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Front page figure shows a beautiful streaming pattern in a square channel which can be
thought of as constituted by two kinds of streaming with different physical origin as we
will show in Chapter 6 of this thesis.
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Abstract

A major challenge within the field of acoustofluidics is to be able to control sub-micron
particles suspended in a fluid. Whereas larger particles are successfully focused in an
acoustic pressure field, sub-micron particles tend to follow the circulating acoustic stream-
ing instead. Therefore the prediction of acoustic streaming patterns is an important step
towards future engineering of acoustofluidic devices. However, due to large velocity gra-
dients inside the so-called acoustic boundary layer a full numeric analysis often requires
huge amounts of memory and many larger 3-dimensional systems are very hard to simulate.

In this thesis we present two effective models for calculation of acoustics close to a solid
boundary without resolving the acoustic boundary layer numerically. First, we provide a
new boundary condition on the acoustic pressure which takes the shear damping inside
the acoustic boundary layer into account. We show in an example how we approximate
the right resonant properties of an acoustic system in a much more realistic way than the
usual approach for effective modelling of acoustic pressure. Secondly, based on the limiting
velocity theory developed by Nyborg[1] we derive an effective model for the second order
acoustic streaming where we also allow for parallel surface oscillations. More importantly,
we formulate a decomposition of the otherwise very complicated streaming equations into
three kinds of streaming distinguished by their physical origin: inner streaming, outer
streaming and bulk streaming. We then show how this decomposition can be used to
analyse a special streaming pattern observed experimentally.

To assess the quality of our modelling we will compare with full simulations where the
boundary layers are resolved and find good agreement in most cases. Finally as a proof of
concept we use our effective models to simulate acoustic streaming in a larger 3-dimensional
system.
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Resumé

En af de største udfordringer indenfor feltet akutofluidik er at opn̊a kontrol over par-
tikler mindre end en mikrometer i en væske. Hvor større partikler let kontrolleres i
et akustisk trykfelt, har partikler mindre end en mikrometer tendens til at følge den
cirkulerende akustiske strømning i stedet. Det er derfor afgørende at kunne forudsige de
akustiske strømningsmønstre med henblik p̊a at designe nye systemer indenfor akustoflu-
idik. Desværre, p̊a grund af store hastighedsgradienter indenfor det s̊a-kaldte akustiske
grænselag, kræver en fuld numerisk analyse ofte ekstremt meget hukommelse og større
3-dimensionelle systemer kan være meget svære at simulere.

I denne opgave præsenterer vi to effektive modeller til beregning af akustik tæt p̊a en
fast overflade, hvor det akustiske grænselag ikke behøver at blive numerisk opløst. Først
opstiller vi en ny grænsebetingelse for det akustiske tryk, som tager højde for den viskøse
dæmpning inden i det akustiske grænselag. Vi viser med et eksempel, hvordan vi kan
estimere resonansegenskaber for et akustisk system p̊a en langt mere realistisk m̊ade end
med den hidtil anvendte effektive model for akustisk tryk. Dernest, med udgangspunkt i
Nyborgs[1] grænsehastighedsteori, udleder vi en effektiv model for anden ordens akustisk
strømning, hvor vi ogs̊a tilader parallelle overfladehastigheder. Det vigtigste bidrag her
er dog en dekomposition af de ellers komplicerede ligninger for akustisk strømning, hvor
vi opdeler strømingen i tre felter adskilt af deres fysiske årsager: Indre strømning, ydre
strømning og intern strømning. Vi viser herefter, hvordan denne dekomposition kan bruges
til at forst̊a et særligt strømningsmønster, som er observeret eksperimentelt.

For at vurdere kvaliteten af vores effektive modeller vil vi sammenligne med fulde simu-
leringer, hvor det akustiske grænselag er opløst og vi vil se god overensstemmelse i de
fleste tilfælde. Til sidst, som et eksempel, vil vi med de effektive modeller vise at vi nu
kan simulere akustisk strøming i et større 3-dimensionelt system.
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Chapter 1

Introduction to acoustofluidics
and acoustic streaming

1.1 The field of acoustofluidics

The field of acoustofluidics is an important part of the technological development towards
controlled handling of micro particles. In particular within the field of health care and
biotechnology it is important to be able to analyse samples by focusing or separating
microparticles such as bacteria, vira, or blood-cells. Here acoustofluidics offers a cheap,
efficient, and label free method to control particles in their natural medium and without
contact. As an example we show in Fig. 1.1(a) an experiment from Adams et al.[2] where

Figure 1.1: Three different applications of acoustofluidics. (a) Set-up from Adams et al.[2]
for separation of blood cells. Upper: whole blood is injected from the left and due acoustics
blood-cells are lifted to the upper outlet in a channel of height 830 µm. Lower: Top view
of experiment where blood-cells leave in the lower right corner. (b) Data from Augustsson
et al.[3] phenotyping three types of white blood-cells based on their acoustic impedance
and fluorescence intensity. (c) Experimental setup from Thévoz et al.[4]. Upper: the entire
device with flow from left to right (scale bar=5 mm). Lower: Fluorescence micrographs
at inlet and outlet. Green (red) marks 5 µm (2 µm) polystyrene beads (scalebar=50 µm).

1



2 CHAPTER 1. INTRODUCTION

blood cells are separated from whole blood in a continuous flow due to an acoustic field.
Acoustofluidics can also be used along with other methods as in Fig. 1.1(b) showing
an experiment by Augustsson et al.[3] where both acoustic impedance and fluorescence
intensity is used in phenotyping three different kinds of white blood-cells simultaneously.
Finally, Fig. 1.1(c) show an experiment Thévoz et al.[4] where a mixture of 5 µm and 2 µm
particles are separated due to the presence of an acoustic field.

Acoustofluidics is often carried out in microsystems and one of the reasons is clearly seen
from Fig. 1.1(c-lower) showing a nice laminar flow. Consequently the acoustic resonance
frequencies are typically around ∼ MHz. Such a resonance is usually induced by a piezo-
electric transducer as sketched in Fig. 1.2 where we also show some of the many complex
physical phenomena involved in acoustofluidics. The piezoelectric transducer excites a cou-
pled acoustic mode in both the solid and the fluid. Inside the fluid the acoustic pressure
field give rise to particularly two important non-linear effects: (i) Wave-particle scattering
on suspended particles which gives the so-called acoustic radiation force on the particles
and (ii) acoustic streaming in the fluid (blue rolls in Fig. 1.2) giving viscous drag on the
particles. The main focus in this thesis will be on the acoustic streaming.

Figure 1.2: Sketch showing different physical aspects in acoustofluidics, adapted from
Barnkob[5]. Left: The microchannel is oscillated by a piezoelectic transducer. This initi-
ates oscillations in the channel walls and in the fluid. Right: An acoustic pressure mode
(red) is excited in the channel. This gives rise to (i) wave-particle-scattering and (ii)
acoustic streaming (blue rolls).
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1.2 Acoustic streaming

The importance of acoustic streaming in acoustofluidic devices is best understood by con-
sidering the two most important forces discussed above. The acoustic radiation force
usually focuses particles towards pressure nodes and its magnitude scales with the particle
volume a3[6]. The drag force on the other hand follows the circulating acoustic streaming
and thus acts as a defocusing force which scales with the surface area a2 of the particles.
Hence, acoustic streaming often sets the lower limit on the particle size that can be focused
in acoustic microsystems. This limit turns out to be around 1 µm. Therefore an under-
standing of the streaming patterns is an essential step in the development of microscale
acoustiofluidic systems.

The history of acoustic streaming theory goes back to Lord Rayleigh[7] who first described
the phenomenon in 1884. As the theory developed, acoustic streaming fell into three dif-
ferent categories, here referred to as inner streaming, outer streaming, and bulk streaming.
In Fig. 1.3 we show the regions where these are observed. In general all acoustic stream-

Figure 1.3: Sketch of the different streaming regions close to a wall (black bold line). The
inner streaming decays over the length scale δ ∼ 0.5 µm whereas the outer streaming
decays over the wavelength scale λ/2 ∼ 102 µm. The bulk streaming is driven by interior
forces and can therefore exist everywhere.

ing is due to nonlinear stress from velocity gradients in an oscillating fluid. When a fluid
oscillates near a solid boundary there will be large velocity gradients confined to a narrow
region close the the boundary and consequently, there will be large stresses on the fluid in
that region, which is called the acoustic boundary layer and will be a main topic of this
thesis. These stresses inside the boundary layer are responsible for two kinds of stream-
ing: (i) the inner streaming which is confined to the boundary layer and (ii) the outer
streaming which is confined to a region comparable with the acoustic wavelength. The
third kind of streaming, the bulk streaming, is driven by stresses from velocity gradients
in the bulk only. Most often the characteristic length scale of this last kind of streaming
is comparable with the system length scale but in special cases shown in this thesis one
can have bulk streaming with a length scale comparable with the acoustic wavelength λ.

The bulk streaming (or Eckard streaming[8]) is rarely seen in experiments and in this thesis
we will give an estimate on when to expect bulk streaming. The most significant streaming
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in experiments is the outer streaming. Lord Rayleigh[7] calculated a special case of outer
streaming near flat stationary walls and gave name to the classical Rayleigh streaming
pattern which we will explain in Chapter 6 as being characterized by four streaming rolls
per acoustic wavelength. However, as we will see in this thesis many different streaming
patterns can be observed depending on the geometry and wall oscillation. Finally, the
inner streaming (or Schlichting streaming[9]) is also less significant since it is confined to
the acoustic boundary layer which has a width of δ ∼ 0.5 µm for water in the MHz regime.
However, in calculations we cannot ignore the inner streaming since it affects the outer
streaming.

The approach by Lord Rayleigh was to use the inner streaming velocity at the edge of
the boundary layer as a slip boundary condition on the outer streaming. This idea was
later generalized by Nyborg[1] in 1958 for curved surfaces with length scales much larger
than the boundary layer thickness δ. Nyborg also introduced the concept of limiting ve-
locity as the non-zero velocity of the inner streaming at the edge of the boundary layer
which drives the outer streaming. The theory by Nyborg was later adjusted in 1989 by
Lee et al.[10] with small modifications to the analysis in curvilinear coordinates. Recent
advances within the field of acoustofluidics include actuation with surface acoustic waves
(SAW) where the wall oscillates both in the parallel and perpendicular direction. This
kind of actuation was included to the limiting velocity theory for flat walls by Vanneste
et al. [11] in 2010. In this thesis one of of the main goals is to combine these theories and
formulate a limiting velocity theory for curved walls with both parallel and perpendicular
actuation.

The limiting velocity theory is an effective modelling of the acoustic boundary layer which
gives a great insight in the essential physics involved. Further as many other effective
models this one also has a great impact within computational physics which has developed
significantly over the past few decades. As an example from Web Of Science (6. Jan 2017)
the paper by Nyborg from 1958 has received 183 citations where 150 are received within
the past 20 years within fields from acoustics, biochemistry and computer science. The
great advantage is that in the effective model one do not have to resolve the large velocity
gradients inside the boundary layer. The full numerical simulation of acoustic streaming
in 2 dimensions (2D) have been carried out by e.g. Muller et al.[12]. However, full
simulation of larger 3D systems are not possible on normal workstations and the limiting
velocity theory is therefore a great tool to reach simulation of larger systems.

1.3 Outline of the thesis

In this thesis the main focus is on effective modelling of acoustics near a weakly oscillating
curved surface. To reach this goal we first need to understand the fundamentals governing
fluid equations, the Lagrangian fluid picture at an oscillating boundary, the finite element
method for numeric calculations, and the basic geometry of curved surfaces. This will
be presented in Chapters 2-4. The important contributions to effective modelling are
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then found in Chapters 5-6 and in Chapter 7 we give an example of a 3D calculation of
streaming. Hence, the outline of the thesis will be as follows,

Chapter 2: Theory of viscous fluids We introduce the fundamental theory of viscous
fluids and introduce basic concepts such as acoustic perturbation theory, field decompo-
sition, acoustic boundary layer, and the viscous damping factor. We then describe the
Lagrangian and Eulerian fluid picture through which we establish the boundary condition
on a fluid near an oscillating surface.

Chapter 3: The finite element method and memory requirements We briefly
introduce the finite element method used in the software COMSOL. We then test the
memory requirements for the models considered in this thesis and thus motivate the use
of effective models.

Chapter 4: Geometry of curved surfaces and model assumptions In this chapter
we introduce a local curvilinear coordinate system at any point on the surface. We then
give an overview of the different length scales of the system and establish the range of
validity for our model.

Chapter 5: Effective modelling of acoustic fields near a solid surface We here
develop a general analytic expression for the acoustic fields inside the acoustic boundary
layer. In particular this leads to the first main result of this theses, namely a new boundary
condition on the acoustic pressure at a solid surface which takes the damping effects of
the acoustic boundary layer into account. This finally allows a comparison between a full
model with the boundary layers resolved numerically and the effective model.

Chapter 6: Acoustic streaming and limiting velocity theory We proceed the
effective modelling but now regarding the steady streaming. We present the second main
result of the thesis namely a physical decomposition of the streaming into inner, outer,
and bulk streaming. Thus formulation is not only a computational advantage but also
demystifies the otherwise complicated equations for streaming. Further, we formulate the
limiting velocity theory for curved surfaces with both parallel and perpendicular oscilla-
tions. We again compare with a full model and we find that our decomposition can be
used to understand a special kind of bulk-streaming observed experimentally.

Chapter 7: 3-dimensional acoustic streaming This chapter serves as a proof of
concept where we show how we can model streaming in larger 3D systems with the new
effective models. This will be shown through an example of acoustic streaming around a
sphere in a box, which is of great experimental relevance(e.g. [13]).

Chapter 8: Conclusion and outlook
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Chapter 2

Theory of viscous acoustics

In this chapter we present and discuss the governing equations for acoustic motion in
viscous fluids. We present the theory of acoustic perturbation theory and show how the
acoustic velocity field can be decomposed into a compressional field and a shear field.
Finally in the last section we will discuss boundary conditions at a solid wall in the
Lagrangian and Eulerian picture.

2.1 Fluid equations

On length scales much larger than the intermolecular distance in fluids (∼ 0.3 nm for solids
and liquids[14]) we make the continuum hypothesis and model fluids as continuous matter
filling out all space rather than being constituted by discrete molecules. At each point
we then define the Eulerian mass density ρ(r, t) and the Eulerian velocity v(r, t) of the
fluid located at position r at time t. We then claim conservation of mass and momentum
in any point in space which is formulated in the continuity equation and Navier-Stokes
equations respectively,

∂tρ = −∇·[ρv] , (2.1a)

∂t(ρv) = −∇·[(ρv)v] + ∇·σ. (2.1b)

Here σ is the stress tensor defined as,

σ = −p1 + τ , (2.2a)

τ = η0

[
∇v + (∇v)T

]
+

[
ηB −

2

3
η0

]
(∇·v)1, (2.2b)

where 1 is the unit tensor, p is the pressure, η0 is the shear viscosity, ηB is the bulk viscos-
ity and superscript ’T’ denotes transpose. We will in this thesis only consider pure water
for which the important parameters are given in Table 2.1.

Eq. (2.1a) expresses that the mass inside a fixed infinitesimal volume element can only
change due to convection of mass to that volume element. Eq. (2.1b) states the same for

7



8 CHAPTER 2. THEORY OF VISCOUS ACOUSTICS

Table 2.1: Table of parameters[15] used in this thesis for pure water at temperature 25◦C
and pressure 0.1013 MPa. The three lower parameters are calculated from the upper ones.

Parameter Symbol Value Unit

Mass density ρ0 9.970× 102 kg m−3

Compressibility κ0 4.477× 10−10 Pa−1

Shear viscosity η0 8.900× 10−4 Pa s

Bulk viscosity ηB 2.485× 10−3 Pa s

Speed of sound c0 =
√

1/(κ0ρ0) 1.497× 103 m s−1

Kinematic viscosity ν0 = η0/ρ0 8.927× 10−7 m2 s

Viscosity ratio β = ηB/η0 + 1/3 3.125 1

momentum but here momentum can also be changed due to stresses in the i direction on
a surface with normal in the j-direction given in σij . Combining Eqs. (2.1) and (2.2) we
get the Navier-Stokes equations in the well known form,

ρ (∂t + v ·∇)v = −∇p+ η0∇2v + η0β∇ (∇·v) . (2.3)

where we have defined the viscosity ratio β ≡
ηB

η0
+

1

3
≈ 3 from Table 2.1. Having now 5

dependent variables and only 4 equations we will need a constitutive relation. Therefore
we define the isentropic compressibility κ0 which gives the relative volume change of the
fluid due to a change in pressure or equivalently,

κ0 ≡
1

ρ0

(
∂ρ

∂p

)
S

, (2.4)

where the value of κ0 for water is given in Table 2.1. As we will see in the below, small
pressure perturbations can propagate through space with the speed of sound given by,

c2
0 =

(
∂p

∂ρ

)
S

=
1

ρ0κ0
. (2.5)

The dynamics of acoustic waves will be treated by using acoustic perturbation theory
which we will present in the following.

2.2 Acoustic perturbation theory

Acoustic motion is almost always induced from a time harmonic oscillating boundary of
the system. This boundary oscillation compresses the fluid a small amount and thereby
excites acoustic motion. Please note the distinction between the fluid velocity which has
a magnitude U and the parameter c0. For intuition, consider a fluid with unperturbed
density ρ0 which caries a sound wave of frequency f and wavelength λ = c0/f . If the fluid
within a section λ is compressed the small distance r1 the velocity of that fluid will be
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U ∼ r1f ∼ (r1/λ)c0. Consequently the density will change the small amount ρ1 ∼ ρ0(r1/λ)
and from Eq. (2.4) the pressure will change p1 ∼ (r1/λ)/κ0. We then have the scaling
r1/λ ∼ U/c0 ∼ ρ1/ρ0 ∼ p1κ0 and in particular we see that the fluid velocity U is much
smaller than c0 for small displacements compared to the wavelength. This motivates the
introduction of the smallness parameter Ma which is called the acoustic Mach number,

Ma ≡ U

c0
� 1, (2.6)

where we will use U as the magnitude of the acoustic velocity. We will then expand all
fields in the following form,

v = 0 + v1(r)e−iωt + v2(r, t), (2.7a)

ρ = ρ0 + ρ1(r)e−iωt + ρ2(r, t), (2.7b)

p = p0 + p1(r)e−iωt + p2(r, t), (2.7c)

where the subscripts indicate order of smallness in the Mach number. In this theses we
will always assume this form where the unperturbed zeroth order fields are homogeneous
in space and time and where the first order fields are harmonic in time just as the oscil-
lating boundary. For scaling purposes we write down the relation between the order of
magnitudes of the fields,

1� Ma ∼ |r1|
λ
∼ U

c0
∼ |ρ1|

ρ0
∼ |p1|

1/κ0
∼ |v2|

U
∼ |ρ2|
|ρ1|
∼ |p2|
|p1|

, (2.8)

where r1 is the fluid displacement vector with ∂tr1 = v1.

The oscillatory motion in fluids is then governed by the first order version of Eqs. (2.1a)
and (2.3),

−iωρ1 = −ρ0∇·v1, (2.9a)

−iωρ0v1 = −∇p1 + η0∇2v1 + η0β∇(∇·v1). (2.9b)

Here we have used that the first order fields are harmonic in time so we will frequently
interchange between ∂t ↔ −iω.

The second order fields have both harmonic and steady components. The harmonic com-
ponents will be of order Ma compared to the first order fields and thus insignificant. The
steady motion on the other hand is qualitatively different from the first order motion and
will be measurable in experiments. To get the steady motion we take the time average

over one period 〈(·)〉 ≡ 1
2π/ω

∫ 2π/ω
0 (·) dt. In particular the time average of products of first

order fields is understood as,

〈A1B1〉 =
〈
Re
{
A1(r)e−iωt

}
Re
{
B1(r)e−iωt

}〉
=

1

2
Re {A1(r)[B1(r1)]∗} =

1

2
Re {A1B

∗
1} .

(2.10)
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The second order time averaged version of Eq. (2.1) then become,

0 = −∇·(ρ0v2 + 〈ρ1v1〉), (2.11a)

0 = −∇p2 + η0∇2v2 + η0β∇(∇·v2)−∇·〈(ρ0v1)v1〉 , (2.11b)

where we will only write the average 〈(·)〉 explicitly on products of first order fields and
for now on let subscript 2 denote time-averaged second order fields. Here we have used
that 〈∂t(·)〉 = 0 for time harmonic fields.
We see that the time averaged Navier-Stokes Eq. (2.11b) is a steady force balance equation
where the driving term −∇·〈(ρ0v1)v1〉 is the divergence of nonlinear stress from the first
order velocity. −ρ0v1v1 is called the Reynolds stress and is responsible for the steady
second order streaming as we will see in Chapter 6.

2.3 Compressional bulk field u1 and shear boundary layer
field w1

The first order equations Eq. (2.9b) describe both the physics of (i) compression of fluids
which give acoustic motion and (ii) the momentum diffusion due to shear forces inside
the fluid where the latter phenomena is most significant close to a solid boundary. In the
following we will separate these two phenomena into the fields u1 and w1 respectively.

We first take the divergence of Eq. (2.9b) and use Eq. (2.9a) together with ρ1 = p1/c
2
0 to

see that the pressure satisfies a Helmholtz equation,

∇2p1 + k2
cp1 = 0, (2.12a)

where kc ≡ k0

(
1 + i

Γ

2

)
, Γ ≡ η0(1 + β)ω

ρ0c2
0

. (2.12b)

Here we have defined the compressional wave number kc, where k0 = ω/c0 is the inviscid
wave number. Further we have defined the bulk damping factor Γ. For the parameters in
Table 2.1 and e.g. ω = 2π × 106 MHz we find Γ ≈ 10−5 so Γ will be treated as a small
parameter and all terms of O(Γ2) will be ignored.

To get an equation for the velocity v1 we instead take the time derivative of Eq. (2.9b)
and use Eq. (2.9a) to get,

∇(∇·v1)− k2
c

k2
s

∇×∇× v1 + k2
cv1 = 0, (2.13a)

where ks ≡
1 + i

δ
, δ ≡

√
2ν0

ρ0ω
, (2.13b)

where we have used that ∇2v1 = −∇ ×∇ × v1 + ∇(∇ ·v1). Here we have defined the
shear wave number ks and δ is the characteristic length scale of momentum diffusion as
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we will see soon. For the same parameters as before we find δ ∼ 0.5 µm. Please note the
relation between the compressional and shear wave numbers,

|kc|2

|ks|2
∼ Γ =

(1 + β)

2
(k0δ)

2, (2.14)

so the shear length scale δ is usually much smaller than the compressional length scale 1/k0.

From Eq. (2.13) we are motivated to make a Helmholtz decomposition of v1 so,

v1 = u1 +w1 where ∇× u1 = 0, ∇·w1 = 0. (2.15)

Inserting this into Eq. (2.13) gives,[
∇2u1 + k2

cu1

]
+
k2

c

k2
s

[
∇2w1 + k2

sw1

]
= 0. (2.16)

We see that one solution to this problem is found by requiring each bracket to vanish
individually from which we find the governing equation of compressional and shear motion
respectively.

2.3.1 Nature of the compressional motion

The compressional field u1 satisfy,

∇2u1 + k2
cu1 = 0, with kc = k0

(
1 + i

1

2
Γ

)
and ∇× u1 = 0. (2.17)

Since the imaginary part of kc is much smaller than the real part, the significance of u1

will be acoustic waves with a wave length λ ∼ 2π/k0 which are damped over the much
longer distance ∼ 1/(k0Γ/2). Hence we u1 is a long-range field compared to w1 as we will
see. We see that only u1 enters in the continuity equation Eq. (2.9a),

iω

ρ0c2
0

p1 = ∇·u1, (2.18)

where we have used Eq. (2.5) to write c2
0ρ1 = p1. From this relation we see that indeed u1

is the compressional velocity. An alternative way of think of this equation is in terms of
the fluid displacement r1 = iu1/ω giving p1κ0 = −∇·r1, where p1κ0 is the relative fluid
compression which must be the same as the convergence −∇·r1 in the fluid displacement.
Please note that is the quantitative description of our estimate above (before Eq. (2.6)).
Finally, taking the gradient of Eq. (2.18) and using Eq. (2.17) we can find u1 from p1,

u1 =
1

iωρ0
∇p1(1− iΓ). (2.19)

Of course, since ∇ × u1 = 0, u1 must be directly related to a scalar, here p1. So having
p1 one can find u1 and vice versa. In this theses the strategy will be to first solve for p1

and then use Eq. (2.19) to find u1.
Finally please note that Eq. (2.19) implies that the total velocity is,

v1 =
1

iωρ0
∇p1(1− iΓ) +w1. (2.20)
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2.3.2 Nature of the shear motion

We proceed to analyse the properties of the incompressible field w1 satisfying,

∇2w1 + k2
sw1 = 0 with ks =

1 + i

δ
and ∇·w1 = 0. (2.21)

This is also a Helmholtz equation but since ks has equal real and imaginary parts the
solution will oscillate and decay over the same length scale δ and w1 is thought of as a
short range field. An alternative way to understand w1 is by writing out k2

s = (2i)/δ2

with δ =
√

2η0/(ρ0ω) to find the diffusion equation,

∂tw1 = ν0∇2w1. (2.22)

where we used (−iω)→ ∂t and defined the kinematic viscosity ν0 ≡ η0/ρ0. The shear field
w1 thus describes diffusion of velocity (or momentum) where ν0 takes the role as diffusion
coefficient. Since the fluid oscillates with the angular frequency ω the characteristic diffu-
sion length must be δ =

√
2ν0/ω.

The field w1 will be most significant close to a solid boundary where the total velocity
v1 = u1 + w1 has to vanish due to the no-slip boundary condition (see Section 2.4). It
will then be confined to a narrow region of width ∼ 5δ close to the surface which is called
the acoustic boundary layer.

2.4 The Lagrangian and Eulerian fluid picture

So far all fields have been formulated in the Eulerian picture, i.e. where we ask for any
property g of the fluid at some fixed point r and time t and get gE(r, t). We should how-
ever be aware that the fluid at r might move away from that point such that gE(r, t+ dt)
describe some other fluid particles that just arrived to that point. In particular, close to
an oscillating boundary the Eulerian picture fails because some fixed point r might refer
to the fluid at one instant of time and to the solid the next instant of time.

In the Lagrangian picture we instead focus at some particular fluid particle located at
position r0 at some time t0. The Lagrangian field gL(r0, t) then gives the property g of
the exact same fluid particle as it moves through space. For small displacements around the
position r0 we can describe the actual position of that fluid particle as r(t) = r0+rL

1 (r0, t),
where rL

1 (r0, t) gives the displacement of that particle and is therefore a Lagrange field.
This enables us to calculate the Eulerian field from the Lagrangian field since,

gL(r0, t) = gE(r(t), t) ≈ gE(r0, t) + rL
1 (r0, t) ·∇gE(r0, t). (2.23)

We have here expanded in r1. If we also expand g in Ma so g = g1 + g2 . . . we find

gL
1 = gE

1 , (2.24a)

gL
2 = gE

2 +
〈
rL

1 ·∇gE
1

〉
, (2.24b)
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where we have kept our convention that subscript 2 is the time averaged second order
field. In this thesis all fields will be Eulerian fields and in the following we will omit the
superscript E. Only on Lagrangian fields we will explicitly write superscript L.

2.4.1 Particle velocity and boundary conditions on oscillating bound-
aries

We first define the time averaged particle velocity from the discussion above,

vL
2 = v2 + 〈r1 ·∇v1〉 time averaged particle velocity. (2.25)

Rather than just v2, this is the expression for the time averaged particle motion[1]. On a
possibly moving boundary we then apply the assumption that fluid particles at the wall
follow the wall position as it oscillates[16],

vL = (vs)L for particles with mean position r = rs
0, (2.26)

where superscript s will always refer to the surface. Since the solid surface can have no
steady motion (vs

2)L = 0 we get the boundary condition on the Eulerian fields in each
order,

v1 = vs
1 at the wall mean level r = rs

0, (2.27a)

v2 + 〈r1 ·∇v1〉 = 0. at the wall mean level r = rs
0. (2.27b)

We call this the particle-no-slip boundary condition. Please note that we cannot simply
substitute v1 → vs

1 in Eq. (2.27b) since v1 has a normal derivative whereas vs
1 has not.

2.4.2 Conservation of mass to second order

Clearly, since the first order fields are harmonic there is mass conservation in every fixed
volume over one period. The question is now if Eq. (2.27b) implies conservation of second
order mass in a closed system. To investigate this we first consider the Eulerian mass flux
which can be written as,

(ρv)2 = ρ0v2 + 〈ρ1v1〉 = ρ0 (v2 + 〈r1∇·v1〉) (2.28)

where we have used Eq. (2.9a) to rewrite ρ1 and 〈(iA)B〉 = −〈A(iB)〉. In particular at
the wall we can use Eq. (2.27b) to get the mass flux at the wall mean level r = rs

0,

(ρv)2 = ρ0 (−〈r1 ·∇v1〉+ 〈r1∇·v1〉) (2.29a)

=
1

2
ρ0∇× 〈r1 × v1〉 (2.29b)

where we have used the vector identity ∇×(A×B) = A∇·B−B∇·A+B ·∇A−A ·∇B.
Please note that this is proportional to the curl of angular momentum density so there will
only be local Eulerian mass flux at the wall mean level if the fluid undergoes rotational
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motion here. We can examine the global conservation of mass by investigating the total
mass flux ΦM out of the system Ω, where n points towards the fluid,

ΦM =

∫
∂Ω

(ρv)2 · (−n) dA = −1

2
ρ0

∮
∂∂Ω
〈rs

1 × vs
1〉 · dl, (2.30)

where we have used Stokes theorem to convert the surface integral over the surface ∂Ω to
a line integral over the enclosing line ∂∂Ω. Please note that in the last expression we have
replaced v1 → vs

1 from Eq. (2.27a). We see that for a closed surface with no boundary
curve ΦM vanishes trivially as we expect physically. Consequently the boundary condition
Eq. (2.27) conserves mass in any closed system.

2.4.3 Fictitious pumping

We have seen from Eqs. (2.29) and (2.30) that we can have a local mass flux at the wall
mean level but still conserve mass globally. The local mass flux into the system is best
understood from Eq. (2.29a),

n · (ρv)2 = ρ0 (−〈rs
1 ·∇[n · v1]〉+ 〈[n · rs

1]∇·v1〉) , (2.31)

where we have assumed here that n is constant in space for simplicity. In Fig. 2.1 we

Figure 2.1: Sketch of acoustic pumping effects. a) shows the first term in Eq. (2.31) at
the position xs

0 marked with the dashed square. The dashed arrows show the trajectories
of the surface points which have mean position just next to xs

0. The point to the left of xs
0

has a larger perpendicular velocity component than the point to the right. This situation
will result in a net upward mass transportation. b) shows the second term in Eq. (2.31).
If the velocity has positive divergence in the upper position and negative in the lower
position, less dense fluid (light square) is transported downwards and more dense fluid
(dark square) is transported upwards. This situation gives net upward mass flux.

show a sketch of the physical interpretation of each term in Eq. (2.31). The first term
expresses that the Eulerian surface velocity at a point rs

0 is actually the velocity of the
surface point with mean position rs

0 − rs
1 right next to rs

0. In Fig. 2.1a) we show how this
can lead to net upward mass flux. The second term in Eq. (2.31) expresses that if fluid is
less dense when moving down and more dense when moving up, there can be a net mass
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flux at some point rs
0. This is shown in Fig. 2.1b) where mass is transported upwards.

Please note that both situations imply circular fluid motion as predicted in Eq. (2.29b).

Finally we should emphasize that no mass is really penetrating the physical wall. We
should just be aware that in the Eulerian fluid picture local mass penetration through the
mean surface position is allowed.
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Chapter 3

The finite element method and
memory requirements

In this thesis we will develop effective models for both first order acoustics and second
order streaming. These are developed in Chapters 5 and 6. From a numerical point of view
the most important advantage of the effective models is that we do not have to resolve
the large variations within the narrow acoustic boundary layer.

In this chapter we briefly introduce the finite element method (FEM) used to solve prob-
lems numerically through COMSOL. We then show a convergence test and establish the
sufficient mesh size to use in the full and effective model respectively. Finally we test the
memory consumption for the problems considered in this thesis in 2D and 3D and thus
motivate effective modelling.

3.1 Introduction to the finite element method

The continuity and Navier-Stokes equation in Eq. (2.1) are both conservation equations
of the form,

∇·J [g(r)] = F, (3.1)

where J is a generalized flux, F is a generalized force, and g(r) is some generalized field
variable we want to solve for. In the FEM we first construct a mesh of a finite number of
elements usually triangular(see e.g.Fig. 3.2) or quad elements. At the n’th vertex we then
define basis functions ĝn which are by definition continuous and only non-zero at elements
neighbouring vertex n. The idea in the FEM is then to approximate the solution g(r) by
a linear combination of these basis functions,

g(r) ≈
∑
n

Cnĝn(r) (3.2)

where Cn are unknown constants to be found. Inserting this into Eq. (3.1) gives

∇·J
[∑

n

Cnĝn(r)

]
− F = d(r) (3.3)

17
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where d(r) is the defect which is only zero if Eq. (3.2) is exactly satisfied. In the general
weak formulation we then define test functions φm associated with vertex m and require
that the projection of d(r) on each test function vanishes. It turns out to be convenient
to choose φm = ĝm so we have,∫

Ω
ĝm

{
∇·J

[∑
n

Cnĝn(r)

]
− F

}
dV = 0, (3.4)

where Ω is the entire domain. For linear J we can use integration by parts and write this
as, ∑

n

{∫
∂Ω
ĝmJ [ĝn] · n dA+

∫
Ω

(−∇ĝm) · J [ĝn] dV

}
Cn =

∫
Ω
ĝmF dV, (3.5)

which forms the matrix problem
∑

nKmnCn = Fm, where Kmn is the stiffness matrix to
be inverted to find the coefficients Cn. In the FEM software COMSOL we write in the
integrands of this equations.

3.1.1 Boundary conditions in FEM

The most simple boundary condition to impose is the Neumann condition. Here we replace
J ·n = N(r) in Eq. (3.5). For any other general boundary condition written as R(r) = 0
we introduce the auxiliary field λ with associated basis functions λ̂m defined on elements
neighbouring boundary vertexes only. In the first integrand in Eq. (3.5) we then replace

ĝmJ [ĝn] · n → ĝmλ(r) + λ̂m(r)R(r). (3.6)

With the introduction of the field λ we have increased the size of the matrix in Eq. (3.5)
and since λ̂m only appear in one term, that term must vanish leading to R(r) = 0 as
we wanted. Consequently we see that the solution λ gives us the actual flux λ = J · n
resulting from R = 0.

3.2 Convergence test

For each model used in this thesis we have made a convergence test. This was done using
the convergence parameter,

C(g) =

√∫
(g − gref)

2 dA∫
(gref)2 dA

, (3.7)

where g is a general field and gref is a reference solution calculated on a very fine mesh.
By decreasing the mesh size we then monitor the decrease of this parameter. This is
shown in Fig. 3.1. For all effective models we used a homogeneous mesh with a mesh
size hbulk = (1/k0)1/nmesh where nmesh gives the spatial resolution. For the full model we
choose the same in the bulk but at all walls we choose hbl = (10δ)/nmesh. As reference
mesh we then choose nmesh = 30. In Fig. 3.1 we have marked the line C = 10−3 where
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Figure 3.1: Convergence tests for each model used in this thesis performed on a H ×W =
160× 380 µm2 channel as in Section 5.2. (a) Convergence for the full model with resolved
boundary layers. (b) Convergence for the effective models developed in this thesis. pEff

1 is
the pressure calculated from the first order effective model explained in Chapter 5. The
second order effective model is described in Chapter 6.

we accept the solution. We then show the accepted mesh in Fig. 3.2 for both the full and
effective models. Please note the great advantage of not resolving the acoustic boundary
layer. As the full model has different length scales it will need an inhomogeneous mesh
which makes the meshing optimization very complicated and we do not claim that the
mesh in Fig. 3.2(left) is the optimal one. The effective model on the other hand has only
one length scale and we can use a simple homogeneous mesh as in Fig. 3.2(right).

3.3 Memory consumption for larger systems

We will now motivate the need for effective models by giving an idea of the memory
consumptions needed to solve acoustic problems in larger systems of both 2D and 3D. We
will give an estimate of the memory consumptions as a function of the number of degrees
of freedom (DOF).

3.3.1 Discretization order and degrees of freedom

The integration in Eq. (3.5) involves the integration of the basis functions ĝm associated
with the vertex m. These basis functions are constructed by shape functions Ni defined
on each element i neighbouring vertex m. We use Lagrangian shape functions which are
polynomials of any order p and in the integration Eq. (3.5) these polynomials are easily
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Figure 3.2: The mesh used for the full model (left) with and effective model (right) with
nmesh = 9 for the full model and nmesh = 6 for the effective model as found from Fig. 3.1.

integrated by COMSOL. However, the order of these shape functions becomes important
for the degrees of freedom DOF. A polynomial of degree p in N dimensions will in general
have npN parameters, where

npN =
(p+N)!

p!N !
. (3.8)

As an example a third order polynomial in two dimensions has n32 = 10 parameters:
a1 + a2x + a3y + a4x

2 + a5y
2 + a6xy + a7x

3 + a8y
3 + a9x

2y + a10xy
2. These parameters

are chosen by placing a sufficient number of nodes within each element and requiring the
shape function to be zero at these nodes and unity at the mesh vertex m. As a rule of
thump the total number of DOF then becomes[17],

DOF = total number of nodes× number of dependent variables. (3.9)

The exact number of nodes can be difficult to predict since neighbouring elements might
share nodes but it is clear from Eq. (3.8) that the number of DOF will be strongly depen-
dent on the order of the shape functions and the dimension of the problem.
In Table 3.1 we give an overview of the shape functions used in this thesis. In the full
modelling of the Navier-Stokes equations we see that ∇v enters in the stress tensor to-
gether with p. Therefore we must choose the shape functions for v one larger than those
for p. In the effective first order model (introduced in Chapter 5) on the other hand we
solve for p1 and then calculate u1 ∝ ∇p1 so here the shape functions for p1 must be one
larger than we want for u1.

As an example with the mesh from Fig. 3.2 and shape functions of Table 3.1 both the first
and second order full model required 626243 DOF. In contrast, the effective first order
model (see Chapter 5) required 5036 DOF and all the effective second order models (see
Chapter 6) required 8836 DOF.

3.3.2 Memory test

The exact memory required to solve problems can be very hard to predict. This is because
it depends on the particular problem, the mesh structure, the order of the shape func-
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Table 3.1: Overview of shape function order used in this thesis and in Fig. 3.3. The
hierarchy between these orders must always be like in this table as described in the text.

2D Effective Full 3D Effective Full
5. order p1 4. order p1

4. order u2 v1,v2 3. order u2 v1,v2

3. order p2 p1,p2 3. order p2 p1,p2

tions, the numeric solver etc. However since both the mesh and shape functions affect the
DOF it turns out that DOF is a good fundamental parameter when comparing different
models[17]. A reliable way to test the memory requirements for a particular problem is
therefore to do a measurement as shown in Fig. 3.3. Here we have solved the problems
investigated in this thesis i.e. the full model from Muller et al.[12] (Eq. (2.1)) and the effec-
tive model developed in this thesis (Eq. (5.1c) with Eq. (5.10) in first order and Eq. (6.15)
in second order. For the values from Tables 2.1 and 3.1 we changed the DOF by decreasing
the mesh size and plotted the required physical memory reported by COMSOL. For this
measurement we used hbulk = (1/k0)1/nmesh and hbl = δ/nmesh (only for the full problem).

In Fig. 3.3 all the 2D graphs run from nMesh = [1, 100]. For the 3D graphs we first
ran from nMesh = [1, 6.5] for all models. Since the effective models only gave a memory
consumption up to 10− 15 GB we then ran a second sweep from nMesh = [6.5, 10] for the
effective models (note the small discontinuity for the graphs 3D Eff p1 and 3D Eff u2, p2).
We see clearly that the 3D-calculations require much more memory per DOF. Further for
both 2D and 3D we see that the DOF of the effective models do not increase as rapidly
as for the full models as we increase nMesh. Since there are many parameters to play with
in numerical optimization we do not claim that this is a fully developed proof of concept
but the tendency from this analysis is that the effective model require much less memory
than the full model - especially in 3D.
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Figure 3.3: Plot of physical memory consumption reported by COMSOL as a function
of degrees of freedom (DOF). We solved both 2D and 3D acoustic problem with the
parameters in Table 2.1 in geometries of 380×160 µm2 and 380×160×160 µm3 respectively
both at resonance frequency f = 1.96 MHz. We then increased DOF by increasing the
parameter nMesh (see text). Only in the full model we used a mesh with fine boundary
layers. We used COMSOL with the shape functions from Table 3.1 on a work station
with 2.66 GHz quad core Intel(R) Xeon(R) CPU and 48 GB RAM. The graphs 3D Eff p1

(yellow triangles) and 3D Eff u2, p2 (purple triangles) were collected in two steps coursing
the small discontinuity on these graphs.



Chapter 4

Geometry of curved surfaces and
model assumptions

The first important step in the analysis of streaming near curved surfaces is to understand
the curvilinear geometry. Nyborg formulated his limiting velocity theory in a simple
tangential coordinate system ignoring the differential of the basis vectors. This was later
adjusted by Lee and Junjun[10] who implemented the theory in general global coordinates
and applied it in e.g. spherical coordinates. It is however not always convenient neither
possible to work in one single global curvilinear coordinate system.

Figure 4.1: 2D sketch of the surface geometry. The surface segment close to the surface
point rs

0 is described by s(ξ, η) parametrized by arclength ξ,η. We show the η = 0 plane
so the bold black line is the line of curvature s(ξ, 0) passing through rs

0. We have sketched
the boundary layer length δ and the wall oscillation amplitude |rs

1|. Please note that for
illustrational purpose we have drawn the radius of curvature Rξ ≈ δ which is not allowed
in our model.

The approach in this thesis will be to formulate the limiting velocity theory in a local
coordinate system near any point rs

0 on the surface. We will only need the curvilinear
derivatives at that point so there is no need to formulate global coordinates. Computa-

23
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tionally we will then always work in a background Cartesian coordinate system (x, y, z)
(see Fig. 4.1) and then apply the following approach,

1) Calculate results in the background Cartesian coordinate system (x, y, z)

2) At each point rs
0 transform the result from (x, y, z) to the local curvilinear coordinate

system (ξ, η, ζ)

3) Do calculations in the curvilinear coordinates

4) At the point rs
0 transform the curvilinear results back from (ξ, η, ζ) to (x, y, z).

The technical details and the implementation of this procedure in COMSOL is explained
in Chapter D. To understand the range of validity of our model we first introduce the
local basis at each point rs

0.

4.1 Local basis for curves embedded in a surface

Consider the small surface segment s(ξ, η) where s(0, 0) = rs
0 as drawn in Fig. 4.1. The

lines s(ξ, 0) and s(0, η) are chosen to be principal lines of curvature parametrized by arc
length ξ, η. The orthogonal tangent vectors at rs

0 are then defined as,

tξ ≡ ∂ξs, tη ≡ ∂ηs, at r = rs
0. (4.1)

Furthermore since lines of curvature share their normal vector with the surface normal
vector n we have by definition[18],

∂ξtξ = κξn, ∂ηtη = κηn, at r = rs
0, (4.2)

where κξ, κη are the curvatures of s(ξ, 0) and s(0, η) respectively. We choose the parametriza-
tion such that tξ, tη,n form a local right handed basis,

tξ × tη = n. (4.3)

Along with the tangential coordinates ξ, η we also define the perpendicular coordinate ζ.
Any point r close to rs

0 is then (see Fig. 4.1),

r = s(ξ, η) + ζn(ξ, η) for r ≈ rs
0. (4.4)

Please note that we are only interested in the derivatives at rs
0 so this description suffices.

To find these derivatives we first note that since n is a unit vector,

n · (∂ξn) =
1

2
∂ξ(n · n) =

1

2
∂ξ(1) = 0, (4.5)

so n is perpendicular to both ∂ξn and ∂ηn. Now, since tη = n× tξ we have,

∂ξtη = ∂ξn× tξ + n× ∂ξtξ = ∂ξn× tξ, (4.6)
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but both ∂ξn and tξ are perpendicular to n so ∂ξtη must be parallel with n,

∂ξtη = τηn, (4.7)

where we have defined the torsion τξ of the curve s(0, η). We see that this torsion gives
the change of tη along n (rotation) when increasing ξ,

τη = n · (∂ξtη). (4.8)

The derivative of n is now straight forward,

∂ξn = ∂ξtξ × tη + tξ × ∂ξtη = (κξn)× tη + tξ × (τξn) = −κξtξ − τηtη. (4.9)

Following the same approach for ∂ηtξ and ∂ηn we find,∂ξtξ∂ξn

∂ξtη

 =

 0 κξ 0

−κξ 0 −τξ
0 τξ 0


tξn
tη

 ,
∂ηtη∂ηn

∂ηtξ

 =

 0 κη 0

−κη 0 −τη
0 τη 0


tηn
tξ

 . (4.10)

This is the general Frenet-Serret frame apparatus for curves on a surface sharing the
normal vector with the surface[18]. We will now establish the goal of accuracy and make
some assumptions on the relation between the length scales of the system.

4.2 Physical length scales

In this thesis we will restrict our selves to surfaces where the principal lines of curvature
(at least locally) have zero torsion, τξ = τη = 0. This is the case for all two dimensional
objects as well as most of the shapes used in micro-fluids including straight channels
of any cross section, closed rectangular or cylindrical containers with closed ends[19] or
spheres[13] (see Chapter 7). The theory can easily be extended but leads to unnecessary
complexity here.

Introducing the radii of curvature Rξ = 1/κξ, Rη = 1/κη as well as the length scales
lκξ , lκη over which κξ and κη changes, we can now give an overview over the length scales
in the system,

R ≡ min{Rξ, Rη} Surface variations,

lκ ≡ min{Lκξ , Lκη} Curvature variations,

l ≡ min{R, 1/k0} Acoustic field variations close to the surface,

δ =
√

2ν0/ω Viscous boundary layer length scale,

|rs
1| Amplitude of wall oscillations.

(4.11)

We will assume that the wall oscillation amplitude |rs
1| is always much smaller than the

viscous boundary layer length scale δ. Further, we assume all other length scales to be
much larger than δ,

|rs
1| � δ � l, lκ. (4.12)
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We then introduce the important smallness parameter,

ε ≡ δ/l, (4.13)

which we will extensively refer to in the rest of the thesis. It expresses the fraction
between the shear variation length scale and the compressional variation length scale. In
particular we have from Chapter 2 that (k0δ) ∼ ε and Γ ∼ ε2. The goal in the following
is now to define geometric quantities to first order in ε within the boundary layer region
i.e. 0 < ζ . 5δ.

4.3 Geometric quantities and mathematical operators in curvi-
linear coordinates

We first define the scaling factors hi as the change in position per change in i-coordinate,

hi ≡ |∂ir| . (4.14)

From Eqs. (4.1), (4.4) and (4.10) with τξ = τη = 0 we find,

hξ = 1− ζκξ, (4.15a)

hη = 1− ζκη, (4.15b)

hζ = 1. (4.15c)

We see that these are only dependent on ζ to first order in ε. An important geometric
quantity is then,

H =
∂(hξhη)

(hξhη)∂ζ
= −κξ − κη − ζ(κ2

ξ + κ2
η) +O(ε2), (4.16)

which is twice the negative mean curvature.

For later reference we here give some differential operators in the local curvilinear basis.
We shall only evaluate these exactly at the surface ζ = 0, so we shall use hξ = hη = hζ = 1
and H = −κξ−κη. For more detailed calculations please consult the appendix Chapter A.
The gradient is

∇f ≈∇‖f + n∂ζf, (4.17)

where ∇‖ ≡ tξ∂ξ + tη∂η is the parallel gradient. The divergence is,

∇·A ≈∇‖ ·A‖ +
∂Aζ
∂ζ

+HAζ (4.18)

where ∇‖ ·A‖ ≡ ∂ξAξ + ∂ηAη is the parallel divergence. The laplacian is ∇·(∇f),

∇2f ≈ ∇2
‖f + ∂2

ζ f +H∂ζf, (4.19)
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where ∇2
‖ ≡ ∂2

ξ + ∂2
η is the parallel laplacian. Finally we give the convective derivative

A ·∇B in its parallel components,

(A ·∇B)‖ ≈ A‖ ·∇‖B‖ +Aζ
∂B‖

∂ζ
−AζQB (4.20)

where QB ≡ (κξBξ, κηBη) and perpendicular components,

(A ·∇B)ζ ≈ A‖ ·∇‖Bζ +Aζ
∂Bζ
∂ζ

+A‖ ·QB. (4.21)

We mention that the quantity QB was ignored in the work by Nyborg[1] but taken into
account by Lee et al.[10] in more general coordinates.
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Chapter 5

Effective modelling of acoustic
fields near a solid surface

Having established the governing equations in Chapter 2 and the surface geometry in
Chapter 4 we are now ready to formulate the effective model of first order acoustics near
a solid surface. Together with Chapter 6 this chapter is where we present the main work
of this thesis.

In this section we derive an analytic expression for the acoustic velocity field within the
boundary layer region. The expression will be valid to lowest order in ε (see Eq. (4.13))
which become O(ε0) for the parallel fields and O(ε1) for the perpendicular fields. The
key is to use that the shear-part w1 of the velocity v1 has much larger variations in the
perpendicular direction than in the parallel direction. The derivation reveals a condition
on p1 at the boundary to ensure v1 = vs at the surface. This boundary condition is one
of the main results of this thesis and as we show in an example it reveals some important
physical effects from the boundary layer which can not be obtained from the usual approach
∂ζp1 = 0 on stationary walls.

5.1 The velocity field within the boundary layer region

As described in Section 2.3 the first order velocity v1 can be decomposed into a compres-
sional field u1 and a shear field w1. We here summarize the field equations we need to
solve to first order in the Ma-number,

v1 = u1 +w1, where ∇× u1 = 0, ∇2u1 + k2
cu1 = 0, (5.1a)

∇·w1 = 0, ∇2w1 + k2
sw1 = 0, (5.1b)

u1 =
(1− iΓ)

iωρ0
∇p1, ∇2p1 + k2

cp1 = 0. (5.1c)

where kc = k0(1 + iΓ/2) and ks = (1 + i)/δ. We show the qualitative behaviour of v1, u1

and w1 in Fig. 5.1.

29



30 CHAPTER 5. EFFECTIVE MODELLING OF FIRST ORDER FIELDS

Figure 5.1: The qualitative behaviour of the three velocity fields u1, w1 and their sum
v1 = u1 + w1 near a solid boundary (here stationary). Note the small variations in u1

along the normal coordinate ζ compared to w1. The extend of the boundary layer region
is around 0 < ζ . 5δ.

In Eq. (2.27a) we have explained the boundary condition on the full first order velocity
field v1 also restated below. Further we will assume that the shear field w1 is confined to
the wall so we have,

v1 = u1 +w1 = vs
1 at the surface mean level ζ = 0, (5.2a)

w1 → 0 away from the surface ζ →∞, (5.2b)

where vs
1 is the surface velocity.

First we solve forw1 in Eq. (5.1b). Please recall thatw1 expresses the momentum diffusion
which will be large close to the wall. The parallel variations will be over the length scale
1/k0 whereas the the perpendicular variations will be over δ. Consequently the curvilinear
Laplacian from Eq. (4.19) can be written as

∇2w1 = ∂2
ζw1 +O(ε). (5.3)

In this approximation w1 has a decaying solution of the form w1 = Aeiksζ and imposing
Eq. (5.2a) we have for the parallel component,

w1‖ = −(u0
1‖ − v

s
1‖)e

iksζ , (5.4)

where superscript 0 on u0
1‖ ≡ u1‖(ξ, η, 0) means evaluated at ζ = 0. We then choose w1ζ to

ensure continuity ∇·w1 = 0. From Eq. (4.18) we see that within the same approximation
as Eq. (5.3) this gives,

∂ζw1ζ = −∇‖ ·w1‖ = ∇‖ ·(u0
1‖ − v

s
1‖)e

iksζ ⇒ w1ζ = ∇‖ ·
[
u0

1‖ − v
s
1‖

] eiksζ

iks
, (5.5)

which indeed also solves Eq. (5.1b) to sufficient accuracy. We now have w1 and we have
satisfied the parallel boundary condition of Eq. (5.2a). To fulfil the perpendicular version
of Eq. (5.2a) we then need to claim on u1ζ ,

u0
1ζ = vs

1ζ − w0
1ζ = vs

1ζ −
1

iks
∇‖ ·

[
u0

1‖ − v
s
1‖

]
at ζ = 0. (5.6)
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Finally to finish our fields we see from Eq. (5.6) that u0
1ζ is O(ε) if vs

1 = 0. In that case
we cannot ignore the slow variations in u1ζ so we write within the boundary layer region,

u1ζ ≈ u0
1ζ + ζ∂ζu

0
1ζ . (5.7)

In conclusion the fields are,

u1‖ = u0
1‖, (5.8a)

w1‖ = −(u0
1‖ − v

s
1‖)e

iksζ , (5.8b)

u1ζ = vs
1ζ −

1

iks
∇‖ ·

[
u0

1‖ − v
s
1‖

]
+ ζ∂ζu

0
1ζ , (5.8c)

w1ζ =
eiksζ

iks
∇‖ ·

[
u0

1‖ − v
s
1‖

]
. (5.8d)

And for completeness and later reference we write the total field v1 = u1 +w1,

v1‖ = vs
1‖e

iksζ + u0
1‖

(
1− eiksζ

)
(5.9a)

v1ζ = vs
1ζ + ζ∂ζu

0
1ζ −

1

iks
∇‖ ·

[
u0

1‖ − v
s
1‖

] (
1− eiksζ

)
. (5.9b)

Eqs. (5.8) and (5.9) are the velocity fields valid close to a solid boundary and they are
sketched in Fig. 5.1 for vs

1 = 0. Please notice that we have here derived the total field just
from knowing u0

1‖ which is to be found from the pressure.

5.1.1 New boundary condition on p1

From the analysis above we can now easily deduce a boundary condition on p1 to ensure
Eq. (5.6). Using Eq. (5.1c) we find,

∂ζp1 = iωρ0

[
vs

1ζ −
i

ks
∇‖ ·vs

1

]
− i

ks

(
∂2
ζp1 + k2

cp1

)
at ζ = 0 , (5.10)

This is the boundary condition to apply on p1 to take into account the O(ε)-effects from
the acoustic boundary layer as we will see. To lowest order in ε we can use |p1| ∼ ρ0c0 |u1|
and write this boundary condition in the two common cases: (i) a perpendicular surface
velocity with small parallel fluid velocity and (ii) a stationary surface,

(i)
∣∣vs

1ζ

∣∣� ε
∣∣u1‖

∣∣ , ε ∣∣∣vs
1‖

∣∣∣ ⇒ ∂ζp1 = iωρ0v
s
1ζ , (5.11a)

(ii) vs
1 = 0 ⇒ ∂ζp1 = − i

ks

(
∂2
ζp1 + k2

cp1

)
. (5.11b)

Whereas case (i) is the well known boundary condition presented in common teaching
books (e.g. Bruus[14] or Landau and Lifshitz[20]), case (ii) is to the extend of our knowl-
edge not used before. It arise since it is not only the compressional velocity u1ζ that must
vanish at the surface but the total velocity u1ζ + w1ζ and to have continuity ∇·w1 = 0,
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w1ζ is not necessarily zero.

To find the fluid velocity in the bulk u1 we can now solve Eq. (5.1c) and use Eq. (5.10) to
get the effects from the boundary layer without resolving the large variations numerically.
In the following we will therefore refer to Eqs. (5.1c) and (5.10) as the effective model to
calculate the first order fields.

We will now investigate this boundary condition by applying it to a simple well-understood
set-up, namely the rectangular channel studied numerically by Muller et al.[12] and in full
analytical detail (with boundary layers) by Karlsen[21]. From a comparison with the
full model by Muller we show that we approximate the correct resonant properties i.e.,
resonance frequency and Q-factor which is in contrast to the simple approach ∂zp1 = 0 on
stationary walls.

5.2 Example: Rectangular 2-dimensional channel

Consider the x-invariant channel in the domain y ∈ [−W/2,W/2] and z ∈ [−H/2, H/2],
where W is the total width and H is total height. The side walls are then oscillated
symmetrically as sketched in Fig. 5.2 and the top/bottom walls are stationary. We now

Figure 5.2: Sketch of rectangular channel set-up. Note that kz is here complex.

solve for the pressure in this channel and then calculate u1 from Eq. (5.1c). We will
assume small parallel velocity at the side walls at y = ±W/2 so we can use the simplified
boundary conditions Eq. (5.11). To be clear we therefore solve,

∇2p1 + k2
cp1 = 0 (5.12a)

∓∂yp1 = ∓iωρ0[vs
1yG(z)] at y = ±W/2 (5.12b)

∓∂zp1 = − i

ks
(∂2
zp1 + k2

cp1) at z = ±H/2. (5.12c)

u1 =
1

iωρ0
∇p1 (5.12d)
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where G(z) is the surface velocity profile and vs
1y is a constant. Using separation of

variables gives,

p1 = Y (y)Z(z) Y ′′ = −k2
yY, Z ′′ = −k2

zZ, k2
c = k2

y + k2
z . (5.13)

From Eq. (5.12b) we see that ∂yp1(W/2) = ∂yp1(−W/2) so p1 must be antisymmetric in
y. Further if we choose G(z) to be symmetric in z, p1 must be symmetric in z suggesting
the ansatz,

Y (y) = Ay sin(kyy), (5.14a)

Z(z) = cos(kzz). (5.14b)

At the stationary bottom wall z = −H/2 the boundary condition in Eq. (5.12c) separates
completely to a boundary condition on Z(z). From insertion of Eq. (5.14b) we get,

kz sin

(
kz
H

2

)
=

1

iks

(
−k2

z + k2
c

)
cos

(
kz
H

2

)
, (5.15)

which gives the condition for kz,

k2
c = k2

z + ikskz tan

(
kz
H

2

)
. (5.16)

At the oscillating wall at y = −W/2 we find using Eq. (5.12b),

Ayky cos

(
ky
W

2

)
cos(kzz) = iωρ0v

s
yG(z) (5.17)

We now choose the simplest case where the wall velocity profile isG(z) = cos(kzz) as shown
in Fig. 5.2 (where kz is complex). We note that this give a finite velocity at z = ±H/2.
However, this is only the u1-part of the velocity so we do not violate the no slip condition
at these walls. The field solutions then become,

p1(y, z) =
iωρ0v

s
y

ky

sin(kyy)

cos
(
ky

W
2

) cos(kzz), (5.18a)

u1y(y, z) = vs
y

cos(kyy)

cos
(
ky

W
2

) cos(kzz), (5.18b)

u1z(y, z) = −vs
y

kz
ky

sin(kyy)

cos
(
ky

W
2

) sin(kzz). (5.18c)

Approximate solution at the fundamental resonance We now find an approximate
solution for ky and kz by solving Eq. (5.16) for kz. Assuming k0δ � 1 we have |ks| � |kz|
and the solutions to Eq. (5.16) is found when tan(kzH/2) is small, i.e., around |kz| ≈
2nπ/H. We search for the lowest mode where |kz| ≈ 0 and |ky| ≈ π/W . We can then
expand the tangent in Eq. (5.16) and solve for k2

z and then k2
y,

k2
y ≈ k2

0

(
1 + (1 + i)

δ

H

)
, k2

z ≈ −k2
0(1 + i)

δ

H
, (5.19)
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where we have used that kc = k0+O(ε2) ≈ k0. We see here that the ratio δ/H now becomes
the important parameter. The wavelength in the y-direction is then λy = 2π/Re {ky} or,

λy =
c0

f

(
1− 1

2

δ

H

)
. (5.20)

We see that the y-wavelength in a system with boundary layers is a bit smaller than
c0/f as one would get without boundary layers. Resonance is found by minimizing the
denominators of the fields in Eq. (5.18). Since Im {ky} is small we have resonance when
Re {ky} = π/W or in terms of frequency f = k0c0/2π,

fRes =
c0

2W

(
1− 1

2

δ

H

)
Resonance frequency . (5.21)

Please note that this is actually an implicit equation since δ depends on the frequency,
δ =

√
2ν0/ωRes. This will however be a second order contribution in δ/H and we can use

δ ≈
√

2ν0/(2πc0/(2W ) in this calculation. We see that this resonance is slightly lower
than c0/(2W ) as one would get without boundary layers. Using Eq. (5.20) we see that
at resonance we have indeed have λy = 2W . We can now write up the fields Eq. (5.18)

at this fundamental resonance with Re {ky} = π/W giving kRes
y =

π

W

(
1 + i

1

2

δ

H

)
and

kRes
z ≈ i

π

W

√
1 + i

√
δ
H . We expand to first order in δ

H to get,

pRes
1 (y, z) =

iωρ0v
s
y

π/W

[
i
sin
(πy
W

)
π
4
δ
H

− y

W/2
cos
(πy
W

)][
1 +

δ

H

(1 + i)

2

(πz
W

)2
]
, (5.22a)

uRes
1y (y, z) = vs

y

[
i
cos
(πy
W

)
π
4
δ
H

+
y

W/2
sin
(πy
W

)][
1 +

δ

H

(1 + i)

2

(πz
W

)2
]
, (5.22b)

uRes
1z (y, z) = vs

y

δ

H

[
i
sin
(πy
W

)
π
4
δ
H

− y

W/2
cos
(πy
W

)]
(1 + i)

(πz
W

)
. (5.22c)

Please note that we have used kzz � 1, valid for channels with H �W 2/δ. Consider e.g.
a small channel of W = 200 µm with water δ ≈ 0.4 µm, giving H � 1 m which is usually
satisfied.
From these equations we see that at resonance uRes

1y is around (H/δ) larger than the wall

velocity and actually uRes
1ζ has the same magnitude as the wall velocity. We also see that

all the resonant parts (first terms in square brackets) has a phase factor of i exactly at
resonance. Please also note that uRes

1z do not vanish at the walls at z = ±H/2 which is
normally assumed[14, 20]. In fact uRes

1z (y,H/2) increases with (H/W ) at the these walls
as long H �W 2/δ as mentioned above.

Comparison with full model We show the resonance solution in Fig. 5.3 together
with a simulation of the full Navier-Stokes-problem Eq. (2.1) solved in a similar way as
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Figure 5.3: Plot of the first order fields in a rectangular channel of dimensions H = 160 µm
and W = 380 µm with the parameters of Table 2.1 and f = fRes = 1.967 MHz. The color
plots (a)-(c) compare the full model (upper part) with the effective model (lower part).
(a) p1 from −1 to 1 MPa (black-white). Contour separation is 0.1 MPa. (b) v1y and u1y

from 0 − 0.5 m s−1 (black-white). Contour separation is 0.1 m s−1. (c) v1z and u1z from
−1 to 1 mm s−1 (black-white). Contour separation is 0.2 mm s−1. (d)-(f) show a line plot
of the fields along the vertical dashed line y = W/4 drawn in (a)-(c) respectively.

Figure 5.4: The velocity field plotted close to the lower boundary at y = W/4 as shown
with blue line in Fig. 5.3(b-c). Please note that the effective model (orange) is slightly
closer to the full model (blue) than the analytic model of Eq. (5.22) (dashed black) is.
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Muller et al.[12]. We also plot the result from the effective model presented in this chapter
i.e. Eqs. (5.1c) and (5.10). We have chosen a channel of dimensions H = 160 µm and
W = 380 µm which has been studied in full numerical detail by Muller et al.[12] and we
found the resonance frequency at fRes = 1.967 MHz in agreement with Eq. (5.21). Fur-
ther, we used the actuation velocity of vs

1y = d1ω
Res ≈ 1.2 mm s−1 where d1 = 0.1 nm is

displacement amplitude. Note first how the contours fit in Fig. 5.3(a-c). In Fig. 5.3(d)
we have plotted relative variations in pressure across the channel where we see that the
effective model caches the parabolic behaviour. However, the analytical solution is wrong
by a factor of 10−2. Please recall that Eq. (5.22) is an approximation to first order in
(k0δ) ∼ 3 × 10−3 and δ/H ∼ 2 × 10−3. In the effective model on the other hand we
have kept the full kc = k0(1 + iΓ/2), so we expect this model to fit better with the full
simulation. In Fig. 5.3(e-f) we have the same discrepancy for u1y and u1z although not as
obvious as in Fig. 5.3(d).

In Fig. 5.4 we have zoomed in on the boundary layer region where we see how the effec-
tive model do not resolve the boundary layer variations as expected. We also note that
|v1z| / |v1y| ∼ 10−3 ∼ ε as expected.

We have here seen that the fields Eq. (5.22) approximates the full resonant solution to the
expected accuracy. With these analytic result we will in the following section analyse the
damping and quality factor of this resonator and again compare with a full model to show
that we approximate the right resonant properties.

5.2.1 Effective damping and Q-factor

For any harmonically oscillating system we have that the acoustic energy density stored
in the system is twice the time average of the kinetic energy density. The perpendicular
energy becomes negligible in this calculation and we can calculate the space averaged
energy density Eac from Eq. (5.18b) using kz � ky,

Eac = 2
1

W

∫ W/2

−W/2

1

2
ρ0

(
1

2
|u1y|

)
dy =

ρ0(vs
y)

2

2W

∫ W/2

−W/2

|cos(kyy)|2∣∣cos(ky
W
2 )
∣∣2 dy, (5.23)

where we have used that
〈
u2

1y

〉
=

1

2
|u1y|2. We now evaluate this integral around resonance

ky ≈ kRes
y ≡ π

W

(
1 + i

1

2

δ

H

)
writing

ky = kRes
y +

ω − ωRes

c0
(5.24)

where (ω − ωRes)/c0 � kRes
y and ωRes is given in Eq. (5.21). We then expand Eq. (5.23)

in δ/H and (ω − ωRes)/c0 and integrate. The after some straight forward integration we
find,

Eac ≈
ρ0(vs

y)
2

π2

(
ωRes

)2
(ω − ωRes)2 + (ωRes)2 (ΓBL)2 for ω ≈ ωRes (5.25)
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Figure 5.5: Lorentz curve for the rectangular channel with fRes = 1.967 MHz and damping
ΓRes = 0.0012. The analytic result is from Eq. (5.25). The insert shows a zoom at the
maximum of the Lorentz curve and the gray dots show the energy stored in the system for
the simple approach ∂ζp1 = 0 on stationary walls which gives Emax

ac = 1.47× 106 J m−3.

where we have defined the damping factor due to the acoustic boundary layers,

ΓBL ≡ 1

2

δ

H
. (5.26)

We show this Lorentzian line shape in Fig. 5.5 together with the full model, the effective
model, as well as the result from a simple approach using ∂ζp1 = 0 on stationary walls.
The curves fit well within an error of 10−2 as for the curves in Fig. 5.3(d-f). The main
difference between the analytic model and effective model is that the effective model takes
bulk damping Γ ∼ ε2 into account. From Eq. (5.25) we find the maximum energy stored
in the system at ω = ωRes,

ERes
ac ≈

ρ0(vs
y)

2

π2

1

(ΓBL)2
, (5.27)

which scales with (H/δ)2. The full width at half maximum of this lineshape is found to
be ∆ω = 2ωResΓBL and the Q-factor Q of this resonator become simply,

Q ≡ ωRes

∆ωRes
=

ωRes

2ΓBLωRes
=

1

2ΓBL
=
H

δ
. (5.28)

Please note in Fig. 5.5 that the simple approach ∂ζp1 = 0 (gray dots) gives a huge resonance
energy with maximum shifted fResΓBL away from the new approach.

5.3 Fluid interaction with the exterior

As we have seen we can get many interesting properties out of the oscillating system only
by solving for p1 with the right boundary condition Eq. (5.10). In this section we will
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briefly go through energy dissipation and stress at the boundary walls for a more general
system.

5.3.1 Energy dissipated in a general system

The spatial average of the dissipated energy density per cycle
2π

ω
in a system of volume

V is found from integrating the power-density (∇·σ) · v,

Edis =
1

V

∫
Ω

2π

ω
〈(∇·σ) · v〉 dV. (5.29)

At resonance the dominating term will be from the boundary layers 〈(∇·σ) · v〉 ≈ η0

〈
(∂2
ζv1‖) · v1‖

〉
.

Since we have the ζ dependence of v1‖ from Eq. (5.9a) we can integrate over the boundary
layer and be left with a surface integral. After some straight forward integration we then
get,

Edis ≈
1

V

2π

ω
η0

∫
∂Ω

∫ ∞
0

〈
(∂2
ζv1‖) · v1‖

〉
dζ dA (5.30a)

= π
δ

V

∫
∂Ω

1

2
ρ0

∣∣∣u0
1‖

∣∣∣2 dA, at resonance (5.30b)

where we have used that u0
1‖ ∼ Qvs

1‖ � vs
1‖ at resonance. We see that the energy

dissipated is simply proportional to the parallel kinetic energy of the compressional field
close to the wall. Now turning back to the resonant rectangular set-up we have the resonant
solution in Eq. (5.22) we find from the two boundary layers at ζ = ±H/2,

Edis = 2π
δ

HW

1

2
ρ0

∫ W/2

−W/2

(
vs

1y cos
(πy
W

)
π
4
δ
H

)2

dy =
8

π
(vs

1y)
2ρ0

H

δ
(5.31)

So we can calculate the Q-factor as,

Q = 2π
Energy stored in the system at resonance

Energy lost per cycle
= 2π

ERes
ac HW

EdisHW
=
H

δ
, (5.32)

in agreement with Eq. (5.28). This is probably the best way to understand the factor δ/H:
Since energy is stored over the length H and dissipated over the length δ the Q-factor must
scale with H/δ.

5.3.2 Stress on a solid wall

As a next step we can now model the damped pressure and velocity field inside a micro
channel where we also model the elastic motion of the solid. This is beyond the scope of
thesis but we will briefly present the strategy here.
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The well known fluid-solid coupling is that the velocity of the fluid is set to the velocity of
the solid, which we have already imposed in Eq. (5.2a). The boundary condition on the
solid is to apply continuity in the stress on the interface,

n · σ1 = n · σs
1, (5.33)

where σ1 is the first order version of Eq. (2.2) and the structure of the solid stress tensor
σs is irrelevant for this discussion. Please note that we keep our convention where n points
towards the fluid. The point is now that we can get n ·σ1 by using the first order solutions
Eq. (5.9). After some manipulations we get,

n · σ1 = −p1n− iksη0

([
1

iωρ0
∇‖p1

]
− vs

1‖

)
(5.34)

where we have used ∇·u1 = iωp1/(ρ0c
2
0) and neglected terms of O(ε2). Please note that

we can now calculate the total stress including sheer on the wall only by calculating the
pressure i.e., solving one scalar equation in the fluid.

5.4 Concluding remarks on effective modelling of acoustic
fields and outlook

We have in this chapter derived a boundary condition on the pressure and we have shown
in an example how this boundary condition gives the right resonant properties of an oscil-
lating system. In modelling of pressure acoustics in 3D systems it is much more efficient
to solve for p1 satisfying a simple Helmholtz equation instead of solving the full Navier-
Stokes problem with boundary layers and four fields. The usual approach of an effective
modelling[11, 22–24] of the first order velocity is to use ∂ζp1 = 0 on stationary walls which
gives a much larger resonance energy as we saw in Fig. 5.5. If we want to calculate e.g.
the dynamics of suspended particles, both the radiation force[25] and the second order
streaming velocity (as in Chapter 6) involve terms which are quadratic in p1 (or |u1|)
and the damping of p1 therefore becomes crucial. Eq. (5.10) thus provides an important
contribution to the field of pressure acoustics.

Further we have in this chapter provided an analytic expression for the velocity fields valid
within the boundary layer region given in Eqs. (5.8) and (5.9). The behaviour of these
fields determine the second order streaming velocity as we will see in the next chapter.
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Chapter 6

Acoustic streaming and
limiting velocity theory

So far we have in Chapter 4 established how we do calculations within the boundary layer
region of a curved surface. In Chapter 5 we formulated an effective model for calculation
of the first order acoustic fields and in particular we provided a general analytic expression
for the fields within the boundary layer. In this chapter we proceed in the same way by
searching for an effective model for the second order streaming velocity. The outset is the
limiting velocity theory developed by Nyborg[1] and later Lee et al.[10] but we will here
extend the limiting velocity theory to allow curved surfaces of any surface velocity (as
long the amplitude |rs

1| � δ). Both Nyborg and Lee had an implicit implementation of
the no-particle slip boundary condition v2 + 〈r1 ·∇v1〉 = 0 of Eq. (2.27b) which we will
here impose more rigorously in a similar way as Vanneste et al.[11] did for a flat surface.
Inspired by Vanneste et al. we will develop a decomposition of the streaming field into three
fields as described in Chapter 1: Inner streaming, outer streaming and bulk steaming.
Finally we end this chapter by explaining a special kind of bulk streaming which has a
length scale comparable with a half wavelength.

6.1 Solution strategy and decomposition

The time averaged second order continuity and Navier-Stokes equations are explained in
Chapter 2 and restated here for convenience,

0 = ∇·(ρ0v2 + 〈ρ1v1〉) (6.1a)

0 = −∇p2 + η0∇2v2 + η0β∇(∇·v2)− 〈∇·((ρ0v1)v1)〉 . (6.1b)

Please note that the time derivatives have been averaged out and therefore these equations
describe a steady problem for the time averaged fields v2 and p2. Physically Eq. (6.1) can
be very difficult to get an intuition about. First, Eq. (6.1a) states that the second order
Eulerian mass current density ρ0v2+〈ρ1v1〉 is divergence free i.e.no mass can leave or enter
any point. But we have already solved for some of this mass current 〈ρ1v1〉 in Chapter 5

41
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Figure 6.1: Sketch (not to scale) of second order streaming velocities near a boundary.
Close to the boundary layer the inner streaming w2 changes rapidly, decays after ζ ≈ 5δ
and is finite at the surface. This is what gives the limiting velocity uLim

2 as a boundary
condition on the outer streaming uOut

2 which decays approximately after one acoustic
wavelength λ. The only possible streaming in the bulk is uBulk

2 . The full streaming field
is then the sum v2 = uOut

2 + uBulk
2 +w2.

and if that happens to converge to some point then ρ0v2 must diverge away from that
point to ensure continuity. Therefore the flow ρ0v2 might seem to have have mass sinks
and sources and is not so physical in itself. The same is the case in Eq. (6.1b): If there
happens to be a convergence of momentum current density to a point −〈∇·((ρ0v1)v1)〉
then v2 and p2 must be such that the total second order momentum is conserved. Please
note p2 now only acts as a Lagrangian multiplier to be chosen to conserve mass and mo-
mentum in any point. One of the goals of this chapter is to reformulate Eq. (6.1) in a
much simpler and intuitive way by using scaling and decompositions.

Whereas the first order fields were successfully Helmholtz decomposed into the long-range
compressional field u1 and short-range shear field w1, the Helmholtz decomposition is now
not so obvious. Instead we will here search a decomposition only based on the physical
origin of each field. Please note that Eq. (6.1) has non-linear products of first order fields
but is linear in v2 and p2. Therefore we can write these field as a sum of fields each
satisfying different parts of the problem. In Fig. 6.1 we have sketched the behaviour of
all the the velocity fields we will consider in the following. We first give a short outline
of the decomposition: The idea is to first decompose v2 = u2 +w2 into the short range
field w2 which couples to w1 and the long range field u2 which couples to u1. We choose
w2 to be confined to the boundary layer so w2 → 0 as ζ → ∞. Consequently w2 will
be finite at the surface which gives the limiting velocity uLim

2 as a boundary condition on
u2. We then make a further decomposition of the long range u2 into the outer streaming
uOut

2 and bulk streaming uBulk
2 . uOut

2 has uOut
2 = uLim

2 at the surface and can therefore be
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thought of as the boundary-driven part of u2. uBulk
2 then feels the interior driving term

from −∇ ·(ρ0v1v1) and can be seen as the interior driven part. uBulk
2 will then have no

slip at the surface. Formally we then have,

v2 = u2 +w2 = uOut
2 + uBulk

2 +w2. (6.2)

As a boundary condition on the second order streaming we use particle-no-slip at the
moving boundary which is discussed around Eq. (2.27b) and restated here,

v2 +

〈
i

ω
v1 ·∇v1

〉
= 0. at the wall mean level ζ = 0. (6.3)

From the discussion above we then choose for each field,

w2 → 0 as ζ →∞, (6.4a)

uOut
2 = −

〈
i

ω
v1 ·∇v1

〉
−w2(ζ = 0) ≡ uLim

2 at the wall mean level ζ = 0, (6.4b)

uBulk
2 = 0 at the wall mean level ζ = 0, (6.4c)

where we see that the sum v2 = w2 + uOut
2 + uBulk

2 at ζ = 0 satisfies Eq. (6.3). Please
notice that we have here defined the limiting velocity uLim

2 in Eq. (6.4b).

In this chapter we will extensively make use of the relations Eqs. (2.5), (2.18) and (2.19)
to simplify expressions. For convenience we restate them here,

iω

ρ0c2
0

p1 = ∇·u1, iωρ0u1 = ∇p1(1− iΓ), c2
0ρ1 = p1, (6.5)

where we recall that Γ ∼ ε2 ∼ 10−5 is small.

6.2 Short-range and long-range decomposition

We now motivate the decomposition of v2 into long range u2 and short range w2 by
considering the external terms i.e. the terms which are products of first order fields.

6.2.1 Short range and long range parts of external terms

Please recall that v1 = u1 + w1 where u1 is the long range compressional field with
∇×u1 = 0 whereas w1 is the short range shear field with ∇·w1 = 0. We first investigate
what part of ∇·〈ρ1v1〉 = 〈ρ1∇·v1〉+ 〈v1 ·∇ρ1〉 in Eq. (6.1a) is short and long range using
Eq. (6.5),

〈ρ1∇·v1〉 = 〈ρ1∇·u1〉 =
ω

ρ0
〈ρ1(iρ1)〉 = 0, (6.6a)

〈v1 ·∇ρ1〉 = 〈w1 ·∇ρ1〉+
ρ0ω

c2
0

〈u · (iu1(1 + iΓ)〉 = 〈w1 ·∇ρ1〉 −
ρ0ω

2c2
0

Γ |u1|2 , (6.6b)
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where we have used that 〈A(iA)〉 = 0 and 〈AA〉 =
1

2
|A|2. In conclusion we can therefore

write Eq. (6.1a) as

∇·v2 = − 1

ρ0
〈w1 ·∇ρ1〉+

ω

2c2
0

Γ |u1|2 , (6.7)

where the first term on the right hand side is short-range and the second is long-range.
For the term 〈∇·((ρ0v1)v1)〉 in Eq. (6.1b) we will simply write,

〈∇·((ρ0v1)v1)〉 = ρ0∇·〈u1u1〉+ ρ0∇·[〈v1v1 − u1u1〉] , (6.8)

where the first term is long-range and the second term is short range.

6.2.2 Decomposition

We can now decompose v2 = u2 + w2 into long range u2 and short range w2 and for
convenience we rename the pressure p2 → p2 + pw2 so pw2 is a short-range pressure and p2

is long-range. w2 then takes all the short range components involving w1,

− 1

ρ0
〈w1 ·∇ρ1〉 = ∇·w2 (6.9a)

0 = −∇pw2 + η0∇2w2 + η0β∇(∇·w2)− ρ0∇·[〈v1v1 − u1u1〉] , (6.9b)

and u2 takes the long range components involving u1,

ω

2c2
0

Γ |u1|2 = ∇·u2 (6.10a)

0 = −∇p2 + η0∇2u2 + η0β∇(∇·u2)− ρ0∇·〈u1u1〉 . (6.10b)

We see that the sum of these equations restores Eq. (6.1). Since w1 is confined to the
boundary layer Eq. (6.9) is the governing equation for the inner streaming. Note that
u2 also lives inside the boundary layer (see Fig. 6.1). The usual approach in the limiting
velocity theory[1, 10] is to think of w2 as the full streaming inside the boundary layer and
use matched asymptotics to match w2 and u2 at the edge of the boundary layer. This
would corrospond to adding a constant to w2 in Fig. 6.1 so w2(0) = 0. However in this
derivation we will think of u2 and w2 as sketched in Fig. 6.1.
We will return to the short range field and for now only notice that it is allowed to have a
finite velocity at the surface which gives the limiting velocity uLim

2 as a boundary condition
on u2 as sketched in Fig. 6.1. We will then first concentrate about the long range fields
Eq. (6.10).

6.3 Outer streaming and bulk streaming decomposition

We now proceed by decomposing u2 into the boundary driven outer streaming uOut
2 and

the interior driven bulk streaming uBulk
2 .
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6.3.1 Bulk streaming force density

We first consider the term −ρ0∇ ·〈u1u1〉 in Eq. (6.10b) which is the excess momentum
current density from the first order fields away from the wall where v1 ≈ u1. Using the
relations in Eq. (6.5) and ∇× u1 = 0, it evaluates to,

−ρ0 〈∇·(u1u1)〉 =
1

4
∇
[
κ0 |p1|2 − ρ0 |u1|2

]
+ Γω 〈u1ρ1〉 for ζ � δ. (6.11)

This is an important result since it gives the force density Γω 〈u1ρ1〉 which drives the
bulk streaming as we will see. The first term is an external gradient term which will be
balanced by the pressure p2 thus defining the effective pressure in the bulk[24],

p̃2 ≡ p2 −
1

4

[
κ0 |p1|2 − ρ0 |u1|2

]
. (6.12)

Note that any external force density which is a gradient can be absorbed into the pressure
in this way. This is equivalent with the hydrostatic pressure in a closed container which
exactly balances the gravity potential such that the gravity drives no motion in steady
state.
The second term Γω 〈u1ρ1〉 in Eq. (6.11) arise due to the bulk damping factor Γ of the
first order fields. We can check if this is also a gradient by taking the curl. Using the
Levi-Cevita symbol εijk together with ∇× u1 = 0 and Eq. (6.5) the curl becomes,

(∇× 〈u1ρ1〉)i = εijk∂j 〈u1kρ1〉 = 〈εijku1k(∂jρ1)〉 =
ωρ0

c2
0

〈εijku1k(iu1j(1 + iΓ))〉

=
ρ0

c2
0

〈(iωu1)× u1〉i , (6.13)

where we used that of course u1 × u1 = 0. We see that if the acceleration of fluid
∂tu1 = −iωu1 happens to be perpendicular to the velocity u1 this term can be compa-
rable to k0Uρ1 ∼ ωρ0U

2/c2
0 and the force density Γω 〈u1ρ1〉 will not be a gradient and

therefore be a significant driving force in the bulk. This is the case for a rotating flow. On
the other hand in the case of a one dimensional sound wave as considered in the example of
Chapter 5 this will be very small and 〈u1ρ1〉 will be a gradient field which is absorbed into
p̃2 thus driving no fluid motion. In conclusion if any bulk streaming (also called Eckard
streaming[8]) occur, the responsible force density is Γω 〈u1ρ1〉.

6.3.2 Decomposition into outer streaming and bulk streaming

We are now ready to decompose Eq. (6.10) into outer streaming and bulk straming. We
first notice that we can insert Eq. (6.10a) into η0β∇(∇ ·u2) so this term becomes a
gradient force density and is absorbed into p̃2 thus redefining the pressure again. We will
then decompose u2 = uOut

2 +uBulk
2 into the outer streaming uOut

2 and the bulk streaming
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uBulk
2 . The bulk streaming takes all the terms that has the bulk damping factor Γ,

ω

2c2
0

Γ |u1|2 = ∇·uBulk
2 , (6.14a)

0 = −∇p̃Bulk
2 + η0∇2uBulk

2 + Γω 〈u1ρ1〉 (6.14b)

and the outer streaming has no driving terms,

0 = ∇·uOut
2 , (6.15a)

0 = −∇p̃Out
2 + η0∇2uOut

2 , (6.15b)

where we have defined the associated pressure so p̃2 = p̃Bulk
2 + p̃Out

2 .

6.3.3 Nature of the bulk streaming field

The bulk streaming field in Eq. (6.14) is a field with an interior driving Γω 〈u1ρ1〉 and with
no slip at the boundaries uBulk

2 = 0 from Eq. (6.4). Trivially if Γω 〈u1ρ1〉 is small (or a
gradient) the bulk streaming will also be small. We will now show that uBulk

2 can actually
be modelled as divergence free. Suppose for a moment uBulk

2 = ∇φBulk + ∇×ΨBulk. We
then use that 〈u1ρ1〉 varies over the distance 1/k0 in the bulk and it is therefore reasonable
to assume that uBulk

2 also varies over 1/k0. Then Eq. (6.14) gives the scaling of these fields
if we write U = |u1| and ∇→ k0,∣∣∣∇φBulk

∣∣∣ ∼ Γ
U

c0
U and

∣∣∣∇×ΨBulk
∣∣∣ ∼ l2 Γω

η0
|〈u1ρ1〉| ∼ (1+β)

|〈u1ρ1〉|
ρ0

∼ (1+β)
U

c0
U

(6.16)
where we used |ρ1| /ρ0 ∼ U/c0 from perturbation theory. Consequently

∣∣∇×ΨBulk
∣∣ will

be much larger than ∇φBulk and we can model uBulk
2 as solenoidal i.e. with ∇·uBulk

2 = 0.
Please note that this scaling could be violated if 〈u1ρ1〉 is either a gradient or u1 and ρ1

are out of phase. In that case both ∇φBulk and ∇×ΨBulk would be small (compared to
U

c0
U) and we have still only made errors of O(Γ).

Physically with ∇·uBulk
2 = 0, Eq. (6.14) now describes a well known incompressible Stokes

flow with interior driving. To get an order of magnitude of uBulk
2 we should use the part

of 〈u1ρ1〉 which is not a gradient, so we find from Eq. (6.16),∣∣∣uBulk
2

∣∣∣ ∼ (1 + β)
|∇× 〈u1ρ1〉|

k0ρ0
. (6.17)

We should however mention that since uBulk
2 = 0 at the wall this is an upper limit on∣∣uBulk

2

∣∣ and we will often see much smaller result depending on how the force density
Γω 〈u1ρ1〉 is distributed in the channel.

6.3.4 Nature of the outer streaming

Eq. (6.15) gives the nature of the boundary-driven outer streaming. This has no interior
driving terms but is set into motion due to the limiting velocity in Eq. (6.4b) which will
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be of order (lk0)−1U
2

c0
as we will see in Section 6.4.3. Please recall l ≡ min{R, 1/k0} is

the variations of the compressional velocity field close to the surface. We can investigate
how this boundary driven streaming then propagates into the bulk by taking the curl of
Eq. (6.15b) giving the vorticity equation,

0 = ∇2(∇× uOut
2 ). (6.18)

We see that the vorticity ∇×uOut
2 satisfy a Laplace equation and thus has its maximum

and minimum at the boundaries. The variations into the bulk will then be equal to the
parallel variations at the boundary which is given by the limiting velocity uLim

2 . It turns
out that this is around half the acoustic wavelength which is then the decay length of uOut

2

into the bulk as sketched in Fig. 6.1.

6.3.5 Concluding long range fields

We here summarize the field equations to solve to get the long range field u2 = uBulk
2 +uOut

2 ,

0 = ∇·uBulk
2 , (6.19a)

0 = −∇p̃Bulk
2 + η0∇2uBulk

2 + Γω 〈u1ρ1〉 (6.19b)

and,

0 = ∇·uOut
2 , (6.20a)

0 = −∇p̃Out
2 + η0∇2uOut

2 . (6.20b)

with the boundary conditions,

uBulk
2 = 0 and uOut

2 = uLim
2 at the surface mean level ζ = 0. (6.21)

We have here gone from the full Navier-Stokes equations Eq. (6.1) to these two simple
incompressible Stokes flow problems which are much more intuitive to think of. Please
note that uBulk

2 and uOut
2 are completely uncoupled. In general we will always have

outer streaming close to a boundary. We can then predict whether the bulk streaming is
significant by introducing the ratio S between the magnitude of the two kinds of streaming,

S ≡
∣∣uBulk

2

∣∣∣∣uOut
2

∣∣ ∼ (1 + β)
|∇× 〈u1ρ1〉|

k0ρ0

(lk0)−1
U2

c0

∼ (1 + β)(lk0)
|∇× 〈u1ρ1〉|
k0U |ρ1|

(6.22)

where we used that ρ1/ρ0 ∼ U/c0 from perturbation theory. Please note that lk0 ≤ 1 so
uBulk

2 can only be around (1 + β) times larger than uOut
2 . Thus we have the two cases,

S � 1 Only outer streaming, (6.23)

S ≈ 1 Potentially both outer and bulk streaming. (6.24)
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Hence we can tell from the first order calculations whether the bulk streaming can be
important. In many cases we can then forget about the bulk streaming and the numeric
resolving of the interior driving force Γω 〈u1ρ1〉 which we have experienced as a great
advantage. As we mentioned uBulk

2 can be much smaller than in this estimation. As an
example for the rectangular channel in Chapter 5 we found from the first order fields
S ≈ 10−2 but the second order solution gave

∣∣uOut
2

∣∣ / ∣∣uBulk
2

∣∣ ≈ 10−5.

6.4 The short range field and limiting velocity

So far we have formulated the equations for the long range fields. In general the idea is to
solve these equations numerically. We are now searching for the limiting velocity on uOut

2

to fulfil the boundary condition in Eq. (6.4),

uLim
2 ≡ −

〈
i

ω
v1 ·∇v1

〉
−w2(ζ = 0), (6.25)

which involves the determination w2. The goal of this section is to solve for w2 at the
boundary ignoring terms of O(ε). Since w2 is confined to a narrow region close to a pos-
sibly curved surface we will use the curvilinear differential operators from Section 4.3.

The problem to solve is given in Eq. (6.9) and restated here for convenience,

− 1

ρ0
〈w1 ·∇ρ1〉 = ∇·w2 (6.26a)

0 = −∇pw2 + η0∇2w2 + η0β∇(∇·w2)− ρ0∇·[〈v1v1 − u1u1〉] , (6.26b)

where we can write out the last term,

〈∇·(v1v1 − u1u1)〉 = 〈w1 ·∇u1〉+ 〈w1∇·u1〉+ 〈v1 ·∇w1〉 . (6.27)

Please note that since |u1ζ | and |w1ζ | are much smaller than
∣∣u1‖

∣∣ and
∣∣w1‖

∣∣ this forcing
term will be essentially in the parallel direction. The strategy will therefore again be
to solve for the parallel part w1‖ and then choose w1ζ such that Eq. (6.26a) is satisfied.
The pressure will balance gradient terms giving the hydrostatic pressure and the parallel
equation thus becomes,

∂2
ζw2‖ = ν0

(
〈w1 ·∇u1〉‖ + 〈w1∇·u1〉‖ + 〈v1 ·∇w1〉‖

)
, (6.28)

where we have used that ∇2w2 = ∂2
ζw2 + O(ε) from Eq. (4.19). In Chapter B we have

written out the full integration of this equation evaluating each term on the right hand
side in curvilinear coordinates. It is a rather lengthy calculation and we only present the
key points here.
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6.4.1 Solution to the parallel part w2‖

The solution which has w2‖ → 0 as ζ → 0 is given in Eq. (B.13) and restated here,

w2‖ =
1

ω
Re

{
ũ1‖ ·∇‖ũ∗1‖n1 + ũ∗1‖

[
∂ζu1ζn2 + ∇‖ ·ũ1‖n3

]
+
[
ũ∗1‖

(
Hvs

1ζ + ∇‖ ·vs
1‖

)
+ vs

1‖ ·∇‖ũ
∗
1‖

]
n4 +

[
ũ1‖ ·∇‖(vs

1‖)
∗ − (vs

1ζ)
∗Qũ

]
n5 + ũ∗1‖v

s
1ζn6

}
,

(6.29)

where ni = ni(ζ) are function of ζ only and are listed in the appendix Eqs. (B.9) and (B.12).
Further ũ1‖ ≡ (u1‖ − vs

1‖) is the fluid velocity relative to the surface velocity and Qũ ≡
(κξũ1ξ, κη, ũ1η) is a curvilinear correction term ignored by Nyborg[1] and included by Lee
et al.[10]. We then have to evaluate w2‖ at the boundary by evaluating ni(ζ = 0). From
Eq. (B.14),

w2‖(ζ = 0) =
1

4ω
Re

{
ũ1‖ ·∇‖ũ∗1‖ + ũ∗1‖

[
∂ζu1ζ(−2i) + ∇‖ ·ũ1‖(2 + i)

]
+
[
ũ∗1‖

(
Hvs

1ζ + ∇‖ ·vs
1‖

)
+ vs

1‖ ·∇‖ũ
∗
1‖

]
(2i) +

[
ũ1‖ ·∇‖(vs

1‖)
∗ − (vs

1ζ)
∗Qũ

]
(−2i) + ũ∗1‖v

s
1ζ

2− 2i

δ

}
.

(6.30)

This is the parallel velocity at ζ = 0 induced by the force density ρ0∇ · 〈v1v1 − u1u1〉.
In particular consider the very last term. If the perpendicular velocity vs

1ζ 6= 0 this term
becomes much larger than any other terms since 1/δ � ∇‖ ∼ k0. For a continuous
reading, the physical interpretation of this term is put in Chapter C. It turns out that it
cancels exactly when evaluating the parallel limiting velocity and will therefore not affect
the streaming outside the boundary layer. In a full simulation though, one can experience
very large perpendicular velocities inside the boundary layer if vs

1ζ 6= 0.

6.4.2 Solution to the perpendicular part w2ζ

Having the parallel solution from Eq. (6.30) we now find w2ζ from the continuity equation
Eq. (6.26a),

∇·w2 = ∇‖ ·w2‖ + ∂ζw2ζ +Hw2ζ = − 1

ρ0
〈w1 ·∇ρ1〉 . (6.31)

Since w2 varies rapidly in the ζ direction we have ∂ζw2ζ � Hw2ζ . So we can find w2ζ

from integration,

w2ζ = −
∫

∇‖ ·w2‖ dζ − 1

ρ0

∫
〈w1 ·∇ρ1〉 dζ, (6.32)

and use w2ζ → 0 as ζ → ∞. All terms will be of O(ε) except the last term in Eq. (6.30)
considered above. The result is (see Chapter B for details),

w2ζ = − 1

4ω
Re
{

2i∇‖ ·
[
ũ∗1‖v

s
1ζ

]}
. (6.33)
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6.4.3 The limiting velocity

We are now ready to evaluate the limiting velocity uLim
2 . From Eqs. (6.25), (6.30)

and (6.33) and some manipulations we find (see Eqs. (B.3) and (B.24) for the full de-
tails),

uLim
2‖ = − 1

4ω
Re

{
ũ1‖ ·∇‖ũ∗1‖ + ũ∗1‖

[
∇‖ ·ũ1‖(2 + i) + (Hvs

1ζ + ∇‖ ·vs
1‖ − ∂ζu1ζ)(2i)

]
+ (2i)

[
(vs

1ζ)
∗Qu + vs

1‖ ·∇‖u
∗
1‖ − u1‖ ·∇‖(vs

1‖)
∗ + vs

1‖ ·∇‖(v
s
1‖)
∗
]}

, (6.34a)

uLim
2ζ = − 1

4ω
Re
{

2i
(
u1‖ ·∇‖(vs

1ζ)
∗ + vs

1ζ∂ζu
∗
1ζ

)}
, (6.34b)

where we remind that ũ1‖ ≡ u1‖ − vs
1‖, Qu = (κξuξ, κηuη) and H = −κξ − κη. This is

the limiting velocity of the outer streaming uBulk
2 at ζ = 0 for a curved and oscillating

surfaces ignoring terms of O(ε). Please note that the curvature variables H and Qu

are both multiplied by vs
1ζ thus the curvature of the surface only becomes important for

perpendicular surface velocities.

6.4.4 Example: Rayleigh streaming

In the very simple case of a one-dimensional standing wave over a stationary flat surface
we have ũ1‖ = u1ξ cos(k0ξ)tξ where u1ξ is real and only the first and second term in
Eq. (6.34a) will contribute,

uLim
2ξ = − 3

8ω
∂ξ[u1ξ cos(k0ξ)]

2 =
3

8

u2
1ξ

c0
sin(2k0ξ). (6.35)

This is the classical Rayleigh solution for the limiting velocity1. It serves as a standard
example with the two main points valid for one-dimensional standing waves parallel to a
stationary flat surface,

(i) The limiting velocity is in the direction of decreasing acoustic velocity amplitude.

(ii) The parallel period of the limiting velocity is half the acoustic wavelength λ/2.

The first point also hold for a curved surface and in the second point λ/2 should just
replaced by the variations due to the surface curvature.

1Lord Rayleigh[7] did not use the term limiting velocity which was first introduced by Nyborg[1].
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6.5 Summary of effective modelling and implementation

We are hereby done for now with the derivation of the effective modelling in first and
second order. We here give a summary of the effective models explained in this thesis.

First order acoustics (6.36a)

∇2p1 + k2
cp1 = 0 and u1 =

(1− iΓ)

iωρ0
∇p1

∂ζp1 = iωρ0

[
vs

1ζ −
i

ks
∇‖ ·vs

1

]
− i

ks

(
∂2
ζp1 + k2

cp1

)
at all surfaces

Second order acoustic streaming (6.36b)

0 = ∇·uBulk
2 , 0 = ∇·uOut

2 ,

0 = −∇p̃Bulk
2 + η0∇2uBulk

2 + Γω 〈u1ρ1〉 , 0 = −∇p̃Out
2 + η0∇2uOut

2

uBulk
2 = 0 at all surfaces, uOut

2 = uLim
2 at all surfaces.

with uLim
2 from Eq. (6.34) and the full streaming velocity being v2 ≈ u2 = uBulk

2 + uOut
2 .

We have described the weak formulation of these problems in Chapter 3. The implemen-
tation of curvilinear local coordinate systems involves extensive use of projections onto the
basis vectors. This procedure is in principle straight forward and the details are described
in Chapter D. In the more complicated case of 3 dimensions we will in Chapter 7 visualize
the local coordinate system on a sphere (see Fig. 7.2(b)).

In the following we will show two examples of applications of these effective models. We
first revisit the simple setup from Section 5.2 where we now calculate the streaming and
again compare the full model with he effective model. We then turn to a set-up studied
experimentally by Hagsäter et al.[26] where a special streaming pattern occur. We will
then show that this streaming pattern can be related to the bulk streaming force Γω 〈u1ρ1〉
explained above.

6.6 Example: Rectangular channel from Section 5.2

As stated above the bulk streaming for this set-up will 10−5 of the boundary streaming
and therefore we should only calculate uOut

2 in Eq. (6.36b). In Figs. 6.2 and 6.3 we show
the streaming velocity for the exact same set-up as considered in Section 5.2. We see in
Fig. 6.2(a) that the effective model catches the streaming pattern very well. Note that this
field is the classical Rayleigh streaming explained in Section 6.4.4 whith two rolls per half
wave length. In Fig. 6.2(b-e) we investigate both components of the streaming velocity.
Note how the effective model do not catch the rapid variations inside the boundary layer
but fits well just away from the boundary layer. There are however small deviations from
the full model. Note e.g. the contour misalignment in Fig. 6.2(b). To investigate this we
have zoomed in on the boundary layer in Fig. 6.3 at y = W/4 and y = 0 respectively
(as marked with blue in Fig. 6.2(b-c)). We first see that the parallel y-component indeed
approaches the full model around 5δ away from the wall and thus is a perfect example of
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Figure 6.2: Plots of second order streaming with the same first order field as in Fig. 5.3.
(a-c) Comparison between the a full model (upper part) and the effective model (lower
part). (a) Streaming velocity amplitude from 0 to 10.8× 10−5 m s−1 (black to white). (b)
Horizontal streaming velocity from −1 to 1 × 10−4 m s−1 (black to white). (c) Vertical
streaming velocity from −2.5 to 2.5 × 10−5 m s−1 (black to white). (d-e) Horizontal and
vertical streaming velocity across the vertical dashed line at y = W/4 shown in (b-c)
respectively.

the limiting velocity theory. The perpendicular component on the other hand does not
approach the full velocity away from the boundary layer. We see that the perpendicu-
lar limiting velocity should ideally have been around 0.1 × 10−5 m s−1 larger than 0 as
drawn with dashed line Fig. 6.3(b). Compared to the maximum parallel limiting velocity
10×10−5 m s−1 as seen in Fig. 6.3(a) this is an error of around 10−2. Please recall that we
in Eq. (6.32) estimated that |w2ζ | would be (k0δ) ∼ 0.2× 10−2 smaller than max

{∣∣w2‖
∣∣}

for stationary walls so this is a slightly larger error than expected. On the other hand we
have seen that for Rayleigh streaming we have period doubling so

∣∣∇‖ ·w2‖
∣∣ ∼ 2k0

∣∣w2‖
∣∣
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0

10 0

Figure 6.3: Plots of the streaming velocities close to the lower boundary z = −H/2 marked
with blue line at y = W/4 and y = 0 as marked in Fig. 6.2(b) and (c) respectively.

and we should instead expect |w2ζ | /
∣∣w2‖

∣∣ ∼ 2(k0δ) ∼ 0.4×10−2 which is more acceptable.

We have seen with this example that we can calculate the second order streaming in this
simple case to sufficient accuracy. We will now move to a different set-up where the bulk
streaming also becomes important.

6.7 Example: Bulk streaming from Hagsäter

In Fig. 6.2 we saw the characteristic Rayleigh streaming pattern also predicted in Sec-
tion 6.4.4 where a half standing wave gave rise to two streaming rolls at each wall. How-
ever, in a paper by Hagsäter et al.[26] they observed experimentally only one streaming
roll per half wavelength in a square chamber of 2 × 2 mm2 with 6 half waves in each di-
rection as shown in Fig. 6.5(a). We will here show that this pattern can be related to the
bulk streaming force Γ 〈u1ρ1〉 explained in Section 6.3.1.

The experimental set-up and the reported pressure eigenmode is shown in Fig. 6.4(a)
where a PIV-measurement tracks the velocity of 5 µm beads which are pushed towards
the pressure nodes due to the acoustic radiation force[6]. The resulting streaming pattern
is shown in Fig. 6.5(a) where 1 µm beads are used which follow the acoustic streaming
rather than the radiation force. In Fig. 6.4(b) we have reproduced the pressure eigenmode
in a channel of dimensions H×W = 2000×2002 µm2 where the slight asymmetry mimics
the small arms in the experimental set-ups. Further Fig. 6.4(c-d) show this pressure at
two different instants of time revealing the degeneracy of the mode with 3 wavelengths
across the channel. i.e. the pressure is a superposition of two waves which have different
phase and magnitude.

To analyse the impact on the streaming due to such degenerate modes we turn to a simi-
lar but much simpler set-up also studied numerically and experimentally by Antfolk and
Muller[27] namely a W ×H = 230 × 230 µm2 square channel with only one half wave in
each direction. The idea is then to model 1/36 of the large Hagsäter-set-up in a much more
controlled way as sketched in Fig. 6.5(b). We can then control the phase between the two
waves by tuning the wall phase difference φ as shown in Fig. 6.5(b). For this particular
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Figure 6.4: Experiment and simulation of the set-up by Hagsäteret al.[26]. (a) PIV meas-
surement af f = 2.17 MHz of 5 µm beads which are pushed to the pressure nodes by the
acoustic radiation force. Simulated pressure using the effective model with an arbitrary
Gaussian actuation as shown in blue at f = 2.24 MHz. Black lines show p1 = 0. (c-d)
same as (b) but phase shifted. The colours of (c-d) are synchronized to ±1.4 × 104 MPa
(black-white).

(b) ✻

30
0
µ
m
/s

40
0
µ
m

Figure 6.5: Illustration of the experiment by Hagsäter et al. and the simple model con-
sidered here. (a) Image from Hagsäter et al.[26] of a 2 × 2mm2 champer with 6 pressure
half-waves in each direction (magenta). The white arrows show the velocity of 1 µm par-
ticles from a PIV-measurement. For simplicity we only model one of theses structure
(green square). (b) Sketch of a square channel with W = 230 µm as in[27] where both the
side walls (magenta) and top/bottom walls (green) actuate an acoustic resonance in each
direction with a temporal phase difference φ.
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set-up (as we will see below) we have found S ≈ 2 for φ = π/2 so we now expect the bulk
streaming to be significant.

6.7.1 Numerics

We first investigate how the bulk forcing term Γω 〈u1ρ1〉 contribute to streaming. As
discussed above, only the part which is not a gradient will contribute to bulk streaming.
Therefore to measure the impact of this force we calculate the normalized average of the

curl
1

A

∫ ∇×〈u1ρ1〉
k0|u1||ρ1| dA. Please note that the fraction S is then (1 +β) = 4 time this value.

This is done in Fig. 6.6 where we change both the phase difference φ of the wall velocities
and the height of the channel H → H + dH

H . From this figure we predict that the impact

of this force is largest at symmetry dH
H = 0 and φ = ±π/2. Further, as seen in Fig. 6.6(c)

we can change the direction of this force by tuning the phase. In Fig. 6.7 we then show the
calculated streaming pattern for nine characteristic sets of (φ, dH

H ) calculated both in the
full model and the effective model. We see that indeed a special streaming pattern occur
at φ = ±π/2 and this is only significant close to symmetry dH

H = 0 exactly as predicted
from Fig. 6.6.

0

Figure 6.6: Analysis of streaming force Γω 〈u1ρ1〉 in symmetric square set-up. (a) Con-
tourplot of the average normalized curl of streaming force for f = 3.252 MHz giving
resonance along y. Positive curl means counter-clockwise rotation as in (c-left). (b) line
plot along the orange dashed line in (a). (c) Direction and magnitude of Γω 〈u1ρ1〉 at the
two maxima in (a) from 0 to 362 N m−3 (black-white).
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Figure 6.7: Streaming patterns close to symmetry. The streaming pattern for 9 different
sets of dH/H and φ to be compared with Fig. 6.6. The frequency f = 3.252 MHz is
always resonant in the y-direction. The upper part of all pictures show the full model and
the lower part shows the effective model. Colors show streaming velocity from 0-8 ms−1

(black-yellow) and arrows show direction.

These special streaming patterns have three characteristics compared to the others:

(i) There is one large roll in the center with a diameter of around λ/2

(ii) At each wall half of the boundary streaming is suppressed and the other half is
enhanced

(iii) The error between the full and effective model is much larger than in the other cases.

We will treat these three characteristics in the following.
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Figure 6.8: Streaming for same situation as Fig. 6.6 with φ = π/2 and dH/H = 0. Colours
show velocity magnitude from 0-8× 10−4 m s−1 (black-yellow). (a-c) The bulk streaming
uBulk

2 , outer streaming uOut
2 and their sum respectively calculated from Eq. (6.36). White

dashed ellipses mark the areas where streaming is suppressed compared to Fig. 6.2(a).
Coloured graphs are the components of Eq. (6.40). (d) The streaming u2 calculated from
Eq. (6.10).

From the decomposition derived in this chapter we now have a powerful way to understand
the first two characteristics. In Fig. 6.8(a-b) we show both uBulk

2 and uOut
2 for φ = π/2 and

dH/H = 0. From this we see clearly that uBulk
2 follows the force shown in Fig. 6.6(c-left)

which gives the bulk streaming with diameter of half a wavelength. The outer streaming
in fact also show one large roll but in the opposite direction. We see clearly that half of
the boundary streaming is suppressed (white ellipses). Finally their sum gives the more
complicated pattern in Fig. 6.8(c) where we also show in Fig. 6.8(d) a calculation without
decomposition (i.e. Eq. (6.10)) to confirm that our decomposition is right.

In this simple set-up we can understand the bulk streaming and the outer streaming from
some simple analytics as treated in the following.

6.7.2 Analytics

Following the approach from Section 5.2 the pressure can be superimposed by the pres-
sures resulting from each wall-pair each having the form of Eq. (5.22a) so we can write
approximately,

p1 = P0

[
sin
(πy
W

)
+ eiφ sin

(πz
W

)]
, (6.37)

where P0 is a constant pressure.
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Figure 6.9: Time laps over one period of the mass density ρ1 increasing from brown to
yellow (±1.07 kg m−3) (or equivalently p1 = ±2.39 MPa) together with fluid velocity u1

(blue arrows) with maximum of 1.26 mm s−1. The magenta arrows indicate the magnitude
of the mass current density ρ1u1. This simulation at resonance f = 3.252 MHz and
φ = π/2, dH/H = 0.

Bulk streaming We first evaluate the term Γω 〈u1ρ1〉 driving the bulk streaming. With

u1 =
1

iωρ0
∇p1 and ρ1 = p1/c

2
0 we find the expression for the force density,

Γω 〈u1ρ1〉 = Γ
πP 2

0

2Wρ0c2
0

[
− cos

(πy
W

)
sin
(πz
W

)
ey + sin

(πy
W

)
cos
(πz
W

)
ez

]
sin(φ). (6.38)

This has the same form as we saw in Fig. 6.6(c-left) and is indeed maximized at φ = ±π/2
as shown in Fig. 6.6(b). It rotates in one large roll with diameter of a half wavelength

and it has zeros at
|y|+ |z|
W

= n/π, n ∈ Z.

The physical interpretation of the large net mass transport 〈u1ρ1〉 is illustrated in Fig. 6.9.
It is a consequence of having phase shifted resonance in perpendicular directions. Focusing
at e.g. the left part of the channel, at t = 0 the side walls compress fluid and the top/bottom
walls pushes it downwards. Half a period later ωt = π decompressed fluid moves upwards.
Over a full period this implies a net mass transport 〈u1ρ1〉 downwards in this left side of the
channel. The overall picture is then a rotating mass transport as shown in Fig. 6.6(c-left).
As predicted in Eq. (6.13) we here get a large bulk force since the fluid is rotating.

Outer streaming Comparing with the Rayleigh streaming in Fig. 6.2 we see that half
of the boundary-streaming is suppressed Fig. 6.8 (marked with white ellipses). We now
have a tool for understanding this, namely the limiting velocity. Investigating the parallel
limiting velocity from Eq. (6.34a) at the bottom wall z = −H/2 gives,

uLim
2y = − 1

4ω
Re
{
u1y∂yu

∗
1y + u∗1y∂yu1y(2 + i)− (2i)u∗1y∂zu1z

}
. (6.39)

Again using u1 =
1

iωρ0
∇p1 and p1 from Eq. (6.37) we find,

uLim
2y = c0

(
P0

ρ0c2
0

)2 [3

8
sin
(

2
πy

W

)
− 1

2
cos
(πy
W

)
sin(φ)

]
, (6.40)
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The first term (green in Fig. 6.8(b)) gives the Rayleigh streaming pattern as in Fig. 6.2(a)
i.e. with two rolls per half wave. The second term (blue in Fig. 6.8(b)) is maximum at a
wall phase difference of φ = π/2 for which it is positive across the entire channel. It arises
since the bottom wall creates a large gradient ∂zu1z in the perpendicular velocity. The
entire uLim

2y at the bottom then becomes enhanced to the left and supressed to the right
as shown with magenta in Fig. 6.8(b).

We have here seen that a special streaming pattern can occur as a result of perpendicular
resonances inducing rotations in the fluid. This is most likely the phenomena observed
by Hagsäter et al. in Fig. 6.5. Further we have seen that a perpendicular gradient ∂ζu1ζ

can affect the limiting velocity significantly. Maybe this can be used in a more efficient
suppression of streaming.

However, in Fig. 6.7 we saw a remarkable large error between the full and effective model for
these situations but a similar result for the other. Even though the qualitative behaviour
is well calculated, the quantitative error is too large to accept. We will investigate this
error in the following.

6.7.3 Error between effective and full model

In Fig. 6.10 we show the case φ = π/2, dH/H = 0 and plot the velocities along the center
line z = 0 which show that u2y (circles) fits well but u2z (triangles) differs significantly
from the full model. Still u2z approaches v2z close to the wall, so we believe that the error
is a bulk effect and not an error in the limiting velocity. The picture is opposite for the

Figure 6.10: Comparison between the effective and full model in the square channel. (a)
Magnitude and direction of streaming calculated with the full (upper) and effective (lower)
model. Same color scale as Fig. 6.8. (b) the streaming velocities along the white center
line z = 0 in (a). Note that the z- components have large errors while the y- components
fit well.
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Figure 6.11: Possible origin of streaming error in Fig. 6.10. We here check Eq. (6.41a)
and the graphs show the left hand side (circles) and right hand side (trangles) of the full
(blue) and effective (red) model respectively. The black dashed line show the right hand
side of Eq. (6.41a) multiplied by 2 for the full model.

line y = 0 (not shown).

The origin of this error is not fully understood but after backtracking the entire derivation
we can suggest one crucial point. When deriving the force density Γω 〈u1ρ1〉 we used

∇·u1 =
iω

ρ0c2
0

p1 and u1 =
∇p1

iωρ0
(1− iΓ) and expected that

Expected: ρ0 〈(∇·v1)v1z〉+
1

4
κ0∂z|p1| = −Γω 〈v1zρ1〉 . (6.41a)

since we assume v1 ≈ u1 in the bulk. We check this equation in Fig. 6.11 where we plot
the left hand side (circles) and right hand side (triangles) for both the effective (red) and
full (blue) model. We see that the effective model satisfies this equation as expected. The
full model however does not satisfy the equation. In fact from the black dashed curve it
seems like the right hand side should be doubled,

From full simulation: ρ0 〈(∇·v1)v1z〉+
1

4
κ0∂z|p1| = −2Γω 〈v1zρ1〉 . (6.41b)

Please note that we are here only plotting first order fields so this has nothing to do with
the derivations in this chapter. Further, this is a full simulation that does not fit with
the analytics so ssuming the full simulation to be true we might have missed a O(Γ)-term
in our analytic work. We can localize two places where we made assumptions to reach
Eq. (6.41a),

(i) v1 ≈ u1 in the bulk,

(ii)
[
∇2u1 + k2

cu1

]
+
k2

c

k2
s

[
∇2w1 + k2

sw1

]
= 0 ⇒ ∇2u1 + k2

cu1 = ∇2w1 + k2
sw1 = 0.
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Since the error seem to be a nice factor of 2 there is also the third possibility that we made
a simple typo in our numerics or analytics. Due to limited time we have not been able to
localize this error.

We saw from Fig. 6.7 that this error only occurs when simulating the bulk streaming
uBulk

2 and in Fig. 6.6 we show that we could predict whether bulk streaming would be
significant at all. As we have seen this is a rare phenomena related to a degenerate
resonance in different directions and in asymmetric set-ups we will only expect insignificant
bulk streaming and hence small errors. Even in the case of bulk streaming we have seen
from Fig. 6.10(a) that the qualitative streaming fits well and we ”only” need to find a
factor of ∼ 2 somewhere. Finally from Fig. 6.8(c-d) we justified our decomposition from
u2 → uBulk

2 + uOut
2 .

6.8 Concluding remarks on effective model for streaming

We have in this chapter provided the limiting velocity as a boundary condition for uOut
2

which is valid for curved walls with actuation in any direction. Due to many complicated
terms we have not been able to rigorously test all possible scenarios of this limiting veloc-
ity, so there something for future work here.

Further we have derived a decomposition of the total streaming field into the inner stream-
ing w1, outer streaming uOut

2 , and bulk streaming uBulk
2 . This decomposition allows for

a much more intuitive formulation of the streaming equations and as we have seen in
the example of the square channel we can now analyse complicated streaming patterns in
more detail by considering each of these fields separately. In particular we have shown
that the special streaming pattern observed by Hagsäter et al. can be related to degenerate
resonances in perpendicular directions. In this set-up we also saw how streaming above
an oscillating wall can be suppressed in some areas due to perpendicular gradients in the
velocity ∂ζu1ζ . This phenomena can potentially be used to design new acoustofluidic de-
vices where streaming is much more efficiently suppressed than we have here seen.

With the effective model derived in this chapter we are now in a position to simulate
acoustic streaming in larger 3-dimensional systems which we will show in an example in
the next chapter.
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Chapter 7

3-dimensional acoustic streaming

In the preceding chapter we tested our effective model and found good agreement with a
full model in spite of the error in the bulk forcing term. In the following we will enter the
regime where it is not so easy to compare with a full model namely acoustic streaming in
3 dimensions. As we mention in Chapter 1 one of the goals of acoustofluidics is to obtain
control of particles suspended in a liquid. Whereas large particles can be efficiently focused
by the acoustic radiation force[25], smaller particles (. 1 µm) will be dragged around in
patterns similar to those we saw in Chapter 6. One way of of trapping sub-micron particles
is by using a seed particle in a so-called acoustic trap. As shown experimentally by Ham-
marström et al. a larger seed particle can bee levitated in the center of a channel coursing
smaller nano particles to be trapped on that seed particle. In Fig. 7.1 we show some figures
from this experiment. The channel shown here has a cross section of 0.2 ×2 mm2 and a half

Figure 7.1: Acoustic trapping figures adapted from the paper by Hammarström et al.[13].
(a) seed particle constituted by 10 µm polysterene beads. The insert show small cavities
where nano particles can be trapped. Due to to the acoustic radiation force the seed
particles is fixed in the center of the channel shown in (b). (b) top view of the channel
with cross section 0.2 × 2 mm2 (into the paper × vertically) with flow from left to right.
The transducer below the channel induces a half wave resonance in the shortest direction
(into the paper). (c) The acoustic streaming pattern inside the channel without seed
particle. Yellow lines show the transducer area.

wave resonance is induced along the smallest dimension. The streaming pattern shown in
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Fig. 7.1(c) is studied by Lei et al. [28] and is different from what we have seen so far in this
thesis. It has dimensions of the channel width which is much longer than the wavelength
λ ≈ 0.4 mm. In the experiment it is pointed out that this streaming pattern can help col-
lecting small nano particles into the center where they can be trapped at the seed particle.
This particular streaming pattern is not fully understood but Lei suggests an explanation

based on the term
1

4ω
Re
{
u∗1‖(2i∂ζu1ζ)

}
from the limiting velocity Eq. (6.34). This term

can indeed be large in this flat channel since ∂ζu1ζ scales inversely with the channel height.

In this chapter we will not go into any detail about the streaming in Fig. 7.1(c) but instead
focus on the streaming due to the presence of the seed particle. Part of the purpose of this
example will be to show the entire machinery of effective modelling of acoustic streaming
in 3D curvilinear coordinates.

7.1 Acoustic streaming around a sphere

In Fig. 7.2(a) we show the set-up we choose here which is a closed box of dimensions
L ×W × H = 500 × 700 × 200 µm3 with a sphere of radius R = H/4 = 50 µm in the
center. We choose to oscillate the bottom surface in the interval −L/4 < x < L/4 with
an amplitude d1 = 0.1 nm and resonance frequency f = 3.7028 MHz inducing a half wave
resonance as shown in Fig. 7.2(a). In Fig. 7.2(b) we show the local curvilinear basis vectors
in each point at the sphere. Please note that the normal vector n always points towards
the fluid but the tangent vectors tξ,tη point in completely different directions from point
to point while satisfying the right hand rule tξ× tη = n. In Chapter D we show how these
basis vectors are implemented in COMSOL.

Figure 7.2: Simple 3D setup to model streaming around a seed particle. (a) A sphere
of radius R = H/4 = 50 µm mimics the seed particle and is placed in the center of
a closed box with dimensions L × W × H = 500 × 700 × 200 µm3. The bottom wall
induces a half wave resonance of p1 = ±1.73 MPa (white-black) in the z-direction with
f = 3.7028 MHz. The coordinate system (x, y, z) has origo in the center of the sphere.
(b) The local curvilinear basis vectors tξ, tη,n in different points at sphere.
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Figure 7.3: The first-order fields u1z and p1 inside the set-up in Fig. 7.2. (a) first order
vertical velocity −iu1z where the phase is with respect to the wall phase. Colors show
0-1.49 m s−1 (black-white). (b) first order pressure p1 from ±1.74 MPa (white-black).
Blue lines are contours separated 0.174 MPa.

7.1.1 First order analysis

We first solve for the first-order fields by solving the effective model Eq. (6.36). The results
are shown in Fig. 7.3. Note how large velocity gradients of order u1z/R are formed at the
sphere. These give rise to a large limiting velocity as we will see. The next step is to
project these results from (x, y, z) onto the curvilinear basis vectors tξ, tη,n shown at the
sphere in Fig. 7.2(b) and then calculate the limiting velocity from Eq. (6.34). That result
is then projected back to the (x, y, z) coordinate system (see Chapter D). In Fig. 7.4
we show the limiting velocity as surface plots. Please note that the magnitude |uLim

2 | is
around 10 times larger at the sphere than at the side walls. Note also the smoothness of
of uLim

2 at the sphere even though the local basis vectors in Fig. 7.2(b) are completely
discontinuous. The final step in the first-order analysis is to evaluate the ratio S between

Figure 7.4: 3D visualization of the limiting velocity. (a) colors show the magnitude
∣∣uLim

2

∣∣
from 0-2.06 × 10−4 m s−1 (black-white) and arrows show direction. (b) colors show the
magnitude

∣∣uLim
2

∣∣ from 0-1.19× 10−3 m s−1 (black-white) and arrows show direction.
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bulk streaming and outer streaming from Eq. (6.22). For this set-up we found numerically
S ≈ 10−3 and consequently we only have to calculate the outer streaming, u2 ≈ uOut

2 .

7.1.2 Second order analysis

The outer streaming uOut
2 is visualized in 3D in Fig. 7.5 where we show direction and

magnitude of uOut
2 . As expected the streaming is much larger close to the sphere due to

the geometric variations here. We see that rolls are formed in the yz-plane while a ”sink”
is formed in the xy-plane with streaming towards the sphere. In Fig. 7.6 we show sections
close to the sphere of these two planes where these effects are shown more clearly. We
see in Fig. 7.6(b) that the in the xy-plane the streaming is towards the sphere within a
distance of ∼ 3R. We compare this result with the analytic solution to the radial streaming
velocity due to a free sphere from Lee et al.[24],

u∞2r = −45

32

P 2

ωRρ2
0c

2
0

[
R2

r2
− R4

r4

]
at z = 0. (7.1)

where P is the pressure amplitude. We see that the simulated result decays over a shorter
distance probably due to the top/bottom walls. To investigate this we increased the height

to H = 900 µm and plotted the normalized velocity u900
2y = u2y

(P 900)2

P 2
ω

ω900 , in the same
plot where superscript 900 refers to this second simulation with H = 900 µm. We see from
the new curve in Fig. 7.6(b) (dashed orange) that the streaming indeed approaches the
analytic result for a free sphere as we increase the height of the box as expected. Please
note that we still have W/2 = 7R and L/2 = 5R, so to get a better fit we should increase

Figure 7.5: 3D visualization of streaming around the sphere. The green arrows show
direction of u2 with logarithmic magnitude. Colours show the magnitude |u2| from 0-
1.2× 10−3 m s−1.
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Figure 7.6: 2D and 1D visualisation of streaming around the sphere. (a) section of the
xy-plane from Fig. 7.5 showing magnitude from 0-3.16 × 10−4 ms−1 (black-white) and
direction (blue arrows). Contours separation is 20% of the maximum value. (b) Radial
velocity along the white dashed line in (a). u2y (orange) is the simulation for the system
shown in Fig. 7.2. u900

2y is the normalized streaming velocity (see text) for H = 900 µm
and W,L fixed. u∞2r (black dashed) is the analytic result from Lee et al. [24]. (c) section of
the yz-plane in Fig. 7.5. The green arrows show the streaming direction with proportional
magnitude. Colors show the magnitude |u2yz| from 0-1.18× 10−3 m s−1.

all dimensions of the box which we will not do here. We cannot simply reduce the radius
of the sphere since we then violate R/δ � 1.

Since we have seen that the streaming due to the sphere is much stronger than the stream-
ing due to the side walls it becomes hard to believe that the transducer plane streaming
pattern observed in the experiment without seed particle (Fig. 7.1(c)) should be the only
reason for attracting nanoparticles onto the seed particle. Since the transducer plane
streaming of Fig. 7.1(c) probably originates from variations in the velocity over the sys-
tem dimensions as proposed by Lei et al. [28] the next step will be to make a simulation
of the open channel and with the right transducer actuation envelope.

Finally, although we did not make a convergence test in 3D we mention that this setup was
solved with 440936 DOF and 23 GB RAM for p1 with quartic shape functions and 621458
DOF and 37 GB RAM for uOut

2 ,pOut
2 with quadratic and linear shape functions respectively.

The solution time was only around 5 min. So with the effective models explained in this
thesis we clearly open op for new possibilities to simulate acoustic streaming in 3D.
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Chapter 8

Conclusion and outlook

Acoustic streaming is one of the major challenges within the field of acoustofluidics since
this phenomena sets a lower limit on the particle size that can be controlled efficiently.
A better understanding of this phenomena is therefore important for future engineering
of acoustofluidic devices. In this thesis we have developed effective models for calculation
of both (i) first order acoustic oscillatory motion and (ii) second order steady acoustic
streaming.

The most important contribution in the first-order analysis (i) is a new boundary con-
dition on the acoustic pressure which allows calculations accounting for the significant
viscous damping inside the acoustic boundary layer without resolving this region numer-
ically. Compared to previous work[11, 22–24], where it is assumed that n ·∇p1 = 0 on
stationary walls, this new boundary condition gives a much more realistic result and it can
be implemented in any system where the boundary layer width δ is the smallest length
scale.

In the second part (ii) we combined the limiting velocity theory developed Nyborg[1],
Lee[10, 24], and Vanneste[11] and formulated the limiting velocity on a curved surface
with any wall oscillation as long the wall amplitude is much smaller than δ and the
wall curvature is much larger than δ. We then developed a decomposition of the acous-
tic streaming into the three fields with different physical origin: Inner streaming, outer
streaming, and bulk streaming. Whereas outer streaming is always present we formulated
a criterion on when to expect bulk streaming. In particular we found a strong relation
between the predicted bulk streaming in a square channel and the streaming pattern ob-
served by Hagsäter et al.[26] with only one streaming roll per acoustic wave length. This
special streaming pattern were found to be related with rotational motion in the fluid
set up due to degenerate resonances in perpendicular directions in a symmetric channel.
Finally, based on the expression for the limiting velocity we explained how streaming over
an oscillating wall can be suppressed in some areas due to gradients in the perpendicular
velocity. This phenomena might be interesting for future engineering purposes to effi-
ciently suppress streaming by choosing the right wall oscillation.
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As a finishing example we showed in Chapter 7 how we could use the effective models to
simulate acoustic streaming in a 3-dimensional system with a sphere in the center. This
example establishes the foundation for future simulation of streaming in the acoustic trap
as well as other larger 3-dimensional devices.



Appendix A

Curvilinear coodinates

We here derive the curvilinear differential operators used in this thesis. The gradient is

∇f =
1

hξ

∂f

∂ξ
tξ +

1

hη

∂f

∂η
tη +

1

hζ

∂f

∂ζ
n ≈ ∂f

∂ξ
tξ +

∂f

∂η
tη +

∂f

∂ζ
n. (A.1)

The divergence is,

∇·A =
1

hξhηhζ

(
∂(Aξhηhζ)

∂ξ
+
∂(hξAηhζ)

∂η
+
∂(hξhηAζ)

∂ζ

)
=

1

hξhη

(
∂(Aξhη)

∂ξ
+
∂(Aηhξ)

∂η

)
+
∂Aζ
∂ζ

+HAζ . (A.2a)

≈∇‖ ·A‖ +
∂Aζ
∂ζ

+HAζ , (A.2b)

where we have used the parallel divergence ∇‖ ·A‖ ≡ ∂ξAξ + ∂ηAη.
The Laplacian is ∇·(∇f),

∇2f =
1

hξhηhζ
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≈ ∂2f

∂ξ2
+
∂2f

∂η2
+
∂2f

∂ζ2
+H∂f

∂ζ
(A.3d)

In the special case where f varies over length scale δ in ζ and over length scale l in ξ, η,
where l = min {λ,R} � δ we get to lowest order in ε,

∇2f ≈ ∂2f

∂ζ2
if f varies ε slower in tangential direction than perpendicular. (A.4)
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Helmholtz equation in curvilinear coordinates for slow parallel variations

In the special case where f varies slowly with ξ, η we can use the Laplacian in Eq. (A.4)
and the Helmholtz equation becomes

∂2f

∂ζ2
+H∂f

∂ζ
+ k2f = 0, (A.5)

where H is constant. If k = ks we have k � H, and the non-growing solution is easily
found to be,

f = A exp

−1

2
H+ iks

√
1− H2

(2ks)2

 ζ

 ≈ A exp

[
iksζ −

H
2
ζ

]
. (A.6)

where the approximation gives the first order solution.

Convective derivative in curvilinear coordinates

In curvilinear coordinates ((ξ, η, ζ) the i-th component of the convective derivative is

ei ·[A·∇B] = ei ·
[(

Aξ
hξ

∂

∂ξ
+
Aη
hη

∂

∂η
+
Aζ
hζ

∂
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)
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]
(A.7a)
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=
∑

k=ξ,η,ζ
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∂Bi
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+
∑

j=ξ,η,ζ

BjTijk

 (A.7c)

with Tijk ≡ ei ·
∂ej
∂k

. Using the Frenet-Serret frame with ξ- and η- curves as lines of

curvature we get,

Tζξξ = κξ, Tζξξ = κη, Tξζξ = −κξ, Tηζη = −κη, (A.8)

and the rest are zero. If we further use that to zeroth order in ε we have hξ = hη = hζ = 1
we have,

(A ·∇B)‖ = Aξ

(
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∂ξ
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)
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)
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where QB = (κξBξ, κηBη) and for the perpendicular component,

(A ·∇B)ζ = Aξ

(
∂Bζ
∂ξ

+BξTζξξ +BηTζηξ +BζTζζξ

)
+Aη

(
∂Bζ
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+BξTζξη +BηTζηη +BζTζζη

)
+Aζ

(
∂Bζ
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+BξTζξζ +BηTζηζ +BζTζζζ

)
(A.10a)

= A‖ ·∇‖Bζ +Aζ
∂Bζ
∂ζ

+A‖ ·QB (A.10b)

In these equations we have used the parallel Nabla-operator which is ∇‖ ≡ tξ∂ξ + tη∂η.
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Appendix B

Evaluation of the limiting velocity

In this chapter we solve for w2‖ in Eq. (6.28) restated here,

η∇2w2‖ ≈ η∂2
ζw2‖ = ρ0 〈∇·(v1v1 − u1u1)〉‖ , (B.1)

with the boundary condition w2‖ → 0 as ζ → ∞. We then evaluate the boundary
condition on u2 (please recall that the total field is v2 = u2 +w2),

uLim
2 = −w2 −

1

ω
〈(ivs

1) ·∇v1〉 at ζ = 0. (B.2)

We will use the curvilinear versions of the convective derivative given in Eqs. (A.9)
and (A.10), where we have assumed a geometry where the surface is locally parametrized
by arc length in the parallel ξ, η plane such that the ξ- and η-curves are principal curves
of curvature. ζ is thus always the the perpendicular coordinate.

We first evaluate the boundary condition Eq. (B.2),

1

ω
〈(ivs) ·∇v1〉‖ =

1

ω

〈
ivs

1‖ ·∇‖v
s
1‖ + ivs

1ζ∂ζv1‖ − ivs
1ζQvs

〉
(B.3a)

=
1

4ω
Re

{
2i
(
vs

1‖ ·∇‖(v
s
1‖)
∗ + (vs

1ζ)
∗Qvs

)
− vs

1ζũ
∗
1‖

2− 2i

δ

}
(B.3b)

1

ω
〈(ivs) ·∇v1〉ζ =

1

ω

〈
ivs

1‖ ·∇‖v
s
1ζ + ivs

1ζ∂ζv1ζ + ivs
1‖ ·Qvs

〉
(B.3c)

=
1

4ω
Re
{

2i
(
vs

1‖ ·∇‖(v
s
1ζ)
∗ − (vs

1ζ)
∗ (∇‖ ·ũ1‖ + ∂ζu1ζ

))}
(B.3d)

=
1

4ω
Re
{

2i
(
∇‖ ·

[
(vs

1ζ)
∗vs

1‖

]
− (vs

1ζ)
∗∇·u1

)}
(B.3e)

where we have used that Re
{

ivs
1‖ ·Qvs

}
= 0.

We then evaluate the source term,

〈∇·(v1v1 − u1u1)〉‖ = 〈w1 ·∇u1 +w1∇·u1 + v1 ·∇w1〉‖ (B.4)
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The first term is (with f ≡ eiksζ)

〈w1 ·∇u1〉‖ ≈
〈
w1‖ ·∇‖u1‖ − vs

1ζQw

〉
(B.5a)

=
〈
−(ũ1‖f) ·∇‖u1‖ + vs

1ζQũf
〉

(B.5b)

=
1

2
Re
{
−ũ1‖ ·∇‖ũ∗1‖f − ũ1‖ ·∇‖(vs

1‖)
∗f + (vs

1ζ)
∗Qũf

}
(B.5c)

Here we have used that w1ζ � w1‖ and that u1ζ ≈ vs
1ζ inside the boundary layer. The

second term is

〈w1∇·u1〉‖ =
〈
−(ũ1‖f)∇·u1

〉
(B.6a)

=
1

2
Re
{
−ũ∗1‖∇·u1f

∗
}
, (B.6b)

≈ 1

2
Re
{
−ũ∗1‖

(
∇‖ ·ũ1‖ + ∇‖ ·vs

1‖ + ∂ζu1ζ +H0v
s
1ζ

)
f∗
}
. (B.6c)

Finally the third term becomes,

〈v1 · ∇w1〉‖ ≈
〈
v1‖ ·∇‖w1‖ + v1ζ

∂w1‖

∂ζ

〉
(B.7a)

=

〈
−(vs

1‖ + ũ1‖(1− f)) ·∇‖(ũ1‖f)−
(
vs

1ζ + ζ∂ζu1ζ −∇‖ ·ũ1‖
1− f

iks

)(
ũ1‖(iksf)

)〉
(B.7b)

=
1

2
Re

{
− vs

1‖ ·∇‖ũ
∗
1‖f
∗ − ũ1‖ ·∇‖ũ∗1‖(1− f)f∗ − ũ∗1‖

[
ζ∂ζu1ζ −∇‖ ·ũ1‖

1− f
iks

]
(iksf)∗

− ũ∗1‖v
s
1ζ(iksf)∗

}
, (B.7c)

where we have again used that w1ζ � w1‖. Please note that the last term is O(ε−1) larger

than the other terms. However it will be exactly cancelled when evaluating uLim
2‖ . In total

we get,

〈∇·(v1v1 − u1u1)〉‖

=
1

2
Re

{
− ũ1‖ ·∇‖ũ∗1‖ (f + (1− f)f∗)− ũ∗1‖

[
∂ζu1ζ (1 + ζ((iks)

∗)) f∗ + ∇‖ ·ũ1‖

(
f∗ − 1− f

iks
(iksf)∗

)]
−
[
ũ∗1‖

(
H0v

s
1ζ + ∇‖ ·vs

1‖

)
+ vs

1‖ ·∇‖ũ
∗
1‖

]
f∗ −

[
ũ1‖ ·∇‖(vs

1‖)
∗ − (vs

1ζ)
∗Qũ

]
f − ũ∗1‖v

s
1ζ(iksf)∗

}
.

(B.8a)
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It now becomes convenient to define the functions,

N1 = − (f + (1− f)f∗) , (B.9a)

N2 = − (1 + ζ(iks)
∗) f∗ (B.9b)

N3 = −
(
f∗ − 1− f

iks
(iksf)∗

)
(B.9c)

N4 = −f∗, (B.9d)

N5 = −f, (B.9e)

N6 = −(iksf)∗. (B.9f)

Please note that N6 is δ−1 larger than N1−5. The source term now becomes

〈∇·(v1v1 − u1u1)〉‖ =
1

2
Re

{
ũ1‖ ·∇‖ũ∗1‖N1 + ũ∗1‖

[
∂ζu1ζN2 + ∇‖ ·ũ1‖N3

]
+
[
ũ∗1‖

(
H0v

s
1ζ + ∇‖ ·vs

1‖

)
+ vs

1‖ ·∇‖ũ
∗
1‖

]
N4 +

[
ũ1‖ ·∇‖(vs

1‖)
∗ − (vs

1ζ)
∗Qũ

]
N5 + ũ∗1‖v

s
1ζN6

}
.

(B.10)

We can now integrate

∂2w2‖

∂ζ̃2
=

2

ω
〈w1 ·∇u1 +w1∇·u1 + v1 ·∇w1〉‖ , (B.11)

where we have defined ζ̃ = ζ/δ. We choose integrations constants such that w1‖ →∞ as
ζ → ∞. Since all the ζ-dependence is contained in the Ni(ζ) we only need to integrate
these. We use the notation,

ni =

∫ ∫
Ni(ζ̃)dζ̃dζ̃, (B.12)

without explicitly evaluating ni here. The solution is then

w2‖ =
1

ω
Re

{
ũ1‖ ·∇‖ũ∗1‖n1 + ũ∗1‖

[
∂ζu1ζn2 + ∇‖ ·ũ1‖n3

]
+
[
ũ∗1‖

(
H0v

s
1ζ + ∇‖ ·vs

1‖

)
+ vs

1‖ ·∇‖ũ
∗
1‖

]
n4 +

[
ũ1‖ ·∇‖(vs

1‖)
∗ − (vs

1ζ)
∗Qũ

]
n5 + ũ∗1‖v

s
1ζn6

}
,

(B.13)

which should now be evaluated at ζ = 0,

w2‖(ζ = 0) =
1

4ω
Re

{
ũ1‖ ·∇‖ũ∗1‖ + ũ∗1‖

[
∂ζu1ζ(−2i) + ∇‖ ·ũ1‖(2 + i)

]
+
[
ũ∗1‖

(
H0v

s
1ζ + ∇‖ ·vs

1‖

)
+ vs

1‖ ·∇‖ũ
∗
1‖

]
(2i) +

[
ũ1‖ ·∇‖(vs

1‖)
∗ − (vs

1ζ)
∗Qũ

]
(−2i) + ũ∗1‖v

s
1ζ

2− 2i

δ

}
.

(B.14)
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The perpendicular velocity

This section is an attempt to estimate the perpendicular velocity better. However, the
result of this section seem to be wrong.

To find the perpendicular component w2ζ we use the continuity equation,

∇·w2 = ∇‖ ·w2‖ + ∂ζw2ζ +H0w2ζ = − 1

ρ0
〈w1 ·∇ρ1〉 . (B.15)

Since the variations of w2 are much faster in the ζ direction than in the parallel direction
we have ∂ζw2ζ � H0w2ζ . So we can find w2ζ from integration,

w2ζ = −
∫

∇‖ ·w2‖ dζ − 1

ρ0

∫
〈w1 ·∇ρ1〉 dζ, (B.16)

and use w2ζ → 0 as ζ →∞. The first term involves integration of the ni-functions where
in each integration we use w2ζ → 0 as ζ →∞. Hence the first term is,

−
∫

∇‖ ·w2 dζ = −∇‖ ·
∫
w2 dζ

= −δ∇‖ ·
[

1

ω
Re

{
ũ1‖ ·∇‖ũ∗1‖

(
−5

8

)
+ ũ∗1‖

[
∂ζu1ζ

(
1 + i

2

)
+ ∇‖ ·ũ1‖

(
−4 + i

8

)]
+
[
ũ∗1‖

(
H0v

s
1ζ + ∇‖ ·vs

1‖

)
+ vs

1‖ ·∇‖ũ
∗
1‖

](−1− i

4

)
+
[
ũ1‖ ·∇‖(vs

1‖)
∗ − (vs

1ζ)
∗Qũ

](−1 + i

4

)
+ ũ∗1‖v

s
1ζ

(
i

2δ

)}]
(B.17a)

We note that the very last term here is much larger than all the others. So if there is a
perpendicular velocity vs

1ζ this term is completely dominating,

w2ζ = − 1

4ω
Re
{

2i∇‖ ·
[
ũ∗1‖v

s
1ζ

]}
on walls with vs

1ζ 6= 0. (B.18)

On walls with no perpendicular velocity we have from Eq. (5.6) that u1ζ �
∣∣u1‖

∣∣. To
proceed in a not too complicated way we need to assume that the parallel velocity of the
wall vs

1‖ is also small compared to u1‖. In that case we can evaluate Eq. (B.17) with
vs

1 ≈ 0 giving

−
∫

∇‖ ·w2 dζ = −δ∇‖ ·
[

1

ω
Re

{
u1‖ ·∇‖u∗1‖

(
−5

8

)
+ u∗1‖

[
∇‖ ·u1‖

(
−4 + i

8

)]}]
for vs

1 � u1‖

(B.19a)

We will now evaluate this in terms of the lowest derivatives as possible for numerical
reasons. From Eq. (5.6) we have ∇‖·u1‖ = −iksu1ζ . Each term is then found using index
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notation with i, j ∈ ξ, η

∇‖ ·Re
{

(u1‖ ·∇‖u∗1‖)
}

= ∂iRe {(uj∂ju∗i )} = Re {(∂iuj)(∂ju∗i ) + uj∂j∂iu
∗
i }

=
1

2

∣∣∇‖u1‖
∣∣2 − Re

{
u∗1‖ ·∇‖(iksu1ζ)

}
, (B.20a)

∇‖ ·(u∗1‖∇‖ ·u1‖) = −∂i[u∗i (iksu1ζ)] = |ksu1ζ |2 − [u∗1‖ ·∇‖(iksu1ζ)] (B.20b)

In total we have

−
∫

∇‖ ·w2 dζ = − δ
ω

(
−5

16

∣∣∇‖u1‖
∣∣2 − Re

{
−5 + (−4 + i)

8
[u∗1‖ ·∇‖(iksu1ζ)]

}
+ Re

{
−4 + i

8
|ksu1ζ |2

})
=

δ

4ω

(
5

4

∣∣∇‖u1‖
∣∣2 − Re

{
9− i

2
[u∗1‖ ·∇‖(iksu1ζ)]

}
+ 2 |ksu1ζ |2

)
,

(B.21a)

which is valid for no wall oscillations. Finally we evaluate the last term in Eq. (B.16)
again with no wall velocity,

− 1

ρ0

∫
〈w1 ·∇ρ1〉 dζ ≈ ω

c2
0

∫ 〈
(u1‖e

iksζ · (iu1‖)
〉

dζ = −k
2
0δ

2ω

〈
(1 + i)u1‖ · (iu1‖)

〉
= −k

2
0δ

4ω

∣∣u1‖
∣∣2 (B.22a)

Eq. (B.16) now becomes,

w2ζ |ζ=0 =
δ

4ω

[
5

4

∣∣∇‖u1‖
∣∣2 + 2 |ksu1ζ |2 − k2

0

∣∣u1‖
∣∣2 − Re

{
9− i

2
[u∗1‖ ·∇‖(iksu1ζ)]

}]
(B.23a)

Total limiting velocity

In conclusion we get at ζ = 0,

uLim
2‖ = −w2‖ −

1

ω
〈ivs ·∇v1〉‖ (B.24a)

= − 1

4ω
Re

{
ũ1‖ ·∇‖ũ∗1‖ + ũ∗1‖

[
∂ζu1ζ(−2i) + ∇‖ ·ũ1‖(2 + i)

]
+
[
ũ∗1‖

(
H0v

s
1ζ + ∇‖ ·vs

1‖

)
+ vs

1‖ ·∇‖ũ
∗
1‖

]
(2i) +

[
ũ1‖ ·∇‖(vs

1‖)
∗ − (vs

1ζ)
∗Qũ

]
(−2i)

+
(
vs

1‖ ·∇‖(v
s
1‖)
∗ + (vs

1ζ)
∗Qvs

)
(2i)

}
(B.24b)

= − 1

4ω
Re

{
ũ1‖ ·∇‖ũ∗1‖ + ũ∗1‖

[
∇‖ ·ũ1‖(2 + i) + (H0v

s
1ζ + ∇‖ ·vs

1‖ − ∂ζu1ζ)(2i)
]

+ (2i)
[
(vs

1ζ)
∗Qu + vs

1‖ ·∇‖u
∗
1‖ − u1‖ ·∇‖(vs

1‖)
∗ + vs

1‖ ·∇‖(v
s
1‖)
∗
]}

, (B.24c)
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where we have used that Re {iAB∗} = Re {−iA∗B}. The perpendicular component is,

uLim
2ζ = −w2ζ −

1

ω
〈(ivs) ·∇v1〉ζ (B.25a)

= − 1

4ω
Re
{

2i
(
∇‖ ·[(vs

1ζ)
∗ũ1‖] + ∇‖ ·

[
(vs

1ζ)
∗vs

1‖

]
− (vs

1ζ)
∗∇·u1

)}
(B.25b)

= − 1

4ω
Re
{

2i
(
u1‖ ·∇‖(vs

1ζ)
∗ + vs

1ζ∂ζu
∗
1ζ

)}
(B.25c)



Appendix C

Perpendicular surface oscillations

The last term in Eq. (6.30) arises due to the term ρ0

〈
v1ζ∂ζw1‖

〉
in the force density

ρ0∇ ·〈v1v1〉. The physical origin of this term can be seen by considering the amount of
x-momentum leaving an infinitesimal volume inside the boundary layer. Integrating over

Figure C.1: Sketch of parallel momentum flux in the boundary layer. x-momentum (green)
is transported out of the dashed Gaussian box by the perpendicular velocity v1z (blue).
For simplicity there are no variations in v1z and no parallel variations in v1x.

a small Gaussian box as in Fig. C.1 we find∮
(ρ0v1x)v1 · da ≈ ρ0 [v1x(z + dz)− v1x(z)] v1z dx dy = ρ0v1z∂zv1x dV, (C.1)

where we for simplicity have assumed no variations in v1z within the boundary layer and
no perpendicular variations in v1x. From this we see that

〈
(ρ0v1ζ)∂ζw1‖

〉
is the parallel

momentum flux density

is the parallel momentum density transported in the perpendicular direction by v1ζ .
This large transport of parallel momentum gives a large force density ρ0∇·(〈v1v1〉) close
to the surface and therefore a large w2‖(ζ = 0).
However, there is something not so physical here. How can we ensure no particle flux
through the surface if there is a large perpendicular velocity close to the surface? What
we forgot here is that the physical surface will move with vs

1ζ and so the velocity profile
(green arrows in Fig. C.1) in the boundary layer will move accordingly. We should instead
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think of the time averaged particle velocity given in Eq. (2.25),

vL
2 = v2 + 〈r1 ·∇v1〉 , (C.2)

where it turns out that the last term exactly cancels
〈
(ρ0v1ζ)∂ζw1‖

〉
(see the appendix

around Eq. (B.3b) for details).

We have here learned that the Eulerian streaming velocity can be very large over a per-
pendicularly oscillating surface. However the more physical velocity to consider in second
order is the particle velocity which is not so large. As we will see in the following when

evaluating the limiting velocity uLim
2 ≡ −w2(ζ = 0)−

〈
i

ω
v1 ·∇v1

〉
, the large part of w2‖

will be cancelled and will not affect the outer streaming uOut
2‖ . In full simulations however,

one can get a large v2‖ inside the boundary layer.



Appendix D

Implementation of curvilinear
coordinates in COMSOL

Imagine we have found the pressure field p1 from which we can calculate the acoustic
velocity field u1. We then now the components of u1 in our background frame (x, y, z).
The velocity along the surface basis vectors (tangent and normal vectors) are then simply,

u1ξ = tξ · u1 ≡ uX1, u1η = tη · u1 ≡ uY1, u1ζ = n · u1 ≡ uZ1. (D.1)

Where the font uX1 means a COMSOL definition. Similarly the spatial derivatives along
the new basis vectors are

∂ξ = tξ ·∇, ∂η = tη ·∇, ∂ζ = n ·∇, (D.2)

so e.g., with i, j = ξ, η, ζ and using the general basis vectors ei,

∂iu1j = (ei ·∇)(ej · u1) = ∂iej · u1 + ej · (ei ·∇)u1 (D.3)

where (i’th row, j’th column)

∂iej =

κξn 0 −κξtξ
0 κηn −κηtη
0 0 0

 . (D.4)

D.1 2D geometry (η, ζ)

We now consider the case of two background dimensions (y, z) and also two curvilinear
coordinates η, ζ which we will call (Y, Z) in COMSOL. Since the normal vector is usually
out of a domain in COMSOL we should use,

n ≡
Own definition︷ ︸︸ ︷

(Ny, Nz) =

COMSOL︷ ︸︸ ︷
(−ny,−nz), tη ≡

Own definition︷ ︸︸ ︷
(Ty, Tz) =

COMSOL︷ ︸︸ ︷
(Nz,−Ny) . (D.5)
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The direction of the tangent vector is not that important in 2D but will be in 3D and
hence we make the new definition with capital letters for consistency. Also the variable
curv in COMSOL gives the curvature which is positive in the direction of the (COMSOL)
normal vector. Hence this should also be redefined,

κη ≡
Own definition︷︸︸︷

KAP =

COMSOL︷ ︸︸ ︷
−curv . (D.6)

The derivatives are now obtained from Eqs. (D.3) and (D.4)

∂ηu1η = κηu1ζ + tη · (tη ·∇)u1

= uY1Y ≡ KAP ∗ uZ1 + Ty ∗ (Ty ∗ uy1y + Tz ∗ uy1z) + Tz ∗ (Ty ∗ uz1y + Tz ∗ uz1z)
(D.7a)

∂ηu1ζ = −κηu1η + n · (tη ·∇)u1

= uZ1Y ≡ −KAP ∗ uY1 + Ny ∗ (Ty ∗ uy1y + Tz ∗ uy1z) + Nz ∗ (Ty ∗ uz1y + Tz ∗ uz1z)
(D.7b)

∂ζu1η = tη · (n ·∇)u1

= uY1Z ≡ Ty ∗ (Ny ∗ uy1y + Nz ∗ uy1z) + Tz ∗ (Ny ∗ uz1y + Nz ∗ uz1z) (D.7c)

∂ζu1ζ = n · (n ·∇)u1

= uZ1Z ≡ Ny ∗ (Ny ∗ uy1y + Nz ∗ uy1z) + Nz ∗ (Ny ∗ uz1y + Nz ∗ uz1z). (D.7d)

D.2 3D geometry (ξ, η, ζ)

We now extend the 2D method such that the background coordinate system is (x, y, z)
and curvilinear coordinate system is (ξ, η, ζ) which we call (X,Y, Z) in COMSOL. In 3D it
is now important to choose the tangent vectors tξ and tη to point in the principal direction
of curvature. COMSOL is already equipped with the vectos (tcurv1x, tcurv1y, tcurv1z)
and (tcurv2x, tcurv2y, tcurv2z) where the first points in the direction of the smallest
principal curvature. Here positive principal curvature is to towards the normal direction.
These two vectors are mutually orthogonal and are both orthogonal to the normal vector
n. However we have to be sure that tξ,tη, n form a right-handed coordinate system. Hence
we first define n and tξ and then choose tη = n× tξ,

n ≡
Own definition︷ ︸︸ ︷
(Nx, Ny, Nz) =

COMSOL︷ ︸︸ ︷
(−nx,−ny,−nz), (D.8a)

tξ ≡ (TXx, TXy, TXz) = (tcurv1x, tcurv1y, tcurv1z), (D.8b)

tη ≡ (TYx, TYy, TYz) = (Ny ∗ TXz− Nz ∗ TXy, Nz ∗ TXx− Nx ∗ TXz, Nx ∗ TXy− Ny ∗ TXx).
(D.8c)

Similarly to 2D we define the curvatures,

κξ ≡ KAPX = −curv1, κη ≡ KAPY = −curv2. (D.9)
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The components of u in the curvilinear coordinates are now found from Eq. (D.1) and
derivatives from Eqs. (D.3) and (D.4). We write up the result here,

∂ξu1ξ = uX1X = tξ · (tξ ·∇)u1 + κξu1ζ , (D.10a)

∂ηu1ξ = uX1Y = tξ · (tη ·∇)u1, (D.10b)

∂ζu1ξ = uX1Z = tξ · (n ·∇)u1, (D.10c)

∂ξu1η = uY1X = tη · (tξ ·∇)u1, (D.10d)

∂ηu1η = uY1Y = tη · (tη ·∇)u1 + κηu1ζ , (D.10e)

∂ζu1η = uY1Z = tη · (n ·∇)u1, (D.10f)

∂ξu1ζ = uZ1X = n · (tξ ·∇)u1 − κξu1ξ, (D.10g)

∂ηu1ζ = uZ1Y = n · (tη ·∇)u1 − κηu1η, (D.10h)

∂ζu1ζ = uZ1Z = n · (n ·∇)u1, (D.10i)
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