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Abstract. We consider laminar flow of incompressible electrolytes in long,
straight channels driven by pressure and electro-osmosis. We use a Hilbert space
eigenfunction expansion to address the general problem of an arbitrary cross-
section and obtain general results in linear-response theory for the hydraulic and
electrical transport coefficients which satisfy Onsager relations. In the limit of
non-overlapping Debye layers, the transport coefficients are simply expressed
in terms of parameters of the electrolyte as well as the geometrical correction
factor for the Hagen–Poiseuille part of the problem. In particular, we consider
the limits of thin non-overlapping as well as strongly overlapping Debye layers,
respectively, and calculate the corrections to the hydraulic resistance due to
electro-hydrodynamic interactions.

1 Author to whom any correspondence should be addressed.

New Journal of Physics 8 (2006) 37 PII: S1367-2630(06)12981-X
1367-2630/06/010037+15$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:nam@mic.dtu.dk
http://www.njp.org/


2 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Contents

1. Introduction 2
2. Governing equations 4
3. Debye–Hückel approximation 5

3.1. Hilbert space formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. Transport coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4. Beyond the Debye–Hükel approximation 9
4.1. Non-overlapping, thin Debye layers. . . . . . . . . . . . . . . . . . . . . . . . 10
4.2. Strongly overlapping Debye layers . . . . . . . . . . . . . . . . . . . . . . . . 11

5. Numerical results 11
5.1. The Helmholtz basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2. Transport coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6. Conclusion 13
References 14

1. Introduction

Laminar Hagen–Poiseuille and electro-osmotic flow is important to a variety of lab-on-a-chip
applications and microfluidics [1]–[3] and the rapid development of micro- and nano-fabrication
techniques during the past decade has put even more emphasis on flow in channels with a variety
of shapes depending on the fabrication technique in use. The list of examples includes rectangular
channels obtained by hot embossing in polymer wafers, semi-circular channels in isotropically
etched surfaces, triangular channels in KOH-etched silicon crystals, Gaussian-shaped channels in
laser-ablated polymer films, and elliptic channels in stretched PDMS devices [4]. While general
results for the shape dependence of the hydraulic resistance in the case of a non-conducting fluid
were reported recently [5] there has been, according to our knowledge, no analogous detailed
study of the shape dependence of flow of electrolytes in the presence of a zeta potential which is
a scenario of key importance to lab-on-a-chip applications involving biological liquids/samples
in both microfluidic [6]–[8] and nanofluidic channels [9]–[14].

In this paper we address the general steady-state flow problem in figure 1 where pressure
gradients and electro-osmosis (EO) are playing in concert [15]. We consider a long, straight
channel of length L having a constant cross-section � of area A and boundary ∂� of length
P . The channel contains an incompressible electrolyte, which we for simplicity assume to be
binary and symmetric, i.e., containing ions of charge +Ze and −Ze and equal diffusivities D.
The electrolyte has the Debye screening length λD, bulk conductivity σo, viscosity η, permittivity
ε and at the boundary ∂� it has a zeta potential ζ. The laminar, steady-state flow is driven by a
linear pressure drop �p and a linear voltage drop �V . With these definitions flow will be in the
positive x-direction. In the linear-response regime the corresponding volume flow rate Q and
charge current I are related to the driving fields by

(
Q

I

)
= G

(
�p

�V

)
, G =

(
G11 G12

G21 G22

)
, (1)
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Figure 1. A translation invariant channel of arbitrary cross-section � of area A
containing an electrolyte driven by a pressure gradient −�p/L and by electro-
osmosis through the potential gradient −�V/L. The channel wall ∂� has the
electrical potential ζ, which induces a thin, charged Debye layer (dark grey) that
surrounds the charge neutral bulk (light grey).

where, according to Onsager relations [16], G is a symmetric, G12 = G21, two-by-two
conductance matrix. The upper diagonal element is the hydraulic conductance or inverse
hydraulic resistance given by

G11 = A
αη

A
L

, (2)

where α is the dimensionless geometrical correction factor, shown in [5] to be a linear function
of the dimensionless compactness parameter C = P2/A. While there is no intrinsic length scale
influencing G11, the other elements of G depend on the Debye screening length λD. This length
can be comparable to and even exceed the transverse dimensions in nano-channels [9]–[11], in
which case the off-diagonal elements may depend strongly on the actual cross-sectional geometry.
However, for thin Debye layers with a vanishing overlap the matrix elements G12, G21 and G22

are independent of the details of the geometry. For a free electro-osmotic flow, a constant velocity
field veo = (εζ/η)�V/L is established throughout the channel, except for in the thin Debye layer
of vanishing width. Hence, Q = veoA and

G12 = G21 = −εζ

η

A
L

, λD � A
P

. (3)

From Ohm’s law I = (σoA/L)�V , it follows that

G22 = σo
A
L

, λD � A
P

. (4)

For strongly overlapping Debye layers we find (see sections 3.2.2 and 4.2) that

G12 = G21 = −εζ

η

sinh
(

Zeζ

kBT

)
Zeζ

kBT

A
αλ2

D

A
L

, λD � A
P

, (5)

G22 =


cosh

(
Zeζ

kBT

)
+

εζ2

ηD

sinh2
(

Zeζ

kBT

)
(

Zeζ

kBT

)2

A
αλ2

D


 σo

A
L

, λD � A
P

. (6)
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We emphasize that the above results are generally valid for symmetric electrolytes, even beyond
the Debye–Hückel approximation. In the Debye–Hückel limit Zeζ � kBT they also hold for
asymmetric electrolytes. We also note that in the Debye–Hückel limit the expressions agree fully
with the corresponding limits for a circular cross-section and the infinite parallel plate system,
where explicit solutions exist in the Debye–Hückel limit in terms of Bessel functions [17, 18]
and cosine hyperbolic functions [18], respectively. From the corresponding resistance matrix
R = G−1, we get the hydraulic resistance

R11 = α

1 − β

ηL

A2
, (7)

where β ≡ G12G21/(G11G22) is the Debye-layer correction factor to the hydraulic resistance. In
the two limits, we have

β � α
ε2ζ2

ησoA
×




1, λD � A
P(

Zeζ

kBT

)−1

sinh

(
Zeζ

kBT

) (
A

αλ2
D

)2

, λD � A
P

. (8)

For ζ going to zero β vanishes and we recover the result in [5] for the hydraulic resistance.

2. Governing equations

For the system illustrated in figure 1, an external pressure gradient �∇p = −(�p/L)�ex and an
external electrical field �E = E�ex = (�V/L)�ex is applied. There is full translation invariance
along the x-axis, from which it follows that the velocity field is of the form �v(�r) = v(�r⊥)�ex where
�r⊥ = y�ey + z�ez. For the equilibrium potential and the corresponding charge density, we have
φeq(�r) = φeq(�r⊥) and ρe

eq(�r) = ρe
eq(�r⊥), respectively. We follow our related recent works [19, 20]

and use the Dirac bra-ket notation [21, 22], where functions f(�r⊥) in � are written as |f 〉 with
inner products defined by the cross-section integral

〈f |g〉 ≡
∫

�

d�r⊥ f(�r⊥)g(�r⊥). (9)

From the Navier–Stokes equation it follows that the velocity is governed by [23, 24]

0 = �p

L
|1〉 + η∇2

⊥|v〉 +
�V

L
|ρe

eq〉, (10)

where ∇2
⊥ = ∂2

y + ∂2
z is the two-dimensional Laplacian. The equilibrium potential |φeq〉 and the

charge density |ρe
eq〉 are related by the Poisson equation

∇2
⊥|φeq〉 = −1

ε
|ρe

eq〉. (11)

The velocity |v〉 is subject to a no-slip boundary condition on ∂� while the equilibrium
potential |φeq〉 equals the zeta potential ζ on ∂�. Obviously, we also need a statistical model
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for the electrolyte, and in the subsequent sections we will use the Boltzmann model where the
equilibrium potential |φeq〉 is governed by the Poisson–Boltzmann equation. However, before
turning to a specific model we will first derive general results which are independent of the
description of the electrolyte.

We first note that because equation (10) is linear we can decompose the velocity as
|v〉 = |vp〉 + |veo〉, where |vp〉 is the Hagen–Poiseuille pressure driven velocity governed by

0 = �p

L
|1〉 + η∇2

⊥|vp〉 (12)

and |veo〉 is the electro-osmotic velocity given by

|veo〉 = −ε�V

ηL
(ζ|1〉 − |φeq〉). (13)

The latter result is obtained by substituting equation (11) for |ρe
eq〉 in equation (10). The upper

diagonal element in G is given by G11 = 〈1|vp〉/�p which may be parameterized according to
equation (2). The upper off-diagonal element is given by G12 = 〈1|veo〉/�V and combined with
the Onsager relation, we get

G12 = G21 = − 1

L

ε

η
〈1|ζ − φeq〉 = −A

L

ε

η
(ζ − φ̄eq), (14)

where we have used that 〈1|1〉 = A and introduced the average potential φ̄eq = 〈φeq|1〉/〈1|1〉.
There are two contributions to the lower diagonal element G22; one from migration,

G
mig
22 = 〈1|σ〉/L, and one from electro-osmotic convection of charge, Gconv

22 = 〈ρe
eq|veo〉/�V , so

that

G22 = G
mig
22 + Gconv

22 = 1

L
〈1|σ〉 − ε

ηL
〈ρe

eq|ζ − φeq〉, (15)

where the electrical conductivity σ(�r⊥) depends on the particular model for the electrolyte. For
thin non-overlapping Debye layers, we note that φ̄eq � 0 so that equation (14) reduces to equation
(3) and, similarly since the induced charge density is low, equation (15) reduces to equation (4).
For strongly overlapping Debye layers, the weak screening means that φeq approaches ζ so that
the off-diagonal elements G12 = G21 and the Gconv

22 part of G22 vanish entirely. In the following,
we consider a particular model for the electrolyte and calculate the asymptotic suppression as
a function of the Debye screening length λD.

3. Debye–Hückel approximation

In the Debye–Hückel approximation, the equilibrium potential |φeq〉 is governed by the linearized
Poisson–Boltzmann equation [3]

∇2
⊥|φeq〉 = 1

λ2
D

|φeq〉, (16)

where λD is the Debye screening length. The validity of this model will be discussed in more
detail in section 4.
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3.1. Hilbert space formulation

In order to solve equations (10), (11) and (16) we will take advantage of the Hilbert space
formulation [25], often employed in quantum mechanics [22], and recently employed by us on
the problem of an accelerating Poiseuille flow [19]. The Hilbert space of real functions on � is
defined by the inner product in equation (9) and a complete, countable set {|ψn〉} of orthonormal
basis functions, i.e.,

〈ψm|ψn〉 = δnm, (17)

where δnm is the Kronecker delta. We choose the eigenfunctions {|ψn〉} of the Helmholtz equation
(with a zero Dirichlet boundary condition on ∂�) as our basis functions,

− ∇2
⊥|ψn〉 = κ2

n|ψn〉, n = 1, 2, 3, . . . . (18)

With this complete basis any function in the Hilbert space can be written as a linear combination
of basis functions. In the following we write the fields as

|v〉 =
∞∑

n=1

an|ψn〉, (19)

|φeq〉 = ζ|1〉 −
∞∑

n=1

bn|ψn〉, (20)

|ρe
eq〉 =

∞∑
n=1

cn|ψn〉. (21)

Inserting equations (18) and (20) into equation (16), and multiplying by 〈ψm|, yields

bn = ζ
〈ψn|1〉

1 + (κnλD)2
, n = 1, 2, 3, . . . . (22)

Likewise, inserting equations (18)–(21) and (22) into equation (11), and multiplying by 〈ψm|,
yields

cn = −εζκ2
n

〈ψn|1〉
1 + (κnλD)2

, n = 1, 2, 3, . . . . (23)

Finally, using equations (19), (20), (22) and (23) in equation (10) leads to

an =
(

�p

ηL

1

κ2
n

− εζ�V

ηL

1

1 + (κnλD)2

)
〈ψn|1〉, n = 1, 2, 3, . . . . (24)
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3.2. Transport coefficients

The flow rate and the electrical current are conveniently written as

Q = 〈1|v〉, (25)

I = 〈ρe
eq|v〉 + σoE〈1|1〉, (26)

where the second relation is the linearized Nernst–Planck equation with the first term being the
convection/streaming current, while the second is the ohmic current. Substituting equations (19)
and (21) into these expressions, we identify the transport coefficients as

G11 = A
ηL

∞∑
n=1

1

κ2
n

An

A
, (27)

G12 = −εζA
ηL

∞∑
n=1

1

1 + (κnλD)2

An

A
, (28)

G21 = −εζA
ηL

∞∑
n=1

1

1 + (κnλD)2

An

A
, (29)

G22 = σoA
L

+
(εζ)2

ηλ2
D

A
L

∞∑
n=1

(κnλD)2

[1 + (κnλD)2]2

An

A
, (30)

where

An ≡ |〈1|ψn〉|2
〈ψn|ψn〉 = |〈1|ψn〉|2 (31)

is the effective area of the eigenfunction |ψn〉. The fraction An/A is consequently a measure of
the relative area occupied by |ψn〉 satisfying the sum-rule

∑∞
n=1 An = A [19]. We note that as

expected G obeys the Onsager relation G12 = G21. Furthermore, using that

(κnλD)2

[1 + (κnλD)2]2 = −λD

2

∂

∂λD

1

1 + (κnλD)2
, (32)

we get the following bound between the off-diagonal elements G12 = G21 and the lower diagonal
element G22,

G22 = σoA
L

+
εζ

2λD

∂G12

∂λD

. (33)
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Table 1. Central dimensionless parameters for different geometries.

k2
1 Aeff

1 /A α α/C

Circle γ2
1 /4 � 1.45a,b 4/γ2

1 � 0.69a,b 4π 2c

Quarter-circle 1.27d 0.65d 29.97d 1.85d

Half-circle 1.38d 0.64d 33.17d 1.97d

Ellipse (1:2) 1.50d 0.67d 10πc 2.10d

Ellipse (1:3) 1.54d 0.62d 40π/3c 2.21d

Ellipse (1:4) 1.57d 0.58d 17πc 2.28d

Triangle (1:1:1) π2/9 � 1.10e 6/π2 � 0.61e 20
√

3 c 5/3 � 1.67c

Triangle (1:1:
√

2) 5π2

4(2+
√

2)2 � 1.06a 512/9π4 � 0.58a 38.33d 1.64d

Square (1:1) π2/8 � 1.23a 64/π4 � 0.66a 28.45d 1.78d

Rectangle (1:2) 5π2/36 � 1.37a 64/π4 � 0.66a 34.98d 1.94d

Rectangle (1:3) 5π2/32 � 1.54a 64/π4 � 0.66a 45.57d 2.14d

Rectangle (1:4) 17π2/100 � 1.68a 64/π4 � 0.66a 56.98d 2.28d

Rectangle(1:∞) ∼π2/4 � 2.47a 64/π4 � 0.66a ∞ ∼3f

Pentagon 1.30d 0.67d 26.77d 1.84d

Hexagon 1.34d 0.68d 26.08d 1.88d

aSee e.g. [25] for the eigenmodes and eigenspectrum.
bHere, γ1 � 2.405 is the first root of the zeroth Bessel function of the first kind.
cSee e.g. [5] and references therein.
dData obtained by finite-element simulations [26].
eSee e.g. [28] for the eigenmodes and eigenspectrum.
fSee e.g. [23] for a solution of the Poisson equation.

In the context of the geometrical correction factor α studied in detail in [5] we note that
the first diagonal element may be written as G11 = G∗

11/α, where G∗
11 = A2

ηL
is a characteristic

hydraulic conductance and the geometrical correction factor α can be expressed as [19]

α ≡
( ∞∑

n=1

1

κ2
nA

An

A

)−1

= C
( ∞∑

n=1

1

k2
n

An

A

)−1

, (34)

where kn = κnA/P is a dimensionless eigenvalue. In passing we furthermore note that this
formal result is a convenient starting point for perturbative analysis of the correction due to small
changes in the boundary ∂� [25].

3.2.1. Non-overlapping, thin Debye layers. For the off-diagonal elements of G we use that
[1 + (κnλD)2]−1 = 1 + O[k2

n(λDP/A)2]. In section 5, we numerically justify that the smallest
dimensionless eigenvalue k2

1 is of the order unity, so we may approximate the sum by a factor
of unity, see table 1, whereby we arrive at equation (3) for λD � A/P . These results for the
off-diagonal elements are fully equivalent to the Helmholtz–Smoluchowski result [18]. For G22

we use that (κnλD)2[1 + (κnλD)2]−2 = O[k2
n(λDP/A)2], thus we may neglect the second term,

whereby we arrive at equation (4).

New Journal of Physics 8 (2006) 37 (http://www.njp.org/)

http://www.njp.org/


9 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

3.2.2. Strongly overlapping Debye layers. In the case of κ1λD � 1 we may use the result
[1 + (κnλD)2]−1 = (κnλD)−2 + O[k−4

n (λDP/A)−4], which gives

G12 = G21 � − εζ

λ2
D

G11, λD � A
P

. (35)

This is the Debye–Hückel limit of equation (5) for strongly overlapping Debye layers. For G22,
we use equation (33) and arrive at the result in equation (6) for Zeζ � kBT by using σo = εD/λ2

D.

3.2.3. The circular case. For a circular cross-section, where α = 8π, it can be shown that [18]

Gcirc
12 = Gcirc

21 = −A
L

εζ

η

I2(
√

8A/αλ2
D)

I0(
√

8A/αλ2
D)

, (36)

where In is the nth modified Bessel function of the first kind, and where we have explicitly
introduced the variable A/αλ2

D to emphasize the asymptotic dependence in equation (5) for
strongly overlapping Debye layers. We note that we recover the limits in equations (3) and (5)
for λD � A/P and λD � A/P , respectively.

4. Beyond the Debye–Hükel approximation

In order to go beyond the Debye–Hückel approximation we consider, for simplicity, a symmetric
binary (Z : Z) electrolyte. Next, we neglect strong correlations between the ions so that the
equilibrium properties of the electrolyte are governed by Boltzmann statistics [3], i.e., the
concentrations of the two type of ions are given by

c±
eq(�r⊥) = co exp

[
∓ Ze

kBT
φeq(�r⊥)

]
. (37)

This is equivalent to assuming equilibrium with bulk reservoirs at the ends of the channel in
which the potential φeq tends to zero and both concentrations c±

eq to co.
Substituting the charge density ρe

eq = Ze(c+
eq − c−

eq) into the Poisson equation (11), we arrive
at the nonlinear Poisson–Boltzmann equation [3, 18]

∇⊥φeq(�r⊥) = kBT

Zeλ2
D

sinh

[
Ze

kBT
φeq(�r⊥)

]
, (38)

where the Debye screening length is given by

λD =
√

εkBT

2(Ze)2co
. (39)

The conductivity σ of the electrolyte depends on the local ionic concentrations

σ(�r⊥) = (Ze)2D

kBT
[c+

eq(�r⊥) + c−
eq(�r⊥)] = σo cosh

[
Ze

kBT
φeq(�r⊥)

]
, (40)
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assuming equal diffusivities D for the two ionic species. In the Debye–Hückel limit, Zeζ � kBT ,
where thermal energy dominates over the electrostatic energy we may linearize the right-hand side
of equation (38) so that we arrive at the Debye–Hückel approximation in equation (16). Similarly
the conductivity in equation (40) reduces to the bulk conductivity σo. Compared to equation (26)
the electrical current obtained from the nonlinear Nernst–Planck equation becomes

I = 〈ρe
eq|v〉 + E〈σ|1〉. (41)

We calculate the off-diagonal elements from G12 = G21 = 〈ρe
eq|vp〉/�p and find

G12 = G21 = − 1

�p

εkBT

Zeλ2
D

〈
sinh

(
Ze

kBT
φeq

)∣∣∣∣vp

〉
. (42)

Similarly, from equation (15) for the two components in the electrical conduction G22 =
G

mig
22 + Gconv

22 , we get

G
mig
22 = σo

L

〈
cosh

(
Ze

kBT
φeq

)∣∣∣∣1
〉
, (43)

Gconv
22 = σom

2L

Ze

kBT

〈
sinh

(
Ze

kBT
φeq

)∣∣∣∣ζ − φeq

〉
, (44)

where we have used that σo = εD/λ2
D and introduced the dimensionless quantity m,

m ≡
(

kBT

Ze

)2 2ε

ηD
, (45)

which indicates the importance of electro-osmosis relative to electro-migration.

4.1. Non-overlapping, thin Debye layers

In the limit of thin Debye layers, we have already discussed how equation (14) in general leads
to equation (3) because the screening is good and φeq is nonzero only on a negligible part of �.
This property is more implicit when G12 or G21 is written in the form of equation (42), which is a
more appropriate starting point for analysing the limit of strongly overlapping Debye layers. For
G22 the calculations are more involved; we assume that the channel wall is sufficiently smooth
on the Debye-length scale so that we can everywhere use the Gouy–Chapman (GC) solution for
a semi-infinite planar geometry [3, 18],

φGC
eq = kBT

Ze
4 tanh−1

[
tanh

(
Zeζ

4kBT

)
e−rn/λD

]
, (46)

where rn denotes the normal distance to the channel wall. Substituting this into equations (43)
and (44) the integrals can be carried out analytically resulting in

G22 = σo
A
L

(1 + Du), λD � A
P

, (47)
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where Du is the Dukhin number

Du = λDP
A

(1 + m) 4 sinh2

(
Zeζ

4kBT

)
, (48)

defined as the ratio of the surface conductivity in the charged Debye layers to the bulk conductivity
σo times the geometrical length scale A/P (see [29] and references therein). Clearly, when the
Debye layer becomes very thin, surface conduction is negligible, we recover the simple result in
equation (4).

4.2. Strongly overlapping Debye layers

When the Debye layers are strongly overlapping the screening is weak and φeq ≈ ζ throughout the
cross-section. Hence, we can pull the integrand sinh(Zeφeq/kBT) outside the bra-ket in equation
(42) and we arrive at equation (5). Here, we have used that 〈1|vp〉/�p = G11 and introduced the
parameterization in equation (2). Similarly, from equations (43) and (44) we obtain equation (6)
where we have used equations (14) and (5) to eliminate 〈1|ζ − φeq〉.

We note that due to shifts in free energies, the zeta potential inside a narrow channel with
significant Debye-layer overlap is generally not the same as in a macroscopic channel with no
overlap, see e.g. [11, 30] for a discussion.

5. Numerical results

5.1. The Helmholtz basis

Only few geometries allow analytical solutions of both the Helmholtz equation and the Poisson
equation. The circle is of course among the most well-known solutions and the equilateral triangle
is another example. However, in general the equations have to be solved numerically, and for
this purpose we have used the commercially available finite-element software Femlab [27].
The first eigenstate of the Helmholtz equation is in general non-degenerate and numbers for a
selection of geometries are tabulated in table 1. Note how the different numbers converge when
going through the regular polygons starting from the equilateral triangle through the square, the
regular pentagon, and the regular hexagon to the circle. In general, k2

1 is of the order unity, and
for relevant high-order modes (those with a nonzero An) the eigenvalue is typically much larger.
Similarly, for the effective area we find that A1/A � 4/γ2

1 � 0.69 and consequently we have
An/A < 1 − 4/γ2

1 � 0.31 for n � 2. The transport coefficients in equations (27)–(30) are thus
strongly influenced by the first eigenmode which may be used for approximations and estimates
of the transport coefficients. As an example, the column for α/C is well approximated by only
including the first eigenvalue in the summation in equation (34).

5.2. Transport coefficients

Our analytical results predict that when going to either of the limits of thin non-overlapping
or strongly overlapping Debye layers, the transport coefficients only depend on the channel
geometry through the cross-sectional area A and the correction factor α. Therefore, when
plotted against the rescaled Debye length

√
α/A λD, all our results should collapse on the same

asymptotes in the two limits.

New Journal of Physics 8 (2006) 37 (http://www.njp.org/)

http://www.njp.org/


12 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

−−
−

−

−

−

Figure 2. Rescaled off-diagonal transport coefficients versus rescaled Debye-
layer thickness in the Debye–Hückel limit. The solid line is the exact result for a
circle, equation (36), and the dashed line shows equation (5) for Zeζ � kBT . The
data points are finite-element simulations in the linearized regime for different
cross-sections, see inset. Finally, the dash-dotted line shows the first term from
the summation in equation (28) only.

In figure 2, we show the results for the off-diagonal coefficients obtained from finite-element
simulations in the Debye–Hückel limit Zeζ � kBT for three different channel cross-sections,
namely two parabola-shaped channels of aspect ratio 1 : 1 and 1 : 5, respectively, and a rectangular
channel of aspect ratio 1 : 5. In all cases, we find excellent agreement between the numerics and
the asymptotic expressions. For the comparison we have also included exact results, equation
(36), for the circular cross-section as well as results based on only the first eigenvalue in equation
(28). Even though equation (36) is derived for a circular geometry, we find that it also accounts
remarkably well for even highly non-circular geometries in the intermediate regime of weakly
overlapping Debye layers.

In figure 3, we show numerical results for the off-diagonal transport coefficients beyond the
Debye–Hückel approximation. At large zeta potentials, the Debye layer is strongly compressed
and the effective screening length reduced. Therefore, the suppression of the electro-osmotic
flow/streaming current at strong Debye-layer overlap is shifted to larger values of λD as compared
to the Debye–Hückel limit. For the comparison, we have also included the exact result for a
circular cross-section in the Debye–Hückel approximation as well as the asymptotic expression
for non-overlapping and strongly overlapping Debye layers, equation (5).As seen, the asymptotic
expressions account well for the full numerical solutions independently of the geometry.

In figure 4, we show numerical results for the electrical conductance beyond the Debye–
Hückel approximation. Open symbols show the electro-migration part Gmig

22 , subtracted the trivial
bulk contribution σoA/L, whereas solid symbols show the electro-osmotic convection part Gconv

22 ,
see equations (43) and (44), respectively. Again, we find that the numerics are in excellent
agreement with our asymptotic results. For the λD � P/A regime, we note that the Dukhin
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Figure 3. Rescaled off-diagonal transport coefficients versus rescaled Debye-
layer thickness beyond the Debye–Hückel approximation. The solid line is
the exact result for a circle within the Debye–Hückel approximation, equation
(36). The data points are finite-element simulations for different cross-sections
(see inset) with Zeζ/kBT = 1, 3, 6 and 10 from below. The dashed lines
indicate the corresponding asymptotic expression for strong Debye-layer overlap,
equation (5).

number, equation (48), is proportional to λDP/A = √
C/A λD and not

√
α/A λD. Therefore,

strictly one would not in general expect data to collapse on the same asymptote for λD � P/A.
Looking carefully at this part of the figure, small variations can be seen from geometry to
geometry—the reason why the variations are still so small is that α/C ∼ 2 independently of
geometry, see table 1.

6. Conclusion

We have analysed the flow of incompressible electrolytes in long, straight channels driven by
pressure and EO. By using a powerful Hilbert space eigenfunction expansion, we have been
able to address the general problem of an arbitrary cross-section and obtained general results
for the hydraulic and electrical transport coefficients. Results for strongly overlapping and thin,
non-overlapping Debye layers are particular simple, and from these analytical results we have
calculated the corrections to the hydraulic resistance due to electro-hydrodynamic interactions.
These analytical results reveal that the geometry dependence only appears through the area A and
the correction factor α, as the expressions only depend on the rescaled Debye length

√
α/A λD.

Our numerical analysis based on finite-element simulations indicates that these conclusions are
generally valid also for intermediate values of λD. Combined with recent detailed work on the
geometrical correction factor [5], the present results constitute an important step toward circuit
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Figure 4. Comparison of the two components in the G22 transport coefficient
for three different geometries, see inset. Open symbols show (G

mig
22 L/σoA) − 1,

i.e., the surface specific contribution to the electrical conductance from electro-
migration, see equation (43). Solid symbols show the contribution from electro-
osmotic convection Gconv

22 L/mσoA, see equation (44); for ease of comparison
we have included the dimensionless number m in the rescaling. The data are
obtained from finite-element simulations for different cross-sections (see inset)
with Zeζ/kBT = 1, 3, 6 and 10. The solid lines indicate the corresponding
asymptotic expressions for strong and weak Debye-layer overlap, equations (6)
and (47), respectively, for Zeζ/kBT = 10 in a circular channel. Asymptotes for
the other values of Zeζ/kBT have been left out for clarity, but equally good
agreement is found also in these cases.

analysis [15] of complicated micro- and nanofluidic networks incorporating complicated cross-
sectional channel geometries.
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