary-layer
thicknesses compared to the particle size, we obtain

�fl
ac = 1

3

[
(1−κ̃s) − (1−ρ̃0) − (γ −1)ρ̃0c̃p

(
1− α̃p

ρ̃0c̃p

)2
]

(point-particle limit), (81)

in agreement with the viscous result of Settnes and Bruus [29],
when omitting the last term stemming from thermal effects.
The result for �fl

ac in Eq. (81) is written in a form which
emphasizes how parameter contrasts between particle and
fluid lead to scattering. As expected, for κ̃s = 1 and ρ̃0 = 1,
the scattering due to compressibility and density (inertia)
mechanisms vanishes. This is true for large particles [1–3,29],
and it is reasonable that it remains true in the point-particle
limit. The expressions for the acoustic radiation force on a
point particle in a standing plane wave given by Doinikov [4–6]
do not have this property, which is likely due to a sign error or
a misprint in the term corresponding to our dipole scattering
coefficient f1 in the point-particle limit in Eq. (73), as was also
suggested by Settnes and Bruus [29].

The small-width boundary layer limit and the point-particle
limit are useful for analyzing consequences of thermoviscous
scattering on the acoustic radiation force, but we emphasize
that our theory is not restricted to these limits. In general,
the scattering coefficients f0 and f1 are functions of the

nondimensionalized wave numbers xs, xt, x ′
s, and x ′

t . These
may all be expressed in terms of the particle radius a

normalized by the thickness of the viscous boundary layer
in the medium δs,

xs = (1 + i)
a

δs
, x ′

s = (1 + i)

√
ρ̃0

η̃0

a

δs
, (82a)

xt = (1 + i)
√

Pr
a

δs
, x ′

t = (1 + i)√
1 − X′

√
Pr

D̃th

a

δs
(82b)

where we have used δ′
s = δs

√
η̃0/ρ̃0, δt = δs

√
1/Pr, δ′

t =
δs

√
[(1 − X′)D̃th]/Pr, with Pr = ν0/Dth being the Prandtl

number of the fluid medium and X′ set to zero for the
fluid droplet case. Below, we investigate the thermoviscous
effects on the acoustic radiation force by plotting the acoustic
contrast factor �ac as a function of δs/a, ranging from zero
boundary-layer effects at δs/a = 0 to maximum effects in the
limit δs/a → ∞.

A. Oil droplets in water and water droplets in oil

We first consider the cases of water with a suspended oil
droplet (wa-oil) and of oil with a suspended water droplet
(oil-wa) using the parameters of a typical food oil given in
Table II. Since the density contrast of water and oil is small,
the dipole scattering with its viscous effects is small, while on
the other hand the thermal effects in the monopole scattering
are significant. This is clearly seen from Fig. 3, where the
acoustic contrast factor �ac is plotted for the two cases as a
function of δs/a using ideal theory, viscous theory (obtained
from our thermoviscous theory by setting Dth = 0), and full
thermoviscous theory. In Fig. 3, we see that for submicrometer
droplets at MHz frequency the thermoviscous theory leads to
corrections around 100% as compared to the ideal and the
viscous theory, which manifestly demonstrates the importance
of thermal effects in such systems.

We note from Fig. 3(a) that the acoustic contrast factor of oil
droplets in water is negative, which means that oil droplets are
focused at the pressure antinodes. Conversely, water droplets
in oil are thus expected to be focused at the pressure nodes.
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FIG. 3. (Color online) Acoustic contrast factor �ac plotted as a function of δs/a, the viscous boundary-layer thickness in the medium
normalized by particle radius. The curves are calculated using ideal theory (green), viscous theory (thermoviscous theory with Dth = 0, blue),
and thermoviscous theory (red) for (a) an oil droplet in water (wa-oil) and (b) a water droplet in oil (oil-wa), both at 20 ◦C. Thermoviscous theory
leads to corrections to the acoustic radiation force around 100%. The vertical dashed lines indicate examples of particle sizes corresponding
to the given value of δs/a at f = 1 MHz. Note that the acoustic contrast factor changes sign at a critical particle radius for the case of water
droplets in oil considered in (b).

However, in Fig. 3(b) we see that thermoviscous theory
predicts a tunable sign change in the acoustic contrast factor
as a result of the negative thermal corrections to the monopole
scattering coefficient. This means that droplets above a critical
size threshold experience a force directed towards the pressure
nodes, while droplets smaller than the threshold experience a
force towards the antinodes, even though the only distinction
between the droplets is their size. This sign change in �ac can
also be achieved for elastic solid particles under properly tuned
conditions. By changing, for example, the compressibility
contrast κ̃s , the curves for �ac(δs/a) may be shifted vertically
and a possible size-threshold condition may be changed.
Moreover, since δs = √

2η0/(ρ0ω) and δt = √2kth/(ρ0cpω),
there are several direct ways of tuning a threshold value, e.g.,
by frequency or by changing the density of the medium.

B. Polystyrene particles and water droplets in air

Using the particular cases of a polystyrene particle and a
water droplet suspended in air as main examples, we study
the effects of a large density contrast ρ̃0 � 1, for which our
thermoviscous theory predicts much larger radiation forces on
small particles than ideal-fluid theory, for which �ideal

ac = 5/6
independent of particle size. This is demonstrated in Fig. 4,
where �ac is plotted as a function of δs/a for the two particle
types. In the large-particle limit δs/a = 0, boundary-layer
effects are negligible, and ideal, viscous (Dth = 0), and ther-
moviscous theories predict the same contrast factor �ac = 5/6,
but as δs/a increases, the thermoviscous and viscous theories
predict an increased value of �ac, approximately 2�ideal

ac for
δs/a = 1 as seen in the insets of Figs. 4(a) and 4(b). Decreasing
the particle size further, δs/a � 1, the thermoviscous effects
become more pronounced with �ac/�ideal

ac ∼ 102. Choosing
the frequency to be 1 kHz, this remarkable deviation from
ideal-fluid theory is obtained for moderately-sized particles of
radius a ≈ 2 μm.

While �
air−ps
ac in Fig. 4(a) for the polystyrene particle

is a monotonically increasing function of δs/a, the �air−wa
ac

in Fig. 4(b) of a water droplet exhibits a nonmonotonic
behavior. For small values of δs/a � 25, the viscous dipole

scattering dominates resulting in a positive contrast factor
�air−wa

ac � 102. For larger values, δs/a � 25, thermal effects
in the monopole scattering become dominant leading to a
sign change in �air−wa

ac and finally to large negative contrast
factors approximately equal to −102 as the point-particle limit
δs/a � 1 is approached. This example clearly demonstrates
how the acoustic contrast factor may exhibit a nontrivial
size dependency with profound consequences for the acoustic
radiation force on small particles. The detailed behavior
depends on the specific materials but can be calculated using
Eq. (79) and the expressions for f0 and f1 listed in Table I.

IX. CONCLUSION

Since the seminal work of Epstein and Carhart [30]
and Allegra and Hawley [31], the effects of thermoviscous
scattering have been known to be important for ultrasound
attenuation in emulsions and suspensions of small particles.
In this paper, we have by theoretical analysis shown that
thermoviscous effects are equally important for the acoustic
radiation force Frad on a small particle. Frad is evaluated from
Eq. (5), or more generally from Eq. (6), using our analytical
results for the thermoviscous scattering coefficients f0 and f1

summarized in Table I. Our analysis places no restrictions on
the viscous and thermal boundary-layer thicknesses δs and δt

relative to the particle radius a, a point which is essential to
calculation of the acoustic radiation force on micrometer- and
nanometer-sized particles.

The discussion in Sec. II leading to Eq. (5) for Frad as well
as the discussion of the range of validity presented in Sec. VII
are intended to provide clarification and a deeper insight into
the fundamental assumptions of the theory for the acoustic
radiation force. Foremost, we have extended the discussions
of the role of streaming, the fundamental assumption of time
periodicity, and the trick of evaluating the radiation force in the
far field, which led to the exact nonperturbative expression (3)
for the radiation force evaluated in the far field.

For the simple case of a 1D standing plane wave at a single
frequency, the expression (6) for Frad simplifies to the useful
expression given in Eq. (79), which involves the acoustic

043010-15



JONAS T. KARLSEN AND HENRIK BRUUS PHYSICAL REVIEW E 92, 043010 (2015)

FIG. 4. (Color online) Acoustic contrast factor �ac for particles in air plotted as a function of δs/a, the viscous boundary-layer thickness
in the medium normalized by particle radius. The curves are calculated using ideal theory (green), viscous theory (thermoviscous theory with
Dth = 0, blue), and thermoviscous theory (red) for (a) a polystyrene particle in air (air-ps) and (b) a water droplet in air (air-wa), both at 300 K.
Ideal theory predicts a constant value of �ac = 5/6 independent of particle size. For particles much smaller than the boundary-layer thickness,
however, thermoviscous theory predicts huge deviations from ideal theory leading to acoustic contrast factors two orders of magnitude larger
than expected from ideal-fluid theory. The vertical dashed lines indicate examples of particle sizes corresponding to the given value of δs/a at
f = 1 kHz.

contrast factor �ac. Similar simplified expressions can be
derived for other cases of interest such as that of a 1D traveling
plane wave. An important result from the discussion of the
simple 1D case in Sec. VIII is that we must abandon the notion
of a purely material-dependent acoustic contrast factor �ac. In
general, �ac also depends on the particle size, and in many
cases this size dependency can even lead to a sign change in
�ac at a critical threshold. Recent acoustophoretic experiments
on submicrometer-sized water droplets and smoke particles
in air may provide the first evidence of this prediction [57].
Considering only viscous corrections, however, the authors
could not fully explain their data. Our analysis suggests
that thermoviscous effects must be taken into account when
designing and analyzing such experiments.

Our results for the acoustic radiation force in a standing
plane wave evaluated using Eq. (79) agree with the expressions
obtained from the work of Doinikov [4–6] in the limit of small
boundary layers, but not in the opposite limit of a point particle.
In our theory both of these limits are evaluated directly using
the derived analytical expressions valid for arbitrary boundary-
layer thicknesses, and we have furthermore given a physical
argument supporting our result in the point-particle limit.

Considering the viscous theory of Danilov and Mironov [7], we
remark that their result is based on the viscous reaction force
on an oscillating rigid sphere [43] instead of a direct solution
of the governing equations for an acoustic field scattering on
a sphere.

Importantly, we have shown that the acoustic radiation
force on a small particle including thermoviscous effects
may deviate by orders of magnitude from the predictions
of ideal-fluid theory when there is a large density contrast
between the particle and the fluid. This result is particularly
relevant for acoustic levitation and manipulation of small
particles in gases [22–28]. Thermoviscous effects can also be
significant in many lab-on-a-chip applications involving ultra-
sound handling of nanoparticles and nanodroplets. In general,
acoustic boundary-layer effects should be expected for any
type of submicrometer particle, including biological particles
such as microvesicles, bacteria, and viruses [8,9,18]. A firm
theoretical understanding of thermoviscous effects and of the
particle-size-dependent sign change of the acoustic contrast
factor could prove important for future applications relying on
ultrasound manipulation of micrometer- and nanometer-sized
particles.

APPENDIX A: VELOCITY AND NORMAL STRESS IN SPHERICAL COORDINATES

In spherical coordinates (r,θ,ϕ) with azimuthal symmetry, using that v1 = ∇φ + ∇ × ψ with φ = φc + φt and ψ = ψs eϕ ,
the first-order velocity components are

v1r = ∂rφ + 1

r sin θ
∂θ [sin θ ψs], (A1a)

v1θ = 1

r
∂θφ − 1

r
∂r [r ψs]. (A1b)

Inserting this into Eq. (52), we obtain the normal components of the first-order stress tensor

σ1rr = η0
(
2k2

c − k2
s

)
φc + η0

(
2k2

t − k2
s

)
φt + 2η0∂

2
r φ + 2η0

sin θ
∂θ

[
sin θ

(
1

r
∂rψs − 1

r2
ψs

)]
, (A2a)

σ1θr = 2η0∂θ

(
1

r
∂rφ − 1

r2
φ

)
− η0

(
∂ 2
r ψs − 2

r2
ψs

)
+ η0

r2
∂θ

[
1

sin θ
∂θ (sin θ ψs)

]
. (A2b)
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APPENDIX B: SCATTERING COEFFICIENTS f0 AND f1

Here, we outline the calculation of the monopole and dipole scattering coefficients f0 and f1 in the long-wavelength limit
where the particle radius and the boundary-layer thicknesses are assumed much smaller than the wavelength. Defining the
small parameter ε = k0a � 1, we note that k0a,k0δs,k0δt,k0δ

′
t , and for a fluid particle furthermore k0δ

′
s, are all of order ε. The

calculation is carried out to first order in ε.

1. Monopole scattering coefficient f0

The monopole scattering coefficient f0 may be obtained from Eqs. (56a), (56c), (56d), and (56f) setting n = 0 and C0 = C ′
0 = 0.

All Bessel functions of the small arguments xc,x
′
c ∼ ε � 1 are expanded to first order in ε using Eq. (C5) of Appendix C, and

in the (unprimed) fluid medium we neglect x2
c in comparison to x2

s . Thus, we arrive at

A0
i

xc
+ A′

0
1

3
x ′2

c − B0xth1(xt) + B ′
0x

′
tj1(x ′

t ) = 1

3
x2

c , (B1a)

A0bc

(
1 − i

xc

)
− A′

0b
′
c + B0bth0(xt) − B ′

0b
′
tj0(x ′

t ) = −bc, (B1b)

A0kthbc
i

xc
+ A′

0
1

3
k′

thb
′
cx

′2
c − B0kthbtxth1(xt) + B ′

0k
′
thb

′
tx

′
tj1(x ′

t ) = 1

3
kthbcx

2
c , (B1c)

A0η0

[(
4 − x2

s

) i

xc
+ x2

s

]
− A′

0η
′
0

[
x ′2

s − 4

3
x ′2

c

]
+ B0η0

[(
x2

s − 2x2
t

)
h0(xt) − 2x2

t h′′
0(xt)

]
−B ′

0η
′
0

[(
x ′2

s − 2x ′2
t

)
j0(x ′

t ) − 2x ′2
t j ′′

0 (x ′
t )
] = −η0x

2
s , (B1d)

where Eq. (C3) is used to write g′
0(x) = −g1(x) for any spherical Bessel or Hankel function g0(x).

Multiplying Eq. (B1c) by 1/(kthbt) and using the ratios

bc

bt

= −(γ − 1)
x2

c

x2
t

,
b′

c

bc

= χ̃
α̃p

c̃p

,
b′

t

bt

= 1

χ̃ α̃pD̃th
,

b′
c

bt

= bc

bt

b′
c

bc

= −χ̃ (γ − 1)
α̃p

c̃p

x2
c

x2
t

, (B2)

of the b coefficients defined in Eq. (50) [here, χ̃ = 1 for a droplet and χ̃ = χ ′ for a solid particle, respectively, while Eqs. (16), (22),
and (39e) are used to reduce b′

c/bc], we note that the A0 and A′
0 terms can be neglected to order ε, and we obtain

B ′
0 = kthbt

k′
thb

′
t

xth1(xt)

x ′
tj1(x ′

t )
B0 = χ̃

α̃p

ρ̃0c̃p

xth1(xt)

x ′
tj1(x ′

t )
B0. (B3)

With this, we eliminate B ′
0 from the system of equations (B1), and the remaining three equations become⎛

⎜⎜⎜⎝
i
xc

1
3x ′2

c −S1

bc
bt

(
i
xc

− 1
) b′

c
bt

− S2

x2
t

i(x2
s −4)
xc

− x2
s

(
x ′2

s − 4
3x ′2

c

)
η̃0 −S3

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝
A0

A′
0

B0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x2
c

3

bc
bt

x2
s

⎞
⎟⎟⎟⎠, (B4)

where we have introduced the functions S1, S2, and S3,

S1 =
[

1 − 1

k̃th

bt

b′
t

]
xth1(xt), (B5a)

S2 = x2
t

[
h0(xt)

xth1(xt)
− 1

k̃th

j0(x ′
t )

x ′
tj1(x ′

t )

]
xth1(xt), (B5b)

S3 =
[
x2

s h0(xt)

xth1(xt)
− 4

(
1 − η̃0

k̃th

bt

b′
t

)
− η̃0

k̃th

btx
′2
s

b′
tx

′
t

j0(x ′
t )

j1(x ′
t )

]
xth1(xt), (B5c)

and the relative shear constant η̃0 obtained from Eq. (41b),

η̃0 = η′
0

η0
= ρ̃0

x2
s

x ′2
s

. (B6)

In obtaining the expression for S3 we have used Eq. (C3) to substitute g′′
0 (x) = −g0(x) + (2/x)g1(x) for any spherical Bessel or

Hankel function g(x). Using Eqs. (B2), (B6), and the explicit forms (C4) of the Bessel functions, the S functions are expressed
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in terms of the dimensionless wave numbers as

S1 =
[

1 − χ̃
α̃p

ρ̃0c̃p

]
xth1(xt), (B7a)

S2 = 1

H (xt,x
′
t )

xth1(xt), (B7b)

S3 =
[

x2
s

1 − ixt
− 4 + χ̃ α̃p

c̃p

(
4x2

s

x ′2
s

− x2
s tan x ′

t

tan x ′
t − x ′

t

)]
xth1(xt), (B7c)

where H (xt,x
′
t ) is given in Eq. (59b). The coefficient A0 is now found from Eq. (B4) by the method of determinants (Cramer’s

rule) as A0 = D(A0)/D, where D is the determinant of the left-hand-side system matrix and D(A0) is the determinant of the
system matrix in which the first column (the A0 coefficients) are replaced by the right-hand-side column with the inhomogeneous
terms. The monopole scattering coefficient f0 in the long-wavelength limit can then be expressed as

f0 = 3i

x3
c

A0 = 3i

x3
c

D(A0)

D
, (B8)

with the determinants D and D(A0) given by

D = −S1

[
η̃0

bc

bt

(
i

xc
− 1

)(
4

3
x ′2

c − x ′2
s

)
− b′

c

bt

((
4 − x2

s

) i

xc
+ x2

s

)]

− S2

x2
t

[
x ′2

c

3

(
i
(
4 − x2

s

)
xc

+ x2
s

)
− iη̃0

xc

(
4

3
x ′2

c − x ′2
s

)]
− S3

[
1

3
x ′2

c
bc

bt

(
i

xc
− 1

)
− i

xc

b′
c

bt

]
, (B9a)

D(A0) = −S1

[
η̃0

bc

bt

(
4

3
x ′2

c − x ′2
s

)
+ b′

c

bt
x2

s

]
− S2

3x2
t

[
−η̃0x

2
c

(
4

3
x ′2

c − x ′2
s

)
− x ′2

c x2
s

]
− S3

3

[
bc

bt
x ′2

c − b′
c

bt
x2

c

]
. (B9b)

The solution A0 = D(A0)/D, though written somewhat differently, agrees with Allegra and Hawley’s Eq. (10) of Ref. [31].

a. f0 for a suspended thermoviscous droplet

For a suspended thermoviscous droplet, the precise definition of the long-wavelength limit is given in Eq. (58). In this case,
the shear mode characterized by x ′

s inside the droplet corresponds to a boundary layer, and consequently comparison to the
compressional mode inside and outside the droplet yields x2

c /x
′2
s ∼ x ′2

c /x ′2
s ∼ ε2 � 1. This, combined with bc/bt ∼ b′

c/bt ∼
x2

c /x2
t ∼ ε2 � 1 from Eq. (B2), leads to the following simplification of Eq. (B9) to first order in ε,

D � − i

xc

x2
s

x2
t

ρ̃0S2, (B10a)

D(A0) � − ρ̃0

3

x2
s

x2
t

(
x2

c − x ′2
c

ρ̃0

)
S2 + ρ̃0x

2
s
bc

bt

(
1 − α̃p

ρ̃0c̃p

)
S1. (B10b)

When inserting this into Eq. (B8), we obtain

f fl
0 = 1 − κ̃s + 3(γ − 1)

(
1 − α̃p

ρ̃0c̃p

)
S1

S2
, (B11)

which upon substitution with S1
S2

= (1 − α̃p

ρ̃0 c̃p
)H (xt,x

′
t ) from Eq. (B7) with χ̃ = 1, leads to the final analytical result for f fl

0 given
in Eq. (59).

b. f0 for a suspended thermoelastic particle

The qualitative change going from the thermoviscous droplet to the thermoelastic particle lies in the shear mode, which
changes from a highly damped boundary-layer mode to a propagating transverse wave with x ′2

s ∼ ε2. A further implication is
that the shear constant ratio of Eq. (B6) becomes large, η̃0 = ρ̃0x

2
s /x ′2

s ∼ ε−2 � 1; and the order of magnitude of the S functions
of Eq. (B7) obey S1 ∼ S2 ∼ ε2S3. Combining this with the following expression derived from Eqs. (39e), (48), and (B6),

η̃0

(
4

3
x ′2

c − x ′2
s

)
= −χ ′ρ̃0x

2
s , (B12)
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the leading-order expansions in ε of the determinants D and D(A0) in Eq. (B9) become

D = i

xc

(
−χ ′ρ̃0

x2
s

x2
t

S2 + b′
c

bt
S3

)
, (B13a)

D(A0) = x2
s
b′

c

bt

(
−1 + χ ′ρ̃0

bc

b′
c

)
S1 + x2

c

3

x2
s

x2
t

(
x ′2

c

x2
c

− χ ′ρ̃0

)
S2 + x2

c

3

b′
c

bt

(
1 − bc

b′
c

x ′2
c

x2
c

)
S3. (B13b)

From this and Eq. (B8), we obtain the monopole scattering coefficient f sl
0 for a thermoelastic particle suspended in a thermoviscous

fluid,

f sl
0 = 3i

x3
c

A0 =
1 − 1

χ ′ρ̃0

x ′2
c

x2
c

− 1

χ ′ρ̃0

b′
c

bt

x2
t

x2
s

[
3x2

s

x2
c

(
−1 + χ ′ρ̃0

bc

b′
c

)
S1

S2
+
(

1 − bc

b′
c

x ′2
c

x2
c

)
S3

S2

]

1 − 1

χ ′ρ̃0

b′
c

bt

x2
t

x2
s

S3

S2

. (B14)

From Eq. (B7) we obtain the leading-order expansions in ε for the ratios S1/S2 and S3/S2,

S1

S2
=
(

1 − 1

k̃th

bt

b′
t

)
H (xt,x

′
t ),

S3

S2
= 4

η̃0

k̃th

bt

b′
t
H (xt,x

′
t ), (B15)

with the function H (xt,x
′
t ) defined in Eq. (59b). Inserting this into Eq. (B14) and using Eqs. (B2) and (B6), and the expression (39e)

for χ ′, we arrive at the final analytical form for f sl
0 given in Eq. (64).

2. Dipole scattering coefficient f1

In the long-wavelength limit, for each order n � 1, the terms containing Bn and B ′
n, and thus the variables xt and x ′

t , in the
system of boundary equations (56) are of negligible order relative to the terms containing An, A′

n, Cn, C ′
n, and the inhomogeneous

terms. Formally, this is seen by writing up and inverting the entire 6-by-6 matrix equation for the six coefficients for a given
n � 1. A quicker way to see this is to write Eqs. (56c) and (56d) as(

hn(xt) −jn(x ′
t )

xth
′
n(xt) −x ′

tj
′
n(x ′

t )

)(
Bn

B ′
n

)
∼ ε2

(
A′

njn(x ′
t ) − Anhn(xc) − jn(xc)

A′
njn(x ′

t ) − Anhn(xc) − jn(xc)

)
, (B16)

where we have used bc

bt
,
b′

c

bt
∼ ε2 and b′

t

bt
,
k′

th
kth

∼ 1. Inserting the expressions for Bn and B ′
n obtained by inversion of this equation

into Eqs. (56a), (56b), (56e), and (56f), we see that due to the factor ε2 all terms related to Bn or B ′
n are negligible in all

four equations. In treating Eq. (56e) it might be useful to use the Bessel’s equation (C2). Consequently, returning to the dipole
problem with n = 1, terms with B1,B

′
1 are omitted and the system of equations reduces to four equations with four unknowns,

namely, Eqs. (56a), (56b), (56e), and (56f) without the terms of B1,B
′
1. For n = 1 we thus obtain the simplified system of

equations

xcj
′
1(xc) + A1xch

′
1(xc) − 2C1h1(xs) = A′

1x
′
cj

′
1(x ′

c) − 2C ′
1j1(x ′

s), (B17a)

j1(xc) + A1h1(xc) − C1[xsh
′
1(xs) + h1(xs)] = A′

1j1(x ′
c) − C ′

1[x ′
sj

′
1(x ′

s) + j1(x ′
s)], (B17b)

η0
[
xcj2(xc) + A1xch2(xc) + 1

2C1x
2
s h′′

1(xs)
] = η′

0

[
A′

1x
′
cj2(x ′

c) + 1
2C ′

1x
′2
s j ′′

1 (x ′
s)
]
, (B17c)

η0
[
x2

s j1(xc) − 4xcj2(xc)
]− 4C1η0xsh2(xs) + A1η0

[
x2

s h1(xc) − 4xch2(xc)
] = A′

1η
′
0

[
x ′2

s j1(x ′
c) − 4x ′

cj2(x ′
c)
]− 4C ′

1η
′
0x

′
sj2(x ′

s),

(B17d)

where we have rewritten the last two equations using the recurrence relations obtained from Eq. (C3)

xg′
1(x) − g1(x) = −xg2(x), (B18a)

g′′
1 (x) = −g1(x) + 2

x
g2(x), (B18b)

valid for any spherical Bessel or Hankel function g.
Simplifying the system of equations we multiply Eq. (B17a) by (−1) and add to it Eq. (B17b), then use the recurrence

relation (B18a). Equation (B17b) is multiplied by 2 and Eq. (B17a) is added while using the recurrence relation xg′
1(x) + 2g1(x) =

xg0(x). We leave Eq. (B17c) as it is. To Eq. (B17d) we add 4 times Eq. (B17c) and use the recurrence relation (B18b). With some
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rearrangements, these manipulations give

A1xch2(xc) + C1xsh2(xs) − A′
1x

′
cj2(x ′

c) − C ′
1x

′
sj2(x ′

s) = −xcj2(xc), (B19a)

A1xch0(xc) − 2C1xsh0(xs) − A′
1x

′
cj0(x ′

c) + 2C ′
1x

′
sj0(x ′

s) = −xcj0(xc), (B19b)

A1xch2(xc) + 1
2C1x

2
s h′′

1(xs) − η̃0
[
A′

1x
′
cj2(x ′

c) + 1
2C ′

1x
′2
s j ′′

1 (x ′
s)
] = −xcj2(xc), (B19c)

A1h1(xc) − 2C1h1(xs) − ρ̃0[A′
1j1(x ′

c) − 2C ′
1j1(x ′

s)] = −j1(xc), (B19d)

where η̃0x
′2
s = ρ̃0x

2
s was used to simplify the last equation. The equations may be further simplified using the relevant scalings

in the long-wavelength limit for the fluid droplet and the solid particle, respectively.

a. f1 for a suspended thermoviscous droplet

In the long-wavelength limit for the fluid droplet case the scalings of Eq. (58) apply. Using the approximate expressions
for the spherical Bessel and Hankel functions [Eq. (C5)] applicable for small arguments and examining the resulting system of
equations (B19) one finds that some terms may be omitted to first order in ε. The simplified system of equations (B19) for the
fluid droplet case takes the form

− 3i

x2
c

A1 + C1xsh2(xs) − C ′
1x

′
sj2(x ′

s) = 0, (B20a)

−2C1xsh0(xs) − A′
1x

′
c + 2C ′

1x
′
sj0(x ′

s) = −xc, (B20b)

− 3i

x2
c

A1 + 1

2
C1x

2
s h

′′
1(xs) − 1

2
C ′

1η̃0x
′2
s j ′′

1 (x ′
s) = 0, (B20c)

3i

x2
c

A1 + 6C1h1(xs) + A′
1ρ̃0x

′
c − 6C ′

1ρ̃0j1(x ′
s) = xc, (B20d)

Subtracting Eq. (B20c) from Eq. (B20a) and using Eq. (B18b), we can express C ′
1 by C1,

C ′
1 = x2

s h1(xs)

η̃0x ′
sQ(x ′

s)
C1, (B21a)

Q(x ′
s) = x ′

sj1(x ′
s) − 2

(
1 − 1

η̃0

)
j2(x ′

s). (B21b)

Then, using this relation to eliminate C ′
1 in Eq. (B20a), we arrive at the first of the two equations in Eq. (B22). The second

equation (B22b) is obtained by adding Eqs. (B20b) and (B20d) in order to eliminate A′
1, then making use of the recurrence

relation 3g1(x) − xg0(x) = xg2(x). The resulting two equations for A1 and C1 are

3i

x2
c

A1 − C1

[
xsh2(xs) − x2

s h1(xs)j2(x ′
s)

η̃0Q(x ′
s)

]
= 0, (B22a)

3i

x2
c

A1 + 2C1ρ̃0

[
3

ρ̃0
h1(xs) − xsh0(xs) − x2

s h1(xs)j2(x ′
s)

η̃0Q(x ′
s)

]
= (1 − ρ̃0)xc. (B22b)

From this, and using again the relation 3g1(x) − xg0(x) = xg2(x), we obtain the dipole expansion coefficient A1,

A1 =
i
3x3

c (ρ̃0 − 1)[h2(xs)η̃0Q(x ′
s) − xsh1(xs)j2(x ′

s)]

[3h2(xs) − 2(ρ̃0 − 1)h0(xs)]η̃0Q(x ′
s) − (2ρ̃0 + 1)xsh1(xs)j2(x ′

s)
. (B23)

This result, but with a small error in the numerator, was first obtained by Epstein and Carhart [30]. We reduce the fraction by
η̃0Q(x ′

s)h0(xs) and use the explicit expressions for the Bessel and Hankel functions in Eq. (C4) to introduce the functions G(xs)
and F (xs,x

′
s) given explicitly in Eqs. (68b) and (68c), respectively,

G(xs) = 1 + h2(xs)

h0(xs)
, (B24a)

F (xs,x
′
s) = xsh1(xs)j2(x ′

s)

η̃0h0(xs)Q(x ′
s)

. (B24b)

Then, using that f1 = −6i x−3
c A1, we arrive at the final expression (68a) for the dipole scattering coefficient f fl

1 .
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b. f1 for a suspended thermoelastic particle

In the long-wavelength limit for the solid particle the scalings of Eq. (63) apply. Using the approximate expressions for
the spherical Bessel and Hankel functions [Eq. (C5)] applicable for small arguments and examining the resulting system of
equations (B19) one finds that some terms may be omitted to first order in ε. The simplified system of equations (B19) in the
solid particle case takes the form

− 3i

x2
c

A1 + C1xsh2(xs) = 0, (B25a)

−2C1xsh0(xs) − A′
1x

′
c + 2C ′

1x
′
s = −xc, (B25b)

− 3i

x2
c

A1 + 1

2
C1x

2
s h

′′
1(xs) − 1

15
A′

1η̃0x
′3
c + 1

10
C ′

1η̃0x
′3
s = 0, (B25c)

− 3i

x2
c

A1 − 6C1h1(xs) − A′
1ρ̃0x

′
c + 2C ′

1ρ̃0x
′
s = −xc, (B25d)

Multiplying Eq. (B25b) by (−ρ̃0) and adding it to Eq. (B25d), then substituting C1 using Eq. (B25a), and finally using the
recurrence relation 3g1(x) − xg0(x) = xg2(x) leads to the expansion coefficient A1,

A1 =
i
3x3

c (ρ̃0 − 1)h2(xs)

3h2(xs) − 2(ρ̃0 − 1)h0(xs)
. (B26)

Again, using that f1 = −6ix−3
c A1 and introducing G(xs) as defined in Eq. (B24a), we obtain after some rearrangement the final

result for f sl
1 given in Eq. (70).

APPENDIX C: SPECIAL FUNCTIONS

The Legendre differential equation solved by Legendre polynomials Pn(cos θ ) of order n is [58]

1

sin θ

d

dθ

(
sin θ

d

dθ
Pn(cos θ )

)
+ n(n + 1)Pn(cos θ ) = 0. (C1)

The Bessel differential equation solved by spherical Bessel or Hankel functions gn(x) of order n is [58]

x2[g′′
n(x) + gn(x)] = n(n + 1)gn(x) − 2xg′

n(x), (C2)

with a prime indicating differentiation with respect to the argument. Useful recurrence relations for gn(x) are
d

dx
[x−ngn(x)] = −x−ngn+1(x), (C3a)

d

dx
[xn+1gn(x)] = xn+1gn−1(x). (C3b)

The lowest-order spherical Bessel functions jn(x) and Hankel functions of the first kind hn(x) are [58]

j0(x) = sin x

x
, j1(x) = 1

x

( sin x

x
− cos x

)
, (C4a)

j2(x) = 1

x

[(
3

x2
− 1

)
sin x − 3

x
cos x

]
, (C4b)

h0(x) = −i
eix

x
, h1(x) = −eix

x

(
1 + i

x

)
, (C4c)

h2(x) = i
eix

x

(
1 + 3i

x
− 3

x2

)
. (C4d)

For small arguments, x � 1, to first order

j0(x) � 1, j ′
0(x) � −x

3
, j ′′

0 (x) � −1

3
, (C5a)

h0(x) � 1 − i

x
, h′

0(x) � i

x2
, h′′

0(x) � − 2i

x3
, (C5b)

j1(x) � x

3
, j2(x) � x2

15
, (C5c)

h1(x) � − i

x2
, h2(x) � − 3i

x3
. (C5d)
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