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ABSTRACT

We propose a new structure suitable for quantum computing in a solid-state environment: designed defect states in antidot lattices superimposed
on a two-dimensional electron gas at a semiconductor heterostructure. State manipulation can be obtained with gate control. Model calculations
indicate that it is feasible to fabricate structures whose energy level structure is robust against thermal dephasing.

At present an intensive search is taking place for solid-state
structures which are suitable for quantum computing; a
typical example consists of gate-defined double-dot systems
studied by several groups.1-6 A necessary requirement for a
practical application is scalability,7 and many of the existing
structures do not immediately offer this possibility. Here we
propose an alternative scheme: quantum-mechanical bound
states which form at defects in an antidot superlattice defined
on a semiconductor heterostructure. Scalability is not a
critical issue for the suggested structures, which enable the
fabrication of a large number of solid-state qubits with no
particular extra effort. The flexibility offered by e-beam or
local oxidation techniques allows the sample designer to
optimize the samples for many different purposes with a very
high degree of control.

Antidot lattices on semiconductor heterostructures have
been a topic of intense research due to their interesting
transport properties. In the semiclassical regime novel
oscillatory features in magnetoresistance have been discov-
ered,8 and as the lattice spacing is diminished and the quan-
tum regime is approached, exotic energy spectra, such as
the Hofstadter butterfly9 may become experimentally acces-
sible. The fabrication of antidot lattices with lattice constants
as small as 75 nm has been demonstrated in experiments.10

Smaller lattice constants are however expected to be within
experimental reach11 leading to a further enhancement of
quantum effects. We shall in this paper demonstrate that
state-of-the-art antidot lattices may have important practical
applications in quantum information processing.

Consider a two-dimensional electron gas (2DEG) at a
GaAs heterostructure12 superimposed with a triangular lattice
of antidots with lattice constantΛ. In the effective-mass

approximation the two-dimensional single-electron Schro¨d-
inger equation reads

where the sum runs over all antidotsi, positioned atRi. Each
antidot is modeled as a circular potential barrier of height
V0 and diameterd, i.e., V(r ) ) V0 for r < d/2, and zero
elsewhere. It is convenient to express all energies in terms
of the length scaleΛ. Assuming thatV0 is so large that the
eigenfunctionsψn do not penetrate into the antidots, i.e.,ψn

) 0 in the antidots, eq 1, simplifies to13

where we have introduced the dimensionless eigenenergies
εn ≡ EnΛ22m*/p2. For GaAsp2/2m* = 0.6 eV nm2.

We first consider the perfectly periodic structure defined
by the Wigner-Seitz cell shown in the left inset of Figure
1. For definiteness, we now taked/Λ ) 0.5. Imposing
periodic boundary conditions leaves us with the problem of
solving eq 2 on a finite-size domain. This class of problems
is well-suited for finite-element calculations, and the available
software packages make the required computations simple,
convenient, and fast.14 Figure 1 shows finite-element calcula-
tions of the band structure along the high-symmetry axes
indicated in the right inset of the figure. For state-of-the-art
samples,Λ = 75 nm, implying a band splitting of the order
of 3 meV between the two lowest bands at theΓ-point. On
the figure we have also indicated the gapϑeff below which
no states exist for the periodic structure.* Corresponding author. E-mail: cf@mic.dtu.dk.
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Next, we turn to the case where a single antidot has been
left out of the lattice. Relying on the analogy with photonic
crystal fibers, where similar ideas have been used to design
confined electromagnetic waves,15 we expect one or several
localized states to form at the location of the “defect”. The
eigenfunctionsψn corresponding to localized states decay
to zero within a finite distance from the defect, and it is again
sufficient to solve eq 2 on a finite-size domain. The inset in
Figure 2 shows finite-element calculations of eigenfunctions
corresponding to the two lowest eigenvalues for the geo-
metrical ratiod/Λ ) 0.5. The computed energy eigenvalues
are converged with respect to an increase of the size of the
domain on which eq 2 is solved. The two lowest eigenvalues
correspond to localized states, whereas higher eigenvalues
correspond to delocalized states (not shown). The second
lowest eigenvalue is 2-fold degenerate, and we only show
one of the corresponding eigenstates. One observes that the
shown eigenstate does not exhibit the underlying 6-fold
rotational symmetry of the lattice. This can be traced back
to the fact that the mesh on which eq 2 was solved also
lacked this symmetry. However, as recently shown by
Mortensen et al.16 even weak disorder in the lattice leads to
a significant deformation of the higher-order eigenstates, and
the shown eigenstate is thus likely to bear a closer resem-
blance to the states occurring in experimental structures,
rather than the one found for an ideal lattice. Similarly, we
note that the formation of defect states does not rely crucially
on perfect periodicity of the antidot lattice, which thus allows
for a certain tolerance in the fabrication of the antidot lattice.

Figure 2 also shows finite-element calculations of the
lowest eigenvalues corresponding to localized states as a
function of the geometrical ratiod/Λ. In addition, the gap
ϑeff as indicated on Figure 1 is plotted as a function ofd/Λ.

The gap gives an upper limit to the existence of bound states
and can be considered as the height of an effective two-
dimensional spherical potential well in which the localized
states reside. For GaAs withd/Λ ) 0.5 andΛ ) 75 nm the
energy splitting of the two levels is∆E ) E2 - E1 = 1.1
meV, which is much larger thankBT at subkelvin tempera-
tures. Thus, a missing single antidot in the lattice leads to
the formation of a quantum dot with two levels at the location
of the defect with an energy level structure suitable for a
charge (orbital) qubit. Asd/Λ is increased, the confinement
becomes stronger and the eigenvalues and their relative
separations increase. Moreover, the number of levels in the
quantum dot can be controlled by adjustingd/Λ, allowing
for n ) 1, 2, 3, ..., levels in the quantum dot. In particular,
for any d/Λ < 0.42 a single-level quantum dot is formed.

For sample optimizing purposes it is convenient to have
simple expressions for the eigenvalues. In the limit ofd/Λ
approaching 1, the problem can be approximated with that
of a two-dimensional spherical infinite potential well with
radiusΛ - d/2. For this problem the lowest eigenvalue is
ε1

(∞) ) Λ2R0,1
2/(Λ - d/2)2, whereR0,1 = 2.405 is the first

zero of the zeroth order Bessel function. Although this
expression yields the correct scaling withd, the approxima-
tion obviously breaks down for small values ofd/Λ. In that
limit we follow the ideas of Glazman et al.17 who studied
quantum conductance through narrow constrictions. The
effective one-dimensional energy barrier for transmission
through two neighboring antidots has a maximum value of
π2, and we thus approximate the problem with that of a two-
dimensional spherical potential well of heightπ2 and radius
Λ. The lowest eigenvalueε1

(π2) for this problem can be

Figure 1. Band structure for the periodic structure. The ratio
between the diameter of the antidots and the lattice constant isd/Λ
) 0.5. Only the five lowest bands are shown. On the (dimension-
less) energy axis we have indicated the gapϑeff which can be
considered as the height of an effective potential (see text). Left
inset: Wigner-Seitz cell (gray area) for the periodic structure.
Circles indicate antidots. Right inset: First Brillouin zone (gray
area) with indications of the three high-symmetry axes along which
the band structure was calculated.

Figure 2. Energy spectrum for a single quantum dot. The three
lowest dimensionless eigenvalues,ε1, ε2, ε3, (corresponding to
localized states) as a function of the ratio between the antidot
diameterd and the lattice constantΛ. The full line indicates the
heightϑeff of the effective potential giving an upper limit to the
existence of bound states (see text). The thin dotted line is the
semianalytic expression given in eq 3. Inset: Localized eigenfunc-
tionsψ1(r) (upper panel) andψ2(r) corresponding to the eigenvalues
ε1 and ε2, respectively, ford/Λ ) 0.5. The absolute square
|ψi(r )|2, i ) 1, 2, is shown.
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determined numerically, and we findε1
(π2) = 3.221. Cor-

recting for the low-d/Λ behavior we find

In Figure 2 we show this expression together with the results
for the lowest eigenvalue determined by finite element
calculations. As can be seen on the figure, the expression
given above captures to a very high degree the results
obtained from finite-element calculations. For the higher-
order eigenvalues, similar expressions can be found.

The leakage (transmission probability for penetrating the
effective potential) due to a finite size of the antidot lattice
can be found in the WKB approximation.18 Multiplying by
a characteristic attempt frequency we get the following
estimate for the inverse lifetime

whereN is the number of rings of antidots surrounding the
defect, andVeff ) ϑeffp2/2m*Λ2. For GaAs withΛ ) 75 nm,
d/Λ ) 0.4, andN ) 1, 2, 3, 4, 5, respectively, we findτd =
0.8 ns, 0.3µs, 90µs, 30 ms, 10 s. We see that even relatively
small “superlattices” offer nearly perfect confinement.

We next consider the case where an antidot and one of its
next-nearest neighbors have been left out of the lattice. Due
to the close proximity of the resulting quantum dots, the
different states of the two quantum dots couple with a
coupling determined by the overlap of the corresponding
single-dot wavefunctions. In particular, for two single-level
quantum dots,L and R, with corresponding states|L〉 and
|R〉, respectively, a bonding|-〉 ) (|L〉 - |R〉)/x2 and an
antibonding state|+〉 ) (|L〉 + |R〉)/x2 form. The corre-
sponding eigenenergies areE( ) E ( |t|, with E being the
eigenenergy corresponding to each of the states|L〉 and|R〉
andt being the tunnel matrix element. From the eigenenergy
splitting we easily obtain the tunnel matrix element as|t| )
(E+ - E-)/2.

The coupling of the two levels can be tuned using a
metallic split gate defined on top of the 2DEG in order to
control the opening connecting the two quantum dots. By
increasing the applied gate voltage, one squeezes the opening,
thereby decreasing the overlap of the two states|L〉 and|R〉.
In the following we model the split gate with an infinite
potential barrier shaped as shown on the inset in Figure 3.
Changing the applied gate voltage effectively leads to a
change of the widthw of the opening, which we in the
following take as a control parameter.

In Figure 3 we show finite-element calculations of the
dimensionless tunnel matrix element|τ| ≡ |t|Λ22m*/p2 as a
function of the geometrical ratiow/Λ for a number of
different values ofd/Λ in the single-level regime, i.e.,d/Λ
< 0.42. For GaAs withΛ ) 75 nm andd/Λ ) 0.4,w/Λ )

0.6, the tunnel matrix element is|t| ) 0.015 meV. With this
coupling an electron initially prepared in the state|L〉 is
expected to oscillate coherently between|L〉 and|R〉 with a
period ofT ) h/2|t| ) 0.14 ns. We note that the period agrees
well with the time scale set by the lifetime obtained from
eq 4 withN ) 1. According to the figure the coupling varies
over several orders of magnitude, thus clearly indicating that
the coupling of the two quantum dots can be controlled via
the applied gate voltage.

We have performed a numerical time propagation of an
electron initially prepared in the state|L〉. In the inset of
Figure 3 we show a number of snapshots at different points
in time as the electron propagates from the left to the right
quantum dot. Once located in the right quantum dot, the
electron starts propagating back to the left quantum dot (not
shown), confirming the expected oscillatory behavior.

Considering the double-dot as a charge qubit, one-qubit
operations may be performed by controlling the tunnel matrix
element as described above. Alternatively, one may consider
the spin of two electrons, each localized on one of the
quantum dots, as qubits. In that case the qubits (the spins)
couple due to the exchange coupling, which again depends
on the amplitude for tunneling between the two quantum
dots. In this manner one may perform two-qubit operations
as originally proposed in ref 1.

In this work we have carried out a number of model
calculations showing that an implementation of qubits using
defect states in an antidot lattice is feasible. While we have
here only considered the most basic building blocks of a

Figure 3. Coupling between two single-level quantum dots. The
dimensionless tunnel matrix element|τ| as a function of the ratio
between the widthw of the opening defined by the split gates and
the lattice constantΛ for different values ofd/Λ (0.2, 0.3, 0.4) in
the single-level regime. The widthw is defined as the shortest
distance between the split gates. Inset: Time propagation of an
electron initially prepared in the state|L〉 (uppermost panel).
Parameters ared/Λ ) 0.4 andw/Λ ) 0.6 which for GaAs withΛ
) 75 nm implies as oscillation period ofT ) 0.14 ns (see text).
The following panels show the state of the electron after a time
span ofT/8, 2T/8, 3T/8 (lowest panel), respectively. The absolute
square|ψ(r )|2 of the electron wavefunction is shown.
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quantum computer, a single charge qubit or two spin-qubits,
we believe that the suggested structure can readily be scaled
to a larger number of qubits. It is not difficult to imagine
large architectures consisting of an antidot lattice with several
coupled defect states and/or linear arrays of defect states
constituting quantum channels along which coherent and
controllable transport of electrons can take place.19 We
believe that the suggested structure, when compared to
conventional gate-defined quantum dots, has the advantage
that less wiring is needed. The individual antidots need not
be electrically contacted, which in the case of conventional
gate-defined structures may be a critical issue for large
structures consisting of many quantum dots.

In conclusion, we have suggested a new structure which
seems to offer many attractive features in terms of flexibility,
scalability, and operation in the pursuit of achieving solid-
state quantum computation.
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