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Cover illustration: Acoustic streaming in a rectangular channel for a Newtonian and
viscoelastic fluid. Showing the fundamental, but disguised, streaming reversal.



Abstract

Successful label-free and gentle mechanical manipulation of particles is now an out-of-the-
box feature in acoustofluidics. Within acoustofluidics the manipulation of particles goes by
the name acoustophoresis. This is achieved by using liquid-filled microchannels embedded
in an elastic and acoustically hard material, excited by a ultrasound transducer.

In contrast to conventional hard material devices, such as silicon and Pyrex, a soft all-
polymer system has been suggested. Motivated by single-use and low-cost for biotechnical
applications. The acoustic contrast is now between the device as a whole and the sur-
rounding air, which makes it a whole-system resonance. The suggested all-polymer has
proven successful acoustophoresis, however the acoustic streaming has not yet been in-
vestigated in such system. In this thesis the acoustic streaming in such device will be
explored by numerical simulations and compared to conventional hard systems.

A major challenge in acoustophoresis is the ability to manipulate sub-micron sized par-
ticles, since the inherent streaming dominates the particle motion. Effectively working
against any desired manipulation. Motivated by this inherent phenomena we calculate
the particle motion for different sized particles for the all-polymer device.

The next study is modelling and measurements of acoustophoresis in hard microchannels
with soft lids, in collaboration with the Department of Biomedical Engineering at Lund
university. The motivation behind this type of device is fast prototyping and the ability to
suppress streaming due to the soft lid yielding to the fluid motion. The acoustic radiation
force will be compared to measured particle velocities.

Finally we turn to the viscoelastic description of a fluid, focusing on acoustic streaming.
Formerly this has been studied in the low-sonic regime suggesting flow reversal in the
acoustic streaming. In this thesis we turn to model a viscoelastic fluid in the ultrasonic
regime inside a rectangular channel.
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Resumé

Vellykket etiketfri og blid mekanisk manipulation af partikler er blevet en ud af boksen
løsning indenfor akustofluidik. Dette opn̊as ved anvendelse af væskefyldte mikrokanaler
indlejret i et elastisk og akustisk h̊ardt materiale, der er exciteret ved ultralyd. Dette er
en konsekvens af den høje akustiske kontrast mellem den væskefyldte mikrokanal og det
omgivende faste materiale.

I modsætning til konventionelle h̊arde materialer, s̊asom silicium og Pyrex, er der blevet
foresl̊aet et alternativ best̊aende af en blød polymer. Motiveret af engangsbrug og lavpris
materialer til biotekniske anvendelser. Den akustiske kontrast er nu mellem apparatet som
helhed og den omgivende luft, hvilket gør det til en systemresonans. Det foresl̊aede polymer
apparat er nu en realitet indenfor akustoforese, men den akustiske strømning er endnu ikke
undersøgt i et s̊adanne system. I denne afhandling vil anden ordens strømning, i et polymer
apparat, blive udforsket ved numeriske studier og sammenlignet med konventionelle h̊arde
systemer.

En stor udfordring inden for akustoforese er evnen til at manipulere sm̊a partikler (mindre
end én mikrometer i radius), da anden ordens strømningen dominerer partikelbevægelsen,
der modarbejder enhver ønsket manipulation. Motiveret af dette fænomen beregner vi
partikelbevægelsen for forskellige størrelser af partikler i polymer apparatet.

Herefter modellerer vi akustoforese i h̊arde mikrokanaler med bløde l̊ag og sammenligner
med m̊alinger, i samarbejde med Institut for Biomedicinsk Engineering fra Lund Uni-
versitet. Motiveringen bag dette apparat er hurtig prototypefremstilling og evnen til at
undertrykke strømning p̊a baggrund af det bløde l̊ag, der giver efter til væsken. Den aku-
stiske str̊alingskraft vil blive sammenlignet med m̊alte partikelhastigheder.

Endlig vil vi beskrive væsken som værende viskoelastisk og undersøge konsekvenserne her-
af, med fokus p̊a akustisk strømning. Tidligere studier i det soniske regime har antydet
omvendt omdrejning i strømningen. Her vil vi modellere den viskoelastiske væske i ultra-
lydregimet.
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Chapter 1

Introduction

1.1 Acoustofluidics

In the field of microfluidics and lab-on-a-chip systems, microscale acoustofluidics has
emerged. As the name suggest, the concept is to utilize acoustic effects originating from
sound waves in fluids contained in microchannels. The sound waves are typically ul-
trasound in the MHz regime, making the wavelength comparable to the microscale chip
dimensions.

Perhaps the most important effect by introducing ultrasound waves in a fluid microchan-
nel is the ability to manipulate particles gentle, non-invasive and label-free. This effect
goes by the name acoustophoresis. This is now a well-known phenomena and has been
used in many applications; size-independent sorting of blood cells [1], particle trapping
[2] and acoustic tweezing [3]. Many of these applications involves acoustic manipulation
of particles, but as the particle radius gets smaller (<1 µm) the inherent acoustic stream-
ing kicks in and begins to dominate the particle motion. Working against any desired
acoustophoresis. This drives a desire to further understand the acoustic streaming and
eventually invent methods to suppress this phenomena.

The basic design behind an acoustophoretic device is as follows: a microchannel archi-
tecture is constructed in a solid material accomplished by micro milling or cleanroom
techniques. Afterwards a lid is mounted on top enclosing the microchannel. This block
of material is bonded on top of a transducer either by glue or anodic bonding depending
on the materials. The transducer is coupled to an alternating signal at MHz frequencies,
effectively driving the whole system. At the right frequencies, resonances begins to built
up in the system and eventually successful acoustophoresis arise. This is an example of
a system driven by bulk acoustic waves (BAWs). Another way to excite these resonances
is to use surface acoustic waves (SAWs), such a setup requires interdigitated metallic
transducer electrodes on the surface of a piezoelectric material [4].

1



2 CHAPTER 1. INTRODUCTION

Conventional acoustophoresis has been achieved by using materials with high acoustic
impedance, such as Pyrex* and silicon. We will refer to these as hard-wall systems.

These hard-wall systems makes it possible to obtain decoupled resonances due to the high
acoustic contrast. The resonance will then depend on the dimensions of the microchannel
e.g. a microchannel of width 375 µm will have a half-wave resonance at frequency 2 MHz.
Such a device with all its relevance is depicted in Fig. 1.1.

Figure 1.1: (a) Conceptual sketch behind a conventional acoustophoretic device, showing
the hard silicon base microchannel with a Pyrex lid, bonded on top of a transducer coupled
to an alternating signal. The alternating electric potential couples to the piezoelectric
material and elastic waves starts to propagate through the silicon chip. (b) At the right
frequency the elastic waves will match the half-wave resonance as indicated with red
lines. (c) The standing half-wave acoustic pressure field will eventually focus particles
towards the pressure nodal plane due to second order effects. As a consequence to the
high amplitude pressure, acoustic streaming begins to appear as flow rolls, working against
any desired focusing. The figure is adapted from Ref. [5].

*Pyrex is a borosilicate glass material and a registered trademark
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For large scale production and single-use devices, Pyrex and silicon are expensive mate-
rials compared to for example polymers. Especially the polymer polymethylmethacrylat�

(PMMA) has been predicted and observed to be a good choice of material in production
of acoustophoretic devices by [6, H. Bruus and R. Moiseyenko] and the Swedish biotech
company AcouSort AB [7]. However, the resonances are now coupled making it a whole-
system resonance and harder to predict, nevertheless it is still a good choice of material.
This new choice of material challenge the thinking of a hard-wall system.

The acoustic streaming has not yet been investigated in such polymer systems, which sets
the primary motivation for this project. This thesis will focus on polymers as a material
but also as a fluid (solute). The disciplines within acoustofluidic research ranges all the
way from clinical research to fundamental physics and device engineering in between.
This thesis seeks to connect device engineering to fundamental physics with numerical
simulations as a predictive tool.

�commercially known as Plexiglas, Crylux, Acrylite, Lucite, and Perspex
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Chapter 2

Theory

2.1 Continuum mechanics

In the continuum limit both mass and momentum densities are continuously distributed
throughout space and time. The limit can be understood as being the case where infinites-
imal domains of a bulk material holds the same material properties as the bulk itself. This
puts an upper and lower limit for the domain at which the material is observed. The con-
tinuum frame is often used within fluid and solid mechanics, where any field is independent
of coordinate system making the mathematical description that of tensor calculus. The
physical fields of interest within these areas are the mass density ρ(r, t), pressure p(r, t),
velocity v(r, t) and the displacement u(r, t) all continuous functions of position r and
time t. Conservation laws and equations of state are then formulated in terms of these
fields. The velocity of some continuous matter at position r = (x, y, z) is defined as the
center-of-mass velocity.

2.2 Fluid mechanics

For a fluid domain Ω bounded by ∂Ω with surface outward normal n̂ the mass conservation
reads

∂t

∫
Ω
ρdV =

∮
∂Ω

(−n̂) · (ρv) dA. (2.2.1)

If the domain is fixed, the continuity equation can be written as

∂tρ = −∇ · (ρv) or in index notation ∂tρ = −∂j (ρvj) , (2.2.2)

that is the change in mass density is balanced by a mass flux density. Here the Einstein
summation convention is used i.e. summation over repeated index together with the
shorthand notation for the differential operators ∂j ≡ ∂

∂rj
and ∂t ≡ ∂

∂t .

5



6 CHAPTER 2. THEORY

To describe the motion of a fluid we equate the rate of momentum density ρv to the
contributing force densities. Amounting to a momentum flux density tensor Πij and any
external force density contribution fi

∂t (ρvi) = −∂jΠij + fi, (2.2.3)

analogue to Eq. (2.2.2). The tensor Πij contains all sources of momentum transport i.e.
mechanical pressure p, viscous stress tensor τij and momentum density convection ρvivj

Πij = pδij − τij + ρvivj . (2.2.4)

For a Newtonian fluid with dynamic viscosity η0 and bulk viscosity ηb, the viscous stress
tensor τij is linear in the velocity gradient and reads

τij = η (∂jvi + ∂ivj) +

(
ηb −

2

3
η0

)
∂kvkδij . (2.2.5)

The viscous stress tensor is defined such that the bulk viscosity ηb describes internal
friction due to compression i.e. Tr{τ} = ηb∇ · v. For a Newtonian fluid the equation
governing the fluid motion is the Navier–Stokes equation

∂t (ρvi) = −∂ip+ η (∂j∂jvi + ∂j∂ivj) +

(
ηb −

2

3
η

)
∂i∂kvk − ρ∂j (vivj) + fi (2.2.6)

written in the well-known form

ρ (∂t + v · ∇) v = −∇p+ η∇2v +

(
ηb +

1

3
η

)
∇ (∇ · v) + f . (2.2.7)

Here the material derivative appears on the left-hand side comprising the Lagrangian
picture of an accelerating parcel of fluid. Together with Eq. (2.2.2) there are four equa-
tions governing three velocity components vi and the pressure field p, and the system of
equations is closed.

2.3 Sound waves in fluids

Oscillatory variations in the fluid pressure or density is called sound waves and is a direct
consequence of the compressibility. These oscillatory motions causes alternating com-
pression and are thereby manifested in disturbances to the equilibrium condition denoted
with a zero subscript. Variations to the equilibrium fields can be understood within the
framework of perturbation.

Working within fluid dynamics many characteristic scales appear in the governing equa-
tion, concerning the specific problem at hand. These scales form a foundation for the
perturbation. Working with acoustofluidics the ratio between the flow velocity and the
speed of sound appears to be the characteristic perturbation parameter, also known as
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the Mach number denoted Ma. The Mach number is also a direct measure of the density
variations.

If the perturbation is periodic with angular frequency ω = 2πf , where f is the frequency,
one can expand the fields as a Fourier series, making the first order term of the form
f1(r, t) = f1(r)e−iωt. The perturbation expansion to second order for a quiescent fluid can
be written as

ρ(r, t)− ρ0 = ρ1(r)e−iωt + ρ2(r), (2.3.1a)

p(r, t)− p0 = p1(r)e−iωt + p2(r), (2.3.1b)

v(r, t)− 0 = v1(r)e−iωt + v2(r), (2.3.1c)

where the Mach number is implicit in the subscript. Second order terms will in general
have a time-independent component and a component with twice the angular frequency
2ω. In Eq. (2.3.1) the second order fields has already been time-averaged (over one cycle)
and from now on the subscript ”2” can be understood as an implicit time-averaged field.
Throughout this thesis products of any two first order fields implies time-averaging, which
makes the following identity most useful〈

f(r)e−iωtg(r)e−iωt
〉

=
1

2
Re {f(r)∗g(r)} . (2.3.2)

For a field f(r, t) with period T = 2π/ω the time-averaging becomes

〈f(r, t)〉 ≡ 1

T

∫ T

0
f(r, t) dt, (2.3.3)

where the asterisk denotes complex conjugation.

It turns out that the validity of the perturbation expansion is described by the size of
the parameter α = ωd0/c0, with fluid displacement d0, angular frequency ω at which
the system is actuated and the speed of sound c0. Lets say the fluid is displaced with
d0 = 0.1 nm at ω = 2π2 MHz. In water the speed of sound is c0∼1× 103 m/s and the
perturbation becomes correct within the small error α∼10−6. At resonance the Mach
number turns out to be inversely proportional to the acoustic damping factor Γ∼10−5

which makes the perturbation error α∼10−1.

In a quiescent fluid with equilibrium density ρ0, pressure p0 and compressibility κ0 the
first order corrections to the continuity equation Eq. (2.2.2) reads

iωρ1 = ρ0∇ · v1 or iωκ0p1 =∇ · v1 where κ0 =
1

ρ0c2
0

, (2.3.4)

and for the Navier–Stokes Eq. (2.2.6)

−iωρ0v1 = −∇p1 +∇ · τ1. (2.3.5)
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For a Newtonian fluid the viscous stress tensor to first order is

τ1,ij = η0 (∂jv1,i + ∂iv1,j) +

(
ηb −

2

3
η0

)
∂kv1,kδij . (2.3.6)

The gravitational body force has been left out since the wavelength λ of the sound wave is
much smaller than c2/g. At MHz frequencies the relation becomes λ/(c2/g) = g/(fc0) ≈
1× 10−9 so the gravitational body force can safely be ignored.

Assuming adiabatic behaviour the pressure can be expanded in terms of the mass density

p− p0 =

(
∂p(ρ0)

∂ρ

)
S

(ρ− ρ0) +
1

2

(
∂2p(ρ0)

∂ρ2

)
S

(ρ− ρ0)2 +O
(
ρ3
)
, (2.3.7)

where the subscript S denotes constant entropy per unit mass. For a full thermal treatment
we refer to [8, P.B. Muller] and [9, J.T. Karlsen].

Furthermore it turns out that the isentropic derivative in the first term is the isentropic
speed of sound squared c2

0. Collecting terms to second order

p− p0 = c2
0ρ1 +

(
c2

0ρ2 +
1

2

∂c0
∂ρ

ρ2
1

)
, (2.3.8)

identifying the first term as the first order pressure and the term in parentheses as the
second order pressure, both expressed as density variations.

Using the continuity equation Eq. (2.3.4) together with the isentropic relation Eq. (2.3.8)
the divergence of Eq. (2.3.5) becomes

−ω
2

c2
0

[1− iΓ]−1 ρ1 = ∇2ρ1 where Γ = (1 + β)κ0η0ω. (2.3.9)

With the acoustic damping factor Γ and β = 1/3 + ηb/η0.

Now we have a single equation governing ρ1, thereby also p1 since the two are proportional
according to Eq. (2.3.8). For water at MHz frequencies the damping factor Γ becomes
much smaller than one and Eq. (2.3.9) can be approximated by

−k2ρ1 = ∇2ρ1 where k = k0

(
1 +

iΓ

2

)
, (2.3.10)

and the well-known Helmholtz equation appears with complex wavenumber k and acoustic
wavenumber k0 = ω/c0. The approximation is correct within a factor of Γ ≈ 10−5 and
the complex wavenumber implies viscous damping. The same arguments can be made for
the acoustic pressure field p1.
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2.3.1 Acoustic energy density

Propagating sound waves in fluids will transport energy. The question is how much energy
is associated with a sound wave in a fluid. By using thermodynamic relations between
pressure and internal energy, the acoustic energy density Eac becomes the sum of kinetic
and potential energy densities

Eac =
1

2
ρ0

〈
v2

1

〉
+

1

2
κ0

〈
p2

1

〉
. (2.3.11)

Using the identity in Eq. (2.3.2) the acoustic energy density now reads

Eac =
1

4
ρ0|v1|2 +

1

4
κ0|p1|2. (2.3.12)

This quantity will be used as a probe to locate acoustic resonances in the fluid domain.

Acoustic resonance

Acoustic resonance can be understood by considering the case of a fluid slap in between
two infinite walls separated by the distance W , parallel to the (x, z)-plane. The walls are
oscillating in anti-phase with angular frequency ω and displacement amplitude d0, so the
boundary conditions are

v1,y(±W/2, t) = ±ωd0e−iωt. (2.3.13)

Due to invariance in (x, z)-plane the velocity will have a single y-component depending
on the y direction. The velocity will then be irrotational and satisfy Helmholtz equation
with the solution

v1 = ωd0
sin(ky)

sin
(
kW2

)ey. (2.3.14)

By using the continuity Eq. (2.3.4) the acoustic energy density follows directly from
Eq. (2.3.12)

Eac =
1

4
ρ0ω

2d2
0

1

|sin(kW/2)|2
. (2.3.15)

Now the average energy density in the fluid slap can be expanded around the resonance
frequency ωn

Eac =
1

4
ρ0ω

2d2
0

1

|sin(kW/2)|2
≈ ρ0ω

2d2
0

4n2π2

ω2
n

(ω − ωn)2 + Γ2ω2
n/4

, for ω ≈ ωn. (2.3.16)

This shows that if the system is damped with the damping-factor Γ the acoustic energy will
be distributed as a Lorentzian line shape near the resonance frequency ωn. The resonance
condition follows from minimising the denominator in Eq. (2.3.15) i.e. when

kn = n
2π

W
or ωn = n

2πc0

W
, n = 1, 2, 3, . . . . (2.3.17)
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Now the full width ∆ω at half maximum can be calculated from Eq. (2.3.16) and is
∆ω = Γωn defining the quality factor Q as

Q =
ωn
∆ω

=
1

Γ
. (2.3.18)

The quality factor is not only a measure of the width but also a direct measure of how
many cycles is takes to reach the acoustic state.

2.3.2 Time-averaged second order flow: acoustic streaming

Steady acoustic phenomena can be described by the time-averaged second order fields.
These slowly evolving processes can be formulated by averaging the governing equations
over a full oscillation period (one cycle). This also implies that full time derivatives will
average to zero. The second order corrections to the continuity equation becomes

0 = −∇ · (ρ0v2 + 〈ρ1v1〉) , (2.3.19)

and for the Navier–Stokes equation

0 = −∇p2 +∇ · τ2 − ρ0∇ · 〈v1v1〉 . (2.3.20)

For a Newtonian fluid the second order stress tensor is

τ2,ij = η0 (∂jv2,i + ∂iv2,j) +

(
ηb −

2

3
η0

)
∂kv2,kδij . (2.3.21)

Here it is evident that the nonlinearities introduced in Eq. (2.3.20) arises from the inertial
first order terms also known as the Reynolds stress. The steady velocity v2 will be referred
to as the acoustic streaming velocity.

2.3.3 Acoustic radiation force

The acoustic energy density is an example of a steady second order effect which follows
from the product of two first order fields. The acoustic radiation force Frad exerted on
particles due to scattering, is another example of a second order time-averaged effect.

If the fluid contains spherical particles then the acoustic pressure waves will exert a force
on the particles. The force will depend on the acoustic contrast between the particle and
the surrounding fluid, determined by the mass density and compressibility. If the particle
radius a is much smaller than the wavelength λ the particle can be thought of as a point
scatterer. A sound wave in water at MHz frequencies will typically have wavelength of
order λ∼1 mm and particles of interest will have a typical radius a∼µm i.e. a/λ∼10−3.
This makes the point scatterer a good approximation.

This scattering process can be decomposed into incoming waves denoted by the subscript
”in” and a scattered wave effectively described by a monopole and dipole scattering co-
efficients fmp and fdp respectively. To calculate an expression for the radiation force due
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to scattering, begins with the general expression for the force acting on a time-dependent
surface

Frad =

〈∮
∂Ω(t)

σ2 · n dA

〉
, (2.3.22)

this time-dependence arises from the acoustic fields acting on the particle surface.

By expanding the time dependent surface to a fixed far-field surface enclosing the particle,
the calculation reduces to a time-independent integral. The cost of expanding the surface
will be the momentum-flux ρ0 〈v1v1〉 through the fixed surface ∂Ω

Frad =

∮
∂Ω

(σ2 − ρ0 〈v1v1〉) . · n̂ dA. (2.3.23)

In Ref. [10] this integral has been calculated and reads

Frad = −4π

3
a3

[
1

2
κ0Re

{
f∗mpp

∗
in∇pin

}
− 3

4
ρ0Re

{
f∗dpv∗in · ∇vin

}]
. (2.3.24)

Notice how the radiation force scales with the particle volume a3.

Here the scattering coefficients, fmp and fdp, are defined in terms of the non-dimensionalised
material parameters

κ̃ =
κp

κ0
, ρ̃ =

ρp

ρ0
, δ̃ =

δ

a
and γ = −3

2
Re
{

1 + i
(

1 + δ̃
)}

δ̃, (2.3.25)

where the particle parameters are denoted with a subscript ”p”. And so the scattering
coefficients becomes

fmp = 1− κ̃ and fdp =
2 (1− γ) (ρ̃− 1)

2ρ̃+ 1− 3γ
. (2.3.26)

For a standing pressure wave p1 = pa cos(ky) with potential flow v1 ∝ ∇p1 the radiation
force can be evaluated from Eq. (2.3.24) yielding

Frad = 4πΦaca
3k0Eac sin(2k0y)ey with Eac =

1

4
κ0p

2
a, (2.3.27)

defining the acoustic contrast factor

Φac =
1

3
Re {fmp}+

1

2
Re {fdp} . (2.3.28)

This factor also determines the direction of the radiation force. The acoustic radiation
force will be used to calculate particle motions.
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2.4 Linear theory of elastic solids

Since the acoustics essentially originates from the displaced fluid/solid interface, we now
turn to the physical description of an elastic solid with displacement field u(r, t). Again
with a common phase factor e−iωt.

The displacement field u inside an elastic material describes how the material is deformed
under strain. If the strain is small i.e. |∇u| � 1 the strain tensor γij can be written as

γij =
1

2
(∂jui + ∂iuj) . (2.4.1)

The equation of motion is obtained by equating the internal stress, defined in terms of the
stress tensor σij , to the force density which equals the acceleration in the displacement
field. Within acoustics the equation of motion reads

−ω2ρ0ui = ∂jσij . (2.4.2)

The linear theory of elastic solids assume a linear relation between stress and strain

σij = Cijklγkl, (2.4.3)

where Cijkl is called the fourth-order stiffness tensor containing the elastic material param-
eters. For an isotropic homogeneous media the stiffness tensor is completely described by
two elastic parameters. The most common pair of parameters are the Young’s modulus E
and the Poisson ratio σ, which describes homogeneous deformations. The Young’s modu-
lus describes the proportionality between strain and stress for homogeneous deformations

E =
σzz
γzz

, (2.4.4)

where the Poisson ratio is the proportionality between orthogonal strain

σ = −γyy
γzz

= −γxx
γzz

. (2.4.5)

With this set of elastic parameters the stress-strain relation takes the simple form

σij =
Eσ

(1− 2σ) (1 + σ)
δijγkk +

E

(1 + σ)
γij . (2.4.6)

In the Voigt notation the fourth-order tensor Cijkl can be replaced by a second-order
tensor Cαβ leaving out duplicates, which makes the stress-strain relation more compact

σα = Cαβγβ. (2.4.7)

Here the Greek letters implies Voigt notation and runs over six indices. For cubic or
isotropic materials the explicit relation reads

σxx
σyy
σzz
σyz
σxz
σxy

 =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0

0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44





∂xux
∂yuy
∂zuz

∂yuz + ∂zuy
∂xuz + ∂zux
∂xuy + ∂yux

 . (2.4.8)
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For an isotropic media the elastic moduli Cαβ are related to the longitudinal and transverse
speed of sound by the relations

C11 = ρ0c
2
l , C44 = ρ0c

2
t and C12 = C11 − 2C44. (2.4.9)

2.4.1 Piezoelectrics

Classically the acoustofluidic chip is actuated by a piezoelectric transducer in order to
reach MHz acoustic fields. The transducer is bonded directly to the chip which contains the
fluid channel, this complicates the actuation at the interface. To model this piezoelectric
behaviour, the electric forces in a elastic material due to the electric field is considered
a part of the equation of motion. The piezoelectric effect arises from materials with an
intrinsic dipole moment, which then couples to the electric field and thereby the electric
field will induce additional stress in the elastic material.

By introducing the elastic solid to an electric field E amounts to an additional term in the
internal energy per unit volume Ũ . The energy associated with an electric displacement
field Di = εijEj per unit volume is E ·D and the small change in internal energy per unit
volume can be written as

dU = σijdγij + E · dD. (2.4.10)

And so the Gibbs free energy G̃ per unit volume becomes

dG̃ = dŨ − d (E ·D) = σijdγij −D · dE. (2.4.11)

Now the thermodynamic relations are(
∂G̃

∂Ek

)
γij

= −Dk and

(
∂G̃

∂γij

)
E

= σij , (2.4.12)

defining the piezoelectric tensor eij,k as(
∂σij
∂Ek

)
γij

= −
(
∂Dk

∂γij

)
E

≡ −eij,k = −ek,ij . (2.4.13)

The stress due to a linear displacement field coupled to an electric field can be written as

σij =

(
∂σij
∂γij

)
γkl +

(
∂σij
∂Ek

)
Ek = Cijklγkl − eij,kEk (2.4.14)

or in terms of the displacement field

Dk =

(
∂Dk

∂γij

)
γij +

(
∂Dk

∂Ek

)
Ek = ek,ijγij + εkiEi. (2.4.15)
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In this thesis the transducer will be that of a lead-zirconate-titanate ceramic (PZT-Pz26),
with the coupling presented in Voigt notation



σxx
σyy
σzz
σyz
σxz
σxy
Dx

Dy

Dz


=



C11 C12 C13 0 0 0 0 0 −e31

C12 C11 C13 0 0 0 0 0 −e31

C13 C13 C33 0 0 0 0 0 −e33

0 0 0 C44 0 0 0 −e15 0
0 0 0 0 C44 0 −e15 0 0
0 0 0 0 0 C66 0 0 0

0 0 0 0 e15 0 ε11 0 0
0 0 0 e15 0 0 0 ε11 0
e31 e31 e33 0 0 0 0 0 ε33





∂xux
∂yuy
∂zuz

∂yuz + ∂zuy
∂xuz + ∂zux
∂xuy + ∂yux
−∂xφ
−∂yφ
−∂zφ


, (2.4.16)

in the electrostatic regime where E = −∇φ.

2.4.2 Elastic energy

The energy associated with acoustic waves in a solid is very similar to that of the acoustic
energy in a fluid. The time-averaged kinetic energy density Ekin associated with an elastic
wave at angular frequency ω is

Ekin =
1

4
ρ0ω

2|u|2, (2.4.17)

and the elastic potential energy Epot is given by

Epot =
1

2
Cijklγijγkl. (2.4.18)

The time-averaged acoustic energy density for an elastic solid can be written as the sum
of kinetic and potential energy

Eac =
1

4
ρ0ω

2|u|2 +
1

4
Re {(∇u) : σ∗} . (2.4.19)

As for the acoustic energy density in the fluid domain, this quantity will be used to locate
resonances in the solid domain.

2.5 Effective boundary layer theory

2.5.1 The viscous boundary layer

Working with surface phenomena such as interfaces between solid and fluid domains re-
quires understanding of what happens in this region. The characteristic length scale at
which the fluid velocity varies near such an interface happens to be the boundary layer
thickness δ depending on the kinematic viscosity ν0 = η0/ρ0 and angular frequency ω

δ =

√
2ν0

ω
. (2.5.1)
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To understand this length scale consider Stokes second problem; an incompressible fluid
with kinematic viscosity ν0 in contact with an oscillating wall at angular frequency ω i.e.
a common phase factor e−iωt. For an infinite wall in the (x, y)-plane the y-component of
the Navier–Stokes equation reduces to Stokes flow

∂2
zv
δ
y(z, t) = − iω

ν0
vδy(z, t) = −i

2

δ2
vδy(z, t). (2.5.2)

The boundary conditions are written as

Re
{
vδy(0, t)

}
= vδ0y cos(ωt) and vδy(z, t→∞) = 0, (2.5.3)

and the solution to Stokes second problem is

vδy(z, t) = vδ0y eiksze−iωt where ks =
1 + i

δ
. (2.5.4)

Here we have introduced the shear wavenumber ks.

This means that a shear wave travels with phase velocity vshear = ωδ and decays exponen-
tially with the characteristic length δ. For water at MHz frequencies the boundary layer
thickness is δ ≈ 0.5 µm so vshear ≈ 3.5 m/s � c0. This region becomes very important
within the work of acoustic streaming, where the steady time-averaged fields are defined
through the boundary conditions at the wall.

In general any vector field can be written as a Helmholtz decomposition v = vd1 +vδ1 where

∇× vd1 = 0 and ∇ · vδ1 = 0, (2.5.5)

it turns out that the δ-field corresponds to an incompressible boundary layer field as for
Stokes second problem. The d-field is a potential field accounting for the compressional
effects.

2.5.2 The Lagrangian no-slip boundary condition

Close to a wall the no-slip conditions has to be fulfilled at any time, if the walls are
displaced by an amount s (s0, t) = s0 + s1(s0)e−iωt around the equilibrium position s0 the
no-slip condition reads

v (s (s0, t) , t) = −iωs1(s0)e−iωt

= v1 (s0, t) + 〈s1 · ∇v1〉
∣∣∣∣
s0

+ v2 (s0) +O
(
s2

1

)
.

(2.5.6)

This implies the first and second order Lagrangian no-slip conditions

v1 (s0, t) = V0
1 (s0) e−iωt and v2 (s0) = −〈s1 · ∇v1〉

∣∣∣∣
s0

, (2.5.7)
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where V0
1 (s0) = −iωs1(s0). The expansion in Eq. (2.5.6) is valid when the parallel dis-

placement of the wall is very small compared to both the acoustic wavelength and the
curvature radius of the wall, furthermore the validity requires a boundary layer much
larger than the perpendicular displacement.

As a consequence to the Lagrangian no-slip boundary condition the first order no-slip
condition can be written as

vδ01 = V0
1 − vd0

1 , (2.5.8)

where the zero superscripts denotes a surface field, which is only non-zero at the wall.
This condition will be used later to assess certain limits.

2.5.3 First-order acoustic pressure

In Ref. [11] they considered the separation of the short-ranged δ-field and the long-ranged
d-field to formulate a boundary condition for the acoustic pressure field, which takes the
viscous boundary layer effects fully into account. This can be summarised by the usual
Helmholtz equation governing the acoustic pressure

∇2p1 + k2
cp1 = 0, kc =

(
1 + i

Γ

2

)
k0, (2.5.9)

with the compressional wavenumber kc. By including the viscous boundary, the boundary
condition at a wall with surface inward normal n̂ and inward normal derivative ∂ζ = −n̂·∇
turns out to be

∂ζp1 =
iωρ0

1− iΓ

(
−n̂− i

ks
∇
)
·V0

1 −
i

ks

(
k2

cp1 + ∂2
ζp1

)
for r ∈ s0. (2.5.10)

This is actually the first order no-slip condition Eq. (2.5.8) in terms of the acoustic pressure
field. Now vδ1 has been included analytically and the bulk field vd1 is a potential flow in
terms of the p1

vd1 = −i
1− iΓ

ωρ0
∇p1. (2.5.11)

2.5.4 Second-order acoustic streaming

The long-ranged steady second order velocity vd2 can be considered incompressible when
Γ� 1 and the governing equations are

∇ · v2 = 0, (2.5.12a)

−∇
[
pd2 −

〈
Ldac

〉]
+ η0∇2vd2 +

Γω

c2
0

〈
Sdac

〉
= 0. (2.5.12b)
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This equation has the same form as an incompressible Stokes flow driven by the body force
Γω
c20

〈
Sdac

〉
. Here, we have introduced the long-ranged time-averaged acoustic Lagrangian

density
〈
Ldac

〉
and the time-averaged energy-flux density

〈
Sdac

〉
defined as〈

Ldac

〉
=

1

4
κ0|p1|2 −

1

4
ρ0

∣∣∣vd1∣∣∣2 and
〈
Sdac

〉
=
〈
p1v

d
1

〉
. (2.5.13)

In addition to
〈
Sdac

〉
the viscous streaming is defined via the slip boundary condition,

which can be written component-wise as

vd0
2 = (A · êξ) êξ + (A · êη) êη + (B · êζ) êζ for r ∈ s0. (2.5.14)

Here the Greek letters ξ, η and ζ defines a right-handed curvilinear coordinate system
with outward normal direction ζ and tangent directions ξ and η. The slip vectors A and
B are

A = − 1

2ω
Re

{(
vδ01

)∗
· ∇

(
1

2
vδ01 − iV0

1

)
− i
(
V0

1

)∗ · ∇vd1

+

[
2− i

2
∇ ·

(
vδ01

)∗
+ i
(
∇ ·

(
V0

1

)∗ − ∂ζ (vd1ζ)∗)]vδ01

}
,

B =
1

2ω
Re
{

i
(
vd0

1

)∗
· ∇vd1

}
.

(2.5.15)

These equations lay the foundation for the effective boundary layer theory for an arbitrary
curved surface.

2.6 Viscoelastic fluids

Materials which exhibits both viscous and elastic properties are called viscoelastic or soft
materials e.g. polymer solutions, colloidal systems and polymer melts. These materials
can be characterised by a stress relaxation modulus G(t).

If the strain ∆γij,n happens at time tn the stress τij at time t is given by

τij(t) = G(t− tn)∆γij,n, (2.6.1)

where index i and j refers to the tensor components and n is the summation index.

Assuming linear superposition the stress becomes

τij(t) =
N∑
n=1

G(t− tn)∆γij,n. (2.6.2)

In the continuous limit the sum can be replaced by an integral

τij(t) =

∫ t

−∞
G(t− t′) γ̇ij(t′) dt′, (2.6.3)
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where γ̇ij(t
′) =

dγij(t
′)

dt = (∂jvi + ∂ivj) (t′) is the rate of strain containing the velocity
gradient.

The lower limit is rather arbitrary as long as it contains the time at which the strain began
and has been set to −∞ for mathematical convenience. Eq. (2.6.3) forms the simplest
linear viscoelastic model between stress and rate of strain. The relaxation modulus can
be assumed to have the form

G(t) =
η0

λ
e−t/λ. (2.6.4)

Evaluating this form of relaxation in Eq. (2.6.3)

τij(t) =
η0

λ

∫ t

−∞
e−(t−t′)/λ γ̇ij(t

′) dt′, (2.6.5)

known as the Maxwell constitutive equation. A differential equation with Eq. (2.6.5) as
solution is

τij + λ
∂

∂t
τij = η0γ̇ij . (2.6.6)

This equation is known as Jeffrey’s model and forms a differential equation for τij . If the
system is driven by the angular frequency ω the characteristic viscoelastic scaling becomes
λω, also known as the Deborah number denoted De.

It turns out that by going from a curvilinear system to a fixed coordinate system the
operator ∂

∂t should be replaced with the upper-convected time derivative defined as

∇
Aij = ∂tAij + vk∂kAij −Aik∂kvj − ∂kviAkj , (2.6.7)

for an arbitrary tensor Aij . This was derived by J. G. Oldroyd in 1950 and also goes by
the name Oldroyd derivative [12] . The constitutive equation can now be written as

τij + λ
∇
τij = η0γ̇ij , (2.6.8)

this form is known as the convected Jeffrey’s model and forms a quasi-liner differential
model. For a complete derivation of this we refer to Ref. [13].
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2.6.1 Perturbation within the convected Jeffrey’s model

To model a viscoelastic fluid using the convected Jeffrey’s constitutive equation defined in
Eq. (2.6.8), requires a model of τ1 and τ2 defined in the perturbation scheme Eq. (2.3.5)
and Eq. (2.3.20). To first order the upper-convected time derivative Eq. (2.6.7) reduces
to ∂t and for the harmonic driven system Eq. (2.6.8) becomes

τ1 = η(ω)
(
∇v1 + (∇v1)T

)
, (2.6.9)

where the dynamic viscosity now depends on the angular frequency

η(ω) =
η0

1− iωλ
. (2.6.10)

To second order, the stress tensor reads

τ2 =η0

[
∇v2 + (∇v2)T

]
− λ

[
〈(v1 · ∇) τ1〉 − 〈τ1 · ∇v1〉 −

〈
(∇v1)T · τ1

〉]
.

(2.6.11)

In the viscous limit λ = 0 the stress tensor reduces to the incompressible Newtonian fluid.
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Chapter 3

Numerical implementation in the
COMSOL software

Now that the relevant continuum fields has been introduced together with the conservation
laws and we are ready to describe the numerical implementation.

3.1 Finite elements and the weak formulation

The finite element method (FEM) is a method to solve partial differential equations. The
idea is to discretise a domain Ω bounded by ∂Ω (Fig. 3.1) into finite elements, making it
possible to approximate any field by a finite basis, defined on each element. Consider a
physical field g(r), this field can be approximated in terms of the finite basis

g(r) =
∑
n

anĝn(r), (3.1.1)

defined by the set of test functions {ĝn} and expansion coefficient an. The test functions
are defined on each element with a finite overlap as sketched in Fig. 3.1. The test functions
ranges from unity at the mesh vertex and decays to zero at the neighbouring nodes, the
sketch indicates linear test functions, however in the numerical model the test functions
will be polynomials of order higher than two.

This basis will be used to calculate approximate solution to equations of the strong form

∇ · J− F = 0. (3.1.2)

Here J can be appreciated as a generalised flux driven by the force F , luckily almost every
conservation law can be formulated in this way.

21



22CHAPTER 3. NUMERICAL IMPLEMENTATION IN THE COMSOL SOFTWARE

The weak formulation is now established by projecting the test function onto Eq. (3.1.2)∫
Ω
ĝm(r) [∇ · J [g(r)]− F (r)] dV = 0, for all m. (3.1.3)

For a linear flux operator we have J[g(r)] =
∑

n anJ[ĝn(r)] and the weak formulation can
be written as a matrix inversion problem

K · a = F, (3.1.4)

where the stiffness matrix K and force vector F are defined as

Kmn =

∫
Ω
ĝm(r)∇ · J[ĝn(r)] dV and Fm =

∫
Ω
ĝm(r)F (r) dV. (3.1.5)

Solving Eq. (3.1.2) has now been formulated in terms of a matrix problem determining
the expansion coefficients {an} through matrix inversion.

Figure 3.1: Finite element method: 2D depiction of two overlapping test-functions ĝk and
ĝj in the discretised domain Ω centred over node k and j, respectively. The test functions
are spanned by the neighbouring nodes to node k and j. Note that the tent-shape of these
basis functions is due to linear (first order) polynomials describing the decrease from value
1 to 0 on neighbouring nodes.

3.1.1 Boundary conditions in COMSOL

Physical systems are uniquely defined by their boundary conditions and by using Gauss’
theorem on Eq. (3.1.3) we can immediately address the boundary value problem∫

∂Ω
ĝmn̂ · J dA−

∫
Ω

(ĝmF +∇ĝm · J) dV = 0. (3.1.6)

This makes it easy to describe the boundary conditions via the term n̂·J either by imposing
a constraint on the flux

n̂ · J = N(r) for r ∈ ∂Ω (3.1.7)
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known as a Neumann boundary condition or by a constraint on the field

g(r) = D(r) for r ∈ ∂Ω, (3.1.8)

known as a Dirichlet boundary condition.

Now it is a matter of implementing the weak formulation within the finite element method
numerically. This has been done in the commercial available software COMSOL Multiphysics®

5.4 making it straight forward to work with the weak formulation using the predefined
”Weak Form PDE” physics package [14]. This software package will be referred to as
COMSOL.

3.2 Numerical convergence

Doing numerical simulations requires some kind of numerical convergence criteria. In this
section the reference model system will be tested by mesh convergence, defined by the
convergence parameter

C[g] =

√∫
|g(r)− gref(r)|2 dA∫
|gref(r)|2 dA

, (3.2.1)

taking any field g as input and comparing it to the best resolved solution gref. By definition
C → 0 as g → gref. This criteria is adapted from Ref. [15].

The reference model system comprises a solid domain with displacement field u and a fluid
domain with acoustic pressure p1 and second order velocity v2. In order to make a mesh
convergence a mesh scale needs to be defined for each domain, in this case the wavenumber
k−1

0 = ω/c0 for the fluid domain and the transverse wavenumber kt = ω/ct for the solid
domain, where the mesh is homogeneously distributed throughout both domains*.

The mesh scale factors are (k0nmesh)−1 and (ktnmesh)−1, where the convergence is made
in the interval from nmesh = 1 to nmesh = 15, in steps of one with reference solution
nmesh = 30.

First a mesh convergence is carried out for a coupled system with homogeneous mesh
throughout both domains plotted in Fig. 3.2.(A), using the effective boundary layer theory
presented in Section 2.5. For the homogeneous distributed mesh, the best solution nmesh =
30 corresponds to 344 050 domain elements and 2274 boundary elements, effectively solving
for 3 160 261 degrees of freedom (DOF).

*homogeneous in the sense that the mesh density is spatially constant in both domains.
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Figure 3.2: Mesh convergence parameter for different mesh settings plotted on a semilog
scale. (A) Coupled system with homogeneously distributed mesh. (B) Decoupled system
with homogeneously distributed mesh. (C) Coupled system where the interface is resolved
at 100δ/mmesh.

By choosing the maximum allowed numerical error to be C = 2× 10−2, the homogeneous
mesh setting does not reach the desired criteria. However in a decoupled system where
the displacement field does not couple to the acoustic pressure the convergence criteria
happens already at nmesh = 2 for all the fields. This is indicated as dashed lines in
Fig. 3.2.(B). By choosing these mesh scalings for each domain and combining it with a
better resolved interface 100δ/mmesh, meaning that the boundary nodes is equidistant
separated by 100δ/mmesh. The coupled system converge to the desired value at nmesh = 2
and mmesh = 8 resulting in 16 534 domain elements and 598 boundary elements, effectively
solving for 181 771 degrees of freedom (DOF).

This convergence analysis emphasise how important it is to resolve the interface between
two coupled fields, where the individual domains can be rather coarse resolved.



Chapter 4

Reference model system

The focus of this thesis will primarily concern the microfluidic device sketched in Fig. 4.1.
The device consist of a solid chip of length Lsl = 5.0 cm and width Wsl = 3 mm on top of
a piezoelectric transducer having the same length as the solid and width Wpzt = 10 mm.
Inside the chip there is a fluid microchannel with height Hfl = 150 µm and width Wfl =
375 µm. In Fig. 4.1.(B) the slit size inside the transducer is denoted ∆W = 100 µm,
this slit has been cut in order to achieve a push pull effect appropriate for the acoustic
resonance. The design of the end-channel/outlet depends on the desired acoustophoretic
outcome, that is why it has been left out. One example is to let the flow channel end in
a trifurcation, making it possible to separate and/or concentrate the particles from the
medium [16].

This design is used by the Swedish biotech company AcouSort AB and patented by H.
Bruus and R. Moiseyenko. AcouSort is specialised in standalone laboratory products
and integrated OEM* solutions based on ultrasound, with focus on commercializing the
products. The company was founded in 2010 by four professors situated at Lund university
and in 2017 the company went public at the Swedish stock AktieTorget.

This section will provide the necessary equations and boundary conditions in order to
model such systems . The physics has been simplified to two dimensions, since the length
of the device is large compared to the width and we can assume invariance in the x-direction
close to mid-channel length. Plus the flow in the length direction can be assumed laminar
working with microfluidics. The 2D model cross-section is taken to be right in between
the inlet and outlet and the cross-section is shown in Fig. 4.1.(B) with dimensions in Table
4.1.

*original equipment manufacturer
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Figure 4.1: (A) 3D view of the full acoustic device; solid chip (light gray) on top of a
piezoelectric transducer (dark gray). (B) Enlarged cross-sectional view of the acoustic
device with fluid channel (blue) inside the solid base material (light gray), later the lid
and base will be of different materials, the lid is indicated as a dashed line.

Table 4.1: Dimensions for the reference device with a transducer slit size of ∆W = 100 µm.

Parameter base lid PZT fluid (fl) Unit

Width, Wi 3000 3000 10,000 375 µm
Height, Hi 1000 175 1000 150 µm
Length, Li 5.0 5.0 5.0 4.0 cm

4.1 Governing equations

The governing equations has already been established in Chapter 2. This model will
couple the acoustic fields to the displacement in the solid, all of which originates from the
transducer coupled to an alternating signal with angular frequency ω. The piezoelectric
effect couples the displacement and electric field and the alternating signal makes it a
harmonic disturbance throughout the system.

Throughout this chapter the weak form Eq. (3.1.3) will be used to implement the gov-
erning equations in the COMSOL software, that is why we need equations of the strong
form Eq. (3.1.2). Both the transducer and the base has the displacement field u governed
by Eq. (2.4.2) according to linear theory of elastic solids. It is straight forward to con-
vert Eq. (2.4.2) to the strong form in terms of Voigt notation written out explicitly in
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Eq. (2.4.8), and the strong form governing the displacement field is

J
(u)
ij = σij , (4.1.1a)

F
(u)
i = ρ0ω

2 (1 + iΓsl)
2 ui. (4.1.1b)

The artificial damping factor Γsl has been substituted ω → ω (1 + iΓsl) in order to mimic
the damping inside the solid. The equations governing the linear displacement inside
the piezoelectric transducer are also of the form Eq. (4.1.1) with an additional coupling
between the electric field and the linear displacement.

In the electrostatic regime we write E = −∇φ and the weak form governing the electrical
potential φ is

J
(φ)
k = Dk = ek,ijγij − εki∂iφ, (4.1.2a)

F (φ) = 0, (4.1.2b)

which is exactly the quasi-static equation

∇ ·D = 0. (4.1.3)

The coupling between displacement and electric potential for the PZT ceramic Pz26 are
best illustrated in terms of Voigt notation explicit in Eq. (2.4.16).

For the first order acoustic pressure field the governing equation is the continuity equation
Eq. (2.3.4) so

J
(p1)
i = 0, (4.1.4a)

F (p1) = −∂iv1,i + iωκ0p1. (4.1.4b)

The first order acoustic velocity field is governed by the linear Navier–Stokes equation
Eq. (2.3.5) written in strong form as

J
(v1)
ij = −p1δij + τ1,ij = −p1δij + η0 (∂jv1,i + ∂iv1,j) +

(
ηb −

2

3
η0

)
∂kv1,kδij , (4.1.5a)

F
(v1)
i = −iρ0ωv1,i. (4.1.5b)

For the effective boundary layer theory the acoustic pressure is governed by the Helmholtz
equation Eq. (2.5.9) with compressional wavenumber kc

J
(p1)
i = ∂ip1, (4.1.6a)

F (p1) = −k2
cp1. (4.1.6b)

Turning to the second order time-averaged fields, starting with the pressure p2 governed
by continuity equation Eq. (2.3.19)

J
(p2)
i = ρ0v2,i + 〈ρ1v1,i〉 , (4.1.7a)

F (p2) = 0, (4.1.7b)
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and the steady second order time-averaged velocity v2 governed by the second order
Navier–Stokes equation

J
(v2)
ij = −p2δij + τ2,ij − ρ0 〈v1,iv1,j〉 (4.1.8a)

= −p2δij + η0 (∂jv2,i + ∂iv2,j) +

(
ηb −

2

3
η0

)
∂kv2,kδij − ρ0 〈v1,iv1,j〉 ,

F
(v2)
i = 0. (4.1.8b)

Again the second order time-averaged acoustic fields can be written differently using
the effective boundary layer theory. The second order pressure field is still governed
by Eq. (4.1.7) but the second order bulk velocity field is now a Stokes flow where

J
(vd2)
ij = −

(
pd2 −

〈
Ldac

〉)
δij + η0∂jv

d
2,i, (4.1.9a)

F
(vd2)
i = −Γflω

c2
0

〈
p1v

d
1,i

〉
. (4.1.9b)

Now the first order acoustic fields serves as source terms in the equations governing the
second order fields and couples via the governing equations. The displacement and acoustic
fields is not coupled via the governing equations but will couple through the boundary
conditions.

4.2 Boundary conditions

Any physical system is unique in terms of the given boundary conditions, these conditions
for the acoustofluidic device sketched in Fig. 4.1 will now be presented, starting with the
ambient air surrounding the device. Here we impose zero stress across all boundaries
facing the air, corresponding to (1,2,3,4b) in Fig. 4.2, that is

n̂ · σ = 0 for r ∈ (1, 2, 3, 4b). (4.2.1)

The actuation driven by the PZT transducer will be modelled as an idealized boundary
condition due to simplification and the desire to get elementary understanding of the
system. This idealized push-pull actuation can be written as

u = −sgn(y)d0êz for r ∈ (4a, 4c). (4.2.2)

Same procedure as in previous work Ref. [6, 17], where it is pointed out that an amplitude
of d0 = 0.1 − 0.3 nm predicts realistic acoustic scales measured in Ref. [15]. Numerically
the boundary condition is implemented as a constraint on the displacement field.
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Figure 4.2: 2D sketch of the model including the simplified boundary condition, repre-
senting the actual PZT transducer (black arrows). Each boundary is numbered with an
ID in order to ease the references.

The displacement field and the acoustic fields couples on the interface separating the two
domains via the continuous stress and velocity condition. The continuous velocity across
the fluid-solid interfaces can be written as

n̂ · v1 = ∂tu · n̂ = −iωu · n̂ for r ∈ (5, 6, 7, 8), (4.2.3)

in COMSOL this is implemented as a Dirichlet boundary condition.

The fluid exerts a normal stress on the solid which serves as a weak contribution to the
normal stress in the solid

n̂ · σ = −p1n̂ for r ∈ (5, 6, 7, 8). (4.2.4)

The time-averaged second order pressure enters only as a gradient in the equations. This
makes the second pressure level arbitrary, and we average it to zero for the entire domain.
This sets the global constraint ∫

∂Ω
p2 dA = 0. (4.2.5)

For the second order time-averaged velocity v2 the no-slip sets a boundary condition. This
is also described in Eq. (2.5.6) and reads

〈v2〉 = −〈(u · ∇) v1〉 for r ∈ (5, 6, 7, 8), (4.2.6)

originating from Stokes drift.
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4.2.1 Effective boundary layer conditions

In the limit of weakly curved and thin boundary layers the effective boundary layer theory
can be applied. This allows for numerical ease since the boundary layer effects are included
analytically, hence the boundary layer does not have to be resolved in the numerical model.
This makes it preferable over the complete acoustic model presented above. The governing
equations were that of Helmholtz equation governing the acoustic pressure and Stokes flow
for the time-averaged second order velocity. These equations were presented in the weak
form Eq. (4.1.6) and Eq. (4.1.9).

The boundary condition for the first order stress are qualitatively the same as the contin-
uous stress across boundaries, however by inclusion the boundary layer effects amounts to
an additional term in Eq. (4.2.4) due to the viscous shear stress

n̂ · σ = −p1n̂ + iksη0

(
V0

1 +
i

ωρ0
∇p1

)
for r ∈ (5, 6, 7, 8). (4.2.7)

This is implemented as a weak contribution to the linear displacement field. The contin-
uous stress condition on the fluid is now

∂ζp1 =
iωρ0

1− iΓ

(
−n̂− i

ks
∇
)
·V0

1 −
i

ks

(
k2

cp1 + ∂2
ζp1

)
for r ∈ (5, 6, 7, 8). (4.2.8)

This condition is also implemented as a weak contribution to the acoustic pressure field.

The second order slip velocity defines the boundary condition for the time-averaged second
order bulk velocity field vd2 as presented in Eq. (2.5.15). For the given 2D acoustofluidic
system, with unit normal vector n̂ and unit tangential vector t̂, the condition reduces to

vd2 =
(
Ay t̂y + Az t̂z

)
t̂ + (Byn̂y + Bzn̂z) n̂. (4.2.9)



Chapter 5

Selected acoustofluidic devices

Using the numerical model presented in Chapter 4 we demonstrate how acoustophoresis
can be accomplished in conventionally hard systems, where the microchannel is embedded
inside Pyrex bonded to a piezoelectric transducer. Following R. Moiseyenko and H. Bruus
[6], the idea of an all-polymer system is also evaluated as an acoustophoretic device.
As mentioned the all-polymer based device has already been proposed and used by the
Swedish biotech company AcouSort and some of the content serves as a verification against
the numerical results presented in Ref. [6].

Typically transducers of thickness 1 mm will be most active in the low MHz regime, this
is also the reasoning for choosing a fluid channel width Wfl = 375 µm matching the wave-
length. The frequencies of interest will therefore be in the range from 1 MHz to 2.1 MHz.
The system will be actuated by the idealized anti-symmetric push pull indicated in Fig. 4.2,
with a displacement amplitude of d0 = 0.3 nm.

5.1 Acoustic contrast

We start by considering Pyrex as the surrounding material. Pyrex is a glass type material
mainly composed of SiO2. The material parameters for Pyrex are given in Table A.3.
Here the specific impedance in the solid Zsl, is defined in terms of the longitudinal speed
of sound

Zsl = ρslcl. (5.1.1)

For Pyrex this equals Zpy = 12.47 MPa s/m and for water it is Zwa = 1.49 MPa s/m, which
sets a huge contrast in acoustic properties. The huge difference in impedance makes sound
waves almost completely confined to their respective domains, i.e. no transmission. This
can be understood by considering the reflection coefficient R defined as the ratio between
the energy-flux density in the reflected compared to the incident wave. At a plane surface
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separating two infinite materials, the reflection coefficient at normal incidence is given as

R =

(
Z̃ − 1

Z̃ + 1

)2

where Z̃ =
Zsl

Zfl
. (5.1.2)

This is of course not the whole story, since the transmitted waves in the solid domain also
consist of shear waves and not only longitudinal, but for normal incidence we see only
longitudinal waves in both domains.

The reflection coefficient is plotted in Fig. 5.1 as a function of the relative impedance Z̃,
this shows how the wave becomes completely reflected when Zsl � Zfl or Zsl � Zfl, and
complete transmission at Z̃ = 1. For Pyrex more than 50% of the wave is reflected, that
is why we call it a hard material. Whereas the polymers polydimethylsiloxane (PDMS)
and PMMA are close to one making it soft acoustic materials.

This brief analysis was carried out to outline the concept of acoustic contrast and how it
affects wave propagation. A complete description of transmission and reflection in a finite
cavity remains.

Figure 5.1: Reflection coefficient as a function of relative impedance between solid and
fluid. Typical solid materials used for acoustofluidic devices are indicated with name and
point.

5.2 Hard material device

To see the effect of embedding a water channel inside the Pyrex in terms of acoustic

resonances, the acoustic energy in the solid E
(sl)
ac is probed with and without the water-

filled channel. This is presented in Fig. 5.2.(A). The water parameters at 25 ◦C are given
in Table A.1.

Without the water channel there seems to be three distinct resonances and by including
the water one more resonance appear at f = 1.851 MHz, where the other resonances seems
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to shift down in frequency. In Fig. 5.2.(B) the absolute acoustic energies according to

E(sl)
ac =

∫
Ωsl

E(sl)
ac dA and E(fl)

ac =

∫
Ωfl

E(fl)
ac dA (5.2.1)

are calculated. This shows how the water contains more energy at f = 1.851 MHz even
though the solid domain is sixty times larger. The same can be said about the densities,
where the water has an exceptional high acoustic energy density of 1935 Pa compared to
20 Pa in the Pyrex. This is clear evidence of a decoupled water channel resonance due
to the high acoustic contrast Zpy/Zwa � 1. Further evidence of a decoupled resonance is
the frequency itself. Lying close to the half-wave resonance of the water cavity, which is
f = c0/(2Wfl) = 2.00 MHz, indicated as a dashed line in Fig. 5.2.

Figure 5.2: (A) Elastic energy spectrum with and without the fluid channel on a logarith-
mic scale. (B) Acoustic energy spectrum in the Pyrex and water domain. The dashed line
indicates the distinct half-wave water resonance.

5.3 Acoustophoresis

As already touched upon in the introduction, the ability to manipulate particles inside
fluid cavities is known as acoustophoresis. The focusing of particles originates from the
acoustic resonances inside the fluid cavities which is the reasoning behind probing the
acoustic energy as we sweep in the frequency domain.

The resonance will appear as peaks in the energy spectrum as seen in Fig. 5.2. These
resonances represents configurations where the system contains an exceptional amount of
energy. But it is hard to qualify the acoustophoresis by looking at the energy spectrum
alone. In order to do so, the acoustic radiation force Eq. (2.3.24) is calculated according
to the weighted averages

F̄y =
1

WflHfl

∫
Ωfl

y

|y|
Frad · ey dA and F̄z =

1

WflHfl

∫
Ωfl

|Frad · ez| dA, (5.3.1)
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presented in Fig. 5.3 and calculated for 5-µm-radius polystyrene particles, with material
parameters given in Table A.2. The weight y/|y|dA is a measure of how well the radiation
force focus the particles towards the centre plane at y = 0. To qualify the ability to focus
particles i.e. acoustophoresis we adopt the figure of merit R from Ref. [6]

R = − F̄y
F̄z
. (5.3.2)

A good resonance is characterised by high acoustic energy density and a large figure of
merit. That is why we use the weighted acoustic energy density

Ẽac = EacR, (5.3.3)

to qualify the resonances according to strong acoustophoresis. This quantity is plotted in
Fig. 5.3.(B) and shows how the resonance at f3 = 1.851 MHz has the largest peak.

The resonances properties are given in Table 5.1 and actually the figure of merit is much
larger than unity for all four resonances. This indicates resonances with good focusing
properties.

Figure 5.3: (A) Weighted radiation force components as a function of frequency. (B)
Weighted acoustic energy density Ẽac, on a semilog scale, qualifying the acoustic resonance
in terms of the desired centre plane focusing. Both calculated as a function of frequency
from 1 MHz to 2.1 MHz.
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Table 5.1: Resonance characterisation for the hard material Pyrex. The different reso-

nances are presented together with their acoustic energy density E
(fl)
ac , their radiation force

components F̄y and F̄z and the figure of merit R.

Resonance Frequency E
(fl)
ac F̄y F̄z R

[MHz] [Pa] [pN] [pN] 1

f1 1.185 1.08× 103 −979 160 6.12
f2 1.499 13.9 −13.5 6.17 2.19
f3 1.851 1.97× 103 −2763 81.3 34.0
f4 1.919 556 −786 17.0 46.2

According to the weighted acoustic energy density Ẽac the best and worst resonances are
evaluated. Field plots are presented in Fig. 5.4. The worst is shown to emphasise and test
the predictive ability, using the weighted acoustic energy density as a qualifier.

The acoustic pressure field in Fig. 5.4.(B) at f3 = 1.851 MHz represents a standing half-
wave, resulting in almost perfect focusing. Where the pressure field in Fig. 5.4.(D) at
f2 = 1.499 MHz also indicates a half-wave resonance with centre focusing. However, the
acoustic radiation force seems to have a negative vertical component near the side edges.

The maximum displacement amplitudes |u|/d0 = 478 and |u|/d0 = 82 are indicated
for each resonance in Fig. 5.4 both resonances seems to gain three order of magnitude
compared to the actuation amplitude d0 = 0.3 nm. Notice how the displacement is much
larger at f2 = 1.499 MHz, even though the acoustic pressure is higher at f3. This is
clear evidence of decoupled resonances, and the f3 resonance can be identified as a water
channel resonance, whereas f2 can be identified as a Pyrex resonance.

Even though we call it best and worst, both resonances seems to posses the ability to focus
particles towards y = 0.

The decoupled resonances is a clear feature to the high acoustic contrast in the system.
By smearing out this contrast the system becomes even more coupled and complex, which
will be introduced in the next section.



36 CHAPTER 5. SELECTED ACOUSTOFLUIDIC DEVICES

Figure 5.4: Numerical results for the best and worst resonance for the Pyrex device with
actuation amplitude d0 = 0.3 nm. (A)-(B) are for the best resonance f3 = 1.851 MHz
and (C)-(D) are f2 = 1.499 MHz. (A) Displacement field is presented both as magnitude
(surface plot) and vector field (green arrows). The actuation is indicated as gray arrows
at the bottom surface. (B) Acoustic pressure (surface plot) in the fluid domain together
with the acoustic radiation force field (black arrows) on 5-µm-radius polystyrene particles.
(C) and (D) are as (A) and (B). The deformation lines has been increased by a factor of
10,000 in (A) and 2,000 in (C) and the displacement magnitude ranges from 0 (dark) to
478d0 (light). The pressure magnitude ranges from −4.15 MPa (blue) to 4.15 MPa (red)
symmetric around 0 (gray).

5.4 Soft material device

The meaning of soft materials within acoustics refers to the acoustic impedance being
similar to that of water and by looking at Fig. 5.1, both PDMS and PMMA have acoustic
impedances almost that of water.

This section will be analogous to Section 5.2, the only difference is the solid material
being soft. Instead of Pyrex we now use the polymer PMMA with specific impedance
ZPMMA = 3.19 MPa s/m twice that of water. The material is cheap compared to Pyrex,
so the big question is; can one obtain the same acoustophoresis properties using PMMA
instead of Pyrex. If so, the chip would be suitable for particle studies where possible cross
contamination makes single-use devices a necessity.

Again the acoustic energy in the solid is probed with and without the water-filled channel
and plotted in Fig. 5.5, very different from the acoustic energies in the hard Pyrex device
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in Fig. 5.2.(A). Here we see no evidence of decoupled resonances.

For the soft material device the acoustic contrast is not between the water and the sur-
rounding PMMA but between the device and the surrounding air. That is why the system
and its resonance should be considered as a whole.

To see how the fluid couples with the surrounding PMMA the acoustic energy in both
domains are plotted as a function of frequency in Fig. 5.5.(B). One distinct feature is that
the acoustic energy in the water is everywhere smaller compared to the acoustic energy in
the PMMA. The energy density in the water on the other hand can be higher at certain
resonances.

Figure 5.5: PMMA-Water system. (A) Elastic energy spectrum with and without the
water filled channel on a logarithmic scale. (B) Acoustic energy spectrum in the PMMA
(sl) and water (fl) domain. Dashed line indicates the distinct half-wave water resonance
located at 2 MHz. The energies are again probed in the interval from 1 MHz to 2.1 MHz.

Another way to characterise the difference between hard and soft materials, is to consider
the characteristic wavelengths in the elastic solid, for PMMA the transverse λt = ct/f
and longitudinal wavelength λl = cl/f at 2 MHz are

λt = 0.6 mm and λl = 1.3 mm (PMMA) , (5.4.1)

whereas for Pyrex they are

λt = 1.7 mm and λl = 2.8 mm (Pyrex) . (5.4.2)

By comparing the wavelength to the dimensions of the device e.g. the height Hsl = 1.2 mm
and width Wsl = 3 mm it is seen how the PMMA parameters allows for smaller wavelength
to exist in the system, allowing more resonance modes to form. This is also evident from
the number of resonances in the spectrum; for the Pyrex device we found four resonance
whereas the PMMA device had sixteen resonances in the same frequency domain.
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To qualify the different resonances the acoustic radiation forces is plotted in Fig. 5.6.(A)
according to Eq. (5.3.1). Again the figure of merit R should be maximised together with
the acoustic energy density Eac indicating good centre focusing. The three best and worst
resonance values are given in Table 5.2 and by purely considering the focusing properties
resonance number four f4 = 1.132 MHz is by far the best. The worst focusing seems to be
number fifteen at f15 = 2.047 MHz. This is also in accordance with the weighted energy
density Ẽac as shown in Fig. 5.6.(B) where the good resonances is represented as peaks.

Figure 5.6: PMMA-Water system. (A) Weighted radiation force components. (B)
Weighted acoustic energy density Ẽac qualifying the centre-plane focusing.

Table 5.2: Three best and worst resonances sorted to the figure of merit. The different

resonances are presented together with their acoustic energy density E
(fl)
ac , their radiation

force components F̄y and F̄z and the figure of merit R. All the resonance properties are
given in Table B.2.

Resonance Frequency E
(fl)
ac F̄y F̄z R

[MHz] [Pa] [pN] [pN] 1

4 1.132 3.97 −3.53 0.24 15.0
1 1.042 7.14 −5.58 0.83 6.74
8 1.453 4.44 −4.73 0.77 6.14
11 1.685 0.04 −0.01 0.03 0.41
16 2.080 0.37 −0.05 0.28 0.20
15 2.047 0.28 0.01 0.15 −0.07

To elaborate on the whole-system resonances, the first order fields at these frequencies are
presented in Fig. 5.7, together with the time averaged radiation force field analogue to
Fig. 5.4. According to the weighted acoustic energy density Ẽac the best centre focusing
occurs at f4 = 1.132 MHz (see Table 5.2). From the acoustic pressure field and the time-
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averaged acoustic radiation force in Fig. 5.7.(B) it turns out to be in agreement with the
prediction.

The worst resonance seems to be f15 = 2.047 MHz, this is also supported by the field plots
in Fig. 5.7.(D), here the radiation force tends to move the particles towards the upper
corners (the gray area), however there still exist a nodal plane at the centre, but for centre
focusing this resonance is bad.

Figure 5.7: Numerical results for the best and worst resonance for the PMMA device with
actuation amplitude d0 = 0.3 nm. (A)-(B) are for the best resonance f4 = 1.132 MHz and
(C)-(D) the worst f15 = 2.047 MHz. (A) Displacement field is presented both as magnitude
(surface plot) and vector field (green arrows). The actuation is indicated as gray arrows
at the bottom surface. (B) Acoustic pressure (surface plot) in the fluid domain together
with the radiation force field (black arrows) on 5-µm-radius polystyrene particles. (C) and
(D) are as (A) and (B). The deformation lines has been increased by a factor of 30,000
in (A) and (C). The displacement magnitude ranges from 0 (dark) to 30d0 (light). The
pressure magnitude ranges from −144 kPa (blue) to +144 kPa (red) symmetrically around
0 (gray).

This section emphasises the fundamental difference between hard and soft materials and
tries to give a guiding picture of how the acoustic properties changes when going to soft all-
polymer devices, where the resonances should be considered as a whole-system resonance
instead of decoupled.
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5.5 Parametric studies for the PMMA device

Numerical simulations allows for immediate studies of how the system depends on certain
configurations, for example material parameters and chip designs. The ability to do these
parametric studies is a great advantage in designing and optimizing acoustofluidic systems.

5.5.1 Base height study

There exist arbitrary many combinations and complications turning to parametric studies
and one should always consider the relevance and context towards experimental partners.
The study of the width dependence towards the resonance is one example, and has been
studied in Ref. [6]. As a first step towards understanding the resonance/width correlation
is to consider the shear half-waves at the edges in the solid domain. For a decoupled shear-
wave obeying the Helmholtz equation the two-dimensional resonance condition reads

f =
ct

2

√
n2
y

W 2
sl

+
n2
z

H2
sl

, Wsl =
ny√

4f2

c2t
− n2

z

H2
sl

or Hsl =
nz√

4f2

c2t
− n2

y

W 2
sl

, (5.5.1)

where ni can be thought of as the number of half shear waves in each direction. For the
resonance in Fig. 5.7.(A) this correspond to ny = 1 and nz = 2. This turns out to agree
fairly with the numerical results in Ref. [6].

It is natural to expand this study by making the same analysis in terms of the base height
Hbase and keeping the lid height constant Hlid = 175 µm. The device used by AcouSort
has a base height of Hbase = 1000 µm [18].

To investigate the base height implications on the whole-system resonance, the base height
is varied from Hbase = 1000 µm to Hbase = 325 µm in steps of 75 µm. Such that the last
configuration is symmetric around the horizontal mid-plane, as indicated in Fig. 5.8.(A).

For each height a energy spectrum is calculated from f = 1.0 MHz to f = 2.1 MHz together
with the weighted radiation force components according to Eq. (5.3.1). Each resonance is
represented as a point in Fig. 5.8.(B), whereas the size/area of each point is proportional to
Ẽac. This plot makes it possible to identify good resonances according to acoustophoresis,
with the ability to focus particles toward the nodal plane at y = 0. The best resonances
seems to lie in the same region marked by the blue ellipse. Above 1.5 MHz the resonances
are bad according to the weighted acoustic energy and almost non-existing.

By changing the base thickness Hbase from the reference value 1 mm to 0.4 mm, the best
resonance according to the size of the scatter plot Fig. 5.8 changes from 1.132 MHz to
1.29 MHz. The acoustic energy density changes from 4.0 Pa to 110 Pa almost two order
of magnitude greater, just by having a thinner base, which also carries the benefit of less
use of material. The resonances tendency is in fair agreement with Eq. (5.5.1) plotted as
a red line in Fig. 5.8.(B) and can be used as a qualitative prediction.
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Figure 5.8: (A) The PMMA device indicating the heights used for the parametric sweep.
The lid thickness is kept constant while the base thickness is varied i.e. Hsl = Hbase +Hlid.
(B) Resonance plot weighted to the acoustic energy density and figure of merit. Each point
correspond to a resonance at the given base height and the size of each point is proportional
to Ẽac i.e. a large point means good acoustophoretic properties. The best acoustophoresis
is marked by the blue ellipse. The red curve indicates how a decoupled transverse wave
resonance depends on the base height.

In order to completely validate these solutions the first order acoustic pressure and the
time-averaged radiation force is plotted, for each of the three best resonances in Fig. 5.9.
These fields agrees with the predicted quality according to the scatter plot and Ẽac. If
we were able to built this device at base height 0.4 mm instead of 1 mm we would achieve
acoustic pressure magnitudes comparable to the one obtained for the Pyrex device, ac-
cording to our numerical study.

Figure 5.9: Acoustic pressure field for each of the three best resonances according to the
weighted acoustic energy density Ẽac. Each resonance is enumerated according to the
scatter plot. The acoustic pressure p1 (surface plot) is plotted together with the radiation
force Frad (black arrows). The magnitudes of the acoustic pressure is written in each
figure.
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Together with the width dependence analysed in Ref. [6] it seems that by minimising the
solid domain the resonance becomes stronger in the sense of higher acoustic energy density
and better focusing properties.

5.5.2 Channel position study

The channel position is rather easy to manipulate when designing and manufacturing
the device, that is why this subsection will serve as a study towards understanding the
channel position effect on the whole-system resonance. The procedure is as follows; the
device dimensions is kept the same as in the reference device presented in Fig. 4.1 with
dimensions in Table 4.1. The channel position will be varied as indicated in Fig. 5.10.(A)
in steps of 75 µm starting from the reference design. Here the channel center position is
at y = 0 µm and z = 250 µm. The final position of the channel corresponds to the setup
where the transducer now sits on top of the reference design, here the channel center
position is y = 0 µm and z = 925 µm—also indicated in Fig. 5.10.(A).

Figure 5.10: (A) Sketch of how the channel center position is varied between z = 250 µm
and z = 925 µm in steps of 75 µm. (B) Resonance plot weighted to the acoustic energy
density and figure of merit. Each point correspond to a resonance at the given channel
center position and the size of each point is proportional to Ẽac. Large points means good
acoustophoretic properties.

From Fig. 5.10.(B) it seems some of the resonances are robust to changes in the channel
center position. This is indicated as two dashed lines at the frequencies f1 = 1.042 MHz
and f4 = 1.132 MHz, which also turned out to be the best resonances in the reference
setup. The resonance at 1.042 MHz tends to lower its resonance frequency as the channel
center position relocates towards the top. This resonance has an optimum at a channel
center position z = 625 µm, going from Eac = 7.14 Pa at reference to Eac = 16 Pa at
frequency 1.032 MHz, slightly below 1.042 MHz.
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The same can be said about the reference resonance at 1.132 MHz; here the optimum
channel position is z = 400 µm at frequency 1.11 MHz also slightly below the reference
frequency. The acoustic energy goes from Eac = 7.14 Pa to Eac = 17 Pa.

To assess if the resonances are robust to changes, the different resonances are compared
to the reference system in Fig. 5.11. Even though the resonances are close in frequency
the qualitative displacement behaviour are far from the same.

However, in Fig. 5.12 the different geometries (different channel positions) seems to yield
the same qualitative behaviour. Both resonances have the same rolls in the top corners and
almost the same displacement at the side edges. This is evidence of a robust resonance in
the sense that one can move the channel around and still get the same acoustic behaviour.

Figure 5.11: Left column: reference device resonance at 1.042 MHz with displacement field
and acoustic pressure field together with the radiation force. Right column: resonance at
f = 1.032 MHz with channel position z = 625 µm. The displacement magnitude ranges
from 0 (dark) to 54 (light) and the acoustic pressure is from −265 kPa (red) to 265 kPa
(blue) symmetric around zero (gray).
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Figure 5.12: Left column: reference device resonance at 1.132 MHz with displacement field
and acoustic pressure field together with the radiation force. Right column: resonance at
f = 1.110 MHz with channel position z = 400 µm. The displacement magnitude ranges
from 0 (dark) to 76 (light) and the acoustic pressure is from −300 kPa (red) to 300 kPa
(blue) symmetric around zero (gray).

5.6 Summary of the main results

This chapter offers a summary of acoustophoretic properties in both soft and hard ma-
terials. It also provides an insight in the properties of designing an acoustic microfluidic
device used for acoustophoresis. Most importantly it also predicts the relative cheap ma-
terial PMMA to be a descent choice of material in designing acoustofluidic devices. The
different parametric studies is examples of how to optimise such devices. This showed how
alternatives to the base height and channel position, could yield energies comparable to
the Pyrex device.

The sweeping method where the resonances are weighted according to Ẽac seems to be a
good way to predict good acoustophoresis, but should always be accompanied with a full
assessment of the fields.



Chapter 6

Acoustic streaming

First order acoustics has now been investigated in both hard and soft acoustofluidic devices
motivated by acoustophoresis. Now we turn to the second order time-averaged acoustics,
focusing on the PMMA device.

6.1 Introduction to acoustic streaming

For high amplitude acoustics some interesting steady phenomena occurs, and by going to
second order perturbation theory one can establish successive approximations to under-
stand these phenomena. As touched upon, the second order fields contains both steady
and non-steady parts. The focus will be on the time-averaged steady effects. The high am-
plitude acoustic can be obtained by a high amplitude source or by tuning in on resonance,
where the latter will be of interest in this case.

The first order acoustic fields serves as source terms to the second order fields and for
the time-averaged second order velocity the convected momentum density governs the
second order acoustics. The first theoretical study of acoustic streaming was carried out by
Rayleigh. He gave an analysis to the boundary layer driven acoustics, with the remarkable
property that the second order streaming is independent of viscosity but originates from
this [19].

The Rayleigh streaming can be written as a boundary condition to the long ranged second
order velocity field vd2 as

vd2(y, z = 0) =
3

8

v2
a

c0
sin(2k0y)êy = vR sin(2k0y)êy. (6.1.1)

Here the no-slip boundary is located at z = 0. For a standing acoustic pressure wave the
Rayleigh streaming amplitude can be written in terms of the acoustic energy density

vR =
3

2

Eac

ρc0
. (6.1.2)

45
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This boundary condition is an effective way of describing the slip velocity due to the
acoustic Reynolds stress inside the boundary layer. It turns out that acoustic streaming
can be driven not only by the boundary layer but also by bulk attenuation, known as
Eckart streaming. This kind of streaming is proportional to the damping Γfl [20]. The
Eckart streaming can be observed when a travelling plane wave (fluid jet) gets attenuated
and steady vortices begins to appear as backflow, also known as the quartz wind.

To establish a frame of reference with regards to the streaming, a general presentation
of the well-known streaming pattern of a hard-wall system will be carried out. In reality
this pattern can be achieved by choosing a hard material i.e. Pyrex, and tuning in on
resonance. In Fig. 6.1 such a configuration is presented for infinite hard walls, where the
side walls are oscillating in-phase yielding a standing pressure wave driving the Rayleigh
streaming. The hard-wall boundary condition is conventionally written as the no-slip
condition on the first order velocity field

v1(y = ±Wfl/2, z) = −iωd0êy and v1(y, z = ±Hfl/2) = 0. (6.1.3)

The fluid channel width is such that it matches the standing half-wave resonance Wfl =
λ/2. By looking at the bulk streaming in Fig. 6.1.(A) there seems to be four streaming
rolls. But turning to Fig. 6.1.(B) there also exist rolls inside the boundary layer and in
total there are eight rolls. As mentioned this boundary layer streaming is modelled as an
effective boundary condition when calculating the Rayleigh streaming.

To characterise the streaming, the magnitude is normalised to the Rayleigh streaming
amplitude defining the non-dimensional streaming scale ṽ2 as

ṽ2 = |v2|/vR. (6.1.4)

Figure 6.1: Streaming magnitude (surface plot) and vector field plot (black arrows) inside
a liquid-filled channel of width Wfl = λ/2. The normalised streaming magnitude ṽ2 ranges
from 0 (dark) to 1 (light). (A) Rayleigh streaming pattern in a rectangular channel. (B)
Streaming pattern inside the boundary layer.

Since the viscous acoustic streaming is driven by the viscous boundary layer near obstacles,
it makes the near wall region of most importance. These effects has been studied by [21,
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W.L. Nyborg], where he considered perpendicular wall motions, this boundary layer theory
has been further applied to arbitrary motions in Ref. [11] in the limit of weakly curved
and thin boundary layers. This holds if the radius of curvature R is much larger than
the boundary layer thickness δ. By virtue of the effective boundary layer condition in
Eq. (2.5.15) there are effectively four fields driving the streaming; three surface fields vδ01 ,
V0

1, vd0
1 and the irrotational acoustic bulk field vd1 contained in the boundary condition

at the wall. Here the capital V0
1 is the wall velocity where the lower case refers to fluid

velocities.

6.2 Streaming in hard and soft acoustofluidic devices

In Chapter 5 the first order acoustic effects in both hard and soft materials were presented
together with the steady acoustic radiation force. In this section the same resonances will
be further investigated by including the streaming.

As mentioned the streaming is a direct consequence of the viscous boundary layer, driven
by the the displaced fluid/solid interface, where the first order velocity needs to adapt
over the small distance δ. This makes it interesting to compare the streaming fields for
hard and soft materials, where the wall motions are qualitatively different. The focus
will be on the resonances presented in Fig. 5.4.(A-B) and Fig. 5.7.(A-B) for Pyrex and
PMMA respectively. These resonances turned out to be the best resonances according to
the desired figure of merit and acoustic energy density.

In Fig. 6.2 the streaming patterns for the Pyrex and PMMA device is presented. Both
patterns is remarkably close to classical Rayleigh streaming idealised in Fig. 6.1. However
the PMMA streaming pattern is slightly different, but still qualitative the same. The
streaming magnitude are also quite different, for the Pyrex device, the streaming ranges
from ṽ2 = 0 to ṽ2 = 1.07 with vR = 1945 µm/s very close to the ideal Rayleigh streaming
presented in Fig. 6.1, where it ranges from 0 to 1.

For the PMMA device the streaming magnitude ranges from ṽ2 = 0 to ṽ2 = 1.6 with
vR = 4.0 µm/s. Evidently there is a fundamental difference in magnitude, this is due
to the idealized actuation having the same amplitude in both systems. In reality it re-
quires more power to actuate a hard material compared to a soft. A way to circumvent
this, is to use different actuation amplitudes depending on the elastic material. However,
since everything scales linearly to the amplitude, the streaming patterns will be the same
independent of the magnitude of the actuation—which is also the reasoning behind the
normalisation in Eq. (6.1.4).
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Figure 6.2: Streaming patterns for the Pyrex and PMMA device, both at the best reso-
nance according to previous analysis. (A) Streaming pattern inside the Pyrex device. The
black arrows corresponds to the vector plot of v2 and the surface plot corresponds to the
normalised streaming ṽ2, ranging from 0 (dark) to 1 (light). (B) Same as (A) but for the
all-polymer PMMA device. Here ṽ2 is plotted in the interval from 0 (black) to 1.6 (white).
The acoustic energy density is indicated in each figure.

To understand the difference in the relative streaming magnitudes we consider the stream-
ing theory of a resonant systems according to Ref. [11]. A resonant system will typically
have wall velocities a factor of Q = 1/Γfl∼1× 105 smaller than the bulk velocity vd1 . This
means that the first order no-slip condition Eq. (2.5.8) can be approximated by vδ01 ≈ −vd0

1

yielding the parallel acoustic approximation

vd0
2‖ = − 3

8ω
∇‖
∣∣∣vd0

1‖

∣∣∣2. (6.2.1)

To assess this condition we consider the pressure and velocity profiles in the PMMA device
along the lower fluid edge. These profiles are presented in Fig. 6.3 as solid blue curves.
The profiles are compared to the usual half-wave resonance profiles (green dashed lines)
pa sin(k0y) and va cos(k0y) indicating quite a discrepancy.

By fitting the profiles to a new wavenumber ky = αk0 we can use the α parameter to
assess the waves. These phase modulated waves are indicated as red dashed lines in
Fig. 6.3 corresponding to α = 1.43. By evaluating Eq. (6.2.1) with the fitted profiles, the
slip-velocity becomes

vd0
2‖ = α

3

8

v2
a

c0
sin(2αk0y)êy. (6.2.2)

Apart from the pre-factor α and the modulated phase it is equivalent to the Rayleigh
boundary velocity i.e. vd0

2‖ = αvR sin(2αk0y). This can explain the small departure from

vR in Fig. 6.2.(B), where the maximum streaming yielded 1.6vR close to the modulated
amplitude αvR = 1.35vR.
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So in general small variations to the usual half-wave resonance will yield different streaming
magnitudes, compared to the standard hard-wall Rayleigh streaming where max (|v2|/vR) =
1. Furthermore the parallel wavenumber ky is a factor of α larger than k0 and from the
relation

k0 =
√
k2
y + k2

z , (6.2.3)

the perpendicular wavenumber kz must be purely imaginary indicating some kind of per-
pendicular damping.

Figure 6.3: (A) Parallel velocity component (solid blue line) evaluated on the lower fluid
edge and normalised to va = 14.3 cm/s, together with the standard half-wave resonance
cos(k0y) (green dashed line) and a modulated wave cos(αk0y) (red dashed line) with
α = 1.43. (B) Same as in (A) but for the pressure with pa = 142 kPa and sine waves
instead of cosine.

6.2.1 Particles affected by streaming in a PMMA device

In Chapter 5 we showed how the acoustic pressure can focus particles under the right
resonance condition due to the time-averaged radiation force. In previous chapters the
radiation force was the only force acting on the suspended particles. In a more elaborate
model the acting forces are of course not only the radiation force, but also buoyancy
Fbuoy and drag Fdrag. Like the acoustic radiation force, the buoyancy also scales with the
particle volume a3

Fbuoy =
4π

3
a3 (ρ̃− 1) ρ0g. (6.2.4)

These forces are two examples of volume forces, whereas the drag scales with the radius.
For small Reynolds number the viscous drag will be that of Stokes drag caused by the
relative motion of the fluid. The steady drag on a particle with velocity vp is therefore a
consequence of the acoustic streaming v2

Fdrag = 6πη0a (v2 − vp) . (6.2.5)
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From these equations it is evident how the streaming induced drag becomes pronounced
as the particle gets smaller, essentially working against the focusing acoustophoretic be-
haviour. The critical particle radius at which the streaming becomes dominant has been
studied in Ref. [15] and turns out to be acr ≈ 1 µm at 2 MHz. Particles with radius
smaller than acr will therefore be mixed by streaming. This can be understood by scaling
the acting forces.

Most often we use polystyrene tracer particles to model the particle motions with material
parameters given in Table A.2. The density is ρps = 1050 kg/m3, which makes the particles
almost neutrally buoyant since ρ̃ ≈ 1 and the buoyancy becomes negligible compared to
Frad and Fdrag.

At half-wave resonance the radiation force is calculated in Eq. (2.3.27) and the streaming
magnitude can be written in terms of the acoustic energy as in Eq. (6.1.2) so the scaling
between the drag and acoustic radiation force becomes

|Frad|
|Fdrag|

=
4

9
Φac

a2ω

ν0
. (6.2.6)

For polystyrene particles in water at 2 MHz the critical radius becomes

acr =
3

2

√
ν0

Φacω
=

3

2

δ√
2Φac

≈ 1 µm (6.2.7)

the calculation uses the values in Table A.2. It is noteworthy to see how the critical radius
is proportional to the boundary layer thickness.

A particle located in the pressure nodal plane with Frad = 0 will of course sediment over
time due to buoyancy. The time it takes to sediment in a channel with height Hfl = 150 µm
can be estimated by equating drag and buoyancy

tsed =
9

2

ν0

a2 (ρ̃− 1) g
Hfl ≈ 46 s. (6.2.8)

The sedimentation time should be compared with the time it takes to focus particles tfocus.
This time scale can be estimated by equating drag and radiation force, thereby estimating
the particle speed vp as

vp =
|Frad|
6πη0a

=
2

3
Φac

a2k0Eac

η0
sin(2k0y). (6.2.9)

For a channel of width Wfl with side walls at y = 0 and y = Wfl, the focusing time is

tfocus =
3

4

η0

Φaca2k2
0Eac

ln

[
tan(2k0y(t))

tan(2k0y(0))

]
. (6.2.10)

For a typical hard-wall system, similar to the one considered in this thesis, the acoustic
energy density has been measured in Ref. [22, 23] and is in the order of Eac∼20 Pa. In
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this case the distance it takes for a 5-µm-radius polystyrene tracer particle to move from
y(0) = Wfl/8 to y(t) = 3Wfl/8 at f = 2 MHz is

tfocus ≈
6

4

η0

Φaca2k2
0Eac

= 0.22 s. (6.2.11)

The time it takes to focus a particle happens much faster than sedimentation. These
equations is actually used to measure the acoustic energy density at resonance. Either
by particle tracking or by measuring the time it takes to focus particles, since all other
parameters are known.

There is another time scale which is perhaps even more important for acoustophoretic
applications, that is the flow rate in the length direction. Here the particles must get
focused before arriving at mid-channel. The typical length of a device used by AcouSort
is Lfl = 40 mm by these means we can calculate a critical flow rate

Qcr =
AflLfl

2tfocus
= 5.15 µL/s. (6.2.12)

this sets an upper limit for the throughput for a acoustophoresis at Eac = 20 Pa.

Now we have established the acting forces and the characteristic time scales. This leads to
numerical implementation of particle tracing solving Newtons second law for the particle
position rp i.e.

mp
d2rp

dt2
= Frad + Fdrag + Fbuoy. (6.2.13)

For small particle-Reynolds number the inertial effects can be ignored and since the 5-µm-
radius polystyrene particles can be considered neutral buoyant the particle force balance
reads

vp = v2 +
Frad

6πη0a
. (6.2.14)

One example of particle trajectories is given in Fig. 6.4 for the PMMA device at resonance
f = 1.132 MHz equivalent to the one presented in Fig. 5.7.(A-B) and Fig. 6.2 with acoustic
energy density Eac = 3.97 Pa. The particle properties is again that of 5-µm polystyrene
tracer particles with parameters given in Table A.2. This amount to the focus time
tfocus = 3.4 s according to Eq. (6.2.11) and critical radius acr = 2.2 µm according to
Eq. (6.2.7).

To analyse the particle size dependence towards the particle motion in the PMMA device,
particles with different radii are released at time t = 0 s and captured at times t = 0.5tfocus,
t = tfocus and t = 2tfocus as shown in Fig. 6.4. From these trajectories it is obvious how the
radiation force dominates for both a = 5 µm and a = 3 µm, but when the particle radius
gets below the critical radius a = 1 µm the streaming begins to dominate and instead of
focusing the particles are mixed.
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Figure 6.4: Particle (red spheres) trajectories (black lines) captured at different times
0.5tfocus, tfocus and 2tfocus. Each row of pictures correspond to different particle radii a;
1 µm, 3 µm and 5 µm respectively, thereby also different focusing time scales tfocus; 3.4 s,
9.5 s and 85.6 s.

In the light of acoustophoresis and particle focusing the streaming is unwanted when
handling particles below 1 µm in radius e.g. bacteria, exosomes and viruses. This sets a
strong motivation to study how the streaming can be diminished and suppressed. One
approach is to use an inhomogeneous fluid, which has been studied in Ref. [24, 25]. It
turns out that inhomogeneities in both compressibility and density will results in a non-
dissipative force density, both altering and suppressing the streaming.

6.3 Hard microchannels with soft thin lids

Our Swedish colleagues from the Department of Biomedical Engineering at Lund Univer-
sity, suggested to use a device comprising a hard base and a soft lid enclosing the fluid
channel. As another approach to suppress the streaming and at the same time having
good acoustophoretic properties.

To achieve such system they use an aluminum block as a base and the soft polymer
PDMS as the lid material. The device consist of a piezoelectric PZT transducer mounted
underneath an aluminium base bonded with super glue. The 3D setup is sketched in
Fig. C.1 together with a top view. The cross-sectional 2D principal sketch is shown in
Fig. 6.5.
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The 20-µm PDMS lid is spin coated and bonded to the aluminium by exposing it to air
plasma. The fluid channel is micromilled inside the aluminum block. This procedure does
not require any clean-room techniques, which makes it cheaper and easier to get a hold
on.

This device is further motivated by rapid prototyping plus the fact that aluminium and
PDMS are abundant and cheap materials.

The numerical model will concern the two-dimensional cross-section sketched in Fig. 6.5
with dimensions in Table 6.1. This section will serve as an preliminary study to support
and consult our colleagues in the laboratory, essentially verifying our numerical model
against experimental observations.

Figure 6.5: Cross-sectional view of the aluminum-PDMS device used at the Department
of Biomedical Engineering at Lund University by Ph.D. student J. Lei. The dimensions is
given in Table 6.1. The electrodes are marked by two red lines, one is grounded (bottom)
and the other (top) is coupled to an alternating signal with peak to peak amplitude
φ0 = 10 V.

Table 6.1: aluminium-PDMS device dimensions.
Parameter base lid pzt fluid (fl) Unit

Width, Wi 5000 5000 5000 430 µm
Height, Hi 400 20 1000 200 µm

In this model the piezoelectric transducer will be included, coupling the mechanical dis-
placement field to the electric potential illustrated in Eq. (2.4.16). In the given setup
they use the lead-zirconate-titanate (PZT-Pz26) ceramic with material parameters given
in Table A.4 extracted from Ref. [26]. Due to the high electric permittivity of Pz26 the
electric potential is assumed to be confined to the transducer and by assuming no free
charges the electrical potential satisfies the quasi-static equation

∇ ·D = 0. (6.3.1)
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In order to excite both asymmetric and symmetric resonances the transducer is placed
asymmetrically, in this case by an amount ∆ = 1.0 mm as sketched in Fig. 6.5. The
bottom will work as a grounded electrode and the electrode between the base and the
PZT will be coupled to an alternating signal. These electrodes will serve as boundary
conditions to the quasi-static equation

φ(r, t) =

{
φ0(r)e−iωt top electrode,

0 bottom electrode,
(6.3.2)

where φ0 = 10 V. Since it is a constraint on the potential field itself this boundary
condition is implemented as a Dirichlet boundary condition in COMSOL.

6.3.1 Comparison to experimental observations

To find the resonances the acoustic energy is probed from 1.8 MHz to 2.8 MHz, this is the
frequency domain at which the experiment was observed. The numerical procedure is as
follows

1. Probe the acoustic energy in the given frequency range.

2. Pick out the frequency at which the acoustic energy inside the fluid channel peaks.

3. Choose the best resonance according to the weighted acoustic energy density Eq. (5.3.3).

According to the procedure we find the best resonance at frequency f = 2.235 MHz.
Remarkably close to the observations made in Lund by Ph.D. student J. Lei and postdoc
W. Qiu, where they found the best focusing properties at 2.24 MHz. The other resonance
properties are tabulated in Table B.3.

The 5-µm-radius polystyrene tracer particles were tracked using the general-defocusing-
particle-tracking (GDPT) method, measuring the particle trajectories [27]. To compare
the simulations with observations made in the laboratory, the numerically calculated radi-
ation force is compared to the measured velocities, since the radiation force will dominate
the particle motion. This is shown in Fig. 6.6.

The measured particle velocity field in Fig. 6.6.(A) tends to focus the particles towards the
pressure node at y ≈ 0, however a vertical velocity component tends to force the particles
towards the PDMS lid in the positive z-plane strongest above z = 0. At z ≈ −Hfl/4
(marked by the white dashed line) there is a transition from negative to positive vertical
component. Furthermore there seems to be exceptional forces at the top corners. These
tendencies are also captured in our numerical simulations as shown in Fig. 6.6.(B).

In the simulations the PZT offset relocates the pressure nodal plane slightly to the right,
this however does not seems to be the case for the measured velocity profiles.
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Figure 6.6: (A) GDPT measurement inside the water filled cavity for the aluminum-PDMS
device, showing the particle velocity field. (B) Numerical calculated radiation force (cyan
arrows) for the aluminum-PDMS device at resonance f = 2.235 MHz.

The acoustic radiation force field for the aluminium-PDMS device is very different from
the homogeneous devices presented in Chapter 5. The streaming pattern presented in
Fig. 6.7 turns out to be very complicated as well. The streaming is dominant in the top
corners where it reaches its maximum value ṽ2 = 235 corresponding to 235vR = 129 µm/s.
For conventional hard system the typical acoustic energy density is in the order of 20 Pa
this corresponds to a Rayleigh streaming amplitude of 20 µm/s. So even though the
Rayleigh streaming amplitude in the Al-PDMS system is low vR = 0.55 µm/s compared to
conventional values, the streaming in the corners seems to exceed the conventional value
five times.

Figure 6.7: Acoustic streaming for the Al-PDMS with lid height Hlid = 20 µm at reso-
nance frequency f = 2.235 MHz. The streaming magnitude is normalised to the Rayleigh
streaming magnitude, in this case vR = 0.55 µm/s. The top corners is resolved on another
scale which is indicated in the figure. The arrow length is logarithmic scaled.
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6.3.2 PDMS lid size and streaming patterns

To assess this special behaved streaming due to the soft lid, the lid thickness is varied
whereas the streaming patterns for chosen lid thickness will be investigated. For each
value of the lid size the above numerical procedure is performed.

In Fig. 6.8 streaming patterns at different lid thickness is shown together with character-
istic streaming values. Clearly the acoustophoresis is optimal at Hlid = 150 µm. Here the
streaming patterns seems to have some of the same features as for the classical Rayleigh
streaming, but still dominated by the top corners. Nevertheless the complex behaved
streaming at the top corners seems to persist even though the lid thickness becomes com-
parable to the base thickness. This is evidence of a material dependence and not an effect
due to the thin lid.

The distinctive transverse speed of sound ct = 66.3 m/s for the modelled PDMS (RTV-
615) measured in Ref. [28, 29], could very well be the reason behind this complex behaved
streaming.

Figure 6.8: Resonance plot weighted by the acoustic energy density and figure of merit.
Each point correspond to a resonance at a given lid thickness and the size of each point is
proportional to Ẽac i.e. a large point means good acoustophoretic properties. For chosen
resonances the streaming patterns are shown together with characteristic scales in the
color range 0 (dark) to 1 (light) in terms of ṽ2. The streaming arrow length is logarithmic
scaled.
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6.3.3 Artificial polymer alloy

To assess if the distinctive material parameters for the given PDMS could be the reason
behind the complex motions in the corners, we artificially change the material parameters
towards that of PMMA.

To do so, we define a parameter µ which describes the ”amount” of PMMA e.g. µ = 0.1
correspond to 10% PMMA and 90% PDMS—this is not realistic but can be used to identify
and characterise the problem. In Fig. 6.9 a sweep in the polymer ratio parameter µ is
calculated. For each value the ratio θ between the corner streaming to the total streaming
is calculated, according to

θ =

∫
corners |v2|dA∫

fluid domain |v2|dA
. (6.3.3)

The corners are defined as the magenta squares in Fig. 6.9.(B).

Already at µ = 0.05 the streaming at the top corners has decreased to the converged
value at a streaming ratio of 18% (dashed line). This corresponds to the the material
parameters ρ0 = 1027.5 kg/m3, ct = (271.2 − i3.583) m/s and cl = (1172 − i1.954) m/s,
where the complex valued speed of sounds accounts for the attenuation of sound waves.
The streaming pattern is still very complex, but now it is driven by the entire lid and not
the corners.

Figure 6.9: (A) Streaming ratio at different polymer ratios on a semilog scale. (B) Con-
verged streaming pattern at µ = 0.6.

PDMS comes in different variants and for the given system we are using the RTV-615
material parameters [28, 29]. The validity of a numerical study is always limited by the
uncertainty on the material parameters. Doing numerical simulations accompanied with
measurements, best practice requires determination of the material parameters for the
specific device at hand, this goes for all systems and not only the Al-PDMS device. This
numerical analysis together with the measurements has resulted in two abstracts submitted
to the AcoustoFluidics conference 2019, third authoring Ref. [30] and first authoring Ref.
[31].



58 CHAPTER 6. ACOUSTIC STREAMING



Chapter 7

Viscoelastic acoustofluidics

Now we turn to model the fluid as a viscoelastic material. As described in Section 2.6
viscoelastic fluids can be considered as non-Newtonian. These fluids behaves both elasti-
cally and viscous, which makes them complicated to characterise. In this chapter periodic
disturbances will be applied on a viscoelastic fluid comprising viscoelastic acoustofluidics.
The viscoelastic effects are most pronounced within the time-averaged second order effects
as pointed out in Ref. [13]. That is why this chapter will mainly concern the steady second
order fields i.e. viscoelastic acoustic streaming.

7.1 Viscoelastic Rayleigh streaming

To get an understanding of how the streaming is affected by a viscoelastic behaved mate-
rial, the classical Rayleigh streaming is approached with the viscoelastic model presented
in Section 2.6.

Consider the situation where the far-field vd1 takes the irrotational form of a standing wave
with wavenumber k0

vd1 = vd0
1 cos(k0y)êy, (7.1.1)

above a stationary planar wall at z = 0 parallel to the (x, y)-plane. The half-space z > 0
is filled with a viscoelastic fluid.

From this a Helmholtz decomposition is constructed

v1 = vd1 + vδ1 with ∇× vd1 = 0 and ∇ · vδ1 = 0, (7.1.2)

similar to the effective boundary layer theory.

According to Eq. (2.6.9) the viscoelastic Navier–Stokes equation reads

−iωρ0v1 = −∇p1 + η(ω)
[
∇2v1 +∇ (∇ · v1)

]
, (7.1.3)
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by taking the curl of Eq. (7.1.3) a single equation for vδ1 appears

∇×
(
−iωρ0v

δ
1 − η(ω)∇2vδ1

)
= 0 (7.1.4)

and the Helmholtz equation can be read off

∇2vδ1 = −i
ωρ0

η(ω)
vδ1 = −2i

1− iωλ

δ2
vδ1. (7.1.5)

From the scaling arguments ∂y∼k0 and ∂z∼1/δ the Laplacian can be approximated by
∇2 ∼ ∂2

z , and the y-component of Eq. (7.1.5) becomes

∂2
zv
δ
1,y = −i

ωρ0

η(ω)
vδ1,y = −2i

1− iωλ

δ2
vδ1,y. (7.1.6)

A solution satisfying vδ1,y → 0 when z →∞ together with the no-slip condition v1(y, 0) = 0
is

vδ1,y(y, z) = −vd0
1 cos(k0y)e−p

z
δ eiq z

δ , (7.1.7)

where

p =

√√
ω2λ2 + 1− ωλ and q =

√√
ω2λ2 + 1 + ωλ. (7.1.8)

The z-component can be calculated via the incompressible condition ∂zv
δ
1,z = −∂yvδ1,y and

the no-slip condition vδ1,z(y, 0) = 0, which yields

vδ1,z(y, z) =
vd0

1

p− iq
δk0 sin(k0y)

(
e−p

z
δ eiq z

δ − 1
)
. (7.1.9)

The full solution for a standing bulk wave vd1 above a planar rigid wall at z = 0 reads

v1,y = vd0
1 cos(ξ) [1− f(ζ)] (7.1.10a)

v1,z = − p+ iq

p2 + q2
vd0

1 δk0 sin(ξ) [1− f(ζ)] , (7.1.10b)

where ξ = k0y, ζ = z/δ and f(ζ) = e−pζeiqζ .

In the viscous limit of zero relaxation time both p and q reduces to unity and the first order
solutions reduces to the Newtonian expressions for a standing bulk wave and a stationary
planar wall at z = 0. In the elastic limit where De→∞ the coefficients will become p→ 0
and q →∞. Looking at the expressions in Eq. (7.1.10) the wave will become more shear
like since the shear damping parameter p turns to zero, which is exactly the elastic limit.

To second order in the viscoelastic convected Jeffrey’s model things becomes much more
complicated due to the inclusion of the upper-convected time derivative in the Navier–
Stokes equation. According to Eq. (2.6.11) the short-ranged part of the second order
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viscoelastic Navier–Stokes equation reads

η0∇2vδ2 =ρ0∇ ·
〈
v1v1 − vd1vd1

〉
+ λ∇ ·

[〈(
vδ1 · ∇

)
τ1

〉
−
〈
τ1 · ∇vδ1

〉
−
〈(
∇vδ1

)T
· τ1

〉]
.

(7.1.11)

Using ∇2 ≈ ∂2
z it becomes a matter of rigorous integration*. In the end the y-component

of the short-ranged second order field becomes

vδ2,y = −3

8

(
vd0

1

)2
c0

sin(2k0y)f(λ, ω, ρ0, η0, c0), (7.1.12)

where the function f(ρ0, λ, ω, η0) is a viscoelastic correction to the classical Rayleigh
streaming. This short-ranged field provides a slip boundary condition for the long ranged
field vd2 in order to fulfil the no-slip condition v2(y, 0) = vd2(y, 0) + vδ2(y, 0) = 0 so

vd2,y(y, 0) = −vδ2,y(y, 0) =
3

8

(
vd0

1

)2
c0

sin(2k0y)f(λ, ω, ρ0, η0, c0)

= vR sin(2k0y)f(λ, ω, ρ0, η0, c0).

(7.1.13)

The function f is written in Appendix D and plotted in Fig. 7.1.

In the ultrasound regime δ2k2 � 1 and the function f simplifies a lot

f =
−7De2 + 5De

√
De2 + 1 + 3

3
(√

De2 + 1−De
) (

De2 + 1
) . (7.1.14)

Essentially only a function of the Deborah number De = ωλ and independent of dynamic
viscosity as for the classical Rayleigh streaming. In the viscous limit De = 0 the function
f = 1 and the well-known Rayleigh streaming condition appears. Furthermore there is a
region where the slip condition is lower than the usual Rayleigh streaming, this is marked
by the gray area in Fig. 7.1.

The viscoelastic Rayleigh streaming indicates a transition from positive to negative slip
condition at De = 1.63, this indicates a flow reversal in the streaming. This flow reversal
will now be investigated in the literature and simulated in COMSOL.

*subject to the boundary condition vδ2,y → 0 for z → ∞, so both integration constants are zero.
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Figure 7.1: The slip condition function f as a function of the Deborah number De. The
transition at De = 1.63 is indicated as a dashed line.

7.2 Steady viscoelastic flow reversal

The steady effects of using a viscoelastic fluid instead of a Newtonian has been studied in
the low-sonic regime by [32, 33, Chang and Schowalter]. They found that the direction of
the steady streaming was opposite that of a Newtonian fluid, the same streaming reversal
was also observed by [34, 35, Hill et. al]. The reversal has also been predicted theoretically
by several workers [33, 36, 37].

The setup used by [33, Chang and Schowalter] to observe the flow reversal is depicted
in Fig. 7.2 and comprises a hollow outer cylinder with radius R and a massive inner
cylinder with radius a = 0.792 mm. The hollow outer cylinder comes in three different
radii R = 6.35 mm, 9.65 mm and 13.3 mm, used to fit the measured profiles to a Deborah
number according to their theory.

The inner cylinder was coupled to an alternating current which made it oscillating at
frequency f = 40 Hz in the y-direction with displacement amplitude d0 = 1 mm. The
low-sonic regime makes it very different from the ultrasound regime considered so far, and
the boundary layer thickness is now in the order of δ∼0.1 mm.
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Figure 7.2: (A) Sketch of the setup used in Ref. [33]. (B) Top-view of the setup in the
(y, z)-plane. Inner cylinder with radius a = 0.792 mm oscillating at ω = 2π40 Hz and outer
cylinder with radius R. The oscillation is purely in the y-direction (black arrows). The
diagonal black line indicates where the tangential streaming component vθ is measured
and evaluated. The numbers in parenthesis indicates the outer and inner boundaries.

7.2.1 Viscoelastic model in COMSOL

In order to implement the equations in the weak form module in COMSOL we again need
equations of the strong form Eq. (3.1.2). To first order the viscoelastic model is almost
similar to that of Eq. (4.1.5) apart from the stress tensor τ1,ij i.e.

J
(v1)
ij = −p1δij + τ1,ij = −p1δij + η(ω) (∂jv1,i + ∂iv1,j) , (7.2.1a)

F
(v1)
i = −iρ0ωv1,i, (7.2.1b)

these equations are equivalent to the incompressible version of Eq. (3.1.2) apart from the
complex valued Maxwell viscosity η(ω) = η0

1−iωλ with relaxation time λ.

To second order the stress tensor is again the only difference from the model presented in
Section 4.1, so the viscoelastic streaming is governed by

J
(v2)
ij = −p2δij + τ2,ij − ρ0 〈v1,iv1,j〉 , (7.2.2a)

F
(v2)
i = 0, (7.2.2b)

where

τ2 =η0

[
∇v2 + (∇v2)T

]
− λ

[
〈(v1 · ∇) τ1〉 − 〈τ1 · ∇v1〉 −

〈
(∇v1)T · τ1

〉]
.

(7.2.3)
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These equations comprises our numerical viscoelastic model, together with the equations
governing the first order pressure Eq. (4.1.4) and the time-averaged second order pressure
Eq. (4.1.7).

The boundary conditions for the first order velocity fields are the no-slip conditions

n̂ · v1 = 0 for r ∈ (1), (7.2.4a)

v1 = −iωd0êy for r ∈ (2), (7.2.4b)

implemented as a constraint on the velocity field.

As for the time-averaged second order velocity field the conditions are that of Stokes drift

n̂ · v2 = 0 for r ∈ (1), (7.2.5a)

v2 = −
〈(

i

ω
v1 · ∇

)
v1

〉
for r ∈ (2). (7.2.5b)

Again similar to the model presented in Section 4.2 and implemented as a Dirichlet bound-
ary condition.

7.2.2 Viscoelastic streaming

In the experiment conducted by [32, Chang and Schowalter] the tangential flow profiles vθ
along the 45° diagonal was measured at three different outer radii R = 6.35 mm, 9.65 mm
and 13.3 mm, for both Newtonian and a viscoelastic fluid. The Newtonian fluid consisted
of a water-glycerol mixture with density ρ0 = 1.235 g/cm3 and dynamic viscosity η0 =
6.08 mPa s. For the viscoelastic fluid they used a 100 p.p.m. aqueous PolyHall 295 solution
with density ρ0 = 1.0374 g/cm3 and dynamic viscosity η0 = 375 mPa s.

The two different fluids will have different boundary layer thickness due to the difference
in dynamic viscosity

δw/g = 0.198 mm and δ295 = 1.70 mm. (7.2.6)

The numerical results for the tangential streaming profile vθ along the 45° diagonal (ac-
cording to Fig. 7.2) is presented in Fig. 7.3. By comparing to Ref. [33] there is an
agreement within ∼10% to the experimental measured profiles. This comparison serves
as a verification to our numerical results.
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Figure 7.3: Tangential streaming profile along the 45° diagonal indicated in Fig. 7.2, as
a function of radial distance r normalized to the boundary layer thickness. (A) For a
Newtonian water-glycerol mixture with density ρ0 = 1.235 g/cm3 and dynamic viscosity
η0 = 6.08 mPa s for the cylindrical ratio R/a = 6.09. (B) For a 100 p.p.m. aqueous Poly-
Hall 295 solution with density ρ0 = 1.0374 g/cm3 and dynamic viscosity η0 = 375 mPa s
at different geometric ratios, as indicated in the legend. (C) Same settings as in (B) but
for a Newtonian fluid i.e. De = 0.

In Fig. 7.3.(A) the Newtonian water-glycerol mixture has two zero crossings, which means
that two streaming rolls are present; one below r/δw/g∼55 and one above. For the vis-
coelastic case there exist only one zero crossing which means only one roll are present. In
Fig. 7.3.(C) the same mass density and dynamic viscosity, as for the 100 p.p.m. aqueous
PolyHall 295 solution, has been used to model the flow in the Newtonian limit De = 0.
Comparing Fig. 7.3.(B) and Fig. 7.3.(C) shows a discrepancy in magnitude but same
qualitative behaviour, Without the viscoelastic parameter De we would underestimate the
streaming amplitude.

The streaming profiles in Fig. 7.3.(B) are shown in Fig. 7.4 as a 2D vector plot. Here
the vector field is the time-averaged Lagrangian velocity 〈V2〉 i.e. the velocity at which a
point particle travels

〈V2〉 = v2 +

〈
i

ω
(v1 · ∇) v1

〉
. (7.2.7)

These plots serves as a further verification to our model and the streamlines presented in
Ref. [33].
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Figure 7.4: Streaming at three different ratios between inner and outer cylinder, for the
100 p.p.m. PolyHall 295 solute. The surface plot indicates the streaming magnitude and
the vector plot indicates the time-averaged Lagrangian velocity 〈V2〉.

Increased relaxation time

By considering the same setup as above, now with water instead of the viscoelastic PolyHall
295 solution, we can artificially tune the relaxation time, making the water more and more
viscoelastic. In reality one would dissolve a polymer solute to achieve increased viscoelastic
behaviour. This artificial fluid is used to give an indication of how the streaming behave
as the fluid gets increasingly viscoelastic.

To give a measure of how the streaming depends on the viscoelastic parameter De the
streaming energy density Est = ρ0c0|v| is probed while sweeping in De from 0 to 0.44.
The sweep is presented in Fig. 7.5.(A) together with chosen streaming profiles Fig. 7.5.(B).

As seen in Fig. 7.5.(A) there clearly exist a minimum at De = 0.29, which also indicates a
transition. To assess whether or not it is due to flow reversal, the profiles at different De
values are visualised in Fig. 7.5.(B).

Here the streamlines is plotted at four different Deborah numbers (indicated as diamonds
in Fig. 7.5.(A)) equal in energy density around the transition point. The incompressible
Newtonian fluid is obtained at De = 0, here two rolls are present, which is the same
situation for De = 0.15.

At De = 0.35 the flow reversal is evident and only one streaming roll is present, the same
goes for De = 0.37. For the given geometry the transition happens at De = 0.29, where the
streaming energy has decreased from 150 Pa to 130 Pa, above this transition the streaming
increases as the viscoelastic fluid gets more and more elastic.
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Figure 7.5: (A) Streaming energy as a function of the viscoelastic parameter De. The
minimum energy is marked with a circle and the diamonds indicates the Deborah num-
bers at which the streamlines are visualised. (B) Streamlines at four different Deborah
numbers (each quadrant) as indicated with diamonds in (A). The black arrows indicates
the streaming direction.

Rectangular channel

It is interesting to see what happens if we apply the same conditions to the acoustofluidic
device presented in Chapter 4. To simplify the problem, we only model the acoustic fields
inside the microchannel corresponding to hard walls as in Eq. (6.1.3). Apart from the
geometrically different system it is also at MHz frequencies very different from the Hz
regime.

As before, the viscoelastic behaviour is characterised by increasing the Deborah number
De from 0 to 2.4 and at the same time probing the streaming energy density as shown in
Fig. 7.6.(A). This characteristic is very different from the cylindrical system in Fig. 7.5,
but very close to the viscoelastic Rayleigh streaming condition in Fig. 7.1, as would be
expected.

The streaming is again assessed by plotting the streamlines at different De values together
with the acoustic pressure, as shown in Fig. 7.6.(B). The transition at De = 1.63 is again
characterised by flow reversal visualised in Fig. 7.6.(B) at De = 0, 0.68, 1.85, 2.07. Here the
streamlines in second and third quadrant is opposite to the first and fourth quadrant—all
of Rayleigh type streaming profiles. The transition is equal to the theoretical predicted at
De = 1.63 as shown in Fig. 7.1.
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Figure 7.6: (A) Streaming energy density as a function of the viscoelastic parameter De.
The minimum energy at De = 1.63 is marked with a circle and the diamonds indicates
the Deborah numbers used to visualise the streamlines. (B) Streamlines at four different
Deborah numbers (each quadrant) as indicated with diamonds in (A). The white arrows
indicates the streaming direction. The acoustic pressure p1 is presented as a surface plot
(red is positive, blue is negative and gray is zero).

For both cases presented above there seems to be a certain relaxation time where the
streaming is at a minimum. For the cylindrical low-sonic system the streaming energy
density Est went from 150 Pa to 130 Pa, whereas the rectangular ultrasound system went
from 15.2 Pa to 2.60 Pa. This analysis suggest a method to minimise the streaming by
having a viscoelastic fluid with the right Deborah number, depending on the system.
In reality a change in the Deborah number can be obtained by gradually increasing the
concentration of a polymer solution as in Ref. [38].

The flow reversal shown in Ref. [33] was concluded to originate from the viscoelastic be-
haviour, but in Fig. 7.3 the same reversal was was obtained with a Newtonian model. This
suggest that this presumable flow reversal could as well be a consequence of the viscous
boundary layer being similar to the system dimensions. Since by increasing the dynamic
viscosity the inner boundary layer streaming in Fig. 6.1 begins to appear, and eventually
the dimensions of the device becomes comparable to the boundary layer thickness.



Chapter 8

Conclusion and outlook

Starting from the all-polymer PMMA device, we demonstrated and verified how such
systems suggests an alternative to the conventional hard Pyrex/silicon systems, when
doing acoustophoresis. Furthermore we showed how such system can be optimised in
terms of base height and channel position, yielding acoustophoresis comparable to hard-
wall systems.

Next we turned to simulate the second order streaming. Even though the soft all-polymer
PMMA device is very different from Pyrex, many streaming features remains the same.
The most pronounced difference was the normalised streaming magnitude being larger,
suggested to originate from a small departure in the standing pressure half-wave. The
particle trajectories also indicated the same critical particle radius compared to previous
work on hard-wall systems [22, 23].

Next we studied the novel aluminium-PDMS device, categorised as a hard-wall-soft-lid
device. This numerical analysis revealed how the acoustic response in the water channel
is sensitive to the asymmetric actuation. Consequently the acoustic fields are asymmetric
together with the acoustic pressure nodal plane. The PDMS turned out to be problematic
in terms of the interface at the top corners, essentially driving the acoustic streaming.
By artificially tuning the material parameters towards that of PMMA, the problem was
identified to originate from the low transverse speed of sound for the given PDMS. Our
partners were not able to tell which kind of PDMS they used for the device. Again this
emphasises the need of measured material parameters for the given device. This is a
necessity to ensure the predictive ability.

Our analysis also emphasize that a more systematic use of soft walls may lead to enhanced
control over the resulting streaming fields, and may even suppress the streaming alto-
gether. A much more intensive numerical and experimental study of soft walls is needed
to fully understand the nature of hard-wall-soft-lid streaming. These results open up the
possibility of using cheap and easily manufactured acoustofluidic devices to manipulate
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sub-micrometer and nanometer particles.

Some of these results were presented in two abstracts submitted to the Acoustofluidics
conference 2019 [30, 31].

Finally we described the second order streaming for a viscoelastic fluid in terms of the
convected Jeffrey’s model. Successfully, we were able to calculate the classical Rayleigh
streaming condition for a viscoelastic fluid. The reformulated boundary condition pre-
dicted a flow reversal above the transition, defined in terms of the the relaxation time and
angular frequency. This transition was in agreement with our numerical studies.
Flow reversal was observed by [33, C-F. Chang and W.R. Schowalter] in the low-sonic
regime, but could as well originate from the streaming inside the boundary layer, since
the same velocity profiles was obtained with a Newtonian fluid. This theoretically pre-
dicted flow reversal due to viscoelasticity at MHz frequencies remains to be verified by
experiments (work in progress).

In the end, polymer acoustofluidic systems provides an alternative to conventional acoustophore-
sis and open up for:

� cheap acoustophoresis,

� enhanced streaming control using a soft polymer lid,

� suppressed streaming due to viscoelastic properties and

� possible sub-micron acoustophoresis.



Appendix A

Material parameters

A.1 Fluid and particle parameters

Table A.1: Material parameters at 25 ◦C for selected fluids.
Parameter Symbol Water Water/Glycerol 100 p.p.m. aqueous PolyHall 295 Unit

source [8] [33]
Mass density ρfl 997.05 1235 1037 kg/m3

Dynamic viscosity η0 0.89 6.08 375 mPa s
Compressibility κfl 447.7 - - TPa−1

Speed of sound c0 1496.7 1496.7 - m/s
Damping coefficient Γfl Eq. (2.3.9) 0.0004 2× 10−5 1
Specific impedance Zfl 1.49 - - MPa s/m

Table A.2: Material parameters at 25 ◦C for selected tracer particles
Parameter Symbol Polystyrene Unit

source [39, 40]
Radius a 10 µm
Mass density ρp 1050 kg/m3

Compressibility κp 238 TPa−1

Monopole coefficient fmp 0.468 1
Dipole coefficient fdp 0.034 1
Acoustic contrast factor Φac 0.1733 1
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A.2 Elastic parameters

Table A.3: Material parameters at 25 ◦C for selected solids. The specific impedance is
calculated as Zsl = ρslcl.

Parameter Symbol PMMA Pyrex PDMS Unit

source [41–45] [46] [28, 29]
Mass density ρsl 1170 2230 1020 kg/m3

Transverse speed of sound ct 1105 3424 66.26− i12.82 m/s
Longitudinal speed of sound cl 2706 5592 1008− i2.292 m/s
Damping coefficient Γsl 0.0040 0.0004 - 1
Specific impedance Zsl 3.19 12.47 1.028 MPa s/m

A.3 Piezoelectric material parameters

Table A.4: Material parameters of Ferroperm Ceramic Pz26 [26]. The x-y isotropy implies
C66 = 1

2 (C11 − C12).

Parameter Pz26 Unit

source Meggitt A/S [26]
ρsl 7700 kg/m3

Γsl 0.02 1
C11 168 GPa
C12 110 GPa
C13 99.9 GPa
ε11 828 ε0
C33 123 GPa
C44 30.1 GPa
C66 29.0 GPa
ε33 700 ε0
e31 −2.8 C/m2

e33 14.7 C/m2

e15 9.86 C/m2



Appendix B

Resonance properties

Table B.1: Pyrex-water. Different resonances presented together with their acoustic energy

density E
(fl)
ac , their radiation force components F̄y and F̄z and the figure of merit R.

Resonance Frequency E
(fl)
ac F̄y F̄z R

[MHz] [Pa] [pN] [pN] 1

1 1.185 1081 −975 161 6.07
2 1.499 10.3 −9.88 4.66 2.12
3 1.851 396 −556 16.2 34.4
4 1.919 155 −219 4.42 49.7
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Table B.2: PMMA-water. Different resonances presented together with their acoustic

energy density E
(fl)
ac , their radiation force components F̄y and F̄z and the figure of merit

R.

Resonance Frequency E
(fl)
ac F̄y F̄z R

[MHz] [Pa] [pN] [pN] 1

1 1.042 7.14 −5.58 0.828 6.74
2 1.064 0.590 −0.470 0.078 6.00
3 1.099 0.497 −0.392 0.062 6.37
4 1.132 3.97 −3.53 0.235 15.0
5 1.215 0.0171 −0.0100 0.007 1.34
6 1.279 0.564 −0.256 0.243 1.05
7 1.381 1.40 −1.45 0.221 6.56
8 1.453 4.44 −4.73 0.770 6.14
9 1.580 0.0490 −0.0409 0.028 1.46
10 1.652 0.0735 −0.0609 0.030 2.06
11 1.685 0.0422 −0.0119 0.029 0.407
12 1.739 0.121 −0.108 0.065 1.65
13 1.781 2.99 −3.14 2.73 1.15
14 1.904 0.724 −0.453 0.431 1.05
15 2.047 0.276 0.0100 0.146 −0.069
16 2.080 0.374 −0.0553 0.276 0.200

Table B.3: Aluminium-PDMS device. Different resonances presented together with the

acoustic energy density E
(fl)
ac , radiation force components F̄y and F̄z and figure of merit R.

Resonance Frequency E
(fl)
ac F̄y F̄z R

[MHz] [Pa] [pN] [pN] 1

1 1.847 1.518 0.000 2.055 0.00
2 1.961 0.090 −0.029 0.115 0.25
3 2.090 0.038 −0.003 0.055 0.06
4 2.246 0.019 −0.022 0.020 1.07
5 2.345 0.020 −0.018 0.023 0.75
6 2.452 0.009 −0.010 0.011 0.96
7 2.646 0.002 −0.002 0.002 0.75
8 2.744 0.001 0.000 0.001 −0.18



Appendix C

Acoustic device designs

Figure C.1: Aluminium-PDMS device prints. The units are in mm.
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Appendix D

Viscoelastic Rayleigh streaming

The complete function f according to the integral equation in Eq. (7.1.11) is

f =
1

3c2ρ (ω2λ2 + 1) (p2 + q2)2 p2

[
−8 c2ω2

(
p4 − 9/4 q2p2 − 1/4 q4

)
ρ λ2

+ 2
((

10 η p2 + 4 q2η
)
ω + c2ρ

(
p4 − q4

))
ω
(
p2 + q2

)
λ

−8 c2
(
p4 − 9/4 q2p2 − 1/4 q4

)
ρ
] (D.0.1)

p =

√√
ω2λ2 + 1− ωλ and q =

√√
ω2λ2 + 1 + ωλ. (D.0.2)
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