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Abstract
We describe a semi-analytical approach for the three-dimensional analysis
of photonic crystal fibre devices. The approach relies on modal
transmission-line theory. We offer two examples illustrating the utilization
of this approach in photonic crystal fibres: the verification of the coupling
action in a photonic crystal fibre coupler and the modal reflectivity in a
photonic crystal fibre distributed Bragg reflector.
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1. Introduction

Photonic crystal fibres (PCFs), whose cladding is composed
of a two-dimensional (2D) photonic crystal [1, 2], may
confine and guide light through either a photonic bandgap
effect [3, 4] or by an effective high refractive index guiding
mechanism [5, 6]. Both classes of fibres have been the
subject of numerous research and for a review we refer
to [7, 8] and references therein. The latter class of PCFs
has attractive features such as broadband single-mode (SM)
operation [9], possibilities for dispersion engineering [10, 11],
and tailorable mode area [12]. The 2D photonic crystal
of the cladding not only provides more design freedom on
engineering basic properties of the fibre, but also broadens
the potential application of PCFs by the freedom to remove
more air holes from the cladding [13–15] or by introducing
additional materials to the air holes [16–20], both of which
facilitate novel device operations based on PCFs. In the present
work, the ‘PCF device’ term is restricted to the ones obtained
by removing some holes from the cladding, such as PCF
couplers [13, 14], PCF polarization beam splitters [15], or PCF
distributed Bragg reflectors [21].

In the present paper, we describe an approach, which
relies on modal transmission-line theory (MTLT), for three-
dimensional (3D) investigations of the propagation of an

3 Author to whom any correspondence should be addressed. Present address:
Patsa Company, PO Box 14115-337, Tehran, Iran.

optical beam launched into a PCF device. According to our
knowledge only the finite element beam propagation method
(FE-BPM) [22] has been adopted and utilized for doing such
simulations. The FE-BPM is numerically robust, versatile,
and applicable to a wide variety of structures. Unfortunately,
this is often achieved at the expense of long computational
times and large memory requirements, both of which can
become critical issues especially when structures with large
dimensions are considered or when used within an iterative
design environment.

MTLT, which has been developed for modelling multi-
layered periodic media [23–27], has been used for analysis
of distributed feedback (DFB) lasers [25, 26], quantum well
infrared photodetectors (QWIPs) [28], holographic power
splitter/combiners [29] and grating assisted integrated optics
devices [30]. Recently, it has also successfully been applied
in a study of radiation fields from end-facet PCFs [31].
MTLT relies on a plane-wave expansion of electromagnetic
fields in the periodic media. Interpreting the plane waves
as transmission lines provides a systematic framework for
the study of wave propagation in multi-layered periodic
media. Besides that, one can exploit all the concepts
and methods of transmission-line theory [32] and electrical
network theory [33] for the study of wave propagation. MTLT
has recently been developed for the modal analysis of arbitrary
shape optical waveguides [34]. Here, we add a novel approach
to this theory and utilize it for a three-dimensional study of the
propagation of light in photonic crystal fibre devices.
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Figure 1. General case of a three-dimensional multi-layered
structure.

The remaining part of the paper is organized as follows.
In section 2, we give a brief account of MTLT and describe
the approach we use. In section 3 we investigate examples
that illustrate the use of this approach in the modelling of PCF
devices. Finally, conclusions are given in section 4.

2. Formalism

The typical PCF device that we have in mind is composed
of J layers with different relative permittivity functions
εr j (x, y), j = 1, 2, . . . , J , and is illustrated in figure 1. We
define z j as a convenient local coordinate obeying 0 � z j =
z − h j−1 � t j and we consider wave propagation along the
longitudinal direction of the structure, i.e. z-axis. Throughout
this paper we consider non-magnetic materials with relative
permeability µr = 1 and all electromagnetic fields have a
harmonic temporal dependence, exp(iωt). PCF devices with
the typical shape shown in figure 1 usually confine light
within the fibre core or cores. However, some applications,
such as long-period fibre Bragg gratings, do not share this
feature so in the present study we exclude these applications.
For the applications with spatially localized modes we use a
supercell approach and repeat the structure in the transverse
xy-plane, along x- and y-directions with periodicities of Tx

and Ty , respectively. It is assumed that the periodically
repeated devices are separated by a sufficient amount of
background region, here microstructured cladding, that their
electromagnetic fields do not affect each other significantly.

We want to study a PCF device when it is illuminated
with an incident field �Einc(�r) propagating in layer 1 of the
structure shown in figure 1. This incident field is a solution
to the source-free Maxwell equations in the PCF with the
refractive index profile of layer 1. In this section we briefly
address MTLT and modal analysis of optical waveguides using
this theory. Subsequently we describe an approach, based on
MTLT, for investigating the scattering and propagation of light
in PCF devices. Throughout the paper, vectorial components
are denoted by an arrow placed above them. The bold-style
notation with uppercase and lowercase characters is used to
designate matrices and vectors, respectively.

2.1. Modal transmission-line theory

Embody a periodic medium with permittivity variation
ε0εr(x, y) = ε0εr(x + Tx , y + Ty) and permeability µ0. The

permittivity can then conveniently be expressed in the form of
a two-dimensional Fourier series [26]
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The electromagnetic fields must of course reflect the
periodicity of εr(x, y), and according to the Floquet–Bloch
theorem the fields in the doubly periodic medium are pseudo-
periodic functions [26]
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where �K0 = Kx0 x̂ + Ky0 ŷ is the Bloch wavevector and �A can
be any of the electromagnetic fields �E, �H , or �D. In order to
facilitate calculations in matrix form, we introduce �e, �h, and
�d vectors whose elements are �emn, �hmn , and �dmn , respectively.
The dimension of each vectorial component of the �e, �h, or
�d vectors in Cartesian coordinates (i.e. ex, ey, ez, hx, etc) is
1 × (2N + 1)(2M + 1). Using these vectors, the constitutive
relation �D = ε0εr �E converts into �d = ε0N�e, where N is a
square matrix whose elements are ε̃mn and they are arranged
in N in such a way that the equality �d = ε0N�e holds.

The temporal harmonic electromagnetic fields in a
dielectric medium are solutions of the following source-free
Maxwell equations:

∇ × �E(�r) = −iωµ0 �H (�r)

∇ × �H(�r ) = iω �D(�r).
(4)

Using (1), (3), and vectors �e, �h and �d in the source-free
Maxwell equation (4), these equations are transformed into
the following system of differential equations:

dv
dz

= −iωLi

di
dz

= −iωCv

(5)

or
d2v
dz2

= −ω2LCv

d2i
dz2

= −ω2CLi

(6)

where L and C are obtained in the calculations [26] and

v =
[

ey

ex

]
, i =

[
hx

−hy

]
. (7)
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Equation (5) has the well-known form of telegraphist’s
equations for a multi-conductor transmission line [32], and
we have emphasized the analogy by the choice of symbols so
that for example i and v are interpreted as effective currents and
voltages, respectively. Likewise, inductance and capacitance
matrices of the multi-conductor transmission line are denoted
by L and C, respectively. In equation (6), ω2LC and ω2CL
are matrices with non-zero off-diagonal elements. We can
formally diagonalize the ω2LC and ω2CL matrices using the
relations ω2LC = PK2P−1 and ω2CL = QK2Q−1, where
K2 is a diagonal matrix. The diagonal elements of K2 are
eigenvalues of ω2LC or ω2CL. Here, P and Q are matrices
whose columns are the eigenvectors of their relevant non-
diagonal matrices. Once the K2 and P have been determined,
the matrix Q is also given by ωCPK−1.

From the above discussion it follows that (6) may be
transformed into

d2v̂
dz2

= −K2v̂

d2 î
dz2

= −K2 î

(8)

where
v = Pv̂, i = Qî. (9)

In this new basis the transmission lines are uncoupled and one
may, in analogy with conductance eigen-channels in quantum
transport [35], think of these new lines as the eigen-lines of the
transmission-line system. Wave propagation in the periodic
medium is described by K2, P, Q, see (8) and (9).

Evidently from MTLT, ω2LC describes the propagation
characteristics of longitudinal space harmonics. Eigenvalues
of this matrix specify the square values of propagation
constants of space harmonics. The propagation constants
are obtained from the diagonal matrix K2 considering the
following condition [24]:

Im(Kk) + Re(Kk) < 0. (10)

Electromagnetic fields of each space harmonic with a
specified propagation constant are determined from its relevant
eigenvector.

2.2. Equivalent network of multi-layered media

Consider the typical structure shown in figure 1. The
modelling task begins by periodically repeating the device in
the transverse xy-plane with sufficiently large periodicities.
As discussed above, wave propagation in each layer of
this periodically repeated structure could be modelled by a
transmission-line network whose behaviour is described by (8).
Schematically, the equivalent transmission-line network of the
j th layer of this structure is depicted in figure 2(a). In this
figure the box containing Pj , Q j represents the consideration
in (9).

A concise and effective formulation of voltages and
currents of this transmission-line network can be described
by

v̂j = exp[−iKj(z j − t j )]v̂j,inc + exp[iKj(z j − t j )]v̂j,r

î j = exp[−iKj(z j − t j )]îj,inc − exp[iKj(z j − t j )]îj,r
(11)

(a) (b)

Figure 2. Equivalent electrical networks elements.
(a) Transmission-line unit presenting a single layer. (b) General
junction of two transmission-line units at different layer interface.

Figure 3. Equivalent transmission-line network of the multi-layered
structure shown in figure 1.

where v̂j,inc, îj,inc, v̂j,r , and îj,r are vectors for the incident
voltage, incident current, reflected voltage, and reflected
current, respectively. Kj = diag(K j1, K j2, . . . , K jk, . . .) is
a diagonal matrix obtained by computing the square root of
the K2

j matrix. exp[−iKj(t j − z j )] is also a diagonal matrix
with diagonal elements exp[−K jk(t j − z j )].

Essential electromagnetic boundary conditions could be
simply satisfied at the interface of two different layers by the
continuity of voltages and currents in transmission-line theory.
At the interface of typical different l and l +1 layers, illustrated
in figure 2(b), the continuity rule is described by

Pjv̂tj = Pj+1v̂0,j+1

Qjîtj = Qj+1î0,j+1

(12)

where v̂tj, v̂0,j+1, v̂tj, and v̂0,j+1 have been defined in figure 2.
On the basis of MTLT the transmission-line network of the
periodically repeated typical PCF device is illustrated in
figure 3. In the equivalent network of figure 3 and also in
numerical simulation a total height of h J is considered. At the
beginning (z = 0) and the end (z = h J ) of the structure, the
well-known radiation condition of electromagnetic theory is
applied, which is depicted in the equivalent network by match
load. Here we exploit a primary feature of radiation condition,
i.e. the zero reflection at these points.

2.3. The approach

Consider the structure shown in figure 1. When this structure
is illuminated with an incident electromagnetic field �Einc(�r),
propagating in layer 1 along the positive direction of z-axis,
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the total field in layer 1, �E1(�r ), is given by

�E1(�r ) = �Einc(�r) + �E1,r (�r) (13)

where �E1,r(�r ) is the reflected field inside layer 1. The incident
field is usually a fibre mode, so for investigating its interaction
with other layers we must calculate it and then calculate �E1,r (�r)

and finally �E1(�r). From the known field at layer 1, we calculate
the fields in other layers utilizing equations (11) and (12).

Since the incident field �Einc(�r ) is a guided mode
of the waveguide with refractive index profile of layer
1, we could determine it utilizing MTLT, exploiting the
features of transmission lines [34]. This calculation is
achieved by examining the out-of-plane propagation of a
periodic medium whose refractive index variation is obtained
by periodically repeating the waveguide in the transverse
plane with sufficiently large periodicities. Evidently from
transmission-line theory, the matrix ω2LC contains the
information of the out-of-plane propagating waves, called
space harmonics in the field of diffraction gratings [23].
Eigenvalues of the matrix ω2LC, diagonal elements of K2,
specify squared values of the propagation constants of these
space harmonics. Each column of the matrix P, an eigenvector
of the matrix ω2LC, describes the electric field profile of its
relevant eigenvalue. Among the space harmonics the ones
whose field profiles are localized within the waveguide specify
guided modes of the waveguide. In index guiding waveguides
this condition is simplified to the refractive index guiding
condition.

Through the modal analysis of the fibre with layer
1 refractive index profile we determine v̂j,inc(z = 0).
Afterwards, for complete determination of field in the first
layer, calculation of v̂j,r(z = 0) and îj,r(z = 0) is also required.
These values are obtained by the following relations:

v̂j,r(z = 0) = Ru
01v̂j,inc(z = 0)

îj,r(z = 0) = Ru
01îj,inc(z = 0)

(14)

where Ru
01 is the upward reflectance matrix at z = 0. Generally

we define Ru
zj as the reflectance matrix of a propagating wave

along the positive direction of z-axis at the local geometry z j ;
for instance Ru

01 is the upward reflectance matrix at z j = 0 for
j = 1. The variation of Ru

zj along z is treated by the following
relation [37]:

Rtj = Fr j (R0,j+1)

Roj = exp(Kjx)Rtj exp(Kjx)
(15)

where Fr j (R0,j+1) is composed of the following set of
equations:

Rtj = (Ztj − I)(Ztj + I)−1

Ztj = P−1
j Pj+1Z0,j+1Q−1

j+1Qj

Z0,j+1 = (I + R0,j+1)(I − R0,j+1)
−1.

(16)

Computation of Ru
01 is started from the topmost layer, where

the reflectance is zero. Considering (15) and (16) at each
layer and interface of layers, Ru

01 would be calculated. From
the known Ru

01, v̂1,r and î1,r are determined by equation (14).
Electromagnetic fields at other points of the first layer would
be computed using (13). Inside other layers, electromagnetic
fields will be calculated using (11) and (12).

Figure 4. Intensity of electric field in the centre of the core A. The
inset shows the cross-section of the PCF coupler with the two cores
A and B.

3. Validation and numerical implementations

In this section, several examples will be considered to illustrate
and also validate the use of the proposed approach.

3.1. PCF coupler

The cross-section of the PCF coupler we want to study is
depicted in the inset of figure 4. It is composed of a triangular
lattice of air holes in silica with two missing air holes.
We validate the described approach in the present paper by
verifying the coupling action of the coupler and comparing the
obtained coupling length through this approach with the one
obtained by considering even and odd modes. In the simulation
the pitch, � = 7.2 µm, and normalized hole-diameter to the
pitch, d/� = 0.45 have been set. We perform the simulation
at the normalized wavelength λ/� = 2πc/(ω�) = 0.1.

In simulation it is assumed that the light is launched into
one core of the coupler, for instance core A, by butt-coupling
of a similar single-core fibre whose core is aligned to the core
A. The coupler and the fibre coupled to it constitute a two-layer
medium, which could be considered an example of the general
case of figure 1.

As it is described in section 2.2, at first we repeat the
structure periodically in the transverse xy-plane with 10� ×
10� periodicity. Fibre cores of both the single-core, first layer,
and the double-core, second layer, are considered as defects,
and so treated by the supercell approach [36]. We calculate the
fundamental mode of the single-core fibre using the MTLT-
based approach of [34] which has been briefly described in
section 2.3. Through the simulation we obtain the fibre mode as
the voltage and current vectors v̂j,inc(z = 0) and îj,inc(z = 0).
These vectors describe the electromagnetic fields of the fibre
and are related to the fields through equations (7) and (9).
Evidently from (3) the fibre mode is the weighted summation
of individual plane waves with different wavevectors. From
the known v̂j,inc(z = 0) and îj,inc(z = 0) electromagnetic
fields inside all the structure will be computed by tracking the
approach described in section 2.3.

We illustrate in figure 5 the normalized electric field
intensity when the H E11 mode of the single-core fibre,
travelling across the z-axis, is launched into the core A of
the dual-core fibre. Inside the dual-core fibre, the light starts
coupling from the core A to core B. Up to a distance of
1440 µm from the interface of the coupler and single-core
fibre (z = 2.44 cm) all the confined light in core A will be
coupled to core B. This distance is called the coupling length,
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Figure 5. Distribution of electric field intensity (a) in the xz-plane
at the centres of the fibre cores (b) in the xy-plane. The electric field
in the xy-plane is computed at the centre of the core A.

Lc, and alternatively may be computed from the difference of
the propagation constants of even, βe, and odd, βo, modes of the
dual-core fibre through the relation of Lc = π/|βe − βo|. The
computed coupling length between the even and odd modes
in translational invariant system is 1410 µm, which is in a
good agreement with that obtained through the approach of
this paper. The normalized intensity of electric field in the
centre of core A is depicted in figure 4. The coupling length
has been indicated on the figure.

3.2. PCF Bragg grating

The case of a PCF Bragg grating arises in various advanced
applications of photonic crystals. In PCF lasers an optical
cavity may be formed through two PCF Bragg gratings created
by introducing a spatial periodic modulation of the refractive
index to the fibre core along the fibre axis [21]. The photonic
crystal vertical cavity surface emitting laser (PC-VCSEL) [38]
is a novel application of a photonic crystal in a laser application,
which is similar to standard VCSELs except that a photonic
crystal structure is defined by introducing a regular lattice of
air holes with one missing air hole to the top mirror. These
lasers have side-mode suppression ratios about 35–40 dB [39].
These attractive features are facilitated by the presence of the
regular lattice of air holes as has been studied qualitatively
utilizing concepts of PCFs [39]. Using the approach described
in this paper, the reflectivity from the top mirror could be
investigated three-dimensionally. The modelling of the laser
mirrors is generally a crucial issue in the design and analysis
of lasers [40]. Here we analyse an example of an in-plane
grating in a PCF to illustrate the proposed approach. The
structure under consideration is depicted in figure 6. The
cross-section of each layer is a square-lattice photonic crystal
composed of air holes in the background material with one
missing air hole. The two types of layers have refractive
index nl = 1.45 and nh = 1.6, respectively. The air-holes
of normalized diameter d/� = 0.53 are arranged on a square

Figure 6. Geometry of the photonic crystal fibre distributed Bragg
reflector.

Figure 7. Distribution of electric field intensity (a) on the xz-plane
at the centre of the fibre core and (b) at the centre of the fibre core.

lattice with pitch � = 7.2 µm. Such mirrors have recently
been utilized as the top distributed Bragg reflector of PC-
VCSELs [41]. In the structure the thickness of the coloured
layers, t , is 0.12 µm and the periodicity of the Bragg mirror is
a = 0.245 µm. Using the approach of this paper, we examine
the interaction of the travelling fundamental mode of the first
layer with the grating at λ/� = 0.1. Figure 7 shows the two-
dimensional intensity plot of the electric field in the case where
the fundamental mode of the squared-lattice PCF (with lattice
index of 1.45) is incident on the mirror. The incident field is
partially reflected at interfaces of different layers, leading to
an interference pattern caused by interference of the incident
field and the reflected ones. Figure 7 also illustrates how
perfectly boundary conditions at different material interfaces
of the distributed Bragg mirror are fulfilled.

4. Conclusions

Optical properties of PCFs may typically be successfully
analysed within the assumption of translational invariance
along the fibre axis. However, in real life the important device
applications employ PCFs of finite length and the hypothesis of
translational invariance is not applicable. In this work we have
described a semi-analytical approach for three-dimensional
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fully vectorial analysis of photonic crystal fibre devices. Our
approach rest on the foundation of modal transmission-line
theory and offers a computationally competitive alternative to
beam propagation methods. The approach is illustrated by
simulations of the coupling action in a photonic crystal fibre
coupler and the modal reflectivity in a photonic crystal fibre
distributed Bragg reflector.
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