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2 Presentation of the university and of the team

2.1 Presentation of the university

DTU main campus is located in Kongens Lyngby, a town in the North of Copenhagen. It was created in
1829 and was �rst located in the heart of the Denmark capital city. With a growing number of students,
new buildings were created and the university �nally set up in Lyngby in the early 1960's.

Concerning statitics about DTU: according to the DTU website, the total employed sta� was of 6,000
people and there were 11,000 enroled students in 2016. To give a factor of the activity of the university,
researchers made more than 5700 publications during the same year.

DTU's research activity is segregated in 22 departments wich cover a lots of �elds in Physics, Man-
agment, Chemistry, Engineering, Mathematics, Biology, Medicine, and Computer sciences. The group I
joined is a part of the department of Physics (http://www.fysik.dtu.dk/english).

Every departments are divided into sections, composed themself of the research groups. The depart-
ment of Physics is composed of 6 di�erent sections: "Computational Atomic-scale Materials Design",
"Nanoparticle and Surface Science", "Biophysics and Fluids", "Material Physics and Large Scale Facili-
ties", "Plasma Physics and Fusion Energy" and "Quantum Physics and IT". The Theoretical Micro�u-
idics group is a part of the "Biophysics and Fluids" section. This section aims to study Biophysics and
Fluid Dynamic over a wide range of scales, from big structures conducted by turbulences to microscales.

2.2 Presentation of the research group

The Theoretical Micro�uidics Group studies Fluid Mechanics at the micrometer and nanometer scales.
Its principal objectives are to create theoretical models and numerical simulations of actual microdevices.
The group also collaborates with experimental teams.

The team is composed of PhD students and postdoctoral fellows and is led by Prof. Bruus. The Ph.D.
students I worked with were: Mikkel W.H. Ley, Jacob Søberg Bach and Nils Refstrup Skov. I also worked
with postdoctoral fellow Wei Qiu. I was very well integrated in this team. I shared an o�ce with Mikkel,
and a computer was lent to me. Every week, I met face to face with my supervisor about one hour. Every
Tuesday, we met for group meeting, where each member talked about the status of his work and coming
plans. That permitted to bring some help and some ideas.

There was a very good atmosphere within the group. Besides the working ambiance, some things
made the o�ce a really pleasant place to go. For example, the team was united under the moose mascot
and if we were late for the weekly group meeting, we had to bring cake to the next one. We often had
cake.

Figure 1: A graceful moose, mascot of the Theoretical Micro�uidic group

Every Friday, a meeting was organised with all the groups of the section. Then, a student, a professor
or a visiting researcher talked about his work or a chosen subject. There were of course cakes.
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3 Objectives of the internship

3.1 Initial de�nition of the contract

When I signed up my internship agreement, the objective of my project was not de�ned yet. I knew I
was going to work on acoustic in micro�uidic systems but the team was very open on the possibilities of
my work there.

3.2 Analyse of the objectives of the intership

After a few days, Henrik and I decided to aim on the radiation force. This force is acting on a particle
or a non water-miscible droplet in a micro�uidic device and is due to the average of the second-order
pressure in the ambient �uid. In the study of this force, the derivation relies on an important hypothesis.
In this theory, all back re�ections are neglected, which is of course impossible in reality. One paramount
aim of my internship was to determine the in�uence of the re�ections from the walls on the radiation
force. More precisely, my di�erent objectives were:

• Determining numerically a criterion for the scattering hypothesis to be valid

• Studying the in�uence of the walls on the radiation force on a particle in a homogenous ambiant
�uid

3.3 Method

To understand the state-of-the-art, I �rst studied the theories of acoustic and of the radiation force. I
mainly studied the papers Settnes and Bruus (2012) [1], Karlsen and Bruus (2015) [2], and Ley and Bruus
(2017) [3]. I then learned how to use the software COMSOLMultiphysics (https://www.comsol.fr/comsol-
multiphysics) in order to realise my simulations. The technical work will be presented below in section
6.
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4 Theoretical Acoustic

4.1 Acoustic

Acoustic is the science which studies sound and mechanical waves propagating in matter. These waves
are pressure and velocity perturbations wich transfer mechanical energy and momentum. As these waves
are going to propagate in �uids in our study, we are going to brie�y review the basic equations of Fluid
Dynamic. A list of the properties of a �uid used in the report is found in Appendix 1.

The basic equations who rule Fluid Dynamic are the Navier�Stokes equations. There are three of
them: the mass conservation, the momentum equation and the energy equation. In our study, we will
neglect thermal e�ects and then we are going to use only the �rst two ones,

∂ρ

∂t
+∇ · (ρv) = 0 (1)

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p+ η∇2v + βη∇(∇ · v) (2)

A harmonic dependance in time will be assumed for all the studied �elds. By convenience, we will
use the complex time notation e−iωt, where ω is the angular frequency of the actuating wave. Therefore,
the velocity, the pressure and the density will be seen as complex. The physical �elds will be the real
part of these complex �elds. Moreover, as every studied terms, including boundary conditions, will have
this time dependancy, this complex exponential will be omitted in both theory and simulation.

4.2 Perturbation theory: introduction

The radiation force is an e�ect due to the time-averaged second-order pressure. In that way, we are going
to see in the next subsections the order decomposition of the velocity, the pressure and the density, in
order to get the order decomposition of the Navier�Stokes equations.

The zeroth order will represent the behaviour of the ambiant fuid without any wave propagating in
it. The higher orders, representing the tiny perturbations, will be triggered by the wave whose amplitude
is minute. The �uid will be considered quiescent before the presence of any wave (which implies v0 = 0).

We will show that the �rst order pressure is following a wave equation. We will then aim on the
second-order pressure in order to study the radiation force.

4.3 Perturbation theory: �rst order decomposition and the Helmoltz equa-

tion

Here is the �rst order decomposition:

v = 0 + v1 (3)

p = p0 + p1 (4)

ρ = ρ0 + ρ1 (5)

Moreover, we have the equation of state (see Appendix 1):

p1 = c20ρ1 (6)

Including (3),(4) and (5) into (1) and (2), we get the �rst-order decomposition of Navier�Stokes
equations:

∂ρ1

∂t
+ ρ0∇ · (v1) = 0 (7)

ρ0
∂v1

∂t
= −∇p1 + η∇2v1 + βη∇(∇ · v1) (8)

A single equation for ρ1, ie for p1, is obtained by inserting (8) in the time derivative of (7):

−ω
2

c20
p1 −∇2p1 + (1 + β)η∇2(∇ · v1) = 0 (9)
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Then, we get:

−ω
2

c20
p1 =

[
1− iω(1 + β)η

c20ρ0

]
∇2p1 (10)

and:

− 1

1− iω(1+β)η
c20ρ0

ω2

c20
p1 = ∇2p1 (11)

Considering that iω(1+β)η
c20ρ0

≈ 10−5 , we get to:[
1 +

iω(1 + β)η

c20ρ0

]
ω2

c20
p1 = ∇2p1 (12)

which is the Helmoltz equation:

∇2p1 = −k2p1 (13)

k is the complex wavenumber. We have k = k0(1 + iΓ) where k0 = ω
c0

is the real wavenumber,

modelising the propagation of the wave, and Γ = (1+β)ηω
2ρ0c20

is the damping factor. The last one has been

and will be supposed minute in the bulk (Γ ≈ 10−5 with our parameters), it can often be neglected.

4.4 Irrotational hypothesis

Before looking at the second-order equations, we have to talk about another hypothesis we are going to
make. As we will study pressure acoustic �elds, we are going to do an assumption wich is going to be
useful for our boundary conditions. We are going to neglect the rotational part of the velocity. To be
clear, we have:

∇2v1 = ∇(∇ · v1)−∇× (∇× v1) (14)

Our assumption consists on negligting the rotational term: ∇× (∇×v1). This assumption is assimilating
the velocity to its irrotanional compressible part, neglecting is non-divergent rotational one. In that way,
the �rst order momentum equation (8) can be approximated by:

ρ0
∂v1

∂t
= −∇p1 + (1 + β)η∇(∇ · v1) (15)

and using the �rst order mass conservation (7), we get a relation between the velocity and the pressure:

−iωρ0v1 = −∇p1 + iω
(1 + β)η

ρ0c20
∇p1 (16)

ie:

v1 = − i

ωρ0
(1 + iΓ)2∇p1 (17)

This asumption gives us simple boundary conditions for the pressure �eld using the velocity ones. The
velocity �eld is going to be highly in�uenced in the narrow viscous boundary layer by this assumption
but it is just a minor approximation on the pressure �eld, wich is the one we are going to study.

This asumption neglects the boundary viscous layer, as the shear is not considered in the �uid. The
viscosity will only be modeled by the "bulk" damping factor. In this case, we do not have the no slip
conditions (v = 0) but the normal velocity conditions (v · n = 0).

The "bulk" damping factor is usually very low compared to the "shear" damping factor, wich is the
one we measure in reality. We will use this fact further in section 6.

We will use this hypothesis everywhere in our simulations and our theory, except when we will calcul
one of the scattering coe�cient (see Appendix 2).

7



4.5 Perturbation theory: second-order decomposition and radiation force

4.5.1 De�nition

The radiation force is due to the time average of the second-order pressure in the acoustic �eld due to
the scattering of an acoustic wave by the particle or the droplet. The particle, whose radius a is far lower
than the wavelength λ of the incident wave, is going to act like a scattered point.

The radiation force is de�ned as the time-averaged e�ect of the �uid stress on the particle. The choice
of the time average can be explained by two reasons:

• The particle is going to be moved by the �rst-order e�ect but this e�ect does only make it oscillate
over a period: the time average of a �rst order variable is zero. Only the non-linear second-order
e�ect will make it draft.

• Moreover, we often only observe experimentally the second-order quasi-steady drift e�ect, whoose
timescale is larger than the oscillating e�ect of the �rst order.

In our further derivation, we will consider the �uid inviscid, by convenience. We will make the main
hypothesis to be discussed in the report that all back re�ections of the scattering wave are neglected. We
will neglect all the possible body forces and all thermal e�ects.

4.5.2 A general expression

We can obtain a useful expression for the radiation force considering an arbitrary static volum domain
Ω1 containing the particle Ω. The surfaces of the domains will respectively be called ∂Ω1 and ∂Ω.

Figure 2: The particle Ω within an arbitrary volume domain Ω1

If we apply Newton's second law on the �uid contained between the two surfaces, we have:

dP

dt
=

∫
∂Ω1

[σ − ρv ⊗ v] · n dS +

∫
∂Ω

σ · (−n) dS (18)

where P is the momentum of the system, σ is the stress tensor and n is the normal vector going out
of the surface ∂Ω1. As the time average of a total time derivative is zero in time-periodic systems, we
get:

Frad =

〈∫
∂Ω

σ · n dS

〉
=

〈∫
∂Ω1

[σ − ρv ⊗ v] · n dS

〉
(19)

where the angled brackets represents the time average over a period.
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4.5.3 second-order decomposition

Now we are going to study the second-order Navier�Stokes equations to link the second-order pressure
to the �rst order terms. Here is the second-order decomposition:

v = 0 + v1 + v2 (20)

p = p0 + p1 + p2 (21)

ρ = ρ0 +
p1

c20
+ ρ2 (22)

and then we get the second-order time-averaged equations:

ρ0

〈
∇(v2)

〉
= −

〈
∇(ρ1v1)

〉
(23)〈

ρ1
∂v1

∂t

〉
+ ρ0

〈
(v1 · ∇)v1

〉
= −

〈
∇p2

〉
(24)

Some terms yielded to 0 because the time average of a �rst-order term is zero and because we neglected
viscosity. Then, (24) leads to, using (8) with no viscosity term:

〈
p2

〉
=

1

2
κ0

〈
p2

1

〉
− 1

2
ρ0

〈
v2

1

〉
(25)

A new formula for the radiation force occurs, using (19), (25), the fact that the time average of a �rst
order variable is zero and the fact that zeroth order variables are constant:

F rad = −
∫
∂Ω1

da

[
1

2
κ0

〈
p2

1

〉
n− 1

2
ρ0

〈
v2

1

〉
n+ ρ0

〈
(n.v1)v1

〉]
(26)

4.5.4 Scattering theory

The last step consists on using the scattering theory to �nd a new expression of the radiation force,
depending on two scattering coe�cients f0 and f1, depending themselves of the properties of the particle
and of the ambient �uid.

As a reminder, the particle, wich radius a is minute compared to the wavelength λ of the incident
acoustic wave, is going to be a scattered point for this one. The �rst order variables will be decomposed
in an incident �eld and a scattered one:

v1 = vin + vsc (27)

According to (8), if we neglect the viscosity, the velocity can be written as the gradient of a potential
φ:

v1 = ∇(φ1) = ∇(φin) +∇(φsc) (28)

and we have:

p1 = iωρ0φ1 = iωρ0(φin + φsc) (29)

Before inserting this new decomposition in the radiation force expression, we have to study the
scaterred potential φsc using a multipole expansion.

As we are free to choose any domain Ω1, we can choose a sphere of radius r1, having the same center
as the particle. We are going to choose r1 � λ to be in the so called far �eld region. In that case, the
monopole component and the dipole component of the scattered potential dominate:

φsc ≈ φmp + φdp (30)

• The monopole component is due to the oscillatory compressibility of the particle

• The dipole component is due to its oscillatory center-of-mass motion

9



In general, these two components have these expressions:

φmp(r, t) =
1

r
b(r, t− r

c0
) (31)

φdp(r, t) = ∇ ·
[

1

r
B(r, t− r

c0
)

]
(32)

where b and B are two functions. We can notice that, as we are in the far �eld region, the potential
components are time-retarded.

In the �rst order scattering theory, the scattered potential has to be proportional to the incident one.
Using the only relevant physical �elds, we have:

φsc = −f0
a3

3ρ0r

∂ρin(r, t− r
c0

)

∂t
− f1

a2

2
∇ · [ 1

r
vin(r, t− r

c0
] (33)

f0 and f1 are the scattering coe�cients. We have added the radius of the particle a, the density of
the �uid ρ0 and the partial time derivative in order to get the right unit of the potential. The coe�cients
1
3 and 1

2 are added for later convenience.

4.5.5 Final expression

According to (26), the radiation force is a sum of terms wich are all proportional to the square of
φ1 = φin + φsc. This will lead to three kind of terms:

• Terms proportional to φin squared. They will yeld to 0 because they do not contain any information
about the scattering.

• Terms proportional to φsc squared, therefore proportional to a
6. They will be negligible compared

to the third kind of terms.

• Terms proportional to the product φinφsc, proportional to a
3. They are the dominant terms of the

radiation force. We will only keep them in the further derivation.

Keeping only the mixed product terms in the expression (26), we have:

Frad = −
∫
∂Ω1

da

[
κ0

〈
pinpsc

〉
n− ρ0

〈
vin.vsc

〉
n+ ρ0

〈
(n.vin)vsc

〉
+ ρ0

〈
(n.vsc)vin

〉]
(34)

Then, using Gauss theorem and simplifying:

F rad = −
∫

Ω1

dr

[
ρ0

〈
vin(− 1

c20

∂2φsc

∂t2
+∇2φsc

〉]
(35)

We can see that the d'Alembert operator appears. This operator is going to act on the time-retarded
monopole and on the time-retarded dipole components of the scattering potential. It will yield them to
a point charge distribution located in the center of the domain, ie the position of the center the particle:

− 1

c20

∂2φsc

∂t2
+∇2φsc = f0

4πa3

3ρ0

∂ρin

∂t
+ f12πa3∇ · vin (36)

where ρin and vin are evaluated in the position occupied by the center of the particle.
Finally, we get another expression for the radiation force, after a few manipulations:

F rad = −πa3

[
2

3
κ0Re(f

∗
0 p
∗
in∇pin)− ρ0Re(f1v

∗
in · ∇vin)

]
(37)

where the star means the complex conjugate. The two scaterring coe�cients are equal to :

f0 = 1− κp
κ0

(38)

f1 =
2[1− γ(δ)](

ρp
ρ0
− 1)

2
ρp
ρ0

+ 1− 3γ(δ)
(39)

where γ is a function of the viscous layer lenghtscale δ (to calcul the scattering coe�cients, we do not
use the irrotational or the inviscid hypothesis). In Appendix 2, you will �nd the derivation of these two
formulas and the form of γ.
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4.6 Resonnances in 1D

In this subsection, we will study an exemple of situation which higlights the resonnance phenomena. This
example will be very useful in our further study.

We will study here an 1D situation (the velocity is therefore a scalar). A �uid is contained between
two walls located respectively at x = −L

2 and x = L
2 . These walls are vibrating in phase at the angular

frequency ω, but the amplitude of these vibrations d0 is minute, so they will be considered steady in the
the referential of study.

Figure 3: Figure of the situation. The �uid is represented in blue.

The vibration e�ect will then be modeled by these boundary conditions (as a reminder, the e−iωt is
omitted):

v1

(
± 1

2
L
)

= ωd0 (40)

As we saw in the previous subsection, the �rst-order variables are following a Helmoltz equation.
Therefore, the only possible wavenumbers for a single angular frequency in 1D are: ±k = ± ω

c0
(1 + iΓ).

The velocity is therefore a sum of these two modes:

v1(x) = V+e
ikx + V−e

−ikx (41)

The boundary conditions are imposing that v1 must be even. The only possible case is that V+ = V−,
so that a cosine can appear. Only standing waves are allowed to exist in this case:

v1(x) = V+e
ikx + V−e

−ikx = V+(eikx + e−ikx) =
V+

2
cos(kx) (42)

By using one of the two boundary conditions (40), we �nd that:

V+ = V− =
2

cos(kL2 )
ωd0 (43)

so:

v1(x) =
ωd0

cos(kL2 )
cos(kx) (44)

and the pressure, through equation (17), has the form:

11



p(x) =
iω2ρ0d0

k(1 + iΓ)2 cos(kL2 )
sin(kx) (45)

It will exists some values of k so that the pressure reaches a peak. These values correspond to the
resonnances. In this cases, the wvenumbers corresponding to the modes are:

k =
(2n+ 1)π

L
(1 + iΓ)

where n is an integer.
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5 Numerical tools

5.1 Finite element and Weak form

As a reminder, the aim of the �nite element method is to discretize a physical �elds by expanding it in a
set of localized functions called the test functions. Each of these are associated with a geometrical node
of the numeric mesh. For example, a physical �eld g(x) will be expanded in that way:

g(r) =
∑
n

cnĝn(r) (46)

where n is the number of nodes of the mesh and ĝn are the test functions.
These functions, usually polynomial, are equal to 1 on their associated node and vary to yield to 0 on

the neighbouring nodes. They are also equalled to 0 further.

Figure 4: An example of linear test functions on a 2D domain

This discretization will create a numeric defect D.
To be consistent, the Theoretical Micro�uidics Group chose the following convention. All equations

will be written as continuity equations:

∇ · J = F (47)

where J and F , wich depend of g(r), are discretized. This is not very restrictive because many
of physical equations can easily be written in this shape, and the above-mentionned numeric defect is
D = ∇ · J −F . In order to minimize this defect, we have to project it on a set of functions and put it to
zero. The Galerkin method consists on projecting this defect on the test functions themselves. We have
so, for every n: ∫

Ω

DĝdV = 0 (48)

so: ∫
Ω

(∇ · Jĝn − F ĝn) dV = 0 (49)

ie, using an integration by parts:∫
Ω

(∇ · (Jĝn)− J.∇(ĝn)− F ĝn) dV = 0 (50)

and �nally, by using the Gauss theorem, the Neumann conditions naturally appear:∫
∂Ω

J.nĝn da+

∫
Ω

(−J.∇(ĝn)− F ĝn) dV = 0 (51)
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This integral form is called the weak form.

5.2 COMSOL Multiphysics

COMSOL Multiphysics is a simulation software based on �nite element method. It has a wide range of
options and permit to easily modelise physical situations.

We are not going to use one of its numerous prefabricated modules. In order to have the absolute
control on the equations, we are going to use the weak form module. The software will permit us of
implementing the volume terms of (51) with this syntax:

−test(gx) ∗ Jx− test(gy) ∗ Jy − test(g) ∗ F (52)

where test(gx) and test(gy) are the x and y derivatives of ĝn.
The Neumann boundary conditions will be added by an option called "Weak contribution". The

software has a Cartesian logic. As our further simulations will be on a cylindrical device, we will have to
add some corrective terms (see subsubsection 6.2.2).

5.3 The perfecty matched layer

As we will study situations where there will be no back re�ections at the walls, we need to modelise the
fact that outgoing waves are not re�ected in a certain direction. To do it, we will use a mathematical
tool: the perfectly matched layer (PML) [3]. A PML is domain acting as a perfect absorber of waves. In
order to make this ideal absorbtion in this zone, we are going to modify one of the coordonate. In our
cases, which will be in cylindrical coordonates, we will sometimes need a PML in the axial x-direction.The
modi�cation of the coordonate will be based on the real function s de�ned by:

s(x) = kPML

(
x− L0

LPML

)2

(53)

where kPML (a positive integer) is the absorption coe�cient, L0 the beginning of the PML zone
and LPML, its length. We will multiply this function by booleans so that the zone is delimited by
x ∈ [L0, L0 + LPML]. This function will in that way be equal to 0 outside of the PML and increase as a
parabol inside.

This modi�cation will be implemented by changing all occurences in ∂x and dx:

• ∂x by 1
1+is(x)∂x

• dx by (1 + is(x))dx

These modi�cations introduce an imaginary part and thus a damping for the outgoing waves. The
values of kPML and LPML must be optimised to have a functionning PML and to make sure that the
result is still physical (a too big absorbtion coe�cient can induce non physical �elds for example).
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6 Technical Work

6.1 The studied system

6.1.1 Cylindrical system

In order to complete our objectives, we are going to study a cylindrical microdevice. The real device
is composed by a glass structure �lled with a liquid and some microparticles. Its aim is to control the
particles thanks to the radiation force. In order to create this force, the system is actuated by acoustic
waves generated by a piezoelectric device.

In some experiments, researchers used a lot of di�erent geometries for these devices. The article
[3], which gives 3D simulations of real experiments, simulates four di�erent geometries. The cylindrical
geometry we are going to modelise corresponds to the experiment described by Gralinski et al. [4]. In
our simulations, the glass is going to be omitted and we will study only one particle located on the axis
of the cylinder at the axial coordonate x0.

x

y

r
φ

a

x0

R

L

Figure 5: The studied microdevice: a cylindrical vertical structure of length L and radius R with a
microparticle of radius a (red sphere) located on the axis at position x0

We will obviously use the cylindrical coordonates in a given base (ex, er, eφ) where the unit vector er
is located by the angle φ compared to the unit vector ey of the Cartesian base.

From now, we are going to assume that all the studied terms, including the boundary conditions, have
a φ dependancy in eimφ where m is an integer. This result is going to be veri�ed in the next subsections
for the incident pressure. This complex exponential will then be omitted for all the studied �elds, as well
as the time dependency.

In that way, we can study a 2D domain wich is "a slice" of our system for a given φ. This is this
system we are going to use in our simulation.
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R

L

a

x0

x

r

Figure 6: The cylindrical system sliced for a given φ

We can recover our complete system by doing a cylindrical revolution around the x-axis.

6.1.2 The incident pressure

We are actuating our system by making the walls located at x = −L2 and x = L
2 vibrate, in the same

way we saw in the 1D example in subsection 4.6. It will create a standing wave. In our simulation, we
are going to modelise this incident pressure by an analytical function and we will study the acoustic �eld
scattered by the particle. In this subsection, we are going to �nd the right shape of the incident presure,
knowing that it has to follow the Helmoltz equation with vibrating walls boundary conditions.

General form of the Helmoltz equation's solutions in cylindrical coordonates: One takes a
general function F=F(x,r,φ), following the Helmoltz equation of wavenumber k:

(∇2 + k2)F = 0 (54)

We are going to do a variable decomposition to �nd the general form of the Helmoltz equation's solutions:

F (x, r, φ) = A(x)B(r)C(φ) (55)

By including this form in the equation (54), we get:

d2A(x)

dx2
B(r)C(φ) +

1

r

d

dr
(r

dB(r)

dr
)A(x)C(φ) +

1

r2

d2C(φ)

dφ2
A(x)B(r) + k2A(x)B(r)C(φ) = 0 (56)

If we divide by A(x)B(r)C(φ), we have:

1

A(x)

d2A(x)

dx2
+

1

rB(r)

d

dr
(r

dB(r)

dr
) +

1

r2C(φ)

d2C(φ)

dφ2
+ k2 = 0 (57)

In that way, we can get, for A(x):

d2A(x)

dx2
= −l2A(x) (58)

Here, l is a constant wich physically represents the wavenumber in the direction ex. That's why we
have chosen the constant of the right hand side of the equation in the form: "−l2". We thus have for
B(r) and C(φ):

−l2 +
1

rB(r)

d

dr
(r

dB(r)

dr
) +

1

r2C(φ)

d2C(φ)

dφ2
+ k2 = 0 (59)

one can note:

α2 = k2 − l2 (60)
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In that way, we have:

1

rB(r)

dB(r)

dr
+

1

B(r)

d2B(r)

dr2
+

1

r2C(φ)

d2C(φ)

dφ2
+ α2 = 0 (61)

By multiplying by r2, we get:

r

B(r)
(
dB(r)

dr
) +

r2

B(r)

d2B(r)

dr2
+

1

C(φ)

d2C(φ)

dφ2
+ r2α2 = 0 (62)

And thus, we have, for C(φ):
d2C(φ)

dφ2
= −m2C(φ) (63)

where m is a constant wich physically represent the number of the angular mode in φ as we will see
below.

Finally, we have, for B(r):

r
d

dr
(r

dB(r)

dr
) + (r2α2 −m2)B(r) = 0 (64)

This is the well-known Bessel equation. To put it in a nutshell, we have:

d2A(x)

dx2
+ l2A(x) = 0, (65a)

r
d

dr
(r

dB(r)

dr
) + (r2α2 −m2)B(r) = 0, (65b)

d2C(φ)

dφ2
+m2C(φ) = 0. (65c)

with: α2 = k2 − l2.
In that way, we can �nd the form of one mode of F. For every mode, we have:

• A(x) = A1e
ilx +A2e

−ilx

• B(r) = B1Jm(αr) +B2Ym(αr) where Jm are the Bessel functions of the �rst kind and Ym are the
Bessel functions of the second kind.

• C(φ) = C1e
imφ + C2e

−imφ

so, one mode can be written:

(A1e
ilx +A2e

−ilx)(B1Jm(αr) +B2Ym(αr))(C1e
imφ + C2e

−imφ) (66)

and F is in reality the sum of an inifnity of these modes:

F (x, r, φ) =
∑
a,b,c

(A1ae
ilax +A2ae

−ilax)(B1b,cJmc(αb,cr) +B2b,cYmc(αb,cr))(C1ce
imcφ + C2ce

−imcφ) (67)

As we can see, angular and radial modes are coupled through the Bessel functions.

First simpli�cations: In our case, the pressure p(x, r, φ) is following the Helmoltz equation of wavenum-
ber k=ω

c (1 + iΓ). Thus, we can say that:

p(x, r, φ) =
∑
a,b,c

(A1ae
ilax +A2ae

−ilax)(B1b,cJmc(αb,cr) +B2b,cYmc(αb,cr))(C1ce
imcφ + C2ce

−imcφ) (68)

with:
α2
b,c = k2

a,b,c − l2a (69)

We will use the symmetries and the boundary conditions of our situation to simplify the form of the
pressure and to �nd all the possible wavenumbers. Every modes have to respect some conditions:
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• According to our boundary conditions, the pressure has to be odd in x. In that way, for every mode
(a,b,c), we can assume that: A1ae

ilax+A2ae
−ilax = A0a sin(lax). Only standing waves are allowed.

• As we can choose the beginning of φ, we can choose that C2c = 0.

• As we have a periodicity of 2π in φ, all mc are integers. As they are integers, we shall not use the
substrack c anymore and use m instead.

• As lim
r→0

Ym(r) = −∞ and in our case, the pressure is �nite at r=0, we can assume that B2b,m = 0

So the pressure can be written:

p(x, r, φ) =
∑
a,b,m

A0aB1b,mC1m sin(lax)Jm(αb,mr)e
imφ (70)

one can note: P
′

a,b,m = Pa,b,mA0aB1b,mC1m and then:

p(x, r, φ) =
∑
a,b,m

P
′

a,b,m sin(lax)Jm(αb,mr)e
imφ (71)

Wavenumber in the direction er At each resonnance, the �ux has to be zero at r = R, so for every
(a,b,m) and for every (x,φ):

αb,mP
′

a,b,m sin(lax)J ′m(αb,mR)eimφ = 0 (72)

Then:
αb,m =

γm,b
R

(1 + iΓ) (73)

where γm,b is the b
th root of the derivative of the mth Bessel function in growing order.

Wavenumber in the direction ex: As we did in the section 4.6, we can �nd that:

la = (2a+ 1)
π

L
(1 + iΓ) (74)

The only di�erence between the 1D case is that the vibrating velocity has to contain some information
about m and b:

v1

(
x = ±L

2
, r, φ

)
= ωd0Jm(αb,m)eimφ (75)

In that way, we also have access with the amplitude coe�cient P
′

a,b,m of a given mode.

Dispersion relation We �naly have our complete dispersion relation, given by (60):

(
ω

c0
)2 = (

γm,b
R

)2 + ((2a+ 1)
π

L
)2 (76)

With this relation, we can �nd the resonnance frequency of every modes. In our case, we are going
to actuate only one mode, wich is the easiest to perform in real experiments: the mode 1-0-0 (1 in x, 0
in r, 0 in φ). This actuation will in that way be modeled by the analytical function: pin = P

′

1,0,0sin(lx)
with l = π

L (1 + iΓ). In this mode, the wavelenght is twice the length of the device. The �rst simulation
will consist on verifying that this actuation is correctly re�ecting the experiment we want to modelise.

6.2 Numerical simulations and results

6.2.1 Mesh

Here we can see an example of mesh implemented in COMSOL for our simulations.
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Figure 7: Mesh implemented

The mesh cells are triangular cells generated by the software. They will measure from 5µm to 10µm
in the bulk and from 0.5µm to 1µm around the particle. To be able to mesh precisely without having a
huge CPU time, the dimensions of the cylinder will be taken much lower than the one used in the real
experiments of the article [4] (L = 10mm and R = 425µm in this article).

6.2.2 Helmoltz equation and the cylindrical coordonates corrective term for the scattered

pressure

Here we are going to see the implementation of the Helmoltz equation for the scattered pressure psc, wich
is the variable we are going to study in all our simulations (except the �rst one). We are currently using
the cylindrical coordonates but COMSOL is based on a Cartesian logic. We must so adapt the equations
to be able to use it in the software. It will add some corrective terms.

Here is the Helmoltz equation of wavenumber: k = (1 + iΓ)ωc followed by the scattered pressure:

(∇2 + k2)psc (77)

So, in cylindrical coordonates, taking into account the dependance in φ, we have:

(
1

r

∂

∂r
(r
∂

∂r
)− m2

r2
+

∂2

∂x2
+ k2)psc = 0 (78)

In order to implement this equation in the weak form, we are going to multiply it by the test function
p̂sc and then integrate on all the volume of the cylindrical system Ω:∫

Ω

p̂sc(
1

r

∂

∂r
(r
∂

∂r
)− m2

r2
+

∂2

∂x2
+ k2)pscrdrdφdx = 0 (79)

Then: ∫
Ω

p̂sc(
∂

∂r
(r
∂

∂r
)− m2

r
+ r

∂2

∂x2
+ rk2)pscdrdφdx = 0 (80)

By our symetry in φ, we get:

2π

∫
Ω2D

p̂sc(
∂

∂r
(r
∂

∂r
)− m2

r
+

∂

∂x
(r
∂

∂x
) + rk2)pscdrdx = 0 (81)

where Ω2D is the "slice" of cylinder for a given φ. To respect the formalism introduced in section 5,
we can introduce:

• A current term J = 2πr

(
∂
∂r (psc)
∂
∂x (psc)

)
• A body term F = 2π(m

2

r − rk
2)psc

The boundary conditions appears naturally thanks to the weak form, as we saw in section 5.
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6.2.3 Study 1: The incident pressure

The �rst study consists of verifying the form of the incident pressure we want to modelise in the future
�les. In this simulation, the particle is not there yet and so there is not any scattered pressure �eld. We
are going to study the pressure �eld generated by the wall vibrations and we are going to compare the
shape of it with our theory developped above.

Figure 8: Geometry: L = 300µm and R = 75µm

The walls vibrate at a certain resonnance frequency to excite the mode 1-0-0. We are going to verify
the right shape of this �eld, and have access numerically to the amplitude coe�cient of the mode P

′

1−0−0.
To �nd the resonnance frequency, we make a parametric sweep of the vibration frequency around the

theoretical value and we plot the acoustic energy density.

Figure 9: Acoustic energy density in function of the vibration frequency

This resonnance is visible on the above �gure and the resonnance frequency is very close to the one
calculated with the theory (f1−0−0 = 2, 5MHz with our geometric parameters). The parametric sweep
was made with 200 values from 2.25MHz to 2.75MHz.
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Figure 10: Pressure �eld(max:600kPa Figure 11: Pressure �eld at r=0

On this �gures, we can see the pressure �eld. On the left �gure, we can see the total pressure �eld
and on the right �gure, the pressure �eld at r=0 in function of x. The shape of the incident pressure is
the one expected : pin = P

′

1,0,0sin(lx).
We now have all the tools to develop the actuation in our future studies. As the �rst-order equations

will be linear, we are not going to look for the real physical amplitude of the actuation at each measure,
we are going to normalize this to 105, by convenience. However, we know we could use the results of this
subsection to get the physical amplitude of the further results. In the further studies, the walls will be
considered as steady, because vibrations will already be "integrated" in the analytical function we have
just found.

6.2.4 Study 2: Criterion of the validity of the scattering theory with an in�nitely heavy

and in�nitely hard particle

Now we are studying the device with an in�nitely hard and in�nitely heavy particle in its center. This
time, we are going to study the scattered pressure �eld. The incident pressure will be modeled by the
normelised analytical function we have just veri�ed.

Figure 12: An example of geometry used in this study

We can see on the �gure the particle (wich will act like a hard wall) and an arbitrary domain Ω1

containing it. The boundary conditions are that the total �rst order pressure �ux (the sum of the
incident pressure �ux and the scattered one) is zero at the walls and so also at the particle.

We choose that the criterion will concern the damping factor Γ = (1+β)ηω
2ρ0c20

. We can identify two

di�erent regimes for a given case:

• At a low damping factor, the scattered wave is re�ected at the walls and build up another resonnance.
The scattered �eld then acquires the opposite phase compared to the incident one. We are not in
the domain of validity of the scattering theory because the walls have a huge in�uence and the
scattered wave is not outgoing.

• At an important damping factor, the scattered wave is not re�ected enough by the walls to have a
great in�uence and we can see the wave's outgoing behaviour. We are in the domain of validity of
the theory.
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Figure 13: On the left, the absolute value of the scattered pressure �eld (max: 10kPa for Γ = 0.01 with
L = 300µm and R = 75µm and on the right, the absolute value of the scattered pressure �eld (max:
5kPa for Γ = 0.05 with L = 300µm and R = 75µm

Between this two regimes, when we rise the damping factor, the amplitude of the scattered wave,
which has built up a resonnance, becomes lower and lower until it reachs the outgoing behaviour. As a
choice for the criterion, we are going to de�ne the critical damping factor Γc as the damping factor wich
leads to:

max(|psc|) = 0.2|pin|

In order to �nd this critical value, we are going to choose the position of the particle where the
scattering (depending of the gradient of the incident pressure) will be maximal: x0 = 0. This critical
damping factor depends on parameters we have to determine. Let's use the Pi theorem to �nd non-
dimensional numbers on wich Γc will depend. Here are the equations related to the experiment:

(k2 +∇2)psc = 0 (82a)

k =
ω

c
(1 + iΓ) (82b)

ω

c0
=

π

L
(82c)

∇psc(rwall) · n+∇pin(rwall) · n = 0 (82d)

pin = pasin(kx) (82e)

where :

• The �rst equation is the Helmoltz equation for the scattered pressure

• The second one is the de�nition of the complex wavenumber

• The third one is the fact that we are actuating the system at its mode 1-0-0

• The fourth one traduce the boundary conditions

• The last one is the analytical function of the incident pressure

In that way, we have : Γc = f(L,R, a). The critical damping factor is only depending on the geometry
of the device and of the particle.

We can then de�ned two non-dimensional numbers L/R and a/R so that:

Γc = f

(
L

R
,
a

R

)
. (83)

We are then going to modify the geometry to get the curves of the critical damping factor.
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Figure 14: Critical damping factor Γc as function of the geometry of the device L and R as well as of the
geometry of the particle a

For a given experiment with a cylindrical device and with our current actuation, we could use this
curve to see what geometry we could use if we don't want to have the walls' in�uence. In a real case,
the damping factor to compare with the critical value could be the "shear" damping factor, wich is far
higher than the "bulk" one.

Let's use these curves with the experiment of the article [4]. In this experiment, the �uid used is water,
the actuating frequency is around 1MHz and the geometric parameters are L = 10mm, R = 425µm and
a = 5µm. We have then: L

R = 23 and a
R = 1

85 . We are going to place the shear damping factor on the
curves to see if the walls actually play a role or not. We have Γs = 1.3 10−3.

Figure 15: The experiment situation compared with the criterion. The actual experimental parameters
are far outside the depicted interval, wich is indicated by the point and the black arrow in the top-right
corner.

As we can see on the �gure, the damping factor, located by the black point, is far higher than the
critical curve wich would correspond to a

R = 1
85 . The walls do not play a role and the scattering theory

can be used without any hesitation.
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6.2.5 Study 3: Radiation force on a in�netily weighed and in�nitely hot particle

In this simulation, we are going to see the e�ects of the walls on the radiation force. First, we are going
to compare our simulation results to the ones obtained by the theory in the case of no back re�ections.

On one hand, we make a simulation using PML (Perfectly matched layer, see section 5) zones in the
ex direction, so that we get a perfect absorption of the waves close to the walls. The criterion will be then
veri�ed whatever the value of the damping factor. The geometry will be R = 75µm and L = 300µm.
The actuation and the boundary conditions remain the same.

We implement the radiation force through the formula (26):

F rad = −
∫
∂Ω1

da

[
1

2
κ0

〈
p2

1

〉
n− 1

2
ρ0

〈
v2

1

〉
n+ ρ0

〈
(n.v1)v1

〉]
On the other hand, we use a Python program to get the curve of the theoretical radiation force. To

get it, we use the formula issued of the scatering theory (37):

F rad = −4π

3
a3∇(

1

2
Re(f0)κ0

〈
p2

in

〉
− 3

4
Re(f1)ρ0

〈
v2

in

〉
)

As the particle is in�nitely heavy and in�nitely hot, the factors f0 and f1 are both equal to 1.We can
compare the two curves.

Figure 16: Comparison between the radiation force calculated with the formula issued of the scattering
theory and the one obtained by the simulation with PML

As we can see on the �gure, the result is very satisfying. We have the same shape (a sinusoidal with a
wavelength equal to the double of the actuation's one) and the relative error between the two amplitudes
is less than 1%. With the PML, our simulation is so verifying the theory.

We will now take o� the PML to see what could be the in�uence of the walls for di�erent values of
the damping factor. For this geometry, the critical damping factor is of 5× 10−3.
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Figure 17: Radiation force on the in�nitely hard and in�nitely heavy particle for di�erent values of the
damping factor

As we can see on the �gure, the walls are lowering the radiation force. With a low damping factor,
the scattered waves build up a resonnance wich tend to cancel the incident �eld. Their interferences are
just destroying each other, without creating any time average defect on the particle.

6.2.6 Study 4: Adding real properties

To de�ne our criterion, we used an ideal particle (ρp → ∞ and κp = 0).We could de�ne a more general
criterion, but it will also depend on the scattering coe�cients f0 and f1. The graphical representation
would be far more complicated and the curves far more time-consuming to get. In that way, we are going
to reproduce the previous study to see if the fact that the particle have real properties will go in our way
or not.

This simulation will be exactly the same as the one before but using a particle with a �nite density
ρp and on non zero compressibility κp. We will modelise the particle by a droplet, to avoid using solid
mechanics. It will be a droplet of glycerol (with ρp = 1300kg/m3 and κp = 2.20× 10−10Pa−1). Here are
the curves:
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Figure 18: Radiation force on a droplet of glycerol for di�erent values of the damping factor

As we can see on the �gure, the radiation force tend to yield to 0 with a decreasing damping factor
as before, but the critical damping factor seems to be lower (the curve for Γ = 5 10−3 is less altered).
When the particle is real, the scattering is not ideal, not complete. The fact that the particle is in�nitely
heavy and in�nitely hard represents so the worst case if we don't want any e�ect of the walls. In that
way, the criterion obtained with a perfect particle can be used for real particles because if a geometry
satis�es the �rst one, it will satisfy the second.
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7 Conclusion

7.1 Conclusion on the results

To conclude on this report, we de�ned a criterion on the damping factor in a "lab-on-chip" to determine
if the walls were going to play a role on the scattering of the incident wave by a particle. We then saw
that if this criterion is not respected, the walls were going to diminish on the radiation force exerced on
the particle, making it yield to zero.

7.2 Mission completed?

If we look at the initial contract, I think I succeeded into completing my objectives. I would have wanted
more time to study the case of a inhomogenous ambient �uid but I think that my results could help the
researchers in the future.

7.3 Being a researcher

I was completely free on this project. Professor Bruus trusted me and I was able to understand many
theoretical aspects on acousto�uidic. I must say I really loved this experience. It was my largest study
project as a researcher, and it really made me want to go on to become a full-time researcher. That is
why I am heading to do a PhD next year.
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8 Appendices

8.1 Appendix 1: Basic properties of a �uid and Mathematical operators

8.1.1 Basic properties of a �uid

• ρ: Density of the �uid. It is the mass of the �uid per unit volume.

• η: The dynamic shear viscosity of the �uid. It is a measure of its resistance to gradual deformation
induced by a shear stress.

• β: β is the ratio between the shear viscosity and the viscosity related to compressibiliy-induced
stress.

• κ: Compressibility of the �uid. It is a measure of the relative volume change of the �uid as
a response to a pressure actuation. This behaviour depends on if the actuation is adiabatic or
isothermal. We can then de�ne two compressibility coe�cients: the isothermal one κT = −ρ(∂ρ∂p )T

and the isentropic one κs = −ρ(∂ρ∂p )s. We will use the isentropic one (in the report, we will denote

κ0 = κs)

• c0: Speed of sound in the �uid. It is the distance travelled by a sound wave per unit time in the

�uid. We have: c0 =
√

1
ρκs

=
√

(∂p∂ρ )s

8.1.2 Equation of state

In subsection 4.3, we use the equation of state (6) to �nd the �rst order equations. Here we are going to
see the derivation of this formula. By doing a Taylor expansion of the pressure, function of the density
and of the entropy, we get:

p(ρ, s) ≈ p0 + p1 = p(ρ0) + (ρ− ρ0)(
∂p

∂ρ
)s

so we get :

p1 ≈ ρ1c
2
0
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8.2 Appendix 2: Derivation of the scattering coe�cients

In this subsection, we are going to calculate the scattering coe�cients. We are going to use spherical
coordonates with the base (er, eθ, eφ) located at the instantaneous center of the particule. As it was
said, we will not use the irrotational hypothesis here. In that way, the visous boundary layer cannot be
neglected. Its lenght scale is denoted δ and we have:

δ =

√
2η

ρ0ω
(84)

We are then going to de�ne three zones:

• the viscous boundary layer r ∈ [a, a+ 5δ]

• the near �eld region a+ 5δ � r � λ

• the far �eld region r � λ

Moreover, we will assume here that we have a symmetry in φ. The velocity of the particle will be
denoted vp. In this coordonates, we have:

vin = vin(cos(θ)er − sin(θ)eθ) (85)

vp = vp(cos(θ)er − sin(θ)eθ) (86)

In the near �eld region, the potential components are going to depend on the instantaneous time
variable t and not the retarded one t− r

c0
. In the near �eld region, (33) gives us:

φsc(r, θ) = φmp(r) +φsc(r, θ) = −f0
a3

3ρ0r

∂ρin(t)

∂t
− f1

a2

2
∇· [vin(t)

r
] = −f0

a3

3ρ0r

∂ρin(t)

∂t
+ f1

a2

2
vin(t)

cos(θ)

r2

(87)

8.2.1 The monopole coe�cient f0

The monopole behaviour is the one of a steady compressible particle. The presence of the particle induce
a mass rate of scattered �uid:

∂m

∂t
=

∫
∂Ω

n.(ρ0∇φmp)da = f0
4π

3
a3 ∂ρin

∂t
(88)

We also have:

∂m

∂t
=

∂

∂t
[(ρ0 + ρin(t))Vp(t)] (89)

where Vp(t) is the volume of the particle.
Using the de�nition of the compressibility, we get to:

∂m

∂t
= (1− κp

κo
)Vp(t)

∂ρin

∂t
(90)

We then get:

f0 = 1− κp
κo

8.2.2 The dipole coe�cient f1

The dipole behaviour is the one of an incompressible particle moving in the �uid. We are going to match
the velocity of the �uid in the near �eld region (vin +∇(φsc)) with the particle's one (vp) in order to �nd
the scattering coe�cent. In the boundary layer zone, the �uid will be supposed incompressible (the time
it takes for an acoustic waves to propagate through this zone is much less than an oscillation). We will
denote vbl, the �rst order velocity in this boundary layer. This velocity has to ful�l the no-slip condition:

vbl(a, θ) = 0 (91)
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Using an asymptotical matching at a distance r∗ with a+ 5δ � r∗ � λ, we have:

vbl(r
∗, θ) = (1− f1

a3

r3
) cos(θ)er + (1 + f1

a3

2r3
)(− sin(θ))eθ (92)

We can �nd the velocity of the particle by using Newton's second law:

−iω 4

3
πa3ρpvpex =

∫
∂

σbl · n.exda = 2πa2

∫ 1

−1

d(cos(θ))[σblrrr cos(θ)− σblrθ sin(θ)] (93)

where the stress tensor components are σrr = −pbl + 2η
∂vblr
∂r and σrθ = η( 1

r
∂vblr
∂θ +

∂vblθ
∂r −

vblθ
r )

We then have to determine the �elds pbl and vbl. In order to do this, we will use the fact that the
fuid is considered incompressible in the boundary layer (which implies ∇ · vbl = 0).

Taking the divergence of the �rst order momentum equation (8), we get to the Laplace equation :
∇2pbl = 0. Since pbl has to match with the dipole part in the near �eld region (iρ0ω(φin + φdp)), we get
to:

pbl(r, θ) = iρ0ω[r +
a3

2r2
f1]vin cos(θ) (94)

For the velocity �eld, the incompressibility and the azimutal symmetry both leads to the fact vbl can
be written in function of the stream function Ψ(r, θ):

vbl(r, θ) = ∇× [Ψ(r, θ)eφ] (95)

It can be shown that, by taking the rotation of the �rst order momentum equation, the stream function
can be written as the sum of two terms Ψ1 and Ψ2 wich has to respect:

∇2Ψ1 −
Ψ1

r2 sin2(θ)
= 0 (96)

∇2Ψ2 −
Ψ2

r2 sin2(θ)
= −q2Ψ2 (97)

We denoted q = 1+i
δ . It contains all the information about the viscosity. The solutions of these

equations are:

Ψ1 = A1r cos(θ) +A2
cos(θ)

r2
(98)

Ψ2 = Bh1
1(qr)avin sin(θ) (99)

where h(s) = − i+ss2 e
is is the Hankel function of the �rst kind of order 1. We can see that this function

yield to 0 exponentially. In the near �eld region, outside of the boundary layer, this function is so equal to
0. We �nd the two constants A1 and A2 using the asymptotical matching conditions (Ψ2 being equalled
to 0 outside of the boundary layer):

Ψ1(r, θ) = [
1

2
r − f1

a3

2r2
]vinsin(θ) (100)

So we can �nd the velocity in the boundary layer:

vbl = ∇×(Ψ1+Ψ2)1−f1a
3

r3
+2qaB

h1
1(qr)

qr
] cos(θ)viner+[1+

f1a
3

2r3
+qaB

1

qr

∂(sh1
1(s))

∂s
(s = qr)](− sin(θ))vineθ

(101)
By inserting this formula of the velocity, with the pressure into the Newton's second law, and using

the no slip conditions, we have three equations with three unknowns (f1, vp and B):

vp = [1− f1 + 2Bh1
1(qa)]vin (102)

vp = [1 +
1

2
f1 +B

1

qr

∂(sh1
1(s))

∂s
(s = qa)]vin (103)

ρp
ρ0
vp = [1 +

1

2
f1 + +2Bh1

1(qa)]vin (104)
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After resolving this system, using also the fact that
∂(sh1

1(s))
∂(s) − 2h1

1(s) = sh1
0(s) − 3h1

1(s) (with h1
0 =

− i
se
is the Hankel function of the �rst kinf of order 0), we get the result:

f1 =
2[1− γ(δ)](

ρp
ρ0
− 1)

2
ρp
ρ0

+ 1− 3γ(δ)

with γ(δ) =
3h1

1(qa)

qah1
0(qa)

= 3δ
2a [1 + i(1 + δ

a )]
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