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Front page figure illustrates the combination of acoustic streaming and AC electroos-
mosis. This leads to an essentially vanishing steady streaming pattern in the fluid.



Abstract

Acoustofluidics offer label-free and gentle mechanical particle handling in micrometer
sized fluid channels. This handling of particles by ultrasonic waves has been termed
acoustophoresis. However, generation of standing acoustic waves in microchannels is ac-
companied by acoustic streaming. Larger particles are focused along pressure nodes or
anti-nodes due to the acoustic radiation force from acoustic waves scattering off of them,
while sub-micron particles typically get dragged around by the acoustic streaming. This
will typically set a lower limit for the diameters of the particles available for acoustic
handling.

The phenomena of electroosmosis is often used for pumping fluid through small channels
in microfluidic systems. Under regular experimental conditions, electroosmotic streaming
can reach amplitudes comparable to those of acoustic streaming. Furthermore, both phe-
nomena are dominated by stresses, generated at the fluid/solid boundaries of the fluid
channels. This leads to the question of whether or not electroosmosis could be used to
control or suppress the streaming in acoustofluidic setups.

In this thesis, we analyse theoretically the capability of basic DC and AC electroosmosis
to suppress typical acoustic streaming patterns. This is done through a series of analytical
and numerical calculations. For the relatively simple phenomena of DC electroomosis, we
suggest possible electrode geometries for effective streaming suppression. For the case of
AC electroosmosis, a multi-mode approach is used to generate streaming patterns opposite
to typical acoustic streaming in a simple fluid channel cross section.
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Resumé

Akustofluidik tillader mærkningsfri og blid mekanisk manipulation af partikler i mikrom-
eter størrelse væskekanaler. Denne håndtering af partikler med ultralydsbølger kaldes
akustoforese. Generering af stående trykbølger i mikrokanaler vil dog altid medføre akustiske
strømninger. Større partikler fokuseres langs tryknoder eller antinoder på grund af den
akustiske strålingskraft genereret af akustiske bølgers brydning, imens partikler under en
mikrometer i diameter typisk trækkes rundt af de akustiske strømninger. Dette sætter
typisk en nedre grænse for diameteren af partikler, man kan håndtere akustisk.

Fænomenet elektroomose bliver ofte brugt til at pumpe væsker gennem små kanaler
i mikrofluide systemer. Under almindelige eksperimentielle forhold kan elektroomotiske
strømninger opnå hastigheder, der er sammenlignelige med typiske akustiske strømning-
shastigheder. Endvidere domineres begge fænomener af spændinger, der genereres ved
væskegrænsen i væskekanalerne. Dette leder os til spørgsmålet om, hvorvidt elektroos-
mose kan anvendes til at kontrollere eller undertrykke akustiske strømninger i akustofluide
systemer.

I denne these analyserer vi teoretisk evnen af basal DC og AC elektroosmose til at
undertrykke typiske akustiske strømninger. Dette gøres gennem en række analytiske og
numeriske udregninger. For det relativt simple fænomen DC elektroomose foreslås mulige
elektrodegeometrier til anvendelse af effektiv strømningsundertrykkelse. For AC electroos-
mose foreslås en multi-mode tilgang til at generere strømninger af modsat retning til typiske
akustiske strømninger i et simpelt væskekanaltværsnit.
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1 | Introduction

1.1 Acoustofluidics

Acoustofluidics is a rapidly growing field of research based on the integration of acous-
tics and microfluidics in lab-on-a-chip designs. Acoustic waves are used for label-free and
efficient particle handling with high bio-compatibility. The principle has found many ap-
plications within the field of biotechnology and healthcare, where many advances are based
on the separation and purification of biological microparticles such as cells, viruses, bacte-
ria, and microvesicles. Experimental applications include enrichment of circulating cancer
cells [1], rapid sepsis diagnostics by detection of blood bacteria [2], seperation of lipids
from blood [3], and many more.

System designs for particle migration by ultrasound, termed acoustophoresis, are usu-
ally based on elongated fluid channels with cross section dimensions of a few hundred
micrometer. Acoustic waves with wavelengths comparable to the chamber dimensions are
thus oscillating in the MHz regime. Piezoelectric transducers driven by AC sources are
used to generate these high frequency waves through two main principles. The first prin-
ciple is based on coupling into resonant vibrational modes of either the fluid channel or
the entire microsystem. Here, the entire piezoelectric transducer is set into vibrations.
This method of actuation is termed bulk acoustic waves (BAW). Another principle relies
on interdigitated electrodes deposited on a piezoelectric substrate used to generate surface
acoustic waves (SAW) that travel mainly along the surface of the material towards a fluid
chamber placed on top. The method of actuation will not be a focus of this thesis, but the
presented acoustics will mostly resemble that of a BAW design.

A typical strategy for BAW designs is to establish standing wave modes in the fluid
channels. Whenever acoustic waves propagate in a fluid, acoustic streaming will inevitably
follow from non-linear effects. In microchannels, the streaming is usually generated due
to stresses in the fluid in a viscous boundary layer close the surface (so-called boundary
driven streaming). A thorough and state-of-the-art study concerning the origins acoustic
streaming has recently been conducted by Bach and Bruus [4, 5]. A sketch of a typical
BAW design is shown in figure 1.1. Here, the pressure forms a standing half-wave along
the width of the chamber. This pressure mode is accompanied by four streaming rolls in
the bulk of the fluid generated from the top and bottom boundaries of the chamber. The
acoustics presented in this thesis will follow this configuration.

Two competing forces of non-linear origin act on particles suspended in the fluid. One

1
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Figure 1.1: Conceptual drawing of an acoustophoretic device adapted from [6]. AC voltage
is applied to a piezoelectric transducer, generating vibrations that travel into the microflu-
idic channel glued on top. This generates standing pressure waves accompanied by acoustic
streaming, which is illustrated on a cross section of the channel. Both phenomena act on
microparticles suspended in the fluid through the acoustic radiation force and the viscous
drag force, respectively.

is the viscous Stokes drag from the acoustic streaming, which scales linearly with the
particle radius a. This force typically causes the particles to swirl around the chamber.
The other force is the acoustic radiation force caused by acoustic waves scattering off of
the suspended particles. This force scales with the cube of the radius a3, and it pushes
the suspended particles towards pressure nodes or anti-nodes depending on their acoustical
properties [7]. The motion of small particles, approximately below 1 µm, will typically be
dominated by acoustic streaming due to the different scalings. For acoustophoretic devices,
this is often undesirable because it counteracts the acoustic focusing of the radiation force.
A key question of technological relevance becomes whether or not we can suppress this
undesired streaming. This has directed our attention towards the well-known phenomena
of electroosmosis.



1.2. ELECTROOSMOSIS 3

Figure 1.2: Conceptual drawing of electroosmosis. An ionic solution is present on top of
a negatively charged surface. The negative surface charges draw positively charged ions
towards the surface, which screen off the surface potential, resulting in a thin Debye layer
with a positive electric charge density. An externally applied potential can be used to
generate stresses in the fluid through this charge density. This generates an exponentially
growing flow from the boundary.

1.2 Electroosmosis

The walls of a fluid chamber will usually become electrically charged due to surface re-
actions. If ions are suspended in the fluid, those of opposite sign to the surface charges
will accumulate in a thin layer near the wall and screen out the potential from the surface
charge. This layer is termed the Debye layer, and its width is typically of the order of
nanometer. If an external electric field is applied parallel to the wall, the Coulomb force
will act on the charge density, resulting in stresses in the fluid. These drive a flow from
the Debye layer, which will extend into the bulk of the fluid. A conceptual drawing of
electroosmosis is shown in figure 1.2

The surface charge can also be manipulated by external electrodes. This can either be
done with AC or DC sources. The process of inducing stresses in the fluid by external AC
sources is called induced charge electroosmosis (ICEO). Conventional electroosmosis based
on the natural occurrence of surface charges as well as ICEO are typically used to create
micropumps for lab-on-a-chip systems [8][9][10][11]. These pumps are very convenient as
they deliver high pressures with no moving parts.

1.3 Motivation: combined acoustics and electroosmosis

In typical experimental setups, it turns out that electroosmotic flows and acoustic stream-
ing are typically of the same order of magnitude ∼ 100 µm/s. The desire to avoid acoustic
streaming, and the similar boundary driven nature of the two flows, naturally raised the
question of whether or not electroosmotic effects could be used to suppress acoustic stream-
ing.

Extensive work on both phenomena has already been conducted in Professor Henrik
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Bruus’s group Theoretical Microfluidics (TMF). The main focus of this thesis is the elec-
troosmotic flow and in particular, how it combines with acoustic streaming. As mentioned,
electroosmotic flows can be generated by means of either DC or AC sources. Furthermore,
different levels of non-linearities and model complexities can be—and have been—applied
to the separate phenomena of electroosmosis. The goal of this thesis is not to exhaust a
single model of electroosmosis but rather to make an overview of the two main principles
(AC and DC), and how well they solve the stated problem of streaming suppression. Since
author had prior knowledge of acoustics, there will be a predominant focus on electroosmo-
sis in this thesis. Energy will be spend on understanding the basic theories of electroomosis,
whereas acoustics is presented more as an overview. To our knowledge, this is the first
study of electroosmosis for the purpose of acoustic streaming suppression. A review of
the combination of acoustics and other microfluidic techniques for the purpose of particle
handling can be found in [12], and a study focusing on the combination of acoustics with
magnetophoresis is given in [13]. Other attempts at acoustic streaming suppression include
geometric shape-optimisation [14] and the use of inhomogeneous fluids [15].

1.4 Outline of the thesis

Chapter 2: Theory
The general theories of fluid dynamics and electroosmosis are presented. The applied strat-
egy for doing acoustofluidic calculations with viscous boundary layers is stated, and the
theories of Debye layers and electroosmotic flows are outlined. Effective boundary layer
theories for both phenomena are presented.
Chapter 3: Numerical simulations
The finite element method used in the commercial software COMSOL Multiphysics is sum-
marised. Standard simulations of acoustics and electroosmosis are presented to illustrate
the effective theories and basic but important points.
Chapter 4: Combined acoustics and DC electroosmosis
DC electroosmosis is combined with acoustic streaming. Several examples of streaming
suppresion of increased realism are presented as proofs of concept. An optimisation al-
gorithm is applied to determine effective designs. We discuss some disadvantages and
experimental complications of the method.
Chapter 5: Induced-charge electroosmosis
The theory of AC, or induced charge, electroosmosis is presented. The theory is linearised,
and an effective slip velocity for the linearised theory is derived. The effective boundary
conditions are shown to circumvent numerical analysis of the thin Debye layer. The derived
effective theory is then applied to analyse the generation of induced charge electroosmosis.
A promising solution for streaming suppression is derived analytically and compared to
numerics. Finally, the full non-linear phenomena is analysed numerically.
Chapter 6: Combined ICEO and acoustics
The combination of ICEO and acoustics is discussed, and the capability of ICEO to sup-
press acoustic streaming is evaluated briefly.
Chapter 7: Conclusion and outlook



2 | Theory

In this chapter, the theoretical framework of the thesis is presented. Several different the-
ories are used to describe the complex microfluidic systems under consideration in this
thesis. All of them have in common that we assume all underlying molecular dynamics
to be smoothened out on the length scales of our interest. Instead, we will be considering
average quantities of molecules and ions in small volume elements. With this, the macro-
scopic properties of fluids, solids, and electric polarisation are assumed to be perfectly
continuous, which is known as the continuum hypothesis. Basic theories of fluid dynamics
and electroosmosis are adopted from [16].

2.1 Fluid dynamics

Our fluid at the point r for time t is characterized by its mass density ρ(r, t) and the
velocity field v(r, t). Assuming conservation of mass in an arbitrary but stationary volume
element Ω in the fluid, leads to a local formulation governed by the continuity equation

∂tρ+ ∇· (ρv) = 0. (2.1)

In the same way, the conservation of momentum can be locally formulated through the
Navier–Stokes equation. We will only consider Newtonian fluids such that

∂t(ρv) = ∇· σ −∇· (ρvv) + fb, (2.2a)

σ = η
[
∇v + (∇v)T

]
+ η
[
(β − 1)∇· v

]
I − pI. (2.2b)

Here p(r, t) is the pressure of the fluid, and fb is a body force density present in the fluid.
This system of equations contains 4 equations and 5 independent fields (if the body-force
is given). To close the system of equations, one usually assumes some constitutive relation
between the pressure and the density

p = p(ρ). (2.3)

2.2 Acoustofluidics

2.2.1 Pertubation theory

We will consider acoustic actuation of the microsystems presented in this thesis, where the
systems are vibrated harmonically at a single frequency f . The physical fields governing

5



6 CHAPTER 2. THEORY

the fluid in the systems are split up in the following way. Initial zeroth-order fields describe
the fluid in its steady state without external influences. First-order harmonic fields will
establish in response to the actuation, and weaker—but still important—second-order fields
arise due to the non-linear terms of the Navier–Stokes equation. Mathematically, this is
formulated as

v(r, t) = 0 + ṽ1(r, t) + v2(r, t), (2.4a)
p(r, t) = p0 + p̃1(r, t) + p2(r, t), (2.4b)
ρ(r, t) = ρ0 + ρ̃1(r, t) + ρ2(r, t), (2.4c)

where the first-order fields denoted with ∼ are in phasor notation

Ã1(r, t) = Re
{
A1(r) e−iωt

}
, ω = 2πf, (2.5)

with A1 being the complex amplitude. Inserting Eq. (2.4) into Eq. (2.1) and Eq. (2.2)
with no body force and keeping terms to first order, one finds the following equations for
the spatial development of the first-order fields

0 = ∇· v1 − iωκsp1, (2.6a)
0 = ∇· σ1 + iωρ0v1, (2.6b)

with the stress-tensor notation

σk = η
[
∇vk + (∇vk)T

]
+
[
(β − 1)∇· vk

]
I − pkI. (2.7)

Here, we have defined the isentropic compressibility κs, which is a measure of the relative
compression of the fluid per pressure under adiabatic conditions. This can be related to
the speed of sound in the fluid cfl through

κs =
1

ρ0

(
∂ρ

∂p

)
s

=
1

ρ0c2
fl

. (2.8)

When keeping terms to second order, we will find terms with two multiplied first-order
fields. We use that

Ã1(r, t)B̃1(r, t) =
1

2
Re {A1(r)B∗1(r)}+

1

2
Re
{
A1(r)B1(r) e−i2ωt

}
. (2.9)

With this, the first-order fields constitute steady and second-harmonic driving terms for
the second-order fields. The second-order fields are divided into two parts

A2(r, t) = A2(r) + Re
{
A

(2ω)
2 (r) e−i2ωt

}
, (2.10)

and equations for the separate components can then be found. The effects we are interested
in happen on the timescale of several milliseconds, and the considered frequencies are in
the MHz regime. Thus, we are only interested in the time-averaged second-order fields.
Time-averaging over an oscillation period T is denoted by

〈A〉 =

∫ T

0
A dt, (2.11)
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and the governing equations for the time-averaged second-order response can be written
as

0 = ∇· (v2 + κs〈p1v1〉), (2.12a)
0 = ∇· σ2 − ρ0∇· 〈v1v1〉. (2.12b)

The applied boundary condition is the so-called no-slip condition, where the fluid is as-
sumed to be strictly at rest with respect to the surrounding walls of solid. The rest
position of the boundary between fluid and solid is denoted by s0, and the small harmonic
displacement from equilibrium of the wall induced by the mechanical actuation is written
as

s̃1(s0, t) = Re
{
s1(s0) e−iωt

}
. (2.13)

The no-slip boundary condition for an oscillating wall is then formulated as

v(s0 + s̃1) = ∂t(s0 + s̃1) = Re
{
−iωs1 e−iωt

}
= Re

{
V 0

1 (s0) e−iωt
}
, (2.14)

where V 0
1 (s0) = −iωs1 has been introduced. Taylor expanding to second order yields

the following boundary conditions for the first-order and the time-averaged second-order
velocity fields

v1(s0) = V 0
1 (s0), (2.15a)

v2(s0) = −〈(s1 ·∇)v1〉
∣∣
s0
. (2.15b)

The boundary condition for the surrounding solid is continuous normal stress

σ(s) · n̂ = σ1 · n̂, (2.16)

with σ(s) being the solid stress tensor. In this thesis, the motion of the surrounding solid
will not be considered explicitly.

2.2.2 Effective boundary layer theory

The no-slip boundary condition causes the velocity of the fluid to abruptly go towards
zero near the wall. It turns out that this happens in a thin boundary layer of lengthscale
δ =

√
2ν0/ω, where ν0 = η/ρ0 is the kinematic viscosity of the fluid. In the MHz regime,

this viscosity dominated layer is of the order of 500 nm in water. For devices containing
water channels with typical length scales of hundreds of micrometer, this layer poses a large
computational task while doing numerical calculations. Following Bach and Bruus [4], the
effects of the viscous boundary layer for slightly curved walls can be taken into account
through effective boundary conditions on the physical fields in the bulk of the fluid. We
introduce a local coordinate system at the wall through the capital letters (X,Y, Z), with
X and Y being parallel to the boundary, and Z pointing into the fluid normal to the wall.
We will also use ‖ and ⊥ to denote parallel and perpendicular with respect to the wall. To
first order, the bulk of the fluid is described by the first-order pressure through

∇2p1 + k2
cp1 = 0, where kc = k0

(
1 + i

1

2
Γfl

)
. (2.17)
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Here, k0 = ω/cfl is the ordinary wave number, and the viscous damping parameter Γfl is
defined by

Γfl = (1 + β)ηκsω. (2.18)

The effective boundary condition on the first-order pressure field, which takes into account
the effects of the thin viscous boundary layer, is given by

∂⊥p1 =
iωρ0

1− iΓfl

(
V 0

1Z −
i

ks
∇· V 0

1

)
− i

ks

(
k2

c + ∂2
⊥p1

)
, for r = s0. (2.19)

Here, we have defined the complex wavenumber

ks =
1 + i

δ
. (2.20)

The effective boundary condition on the solid stress is found to be

σ(s) · êZ = −p1êZ + iksη

(
V 0

1 +
i

ωρ0
∇p1

)
. (2.21)

Physical fields are split into the sum of a boundary layer field denoted by the superscript δ
and a bulk field denoted by d. Furthermore, fields evaluated at the equilibrium position of
the wall s0 are denoted with the superscript 0. The second-order acoustic bulk-streaming
turns out to be well described by an incompressible Stokes flow with a slip velocity.

0 = ∇· vd
2 , (2.22a)

0 = −∇
[
pd

2 − 〈Ld
ac〉
]

+ η∇2vd
2 +

Γflω

c2
0

〈Sd
ac〉, (2.22b)

vd
2 (s0) = vac

slip. (2.22c)

Here, we have defined the fields

〈Ld
ac〉 =

1

4
κs|p1|2 −

1

4
ρ0|vd

1 |2, 〈Sd
ac〉 =

1

2
Re
{
p1v

d
1

}
. (2.23)

pd
2 − 〈Ld

ac〉 can be regarded as an effective pressure, and fac = Γflω〈Sd
ac〉/c2

0 is an acoustic
body force. We describe the slip velocity parallel to the boundary vac

‖,slip and the perpen-
dicular component vac

Z,slip by

vac
‖,slip = (A · êX)êX + (A · êY )êY , (2.24a)

A = − 1

2ω
Re

{
vδ0∗1 ·∇

(
1

2
vδ01 − iV 0

1

)
− iV 0∗

1 ·∇vd
1 (2.24b)

+

[
2− i

2
∇· vδ0∗1 + i

(
∇· V 0∗

1 − ∂⊥vd∗
1Z

)]
vδ01

}
,

vac
Z,slip =

δ

2ω
Re

{
− k2

0(1− i)vδ01 · vd0∗
1 + ∇‖ ·

[
∇ ·

{
− 5

4
vδ01 v

δ0∗
1 (2.24c)

+
1 + i

2

(
V 0

1 v
δ0∗
1 + vδ0∗1 V 0

1

)}
+

(
1

2δ
vδ0∗1Z +

i

δ
V 0∗

1Z − (1− i)∂⊥v
d∗
1Z

)
vδ01

− i

δ
vδ0∗1Z V

0
1

]
‖

}
+

1

2ω
Re

{
iV 0∗

1 ·∇(vd
1 + vδ01 )− 1 + i

δ
V 0∗

1Zv
δ0
1

}
Z

.
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The long expression for the perpendicular component contains corrections of order k0δ
that are normally thought to be small enough to discard (k0δ ∼ 0.3%). However, for the
acoustics simulations shown in this thesis, it turns out that the error in the bulk of the
fluid caused by dropping these terms is significantly larger than k0δ. The reason for this
is unknown.

2.3 Electroosmosis

2.3.1 Ionic currents

Electroosmosis is the motion of fluids relative to charged surfaces. The electric surface
potential is generated by either surface charges due to chemical surface reactions or by
external electrodes. An electric charge density is induced by separation of positive and
negative ions dissolved in the fluid, when ions of opposite charge to the surface potential
are attracted to screen away the incoming potential, while ions of similar charge are pushed
away. The motion is induced by externally applied potentials that act on the charge density
ρel accumulating near the charged surfaces, which generates a body force like the one
included in Eq. (2.2a). The electric body force is simply expressed as

fb = ρelE, (2.25)

with E being the electric field.
The concentrations of ion species α will be denoted cα(r, t). Changes in ionic concen-

trations happen due to a combination of convection, diffusion, and electric current. Again,
this can be formulated as a conservation law, resulting in the Nernst–Planck equation

∂tcα = −∇· Jα, (2.26a)
Jα = cαv −Dα∇cα − µαcα∇φ. (2.26b)

Here, we have defined the ion mobility µα and the diffusion constantDα for the ionic species
α. We adopt a quasi-electrostatic description, where the charge movement is assumed to
be slow enough that magnetic fields are negligible. The electric field can then be written
as a gradient field

E = −∇φ, (2.27)

where φ is the electric potential. The governing equation for the electric field is Gauss’s
law, where we will only consider linearly polarisable and isotropic medias

∇·D = ∇· (εE) = ρel. (2.28)

Furthermore, we consider a constant electric permittivity ε, leading to the Poisson equation

∇2φ = −1

ε
ρel. (2.29)

Zα will denote the valences of the species, and the electric charge density can be expressed
as

ρel(r, t) = e
∑
α

Zαcα(r, t). (2.30)
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To simplify analysis, we consider the situation where only a single positive ion species de-
noted with a + and a single negative ion species denoted with − are present. Furthermore,
their valences are assumed to follow Z+ = −Z− = Z, such that

ρel = Ze
(
c+ − c−). (2.31)

2.3.2 The Debye layer

The accumulation of charge in an electrolyte near a charged wall is known as the Debye
layer. Using a standard Cartesian (x, y, z) coordinate system, we consider a wall parallel to
the xy-plane at z = 0 with a constant surface potential ζ. Over the wall, a solution of ions
with a bulk concentration of c0 is present, and we have the following boundary conditions
at equilibrium

c±(z =∞) = c0, φ(z =∞) = 0, φ(z = 0) = ζ. (2.32)

We consider an equilibrium solution with no fluid flow or electric current, such that
Eq. (2.26b) yields

J± = −D±∇c± − µ±c±∇φ = 0, (2.33)

or
c± = c0 exp

(
− µ±
D±

φ
)
. (2.34)

It is often used that
µ± = ±ZeD±

kBT
, (2.35)

where kB is the Boltzmann constant and T is the temperature. Inserting these in Eq. (2.31),
the electric charge density becomes

ρel = −2Zec0 sinh

(
Ze

kBT
φ

)
, (2.36)

and the equation governing the equilibrium potential reads

∇2φ =
2Zec0
ε

sinh

(
Ze

kBT
φ

)
. (2.37)

For the one-dimensional case, this can be solved by the Gouy-Chapman solution

φ(z) =
4kBT

Ze
arctanh

[
tanh

(
Zeζ

4kBT

)
exp

(
− z

λD

)]
, (2.38)

where we have defined the Debye length

λD =

√
εkBT

2(Ze)2c0
. (2.39)
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For typical bulk concentrations of c0 = 1mM in water at 25◦C, the Debye length for
monovalent ions is λD = 9.7 nm. For sufficiently small surface potentials, where the electric
energy is much lower than the thermal energy,

Zeζ � kBT, (2.40)

one can Taylor expand the right-hand side of Eq. (2.37) such that

∇2φ =
1

λ2
D

φ. (2.41)

This is known as the Debye-Hückel approximation.

2.3.3 DC electroosmotic slip velocity

It is assumed that an external DC potential φext is applied to the fluid chamber with an
ionic solution, and charged walls. The external potential is designed such that it creates
a constant electric field Eext within the fluid. We expand our fields in equilibrium- and
externally induced fields

p = peq + pext, (2.42a)
c± = c±,eq + c±,ext, (2.42b)
φ = φeq + φext, (2.42c)
v = veq + vext. (2.42d)

Here, we note that there is no flow in the equilibrium situation, such that v = vext.
Typically, the externally applied electric fields in electroosmotic experiments are much
smaller than the electric fields associated with the thin equilibrium Debye layers. Because of
this, we will assume that the externally applied DC field does not influence the equilibrium
configuration the ions particularly much, so that

ρel ≈ ρel,eq, (2.43)

where ρel,eq is calculated from Eq. (2.36), and φeq is found from Eq. (2.37).
The flow under consideration is assumed to be in steady state, and we consider flow-

velocities much lower than the speed of sound in the fluid, so the fluid can be considered
incompressible. With this, the continuum and Navier–Stokes equations read

0 = ∇· vext, (2.44a)

ρ(vext ·∇)vext = −∇(peq + pext) + η∇2vext − ρel,eq∇(φeq + φext). (2.44b)

The term ρel,eq∇φeq is balanced by the equilibrium pressure gradient ∇peq. Further, we
only consider velocities of up to approximately 100 µm/s. In the bulk of the fluid, changes
happen on the length scale of approximately d ≈ 100 µm such that ∇ ∼ d−1 ∼ 104 m−1.
With this, the viscous term η∇2vext is approximately two orders of magnitude larger than
the non-linear term on the left-hand side. Near the wall of the fluid chamber, the viscous
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term is even more dominant, and the non-linear term is dropped. Lastly, we drop the
ext subscript from the velocity and pressure fields, and the governing equations for the
electroosmotic flow read

0 = ∇· v, (2.45a)

0 = −∇p+ η∇2v − ρel,eq∇φext. (2.45b)

The electric body force is only present in the thin Debye layer near the charged walls,
and it is customary to divide the problem into the length scale of the Debye layer and the
length scale of the bulk fluid. In the thin boundary layer, where the electric body force
is induced, viscous effects dominate over the pressure. Thus, we write the Navier–Stokes
equation in the Debye layer as

0 = η∇2v + ρel,eqEext = ∇2(ηv − εφeqEext). (2.46)

Directing the y-axis along the parallel component of the fluid flow with respect to the wall
with the Debye layer extending along the z direction, the incompressible condition yields
∂yvy + ∂zvz = 0. Here, ∂y ∼ d−1 and ∂z ∼ λ−1

D , where d is the lowest length scale of
variation along the boundary. This means that

vy ∼
d

λD
vz � vz, (2.47)

as d is assumed to be much larger than the Debye layer thickness of approximately 10 nm.
One can then assume the velocity to be exclusively parallel to the boundary within the
Debye layer. Denoting φeq(s0) = ζ, and imposing the no-slip boundary condition, we find
the flow in the thin boundary layer to follow

v = −
(

1− φeq

ζ

)
εζ

η
Eext‖ =

(
1− φeq

ζ

)
vEO

slip, where vEO
slip = −εζ

η
Eext‖. (2.48)

This is exact in the case of a truly constant zeta potential and a constant parallel electric
field along an infinite translational invariant boundary. The solution is a good approx-
imation as long the surface potential ζ = ζ(s0) varies over a length scale d � λD. In
this case ∇2φeq ≈ ∂2

⊥φeq, such that the equilibrium potential is well approximated by the
one-dimensional solution in Eq. (2.38) with a slowly varying ζ inserted. A standard Stokes
flow is present in the bulk of the fluid, where the electric body force has vanished. On the
length scale of the bulk, the equilibrium potential for practical purposes vanishes on the
wall of the fluid container. This means that from the perspective of the bulk fluid, the
velocity essentially goes to vEO

slip at the wall. In the bulk of the fluid, the flow problem can
thus be solved as a Stokes flow with a slip velocity analogue to the acoustic streaming

0 = ∇· v, (2.49a)

0 = −∇p+ η∇2v, (2.49b)

v(s0) = vEO
slip. (2.49c)



3 | Numerical simulations

The mathematical models of acoustofluidic systems combined with electroosmotic effects
include complicated systems of coupled equations. For many studies, we will therefore
turn to numerical simulations. All simulations are carried out in COMSOL Multiphysics
5.4 [17], which is a commercial finite element software.

3.1 The finite element method

The equations used to describe physical fields in this thesis can all be written on the form
of a conservation law

∇· J [u(r, t)]− F [r, t] = 0. (3.1)

Here, J is a generalised flux that is some functional of the physical field u(r, t). F is a
generalised force that can generally also depend on u(r, t). This form of the equation is
known as the strong form. The finite element method approximates the solution to this
equation numerically. The spatial domain, in which we are trying to find the solution,
is divided into a grid of N points. The points are combined with straight lines without
overlapping, and the elements outlined by the lines are called mesh elements. The mesh
elements that share the common vertex in the n’th point of the grid rn form a mesh-cell.
For each point rn, a test function ûn is formed. This is illustrated in figure 3.1. The test
functions are piecewise polynomials of order p that are bounded on the mesh cells, and
they are normalised such that ûn(rn, t) = 1. These test functions are then used as basis

Figure 3.1: Typical finite element mesh for a 2D geometry. The test function ûn is defined
on the mesh cell, which is shaded dark blue. Adopted from [18].

13
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functions for our physical field

u(r, t) =
N∑
n=1

C(u)
n ûn(r, t), (3.2)

where C(u)
n are constants. With this approximation, Eq. (3.1) may not be perfectly fulfilled,

leading to a defect d(r, t) on the right-hand side

∇· J [u(r, t)]− F [r, t] = d(r, t). (3.3)

The defect is minimised by insisting that the projection of all the basis functions on the
defect

∫
Ω ûmd dr should vanish. This leads to the condition∫

Ω
ûm(r, t)[∇· J [u(r, t)]− F (r, t)] dr = 0. (3.4)

This is known as the weak form of the equation. For linear operators J , this can be
formulated as

N∑
n=1

C(u)
n

∫
Ω
ûm(r, t)(∇· J [ûn(r, t)]) dr =

∫
Ω
ûmF (r, t) dr. (3.5)

This is on the form of a matrix equation, and by defining the components

(C)n = C(u)
n , (3.6a)

(K)mn =

∫
Ω
ûm(r, t)

(
∇· J [ûn(r, t)]

)
dr, (3.6b)

(F )m =

∫
Ω
ûm(r, t)F (r, t) dr, (3.6c)

the problem is restated as

KC = F , (3.7)

where the coefficients C(u)
n are found through matrix inversion of K. Using the product

rule and Gauss’s theorem, the weak form equation can be written as∮
∂Ω

[ûmn̂ · J ] dA+

∫
Ω

[(−∇ûm) · J − ûmF ] dr = 0. (3.8)

With this, Neumann boundary conditions can be implemented as n̂ · J = N(r, t). Other
boundary conditions such as Dirichlet can also be implemented through Lagrange multi-
pliers.
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Table 3.1: Parameters used for the basic acoustics simulations [21].
ρ0 997 kg/m3 cfl 1496.7 m/s
η 0.890 mPa s β 3.1256
κs 447.7 TPa−1 f 1.993MHz

3.2 Basic setup

To heavily reduce computational footprints, we will only simulate two-dimensional geome-
tries. The geometries will be models of fluid channel cross sections like the one shown
figure 1.1, sometimes including surrounding solids. The essential assumptions are that the
channels are very elongated and that no significant change in the physical fields happen
along them. Basic flow calculations are shown in the proceedings, and demonstrations
of the effective boundary conditions are included. Throughout the thesis, a right-handed
Cartesian (y, z) coordinate system is used. Further, a local right-handed Cartesian (Y, Z)
coordinate system is used at the boundaries of the fluid channels. Since we are in 2D,
only a single parallel unit vector and a perpendicular unit vector pointing into the fluid
are needed. These are denoted by ê‖ and ê⊥, respectively. These coordinate systems are
illustrated in figure 3.2.

The computational strategy is to initially calculate the first-order acoustic fields for the
acoustics simulations and the equilibrium potential for electroosmotic simulations. In a
second step, the streaming is calculated based on the fields found in the initial calculation.

3.2.1 Acoustics simulations

The basis for the initial simulations of this thesis will be a fluid cross section similar to one
which has previously been extensively studied by Muller and Bruus [19][20][21][22]. It is a
simple rectangular channel of dimensions Hch×Wch = 160 µm×375 µm. For all simulations
in this thesis, the fluid channel is centered in (y, z) = (0, 0). The simulated equations and
geometry are illustrated in figure 3.2 (a), and the finite element meshes used for full and
effective simulations are shown in 3.2 (b). The required mesh for the effective simulation is
much coarser, because the thin boundary layer is taken into account analytically. The fluid
in the chamber is simulated as water at 25◦C, and the basic parameters used for acoustics
simulations are given in table 3.1.

The acoustic actuation of the chamber is put in artificially in order to not simulate the
solid mechanics of the surroundings. For water, the width of the given cross section can
support standing half-waves for actuation frequencies close to f = 2 MHz. The actuation is
put in as a resonant boundary condition on s1 and is adopted from an analytical example
in [4]. The top and bottom boundaries are kept stationary, while the sides are actuated by

s1(y = ±Wch/2, z) = d0 cos

(√
−(1 + i)

δ

Hch
k0z

)
, f = fres =

c0

2Wch

(
1− i

1

2
Γbl

)
.

(3.9)
The results of this typical acoustics simulation are also shown in figure 3.2. The figure
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Figure 3.2: Standard solution of a closed cavity acoustic half-wave resonance with second-
order streaming. (a) cross section of the fluid channel of dimensions Hch×Wch. Equations
implemented in the bulk are written inside the geometry, while boundary conditions are
written outside. The local coordinate system used at the fluid boundary in the thesis is
illustrated at two of the boundaries. (b) finite element meshes for full and effective theory
calculations. (c) field plots of the acoustic pressure p1. The cyan coloured arrows on top of
the pressure field illustrate v1. (d) v2 field plots. Cyan coloured arrows are of v2. (e) v2y

calculation from the effective and the full theory along the magenta dashed arrow shown
in (d). (f) v2z shown along the blue dashed arrow. A zoom-in close to the boundary
illustrates the rapid growth of the velocity field near a boundary in the full theory.
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Figure 3.3: Closed cavity slip velocity compared to the Rayleigh slip velocity. The closed
cavity slip velocity is remarkably similar to the one found for an infinite half-plane, even
for a single half-wave resonance.

illustrates the full simulation alongside a simulation with the effective boundary conditions
described in Eq. (2.19) and Eq. (2.24). A zoom-in on the boundary layer illustrates the
difference in boundary conditions for the full and effective theory. A very rapid growth in
the amplitude of the acoustic streaming is seen at the boundary of the chamber for the full
simulation to satisfy the no-slip boundary condition. The effective theory takes this growth
into account analytically and assumes it to happen immediately on the boundary. This
thin layer with an abrupt change in the physical fields is present to both first- and second
order. Due to the vast difference in required mesh elements, numerical calculations with
the effective theory are significantly faster than the full theory. In 2D, a typical simulation
like the one shown in figure 3.2 takes of the order of 5 s with the effective theory and 30 s
with the full theory. The effective theory has even allowed us to do full system 3D models
of acoustofluidic systems [23]. The fit between the full and the effective theory is very
precise, and the effective theory is used in all remaining simulations including acoustics,
unless we want to explicitly illustrate the boundary layer streaming.

The acoustic streaming associated with this standard half-wave mode is driven by a
conveyor-belt effect on the top and bottom boundaries, which turns out to be similar to one
found in a classical calculation by Lord Rayleigh [24]. He considered a timely and spatially
harmonic standing pressure wave above an infinite half-plane. Assuming the spatial period
2π/k0 to be much longer than the viscous boundary layer thickness, terms to lowest order
in k0δ are calculated. If the half-plane boundary is situated in z = 0, the flow problem for
z > 0 is defined by

p1(y, z) = iρ0cflu0 sin(k0y), s1(y, z = 0) = 0, (3.10)

where u0 is the amplitude of the spatially and timely harmonic first-order velocity field.
By splitting the equations for the first- and second-order fields into different length scales
(boundary layer and bulk fluid), one can find a slip velocity parallel to the boundary given
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by

vd
2 (y, z = 0) = vRayleigh

2,slip ≡ 3

8

u2
0

cfl
sin(2k0y)êy. (3.11)

The normalised vd
2y(s0) at the bottom boundary of the chamber from the standard acoustics

simulation is shown alongside the Rayleigh slip velocity at k0 = π/Wch in figure 3.3. We
see that the parallel component of the closed cavity slip velocity follows the same form as
the Rayleigh solution. The slip velocity on the sides of the chamber and the perpendicular
component on the top and bottom boundaries are all around two orders of magnitudes
lower than vd

2y(s0) from the top and bottom boundaries.

3.2.2 Electroosmotic simulations

We now turn to the electroosmotic flow. To illustrate the validity of the boundary condition
shown in Eq. (2.48), a simple simulation is set up with the electroosmotic slip velocity and
electric body force, respectively. The geometry is identical to the previous simulation
illustrated in figure 3.2. The boundary conditions on the potential are set to

φeq(y, z = −Hch/2) = V0 exp

[
−
(

4y

Wch

)2]
, (3.12a)

φeq(y, z = Hch/2) = φeq(y = ±Wch/2, z) = 0, (3.12b)

where V0 = 1 mV. The no-slip boundary condition is implemented on all boundaries except
for the one at z = −Hch/2 for the slip-velocity simulation, where Eq. (2.48) is implemented.
A constant external electric field is applied as

Eext = −E0√
2

(êy + êz), (3.13)

where E0 = (1 V/Wch). The positive ion is modelled as Na+, and the negative ion is Cl−.
Again, a temperature of 25◦C is assumed. Whenever a fluid is modelled, the fluid is taken
to be water, and its electric permittivity is denoted εf . When the surrounding solid is
simulated, its electric properties are taken to be those of pyrex glass, and the permittivity
is denoted εs. Parameters used for the steady electroosmotic simulations are given in table
3.2, and the results of the simulations are illustrated in figure 3.4. For the electroosmotic
simulations, equally course meshing can be used in the bulk of the fluid for the full and
the effective theory, while the solutions with the electric body force need a thin boundary
layer mesh at the surrounding solid walls.

Table 3.2: Parameters used for the basic electroosmotic simulations [16].
D+ 1.33× 10−9 m2/s c0 1mM
D− 2.03× 10−9 m2s λD 9.71 nm
µ+ 5.19× 10−8 m2/(V × s) εf 80ε0
µ− −7.91× 10−8 m2/(V × s) εs 4.6ε0[25]
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Figure 3.4: Electroosmotic flow solution with comparison between slip velocity and electric
body force implementation. (a) Field plot of the steady velocity field v2 calculated with
the electric body force. (b) Calculation with the electroosmotic slip velocity. (c) Plot of
the vertical streaming component along the magenta dashed arrow for the two implemen-
tations. (d) The horizontal streaming components shown along the blue dashed arrow. A
zoom-in on the boundary displays the rapid growth in the velocity for the full theory with
the electric body force confined to the thin Debye layer.

For the electric field with equally large components parallel and perpendicular to the
boundary, the parallel component still dominates completely, and the two solutions are
almost identical. The electroosmotic slip velocity will be used in the proceeding work.

3.3 Convergence tests

The simulations need to include enough mesh elements to properly resolve the details of the
physical fields. To ensure that a stable solution has been reached, one should perform some
sort of convergence test. Since increasing mesh sizes increase computational footprint, it is
desirable to look for a compromise between mesh size and precision. We define a relative
convergence parameter by

C(u) =

√∫
Ω |u− uref |2 dr∫

Ω |uref |2 dr
. (3.14)
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Here, u refers to a given solution for the given field, whereas uref is a reference solution
for comparison. The reference solution is ideally an exact solution that one can use to test
their simulation. For cases where no analytical solutions can be found, one can instead use
the best possible solution your computer can give. The relative convergence parameters
should converge continuously towards the reference solution with increasing numbers of
mesh elements. We are looking for exponential convergences, and in this thesis a relative
convergence within 1% is aimed for.

Whenever we simulate new set of equations, a convergence test is ran to explore the re-
quired mesh size. Typically, a characteristic length scale of the system under consideration
is used to scale the size of mesh elements e.g. an acoustic wavelength or the boundary layer
thicknesses. If this characteristic length scale is changed in a future simulation, the mesh
can be refined correspondingly. Furthermore, all new simulations are checked qualitatively,
to see whether or not anomalies such as discontinuous derivatives in the fields, which could
be caused by numerical errors, are present in the physical fields. If the solutions contain
these sorts of problems, the meshes can be locally refined.

A convergence test for the acoustics simulations is illustrated in figure 3.5. Here, the
maximum mesh element size in the bulk of the fluid could have been scaled with respect to
the acoustic wavelength. Instead, it was scaled as δ/N to check for reasonable agreement
with previous work [19]. In any case, all simulations with acoustics will be of the half-wave
mode shown above. For the full acoustics simulations, fourth-order polynomials are used
to resolve v1 and v2, whereas third-order polynomials are used for the pressure fields p1

and p2. For the effective theory, third-order polynomials resolve the velocity fields, and
second-order polynomials are used for the pressure fields. We notice how the second-order
pressure field converges much slower than the remaining fields in the effective simulation.
We will not worry too much about this, since we cannot use p2 explicitly, and it more
so serves as a Lagrange multiplier for the problem. To reach precision of approximately
1% for the remaining fields, N = 0.05 was chosen for the full theory and N = 0.02 was
chosen for the effective simulations. The boundary layer for the full theory was resolved
with 15 boundary layers in the convergence test with the first layer of thickness δ/5 and a
scaling factor per layer of 1.1. For full simulations shown in the thesis (acoustics as well as
electroosmotic), 25 boundary layers were implemented for safety, because tiny numerical
defects were sometimes observed at the end of the boundary layers.
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Figure 3.5: Convergence test for acoustics simulations. The relative convergence on loga-
rithmic scale is shown for both the effective fields (b) and the fully simulated fields (a).
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4 | Combined acoustics and DC elec-
troosmosis

We have seen that both acoustic streaming and DC electroosmosis can be described as
linear Stokes flows with slip velocities. Since the governing equations are linear in the
velocity vectors, the two theories seem to trivially combine to a single Stokes flow with
two separate slip velocities. This will hold true as long as first-order acoustic effects are
uncoupled from the ionic motion. Due to the tiny diameters of ions, viscous drag forces
will vastly dominate their motion compared to the acoustic radiation force. One concern
would be whether or not ions would start moving out of phase with the oscillating fluid,
which could disturb the equilibrium configuration of the ions at the wall or polarise the
bulk. Assuming that only viscous drag is important, Newton’s second law for a dissolved
ion with velocity u relative to the fluid is given by

mion∂tu = −6πηau, (4.1)

where the ion is modelled as a perfect sphere of radius a. With an initial relative velocity
u0, we find that

u = u0 exp

(
− 6πηa

mion
t

)
, (4.2)

meaning that the ion comes to rest with respect to the fluid on a timescale of τ = mion
6πηa .

When ions are dissolved in water, they are typically surrounded closely by a layer of water
molecules that are attracted to the ions due to their polarity. Thus, we will consider the
weight and radius of a so-called hydrated ion [26]. To overestimate the typical timescale,
we consider a fairly low hydrated ionic radius of a = 0.2 nm, and a high hydration number
of 10 water molecules. The typical timescale for a sodium ion coming to rest in water at
room temperature would then be around

τ =
mNa+ + 10mH2O

6πηa
≈ 10−13 s. (4.3)

For pressure waves of frequencies in the MHz regime, the ions will essentially appear to
perfectly follow the fluid. Thus, the ions in the Debye layer should closely follow the motion
of the fluid in the layer, which essentially just vibrates harmonically with the wall to fulfil
the no-slip boundary condition. At the timescales of our interest, the behaviour of the ions
at the fluid/solid boundary can be evaluated from the average position s0, and we expect

23
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no coupling between the phenomena. The time-averaged fluid flows in the microfluidic
systems under consideration will thus simply be described by Eq. (4.4a) and Eq. (4.4b)
with an acoustic and an electroosmotic slip velocity. Since the flow is to second order, and
since the gradient term in Eq. (4.4b) can be regarded as an effective pressure gradient, we
write the governing flow equations as

0 = ∇· v2, (4.4a)

0 = −∇p2 + η∇2v2 +
Γflω

c2
0

〈Sd
ac〉, (4.4b)

v2(s0) = vac
slip + vEO

slip. (4.4c)

4.1 Suppressing acoustic streaming

For single acoustic mode operation in fluid channels with elongated rectangular cross-
sections, the acoustic body force fac = Γflω〈Sd

ac〉/c2
0 will be vanishingly small. In this case,

acoustic streaming is almost exclusively generated due to the relative motion between the
fluid and surrounding solid [5]. The streaming in the bulk thus appears due to the slip
velocity, and if we could control the electroosmotic slip velocity at will, it would become
a mathematically trivial task to cancel acoustic streaming by setting vEO

slip = −vac
slip. The

electroosmotic slip velocity is only suited for counteracting the parallel component of the
acoustic slip velocity. Luckily, this is usually the dominant one for resonance modes in
microchannels. As illustrated previously, the typical acoustic slip velocity will resemble
that of the classical Rayleigh streaming calculation even for a half-wave mode in the cross
section of our model system. This means that the leading source of acoustic streaming
is the parallel slip velocity on the top and bottom boundaries of the chamber. In the
following simulations, we assume that a constant external electric field has been applied
horizontally across the cross-section of our standard fluid channel

Eext = Eêy. (4.5)

Thus, we should be able to suppress the majority of the streaming by applying

ζ(y, z = ±Hch/2) = A
η

εfE

∣∣∣vRayleigh
slip

∣∣∣, (4.6)

where A is a dimensionless parameter varied to minimise the streaming. A parametric
sweep is set up, where the average value of the steady velocity amplitude in the chamber
|v2|avg is calculated for each value of A. The resulting curve is shown alongside field
plots from the solution with the lowest average streaming amplitude in figure 4.1. It is
illustrated how the perpendicular component of v2 at the wall (the perpendicular slip
velocity) is unchanged for changing values of A. This will always leave a bit of streaming
in the chamber, albeit the streaming can be greatly reduced. The lowest average streaming
at A = 0.972 has an amplitude of 0.7 µm/s (for the effective theory). Compared to the
standard simulation of A = 0, where we find an average streaming of 28.5 µm/s, the
streaming is reduced by more than an order of magnitude.
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Figure 4.1: Acoustic streaming stop with idealised electroosmotic counter flow rolls. (a)
average streaming amplitude |v2|avg plotted against A from Eq. (4.6). (b) field plot of
the steady velocity field v2. A large reduction from the pure acoustics solution is seen.
(c) horizontal streaming components along the magenta dashed arrow in (b) for varying
values of A. It is illustrated how the perpendicular slip velocity remains unchanged. (d)
the vertical streaming components shown along the blue dashed arrow.

4.2 External electrodes

We now turn to the problem of shaping the ionic layer at the chamber walls by external
means. This is done by placing electrodes in the surrounding solid to the fluid channel.
The idea is to utilise the Debye-screening of the electric potential penetrating into the fluid
chamber to generate a more desirable streaming pattern. To simplify the initial analysis,
we consider the situation where no chemically generated surface charges are present at
the fluid/solid boundary. All applied potentials (like the chemical zeta potential) are with
respect to the charge neutral bulk of the fluid.
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4.2.1 Perfect conductor model

When an electric potential penetrates into an ionic solution, it rapidly vanishes as it gets
screened by the ions. This is reminiscent of the electronic screening at metallic surfaces
and inspires the idea of modelling the ionic solution as a perfect conductor, when seen
from the solid. We consider a solid/fluid interface positioned at z = 0 with the fluid above
at z > 0. The solid below at z < 0 is characterised by the permittivity εs, the equilibrium
electric potential φs

eq, and it contains no free charges. In the fluid above, we use εf , φf
eq,

and we have a free charge-density described by Eq. (2.36). If we assume that the externally
applied potential varies on a length-scale d� λD, then ∂2

y ∼ d−2 will be much smaller than
∂2
z ∼ λ−2

D in the Poisson equation inside the fluid, such that∇2 ≈ ∂2
z . Thus, the solution for

the potential inside the fluid can again be approximated by the one-dimensional solution
in Eq. (2.38), where we insert a slowly varying zeta potential

ζ(y) = φf
eq(y, z = 0) = φs

eq(y, z = 0). (4.7)

The boundary condition for the potential at the solid/fluid interface with no surface charges
is

εs∂zφ
s
eq

∣∣
z=0

= εf∂zφ
f
eq

∣∣
z=0

. (4.8)

Still working with ∇2φf
eq ≈ ∂2

zφ
f
eq, the total charge accumulated per area in the fluid above

the wall σel,eq is approximately given by

σel,eq =

∫ ∞
0

ρel,eqdz ≈ −εf
∫ ∞

0
∂2
zφ

f
eqdz = εf∂zφ

f
eq

∣∣
z=0

= −2kBTεf
λDZe

sinh

(
Zeζ(y)

2kBT

)
, (4.9)

where the expression in Eq. (2.38) has been inserted. The Debye layer is almost infinites-
imally thin on the length scales of the devices we are interested in describing, and the
accumulated charge above the wall looks a lot like a true surface charge. Inserting Eq. (4.9)
into Eq. (4.8) yields

∂zφ
s
eq

∣∣
z=0

=
1

εs
σel,eq, (4.10)

which is equivalent to the boundary condition used for perfectly conducting surfaces with
a boundary to a dielectric media of permittivity εs. Analogue to a metal, where electrons
screen off incoming electric waves in a very thin layer at the surface of the metal, we have
the same effect with ions at the solid/fluid interface.

Choosing z = 0 as the solid/fluid interface was arbitrary, and from Eq. (4.8) and
Eq. (4.9) the zeta potential at an arbitrarily directed but flat wall at r = s0 can be written
as

ζ(s0) = −2kBT

Ze
arcsinh

(
ZeλD
2kBT

εs
εf
∂⊥φ

s
eq(s0)

)
. (4.11)

This expression can in turn be used as the boundary condition for φs
eq

φs
eq(s0) = −2kBT

Ze
arcsinh

(
ZeλD
2kBT

εs
εf
∂⊥φ

s
eq(s0)

)
. (4.12)
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With this, we can estimate ζ(s0) without resolving the thin Debye layer on the fluid side of
the geometry. Inserting Eq. (4.11) into the expression for the electroosmotic slip velocity
at a flat wall at s0, we find

vEO
slip =

2kBTεf
Zeη

arcsinh

(
ZeλD
2kBT

εs
εf
∂⊥φ

s
eq(s0)

)
Eext‖. (4.13)

We will refer to this as the effective model in this chapter. In case one wants to perform
analytical evaluations of the potential at the fluid/solid boundary, one can apply a further
simplification for certain cases. ∂⊥φs

eq(s0) will of course depend on the value of ζ(s0) in
general. With V0 being the voltage applied to an external electrode, we will expect the
normal derivative to scale approximately as

∂⊥φ
s
eq(s0) ∼ V0 − ζ(s0)

d
. (4.14)

Assuming that ζ(s0) � V0, we can expect ∂⊥φs
eq(s0) to change very little by artificially

truncating ζ(s0) to zero in the calculation of φs
eq. In this case, we can use the following

boundary condition on the potential on the solid side

φs
eq(s0) = 0, (4.15)

while the zeta potential to be used in the expression for the electroosmotic slip velocity is
still found from Eq. (4.11). This allows for the use of image theory, which is illustrated in
an example in the following. This model is referred to as the perfect conductor model in
this chapter.

Eq. (2.48) with a full calculation of the Debye layer inside the fluid channel is compared
to Eq. (4.13) with the boundary condition φs

eq(s0) = ζ(s0) on the equilibrium potential.
For the latter, no electric potential is calculated inside the fluid channel, and no boundary
layers are needed in the finite element mesh. A simulation is set up where the standard
fluid channel of dimensions Hch ×Wch = 160 µm× 375 µm is etched into a block of pyrex
of dimensions Hs ×Ws = 1 mm× 2 mm. A single cylindrical electrode of radius R = 5 µm
is placed centrally beneath the fluid chamber. The edge-to-edge distance between the
electrode and the fluid/solid boundary is denoted z0. We assume no electric fields to be
present in the surroundings of the devices in this thesis. On the outer boundary of the
pyrex facing towards the surrounding environment, we assume no free charge accumulation,
which will be formulated as

n̂ ·D = 0. (4.16)

A constant horizontal external electric field is assumed to be applied across the fluid channel

Eext = −E êy, E = 1 V/Wch. (4.17)

This external electric field will be applied to all the following simulations of this chapter.
The geometry and the boundary conditions used on the electric potential for the compared
simulations are shown in figure 4.2. Solutions were found for these implementations for
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Figure 4.2: Geometry for the effective ζ-potential boundary condition test. The applied
boundary conditions for the electric potential and the geometrical definitions are shown.
The magenta dashed arrow illustrates the path along which v2y is plotted in figure 4.3.

varying values of z0. For each solution, the average value of the streaming amplitude |v2|avg

was found, and the relative difference between the methods was calculated

|v2|eff
avg − |v2|full

avg

|v2|full
avg

, (4.18)

with full denoting the full model of the Debye screening and eff denoting the effective
model. The relative error stemming from assuming the boundary condition φs

eq(s0) = 0
was also tested. Selected solutions for the horizontal streaming component along the
magenta dashed arrow in figure 4.2 are shown in figure 4.3 to illustrate the precision of the
effective boundary condition.

We notice that the solutions are remarkably similar, even when the distance between
the cylindrical electrode and the surface is only 10 nm and thus similar to the Debye
length. Even for the perfect conductor model where we set φs

eq(s0) = 0, a modest 2%
relative difference is found in the average value of the streaming. The effective boundary
condition with φs

eq(s0) = ζ(s0) yields relative errors below 0.1% for all tested values of z0.
The model cannot be expected to hold, if the electrode introduces details in the physical
fields on length scales comparable to 10 nm. However, at this short distance between the
fluid/solid boundary and the wire, the radius of the wire partially determines the length
scale of variation for the potential, which makes the effective model valid at these small
distances. The simulation suggests that we may reach a 1% agreement already around
z0 = 30 nm for the perfect conductor model. In the following work, the distances between
the fluid and the electrode boundaries are always greater than 1 µm, where a very high
precision is seen for both effective models.

With the solid/fluid boundary modelled as a perfect conductor, we can use image theory
to approximate the potential to check if our numerical implementation seems valid. A
typical textbook calculation reveals that the potential around an infinite line-charge under



4.2. EXTERNAL ELECTRODES 29

10-8 10-6 10-4
0

0.005

0.01

0.015

0.02

0.025

-0.5 0 0.5
-0.2

0

0.2

0.4

0.6

-0.5 0 0.5
-0.02

0

0.02

0.04

0.06

-0.5 0 0.5
-1

0

1

2

3
10-3

Figure 4.3: Test of effective boundary conditions for an external cylindrical electrode. The
fields in (b)-(d) are plotted along the magenta dashed arrow shown in figure 4.2. (a) the
relative difference between the full simulations including Debye screening and the effective
model of the ζ potential. The perfect counductor model is tested too. (b) v2y plotted for
the z0 = 10 nm solutions. (c) z0 = 1 µm solutions. (d) z0 = 100 µm solutions.

a semi-infinite and perfectly conducting plane forms cylindrical equipotential surfaces.
From this, the potential around a cylindrical wire of potential V0 centered in (y, z) =
(0,−(z0 +R)) with a semi-infinite conducting half-space at z = 0 is found to be

φ(y, z) =
V0

2arccosh( z0+R
R )

ln

[
y2 +

(
z −

√
(z0 +R)2 −R2

)2
y2 +

(
z +

√
(z0 +R)2 −R2

)2]. (4.19)

At z = 0, the z-derivative of this yields

∂zφ(y, 0) =
−2V0

arccosh( z0+R
R )

√
(z0 +R)2 −R2

y2 + (z0 +R)2 −R2
. (4.20)

In figure 4.4, this is compared to the normal derivatives of the electric potential at the
bottom boundary found with the full and the effective model in the previous study of the
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Figure 4.4: Boundary plots of the normal derivative of the equilibrium potential. The
fields are plotted along the bottom boundary of the fluid chamber shown in figure 4.2. (a)
z0 = 10 nm solutions. (b) z0 = 1 µm solutions. (c) z0 = 100 µm solutions.

effective theory. For z0 = 10 nm, there is a slight mismatch between the numerical models
and the analytical expression. The effective solution is seen to follow the full solution
closely. For z0 = 1 µm, all three solutions are almost identical, because the boundary
appears essentially semi-infinite, while the distance between the wire and the fluid/solid
boundary is still large enough for the perfect conductor boundary condition to be valid.
For z0 = 100 µm, the analytical solution does not fit as well with the numerical models
anymore, because the finite bounds of the fluid chamber become important. However, the
center peak value is still quite precise.

The effective boundary condition in Eq. (4.11) was also tested in a similar simulation
with a rectangular electrode of dimensions Helec ×Welec = 4 µm × 10 µm. The result of
this test is shown in figure 4.5. We notice a similar convergence pattern to the previous
test. The initial convergence of the perfect conductor model is a little worse than for the
cylindrical wire, which is not surprising given that a rectangular wire has a larger surface
at distance z0 to the fluid/solid boundary. The relative error between the effective model
and the full model is again negligible for all tested distances.

4.2.2 System optimisation

To probe for the most viable system designs to stop acoustic streaming, a series of numerical
simulations with varying geometries are performed. A COMSOL script is set up to be ran
through Matlab, and for each calculation a probe is taken of the average value for |v2| in
the fluid channel. This value is then minimised by changing the positioning of wires and
the amplitudes of applied voltages. The minimisation process is automated by using the
Matlab function fminsearchcon [27], which is an extension to Matlab’s standard function
fminsearch, which allows you to apply bounds and conditions to minimisation parameters.
The minimisation method is a direct iterative simplex based method that does not use
numerical or analytical gradients. For each iteration, a simplex of dimension N + 1 (with
N being the number of minimisation parameters) is defined in parameter space RN , and
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Figure 4.5: Effective boundary condition test for external rectangular wire. (a) Geometry
of the simulation. (b) Relative difference in the average streaming |v2|avg between the
effective models and the full boundary conditions with Debye screening.

the function that you are trying to optimise is evaluated in each vertex. Several test points
are generated, and based on the function values at these test points, a new simplex is
defined for the next iteration. The method is described in [28].

To model the potential extending from the electrodes, a rectangular geometry of the
surrounding solid is implemented of dimensions Hs ×Ws = 1.5 mm × 4 mm. The stan-
dard fluid channel cross section with the basic acoustics implemented is centralised in the
solid. 1, 2 , and 3 cylindrical wires of radius R are used for each of the four streaming
rolls. The setup has two axes of symmetry, and these are used to reduce the size of the
simulations. Only one fourth of the setup is thus simulated, and the symmetry axes are
supplied with boundary conditions to reflect the symmetries of the physical fields. The
geometry alongside the applied boundary conditions are illustrated in figure 4.6. The wires
are all aligned for each quarter, and the distance from the bottom of the fluid channel and
the wires is denoted z0. The distance from the vertical centreline to the edge of the first
wire is called y0, and the separation between each wire is called L. The applied potentials
at the simulated wires are denoted V1, V2 and V3. R, z0, y0, L, V1, V2, and V3 all act
as optimisation parameters. When we exclude the chemical zeta potential, the potential
should be anti-symmetric around the vertical centreline at y = 0. Since the boundary
condition in Eq. (4.13) is implemented, the equilibrium potential φs

eq is only simulated in
the surrounding solid. The potential is set to zero on the vertical centreline and to ζ at
the fluid/solid boundary. Since the setup is symmetric around the horizontal centreline,
the normal derivative of the potential goes to zero here. Because the permittivity of the
solid is a constant, this corresponds to the condition of no accumulated charge on a free
surface

− n̂ · εs∇φs
eq = n̂ ·D = 0. (4.21)
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Figure 4.6: Geometry and boundary conditions for initial DC device optimisation. (a)
full geometry shown, and the simulated quarter is cut out with white lines. 1, 2, or
3 cylindrical electrodes per quarter are implemented. In the figure, the example of 3 (in
total 12) electrodes is shown. (b) mesh and boundary conditions applied to the simulations.
The boundary conditions are illustrated with colour codes at the applied boundaries.

This boundary condition is also implemented on the surfaces facing towards the surround-
ing environment. Since the electric field is entirely horizontal, there is only an electroos-
motic slip velocity on the top and bottom boundaries. From our previous discussion, we
know that this should be sufficient to effectively suppress the streaming.

The optimal parameters and the corresponding value of the average streaming found
for 1, 2, and 3 cylinders are shown in table 4.1. Field plots of the corresponding streaming
solutions are shown in figure 4.7. The solution of the full geometry with 3 electrodes per
quarter is also found for the optimised parameters. The solution for the full geometry finds
an average streaming of 1.05 µm/s, which is identical to the solution utilising the geometric
symmetries. A field plot of this solution is also shown in figure 4.7. Notably, with only
a few electrodes we come quite close to the streaming reduction found for the idealised
zeta potential control in the initial test. Even with a single electrode it is possible to
reach a significant streaming reduction. The areas in which the streaming exceeds 3 µm/s
are illustrated on the field plots. These are seen to shrink for an increasing amount of
cylindrical wires. Another way of evaluating the optimal setup could be to minimise the
areas where the streaming exceeds a certain threshold. This principle was used in [14],
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Table 4.1: Table of the optimal parameters found for the initial DC device optimisation
test.

Nelec V1 [kV] V2 [kV] V3 [kV] R [µm] z0 [µm] y0 [µm] L [µm] |vd
2 |avg

[µm/s]
1 13.395 - - 4.25 61.48 84.78 - 1.38

2 22.197 0.113 - 1.22 71.47 88.29 80.06 1.12

3 25.043 0.004 0.002 1.20 75.83 90.87 63.17 1.05

Figure 4.7: v2 field plots from the fluid of the initial optimised DC devices. The dark blue
lines are contour lines for |v2| = 3 µm/s. (a) single cylinder optimised solution. (b) double
cylinder solution. (c) triple cylinder solution. (d) full geometry extension of (c).

where shape-optimisation was used to suppress acoustic streaming theoretically. Having
small zones with a large streaming amplitude might not be that important in terms of
particle handling, albeit it can cause large increases in the average streaming.

4.3 Practical considerations

We now discuss some of the problems with the design methods explored above. The main
concerns will be how one would create a constant electric field across the fluid channel,
how well we can manipulate streaming when a chemical zeta potential is present, and the
very large amplitudes of applied external potentials in regards to the physical model and
material properties.
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4.3.1 Discussion of design weaknesses

In order to create an electric field going across the channel, one would have to deposit a set
of electrodes on the sides of the channel. These electrodes would need to circumvent Debye
screening in order to have the electric field penetrate through the bulk of the fluid. One way
to go about this is to allow electrolysis to take place at the electrodes. However, electrolysis
will generate unwanted gasses that you somehow have filter out of the chamber. Another
problem with electrolysis is that it eventually leads to changes in pH, which changes the
chemical properties of the surface of the solid, which in turn leads to changes in the chemical
zeta potential.

One way of dealing with these problems has been to install anion exchange membranes
at the electrodes [10]. A problem with this is that it is not necessarily an easy or cheap
way of implementing the electroosmosis. It also leads to the question of how we would
model the membranes acoustically.

Another idea is to use an electrode/electrolyte combination where the electrodes absorb
one of the ion species, such as Cu electrodes with a CuSO4 solution. This is often done
in batteries, where the cation corresponds to the electrode material. However, this causes
ramified growth on the electrodes, which would eventually compromise the structure of
the chamber walls. An extensive model of this growth is presented in [29]. The process is
quite complex, and the article does not discuss the amplitude of the potential extending
into the bulk.

A relevant consideration in terms of the theoretical model is when the ionic concentra-
tions become so large that steric effects must be taken into account. In the thin Debye
layers, this actually happens at relatively low surface potentials. With a denoting the ra-
dius of an ion, the concentration surely cannot exceed a critical concentration of ccrit = a−3.
We consider a typical hydrated ion size of a = 0.3 nm. Assuming Eq. (2.34) to hold, the
corresponding critical potential for c0 = 1 mM of monovalent ions is found to be

φcrit =
kBT

Ze
ln

(
ccrit

c0

)
= 11VT, VT =

kBT

e
, (4.22)

where we have defined the thermal voltage VT ≈ 26 mV at room temperature. Many
models have been developed to take into account steric effects. A review is included in
[30], where two simple models are also tested to explore steric effects at high voltages.

If we only want concentrations below approximately 1% of ccrit, where our model is
still expected to hold, the surface potential should not exceed 160 mV. In the preceding
simulations, the surface potentials have been below this but of the same order of magnitude.
For a cylindrical wire, we can find an approximate expression for the peak amplitude of
the surface potential with the perfect conductor model by using Eq. (4.11) with Eq. (4.20)
inserted at y = 0

ζmax =
2VT

Z
arcsinh

(
ZλD
2VT

εs
εf

2V0

arccosh( z0+R
R )

√
(z0 +R)2 −R2

)
. (4.23)

We select approximate values from the previous simulations, and for monovalent ions at
25◦C and a cylinder of R = 2 µm and z0 = 70 µm with V0 = 20 kV applied, we find
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ζ = 59mV. So if we assume that we are able to generate a constant transverse external
electric field of amplitude 1 V/Wch across the fluid channel, a surface potential of around
60 mV appears to be sufficient for suppressing typical acoustic streaming amplitudes. If
transverse electric fields of this amplitude are practically difficult to generate, one would
likely have to go into the steric regime to reach sufficient streaming amplitudes. However,
the topics of steric effects, ramified growth, and ion selective membranes are beyond the
scope of this thesis.

One last physical effect that we will mention is dielectric breakdown. For large enough
electrical field strengths, all dielectric materials will eventually stop being dielectric and
start conducting currents. This would likely compromise the experimental setup by Joule
heating from electric discharges. For borosilicate glasses like pyrex, this happens around
20 MV/m or 20 V/µm [31]. This could prove to be an experimentally and theoretically
relevant obstacle. The electric potentials needed to shape the ionic layers in the previous
simulations were very large. From Eq. (4.9) we can estimate the perpendicular electrical
field strength |Es

⊥| = |∂⊥φs
eq| needed at the edge of the solid to create a surface potential

of 60 mV. For a pyrex/water interface at 25◦C with monovalent ions in the water at bulk
concentration c0 = 1 mM, and ζ = 60 mV, we find that |Es

⊥| = 134 MV/m. This is much
higher than the dielectric strength of pyrex, so some extra care must be taken to refine the
design ideas using external wires. The needed field strength could potentially be lowered
by applying larger transverse electric fields or by lowering the amplitude of the acoustic
streaming. However, even if this was done, one would likely still have to counteract a
chemical zeta potential at the fluid/solid boundary.

The chemical zeta potential varies with many parameters such as pH, temperature, bulk
concentration of electrolytes, different types of electrolytes, and of course the type of solid
surface. Silicate glass composites like pyrex generally have negative zeta potentials, which
are reported to increase in amplitude for increasing pH values and decrease in amplitude
for increasing bulk concentrations of electrolytes. To get an estimate of the values of the
chemical zeta potential at c0 = 1 mM for monovalent cations like sodium or potassium
ions, we refer to the review article [32]. At pH values around 7, it is reported that zeta
potentials for silicate glass composites are found to be somewhere around −90 mV. To
generate a surface potential of this amplitude, one would need |Es

⊥| = 257 MV/m. In this
thesis, we will not deal directly with this issue but only note a few potential possibilities
for circumventing it. These may include increasing concentrations of ions, decreasing pH
values, or using surface treatments to lower the surface potential [33]1. Another option
could be to change material from pyrex to e.g. fused silica. The review article [32] also
mentions that zeta potentials of different types of silica glass do not vary significantly.
The dielectric strength of fused silica is in the range of 470−670 MV/m, and the dielectric
constant of fused silica is similar to that of pyrex at around 4.1 [31]2. For further inspiration,
one could consult the electrowetting literature, where dielectric breakdown is a large topic
of discussion. A discussion of promising materials can be found in [34].

For now, we continue the analysis with pyrex and keep in mind that unreasonable
1[33] presents an experimental and theoretical study of the effects of a surface coating on a silica surface.

The observed reduction in the chemical surface potential for this coating is rather small.
2Measured at 1MHz.
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Figure 4.8: 1D example of a fluid/solid boundary with a chemical zeta potential. (a)
electrode implemented in the solid beneath the fluid. (b) setup without external electrode.

potential values may be assessed by various optimisations to the design. Otherwise, one
may have to use a more complicated models for the ionic behaviour to include steric effects.
However, the problem of dielectric breakdown has to be dealt with in the design phase of
any potential future experiments. In the proceeding, the chemical zeta potential is set to
ζchem = −90 mV.

4.3.2 Including the chemical zeta potential

We now turn to the topic of counteracting the chemical zeta potential, while simultaneously
creating a total surface potential to generate streaming rolls opposite to the Rayleigh
streaming.

First, we need to consider the boundary condition at the fluid/solid interface. The
chemical zeta potential does not materialise out of nothing. It stems from the chemical
binding of charges on the fluid side of the interface. This means that there will be an actual
surface charge σel,chem on the boundary. Again, denoting the equilibrium potential in the
fluid φf

eq and in the solid φs
eq, the boundary conditions on the potential at the fluid/solid

boundary in the presence of an actual surface charge σel,chem created by surface chemistry,
reads

−εfn̂ ·∇φf
eq + εsn̂ ·∇φs

eq = σel,chem, for r ∈ s0, (4.24a)

φf
eq = φs

eq = φeq(s0), for r ∈ s0. (4.24b)

Because our theory is formulated around a constant chemical surface potential ζchem and
not the more physical σel,chem, things become slightly awkward. We begin with a 1D
electrostatic example, where a solid/fluid interface at z = 0 and an electrode at z = −d is
considered as illustrated in figure 4.8 (a). Besides the boundary conditions in Eq. (4.24),
we have

φs
eq(z = −d) = V0, (4.25a)

φf
eq(z →∞) = 0. (4.25b)
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In the solid at −d < z < 0, the potential is found from

∇2φs
eq = 0 ⇒ φs

eq = Az +B. (4.26)

With Eq. (4.24b) and Eq. (4.25a) we get

φs
eq = φeq(z = 0)− [V0 − φeq(z = 0)]

z

d
. (4.27)

In the fluid at z > 0, the potential is found with the boundary condition in Eq. (4.25b) to
be

∇2φf
eq =

2Zec0

εf
sinh

(
Ze

kBT
φf

eq

)
⇒

φf
eq =

4kBT

Ze
arctanh

[
tanh

(
Zeφeq(z = 0)

4kBT

)
exp

(
− z

λD

)]
.

(4.28)

Denoting φeq(z = 0) = ζ, the last boundary condition in Eq. (4.24a) yields

2kBTεf
ZeλD

sinh

(
Zeζ

2kBT

)
+ εs

ζ − V0

d
= σel,chem. (4.29)

We wish to relate σel,chem to the chemical zeta potential ζchem. This chemically generated
potential should be unchanged if no conductor was placed beneath the fluid. Instead of a
conductor at z = −d, we could just place a dielectric media characterised by εs beneath
the fluid with an edge with no free charges at z = −l. At this edge we have the boundary
condition n̂ ·D = 0. This is illustrated in figure 4.8 (b). In the solid we then find

φs
eq(z) = φeq(z = 0), (4.30)

and again in the fluid

φf
eq =

4kBT

Ze
arctanh

[
tanh

(
Zeφeq(z = 0)

4kBT

)
exp

(
− z

λD

)]
. (4.31)

Since there is no external electrode, φeq(z = 0) = ζchem, and Eq. (4.24a) yields

σel,chem =
2kBTεf
ZeλD

sinh

(
Zeζchem

2kBT

)
. (4.32)

Inserting this in Eq. (4.29), we find that

ζ =
2kBT

Ze
arcsinh

[
ZeλD

2kBT

εs
εf

(V0 − ζ)

d
+ sinh

(
Zeζchem

2kBT

)]
. (4.33)

For the case illustrated in figure 4.8 (a) we had

∂zφ
s
eq = −V0 − ζ

d
, (4.34)
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and Eq. (4.33) can also be expressed as

ζ =
2kBT

Ze
arcsinh

[
sinh

(
Zeζchem

2kBT

)
− ZeλD

2kBT

εs
εf
∂zφ

s
eq

]
. (4.35)

Next, we consider a general geometry with a solid/fluid boundary at s0. We still
assume no free charge accumulation at the surfaces facing the surrounding environment.
The electric potential in the solid is determined by

∇2φs
eq = 0, (4.36)

and the solution with no external electrodes would still just be φs
eq(r) = ζchem. This follows

from the uniqueness theorems of the Laplace equation, since all boundary conditions on the
closed domain of the surrounding solid are either Dirichlet or Neumann. With a constant
chemical zeta potential at the boundary of the fluid channel, the solution for the electric
field in the fluid is essentially one-dimensional, because the Debye layer is much smaller
than the chamber dimensions. The charge per area accumulating over a given area of the
wall is then still

σel,chem =
2kBTεf
ZeλD

sinh

(
Zeζchem

2kBT

)
. (4.37)

If an external electrode applies an electric potential that varies on a length scale d � λD

along the boundary, the electric potential in the fluid still approximately follows the Gouy-
Chapman solution

φf
eq =

4kBT

Ze
arctanh

[
tanh

(
Zeζ(s0)

4kBT

)
exp

(
− Z

λD

)]
, (4.38)

where Z again denotes the locally perpendicular coordinate pointing into the fluid. Insert-
ing Eq. (4.37) and Eq. (4.38) into Eq. (4.24a) then leads to

ζ(s0) =
2kBT

Ze
arcsinh

[
sinh

(
Zeζchem

2kBT

)
− ZeλD

2kBT

εs
εf
∂⊥φ

s
eq(s0)

]
. (4.39)

This is implemented in the electroosmotic slip velocity, and φs
eq is calculated with the

boundary condition

φs
eq(s0) =

2kBT

Ze
arcsinh

[
sinh

(
Zeζchem

2kBT

)
− ZeλD

2kBT

εs
εf
∂⊥φ

s
eq(s0)

]
. (4.40)

More elaborate models can be applied, where surface reactions are taken into account
to determine electric surface charges σel,chem. Thorough work on this topic can e.g. be
found in [33].

4.3.3 Electrode array design

In our next design idea, we take into account that it would likely be easier for fabrication
processes to make rectangular electrodes rather than cylindrical ones. In order to reduce
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Table 4.2: Table of the optimal parameters found for the DC device optimisation test with
a array of 18 rectangular electrodes. The setups A− F are illustrated in figure 4.9.

Setup A B C D E F
Vsin [V] - 616 - - - 632

V0 [V] - - - 1498 - 1507

|v2|avg [µm/s] 28.5 1.28 66.8 2.07 68.1 2.35

the amplitudes of the applied potentials as much as possible, it would also be beneficial to
decrease the distance between electrodes and the fluid chamber. The optimised solutions
shown above all had distances between electrodes and the fluid/solid boundary comparable
to the width of the chamber. This was of course because the potential had to spread out
over the entire boundary to counteract the acoustic streaming. If electrodes are situated
closer to the boundary, more electrodes would be needed to generate a desirable shape of
the surface potential.

We attempt a design with two arrays of 18 rectangular electrodes of dimension Helec×
Welec = 4 µm × 10 µm with 10 µm spacing between neighbouring electrodes. Similar to
the previous optimisation simulations illustrated in figure 4.6, the fluid channel is etched
centrally into a pyrex cross section of dimensions Ws = 1.5 mm × 4 mm. The arrays of
electrodes are placed centrally 5 µm beneath and above the fluid channel, respectively. With
the applied chemical zeta potential, the problem is still symmetric along the horizontal
centreline at z = 0. This symmetry axis was used in the simulations, and a zoom-in on the
fluid channel of the simulated geometry is illustrated in figure 4.9. In order to counteract
both the chemical zeta potential and the Rayleigh-like acoustic streaming rolls, we want
to create a wall potential, which looks like a sinusoidal curve with a constant elevation.
A direct optimisation method like the Matlab fminsearch is not suited to minimise 18
parameters, when every function evaluation takes several seconds. Instead, the applied
electrode potentials were set to follow

Vn = V0 + Vsin sin

(
(18− (2n− 1))π

2Welec

Wch

)
, n = 1, 2, ..., 18. (4.41)

Here, V1 is applied to the leftmost electrode in the geometry, V2 is applied to the neigh-
bouring electrode, and so on. With this, only the two parameters V0 and Vsin are varied.
The applied external transverse electric field still follows the form in Eq. (4.17). First, no
chemical zeta potential is included, and only the acoustic streaming has to be counteracted
by Vsin. Next, no acoustics are included, and only the chemical zeta potential has to be
counteracted by V0. Lastly, all effects are included together. The optimised solutions are
also shown in figure 4.9. The average streaming velocities with and without the external
electrode potential are given in table 4.2.

An effective streaming reduction is achieved both with and without the chemical zeta
potential. This is reflected both in the low average streaming velocity and in the very
restricted areas where the velocity of the fluid exceeds 3 µm/s. Notably, the setup has
trouble with reducing the streaming close to the top and bottom boundaries, although
large areas in the bulk show very low streaming velocities, when the optimised potentials
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Figure 4.9: Optimisation of 18 rectangular electrode potentials. The blue lines mark
contours for |v2| = 3 µm/s. (a) fluid channel and surrounding electrodes of the simulated
geometry. 18 evenly spaced rectangular electrodes are implemented above and beneath
the channel, and a horizontal symmetry line at z = 0 is used to cut the geometry in half.
(b) solutions without ζchem implemented. A shows the solution with no applied potential,
and B is the solution with counter streaming generated by electroosmosis. (c) solutions
without acoustics and only ζchem implemented. C has zero applied potential on the external
electrodes, and D shows the optimised solution. (d) solutions with ζchem and acoustics with
and without counter streaming from electroomosis.
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are applied. Even though large streaming amplitudes are seen at the boundaries, the large
areas with heavily restricted streaming could be interesting for experimental purposes.

One could likely increase the performance of a system like this by decreasing the chem-
ical zeta potential, increasing the number of electrodes etc. The required applied voltages
are still very high, but one could also place the electrodes even closer to the boundary.
Some experiments with electroosmosis have e.g. separated the electrodes from the elec-
trolyte by a thin layer of oxide [35]. This of course does not circumvent the problem of high
electrical fields, as these scale with the distance between the wire and the fluid channel.
In [9] they even made direct contact between the driving electrodes and the fluid in an AC
electroosmotic setup. One could also look into this possibility in future work.

Instead of attempting a thorough optimisation scheme of systems based on direct cur-
rent electroosmosis, we instead turn to the interesting phenomena of induced charge elec-
troosmosis. This method in principle has some inherent advantages compared to DC
electroosmosis, and it is thus worthwhile exploring it.
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5 | Induced-charge electroosmosis

Induced charge electroosmosis (ICEO) is the principle of generating electroosmotic flows
by purely capacitative means. To do this, AC potentials are utilised to bring about a
harmonic pull and push motion of the ions, which generates a body force in the fluid due
to viscous drag on the ions. While the phenomena may seem more complicated than DC
electroomosis, since the ions are no longer in a simple equilibrium formation, it benefits
from not having to exchange any charges at the electrodes to prevent screening. With this
method, we can hope to circumvent the need of electrolysis or ramified growth.

Early work by Ajdari in 2000 suggested how the effect could be used for creating
micropumps by utilising certain asymmetries in the applied potentials [8]. Micropumps
were also realised experimentally and displayed flow velocities in the 100 µm/s range [9].
This naturally makes ICEO interesting for the purpose of suppressing acoustic streaming.
While common applications focus on pumping fluid along a channel, we will study the
capabilities of the technique to pump fluid around in a cross section.

5.1 Governing equations

5.1.1 General case

The initial theoretical exploration is largely inspired by [36], which extends and clarifies the
theory presented in [8]. We will not include any chemical zeta potential at the fluid/solid
boundary in our treatment of ICEO. A brief discussion of this is given later. For now, we
just imagine that the theoretical examples reflect microchannels where a surface treatment
has removed chemically generated surface charges. We still assume a quasi-electrostatic
treatment to be reasonable, so the electric field is governed by the Poisson equation. We
also consider a simple ionic solution of a single monovalent cation with a corresponding
monovalent anion. The ionic motion is still governed by the Nernst–Planck equation in
Eq. (2.26a), but an equilibrium solution can no longer be assumed. The fluid flow is still
of sufficiently low amplitude to ignore the non-linear advective term in the Navier–Stokes

43
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equation. The full system of governing equations thus becomes

∂tc± = −∇ · (c±v −D±∇c± − µ±c±∇φ), (5.1a)

∇2φ = − 1

εf
ρel, (5.1b)

0 = ∇· v, (5.1c)

ρ∂tv = −∇p+ η∇2v − ρel∇φ. (5.1d)

The fluid velocity fulfils the no-slip boundary condition. The boundary condition on the
electric potential rises from external electrodes shaping some surface potential at the fluid
boundary. Finally, a zero normal flux of ions is imposed at the walls. The full set of
boundary conditions thus reads

v(s0, t) = 0, (5.2a)
φ(s0, t) = Vext(s0, t), (5.2b)

0 = n̂ · (−D±∇c± − µ±c±∇φ)
∣∣
r=s0

. (5.2c)

The general system of equations is difficult to work with and offers little to no possibilities
in terms of analytical work. Instead of going directly towards full numerical solutions, we
start the analysis in a heavily simplified regime.

5.1.2 Linearised equations

We initially consider the case where only weak external potentials are applied. To reach
experimentally relevant amplitudes for the streaming, we expect that it will be necessary
to abandon these simplifying assumptions. Thus, it is likely that we eventually have to
analyse the full set of equations in Eq. (5.1).

First, we simplify the equations by considering the case where D+ = D− = D, such
that µ+ = −µ− = µ. This could be a first approximation for a solution of KCl, where K+

and Cl− have very similar diffusivities. Assuming that the applied potentials only slightly
perturb the ionic densities, we write

c± = c0 + δc±, δc± � c0. (5.3)

This essentially brings us in the Debye-Hückel regime, requiring that Vext � VT. With
this, we make the following approximation for the ionic flux expressions

c±∇φ ≈ c0∇φ. (5.4)

Furthermore, we introduce the notation

ν = c+ − c− = δc+ − δc−. (5.5)

Subtracting the positive and the negative version of Eq. (5.1a) and inserting Eq. (5.1b),
we find that

∂tν =

[
D∇2 −D 1

λ2
D

− (v ·∇)

]
ν. (5.6)
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Lastly, we work in the diffusive limit where

(v ·∇)� D∇2 − D

λ2
D

, (5.7)

corresponding to |v⊥|/λD+|v‖|/d� D/d2, where d is the typical length scale for variations
parallel to the boundary. It is implicit in this scaling argument that ν still only exists in a
thin layer (of length scale λD) at the boundary, and that the two terms on the right-hand
side partially cancel each other. The linearised system of equations then becomes

∂tν =

[
D∇2 −D 1

λ2
D

]
ν, (5.8a)

∇2φ = −Ze
εf
ν, (5.8b)

0 = ∇· v, (5.8c)

ρ∂tv = −∇p+ η∇2v − Zeν∇φ. (5.8d)

The positive and negative version of Eq. (5.2c) are also subtracted, and the low potential
assumption is applied to reach

0 = n̂ ·
[
∇ν +

εf
Zeλ2

D

∇φ

]
r=s0

. (5.9)

With this, the electrostatic problem in Eq. (5.8a) and Eq. (5.8b) can be solved with bound-
ary conditions Eq. (5.2b) and Eq. (5.9) independent of the flow problem. In turn, the cal-
culated electric body force can be inserted in the fluid dynamical equations in Eq. (5.8c)
and Eq. (5.8d), which are solved with the no-slip boundary condition Eq. (5.2a). This is in
essence similar to the way we treat the acoustic streaming calculations with a perturbation
series.

5.1.3 External AC potential

When an external AC potential is applied of the form

Vext(s0, t) = Re
{
Vext(s0) e−iωt

}
, (5.10)

the linearised electrostatic fields can be recast in phasor notation where

ν(r, t) = Re
{
ν(r) e−iωt

}
, φ(r, t) = Re

{
φ(r) e−iωt

}
. (5.11)

With these, ∂t = −iω in Eq. (5.8a). The electric body force then becomes

fb = −ZeRe
{
ν(r) e−iωt

}
Re
{
∇φ(r) e−iωt

}
= −Ze

2

(
Re{ν(r)∇φ∗(r)}+ Re{ν(r)∇φ(r) e−i2ωt}

)
.

(5.12)
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This will give rise to a flow oscillating at double frequency 2ω alongside a steady streaming
field, such that

v(r, t) = v(r) + Re{v(2ω)(r) e−i2ωt}, (5.13a)

p(r, t) = p(r) + Re{p(2ω)(r) e−i2ωt}. (5.13b)

The oscillating velocity can be used to produce mixers in microsystems, but we will be
interested in the time-averaged effect for particle sorting. To summarise, we calculate
the time-averaged streaming induced by an AC source in the weakly non-linear regime by
initially calculating the complex electrostatic phasors through

−iων =

[
D∇2 −D 1

λ2
D

]
ν, (5.14a)

∇2φ = −Ze
εf
ν, (5.14b)

with the boundary conditions in Eq. (5.2b) and Eq. (5.9). With these, the time-averaged
electric body force is determined, and the steady flow is calculated from

0 = ∇· v, (5.15a)

0 = −∇p+ η∇2v − Ze

2
Re{ν∇φ∗}, (5.15b)

and the no-slip boundary condition. Here, v = v(r) and p = p(r) denote the time-averaged
fluid fields.

If one wanted to include a chemical zeta potential in the theory, it would lead to some
initial equilibrium charge density

ν = νeq + νext. (5.16)

The application of external fields would also drag the equilibrium ions to generate a flow
oscillating at angular frequency ω. It is not clear if one could assume the time-averaged
problem to be unaffected by this. Because the chemical zeta potential can be relatively
large, the generated flow could couple into the time-averaged problem through the advective
term in the Nernst–Planck equation. Further, when modulating the surface charge with
an external AC-potential, one would reach the steric regime at lower applied peak-to-peak
voltages, if a chemical zeta potential contributes to the charge density. In this thesis, we
keep things simple and assume no chemical zeta potential to be present.

5.2 Effective boundary conditions

In [36] the problem of an infinite half-plane of fluid with a sinusoidal potential applied be-
neath a thin insulating layer is analysed. An external potential at the solid/fluid boundary
at z = 0 follows the form

Vext(y, t) = Re{V0 cos(qy) e−iωt}. (5.17)
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Based on Eq. (5.8) the oscillating flow component is analysed in the limit of λD/d � 1,
and it is illustrated how this leads to an effective slip velocity on the bulk streaming of the
form

v2ω
slip ∝ cos(2ωt+ ϑ) sin(2qy) êy, (5.18)

similar to the classical Rayleigh streaming, where ϑ describes a phase difference. Un-
fortunately, it is also mentioned that the steady streaming is found to be of much lower
amplitude than the oscillating flow. The expression for the time-averaged streaming is not
shown in the article, and it is only stated that a complicated expression was determined
and plotted against numerical simulations.

This work inspired the derivation of a more general time-averaged slip velocity for the
linearised problem discussed in the following, where the assumption λD/d� 1 is used for
otherwise arbitrary wall potentials. The effective boundary conditions will only be derived
for flat walls, but they could likely also be stated in curvilinear coordinates. An example
of how this might be done can be found in the recent work from Bach and Bruus [4], where
a complete treatment of the acoustic slip velocity is done in curvilinear coordinates. In the
final stages of the thesis work, it was discovered that the effective slip velocity developed
in the following is analogue to an already known theory from the ICEO literature.

5.2.1 Effective electrostatic theory

We will analyse problems where the applied potential varies on length scales d much larger
than the Debye length, such that λD/d � 1. The applied potential is also harmonically
oscillating at an angular frequency ω, so Eq. (5.14) and Eq. (5.15) will be our starting
point. When writing ν or φ, it is thus the complex and spatially dependent phasors we
refer to. Further, v and p will refer to the time-averaged fluid fields.

Consider a wall parallel to the y-direction with z going perpendicular to the wall.
The ionic concentration decays so rapidly in the perpendicular direction that ∇2 ≈ ∂2

z in
Eq. (5.8a) yielding

− iων = D∂2
zν −

D

λ2
D

ν. (5.19)

The externally applied potential is written as Vext(y) = V0w(y), where w(y) is some slowly
varying (compared to λD) complex function of y. With this, the approximate solution for
the ionic concentration difference is

ν(y, z) = Cw(y) e−κelz, κel =
1

λD

√
1− i

ω

ωD
, ωD =

D

λ2
D

, (5.20)

where C is a constant. The phasor for the electric potential is determined by

∇2φ = −Ze
εf
Cw(y) e−κelz. (5.21)

The solution will be the sum of a particular solution confined to the boundary φλD and a
homogeneous solution extending into the bulk φb. We find an approximate expression for
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the particular solution by imposing ∇2φλD ≈ ∂2
zφ

λD . With this,

∂2
zφ

λD = −Ze
εf
Cw(y) e−κelz ⇒ (5.22)

φλD = − Ze

εfκ
2
el

Cw(y) e−κelz. (5.23)

The bulk potential φb is in turn determined by

∇2φb = 0. (5.24)

The boundary condition in Eq. (5.9) reads

0 = ∂zν
∣∣
z=0

+
εf

Zeλ2
D

∂z(φ
λD + φb)

∣∣
z=0

, (5.25)

from which we find

∂zφ
b
∣∣
z=0

= Cw(y)
−i ωωD

κel

Ze

εf
. (5.26)

The applied potential dictates that

φ(y, z = 0) = V0w(y) = φb(y, z = 0)− Ze

εfκ
2
el

Cw(y). (5.27)

Eliminating C from Eq. (5.26) and Eq. (5.27), we find that

φb(y, z = 0) = V0w(y) + i
ωD

ω

1

κel
∂zφ

b
∣∣
z=0

. (5.28)

Since the choice of wall-placement at z = 0 was rather arbitrary, we will generally formulate
this as

φb(s0) = V0w(s0) + i
ωD

ω

1

κel
∂⊥φ

b(s0). (5.29)

ωD is related to the timescale of the Debye layer formation. Thus, it makes sense that the
bulk potential is dominant for ωD/ω � 1, because the Debye layer cannot form before the
potential switches sign. In this case, the quasi-electrostatic problem is almost unaffected
by the pressence of the ions. In a sense, the ions are too slow to react to the rapidly
changing potential. For high frequencies where ω ∼ ωD, the correction to the boundary
condition on the electric bulk potential becomes very small∣∣∣∣iωD

ω

1

κel
∂⊥φ

b(s0)

∣∣∣∣ ∼ (λD/d)φb(s0). (5.30)

The amplitude of this correction is then comparable to terms which were discarded in the
derivation of the boundary condition. In this regime, we cannot expect the effective theory
to hold, although the qualitative behaviour appears to be right. Thus, we will always
assume ω � ωD, which turns out to be the more relevant frequency regime regardless. For
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Table 5.1: Parameters used for the initial test of effective ICEO boundary conditions.
λD = (εfkBT/2(Ze)2c0)1/2 9.7 nm D 10−9 m2/s
ωD = D/λ2

D 10.6× 106 rad/s ω = 5× 10−4ωD 5.3× 103 rad/s
V0 1 mV Hch ×Wch 80 µm× 100 µm

lower frequencies where ωD/ω � 1, the Debye layer heavily influences the problem with a
divergence for ω → 0, where no bulk potential will exist at all due to complete screening.

After calculating φb, we can find the constant C, and with this ν and φλD readily
follows. From Eq. (5.26) we have

Cw(s0) = i
ωD

ω

εfκel

Ze
∂⊥φ

b(s0). (5.31)

We still denote the direction perpendicular to (and the distance from) the boundary by a
capital Z. With this, we write

ν = i
ωD

ω

εfκel

Ze
∂⊥φ

b(s0) e−κelZ , (5.32a)

φλD = −i
ωD

ω

1

κel
∂⊥φ

b(s0) e−κelZ . (5.32b)

Like the previous effective boundary layer theories, this circumvents the need of resolv-
ing the very thin boundary layer numerically, since the rapidly decaying fields are found
analytically.

5.2.2 Numerical validation of the effective electrostatic theory

The precision of the effective quasi-electrostatic theory is illustrated with an example. The
electrostatic fields are calculated from both the effective and the full theory. A rectangular
geometry of dimensions Hch ×Wch = 80 µm × 100 µm is used. An external potential is
implemented with a somewhat random shape to test the theory with both phase differences
and surface gradients. The external potential on the walls is given by

φ
(
y, z = ±Hch

2

)
= ∓V0eiπ/3, φ

(
y = −Wch

2
, z
)

= V0 sin
( y

Wch

)
, φ

(
y =

Wch

2
, z
)

= −V0.

(5.33)
The linearised Nernst–Planck equation for the full theory is implemented on its conven-
tional conservation form

∇ ·
(
D∇ν +

εfD

Zeλ2
D

∇φ

)
+ iων = 0, (5.34)

because COMSOL handles this better.
Only the water with dissolved ions is simulated. The geometry alongside the applied

equations and boundary conditions are illustrated in figure 5.1, and simulation parameters
are stated in table 5.1.
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Figure 5.1: Geometry for effective ICEO boundary condition test. The applied equations
and boundary conditions are stated. The full theory is written in blue, and the effective
theory is the red equations.

The result of the simulation is shown in figure 5.2, where the applied finite element
meshes are illustrated as well. While the required bulk meshes are similar for the full
and the effective theory, the required boundary resolving differs significantly. For the
full model, enough boundary layers are added to resolve the entire Debye layer. For the
effective model, only a single boundary layer is added, which serves to enhance the precision
of normal derivatives.

We notice that the full model and the effective model are very similar in the bulk of
the fluid as expected. The effective model varies very little in the thin boundary layer,
while the full model undergoes a rapid exponential change. This exponential change can be
replicated by adding Eq. (5.32b) to the plot as shown in figure 5.2 (f). It is the knowledge
of this exponential shape that allows us to derive an effective boundary condition on the
fluid velocity v in the following.

The boundary conditions on the potential in Eq. (5.33) are actually inconsistent at the
corners, which caused numerical defects for the full model. However, as long as a refinement
of the corners of the finite element mesh was done, the errors were localised at the corners
within a length scale of less than a micrometer. Inconsistent boundary conditions will also
be chosen in an analysis that follows, and because of the very localised nature of the defects
that this causes, we will not worry too much about the corners. Of course, the inconsistent
boundary conditions are in a sense nonphysical but so is a perfectly sharp corner. We keep
in mind that the inconsistencies in boundary conditions could be resolved locally at the
corners with interpolation functions and rounded corners to make the potential continuous.
This can be done in a way that keeps the same general shape of the physical fields in the
fluid chamber. An example of this is in given when a full non-linear and time-dependent
study is performed in the end of this chapter. For time-dependent calculations, numerical
defects tend to propagate and increase in time, and the corners will thus be reassessed.
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Figure 5.2: Result of the effective quasi-electrostatic boundary condition test for ICEO.
(a) full model finite element mesh with the fully resolved Debye layer. (b) effective model
mesh with a single boundary layer for normal derivative precision. (c) φ calculated with
the full model. (d) φb calculated from the effective model. (e) φ and φb calculated with
the full and the effective model, respectively, plotted along the black dashed arrow in (c).
The effective solution with φλD added from Eq. (5.32b) is plotted on top. (f) the fields
shown close to the boundary (incircled in (e)).
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5.2.3 Effective slip velocity

Since we can calculate the charge density Zeν and the potential φ by only referencing to
the bulk potential φb, we can also determine the electric body force from φb. Again, we
consider a solid wall parallel to the y-axis at z = 0 with z extending perpendicularly into
the fluid. The time-averaged electric body force 〈fb〉 is split into a parallel y-component
and a perpendicular z-component. We determine the time-averaged electric body force
from

〈fb〉 = −Ze
2

Re
{
ν∇(φb + φλD)∗

}
. (5.35)

Since the bulk potential φb varies on the length scale d, and ν decays perpendicular to
the boundary on the length scale of λD, we can assume that ∇φb varies very little in
the perpendicular direction before ν∇φb∗ decays close to zero. Therefore, we make the
approximation

ν(y, z)∇φb∗(y, z) ≈ ν(y, z)∇φb∗(s0). (5.36)

With this, we find the following components for the electric body force

〈fby〉 =− εf
2

Re

{
i
ωD

ω
κel∂zφ

b(s0)∂yφ
b∗(s0)e−κelz

}
+
εf
2

Re

{(
ωD

ω

)2κel

κ∗el

∂zφ
b(s0)∂y∂zφ

b∗(s0)e−2Re{κel}z
}
,

(5.37a)

〈fbz〉 =− εf
2

Re

{
i
ωD

ω
κel|∂zφb(s0)|2e−κelz

}
+
εf
2

Re

{(
ωD

ω

)2

κel|∂zφb(s0)|2e−2Re{κel}z
}
.

(5.37b)

The steady flow v = v(r) and pressure p = p(r) are then determined from

0 = ∇· v, (5.38a)

0 = η∇2v −∇p+ 〈fb〉, (5.38b)
v(s0) = 0. (5.38c)

We consider the fluid in a thin layer above the boundary 0 ≤ z . 5λD. Here, the electric
body force is present to drive the flow. The flow abruptly comes to a stop on the wall and
grows to a value comparable to the bulk streaming at the end of this layer. The variation
parallel to the boundary is always comparable to the variations in the bulk. Eq. (5.38a)
then refinds the relation stated in Eq. (2.47), where vz � vy. We will assume that the
normal component of the velocity field in the boundary layer is small enough that the
normal component of Eq. (5.38b) becomes

∂zp = 〈fbz〉. (5.39)
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Integrating this, we find the following form of the pressure

p =− εf
2

Re

{
i
ωD

ω
|∂zφb(s0)|2e−κelz

}
+
εf
2

Re

{(
ωD

ω

)2 κel

2Re{κel}
|∂zφb(s0)|2e−2Re{κel}z

}
.

(5.40)

Taking the divergence of Eq. (5.38b) and using Eq. (5.38a), we find that

∇2p−∇· 〈fb〉 = 0. (5.41)

With the choice of p in Eq. (5.40), it is found that this is fulfilled to first order in λD/d

∇2p−∇· 〈fb〉 = O([λD/d]). (5.42)

The parallel flow component vy is determined from

η∇2vy ≈ η∂2
zvy = ∂yp− 〈fby〉. (5.43)

Eq. (5.37a) and Eq. (5.40) are inserted into this, yielding an expression which depends
analytically on z through simple exponential functions. The expression is integrated twice,
and the no-slip boundary condition is imposed to reach

vy =− εf
η

Re
{
∂y∂zφ

b(s0)∂zφ
b∗(s0)

}
Re

{[
1− e−2Re{κel}z

](
ωD

ω

)2 κel

(2Re{κel})3

}
+
εf
η

Re
{
∂y∂zφ

b(s0)∂zφ
b∗(s0)

}
Re

{[
1− e−κelz

](
ωD

ω

)
i

κ2
el

}
+
εf
2η

Re

{[
1− e−2Re{κel}z

](
ωD

ω

)2 κel

κ∗el(2Re{κel})2
∂zφ

b(s0)∂y∂zφ
b∗(s0)

}
− εf

2η
Re

{[
1− e−κelz

](
ωD

ω

)
i

κel
∂zφ

b(s0)∂yφ
b∗(s0)

}
.

(5.44)

In the bulk of the fluid z & 5λD, the electric body force has decayed to essentially zero.
At the same time, the velocity field in Eq. (5.44) has underwent a rapid increase, as
the exponential functions have decayed. The bulk velocity does not vary significantly on
the length scale of the boundary layer, and the rapid growth of the velocity field in the
boundary layer almost happens right on the boundary, when seen from the bulk. The
velocity field is continuous, so the velocity in Eq. (5.44) for z → ∞ can approximately
constitute the velocity of the bulk fluid on the solid boundaries. The choice of coordinates
was again arbitrary, and the flow in the bulk of the fluid is determined by

0 = ∇· v, (5.45a)

0 = η∇2v −∇p, (5.45b)

v(s0) = vICEO
slip , (5.45c)
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where the ICEO slip velocity is given by

vICEO
slip = ê‖

[
εf
η

Re
{
∂‖∂⊥φ

b(s0)∂⊥φ
b∗(s0)

}
Re

{(
ωD

ω

)
i

κ2
el

−
(
ωD

ω

)2 κel

(2Re{κel})3

}
+
εf
2η

Re

{(
ωD

ω

)2 κel

κ∗el(2Re{κel})2
∂⊥φ

b(s0)∂‖∂⊥φ
b∗(s0)

}
− εf

2η
Re

{(
ωD

ω

)
i

κel
∂⊥φ

b(s0)∂‖φ
b∗(s0)

}]
.

(5.46)

Hence, we only need to calculate the electric potential in the bulk to determine the flow in
the bulk of the chamber.

5.2.4 Numerical validation of the effective slip velocity

The simulation shown in subsection 5.2.2 is extended to calculate the flow as well. The
parameters and meshing remain the same, so the electric field illustrated in 5.2 is used
to calculate the streaming. The time-averaged streaming is calculated with the effective
model in Eq. (5.45) and Eq. (5.46) as well as with the full model in Eq. (5.15) and the
no-slip condition.

The results of the simulation are shown in figure 5.3. Line plots of the velocity field
is plotted in the bulk and at the boundary of the fluid. It is also illustrated how well
we can determine the pressure and body force at the boundaries. Again, a very strong
agreement is seen between the effective and the full simulation. The Debye layer velocity
field calculated in Eq. (5.44) is plotted near the boundary on top of the effective and the
full calculation of the velocity field. We notice how it follows the full calculation until
around Z ≈ 5λD, after which it reaches a constant value equal to the initial value of the
effective model. This offset on the slip velocity in the effective model makes it fall straight
onto the full calculation outside of the Debye layer Z & 5λD.

The total solving time for the given simulation is around 6 seconds for the effective
theory and 30 seconds for the full theory. For 3D simulations, the discrepancy would be
much larger. For full system 3D simulations, an effective boundary layer theory may even
act as enabling rather than just an improvement in computational footprint, as was the
case for the effective acoustic streaming theory.
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Figure 5.3: Result of the effective slip velocity test for ICEO. (a) field plot of the velocity
field calculated from the full model. (b) effective model velocity field. (c)-(f) are plotted
along the black dashed arrow in figure 5.2 (c). (c)-(e) are plotted only in the thin Debye
layer. (c) pressure calculated with the full model plotted against the analytical expression.
(d) the parallel body force component fby plotted for the full calculation against the
analytical expression. (e) vz plotted for the full and the effective model. On top is shown
the analytical expression for vz in the thin boundary layer, which is seen to reach a constant
level around Z ≈ 5λD. (f) vz calculated with the full and the effective model.
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5.2.5 Simplified slip velocity

We have now derived and numerically confirmed an effective boundary layer theory for the
time-averaged ICEO streaming. However, the relative importance of the separate terms
were not evaluated. We will state the slip velocity as the sum of the following three terms

vICEO
slip = ê‖

[
εf
η

(
ωD

ω

)
Re
{
∂‖∂⊥φ

b(s0)∂⊥φ
b∗(s0)

}
Re

{
i

κ2
el

}
+
εf
2η

(
ωD

ω

)2

Re

{
κel

(2Re{κel})2

(
∂⊥φ

b(s0)∂‖∂⊥φ
b∗(s0)

κ∗el

−
Re{∂⊥φb(s0)∂‖∂⊥φ

b∗(s0)}
Re{κ∗el}

)}
− εf

2η
Re

{(
ωD

ω

)
i

κel
∂⊥φ

b(s0)∂‖φ
b∗(s0)

}]
.

(5.47)

For the first term, inserting κel =
√

1− iω/ωD/λD yields

εf
η

(
ωD

ω

)
Re
{
∂‖∂⊥φ

b(s0)∂⊥φ
b∗(s0)

}
Re

{
i

κ2
el

}
=
εf
η

2λ2
D

1 + ( ω
ωD

)2
Re
{
∂‖∂⊥φ

b(s0)∂⊥φ
b∗(s0)

}
.

(5.48)
To evaluate the second term, we use that two complex numbers z1 = a1 + ib1 and z2 =
a2 + ib2 satisfy

z1

z2
− Rez1

Rez2
=
b2(a2b1 − a1b2) + i(b1a

2
2 − a1b2a2)

a2(a2
2 + b22)

. (5.49)

Inserting

a1 = Re{∂⊥φb(s0)∂‖∂⊥φ
b∗(s0)},

b1 = Im{∂⊥φb(s0)∂‖∂⊥φ
b∗(s0)},

a2 = Re{κ∗el} =

√
(1 + ω2/ω2

D)1/2 + 1
√

2λD

≈ 1

λD
,

b2 = Im{κ∗el} =

√
(1 + ω2/ω2

D)1/2 − 1
√

2λD

≈ 1

2λD

ω

ωD
,

(5.50)

it is found that

εf
2η
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(2Re{κel})2

(
∂⊥φ
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)}
=

εf
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(
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ω

)2 b2
2a2

2(a2
2 + b22)

(a2b1 − a1b2).

(5.51)
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Since we are considering ω � ωD, this is expanded to lowest order in ω/ωD to find

εf
2η

(
ωD
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)2
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(2Re{κel})2
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∂⊥φ
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Re{κ∗el}

)}
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(5.52)

The third term to lowest order in ω/ωD is found to be

− εf
2η

Re

{(
ωD

ω

)
i

κel
∂⊥φ

b(s0)∂‖φ
b∗(s0)

}
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)
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}
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2
Re
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b(s0)∂‖φ
b∗(s0)

}]
.

(5.53)

Since ∂⊥φb ∼ ∂‖φ
b ∼ φb/d, the last term is found to be an order of d/λD larger than the

two other terms. To lowest order in λD/d, we thus find

vICEO
slip ≈ −ê‖

εfλD

2η
Re
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ωD

ω

)
i

κel
∂⊥φ

b(s0)∂‖φ
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}]
.

(5.54)

The dominant term originally came from the parallel derivative in the electric bulk potential
acting on the electric charge density. We notice that the imaginary part of ∂⊥φb(s0)∂‖φ

b∗(s0)
is multiplied by a factor of ωD/ω as compared to the real part. Since ω � ωD the
streaming is dramatically increased if this product has an imaginary part. As mentioned
previously, [36] studies a simple spatially and timely harmonic electric potential at the
fluid/solid boundary. A single harmonic mode like that cannot have an imaginary part
in ∂⊥φb(s0)∂‖φ

b∗(s0), leading to the reported smallness in the time-averaged streaming.
This is illustrated in the following, alongside a theoretically simple way of "fixing" this
apparent problem of the low streaming amplitude.

Lastly, we write the slip velocity on another form. From Eq. (5.32a) we find the complex
amplitude of the charge per surface area σel(r) that accumulates in the thin Debye layer.

σel(r) =

∫ ∞
0

Zeν(r) dZ = i
ωD

ω
εf∂⊥φ

b(s0). (5.55)

Defining the electric bulk field tangential to the boundary by Eb
‖ (s0) = −∂‖φb(s0), the

slip velocity in Eq. (5.54) can for ω � ωD be written as

vICEO
slip = ê‖

1

2η
Re

{
1

κel
σel(s0)Eb∗

‖ (s0)

}
≈ ê‖

λD

η
〈σ̃el(s0, t)Ẽ

b
‖ (s0, t)〉,

(5.56)

where the notation from Eq. (2.5) has been used. This form is also stated in the early
work of Ajdari from 2000 [8] with no derivation.
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5.3 Examples of linearised induced charge electroosmosis

We proceed the project by studying some examples of ICEO. We seek intuition about the
shape and amplitude of the AC induced steady flow for a given set of boundary conditions
for the potential. The effective electrostatic theory and the reduced expression for the
slip velocity are used to perform a series of analytical calculations that are compared to
numerical simulations. These examples are used for a physical discussion that elaborates
on the nature of the streaming induced by ICEO.

5.3.1 Single mode

Yet again, we consider a rectangular fluid channel of dimensions Hch ×Wch with an yz-
coordinate system centered in the middle of the rectangle as illustrated in figure 5.1. The
strategy will be to chose a desired boundary condition on the electric potential at the top
and bottom boundaries and then proceed to determine the boundary conditions on the
chamber sides afterwards. For a single sinusoidal mode, the boundary conditions on the
electric potential are formulated as

w(y, z = ±Hch/2) = sin

(
πy

Wch

)
, w(y = ±Wch/2, z) = ±w(z), (5.57)

where w(z) is some symmetrical function that we will choose later. The governing equation
for the electric bulk potential is simply the Poisson equation

∇2φb(y, z) = 0. (5.58)

We seek a separable solution of the form φb(y, z) = Y (y)Z(z). A qualified guess for the
shape of the function is chosen as

φb(y, z) = A sin

(
πy

Wch

)
cosh

(
πz

Wch

)
. (5.59)

The boundary condition in Eq. (5.29) for z = ±Hch/2 yields

A cosh

(
πHch

2Wch

)
= V0 ∓ i

ωD

ω

π

κelWch
A sinh

(
± πHch

2Wch

)
, (5.60)

or
A =

V0

cosh
(
πHch
2Wch

)
+ iωD

ω
π

κelW
sinh

(
πHch
2Wch

) . (5.61)

Applying the boundary condition at y = ±Wch/2, we find that

±A cosh

(
πz

Wch

)
= ±V0w(z). (5.62)

Now, choosing that

w(z) =
cosh

(
πz
Wch

)
cosh

(
πHch
2Wch

)
+ iωD

ω
π

κelWch
sinh

(
πHch
2Wch

) , (5.63)
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the solution for the electric bulk potential becomes

φb(y, z) =
V0 sin

( πy
Wch

)
cosh

(
πz
Wch

)
cosh

(
πHch
2Wch

)
+ iωD

ω
π

κelWch
sinh

(
πHch
2Wch

) . (5.64)

With this, we find that

∂yφ
b∂zφ

b∗∣∣
y=±Wch/2

= 0, (5.65a)
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4
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(
2πy

Wch

)
. (5.65b)

Since ê‖(y, z = ±Hch/2) = ∓êy, the slip velocity is given by

vICEO
slip (y = ±Wch/2, z) = 0, (5.66a)

vICEO
slip (y, z = ±Hch/2) = −êy

εfλD

16η

(
π

Wch

)2

|A|2 sinh

(
πHch

Wch

)
sin

(
2πy

Wch

)
. (5.66b)

The solution has the optimal shape for stopping the classical Rayleigh type streaming, but
the amplitude turns out to be vanishingly small. The solution grows towards a maximum
and approximately constant value for frequencies in the regime ωDπλD/Wch � ω � ωD.
In this limit, it is found that

vICEO
slip (y, z = ±Hch/2) ≈ −êy

εfλDV
2

0

16η

(
π

Wch

)2 tanh
(
πHch
Wch

)
cosh

(
πHch
Wch

) sin

(
2πy

Wch

)
. (5.67)

Going back to the standardHch×Wch = 160 µm×375 µm fluid cross section and keeping the
remaining parameters from table 5.1, this corresponds to an amplitude of 3.97×10−14 m/s.
This can also be validated numerically, although the chosen boundary conditions turn out
to produce numerically very unstable solutions, because ∂⊥φb(s0)∂‖φ

b∗(s0) is strictly real.
Since the electric bulk potential is complex, small numerical errors lead to imaginary parts
in this term, which cause large deviations from the analytical expression. With such a
small predicted streaming amplitude and high instability to small variations, this solution
is rather academical and not very interesting for practical purposes.

One should also be aware of the way in which the boundary conditions on the electric
potential were chosen to nicely fit the simple mode in the electric bulk potential. The
boundary condition on the real electric potential happens to be discontinuous in the corners.
As discussed above, this makes the simple mode nonphysical, but one should think of the
mode as a guiding calculation for the overall shape of the potential.

We can use the analytical expression to illustrate the physical reasoning behind this
vanishingly small streaming. The explanation is found from the expression for the charge
density. Since

ν = i
ωD

ω

εfκel

Ze
∂⊥φ

b(s0) e−κelZ , (5.68)

and κel ≈ 1/λD for ω � ωD, the charge density is almost completely out of phase with
∂⊥φ

b(s0). A single mode will drag electric charge towards the surface through its perpen-
dicular gradient and then vanish before the charge density is established. Thus, the parallel
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Figure 5.4: Field plots with Debye layer illustrations of a single ICEO mode shown at
ω = 10πωDλD/W . The black arrows illustrate the electric bulk field Eb = −∇φb, and
the scaling is identical for all plots. The electric bulk potential φb is illustrated in the full
chamber (above), and the electric charge density ρel = Zeν is illustrated in the thin Debye
layer at the bottom boundary (below).

gradient will not get to act on the electric charge density. This is illustrated in figure 5.4,
where field plots of the analytical electrostatic solution are shown for ω = 10ωDπλD/Wch.
The electric field associated with the bulk potential, Eb = −∇φb, is also plotted alongside
ρel = Zeν contours calculated from Eq. (5.32a) at the bottom boundary for the solution
found above. Notice how the electric field lines vanish just as the Debye layer is fully
established. To circumvent this, one could imagine running another mode in phase with
the electric charge density. This possibility is explored in the following subchapter, where
a linear mode is superimposed on a sinusiodal mode.

5.3.2 Double mode

To generate a desired double mode in the electric field, a boundary condition is chosen
as the sum of a sinusoidal and a linear mode at the top and bottom boundaries. The
calculation essentially goes like in the last example. The boundary conditions on the full
electric potential are formulated as

w(y,±Hch/2) =

[
sin

(
2πy

Wch

)
+ eiθ 2y

Wch

]
,

w(±Wch/2, z) = ±
[(

1 + i
ωD

ω

2

κelWch

)
eiθ − i

(
ωD

ω

)
2π

κelWch

cosh
(

2πz
Wch

)
cosh

(
πHch
Wch

)
+ iωD

ω
2π

κelWch
sinh

(
πHch
Wch

)],
(5.69)



5.3. EXAMPLES OF LINEARISED INDUCED CHARGE ELECTROOSMOSIS 61

where θ is the phase constant of the linear mode. The Poisson equation with the boundary
condition in Eq. (5.29) then yields the following solution for the electric bulk potential

φb(y, z) =
V0 cosh

(
2πz
Wch

)
sin
( 2πy
Wch

)
cosh

(
πHch
Wch

)
+ iωD

ω
2π

κelWch
sinh

(
πHch
Wch

) + V0
2y

Wch
eiθ. (5.70)

In the limit of ω � ωD where κel ≈ 1/λD, we approximately have

∂yφ
b∂zφ

b∗∣∣
y=±Wch/2

=0 (5.71)
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(5.72)

where we defined ω∗ = ω2πλD/Wch following the notation in [36]. We notice that one of
the real terms has a factor ω∗/ω, which could make it much larger than the imaginary
terms for small frequencies ω � ω∗ with certain choices of θ. However, when inserted in
Eq. (5.54) the imaginary term is multiplied by the factor ωD/ω. Because ωD is a factor
d/λD larger than ω∗, the imaginary part will indeed always dominate the slip velocity.
Keeping only the imaginary term, we find the slip velocity

vICEO
slip (±Wch/2, z) = 0, (5.73a)

vICEO
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) .

(5.73b)

Again, the slip velocity is of the desired shape. However, this time it is of much larger
amplitude than the expression derived in the previous subchapter. It should be noted that
the direction of the streaming rolls may reverse depending on the chosen value of θ.

The peak amplitude of the slip velocity at y = ±Wch/4 will of course vary with θ. We
will denote the value of θ leading to the maximal peak amplitude by θopt. The expression
vICEO
y,slip (−Wch/4,±Hch/2) is differentiated with respect to θ and by setting this equal to
zero at θopt, it is found that

θopt = tan−1

[
ω

ω∗ tanh
(
πHch
Wch

)]+ nπ, n ∈ N. (5.74)

It turns out that n = even gives the Rayleigh slip velocity, and n = odd produces a reversed
Rayleigh slip velocity. We insert n = 1, and at this choice of θ the slip velocity becomes

vICEO
slip (±Wch/2, z) = 0, (5.75a)

vICEO
slip (y,±Hch/2) = −êyvICEO

sin
( 2πy
Wch

)√
1 + ω2

ω∗2 tanh2
(
πHch
Wch

) , vICEO =
εfV

2
0

ηWch
. (5.75b)
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For the usual parameters, this means that at ω � ω∗ tanh
(
πHch
Wch

)
= 1.5 kHz the peak
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Figure 5.5: Analytical and numerical calculations for a simple ICEO double mode. (a)
the peak amplitude of the parallel slip velocity at the top and the bottom walls of the
fluid channel. (b) numerical and analytical field plots of the electric bulk potential with
added contour lines shown at resonance. (c) numerical and analytical line plots of the
electric bulk potential shown along the black dashed arrow indicated in (b). (d) field plots
of the steady streaming at resonance. (e) parallel slip velocity plotted along the bottom
boundary as indicated by the black dashed arrow in (d).

amplitude of the slip velocity will be vICEO = 2.1 nm/s. This is a factor of d/λD ≈ 105

larger than what was found for the single mode. However, some care should be taken
in terms of this result. Turning back to the boundary condition in Eq. (5.69), we see
that the amplitude of the applied potential at the chamber sides will be much larger
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Figure 5.6: Field plots with Debye layer illustrations of a double ICEO mode shown at
ω = ω∗ tanh

(
πHch
Wch

)
. The black arrows illustrate the electric bulk field Eb = −∇φb, and

the scaling is identical for all plots. The electric bulk potential φb is illustrated in the full
chamber (above), and the electric charge density ρel = Zeν is illustrated in the thin Debye
layer at the bottom boundary (below).

than V0 for ω � ω∗. Luckily, the amplitude of the streaming does not drop particularly
fast for increasing ω, and at e.g. ω = ω∗ tanh

(
πHch
Wch

)
we still have a slip velocity of

vICEO/
√

2 = 1.5 nm/s for |φ(s0)| ∼ V0 = 1mV.
For different choices of θ, there can be finite and non-zero resonance frequencies, and the

direction of the rolls may switch depending on the frequency. This is illustrated in figure
5.5, where the analytical solution is compared to numerics for different θ and varying ω.
Furthermore, field plots of the optimal phase solution are also shown at ω = ω∗ tanh

(
πHch
Wch

)
.

Excellent agreement is seen between the numerical solutions and the analytical expressions
for both the potential and the slip velocity. It turns out that ω∗ tanh

(
πHch
Wch

)
is the resonance

frequency for θ = −π/2. This result is easily shown analytically by inserting θ = −π/2
into Eq. (5.75b) and optimising the amplitude with respect to ω.

The physics behind this much increased streaming is presented in figure 5.6 through
another series of field plots with the Debye layer illustrated. The electrostatic fields are
plotted at ω = ω∗ tanh

(
πHch
Wch

)
for θ = θopt. Now we notice that the linear mode is present

alongside the charge density established by the sinusoidal mode. As the charge density
switches sign, the electric field from the linear mode also turns, leading to a body force
constantly directed towards the center of the chamber. Changing the phase by π will of
course simply reverse this pattern.

Another way of generating the reverse Rayleigh slip velocity is to combine sinusoidal
modes out of phase. When the modes deviate by a full wavelength, a Rayleigh or re-
verse Rayleigh streaming pattern is generated depending on their phase difference. These
solutions do not add much new to the analysis above, and the discussion is left to the
appendix.
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5.4 Higher voltages

To linearise the theory of ICEO and eventually develop the effective theory presented
above, we had to assume that V0 � VT. This led to streaming velocities around 1.5 nm/s
at V0 = 1mV. Extrapolating the linearised theory to higher voltages, Eq. (5.75b) suggests
that one would need around V0 = 260mV or V0 ≈ 10VT to generate streaming of the order
of 100 µm/s. We notice that the required voltage is close to the critical potential calculated
in Eq. (4.22) thus bringing us into the steric regime.

We will not take into account steric effects in this thesis. The guiding value of |v| ≈
100 µm/s is not a strict limit either way, and one could significantly lower this by using
weaker acoustical fields. However, this will also cause a corresponding decrease in the
acoustic radiation force accountable for the wanted particle sorting. Certainly, one will need
to at least leave the linear regime for many experimental purposes. Thus, it is necessary
to study the fully non-linear problem. In the following, we will simulate the full time-
dependent electrokinetic problem, and it is explored how well the linear approximation
describes the qualitative behaviour of the system, when the non-linear effects become
significant.

5.4.1 Numerical implementation

We now implement the full non-linear and time-dependent electrokinetic problem stated
in Eq. (5.1) in COMSOL. Going from a linearised frequency domain calculation to a fully
non-linear and time-dependent calculation will not only complicate analytical calculations,
as numerical computations start to become unstable for increasing non-linearities. The
following study is largely inspired by the work presented in [22].

The oscillation period is denoted by T and given by

T =
2π

ω
. (5.76)

We consider the same mode that we just treated with the boundary conditions in Eq. (5.69).
For the full time-dependent simulations, the phasor notation is discarded, and everything
is implemented as real and time-dependent fields. The optimal phase difference θ = θopt

and ω = ω∗ tanh
(
πHch
Wch

)
are implemented in all simulations. The only varying parameter

will thus be V0 that is gradually increased into the non-linear regime.
To help the full simulations converge, the inconsistency in the boundary condition at

the corners is fixed. Rounded corners of radius R = 1000λD ≈ 9.7 µm are implemented,
and the two symmetry planes in the problem are utilised to simulate only a quarter of the
geometry as illustrated in figure 5.7.

The boundary condition on the potential follows the form from Eq. (5.69) outside of the
curved corner. The potential values at the two edges of the quarter circular corner marked
with red dots in figure 5.7 are denoted φ1 and φ2. From these points, the potential is
"stitched" together by a smooth interpolation function on the quarter circle. The function
is chosen to generate a surface potential, which is both continuous and has a continuous
first-order derivative along the boundary. For this, a third-order polynomial in the corner
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angle ϕ is chosen. The potential values at the two edges are

φ1 = φ(Wch/2, Hch/2−R, t) = Re

{
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(5.77b)

Correspondingly, we have the first-order derivatives along the boundaries

φ′1 = ∂zφ(Wch/2, Hch/2−R, t) = −Re
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(5.78a)

φ′2 = ∂yφ(Wch/2−R,Hch/2, t) = Re
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V0 e−iωt
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(5.78b)

Between the two edges of the rounded corner, the potential takes the form

φcorner(ϕ) = C0 + C1ϕ+ C2ϕ
2 + C3ϕ

3, ϕ = arctan

(
z −Hch/2 +R

y −Wch/2 +R

)
. (5.79)

Now, requiring that

φcorner(ϕ = 0) = φ1, φcorner

(
ϕ =

π

2

)
= φ2, (5.80)

∂ϕφcorner(ϕ = 0) = Rφ′1, ∂ϕφcorner

(
ϕ =

π

2

)
= −Rφ′2,

we find that

C0 = φ1, C1 = Rφ′1, (5.81)

C2 = −2(2πRφ′1 − πRφ′2 + 6[φ1 − φ2])

π2
, C3 =

4πR(φ′1 − φ′2) + 16(φ1 − φ2)

π3
.

To enable COMSOL to get a grasp of the solution, the voltage is gradually ramped up
during the first oscillation period through the function

V0(t) = V∞0
1

2

(
1 + tanh

[
ωt

0.2
− 3

])
. (5.82)

Furthermore, the advective term in the Nernst–Planck equation c±v is only implemented
for t > 0.1T . Hopefully, this does not influence the solutions significantly, as the streaming
is rather low for initial time steps. The generalized alpha solver is used in COMSOL with



66 CHAPTER 5. INDUCED-CHARGE ELECTROOSMOSIS

Figure 5.7: Geometry for full non-linear and time-dependent simulations. The two sym-
metry planes of the problem are utilised to lower computational footprint, and the top
right corner is rounded. The red dots mark the bounds of the interpolation function used
to generate a consistent boundary condition on the potential.

constant time stepping set to dt = T/128 and a damping factor of 0.5. For voltages above
V∞0 = 1mV, the Jacobian of the system was set to update at every iteration to increase
stability.

In the voltage range where the linearised theory is valid, we assume the velocity to
follow the form

v(r, t) = v0(r, t) + v2ω(r, t) cos(2ωt), (5.83)

where the time-dependencies of v0 and v2ω describe an initial transient period until the
flow is fully built up. The solutions can then be time-averaged, and after the transient
period we would expect to find a v0 that is essentially equal to a solution found in the
frequency regime with the linearised theory. This is similar to the method in [22], where
around 1000 oscillation periods were needed to reach a stable solution. In this article,
the transient study was performed for an acoustic resonance that builds up gradually in
time due to constructive interference of waves. We do not expect that nearly as many
oscillations are needed to develop the electrokinetic flow, since this is not resonating in
nature. In the remaining part of the chapter, solutions found in the transient simulations
are denoted with explicit time-dependency φ(r, t) and v(r, t), whereas the solutions found
in the linearised frequency regime are denoted φ(r) and v(r).

The time-average of a field A(r, t) is given by

〈A(r, t)〉 =

∫ t+T/2

t−T/2
A(r, t′) dt′. (5.84)

The integration is performed in Matlab as a fifth-order Romberg integration scheme adapted
from the supplementary material of [22].
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Figure 5.8: Test of the transient period of our ICEO flow at V∞0 = 1mV. (a) the time-
averaged electric potential 〈φ(r, t)〉 in the two points P1 and P2. (b) time-averaged and
normalised fluid velocity components 〈vi(r, t)〉/vi(r) in the two points.

5.4.2 Results

First, we check whether or not we can reproduce a frequency domain result with a tran-
sient simulation at V∞0 = 1mV. For this, we simulate the above mentioned geometry and
boundary conditions in the frequency regime and for the full equations. To check when
a stable solution is reached, we plot the time-average of the physical fields φ(r, t) and
v(r, t) in two different points of the solution for different times. The two chosen points
are P1 = (y1, z1) = (Wch/4, Hch/2 − 5λD) and P2 = (y2, z2) = (Wch/8, Hch/2.5), which
are also illustrated in figure 5.7. The resulting time-averaged fields are found in figure
5.8, where the velocity field components are normalised with respect to those found in the
frequency domain vi(r). We notice some initial oscillations in the time-averaged velocity
field that dampen out exponentially in time. Simultaneously, the time-averaged electric
potential goes towards zero as expected. After 4 to 5 oscillations, the flow appears to
be very stable. The described simulation took approximately 12 minutes per oscillation
period. Unfortunately, this increases to around 8 hours per oscillation period, when the
Jacobian has to update at every iteration for higher voltages. Due to limitations in time,
we go close to the limit of the steady area and only simulate the first four oscillations
corresponding to a best possible time-averaged value evaluated at t = 3.5T . For the case
of V∞0 = 1mV, this still brings us well within 1% of the steady level of the time-averaged
fields, and the assumption will be that this trend continuous for higher voltages.

The time-averaged velocity field at t = 3.5T for the transient V∞0 = 1mV simulation
is shown alongside the corresponding frequency domain simulation in figure 5.9. We see
a remarkably close resemblance between the fields, which serves as a validation of the
compatibility of the respective theories. Both the analytical expression for the electric
potential without the rounded corners and the corresponding effective simulation of the
vertical velocity component are also plotted in the line plots. We notice that the solution
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only got slightly perturbed by fixing the boundary conditions.
Next, the voltage was gradually increased, and the time-averaged velocity was probed

in P1 and P2 as a function of the applied voltage. The resulting values are plotted in
figure 5.10, and the expected scaling of (V∞0 )2 from the linearised theory is plotted on top.
We notice that the linearised theory appears to predict the quantitative values very well
even at V∞0 = 75mV, where the theory was expected to have broken down. This was the
highest voltage where a solution was attained. A field plot of the transient time-averaged
solution compared to the frequency regime calculation can be found in the appendix. The
figure is completely analogue to the one found in figure 5.9, where strong qualitative and
quantitative agreement between the simulations is seen. Further inspection reveals that the
transient theory predicts streaming velocities approximately 1% lower than the linearised
theory at this point.

Higher voltages were also attempted, but for V∞0 = 100mV the described procedure
did not converge. A change to the BFL solver, which should be more stable and well suited
for diffusion/advection problems [37], was also attempted with no resulting convergence.
Due to limitations in time, no further numerical schemes were attempted to solve the
convergence problem for higher voltages.
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Figure 5.9: 1 mV ICEO flow calculated transient and in the frequency domain. (a) field
plots of the velocity fields. Both the frequency domain simulation and the time-averaged
transient results are shown. Line plots are shown along the green dashed arrow at z =
H/2.5. (b) the electric potential calculated with the transient simulations and in the
frequency domain shown at ωt = 3T (the beginning of the fourth oscillation, corresponding
to the real part of the frequency domain φ(r)). The analytical result without the curved
corners from Eq. (5.70) is plotted on top. (c) horizontal component of the time-averaged
velocity field from the transient simulation and from the frequency domain calculation.
The effective simulation without the curved corners is shown on top.
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Figure 5.10: Time-averaged ICEO streaming amplitudes plotted for varying applied volt-
ages at P1 and P2. (a) 〈vy(r, t)〉 plotted in P1. (b) 〈vz(r, t)〉 plotted in P2. The predicted
values from the linearised theory are shown on top.



6 | Combined acoustics and induced
charge electroosmosis

In the previous chapter, our theory of ICEO was based on some surface potential φ(s0, t)
that is evaluated on the stationary chamber walls at s0. When acoustics are applied,
the electric surface potential will be evaluated on a surface shifting its position in time.
Because we now have two separate frequencies (the acoustic and the electric), the notation
ωac is introduced for the acoustic angular frequency, whereas ω remains to be the frequency
of the alternating current. The boundary condition on the potential thus becomes

φ(s0 + s̃1) = Re{V0w(s0 + s̃1) exp(−iωt)}, s̃1 = Re{s1 exp(−iωact)}, (6.1)

where w is some function of the wall position. To take into account the motion of the wall
in the acoustic boundary layer theory, Bach and Bruus [4] made a Taylor expansion in
v(s0 + s̃1), where they assumed smallness of s1 compared to the boundary layer thickness.
The expected wall deflections in microchannels under acoustic actuation are typically of
the order of nanometer, which make them comparable to the thickness of the Debye layer.
This could make for a quite complicated theory of ICEO if the wall motion was to be taken
into account.

Luckily, we found that the desired operating frequency of ICEO, ω ∼ 1500 rad/s,
is around four orders of magnitude lower than the typical acoustic resonance frequency,
ωres ∼ 107 rad/s. Thus, we can reasonably assume the two phenomena to be separated
so heavily in time that they will not influence each other. Physical phenomena on the
timescale of the electric oscillations will happen during thousands of acoustic oscillations.
Due to this, they will appear to happen at the time-averaged wall position. The time-
averaged wall position is of course simply s0 for time-harmonic acoustic actuations.

The non-linear advective term in the Nernst–Planck equation did not influence the DC
electroosmotic problem, but for ICEO at |v| ∼ 100 µm/s this term can heavily influence
the problem. One could then worry that the acoustic streaming would also couple into
the electrokinetic problem through this term. Because the Debye layer is much thinner
than the viscous boundary layer, the acoustic streaming has only reached a fraction of its
maximum value in the Debye layer. As long as equally large acoustic and electroosmotic
streaming is assumed, the electroosmotic streaming will dominate the behaviour of the
ionic advection. The theory of ICEO for streaming velocities of similar magnitude to the
acoustic streaming was formulated as a Stokes flow with a non-linear electric body force.

71
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With the separation in length- and timescales, the two theories should combine trivially
to the sum of the acoustic streaming and the ICEO streaming.

The highest voltage ICEO streaming we managed to simulate at V∞0 = 75mV reached
a peak streaming amplitude of a little over 8 µm/s. Compared to typical acoustic streaming
velocities, this is a bit in the low end but within an order of magnitude of typical values.
The acoustic streaming scales with the square of the driving voltage (or in this thesis the set
displacement amplitude d0), and one can simply lower this to reach an acoustic streaming
peak amplitude of 8 µm/s. This can at least show us theoretically how well the considered
ICEO mode matches the streaming of the acoustic half-wave mode in terms of qualitative
patterns. For the acoustics simulations, the corner is rounded to match the ICEO geometry
from the end of the previous chapter. The rounded corners remain at rest in the acoustics
simulations, and only the vertical sides are actuated. We use the same actuation pattern
as for the standard acoustics simulations given in Eq. (3.9). A new resonance frequency
is probed for by sweeping in frequency and finding the maximal average acoustic energy
density

Eac =
1

4
ρ0|v1|2 +

1

4
κs|p1|2. (6.2)

The resonance frequency fac,res only changes slightly from 1.993MHz to 1.996 MHz. On
resonance, the acoustic first-order pressure and the acoustic streaming qualitatively resem-
ble that of the standard acoustics simulation with the amplitude being slightly lowered.
Lastly, the value of d0 is changed to match the horizontal component of the acoustic
streaming with that of the time-averaged ICEO simulation at V∞0 = 75mV in the point
(y, z) = (Wch/4, Hch/2.5).

The separate streaming patterns are shown together with the sum of the two in figure
6.1. Contours are shown for areas where the streaming amplitude exceeds 0.5 µm/s. For
the combined phenomena, this only happens at the boundaries, where we have a mismatch
between the length scales of the establishment of acoustic streaming and ICEO. Line plots
are also presented of the streaming with a zoom-in on the boundary layer. We notice how
the rapid growth of the velocity field in the Debye layer ends up acting as an offset for the
acoustic streaming that tends close to zero at the end of the viscous boundary layer. This
is of course exactly what was previously captured by using two separate slip velocities in
our study of DC electroosmosis combined with acoustic streaming.
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Figure 6.1: Acoustic streaming combined with ICEO double mode. (a) equally scaled
field plots of the acoustic streaming, the ICEO double mode, and the combined streaming,
respectively. (b) the horizontal velocity component vy (or v2y in case of the acoustic
streaming) plotted along the green dashed arrow in (a). (c) zoom-in on the boundary layer
region marked in (b).
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7 | Conclusion and outlook

The two separate physical phenomena of acoustic streaming and electroosmotic flows were
discussed. We used the Stokes flow formulations of acoustic streaming and DC electroos-
mosis alongside a fast relaxation time of ions due to convection to argue that the two
phenomena combine trivially.

Due to the boundary driven nature of both electroomosis and acoustic streaming, we
were able to suggest potential microfluidic designs with integrated acoustics and controlled
electroomosis that could drastically reduce acoustic streaming. We demonstrated how
optimisation algorithms could be integrated into numerical simulations to optimise the
setups.

We then discussed a series of problems that may be associated with the use of DC
electroosmosis. The problems related to a generation of a tranverse electric field appear
rather tedious to resolve experimentally. A more thorough theoretical study of the potential
solutions to this electrokinetic problem and their influence on the acoustic problem could be
conducted in future work. To circumvent the trouble of the complete electrode screening,
we then turned to a study of induced charge electroosmosis.

We analytically and numerically validated an effective slip velocity for the low voltage
limit of ICEO theory. The effective theory was in turn used to perform analytical calcula-
tions that guided us towards the working principles of an ICEO reverse Rayleigh streaming
pattern. This study led us towards the exploration of multi-mode ICEO, where optimal
phase-differences between the separate modes could be found analytically. The physics
behind a significantly increased streaming through the combination of modes was revealed
to be a manifestation of phase-matching between the electric field of one mode and the
electric charge density generated from the other mode.

The work done in the low voltage regime was extended into the more non-linear regime
through full numerical simulations. These simulations showed strong agreement between
the linearised theory and the time-average of the full non-linear dynamics at unexpectedly
high voltages. We successfully simulated transient electrokinetic flows close to 3VT.

Lastly, we argued that also ICEO combines trivially with acoustic streaming for experi-
mentally relevant driving frequencies due to a vast seperation in timescales. A combination
of a standard acoustics simulation and the strongest simulated ICEO flow suggested that
a significant streaming reduction could be attained through a simple ICEO double mode.

In future work, one could look into the reasoning behind the unexpectedly high area of
validity for the linearised ICEO theory. Furthermore, it would be of practical interest to
extend further into the non-linear regime to reach higher streaming velocities. It would also
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be of interest to gradually increase the realism of the system to include external electrodes.
One could also take into account the presence of a chemically generated surface potential.

For both DC electroomosis and ICEO, we could introduce mechanical vibrations and
a piezoelectric transducer in future work to simulate fully functional microfluidic systems
with integrated acoustics and electroosmosis. With the established effective boundary
layer models, one could also attempt to model full three-dimensional systems to increase
realism. Lastly, we should undergo a more thorough study of optimal materials for said
designs. Our hope is that more elaborate models of these systems could eventually motivate
an experimental study and lead to effective control over the often problematic acoustic
streaming.



A | Analytical Stokes flow above in-
finite half-plane

We here show an interesting analytical calculation connected to the external electrode
tests in chapter 4.2, which turned out not to be very relevant for the project. When the
externally applied potential is low enough that

ZeλD
2kBT

εs
εf
∂⊥φ

s
eq(s0)� 1, (A.1)

we find from Eq. (4.13) that

vEO
2,slip ≈

λDεf
η

∂⊥φ
s
eq(s0)Eext‖(s0). (A.2)

Considering an infinite half-plane at z = 0 over an external cylindrical wire, we find an
approximate slip velocity of the shape

v2(y, 0) = êy
A

y2 +B2
. (A.3)

For at simple incompressible Stokes flow governed by

0 = ∇· v2, (A.4a)

0 = −∇p2 + η∇2v2, (A.4b)

this can be solved analytically. The classical Rayleigh calculation for a Stokes flow with
boundary condition

vRayleigh
2 (y, 0) = êyA cos(ky), (A.5)

yields the solution

vRayleigh
2 (y, z) = Ae−kz

[
êy cos(ky)(1− kz) + êz sin(kz)kz

]
. (A.6)

We now use the following Fourier transformation

F
{ A

y2 +B2

}
=

A√
2π

∫ ∞
−∞

exp(iky)

y2 +B2
dy =

A

B

√
π

2
e−B|k|. (A.7)
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From the inverse Fourier transform, we find that

A

y2 +B2
=
A

B

∫ ∞
0

cos(ky)e−Bk dk. (A.8)

The boundary condition in Eq. (A.3) can thus be formulated as an integral over the
Rayleigh slip velocity, and the full solution can correspondingly be formulated as an integral
over the Rayleigh solutions.

v2y(y, 0) =
A

y2 +B2
=
A

B

∫ ∞
0

cos(ky) e−Bk dk, (A.9)

and for arbitrary z-values

v2y(y, z) =
A

B

∫ ∞
0

cos(ky)e−kze−Bk(1− kz) dk (A.10a)

=
A

B

(B3 + 2B2z + (y2 + z2)B + 2y2z)

B2 + 2Bz + y2 + z2

v2z(y, z) =
A

B

∫ ∞
0

sin(ky) e−kze−Bkkz dk (A.10b)

=
A

B

2yz(B + z)

(B2 + 2Bz + y2 + z2)
.

For the cylindrical wire potential, we have that

A = −λDεs
η

2φ0B

arccosh
(
d
a

) |Eext‖|, B2 = d2 − a2. (A.11)

This solution only resembles that of a finite geometry very close to the Lorentzian slip
actuation. This is illustrated in figure A.1, where the analytical calculation is shown beside
that of a numerical calculation for the finite Hch×Wch = 160× 375 µm geometry. For the
shown simulation, a = 0.1 µm, d = 0.2 µm and φ0 = 1V were chosen. We notice that the
qualitative features of the two solutions differ significantly, even for a, d�Wch, Hch. The
analytical solution simply shoves fluid from left to right, whereas the fluid flow turns into
a roll in the finite geometry. The quantitative features of the high velocity contours are,
however, similar.
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Figure A.1: Flow from a cylindrical wire potential for a finite and infinite geometry. (a)
the analytical solution in Eq. (A.10). (b) numerical solution in the finite geometry.
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B | Combining sinusoidal modes in
ICEO

We consider the ICEO streaming generated by two superimposed sinusoidal modes. From
the effective ICEO theory we see that we essentially want to consider

∇2φb = 0, (B.1a)

φb(s0) = V0w(s0) + i
ωD

ω

1

κel
∂⊥φ

b(s0), (B.1b)

vICEO
slip = (s0) = ê‖

εfλD

2η

(
ωD

ω

)
Im{∂⊥φb(s0)∂‖φ

b∗(s0)}. (B.1c)

The following constants are defined

Ak =
1

cosh
(
kπHch
Wch

)
+ iωD

ω
k2π
κelW

sinh
(
kπHch
Wch

) . (B.2)

We apply the boundary conditions

w(y,±Hch/2) =

[
sin

(
n2πy

Wch

)
+ i sin

(
m2πy

Wch

)]
, (B.3a)

w(±Wch/2, z) = i
ωD

ω

2π

κelWch

[
nAn cosh

(
n2πz

Wch

)
(−1)n + imAm cosh

(
m2πz

Wch

)
(−1)m

]
.

(B.3b)

This leads to the following form of the electric bulk potential

φb(y, z) = V0

[
An cosh

(
n2πz

Wch

)
sin

(
n2πy

Wch

)
+ iAm cosh

(
m2πz

Wch

)
sin

(
m2πy

Wch

)]
. (B.4)

With this electriv bulk potential, we find the slip velocity

vICEO
slip (y = ±Hch/2, z) = 0, (B.5a)

vICEO
slip (y, z = ±Hch/2) = êy

εfλD

2η

(
ωD

ω

)(
2πV0

Wch

)2mn

2
Re{AnA∗m} (B.5b)[

sinh

(
(m+ n)πHch

Wch

)
sin

(
2πy

Wch
(m− n)

)
+ sinh

(
(m− n)πHch

Wch

)
sin

(
2πy

Wch
(m+ n)

)]
.
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In the case of |m− n| = 1, we find a mixture of two sinusoidal modes, where one of them
has the desired Rayleigh slip form. For increasing values of m,n, this form becomes more
and more dominant. This is illustrated in figure B.1, where the normalised slip velocity is
plotted for varying values of m,n. Already at (m,n) = (2, 3), an almost perfect reverse
Rayleigh pattern is reached.
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Figure B.1: Normalised slip velocity for sinusoidal mode combinations.



C | Plot of 75 mV ICEO streaming.
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Figure C.1: 75 mV ICEO flow calculated transient and in the frequency domain. (a)
fields plots of the velocity field. Both the frequency domain simulation and the time-
averaged transient result are shown. Line plots are shown along the green dashed arrow at
z = H/2.5. (b) the electric potential calculated in frequency domain as well as transient
shown at ωt = 3T (the beginning of the fourth oscillation, corresponding to the real part
of the frequency domain φ(r)) (c) horizontal component of the time-averaged velocity field
calculated in frequency domain as well as transient.
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