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Forces acting on a small particle in an acoustical field in a viscous fluid
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We calculate the acoustic radiation force from an ultrasound wave on a compressible, spherical particle
suspended in a viscous fluid. Using Prandtl-Schlichting boundary-layer theory, we include the kinematic viscosity
of the solvent and derive an analytical expression for the resulting radiation force, which is valid for any
particle radius and boundary-layer thickness provided that both of these length scales are much smaller than
the wavelength of the ultrasound wave (millimeters in water at megahertz frequencies). The acoustophoretic
response of suspended microparticles is predicted and analyzed using parameter values typically employed in
microchannel acoustophoresis.
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I. INTRODUCTION

Particles suspended in acoustic fields are subject to time-
averaged forces from scattering of the acoustic waves. Theoret-
ical studies of these forces, known as acoustic radiation forces,
date back to King in 1934, who considered incompressible
particles suspended freely in an inviscid fluid [1]. In 1955
Yosioka and Kawasima extended the analysis to include the
compressibility of the suspended particles [2]. These results
were summarized and generalized by a simple and physically
intuitive method by Gorkov in 1962 [3], but limited to inviscid
fluids and particles smaller than the acoustic wavelength λ.

With recent developments in microfabrication technologies
allowing for integration of ultrasound resonators in lab-on-a-
chip systems, the acoustic radiation force has received renewed
attention as a label- and contact-free way to manipulate
particles. Several biotechnological applications of particle
trapping and separation have been reported where ultrasound
resonances in microchannels were used to create acoustic
fields giving rise to acoustic radiation forces on suspended
particles. Examples are on-chip acoustophoretic cell separa-
tion devices [4–6], cell trapping [7–9], plasmapheresis [10],
forensic analysis [11], food analysis [12], cell sorting using
surface acoustic waves [13], cell synchronization [14], cell
differentiation [15], and cell compressibility studies [16]. At
the same time, substantial advancements in understanding the
fundamental physics of biochip acoustophoresis have been
achieved through full-chip imaging of acoustic resonances
[17], particle handling by surface acoustic waves [18–22], mul-
tiresonance chips [23], advanced frequency control [24,25],
on-chip integration with magnetic separators [26], acoustics-
assisted microgrippers [27], acoustic programming [28], band-
pass filters [29], in situ force calibration [30], and automated
micro-PIV systems [31]. See also the recent reviews on
acoustofluidics [32,33].

Traditionally, the acoustic radiation force has been modeled
using the inviscid theory of the acoustic radiation force. This
approach is approximately correct for particles significantly
larger than the thickness δ of the acoustic boundary layer,
in which viscosity does play a dominant role. For a fluid
with kinematic viscosity (or momentum diffusivity) ν and
with an acoustic field of angular frequency ω, the boundary
layer thickness (or viscous penetration depth) is the momentum

diffusion length δ given by Refs. [34,35]

δ =
√

2ν

ω
≈ 0.6 μm, (1)

where the value is for 1-MHz ultrasound in water at room
temperature. It is therefore expected that particles or cells with
a radius larger than 3 μm can be described fairly accurately by
the inviscid theory. However, as the technological development
pushes for higher accuracy, more refined applications, and
the handling of smaller particles, it becomes relevant to
calculate the effects on acoustophoresis from viscosity of the
solvent.

We are not the first to analyze how the acoustic radiation
force depends on δ. However, the earlier works by Doinikov
[36] and by Danilov and Mironov [37] focus mainly on
developing general theoretical schemes for particles of radius
a smaller than the wavelength λ and only provide analytical
expressions in the special limits δ � a � λ and a � δ � λ.
However, given the length scale above, the range of appli-
cability of the published expressions for viscous corrections
is a priori severely limited. The aim of this paper is to
provide an analytical expression for the viscous corrections
to the acoustic radiation force on small suspended particles
δ,a � λ, and to analyze its implications for experimentally
relevant parameters central for current studies in the field
of microchannel acoustophoresis of compressible particles in
liquids.

We begin by establishing the governing equations for
acoustophoresis in the framework of second-order perturbation
theory of the Navier-Stokes equation in the acoustic field.
Then, following the inviscid analysis by Gorkov [3], we
express the radiation force on a particle in terms of the far-field
solution of inviscid acoustic wave scattering theory, extend
this solution to the near-field region close to the particle,
and match it with the solution to the incompressible viscous
flow problem in the acoustic boundary layer of the particle.
From this we obtain the analytical expression for the acoustic
radiation force in the viscous case. Finally, we analyze the
predictions of the theory for experimentally relevant parameter
values.
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II. PERTURBATION EXPANSION OF THE GOVERNING
EQUATIONS

The formulation of the governing equations for acoustics in
perturbation theory is well known, and the reader is referred
to the textbooks by Landau and Lifshitz [35], Lighthill [38],
and Pierce [39]. Briefly and to establish notation [40], for a
given fluid in the absence of external forces and for isothermal
conditions, the theory is based on a combination of the
thermodynamic equation of state expressing pressure p in
terms of density ρ, the kinematic continuity equation for ρ,
and the dynamic Navier-Stokes equation for the velocity field
v,

p = p(ρ), (2a)

∂tρ = −∇ · (ρv), (2b)

ρ∂tv = −∇p − ρ(v ·∇)v + η∇2v + βη ∇(∇ ·v), (2c)

where η is the dynamic viscosity of the fluid and β the
viscosity ratio typically of the order of unity. Thermal effects
are neglected because the thermal diffusion length in liquids is
much smaller than the momentum diffusion length (or viscous
penetration depth) δ, see Ref. [36].

We consider a quiescent liquid, which before the presence
of any acoustic wave has constant density ρ0 and pressure p0.
Let an acoustic wave constitute tiny perturbations to first and
second order (subscript 1 and 2, respectively) in density ρ,
pressure p, and velocity v,

ρ = ρ0 + ρ1 + ρ2, (3a)

p = p0 + c
2
0 ρ1 + p2, (3b)

v = v1 + v2. (3c)

Here we have introduced the speed of sound c0 of the fluid,
the square of which is given by the (isentropic) derivative
c

2
0 = (∂p/∂ρ)s , ensuring the useful identity

p1 = c
2
0 ρ1, (4)

and an explicit expression for the compressibility κ0,

κ0 = − 1

V

∂V

∂p
= 1

ρ0

∂ρ

∂p
= 1

ρ0c
2
0

. (5)

It is a fundamental, unproven, assumption in perturbation
theory that the expansion terms in Eq. (3) get successively
smaller and that the sums including all orders converge
[35,38,39]. However, for most of the acoustophoretic appli-
cations mentioned in Sec. I, the acoustic energy density even
at resonance is Eac < 102 J/m3, corresponding to |ρ1|/ρ0 =
|v1|/c0 < 10−3. Moreover, the observed time-averaged acous-
tic streaming velocities |〈v2〉| are typically of the order
100 μm/s, which is a factor 10−4 smaller than |v1|. Given
the smallness of these ratios, the perturbation expansion is
expected to be valid, but the reader is referred to Ref. [32]
for a review over cases where the perturbation expansion is
questionable.

The first-order perturbation (or linearization) of the conti-
nuity and Navier-Stokes equation is

∂tρ1 = −ρ0∇ ·v1, (6a)

ρ0∂tv1 = −c
2
0 ∇ρ1 + η∇2v1 + βη ∇(∇ ·v1). (6b)

The first-order acoustic wave equation for ρ1 is obtained by
taking the time derivative ∂t of Eq. (6a) followed by insertion
of Eq. (6b) in the resulting expression,

∂ 2
t ρ1 = c

2
0

[
1 + (1 + β)η

ρ0c
2
0

∂t

]
∇2ρ1. (7)

For acoustics fields in the bulk, that is, at distances much
greater than δ from rigid boundaries, the viscous dissipation
is negligible because of the minute damping coefficient
ηω/(ρ0c

2
0 ) � 1, where ω is a characteristic angular frequency

of the system. However, the bulk field is disturbed by the
no-slip boundary condition forcing the velocity of the fluid
at any rigid wall to equal the velocity of that wall. This
disturbance is decaying exponentially away from the wall with
δ as the decay length [see, e.g., Eq. (36)] and large velocity
gradients may occur in Eq. (6b), such that ηv1/δ

2 � ρ0∂tv1,
and viscosity cannot be neglected. Since the exponential decay
drops below 1% at a distance of 5δ, we take this as the thickness
of the acoustic boundary layer, however the precise value of
the prefactor is not important, see Sec. IV B.

The acoustic radiation force is a time-average effect that
does not resolve the oscillatory behavior of the acoustic
fields, so in this work we do not need the full second-order
perturbation of the governing equations, but only their time
average. We assume that after the vanishing of transients, any
first-order field f (r,t) has a harmonic time dependence,

f (r,t) = f (r) e−iωt , (8)

and define the time average 〈X〉 over a full oscillation period
τ of a quantity X(t) as

〈X〉 ≡ 1

τ

∫ τ

0
dt X(t). (9)

From this we obtain the time-averaged, second-order pertur-
bation of Eqs. (2b) and (2c) in the form

ρ0∇ · 〈v2〉 = −∇ · 〈ρ1v1〉, (10a)

−∇〈p2〉 + η∇2〈v2〉 + βη∇(∇ · 〈v2〉)
= 〈ρ1∂tv1〉 + ρ0〈(v1 ·∇)v1〉. (10b)

We note that the physical, real-valued time average 〈f g〉 of
two harmonically varying fields f and g with the complex
representation Eq. (8), is given by the real-part rule

〈f g〉 = 1
2 Re[f (r) g∗(r)], (11)

where the asterisk denotes complex conjugation.
Clearly the time-averaged, second-order fields will in gen-

eral be nonzero, as the nonvanishing time-averaged products
of first-order terms act as source terms on the right-hand side
in the governing equations.

In the inviscid bulk, the first-order flow v1 is a potential
flow, see Eq. (6b) with η = 0, which when used in Eq. (10b)
and combined with Eq. (5) leads to

〈p2〉 = 1
2κ0

〈
p

2
1

〉 − 1
2ρ0

〈
v

2
1

〉
. (12)

III. THE ACOUSTIC RADIATION FORCE

We are analyzing the acoustic radiation force on a
compressible, spherical, micrometer-sized particle of radius
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a suspended in a viscous fluid in an ultrasound field of
wavelength λ (=1 mm in water at room temperature for
ω/2π = 1.5 MHz), thus a � λ. In terms of acoustic waves,
the microparticle thus acts as a weak point scatterer, which
we will treat by first-order scattering theory. In response to an
incoming wave, described by the oscillatory velocity field vin,
an outgoing wave vsc propagates away from the particle, and
the first-order acoustic velocity field v1 is given by the sum

v1 = vin + vsc. (13)

Once the first-order scattered field vsc have been determined
for a given incoming first-order field vin, the acoustic radiation
force Frad on the particle can be calculated as the time-
averaged second-order forces acting on a fixed surface ∂ in
the inviscid bulk, encompassing the particle [3]. Momentum
conservation and zero bulk forces ensures that any fixed surface
can be chosen. For inviscid fluids, Frad is the sum of the
time-averaged second-order pressure 〈p2〉 and momentum flux
tensor ρ0〈v1v1〉,

Frad = −
∫

∂

da {〈p2〉n + ρ0〈(n·v1)v1〉}

= −
∫

∂

da

{[
κ0

2

〈
p

2
1

〉− ρ0

2

〈
v

2
1

〉]
n+ρ0〈(n·v1)v1〉

}
. (14)

To ease the determination of p1 and v1, we use that in the
inviscid bulk, they can be expressed in terms of a velocity
potential φ1 as v1 = ∇φ1 and p1 = −ρ0∂tφ1. For a harmonic
time dependence, Eq. (6b) implies

φ1 = −i
c

2
0

ρ0ω
ρ1, (15)

and, as sketched in Fig. 1(a), we henceforth write

φ1 = φin + φsc, (16a)

v1 = ∇φ1 = ∇φin + ∇φsc, (16b)

p1 = i ρ0ω φ1 = i ρ0ω φin + i ρ0ω φsc. (16c)

By virtue of Eqs. (7) and (15), φ1 (as well as φin and φsc)
obeys the inviscid wave equation ∂

2
t φ = c

2
0 ∇2φ in the bulk.

As we can use any surface ∂ to calculate the radiation force
Frad, the simplest choice is a surface in the far-field region
r 	 λ, where the spherical particle of radius a is placed at
the center of the coordinate system, and where r is a position
vector. According to standard scattering theory [35,41,42], the
scattered field φsc from a point scatterer can be represented by
a time-retarded multipole expansion. In the far-field region,
the monopole component and dipole components dominate,
φsc ≈ φmp + φdp, and in general, these two components have
the specific forms φmp(r,t) = b(t − r/c0)/r and φdp(r,t) =
∇ · [B(t − r/c0)/r], where b is a scalar function and B a
vector function of the retarded argument t − r/c0. In first-
order scattering theory, φsc must be proportional to the first-
order fields determined by φin. On physical grounds, the only
relevant scalar field is the density, b ∼ ρin, or equivalently
the pressure pin, while the only relevant vector field is the
velocity B ∼ vin. Here both ρin and vin are evaluated at the
particle position with time-retarded arguments, and in the far-
field region φsc must therefore have the form

φsc(r,t) = −f1
a3

3ρ0

∂tρin(t − r/c0)

r

− f2
a3

2
∇ ·

[
vin(t − r/c0)

r

]
, r 	 λ, (17)

where the particle radius a, the unperturbed density ρ0, and the
time derivative ∂t are introduced to ensure the correct physical
dimension of φsc, namely m2/s. The factors 1/3 and 1/2 are
inserted for later convenience.

Before reaching the main goal of the calculation, namely
the determination of the dimensionless scattering coefficients
f1 and f2, the radiation force Frad is expressed in terms of
the incoming acoustic wave φin at the particle position and the
coefficients f1 and f2. When inserting the velocity potentials
Eqs. (16a) and (17) into Eq. (14) for Frad, we obtain a sum

(a) (b)φin φsc Far field

λ

φ1 = φin + φsc

Inviscid
compressible fluid

Far field
φsc(t − r/c0)

Near field
φsc(t)

Viscous,
incompressible fluid

∼ λ

∼ 5δ Solid
a

κp, ρp

ν, ρ0

κ0, ρ0

FIG. 1. (Color online) (a) Sketch of the far-field region r 	 λ of an incoming acoustic wave φin (vertical lines) of wavelength λ scattering off
a small particle (black dot) with radius a � λ, leading to the outgoing scattered wave φsc (circles and arrows). The resulting first-order wave is
φ1 = φin + φsc. (b) Sketch of a compressible spherical particle of radius a, compressibility κp, and density ρp, surrounded by the incompressible,
viscous acoustic boundary layer of width ∼5δ (dark shade) with density ρ0 and kinematic viscosity ν. Outside is the compressible inviscid
bulk (light shade) of compressibility κ0 and density ρ0. The bulk liquid is divided into the near-field region for r � λ, with the instantaneous
scattered field φsc(t), and the far-field region with time-retarded scattered field φsc(t − r/c0).
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of terms each proportional to the square of φ1 = φin + φsc.
This results in three types of contributions, (i) squares of φin
containing no information about the scattering and therefore
yielding zero, (ii) squares of φsc proportional to the square of
the particle volume a6 and therefore negligible compared to
(iii) the mixed products φinφsc proportional to particle volume
a3, which are the dominant contributions to Frad. Keeping
only these mixed terms representing interference between the
incoming and the scattered wave, we have in Appendix A
derived the following expression for Frad in terms of the
incoming velocity field vin and the scattered potential φsc,

Frad = −
∫



d r ρ0

〈
vin

(
∇2 − 1

c
2
0

∂ 2
t

)
φsc

〉
. (18)

As shown in Appendix A the appearance of the d’Alembert
wave operator ∇2 − (1/c

2
0 )∂ 2

t acting on φsc leads to significant
simplification. In particular, the integrand turns out to be
proportional to the Dirac δ function δ(r) being singular at the
position of the particle center. Combining this with some vector
theorems and a partial integration (for details see Appendix A),
we arrive at the resulting expression for Frad,

Frad = −πa3

[
2κ0

3
Re[f ∗

1 p∗
in∇pin] − ρ0Re[f ∗

2 v∗
in ·∇vin]

]
,

with pin and vin evaluated at r = 0. (19)

For standing waves φin, the spatial part f (r) of the incoming
fields f (r)eiωt is real, so the nabla operator in Eq. (19) does not
lead to any phase changes. Consequently, the radiation force
acting on a small particle (a � λ) placed in a standing wave
is a gradient force of the following form:

Frad = −∇U rad for a standing wave φin, (20a)

U rad = 4π

3
a3

[
Re[f1]

κ0

2

〈
p2

in

〉 − Re[f2]
3ρ0

4

〈
v2

in

〉]
. (20b)

The radiation potential U rad is proportional to the volume
of the particle, and it contains a positive contribution from
the acoustic pressure fluctuations and a negative contribution
originating from the Bernoulli effect of the acoustic flow speed
squared.

For traveling waves, the spatial part f (r) of the incoming
fields f (r)eiωt contains a phase changing factor, for example,
the plane-wave factor eik·r or the spherical-wave factor eikr ,
which changes the overall structure of the resulting radiation
force. Assuming for simplicity an incoming plane wave with
wave number k parallel to vin, we have ∇pin = ikpin and
∇v = ikv, and Eq. (A3d) leads to a resulting radiation force
of the form

Frad = 4π

3
a3

[
Im[f1]

κ0

2

〈
p2

in

〉 + Im[f2]
3ρ0

4

〈
v2

in

〉]
k

for a traveling wave φin. (21)

Note that this is not a gradient force.

IV. THE SCATTERING COEFFICIENTS

The scattering coefficients f1 and f2 of Eq. (17) are found
by matching the pressure p1 and velocity v1 of the fluid
with the boundary conditions at the particle moving with the

instantaneous velocity vp. In the following we use a spherical
coordinate system with unit vectors (er ,eθ ,eφ) located at the
instantaneous center of the particle. Due to the azimuthal
symmetry of the problem, all fields depend only on r and θ , and
the velocities has no azimuthal component, v = vr er + vθ eθ .
The polar axis ez points along the instantaneous direction of the
incoming velocity vin, such that vin = vinez. By the azimuthal
symmetry of the problem, the particle must also move in that
direction, vp = vpez,

vin = vinez = cos θ viner − sin θ vineθ , (22a)

vp = vpez = cos θ vper − sin θ vpeθ . (22b)

As sketched in Fig. 1(b), the response of the fluid is
different in three regions of space [35]. Just outside the
sphere, in the so-called acoustic boundary layer given by
a < r � a + 5δ, viscosity is important due to the increased
shear gradients in the velocity fields, as discussed after Eq. (7).
Moreover, the fluid appears incompressible since the time it
takes an acoustic wave to propagate across the boundary layer
around the particle is much less than the oscillation period,
(a + 5δ)/c0 � 1/ω or a + 5δ � λ. The first-order pressure
and velocity fields in the viscous and incompressible acoustic
boundary layer are denoted pab and vab, respectively. In the
next region, the so-called near-field region with a + 5δ � r �
λ, the fluid is inviscid and compressible, but φsc depends on the
instantaneous argument t and not the time-retarded argument
t − r/c0. The scattering potential Eq. (17) with its monopole
and dipole term becomes

φsc(r,θ ) = φmp(r) + φdp(r,θ ), a + 5δ � r � λ, (23a)

φmp(r) = −f1
a3

3ρ0

∂tρin
1

r
, (23b)

φdp(r,θ ) = +f2
a3

2
vin

cos θ

r2
. (23c)

Finally, outermost in the far-field region r 	 λ, the fluid is
inviscid and compressible with a time-retarded φsc.

In first-order scattering theory the monopole and dipole
parts of the problem do not mix: f1 is the coefficient in the
monopole scattering potential φmp from a stationary sphere in
the incoming density wave ρin, while f2 is the coefficient in the
dipole scattering potential φdp from an incompressible sphere
moving with velocity vp in the incoming velocity wave vin.

A. The monopole scattering coefficient f1

The presence of a stationary, compressible particle causes
a mass rate ∂tm of fluid to be ejected, that would otherwise
have entered the particle volume. To first order, the ejection
is determined by the mass flux ρ0vsc carried by the scattered
wave through a surface ∂ encompassing the particle in the
near-field region. For a spherical surface with surface vector
n = er we obtain

∂tm =
∫

∂

da er · (ρ0vsc) = f1
4π

3
a3 ∂tρin. (24)

The factor 1/3 was introduced in Eq. (17) to make the
particle volume Vp = (4π/3)a3 appear here. The rate of
ejected mass can also be written in terms of the rate of change
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of the incoming density ρ0 + ρin multiplied by the particle
volume Vp as ∂tm = ∂t [(ρ0 + ρin)Vp]. Expressing this through
the compressibility κ = −(1/V )(∂V/∂p) of the fluid κ0, and
the particle κp, we obtain

∂tm =
[

1 − κp

κ0

]
Vp ∂tρin. (25)

Now, f1 is obtained by equating Eqs. (24) and (25),

f1(κ̃) = 1 − κ̃, with κ̃ = κp

κ0

. (26)

This result is identical to that of Gorkov [3]. We note that
f1 is real valued and depends only on the compressibility
ratio κ̃ between the particle and the fluid; the viscosity of the
fluid does not influence the compressibility and mass ejection.
For identical compressibilities, κ̃ = 1, the monopole scattering
vanishes, f1(1) = 0.

B. The dipole scattering coefficient f2

As f2 is related to the translational motion of the particle,
it depends on the viscosity of the fluid, and we must
therefore explicitly calculate the first-order velocity vab(r,θ )
in the viscous, acoustic boundary layer a < r � a + 5δ. This
velocity must match the dipole part vin + ∇φdp of the fluid
velocity in the near-field region r � λ, see Eqs. (22a) and
(23c). Because of the separation of length scales the matching
can be made at a distance r ≈ r∗ fulfilling a + 5δ � r∗ � λ,
and this so-called asymptotic matching [35,43] is written

er · vab(r ≈ r∗,θ ) =
[

1 − f2
a3

r3

]
cos θ vin, (27a)

eθ · vab(r ≈ r∗,θ ) =
[

1 + 1

2
f2

a3

r3

]
(− sin θ ) vin. (27b)

At the surface of the sphere, r = a, the no-slip boundary
condition requires vab to equal vp of Eq. (22b),

er · vab(a,θ ) = cos θ vp, (28a)

eθ · vab(a,θ ) = (− sin θ ) vp. (28b)

The velocity vp of the sphere is given by Newton’s second law
with ∂tvp = −iωvp and with the viscous stress from the fluid
acting on the surface of the sphere,

−i
4

3
π a3ρpω vp

=
∫

∂Vp

da n · σ ab · ez

= 2π a2
∫ 1

−1
d(cos θ )

[( − pab + σ̃ ab
rr

)
cos θ − σ̃

ab
θr sin θ

]
.

(29)

The viscous stress components are σ̃ ab
rr = 2η∂rv

ab
r and σ̃

ab
θr =

η[(1/r)∂θv
ab
r + ∂rv

ab
θ − (1/r)vab

θ ].
The determination of the pressure pab and velocity field vab

is eased by the incompressibility of the fluid in the acoustic
boundary layer ∇ · vab = 0. Taking the divergence of the
first-order Navier-Stokes equation (6b), leads to the Laplace
equation of the pressure ∇2pab = 0. Since we are seeking the

dipole solution, and since pab must match asymptotically with
the dipole part iρ0ω(φin + φdp) of Eqs. (16c) and (23), we can
directly write the pressure inside the boundary layer as

pab(r,θ ) = iρ0ω

[
r + 1

2

a3

r2
f2

]
cos θ vin, (30a)

pab(a,θ ) = iρ0ωa

[
1 + 1

2
f2

]
cos θ vin. (30b)

For the velocity field, incompressibility combined with the
azimuthal symmetry of the problem, implies that vab can be
written in terms of a stream function �(r,θ ) as

vab(r,θ ) = ∇ × [�(r,θ ) eφ], (31)

where � depends only on r and θ but is multiplied with the
azimuthal unit vector eφ . As shown in Appendix B, by taking
the rotation of the first-order Navier-Stokes equation (6b), the
stream function can be written as a sum � = �1 + �2. The
first term �1 satisfies the equation

∇2�1 − �1

r2 sin2 θ
= 0, (32)

for which the dipole part of the solution is of the (long range)
Legendre form �1(r,θ ) = A1r cos θ + A2 cos θ/r2. The sec-
ond term �2 satisfies the equation

∇2�2 − �2

r2 sin2 θ
= −q2�2, with q = 1 + i

δ
, (33)

for which the dipole part of the solution is the (decaying)
Hankel form �2(r,θ ) = Bh

1
1(qr) avin sin θ , where h

1
1(s) =

−eis(s + i)/s2 is the spherical Hankel function of the first
kind (outgoing wave) of order 1. Note that all information
about the viscosity resides within the parameter q, and since
h

1
1(qr) ∝ eiqr ∝ e−r/δ decays exponentially on the length scale

δ, the viscous, acoustic boundary layer can be ascribed the
aforementioned thickness of ∼5δ. An important, dimension-
less parameter for the analysis is therefore the ratio δ̃ of the
viscous penetration length δ and the particle radius a,

δ̃ = δ

a
. (34)

To find the explicit form of �, we first determine the
constants A1 and A2 by the asymptotic matching conditions
(27), vab(r ≈ r∗,θ ) = ∇ × [�1eφ], and obtain

�1(r,θ ) =
[

1

2
r − f2

2

a3

r2

]
sin θ vin. (35)

Combining this with vab = ∇ × [(�1 + �2)eφ] yields

vab ·er =
[

1 − f2
a3

r3
+ 2qaB

(
h

1
1(s)

s

)
qr

]
cos θ vin, (36a)

vab ·eθ =
[

1 + f2

2

a3

r3
+ qaB

{
∂s(sh

1
1(s))

s

}
qr

]
(− sin θ )vin,

(36b)

leaving the constant B to be determined. Inserting vab of
Eq. (36) into the no-slip condition at the surface of the
sphere [Eq. (28)] and inserting the pressure pab of Eq. (30b)
together with vab into Newton’s second law for the sphere
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[Eq. (29)], we arrive at three equations for the three unknowns
f2, vp, and B,

vp = [
1 − f2 + 2Bh

1
1(qa)

]
vin, (37a)

vp = [
1 + 1

2f2 + B∂s

(
sh

1
1(s)

)
qa

]
vin, (37b)

ρ̃vp = [
1 + 1

2f2 + 2Bh
1
1(qa)

]
vin. (37c)

By subtracting Eq. (37a) from Eq. (37b), B is found in terms
of f2 and the factor ∂s(sh

1
1(s)) − 2h

1
1(s) = sh

1
0(s) − 3h

1
1(s),

where h
1
0(s) = −(i/s)eis is the spherical Hankel function of the

first kind of order 0. It is helpful to introduce the dimensionless,
δ̃-dependent variable γ as

γ (δ̃) = 3h
1
1(qa)

qah
1
0(qa)

= −3

2
[1 + i(1 + δ̃)]δ̃. (38)

By straightforward algebra, f2 is found from Eq. (37),

f2(ρ̃,δ̃) = 2[1 − γ (δ̃)](ρ̃ − 1)

2ρ̃ + 1 − 3γ (δ̃)
, with ρ̃ = ρp

ρ0

. (39)

The viscosity-dependent dipole scattering coefficient f2 is in
general a complex-valued number, and its real and imaginary
values are abbreviated as

f
r

2 (ρ̃,δ̃) = Re[f2(ρ̃,δ̃)], (40a)

f
i

2 (ρ̃,δ̃) = Im[f2(ρ̃,δ̃)]. (40b)

In the absence of viscosity δ̃ = 0 we recover the real-valued
result by Gorkov [3],

f2(ρ̃,0) = 2(ρ̃ − 1)

2ρ̃ + 1
. (41)

Physically, this result for an inviscid fluid can also be derived
directly from Eq. (37): The acoustic boundary layer vanishes,
B = 0, and the condition (37b) on the tangential velocity
component is dropped, so we are left with the normal-
component condition (37a), vp = (1 − f2)vin, and Newton’s
second law (37c), ρ̃vp = (1 + 1

2f2)vin, from which Eq. (41)
follows.

The nonzero imaginary part f
i

2 of f2 for δ̃ > 0 implies that
for a traveling wave φin the product terms φinφsc of order a3

remain finite. This is in contrast to the inviscid case, where
these terms vanish and the radiation force is reduced by a
factor of (ka)3 = (2πa/λ)3 since only the quadratic terms
φ2

sc proportional to a6 remain finite [2,3]. In agreement with
Doinikov [36], our analysis thus predicts the possibility of
realizing a radiation force for traveling waves, which is a
factor of (ka)−3 = (λ/2πa)3 stronger than expected from the
standard inviscid theory.

C. Properties of f2

As the dipole scattering coefficient f2, in contrast to the
monopole coefficient f1, depends on viscosity, we study some
of its properties in more detail below and in Fig. 2. Importantly,

FIG. 2. (Color online) (a) The real part of the viscosity-dependent
dipole scattering coefficient relative to its inviscid counterpart
f

r
2 (ρ̃,δ̃)/f r

2 (ρ̃,0) plotted vs the nondimensionalized thickness δ̃ of
the viscous, acoustic boundary layer. (b) The imaginary part f

i
2 (ρ̃,δ̃)

vs δ̃ for ρ̃ = 1.25, 1.50, 1.75, and 2.00. For the same parameters
0.17 < f

r
2 (ρ,∞) < 0.67.

f2 is zero for neutral-buoyancy particles (ρ̃ = 1) irrespective
of the viscosity,

f2(1,δ̃) = 0, (42)

and generally small for near-neutral-buoyancy particles.
For a large particle in a low-viscosity fluid δ̃ � 1, the

correction to the Gorkov expression for f2 is found by
Taylor-expanding Eq. (39) to first order in δ̃,

f2(ρ̃,δ̃ � 1) ≈ 2(ρ̃ − 1)

2ρ̃ + 1

[
1 + 3(ρ̃ − 1)

2ρ̃ + 1
(1 + i) δ̃

]
, (43)

in agreement with Doinikov [36]. In earlier work by Weiser
and Apfel [44] (building on Urick [45]) the numerator of the
viscous correction was found to be (9/2)δ̃ instead of 3(ρ̃ − 1)δ̃.
However, this discrepancy is due to an imprecise treatment of
the viscous boundary layer in the earlier work.

For a small particle in a high-viscosity fluid δ̃ 	 1, the
viscosity dependence saturates, as the particle essentially
becomes a point singularity at the center of the acoustic
boundary, and f2 becomes

f2(ρ̃,δ̃ 	 1) ≈ 2
3 (ρ̃ − 1). (44)
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Doinikov presented the same expression except for the overall
sign. This may be a misprint in his paper, as the consequence
would otherwise be an unphysical reversal of the sign of the
force as δ̃ is increased from zero to infinity.

In Fig. 2(a) is shown plots of the real part f
r

2 (ρ̃,δ̃) of the
viscosity-dependent dipole scattering coefficient relative to the
inviscid coefficient f

r
2 (ρ̃,0) as a function of δ̃ for different

values of ρ̃ between 0 and 2. For these values of ρ̃ the values
of f

r
2 (ρ̃,δ̃)/f r

2 (ρ̃,0) fall in the range from 0.3 to 1.7, and the
saturation of f

r
2 sets in for moderate values of δ̃ between 1

and 2.
In Fig. 2(b) is shown the imaginary part f

i
2 (ρ̃,δ̃),

f
i

2 (ρ̃,δ̃) = 6(1 − ρ̃)2(1 + δ̃)δ̃

(1 + 2ρ̃)2 + 9(1 + 2ρ̃)δ̃ + 81
2

(
δ̃2 + δ̃3 + 1

2 δ̃4
) ,

(45)

with

f
i

2 (ρ̃,δ̃ � 1) ≈ 6(1 − ρ̃)2

(1 + 2ρ̃)2
δ̃, (46a)

f
i

2 (ρ̃,δ̃ 	 1) ≈ 24

81
(1 − ρ̃)2 δ̃−2. (46b)

It exhibits a marked maximum for δ̃ ≈ 0.5 with an am-
plitude roughly one order of magnitude smaller than the
saturation value of f

r
2 (ρ̃,∞) [Eq. (44)] for the corresponding

densities ρ̃.

D. Resulting expressions for the radiation force

In summary, the main result of the paper are the following
analytical expressions for the acoustic radiation force Frad on
a spherical particle of radius a, density ρp, and compressibility
κp suspended in a fluid of density ρ0, compressibility κ0, and
viscosity η, and exposed to a first-order standing and traveling
acoustic wave pin and vin in the long wavelength limit λ 	 a.

For a standing acoustic wave we have obtained

Frad = −∇U rad , (47a)

U rad = 4π

3
a3

[
f1

1

2
κ0

〈
p2

in

〉 − f
r

2

3

4
ρ0

〈
v2

in

〉]
, (47b)

f1(κ̃) = 1 − κ̃, with κ̃ = κp

κ0

, (47c)

f
r

2 (ρ̃,δ̃) = Re

[
2[1−γ (δ̃)](ρ̃−1)

2ρ̃ + 1 − 3γ (δ̃)

]
, with ρ̃ = ρp

ρ0

, (47d)

γ (δ̃) = −3

2
Re[1 + i(1 + δ̃)]δ̃, with δ̃ = δ

a
, (47e)

and for a traveling planar wave with wave vector k,

Frad = f
i

2 (ρ̃,δ̃) πa3ρ0

〈
v2

in

〉
k, (48)

where f
i

2 (ρ̃,δ̃) is given by Eq. (45).

V. EXPERIMENTAL IMPLICATIONS

A. Typical materials

In practical applications, especially involving biological
samples, the solvents are often aqueous salt solutions. Among

TABLE I. List of values of material parameters at 20 ◦C for typical
liquids [water (wa), NaCl solution (scs), percoll (pc), glycerol (gl)]
and solids [pyrex (PY), polystyrene (PS), polymethacrylate (PM),
melamine resin (MR), a representative biological cell (Cell)] used in
microchannel acoustophoresis.

Density Compress. Longitud. speed Viscosity
Material ρ (kg/m3) κ (1/TPa) of sound c (m/s) η (mPa s)

waa 998.2 456 1482 1.002
scsb 1071 365 1599 1.170
pcc 1130 390 1507 100
gla 1261 219 1904 1412
PYa 2230 27.8 5674 –
PSc 1050 172 2350 –
PMc 1190 148 2380 –
MRc 1510 67.5 3132 –
Celld 1100 400 1500 –

aFrom Ref. [47].
bSodium chloride solution of salinity S = 0.1, see Appendix C.
cFrom Sigma-Aldrich Production GmbH and Fluka data sheets.
dFrom Refs. [15,18].

these, sodium chloride (NaCl) solutions are arguably the ones
best characterized acoustically, so we use this solvent as one of
our model liquids in the following analysis. In Appendix C the
current best values of the speed of sound cscs, the density ρscs,
and the viscosity ηscs of sodium chloride solutions (scs) are
given as a function of temperature T (in ◦C) and mass fraction S

of NaCl in the solution (salinity). To study the effects of change
in viscosity we also include calculations with glycerol (gl) and
with percoll (pc), a solution of polyvinylpyrrolidone-coated
silica nanoparticles for which the speed of sound is nearly the
same as for pure water [46], see Table I.

As typical materials for the particles we have chosen
to analyze the polymers polystyrene (PS), polymethacrylate
(PM), and melamine resin (MR), as well as pyrex (PY) and a
typical biological cell (Cell), see Table I.

B. Traveling acoustic waves

As mentioned above, our theory including viscosity predicts
a strong enhancement of the acoustic radiation force by a factor
of (ka)−3 compared to the standard inviscid theory for the case
of purely traveling waves. Here we analyze the case of a planar
traveling wave with k = kez and p1 = paei(kz−ωt). In this case
the acoustic energy density Eac of the wave is Eac = 1

2κ0p
2
a ,

and the radiation force (21) becomes

Frad = πa3kf
i

2 (ρ̃,δ̃) Eac ez. (49)

For a 5-μm-diameter pyrex sphere in water at 1.5 MHz we have
a = 2.5 μm, δ̃ = 0.23, k = 4.24 × 103 m−1, and ρ̃ = 2.23.
From Eq. (45) we find f

i
2 (2.23,0.23) = 0.058, and taking

the typical acoustic energy density Eac = 100 J/m3 [30], we
arrive at F rad ≈ 1.2 pN. Under the influence of this force, the
pyrex sphere would reach the terminal translational velocity
vp = F rad/(6πηa) ≈ 25 μm/s. This is a significant velocity
for microchannel acoustophoresis, where typical velocities lie
in the range from 5 to 500 μm/s [31]. In the standard inviscid
theory [2,3], the estimate for the radiation force is a factor
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of (ka)3 ≈ 10−6 lower, corresponding to an acoustophoretic
velocity smaller than 0.1 nm/s.

C. Standing acoustic waves

In many experiments on rectangular microfluidic channels
with coplanar walls at z = 0 and z = h, the incoming wave
have approximately been a resonant, standing one-dimensional
(1D) pressure wave of the form p1 = pa cos(kz), with wave
number k = nπ/h, where n is the number of half wavelengths,
and with the acoustic energy density Eac = 1

4κ0p
2
a . The

expression for the radiation force then simplifies to the classic
result by Yosioka and Kawasima [2],

F
rad
1D = 4π �(κ̃,ρ̃,δ̃) a3kEac sin(2kz), (50a)

�(κ̃,ρ̃,δ̃) = 1
3 f1(κ̃) + 1

2 f
r

2 (ρ̃,δ̃), (50b)

where the acoustophoretic contrast factor �(κ̃,ρ̃,δ̃) now
depends on viscosity.

Experiments on suspended biological cells involve near-
neutral-buoyant particles |ρ̃ − 1| � 1, implying that the
monopole coefficient |f1| is typically much larger than the
dipole coefficient |f r

2 |. Because the acoustic contrast factor
� defined in Eq. (50b) is a linear combination of the
two scattering coefficients, a good quantitative measure of
the ability to detect the effect of viscosity on the acoustic
radiation force is therefore the relative change in � with and
without viscosity. We therefore find it helpful to introduce the
detectability measure D of viscous effects as

D(κ̃,ρ̃,δ̃) = �(κ̃,ρ̃,δ̃) − �(κ̃,ρ̃,0)

�(κ̃,ρ̃,0)
or (51a)

1 + D(κ̃,ρ̃,δ̃) = �(κ̃,ρ̃,δ̃)

�(κ̃,ρ̃,0)
. (51b)

Examples of D for in NaCl solutions are shown in Fig. 3
going from nearly undetectable sub-1% levels for polystyrene
spheres to above 10% levels for pyrex spheres.

The effect of including the viscosity in the expression for the
acoustic radiation force can also be illustrated by contour plots
of the contrast factor � in the (ρ̃,κ̃) plane for fixed values of δ̃

as shown in Fig. 4. The change in the contrast factor is clearly
seen by the changing contour lines. While � is independent of
δ̃ along the neutral-buoyancy line ρ̃ = 1, its value is increased
when going from the inviscid case δ̃ = 0 in Fig. 4(a) to the
viscous case δ̃ = 1 in Fig. 4(b). The change of the contour line
� = 0.0 is particularly interesting as particles on opposite side
of this line move in opposite directions, and the plot of � in
the (ρ̃,κ̃) plane is therefore also useful when attempting to
tune the solvent to obtain binary separation of particles. In
Fig. 4, a number of specific examples of materials are marked
by crosses. As particle material are chosen polystyrene (PS),
polymethacrylate (PM), melamine resin (MR), and a typical
biological cell (Cell), while the liquids are water (wa), glycerol
(gl), and percoll (pc). Note that the Cell/gl and Cell/wa points
lie on opposite sides of the zero contour. A curve connecting
these two points would represent the acoustophoretic response
of cells in various mixtures of glycerol and water. From a
purely physical point of view, this system may therefore form
an excellent tunable solvent with respect to obtaining binary
separation of cells.

FIG. 3. (Color online) The detectability D for solid microspheres
of radius a ranging from 0.1 to 10 μm in a sodium chloride solution as
a function of NaCl concentration (mass fraction S), see Appendix A.
(a) Polystyrene spheres for which D is typically a few percent or
lower. (b) Pyrex spheres for which D easily can be larger than 10%.

The effect of viscosity can also be studied through vertical
acoustic trapping [49,50], where the buoyancy force F buoy =
(4π/3)(ρ̃ − 1)ρ0a

3g is balanced by a vertically oriented
standing plane-wave acoustic field Frad = F rad ez. For a
given acoustic energy density Eac, the maximal acoustic
radiation force is given by the amplitude 4π�(κ̃ ,ρ̃,δ̃)a3kEac in
Eq. (50a). Based on this, the critical trapping force is defined
as the threshold for obtaining vertical acoustic trapping using
the smallest possible acoustic energy density Emin

ac ,

Emin
ac = |ρ̃ − 1|

3�(κ̃,ρ̃,δ̃)

ρ0g

k
. (52)

The effect of viscosity can therefore be measured as

Emin
ac (δ̃) = 1

1 + D Emin
ac (0). (53)

A quantity more readily accessible experimentally may be the
voltage Upz used to drive the piezo transducer generating the
ultrasound wave in a typical experiment. As Eac scales with
the square of Upz [30], we have

Upz(δ̃) = 1√
1 + D

Upz(0). (54)
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FIG. 4. (Color online) Contour plots of the acoustic contrast
factor �(κ̃,ρ̃,δ̃) as function of κ̃ and ρ̃ for fixed values of δ̃, from
� < −0.5 (black) to � > 0.5 (white) in steps of 0.1. The position in
the (ρ̃,κ̃) plane for various material parameters are marked by crosses
and the following labels: polystyrene (PS), polymethacrylate (PM),
melamine resin (MR), a typical biological cell (Cell), water (wa),
glycerol (gl), and percoll (pc). (a) The inviscid case δ̃ = 0. (b) The
viscous case δ̃ = 1.

Here the detectability D of Fig. 3 appears directly. The
complex frequency and temperature dependence of the piezo
transducer response to Upz complicates the matter [32,51].
However, the use of low voltages, transducers with medium-
range Q values, and active temperature control [31] would
make this a viable method.

VI. CONCLUSION

We have derived an analytical expression for the acoustic
radiation force in the long-wavelength limit δ,a � λ on a
compressible, spherical particle of radius a suspended in a
liquid with viscous penetration depth δ.

We have analyzed the experimental predictions provided
by our expression for traveling waves and for standing waves.
In the case of the former we find a strong enhancement
proportional to (ka)−3 ≈ 106 relative to the inviscid case due
to nonvanishing interference between the incoming wave and
the scattered wave. For standing waves we have found a
negligible sub-1% deviation from the inviscid result for large
(micrometer-sized), nearly neutral-buoyancy particles, such as
biological cells in water. However, significant deviations above

10% from the inviscid result were found for buoyant particles,
such as pyrex in water. The smaller the particle radius a is
relative to the viscous boundary-layer thickness δ, the larger
the effect of viscosity.

It should be possible using state-of-the-art instrumentation
for microchannel acoustophoresis, such as the automated
micro-PIV setup recently published by Augustsson et al. [31],
to experimentally test the predictions presented in this paper.
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APPENDIX A: MATHEMATICAL DETAILS IN DERIVING
THE DEPENDENCE OF Frad ON ∇ pin AND vin

To derive Eq. (18) we use the index notation (including
summation of repeated indices). Keeping only the mixed terms
proportional to φinφsc representing interference between the
incoming and the scattered wave, the ith component of Eq. (14)
becomes

F
rad
i = −

∫
∂

da nj

{[
c

2
0

ρ0

〈ρinρsc〉 − ρ0

〈
v

in
k v

sc
k

〉]
δij

+ ρ0

〈
v

in
i v

sc
j

〉 + ρ0

〈
v

sc
i v

in
j

〉}
(A1a)

= −
∫



d r ∂j

{[
c

2
0

ρ0

〈ρinρsc〉 − ρ0

〈
v

in
k v

sc
k

〉]
δij

+ ρ0

〈
v

in
i v

sc
j

〉 + ρ0

〈
v

sc
i v

in
j

〉}
(A1b)

= −
∫



d r
{

c
2
0

ρ0

[
〈ρin∂iρsc〉 + 〈ρsc∂iρin〉

]

+ ρ0

[〈
v

in
i ∂j v

sc
j

〉 + 〈
v

sc
i ∂j v

in
j

〉]}
(A1c)

= −
∫



d r
{

− 〈
ρin∂tv

sc
i

〉 − 〈
ρsc∂tv

in
i

〉

+ ρ0

〈
v

in
i ∂j v

sc
j

〉 − 〈
v

sc
i ∂tρin

〉}
(A1d)

= −
∫



d r
{〈

v
in
i ∂tρsc

〉 + ρ0

〈
v

in
i ∂j v

sc
j

〉}
(A1e)

= −
∫



d r ρ0

〈
v

in
i

(
∂

2
j φsc − 1

c
2
0

∂ 2
t φsc

)〉
, (A1f)

which is Eq. (18). Here, showing details not explained in
Ref. [3], we have used p1 = c

2
0 ρ1 in Eq. (A1a), Gauss’s

theorem in Eq. (A1b), exchange of indices ∂ivk = ∂i∂kφ =
∂k∂iφ = ∂kvi to cancel terms in Eq. (A1c), introduction of time
derivatives by the continuity equation ∂tρ1 = −ρ0∂jv1,j and

the Navier–Stokes equation ρ0∂tv1,i = −∂ip1 = −c
2
0 ∂iρ1 in

Eq. (A1d), vanishing of time-averages of total time derivatives
〈∂t (ρvi)〉 = 0 or 〈ρ∂tvi〉 = −〈vi∂tρ〉 for cancellation and
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rearrangement in Eq. (A1e), and finally reintroduction of the
vector potential φsc in Eq. (A1f).

To derive Eq. (19) we note that the d’Alembert wave
operator ∂

2
j − (1/c

2
0 )∂ 2

t appears in the integrand of Eq. (A1f)
and acts on φsc, and because φsc is a sum of simple monopole
and dipole terms, significant simplifications are possible. Just
as the Laplace operator acting on the monopole potential
φ = q/(4πε0r) yields the point-charge distribution ∂

2
j φ =

−(q/ε0)δ(r) in the static case, the d’Alembert operator acting
on the retarded-time monopole and dipole expressions (17)
also yields δ function distributions,[

∂
2
j − 1

c
2
0

∂ 2
t

]
φsc = f1

4πa3

3ρ0

∂tρin δ(r)

+ f2 2πa3 ∇ · [vin δ(r)], r 	 λ.

(A2)

Now we see the great advantage of working in the far-field
limit. The first term is easily integrated, when appearing
in Eq. (A1f), but for the second term we need to get rid
of the divergence operator acting on the δ function before
we can evaluate the integral. This we manage by Gauss’
theorem. First we note that ∇ · [v(r)u(r)] = v∇ · u + u · ∇v

for any scalar function v and vector function u. There-
fore,

∫
∂

da n · (vu) = ∫


d r ∇ · (vu) = ∫


d r (v∇ · u + u ·
∇v), and we have derived the expression

∫


d r v∇ · u =
− ∫


d r u · ∇v + ∫

∂
da n · (vu). Now, since u ∝ vδ(r) we

obtain in Eq. (A1f) a volume integral encompassing the
δ function, thus yielding a nonzero contribution, and a
surface integral avoiding the δ function, thus yielding zero.
Consequently, the resulting expression for Frad becomes

Frad = −4π

3
a3 〈f1vin∂tρin〉 + 2πa3ρ0 〈f2(vin · ∇)vin〉

(A3a)

= 4π

3
a3 〈f1ρin∂tvin〉 + 2πa3ρ0 〈f2(vin · ∇)vin〉

(A3b)

= − 4π

3ρ0c
2
0

a3 〈f1pin∇pin〉 + 2πa3 ρ0〈f2vin ·∇vin〉

(A3c)

= −πa3

[
2κ0

3
Re[f ∗

1 p∗
in∇pin] − ρ0Re[f ∗

2 v∗
in ·∇vin]

]
,

with pin and vin evaluated at r = 0, (A3d)

which is Eq. (19). Here we have integrated over the δ function
in Eq. (A3a), applied the previously used rule 〈ρin∂tvin〉 =
−〈vin∂tρin〉 in Eq. (A3b), inserted ρin = pin/c

2
0 and ∂tvin =

−∇pin/ρ0 in Eq. (A3c), and finally taken the time average
using Eq. (11) in Eq. (A3d).

APPENDIX B: MATHEMATICAL DETAILS CONCERNING
THE STREAM FUNCTION �(r,θ )

The incompressibility of the velocity field vab [Eq. (31)] is
ensured, because ∇ · vab = ∇ · (∇ × [�eφ]) = 0 for any �.
To show that � = �1 + �2 is a solution if �1 and �2 obey
Eqs. (32) and (33), respectively, we insert vab of Eq. (31)

into the first-order Navier-Stokes equation (6b) and take the
rotation. This results in −iωρ0∇ × vab = η∇2(∇ × vab), and
because � is independent of φ, we have ∇ × vab = ∇ × [∇ ×
(�eφ)] = −∇2(�eφ) and arrive at

∇2(∇2 + q2)[�(r,θ ) eφ] = 0, with q = 1 + i

δ
. (B1)

Introducing �(r,θ ) = �1(r,θ ) + �2(r,θ ), we obtain

∇2(∇2 + q2)[(�1 + �2) eφ] = 0, (B2a)

if �1 and �2 satisfy the following conditions:

∇2(�1eφ) = 0, (B2b)

(∇2 + q2)(�2eφ) = 0. (B2c)

For any φ-independent function �(r,θ ) we obtain
∇2[�(r,θ ) eφ] = [∇2� − �/(r sin θ )2] eφ , and Eqs. (B2b)
and (B2c) reduce to Eqs. (32) and (33), respectively.

Finally, once �(r,θ ) is written in the form Eq. (37), the
velocity components Eq. (36) are obtained from using

vab = ∇ × [� eφ] = ∂θ (sin θ �)

r sin θ
er − ∂r (r �)

r
eθ . (B3)

APPENDIX C: MATERIAL PARAMETERS OF NACL
SOLUTIONS

In the following we summarize parameter values for the
speed of sound cscs, the density ρscs, and the viscosity ηscs
of sodium chloride solutions (NaCl in water) as a function
of temperature T (in ◦C) and mass fraction S of NaCl in the
solution (salinity). The salinity ranges from zero in pure water
to a maximum of 0.26 in a saturated solution.

The speed of sound cscs(S,T ) in NaCl/water solutions is
given by Kleis and Sanchez [52] as

cscs(S,T ) =
4∑

j=0

(aj + bjS)

[
T

1◦C

]j

m s−1, (C1)

where the coefficients aj and bj are

a0 = 1.403 09 × 103, b0 = 1.401 90 × 103,

a1 = 4.683 91 × 100, b1 = −1.149 96 × 101,

a2 = −4.053 88 × 10−2, b2 = 2.237 48 × 10−3, (C2)

a3 = 1.295 50 × 10−5, b3 = 1.482 38 × 10−3,

a4 = 6.914 85 × 10−7, b4 = −9.461 65 × 10−6.

The density ρscs(S,T ) of sodium chloride solutions is given
by Laliberté and Cooper [53] as

ρscs(S,T ) = ρwa(T )

1 − S + S Vapp(S,T )ρwa(T )
, (C3)

where the density ρwa(T ) of water is given by

ρwa(T ) = 1

1 + d T
1◦C

5∑
j=0

dj

[
T

1◦C

]j

kg m−3, (C4)
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with the coefficients d and dj being

d = 1.687 985 0 × 10−2,

d0 = 9.998 395 2 × 102, d3 = −4.617 046 1 × 10−5,

d1 = 1.694 517 6 × 101, d4 = 1.055 630 2 × 10−7,

d2 = −7.987 040 1 × 10−3, d5 = −2.805 425 3 × 10−10,

(C5)

and where the apparent specific volume Vapp(S,T ) of NaCl is
given by

Vapp(S,T ) = S + e2 + e3
T

1◦C

(e0S + e1) exp
[
e5

(
T

1◦C + e4

)2] m3 kg−1,

(C6)

with the coefficients ej being

e0 = −4.330 × 10−2, e3 = 1.4624 × 10−2,

e1 = 6.471 × 10−2, e4 = 3.3156 × 103, (C7)

e2 = 1.016 60 × 100, e5 = 1.0000 × 10−6.

The viscosity ηscs(S,T ) of NaCl/water solutions is given by
Laliberté [54] as

ηscs(S,T ) = [ηwa(T )](1−S) [ηNaCl(S,T )]S, (C8)

where the viscosities ηwa(T ) and ηNaCl(S,T ) of water and liquid
NaCl, respectively, are

ηwa(T ) =
[

T
1◦C + 246

]
mPa s[

0.05594 T
1◦C + 5.2842

]
T

1◦C + 137.37
, (C9)

ηNaCl(S,T ) = exp

[
h1S

h2 + h3[
1 + h4

T
1◦C

]
[1 + h5S

h6 ]

]
mPa s,

(C10)

with the coefficients hj being

h1 = 1.6220 × 101, h4 = 7.4691 × 10−3,

h2 = 1.3229 × 100, h5 = 3.0780 × 101, (C11)

h3 = 1.4849 × 100, h6 = 2.0583 × 100.
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[23] O. Manneberg, S. M. Hagsäter, J. Svennebring, H. M. Hertz, J. P.
Kutter, H. Bruus, and M. Wiklund, Ultrasonics 49, 112 (2009).

[24] O. Manneberg, B. Vanherberghen, B. Onfelt, and M. Wiklund,
Lab Chip 9, 833 (2009).

[25] P. Glynne-Jones, R. J. Boltryk, N. R. Harris, A. W. J. Cranny,
and M. Hill, Ultrasoncis 50, 68 (2010).

[26] J. D. Adams, P. Thevoz, H. Bruus, and H. T. Soh, Appl. Phys.
Lett. 95, 254103 (2009).

[27] S. Oberti, D. Moeller, A. Neild, J. Dual, F. Beyeler, B. J. Nelson,
and S. Gutmann, Ultrasonics 50, 247 (2010).

[28] C. Ratier and M. Hoyos, Anal Chem 82, 1318 (2010).
[29] J. D. Adams and H. T. Soh, Appl. Phys. Lett. 97, 064103 (2010).
[30] R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus, Lab Chip

10, 563 (2010).
[31] P. Augustsson, R. Barnkob, S. T. Wereley, H. Bruus, and

T. Laurell, Lab Chip 11, 4152 (2011).
[32] J. Friend and L. Y. Yeo, Rev. Mod. Phys. 83, 647 (2011).
[33] H. Bruus, J. Dual, J. Hawkes, M. Hill, T. Laurell, J. Nilsson,

S. Radel, S. Sadhal, and M. Wiklund, Lab Chip 11, 3579 (2011).
[34] L. Rayleigh, Philos. Trans. R. Soc. London 175, 1 (1884).
[35] L. D. Landau and E. M. Lifshitz, Fluid Mechanics,

2nd ed., Vol. 6, Course of Theoretical Physics (Pergamon,
Oxford, 1993).

016327-11

http://dx.doi.org/10.1098/rspa.1934.0215
http://dx.doi.org/10.1098/rspa.1934.0215
http://dx.doi.org/10.1039/b409139f
http://dx.doi.org/10.1039/b405748c
http://dx.doi.org/10.1039/b408045a
http://dx.doi.org/10.1016/j.ultrasmedbio.2006.07.024
http://dx.doi.org/10.1021/ac061576v
http://dx.doi.org/10.1021/ac061576v
http://dx.doi.org/10.1002/bit.22255
http://dx.doi.org/10.1021/ac9013572
http://dx.doi.org/10.1021/ac900439b
http://dx.doi.org/10.1021/ac900723q
http://dx.doi.org/10.1039/b915522h
http://dx.doi.org/10.1021/ac100357u
http://dx.doi.org/10.1021/ac100357u
http://dx.doi.org/10.1039/c1lc20687g
http://dx.doi.org/10.1039/b704864e
http://dx.doi.org/10.1039/b704864e
http://dx.doi.org/10.1039/b716321e
http://dx.doi.org/10.1039/b716321e
http://dx.doi.org/10.1039/b915113c
http://dx.doi.org/10.1039/b915113c
http://dx.doi.org/10.1063/1.3238313
http://dx.doi.org/10.1063/1.3238313
http://dx.doi.org/10.1063/1.3524511
http://dx.doi.org/10.1063/1.3524511
http://dx.doi.org/10.1039/c1lc20042a
http://dx.doi.org/10.1016/j.ultras.2008.06.012
http://dx.doi.org/10.1039/b816675g
http://dx.doi.org/10.1016/j.ultras.2009.07.010
http://dx.doi.org/10.1063/1.3275577
http://dx.doi.org/10.1063/1.3275577
http://dx.doi.org/10.1016/j.ultras.2009.09.004
http://dx.doi.org/10.1021/ac902357b
http://dx.doi.org/10.1063/1.3467259
http://dx.doi.org/10.1039/b920376a
http://dx.doi.org/10.1039/b920376a
http://dx.doi.org/10.1039/c1lc20637k
http://dx.doi.org/10.1103/RevModPhys.83.647
http://dx.doi.org/10.1039/c1lc90058g
http://dx.doi.org/10.1098/rstl.1884.0002


MIKKEL SETTNES AND HENRIK BRUUS PHYSICAL REVIEW E 85, 016327 (2012)

[36] A. Doinikov, J. Acoust. Soc. Am. 101, 722 (1997).
[37] S. Danilov and M. Mironov, J. Acoust. Soc. Am. 107, 143

(2000).
[38] J. Lighthill, Waves in Fluids (Cambridge University Press,

Cambridge, 2002).
[39] A. D. Pierce, Acoustics (Acoustical Society of America, Wood-

bury, NY, 1991).
[40] H. Bruus, Lab Chip 11, 3742 (2011).
[41] P. M. Morse and K. U. Ingard, Theoretical Acoustics

(Princeton University Press, Princeton NJ, 1986).
[42] J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley and

Sons, New York, 1975).
[43] M. D. Van Dyke, Perturbation Methods in Fluid

Mechanics, 2nd ed. (Parabolic, Stanford CA, 1975).
[44] M. Weiser and R. Apfel, J. Acoust. Soc. Am. 71, 1261 (1982).

[45] R. J. Urick, J. Acoust. Soc. Am. 20, 283 (1948).
[46] T. Laurent, H. Pertoft, and O. Nordli, J. Colloid Interface Sci.

76, 124 (1980).
[47] C. Product, CRC Handbook of Chemistry and Physics, 90th ed.

(Taylor and Francis, New York, 2010).
[48] M. Godin, A. K. Bryan, T. P. Burg, K. Babcock, and S. R.

Manalis, Appl. Phys. Lett. 91, 123121 (2007).
[49] R. Apfel, J. Acoust. Soc. Am. 59, 339 (1976).
[50] M. Kumar, D. Feke, and J. Belovich, Biotechnol. Bioeng. 89,

129 (2005).
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[53] M. Laliberté and W. Cooper, J. Chem. Eng. Data 49, 1141

(2004).
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