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Abstract

We present a theoretical modelling framework for simulating the behaviour of micron sized
particles, suspended in a Newtonian fluid, undergoing microfluidic acoustophoresis. Within
this framework, we have mainly focused on two things. 1) Identifying the critical particle
concentrations, where particle-particle interactions, significantly changes the particle dynamics.
2) Characterising the particle dynamics above these levels, compared to that of dilute particle
suspensions.

This was achieved by deriving the particles as a continuous concentration field, and numeri-
cally implementing hydrodynamic interaction effects. At sufficiently high particle concentrations,
these interaction effects give rise to changes in the particle dynamics. Two types of interaction
mechanism are investigated. 1) The effect of increasing the effective suspension viscosity, and
Stokes drag forces on the particles, as particle concentration increases. 2) The effect of letting
the particles exert a force on the fluid, setting it in motion, which in turn changes the sus-
pension dynamics by fluid convection. It is found that the first type of interactions, is by far
the most dominant for purposes of particle focusing and up-concentration, within the geometry
and acoustic fields investigated in this work. As a general result, it is found that the particle
dynamics slows down, for increasing particle concentrations. Specifically, we find that the focus
time increases by 50 for 1% particle volume concentration, and 100% for 3 % particle volume,
where both are compared to the focus times of dilute suspensions. For different particle sizes,
very little differences in focusing times are observed..

We find that the second type of interactions (convective), are crucial for a general correct
description of the particle dynamics. Though minutely influential for the net particle transport,
for the geometry and acoustic fields investigated here.

In addition to the theoretical work, we present qualitative comparisons with experiments,
performed in collaboration with the Faculty of Engineering of Lund Technical University. Pre-
liminary comparisons reveal that the numerical model proposed, captures the overall behaviour
of dilute as well as concentrated particle suspensions, in microfluidic acoustophoresis. It is con-
cluded that further experimental and theoretical investigation, would allow model improvements
that would permit direct quantitative comparison between theory and experiment.
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Resumé

Vi præsenterer et teoretisk modelleringssystem til simulering af mikrometer størrelse partikler
opslæmmet i en Newtonsk væske, under p̊avirkining af mikrofluidisk akustoforese. Fokus har
været hovedsageligt været p̊a to punkter. 1) Identifikation af de kritiske koncentrationsniveauer,
hvor partikel-partikel vekselvirkninger betydeligt ændrer partikeldynamikken. 2) Karakterisere
denne dynamik over disse kritiske grænser, sammenlignet med dynamikken for fortyndede par-
tikel opslæmninger.

Dette blev opn̊aet ved at betragte partiklerne som et kontinuert koncentrationsfelt, og nu-
merisk implementere hydrodynamiske vekselvirkninger. Disse vekselvirkinger giver anledning til
ændringer i partikeldynamikken, ved tilstrækkelig høj partikelkoncentration. To typer af vek-
selvirkningsmekanismer blev udforsket. 1) Effekten af en forøgelse af den effektive viskositet af
hele mediet, samt en forøgelse af Stokes trækkræfterne p̊apartiklerne, n̊ar partikelkoncentratio-
nen gradvist øges. 2) Effekten af at lade partiklerne virke p̊avæsken med en kraft, hvilket sætter
væsken i bevægelse og ændrer partiklernes bevægelse grundet konvektion. Det konkluderes, at
den første mekanisme er den dominerende mht. opkoncentrering og fokusering af partiklerne, for
den specifikke geometri og akustiske felter, studeret i dette arbejde. Generelt finder vi at par-
tikeldynamikken g̊ar langsommere, for voksende partikelkoncentrationer. Mere specifikt, findes
det at partikelfokuseringstiden forøges med 50% ved 1% partikel volumen, og 100% ved 3%
partikel volumen, begge sammenlignet med fokustider for fortyndede partikelopslæmninger. For
forskelige partikelstørrelser, finder vi meget sm̊aforskelle i fokustider.

For den anden type vekselvirkninger (konvektion), finder vi at den er afgørende for en ko-
rrekt generel beskrivelse af partikeldynamikken, men at den har minimal indflydelse p̊anetto
transporten af partikler, for den, her studerede geometri samt specifikke akustiske felter.

Udover det teoretiske arbejde, præsenteres kvalitative sammenligner med eksperimenter, udført
i samarbejde med Lund Tekniske Højskole (LTH). Foreløbige sammenligner viser at den udarbe-
jdede numeriske model fanger essensen i partikeldynamikken, b̊ade for fortyndede s̊avel som højt
koncentrerede partikelopslæmninger i mikrofluidisk akustoforese. Det konkluderes at yderligere
eksperimenter og teoretiske undersøgelser vil muliggøre modelforbedringer, der vil tillade direkte
kvantitative sammenligninger mellem teori og eksperiment.
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List of symbols

Symbol Description Unit

2a Diameter of microparticle m
β Ratio between transverse and lateral wavelength 1
c Number concentration of particles. m−3

dp−p Average particle-particle distance in suspension m
D Particle diffusion constant m2 s−1

δ Viscous boundary layer thickness m
Eac Acoustic energy density J m−3

η Dynamic fluid viscosity Pa s
fext External body forces on fluid N m−3

Fac Acoustic radiation force on the particles N
Fd Stokes drag force N
Jp Particle number current density s−1 m−2

k Wave number of soundwave m−1

κ0 Fluid compressibility Pa−1

κp Particle compressibility Pa−1

mp Particle mass kg
N Total number of microparticles 1
Ncen Number of particles in the innermost 20% of the channel 1
p Fluid pressure Pa
rp Particle position m
ρ Mass density of fluid kg m−3

ρp Mass density of particles kg m−3

σ Cauchy Stress tensor Pa
up Microparticle velocity m s−1

s Logarithm of the particle number concentration 1
v Fluid velocity m s−1

vs Isentropic speed of sound in fluid m s−1

Vp microparticle volume m3

W Width of the microchannel m
φ Particle volume concentration 1
φ0 Initial particle volume concentration 1
Φ Acoustic contrast factor 1
χ Relative particle mobility 1
ψ Relative effective medium viscosity 1
ω Acoustic actuation angular frequency s−1

Continued on next page.
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Symbol Description Unit

i The imaginary unit
e Eulers number ln(e) = 1

∂Ω Boundary of computation domain m
Ω Computation domain m2

r General position vector m
(x, y, z) Cartesian co-ordinates m
(r, θ, φ) Spherical co-ordinates m
e Unit vector 1
n Normal unit vector 1

∂x Partial x-derivative m−1

∂y Partial y-derivative m−1

∂z Partial z-derivative m−1

∂t Partial time derivative s−1

dt Time derivative s−1

∇ Nabla operator m−1

∇2 Scalar Laplace operator m−2

〈�〉 Time average of �
|�| Absolute value of �



List of Figures

1.1 Principal sketch of acoustofluidic setup . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Sketch of Rayleigh-Schlichting streaming. . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Principal sketch of the cell model by Happel and Brenner . . . . . . . . . . . . . 12

2.3 Plots of relative mobility χ(φ) and the relative effective medium viscosity ψ(φ) . 14

3.1 Sketch of the acoustofluidic channel . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Sketch of the two-dimensional computational domain Ω . . . . . . . . . . . . . . 19

3.3 Vector plots of the acoustic force field Fac . . . . . . . . . . . . . . . . . . . . . . 22

3.4 The acoustofluidic channel in the xy plane, showing forces on particles . . . . . . 24

3.5 Plot of the particle-particle distance dp−p, as a function of volume conc. φ. . . . 27

4.1 Discretezation of the computation domain Ω in COMSOL . . . . . . . . . . . . . 36

4.2 Two dimensional domain Ω used in the COMSOL model . . . . . . . . . . . . . . 39

4.3 Mesh convergence plots of the concentration field s, and the fluid velocity v. . . . 40

4.4 Mesh convergence plot of the pressure p, and validity regimes of model . . . . . . 41

5.1 Sketch of top-view of a slice of the micro-channel . . . . . . . . . . . . . . . . . . 44

5.2 Plot of the volume concentration φ(y, t) at x = 1
2W/β . . . . . . . . . . . . . . . 48

5.3 Area plot of the volume conc. φ, for a two-dim. analytical model . . . . . . . . . 48

5.4 Area plot of the volume conc. φ, for a two-dim. numerical model . . . . . . . . . 49

5.5 (a) Sketch defining Ncen(t). (b) Plots of Ncen(t)/N . . . . . . . . . . . . . . . . . . 49

6.1 Sketch defining the parameter regime of interest, of 2a and φ0 . . . . . . . . . . . 51

6.2 Plots of the fluid pressure p at t = t∗ for four parameter sets of {φ0, 2a} . . . . . 52

6.3 Plots of the fluid velocity v at t = t∗ for four parameter sets of {φ0, 2a} . . . . . 53

6.4 Plots of the volume concentration φ at t = t∗ for four parameter sets of {φ0, 2a} 55

6.5 Time development of volume concentration φ and fluid velocity v over time . . . 56

6.6 Plots of the Ncen(t)/N for four parameter sets of {φ0, 2a} . . . . . . . . . . . . . 58

6.7 Simulation of five particle trajectories for times between 0 < t < 2t∗ . . . . . . . 59

6.8 Data collapse of all 16 curves in Fig. 6.6, using new timescale τ∗ . . . . . . . . . 61

6.9 Contour plot of the particle focusing time tfoc for various parameter sets {φ0, 2a} 62

7.1 Raw image showing polystyrene particles being focused to the pressure node . . . 66

ix



7.2 Figures outlining experimental calibration of the acoustic energy density Eac . . 67

7.3 Image series showing the particle focusing for dilute versus concentrated particle
suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4 Sketch for discussing the no-normal fluid flow boundary condition in the Cell
model by Happel and Brenner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
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Chapter 1

Introduction and motivation

1.1 Lab-on-a-chip systems

Lab-on-a-Chip systems (LoC) is a technology that was founded in the early 1990s, and has since
gained much attention. For an introduction to LoC we refer the reader to the following introduc-
tory textbooks [1, 2, 3, 4, 5]. The basic idea in LoC systems, is to downscale and automate, total
chemical and biological analysis, on one single chip, which has numerous advantages. Conven-
tionally, chemical and biological analysis takes place in centralised lab with skilled personnel and
specialised machinery. Compared to this, LoC technology offers fast analysis, with reduces sam-
ple and reagent volumes. This is valuable, especially if sample supply are limited and reagents
are costly. Furthermore, the operation of LoC does not necessarily require any special training
or education, as it is aimed to be fully automated in the developed commercialised state. This is
advantageous for instance in medical tests, where analysis can be performed on-site, with quick
feedback to the patients. The downscaling in size allows also for high portability. Examples of
this are the monitoring of ammonium in wastewater, or the monitoring of glucose levels in blood
for diabetes patients. The possibility of using microfabrication techniques, developed in the
MEMS in the 1960s, allows for highly reproducible large scale batch production of LoC devices,
potentially reducing costs compared to competing macroscale technologies.

The working principle idea behind LoC, is to utilise the laminar flow structures of sub-
millimetre fluidic channels, for well controlled transport, reaction and mixing of various chemical
and biological reagents. This is possible because the small length scales involved, very often
makes viscous effects dominant over inertial effects, making the fluid dynamics enter the low
Reynolds number regime Re < 1. In this regime, very little turbulence exists in the fluid, yielding
the predictable laminar flows. This study of fluid behaviour and transport on the microscale, is
referred to as Microfluidics.

One of the challenges often encountered in LoC systems, is the handling, separation and ma-
nipulation of biological particles such as cells and bacteria. To meet these challenges several
techniques have been developed, such as dielectrophoresis, magnetophoresis and optical ma-
nipulation [6]. In e.g. magnetophoresis, a small magnetic tag is chemicially attached to the
bioparticle of interest, allowing manipulation by applying an external magnetic field. One of
the strong emerging competitors within manipulation and handling is that of acoustophoresis,
which is the manipulation of particles by the use of sound.



Chapter 1. Introduction and motivation

Figure 1.1: Sketch of a typical acoustofluidic setup, where the typical length of the channel is
of the order of a few centimeters. Liquid and biological particles of interest are allowed access
through the fluid in- and outlet connections. A piezoelectric transducer vibrates the system,
typically at MHz frequency, building up a resonant acoustic field in liquid. By scattering of
sound waves, the particles feel an acoustic radiation force. This force can cause the particles
to migrate by sound (acoustophoresis), towards either the center or side outlets . The figure is
adapted from [10].

1.2 Acoustofluidics

Combining acoustophoresis with microfluidics has coined the term acostofluidics. In a series of
tutorial papers, the Journal Lab on a Chip published a number articles on acoustofluidics from
2011-2013 [7], several of which has been used in this thesis work. In acoustophoresis particles
migrate due to the scattering of incoming sound waves, transfering momentum to the particles.
There are several advantages of using acoustophoresis for separating and manipulating biological
particles. Some of them are mentioned in the tutorial paper by Lenshof et al. [8]. 1) It is label
free, compared to fluorescent or magnetic tagging, where a label is chemically attached. This
could for instance be of interest in medical tests, where you prefer no chemicals to have interacted
with the sample before analysis. 2) Acoustophoresis has a high potential throughput ∼1 L/h,
compared to e.g. magnetophoresis which is of the order ∼0.01 L/h, and 3) it is harm free for
the particles in up-concentration processes, compared to e.g. centrifugation, where particles
are subjected to high stresses [9]. The only requirement for using acoustophoresis, is having a
difference in acoustic properties between the particle and the suspending liquid medium.

In Fig. 1.1 a typical acoustofludic setup is sketched.

A microfluidic channel is attached to in- and outlet channels, giving access to the fluid and
particles. A glass lid is typically attached, allowing for direct visual inspection. The chip is
mounted to a piezoelectric transducer that vibrates the channel, typically in the MHz regime.
The frequency is chosen, such that a resonant acoustic field, builds up in the liquid. By scattering
of incoming ultrasound waves, the particles feel an acoustic radiation force [11]. This force can
cause the particles to migrate in the transverse direction, across the width of the channel. This
allows for manipulating particles to be directed towards either the center, or the side outlets,
by simple adjustment of the piezoelectric actuation. From this simple principle, increasingly
advanced devices and techniques are developed. As an example, it was recently demonstrated
how more advanced particle manipulation could be achieved using an array of 30 local and
individually controlled transducers [12].
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1.3. Main goal for this project

Among the applications found for particle manipulation is the removal of a specific type
of biological particle away from some medium, e.g. the removal of E. Coli bacteria from a
suspension with red blood cells [13]. f interest in the acoustofluidic applications, is to separate
biological particles directly from biological fluids. One example of this, is the separation of fatty
lipids directly from raw milk [14, 10], used for quality control of food products in the dairy
industry. Another example is the removal of lipids from blood [15, 16], which is to prevent lipid
microembolies in the brain capillaries after cardiac surgery.

One of the challenges in working directly with biofluids such as blood, is that a large fraction
of the suspension volume consist of particles. In human blood approximately 45% of the volume
consists of red blood cells, white blood cells and blood platelets [16]. Petersson et al. [16] reports
a lipid separation percentage of 80%, with a red blood cell recovery of 70% in bovine blood. This
is compared to a study by the same research group by Nordin and Laurell [17], where prostate
cancer cells and red blood cells are upconcentrated from diluted suspensions. In the case of
dilute suspensions, Nordin and Laurell [17] measure the recovery percentage of red blood cells
to be 97%, compared to the recovery percentage of 70% when using undiluted blood.

In this light, it is clear that directly using biofluid suspensions in acoustofluidic systems poses
technological challenges due to the high fractional volume of suspended particles. For suspen-
sions with the mentioned concentration levels, we suspect the observed changes in behaviour
to be the result of different particle-particle interactions taking place in the suspension, thus
changing the dynamics. This issue is to the authors knowledge not yet resolved.

1.3 Main goal for this project

In this thesis work we take the first steps in meeting the above mentioned technological chal-
lenge. We do this by a theoretical investigation of how the behaviour of a particle suspension
changes, when the fractional particle volume gradually increases. In biological fluid suspensions,
such as blood, there exist a wealth of different types of particles, each having different me-
chanical properties and various non-trivial shapes. Therefore, in this first investigation we will
focus our attention to non-biological suspensions, consisting of hard monodisperse spheres in a
Newtonian fluid. With this starting point, we will make a series of simplifications and imple-
ment particle-particle interaction mechanisms, in simulations of particle suspensions undergoing
acoustophoresis. Within this framework we aim to answer two main question: 1) At what criti-
cal concentration levels do the acoustophoretic particle behaviour begin to change significantly,
and 2) what characterises the acoustophoretic particle behaviour above this critical level.

1.4 Thesis outline

Chapter 2 - Theory

The fundamental governing equations are outlined, and first-order perturbation theory is em-
ployed to derive the acoustic fields in the liquid, and we briefly discuss two second-order acoustic
effects. Next we review a theoretical model for the enhanced effective medium viscosity for the
suspension and Stokes drag force felt by the particles, both models being functions of particle
concentration.
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Chapter 1. Introduction and motivation

Chapter 3 - Model system

We build the theoretical modelling framework. First we define the outer circumstances: System
geometry, external actuation, materials, etc. From this we derive arguments, assumptions and
approximations from which we make a series of physically reasonable simplifications, allowing
the formulation of solvable governing equations with corresponding boundary conditions. As we
go along, we physically motivate the implementation of several hydrodynamic particle-particle
interaction mechanisms, implementing them step by step.

Chapter 4 - Numerical implementation in COMSOL

The basic principle of the finite element method is outlined, which is a numerical method of
solving differential equations. We implement the our model framework in the finite element
method using the commercially available software COMSOL. The COMSOL model is explained
and numerical convergence analysis is performed.

Chapter 5 - Results - Non-interacting particle dynamics

Result are presented for particle suspensions in the non-interacting regime, and compared with
experimentally validated results. Moreover, we derive and compare analytical approximate
models with the numerical framework presented in chapter 4.

Chapter 6 - Results - interacting particle dynamics

Results are presented for the interacting particle dynamics. The fields of fluid pressure, veloc-
ity and particle concentration are plotted and compared for interacting versus non-interacting
regimes. We investigate the transient dynamics of the particle focusing and corresponding fluid
velocity field, and investigate the impact of different interaction effects on the particle focusing.
Lastly we identify critical concentration values, for which hydrodynamic particle interaction are
significant.

Chapter 7 - Discussion

We present qualitative comparisons with experimental data are discuss these in relation to
the presented model framework. We discuss the implications of the results presented in the
previous chapter, and discuss weak and strong points of the model proposed. On the basis of
the discussion, we suggest ideas for further work.

Chapter 8 - Conclusion and outlook

4



Chapter 2

Theory

In this thesis, we aim to derive and understand the dynamics of micrometre sized particles sus-
pended in a Newtonian liquid in the limit of both dilute and concentrated particle concentrations,
when subjected to ultrasound waves.

First, we present the governing equations for, and then, using first-order perturbation theory,
we will derive the acoustic fields. Next, we discuss some relevant second-order effects that arise
from products of the first-order fields. Primarily, the acoustic radiation force will be of interest,
since it is the driving force behind the complex dynamics of the microparticles.

Lastly, we review a model describing how the presence of many suspended particles affect the
dynamics of single particles, through enhanced effective medium viscosity and decreased particle
mobility.

2.1 Governing equations

In the simple cases where the suspended particles are non-interacting, and the fluid remains at
rest, the governing equation is simply Newtons second law for a single particle

mpd2
t rp = Fext , (2.1)

where mp is the mass of the particle, rp is the position of the particle and Fext is the sum of
external forces acting on the particle.

To describe the dynamics of many particles, we employ the continuum limit where the density
of particles are given as number concentration field c(r, t). By requiring the total number of
particles to be conserved, c must obey a continuity equation

∂tc = −∇ · Jp , (2.2)

where is Jp is the particle current density, to be treated in detail later. The microparticle
suspension is governed by the Navier-Stokes equation for the liquid, and the continuity equation
for the liquid Eq. (2.3b) and the particles Eq. (2.2). For a compressible Newtonian fluid, the
Navier-Stokes Eq. and the mass continuity equation are respectively [5, 18],

ρ(∂t + v ·∇)v = ∇ · σ + fext

= −∇p+ η∇2v + βviscη∇(∇ · v) + fext , (2.3a)

∂tρ = −∇ · (ρv) , (2.3b)

5



Chapter 2. Theory

where ρ is the mass density, v is the fluid velocity, σ is the Cauchy stress tensor, p is the
pressure, η is the viscosity and βvisc is the dimensionless viscosity ratio relating compressional
and shear stress, which is approximately 3.0 for water [19]. fext is external force densities acting
on the liquid. In the description of the sound wave propagation in the liquid, it is useful to
relate pressure and mass density. For this, we use the thermodynamic equation of state between
pressure and mass density

p = p(ρ) . (2.4)

2.2 Acoustofluidic theory

To find the ultrasonic perturbations to the pressure and velocity we first consider only the fluid
and employ basic acoustic perturbation theory. From this, we derive a linear wave equation for
the first-order perturbation pressure, and discuss some of the second order effects. Of particular
interest, is the acoustic radiation force, which stems from scattering of sound waves on the
particles.

The theoretical approach is primarily inspired by Bruus [20], partly by Barnkob [21] and
Muller [22], but also by the classic text book by Landau and Lifshitz [23].

The governing equations (2.3a), (2.3b) and (2.2), is a set of second order, non-linear partial
differential equations, which are notoriously hard to solve. However, since soundwaves in a
fluid are oscillatory motions with small amplitude around equilibrium values [23], we can use
perturbation theory.

In perturbation theory, the idea is to expand a physical quantity of interest f , in a small
region close to a known solution f0

f = f0 + α f1 + α2f2 + ... . (2.5)

The fields f1, f2, ..., act as perturbations to the known solution f0, and α is a dimensionless
perturbation parameter. This parameter α can then be varied slightly away from 0 to study
how the quantity of interest f behaves when being increasingly perturbed from its known state
f0. Convergence of the full perturbation scheme, Eq. (2.5), may be obtained if we require the
perturbation parameter α is very small α� 1.

We consider a quiescent fluid, at thermal equilibrium containing no particles, as the known
state f0. We expand the fields of fluid velocity, mass density and pressure, in a perturbation
scheme

v = 0 +v1 + v2+... , (2.6a)

ρ = ρ0+ρ1 + ρ2+... , (2.6b)

p = p0+p1 + p2+... . (2.6c)

Here, the small perturbation parameter α is implicitly included in the fields, such that the
amplitude of the perturbation fields themselves decrease rapidly with increasing order.

Physically, the first-order fields describe the acoustic sound wave propagation. Knowing that
water to a good approximation can be considered incompressible, it reasonable to expect that
the mass density perturbation ≈ ρ1 +ρ2 is very small compared to the unperturbed mass density
of water ρ0. For the pressure we find that a proportionality exists between pressure p1 and mass
density ρ1. This implies that higher order fields of pressure are automatically smaller than p0

if the perturbations in mass density are small. For the fluid velocity, we note that the liquid
is quiescent in the unperturbed state. Therefore, the higher order velocity fields cannot be
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2.2. Acoustofluidic theory

compared to the unperturbed fluid velocity. The correct characteristic fluid velocity to compare
to the higher order velocity fields will turn out to be the isentropic speed of sound vs in the
liquid.

2.2.1 First-order acoustic fields

To find the first-order fields, we start by performing an isentropic Taylor expansion of the
equation of state (2.4) around the equilibrium mass density ρ0, to first order

p(ρ) ' p(ρ0) +

(
∂p

∂ρ

)
S

∣∣∣∣
ρ=ρ0

ρ1 = p0 + v2
s ρ1 , (2.7)

where the subscript S denotes constant entropy and v2
s has been introduced as the derivative

of the pressure with respect to mass density at ρ0. Later, we will recognise vs as the isentropic
speed of sound. From Eq. (2.7) we note the direct relation between the first-order perturbations
of pressure and mass density p1 = v2

s ρ1, allowing us to substitute terms of the first-order mass
density. Doing this, and inserting the perturbation scheme Eq. (2.6) in the governing equations
(2.3), we find to first order,

ρ0∂tv1 = −∇p1 + η∇2v1 + βviscη∇(∇ · v1) , (2.8a)

1

v2
s

∂tp1 = −ρ0∇ · v1 . (2.8b)

We take time derivative of the mass continuity equation (2.8b), followed by insertion of the time
derivative of the fluid velocity from Eq. (2.8a),

∂2
t ρ1 = v2

s∇2ρ1 − (1 + βvisc)η∇2(∇ · v1) . (2.9)

To arrive at an equation for the pressure, we insert the divergence of the fluid velocity from
Eq. (2.8b) into Eq. (2.9),

1

v2
s

∂2
t p1 =

(
1 +

(1 + βvisc)η

ρ0v2
s

∂t

)
∇2p1 . (2.10)

In the inviscid case (η = 0), we recover the wave equation for the pressure, with a propagation
velocity of vs. Consequently, the perturbation pressure p1 is readily interpreted as a sound wave,
propagating with the isentropic speed of sound.

The fluid is mechanically actuated by the channel walls, which is attached to a piezo-electric
element, driven by a AC voltage. The applied voltage is time-harmonic with frequency f , and
angular frequency ω = 2πf . The first-order fields are therefore also time-harmonic,

v1(r, t) = v1(r) e−iωt , (2.11a)

ρ1(r, t) = ρ1(r) e−iωt , (2.11b)

p1(r, t) = p1(r) e−iωt . (2.11c)

Given this, all time derivatives ∂t, can be replaced by a factor of −iω in Eq. (2.10), and we
define a wavenumber as k ≡ ω/vs

∇2p1 = − 1

1− iγ
k2 p1 , (2.12a)

γ =
(1 + βvisc)ηω

ρ0v2
s

. (2.12b)
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Chapter 2. Theory

The dimensionless quantity γ represents the viscous losses in the propagating sound wave. Op-
erating the acoustofluidic device in the ultrasound regime, corresponds to frequencies in the
MHz regime (2 MHz). Using this frequency, and parameters for water at ambient conditions,
(see table A.1 in appendix A) one finds that γ ≈ 10−5 � 1. This implies that the imaginary
part of the pressure equation (2.12a) to a good approximation can be neglected. The physical
interpretation is that ultrasonic waves in the MHz regime, to a good approximation propagate in
bulk water without any losses. In this inviscid approximation (η = 0), we note how the structure
of the pressure equation (2.12a) reduces to a Helmholtz equation

∇2p1 = −k2 p1 for η = 0 . (2.13)

From Eq. (2.8a), we also note that neglecting viscosity and applying the time derivative ∂t →
−iω, leads to a simple relation between first-order fluid velocity and pressure

v1 = −i
1

ρ0ω
∇p1 for η = 0 . (2.14)

By neglecting effects of viscosity in the propagation of sound waves in the fluid, the relation
between pressure and fluid velocity makes Eq. (2.13) the single governing partial differential
equation for the acoustic fields (pressure and velocity). In chapter 3, we will define the geometry
and relevant boundary conditions, allowing for determination of the explicit acoustic field. We
mention that no account will be taken in this thesis for the varying temperature field that also
will be present in the fluid [24]. A full thermo-acoustofluidic account is not an aim of this thesis,
and we refer the reader to the work by Muller et al. [24, 25].

2.2.2 Second-order acoustic effects

Since all first-order fields are a direct response from the actuating ultrasound, all first-order
fields inherit the harmonic time dependence from Eq. (2.11). For one full period τ = 2π/ω, we
define the time-average of an arbitrary field X(t) as

〈X〉 ≡ 1

τ

τ∫
0

dtX(t) . (2.15)

Because the average value of a harmonic function is zero, the time-average of any first-order
field, is zero. Physically this result can be understood in the following way. Because we typically
operate the ultrasound at MHz frequency, and the first-order oscillations are tiny, observing the
first-order fields over the course of a few tens of µs or longer, will look virtually as if nothing
is happening. However, if the perturbation scheme of Eq. (2.8), is derived to second order,
products of first-order fields contribute, as their time-averaged values are non-zero, in analogy
with e.g.

〈
cos2(ωt)

〉
= 1/2 . In the next subsection we discuss two second-order effects that

have non-zero time-averaged values, acoustic streaming and acoustic radiation force.

Acoustic streaming

One important second-order effect, arising from the acoustofluidic perturbation scheme to second-
order is acoustic streaming. Acoustic streaming arise when including viscous stresses near a rigid
wall, where no-slip boundary conditions are imposed [23]. As the velocity of the fluid has to
go to zero on the wall, large shear stresses build up close to the wall in the so-called acoustic
boundary layer. This is due to the driving oscillatory motion of the bulk fluid. The thickness
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2.2. Acoustofluidic theory

Figure 2.1: Sketch of Rayleigh-Schlichting streaming between infinite parallel plates and height
H. A bulk sound pressure wave p1 (magenta) is established in the bulk fluid (light blue). The
sound wave gives rise to streaming rolls v2 (yellow) in the viscous boundary layer (dark blue) of
thickness δ (not drawn to scale). This flow roll will in turn produce bulk flow rolls v2 (black)
rotating in the opposite direction. The figure is adapted from [24].

δ of this boundary layer, depends only on the fluid viscosity η, mass density ρ and actuation
frequency ω [23, 24]

δ =

√
2η

ωρ
' 0.4 µm , (2.16)

where the value is calculated for water at ambient temperature, actuated at a frequency of
f = 2 MHz. The viscous boundary layer stresses can give rise to additional velocity fields, which
in time-average are non-zero. These fields are called the acoustic streaming fields, or Rayleigh-
Schlichting streaming [26, 27], and are found by calculating the second-order fluid velocity field
v2 [24].

One example is for a bulk wave of wavelength λ = 2π/k between infinite parallel plates,
separated by a distance H, see figure 2.1. In the limit δ � H � λ, Rayleigh and Schlichting
showed that squeezed streaming rolls would occur within the boundary layer with height δ and
width λ/4 � δ, denoted by yellow in Fig. 2.1. Because these flow rolls are confined to the
narrow viscous boundary layers, one can view the top of the flow roll facing the bulk fluid as an
effective boundary condition for the bulk streaming velocity vbulk

2 . In this sense, the horizontal
velocity of this effective boundary condition, denoted by the yellow arrows, acts as a ’conveyor
belt’ that in turn drives a new flow roll in the bulk of the fluid (black), see Fig. 2.1. The effective
boundary condition is found to be [23]

vx,2(x) =
3

8

v2
1

vs
sin(2kx) , (2.17)

where v1 is the amplitude of the first-order oscillating velocity field. We will take the effective
boundary condition velocity as a the typical streaming velocity vstr = vx,2. Muller et al. [24] show
in a numerical study that streamin0g effects are very dependent upon the detailed geometry,
and the imposed boundary conditions. It is therefore difficult to make quantitative predictions
about the streaming field for an arbitrary geometry.
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Chapter 2. Theory

Acoustic radiation force

Acoustic radiation force is another second order acoustic effect. This effect is of great interest
in the scope of this thesis, as it is the driving mechanism for the dynamics of the suspended
particles. The acoustic radiation force on a particle stems from the scattering of an incoming
sound wave on the particle, thus transferring momentum from the wave to the particle. In the
limit of weak scatterers, where the scattered field amplitude, are much smaller than the incoming
field amplitude, closed form expressions can be found.

We assume a single compressible spherical particle of diameter 2a is suspended in an un-
bounded liquid. The particle and the liquid has mass density ρp and ρ0, respectively, and com-
pressibility κp and κ0. A standing plane sound wave with wavelength λ = 2π/k is established
in the liquid, and thereby imposed on the particle.

To make analytical headway, we go to the Rayleigh limit, in which the particle is assumed
to have a radius much smaller than the wavelength of the acoustic wave a � λ. Gor’kov [28]
considers such a system for an arbitrary acoustic field {v1, p1} in the limit of an inviscid fluid.
By considering the average flux of momentum through an arbitrary closed surface, Gor’kov
shows how a non-zero time average force is exerted on the particle by the fluid. Since we are in
the inviscid limit, Gor’kov finds that acoustic radiation force on the particle can be expressed
in terms of an acoustic energy potential [28]

Uac = Vp

[
f1

2
κ0

〈
p2

1

〉
− 3f2

4
ρ0

〈∣∣v2
1

∣∣〉] , (2.18)

where Vp is the particle volume, and f1 and f2 are the mono- and dipole-scattering coefficients,
respectively. The coefficients stem from the multipole expansions of the scattered wave, and
depend only on the material parameters of the particle and the liquid. Because we are in
Rayleigh limit, higher order scattering terms, can be omitted [29]. From Eq. (2.18), the time-
averaged acoustic radiation force is simply found by taking the gradient

Fac = −∇Uac . (2.19)

In analogy with Fig. 2.1, a viscous boundary layer also forms around the spherical particle. This
implies that at distances . δ from to the surface of the particle, viscosity will affect the flow
around the sphere and modify the result by Gor’kov in inviscid limit of Eq. (2.18).

Viscous effects was taken into account by Settnes and Bruus [29]. For the case of standing
waves, they found that the viscous corrections only enters in the scattering coefficients f2, and
introduces and imaginary f2 = fRe

2 + f Im
2 . Settnes and Bruus finds [29]

f1 = 1−
κp

κ0

, fRe
2 = Re

2 [1− Γ(δ/a)]

(
ρp

ρ0

− 1

)
2
ρp

ρ0

+ 1− 3Γ(δ/a)

 , (2.20a)

with Γ(δ/a) = −3

2
Re

[
1 + i

(
1 +

δ

a

)]
δ

a
, (2.20b)

where for Γ = 0 we recover the inviscid result by Gor’kov [28]. Furthermore, we note from
Eq. (2.20b) that the viscous corrections are most pronounced for small particles δ ∼ a, and that
the compressibilities enter only in the monopole coefficient f1. The physical interpretation is
that for the monopole term to give rise to a force, a difference in compressibility between particle
and fluid must exist κp 6= κ0. The larger the contrast, the larger the force. Similarly, we note

that the mass density and viscosity enters only in the dipole coefficient fRe
2 . Analogous to the
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2.3. Effective viscosity and particle mobility

relative compressibility in f1 we see that the larger the difference in mass density, the larger is
the radiation force arising from the dipole term. It should be mentioned that no account has
been taken in this treatment to include effects of thermal conductivity.

With the equations (2.18)-(2.20b), only explicit expressions for v1 and p1 at the location
of the particle, are needed to calculate the acoustic radiation force Fac on a spherical particle
subjected to a standing wave in the Rayleigh limit.

2.3 Effective viscosity and particle mobility

In the remaining part of this chapter, we leave the acoustofluidic theory, and return to the
regime of low Reynolds number flows. In this context, we consider the acoustic fields v1 and
p1, as ’background fields’ that only exists to supply the acoustic radiation force Fac, but does
otherwise not interacting with particle and fluid dynamics. In what follows, we investigate
some of the changes in the viscous hydrodynamic properties that arise in concentrated particle
suspensions.

When a number of particles is suspended in a liquid, it is well known in hydrodynamics that the
viscosity of the suspension changes [18, 30]. This phenomenon is well studied in sedimentation
experiments [31] where a number of suspended particles, settles due to gravity at the bottom
of the container over time. Sedimentation experiments are popular in this context, because
they allow for simple ways to estimate the local particle concentration and sedimentation rate
as function of starting concentration. Furthermore, as the fluid conveniently remains mostly
at rest during the sedimentation, the theoretical treatment of the suspended particles can be
greatly simplified.

Two different aspects of this phenomenon arise in particle suspensions. The first, called the
mobility aspect affects individual particles, due to the nearby presence of other particles. More
restrictive boundary conditions are imposed in the vicinity of the particle to represent the no-
slip boundaries of the neighbouring particles. This introduces additional viscous stresses in the
liquid, resulting in an altered drag force on the single particle. The second, called the effective
medium viscosity aspect, is that the effective viscosity of the suspension as a whole, changes
with the particle concentration, again due to additional viscous stresses.

The theoretical treatment of viscosity changes, depends highly upon for which concentration
regime a solution is sought. Moreover, for a given regime of concentrations, many different
approaches exists, using different model assumptions and results in different viscosity modifica-
tions. Some models are derived empirically, semi-empirically or analytically [30]. Therefore, no
single method is commonly accepted as the best one in literature. Due to this, it is important
to bear in mind that these models are estimates at best, as to how the viscosity changes as
function of particle concentration. As we focus on highly concentrated systems (φ > 0.01), we
will here review one of the models describing viscosity changes in highly concentrated regimes.
The model of choice is called the cell model or the free surface model, and is developed by Happel
and Brenner in [18] (see section 8-4 and 9-4). Before separately dealing with these two aspects,
we will make some general remarks about the so-called cell model.

2.3.1 The cell model

In the cell model (also called the free surface model), one assumes that the particles and the
host liquid can be approximated by identical unit cells that is repeated throughout the liquid
container. For simplicity, we assume the cell to be spherical, consisting of two concentric spheres,
with inner radius a, representing the particle, and outer radius b, representing the neighbouring
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Chapter 2. Theory

Figure 2.2: Principal sketch of the cell model by Happel and Brenner [18, 32]. Inner particle
radius a, where a no-slip boundary conditions between particle and liquid is imposed. Outer
cell boundary radius b, where no normal flow and no tangential stress boundary conditions are
imposed.

cells. This is sketched in Fig. 2.2.

The boundary of the cell at r = b is assumed to be frictionless, thus the entire disturbance due
to the particle is confined to the fluid within the cell. Relating the particle volume concentration
φ to the volumes of the cell and the particle we find

φ =
Vp

Vcell
=
(a
b

)3
. (2.21)

Assuming a steady creeping flow, the governing equations (2.3a) and (2.3b) reduce to the Stokes
Eq., and the incompressible mass continuity equation

η∇2v = ∇p , (2.22a)

∇ · v = 0 . (2.22b)

The spherical particle centred in origo with radius a, gives rise to a no-slip boundary condition.
Assuming that the particle moves with velocity up, the boundary condition becomes

v = up for r = a . (2.23)

The cell boundary was assumed frictionless, implying that tangential stresses vanish

σθr= η

(
1

r
∂θvr + ∂rvθ −

vθ
r

)
= 0

σφr= η

(
1

r sin θ
∂φvr + ∂rvφ −

vφ
r

)
= 0

 for r = b , (2.24)

where (r, θ, φ) are the spherical co-ordinates, and σ is the Cauchy stress tensor, following the
convention given in [33]. Lastly, we require that no fluid enters or leaves the cell

vr = 0 for r = b . (2.25)

In the light of this boundary condition, we consider for a moment the physical correctness of
this demand on the fluid velocity. As an example we imagine pressing some fluid through a fixed
assemblage of spheres. In such an experiment, we we reason that fluid must enter and leave
the cells in some way, thereby violating the boundary condition in Eq. (2.25). This physical
inconsistency of the chosen boundary condition for the cell model will be discussed at a later
point in Section 7.3.2.
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2.3. Effective viscosity and particle mobility

Solving the Stokes equation in spherical co-ordinates

To solve this problem in spherical co-ordinates, we employ Lambs general solution to the creeping
flow problem [34]

v =
∞∑

n=−∞

(
∇× (rfn) + ∇gn +

n+ 3

2η(n+ 1)(2n+ 3)
r2∇pn −

n

η(n+ 1)(2n+ 3)
rpn

)
. (2.26a)

p =

∞∑
n=−∞

pn , (2.26b)

where fn, gn and pn, are solid spherical harmonic functions. To find the solution to the particular
flow problems, boundary conditions are later used to determine the various coefficients of the
harmonic terms. For more details, see appendix B.

2.3.2 Change of particle mobility

In the first aspect we look at the change of the dynamics of the single particle. The question of
interest is how the drag force on the particle Fd deviates from the usual Stokes drag force. The
particle moves with velocity up − v relative to the fluid, and the drag force exerted on it from
liquid is

Fd = −6πηa

χ(φ)
(up − v) . (2.27)

Here χ(φ) is introduced as a dimensionless factor which we call the relative mobility, and is a
function of the local volume concentration φ. Since we assume constant force equilibrium on the
microparticles between the acoustic radiation force and the drag force Fd = −Fac. Therefore,
we can instead formulate the change of the particle mobility, when subjected to an external force

up − v =
χ(φ)

6πηa︸ ︷︷ ︸
mobility

Fac . (2.28)

To derive the drag force on the particle, it is necessary to first determine the fluid velocity v
and pressure p. To solve for these fields Happel and Brenner applies the boundary conditions
in Eqs. (2.23)-(2.25) and finds that only harmonic functions of order -2 and 1 are retained in
the specific solution. For details, we refer the reader to appendix B.1. To calculate the force on
a sphere, one must integrate the Cauchy stress tensor over the surface of the sphere

Fd =

∫
sph

dA σ · n . (2.29)

By performing this integral for spherical harmonic functions, Happel and Brenner finds the
modified drag force (see appendix B.1),

Fd = −6πηa

[
2

3

3 + 2φ5/3

2− 3φ1/3 + 3φ5/3 − 2φ2

]
(up − v) , (2.30)

from which we identify the relative particle mobility as

χ(φ) =
3

2

2− 3φ1/3 + 3φ5/3 − 2φ2

3 + 2φ5/3
. (2.31)

We note that χ(φ) reduces to 1 for φ = 0, which is expected in the dilute limit. In Fig. 2.3(a)
we have plotted the relative particle mobility χ(φ) over several decades of volume concentration
φ. Note that the particle mobility decreases rapidly for increasing volume concentration φ.
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Chapter 2. Theory

Figure 2.3: Plots of the relative particle mobility χ(φ) in (a) and the relative effective medium
viscosity ψ(φ) (b). Note that the functions resemble to have an inverse relationship.

2.3.3 Change of effective medium viscosity

For the other aspect , namely the change of effective medium viscosity, we must treat the flow
problem in a slightly different way to reach an analytical solution. This estimate uses the idea
of the cell model described previously and was derived by Happel [32] in 1957. The basic idea
is that the mechanical work W performed by the surroundings on the boundary of the cell at
r = b, must dissipate over time inside the cell. All dissipative losses are assumed to be due to
friction in the fluid, i.e. viscous losses. As we assume the system to be in steady state, the work
put in per time dW/dt, must be dissipated by viscosity by the same rate. This suggests that
the input power is proportional to the effective viscosity

dW

dt
∝ ηeff . (2.32)

In analogy with the relative mobility function χ(φ) defined in the previous section, we define
the relative effective medium viscosity

ψ(φ) ≡
ηeff

η
. (2.33)

The total velocity and pressure fields inside the cell are assumed to consist of an undisturbed
background field (0), without the particle. Plus a disturbance field (1) that serves as a correction
to the fields when the particle is placed in the cell

v = v(0) + v(1) , p = p(0) + p(1) . (2.34)

The undisturbed field, consists of a shearing motion, with constant y-derivative of the fluid

velocity in the x-direction q = ∂yv
(0)
x . The background field is

(v(0)
x , v(0)

y , v(0)
z ) =

q

2
(y, x, 0) . (2.35)

The purpose of the background field is not in itself to uphold the boundary conditions given in
Eqs. (2.23) and (2.24). But primarily to facilitate a closed solution to the full disturbed flow
problem, and secondly solve the linear governing Eqs. (2.22) on their own.

14



2.4. Concluding remarks

Disturbance field

The sphere of radius a is again placed in origo, but does not move up = 0. Because the
background field has a non-zero fluid velocity at the particle surface at r = a, the disturbance
field must exactly cancel this velocity to satisfy the no-slip condition. From Eq. (2.35) we get

(v(1)
x , v(1)

y , v(1)
z ) = −q

2
(y, x, 0) for r = a . (2.36)

Furthermore, the disturbance field must satisfy the boundary condition of zero tangential stress
and zero normal fluid velocity at the boundary of the cell, as given in Eqs. (2.24) and (2.25).

Applying these boundary conditions, Happel finds [32] fn = 0 for all n, and retain harmonics
of order -3 and +2, for which he also finds the coefficients (see Eqs. (9)-(12) in Happel [32])

Next, the work per time put into the cell at the boundary can be calculated as an integral
over the cell surface, using the total fields

dW

dt
=

∮
cell
v · σ · dA =

2π∫
0

dφ

π∫
0

dθ b2 sin θ

 v
(0)
r

v
(0)
θ + v

(1)
θ

v
(0)
φ + v

(1)
φ

 ·
σ

(0)
rr + σ

(1)
rr

σ
(0)
θ

σ
(0)
φ

 (2.37)

where we recall that v
(1)
r |r=b is zero by virtue of the imposed boundary condition. Expressing

the result of the integral in terms of the particle volume concentration φ, Happel finds

dW

dt
= Vcell q η

1 +
55

10
φ

 4φ7/3 + 10− 84

11
φ2/3

10(1− φ10/3)− 25φ(1− φ4/3)




︸ ︷︷ ︸
ηeff

, (2.38)

from which the relative effective medium visocosity is easily identified as

ψ(φ) =

1 +
55

10
φ

 4φ7/3 + 10− 84

11
φ2/3

10(1− φ10/3)− 25φ(1− φ4/3)


 (2.39)

We note that ψ(φ) reduces to 1 for φ = 0. This corresponds to the viscous dissipation of an
infinitely dilute particle suspension, i.e. the dissipation rate at unmodified fluid viscosity η = ηeff .
In Fig. 2.3(b) we have plotted ψ(φ) over several decades of φ, and note that the effective viscosity
increases by almost a factor of 100 for very concentrated suspensions. Moreover, it is worthy of
note that χ(φ) and ψ(φ) share an almost inverse relationship, see Fig. 2.3. With the results of
relative particle mobility χ(φ) and effective viscosity ψ(χ) found in Eqs. (2.31) and (2.39), we
conclude our investigation of viscosity changes in particle suspensions and turn to the issue of
model building, with the results derived throughout this chapter.

2.4 Concluding remarks

In this chapter we have outlined the fundamental equations, governing the behaviour of the
particles and the liquid, assuming particles can be described by a continuous concentration
field. We have applied the governing equations in two areas. First, by deriving the governing
equations for the first-order acoustic fields in the inviscid limit (η = 0) using perturbation theory.
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Chapter 2. Theory

We briefly discussed two important second order effects, namely the acoustic streaming and the
acoustic radiation force Fac. In the other area, we applied governing equations in reviewing a
model for calculating the enhanced drag forces on the particles Fd and effective medium viscosity
ηeff , when a number of particles are suspended in the liquid, which give rise to additional viscous
stresses.

With these two main results, we are ready to construct a physical model, from which we can
derive the particle suspension dynamics.
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Chapter 3

Model system

The principle aim of this thesis-work is calculate and predict the behaviour of microparticle
suspensions undergoing acoustophoresis. Ideally, this would involve solving for the positions
of all particles, subject to forces from both the induced ultrasound as well as drag from the
surrounding liquid. This while simultaneously solving the Navier-Stokes equation for the host
liquid, satisfying both the no-slip conditions of the channel walls and the surfaces of all particles.
This ideal and non-simplifying approach is extremely difficult and infeasible. We therefore make
a series of simplifications in order to make theoretical progress. To do this, we first define the
outer circumstances: geometry, experimental system, etc. Using the outer circumstances of the
physical system, we define a set a set of physically reasonable assumptions, essentially defining
our model system. These assumptions will allow the formulation of a set of governing equations
and corresponding boundary conditions, for which numerical solutions can be found. As we
go along, we physically motivate the implementation of several hydrodynamic particle-particle
interaction mechanisms, implementing them step by step.

3.1 System description and geometry

The model system consists of a long straight rectangular silicon microchannel, with an attached
glass lid. The channel has width W , height H and length L. Typically, the width W of the
channel is sub millimetre size, where the total channel length L can be a few centimetres in
length [8, 35]. In Fig. 3.1 we sketch some length ` of the channel. Attached to the channel is
a piezoelectric transducer that is operated harmonically with an AC voltage, typically of the
order 1-10 V [36]. The transducer mechanically actuates the channel, which in turn causes the
liquid to oscillate. This can cause an acoustic resonance of the liquid [20] that gives rise to a
standing pressure wave, oscillating at MHz frequency, as seen by the crossing magenta lines in
Fig. 3.1. Inside the channel are a number of micrometre sized particles with typical diameters
2a from 1 to 20 µm which are suspended in a Newtonian liquid, e.g. water. From scattering
of the oscillating sound waves, the particles feel the acoustic radiation force Fac discussed in
Section 2.2.2.

3.1.1 Computation domain

Because the channel is chosen to have an aspect ratio of approximately H ≈ 1
2W , and we

primarily aim to describe behaviour along the length of the channel, we neglect any variations
along the height of the channel. Thus making the computational domain two-dimensional. For
all calculations, we assume the height co-ordinate to be in the center plane, halfway between the
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Chapter 3. Model system

Figure 3.1: Sketch of some length ` of the acoustofluidic channel used in experiments, used as
basis for derivations throughout the thesis. The width W of the channel is sub millimetre size,
where the full channel length L can be a few centimetres [8, 35]. The mechanical actuation is
realised with a piezoelectric transducer, by applying a harmonic AC voltage. The mechanical
actuation can give rise to an acoustic resonance in the fluid which produces an oscillating stand-
ing pressure wave, shown by the crossing magenta lines. By scattering of these sound waves the
particles feel an acoustic radiation force Fac.

channel bottom and the glass lid, such that we minimize wall effects from the top and bottom
walls. To simplify further we assume all behaviour to be periodic with length `, confining the
computation domain Ω to have width W and length `. The choice of periodicity introduces
symmetry boundary conditions on some of the physical quantities. In Fig. 3.2 the computationn
Ω is sketched.

Boundary conditions

Because the walls in our chosen systems, consists of silicon and glass, it is reasonable to ap-
proximate the walls to be rigid. Physically this means that no displacement will be observed
when the wall is subjected to a pressure p. Instead, pressure can build up at the wall. For the
fluid velocity v, the wall introduces the usual no-slip condition. Lastly, no particles can enter or
leave through the wall, which implies a no-flux boundary condition for the particles. The wall
boundary conditions for the respective fields become

hard wall BC:
∇p · n= 0

v= 0
Jp · n= 0

 for r ∈ ∂Ωwall (3.1)

Because we have assumed identical cells of channel length `, no fluid nor particles can flow from
one cell to the other, implying that all normal components of the fluid velocity v and particle
current density Jp mush vanish at symmetry boundaries. Furthermore, a standard condition
at symmetry lines requires all tangential stresses in the fluid to vanish, else the symmetry line
would deform.

periodic BC:
v · n= 0
Jp · n= 0

σ · n− (n · σ · n)n= 0

 for r ∈ ∂Ωsym−bdy . (3.2)
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3.2. Acoustic fields in the liquid

Figure 3.2: Top view: Sketch of the two-dimensional computational domain Ω, consisting of
the fluid with viscosity η and mass density ρ. The horizontal boundaries consists of hard walls
(grey), and vertical periodic boundaries (dashed lines) to the sides where the micro channel
continues.

We have now defined the model system consisting of the geometry and the resulting boundary
conditions. Thus, we are now ready to find the specific acoustic radiation force Fac.

3.2 Acoustic fields in the liquid

Starting out with no particles in the liquid, we derived in Section 2.2.1 that the fluid velocity
and pressure could be calculated with first-order perturbation theory. Because the piezoelectric
tranducer is actuated with an AC voltage of angular frequency ω, harmonic time dependence of
all fields was assumed. This allowed describing the acoustic fields by finding only the first order
pressure p1. In the inviscid limit, the governing equation for the pressure p1 was shown to be a
Helmholtz equation (2.13) with wavenumber k. To solve the Helmholtz Eq. (2.13), we split up
the wavenumber k in the x and y-direction

k2 = k2
x + k2

y . (3.3)

This allows for solving the Helmholtz equation for the pressure p1 with a simple product of sines

p1(x, y, t) = pa
1 sin(kxx) sin(kyy + Θ) e−iωt , (3.4)

where pa
1 is the amplitude of the pressure field, later to be determined, and Θ is the phase of the

pressure wave. We note that the pressure p1 has the form of a standing wave, which decomposed
in the x- and y-direction, have wavelengths λx = 2π/kx and λy = 2π/ky. We define the ratio
between the wavelengths as

β ≡ λy
λx

=
kx
ky

, (3.5)

which will turn out to be an important parameter. In an acostofluidic setup identical to the one
modelled in this thesis, Barnkob et al. [37] also proposed this form of the first-order pressure
p1.

To satisfy the hard wall boundary condition Eq. (3.1), we see that the pressure p1 is only
allowed certain wavenumbers ky. In the transverse direction across the width W of the channel,
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Chapter 3. Model system

the pressure must consist of a multiple of half wavelengths λy/2, corresponding to the allowed
wavemumbers

ky = n
π

W
, n = 1, 2, 3, ... , (3.6)

with the corresponding phase

Θ =
π

2
for n = 0, 2, 4, ... and Θ = 0 for n = 1, 3, 5, ... (3.7)

The y-dependence of pressure p1 in the transverse direction was largely validated by Augustsson
et al. [36, 37]. They showed that one standing half wave across the width of the channel to
be experimentally stable over time and reproducible. For all the following calculations, we will
assume this type of pressure p1 with wavenumber ky = π/W and phase Θ = 0. A sketch of
the one half-wave standing pressure wave p1 is shown Fig. 3.1, denoted by the magenta crossing
lines.

For the lateral (x) direction, Augustsson et al. found the pattern of p1 to be irregular, with
no one single value for the lateral wavelength λx. However, as with the transverse pressure
characterization, Augustsson et al. showed the lateral variations to also be stable over time and
reproducible. The length scale of the lateral variations, was found to span from a few channel
widths W , up to around 20W . No clear explanation is had for the irregular lateral pressure vari-
ations as this could have many sources: imperfect channel variations, inhomogeneous mechanical
actuation, temperature gradients over the chip, etc.

To make theoretical headway we neglect the irregularities and choose a lateral wavelength of
λx = 3λy implying a value of β = 1

3 . We choose this value because it gives reasonable lateral
modulation of the acoustic fields and is realistic to realise experimentally [36].

First-order fluid velocity v1

Using the simple relation between first-order fluid velocity v1 and pressure p1 in Eq. (2.14) we
get from Eq. (3.4)

v1(x, y, t) = −i
pa

1

ρ0ω
[kx cos(kxx) sin(kyy)ex + ky sin(kxx) cos(kyy)ey] e−iωt . (3.8)

We note that Eq. (3.8) is complex-valued, and one should take the real part of Eq. (3.8) to
find the physical part of the first-order velocity. Strictly speaking, the first-order velocity fields
v1, does not satisfy the symmetry boundary conditions of Eq. (3.2) of no normal fluid velocity
v1 ·n = 0. However, since the acoustic fields are minute oscillations happening typically at MHz
frequency, no net fluid enters or leaves the boundary in time average. In this context, we view
the acoustic fields as background fields consisting of minute oscillations that serve only as the
driving force for the dynamics of the suspended particles.

3.2.1 Acoustic resonances and viscous dissipation

In the above approach to finding the acoustic fields, no account was taken for viscosity which
implies zero losses of mechanical energy. However, as the piezo-electric transducer is continuously
delivering mechanical energy to the liquid a steady state, due to dissipation, must at some point
be reached. We call the density of the mechanical in the liquid the acoustic energy density
Eac and it manifests as increasingly higher amplitudes of the fluid velocity v1 and pressure p1.
At resonance, a peak value for Eac is reached, and the condition for resonance is exactly that
of multiple of standing half-waves across the channel width W , corresponding to the allowed
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wave numbers in Eq. (3.6). The physical interpretation of the resonance is that the propagation
time for the sound wave across the channel, must corresponds to multiple of half wavelengths.
Because acoustofluidic channel widths are typically sub millimetre size [8, 35],and the isentropic
speed of sound in water is vs ≈ 1500 m/s, the resonance frequencies often lies in the MHz range.

Muller et al. [22] studied the effect of including viscosity in finding the first order fields v1

and p1. It was found that the inviscid description presented above, deviates only significantly
from the viscous account close to the wall, in the viscous boundary layer. For our system, we
found in Section 2.2.2 that this layer extends δ = 0.4 µm from the channel walls, making the
inviscid (η = 0) description of the acoustic fields an excellent approximation for our purposes.

3.3 Acoustic radiation force field

In order to identify the specific time averaged acoustic radiation force Fac discussed in Sec-
tion 2.2.2, we use the result by Settnes and Bruus [29], given in Eqs. (2.18)-(2.20b). We
introduce the angle θ between ex and k

cos(θ) =
kx
k
, sin(θ) =

ky
k
. (3.9)

By taking the time averages of the pressure p1 and velocity v1 in Eqs. (3.4) and (3.8), and
inserting them in the expression for Uac in Eq. (2.18), we find

Uac = 3Vp
(pa

1)2

4ρ0v2
s

{
1

3
f1 sin2(kxx) sin2(kyy)

−1

2
fRe

2

[
cos2(θ) cos2(kxx) sin2(kyy) + sin2(θ) sin2(kxx) cos2(kyy)

]}
. (3.10)

Part of the pre-factor is recognised as the acoustic energy density [11]

Eac =
(pa

1)2

4ρ0v2
s

, (3.11)

which typically for acoustofluidic devices has values of the order 10 - 100 J/m3 [11]. To arrive
at the acoustic radiation force, we take the gradient Fac = −∇Uac and get

Fac(r) = 3VpEacky

{

−β sin(2kxx)

[
1

3
f1 sin2(kyy) +

1

2
fRe

2

{
cos2(θ) sin2(kyy)− sin2(θ) cos2(kyy)

}]
ex

− sin(2kyy)

[
1

3
f1 sin2(kxx)− 1

2
fRe

2

{
cos2(θ) cos2(kxx)− sin2(θ) sin2(kxx)

}]
ey

}
.

(3.12)

We recall from Section 2.2.2 that f1 and fRe
2 is given in terms of material parameters, see

Eq. (2.20). We note from Eq. (3.12) that the acoustic radiation force in the lateral direction
Fac,x, scales with β = 1

3 , which implies that we expect effects in the lateral direction to be less
pronounced. In Fig. 3.3, a plot is shown of the radiation force Fac, where the magnitude denoted
the color and the arrows denote the direction. We note that the maximum amplitude is found at
the central lateral co-ordinate x = 1

2W/β. This will only be the case for β < 1, which implies for
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Figure 3.3: Vector plots of the acoustic force field Fac, from Eq. (3.12), plotted in terms of the
force amplitude Fac in Eq. (3.13). The blue arrows denote the direction of the force, and the
color denotes the magnitude. The grey bars mark the channel walls, and the periodic boundaries
are denoted by dashed lines. The magenta lines denote the standing pressure waves p1 in the
channel.(a) Full vector field Fac. (b) x-component of field Fac,x (c) y-component of field Fac,y.

the angle π
4 < θ ≤ π

2 . Under these conditions, we find the maximum amplitude of the acoustic
radiation force, by inserting x = 1

2W/β in Eq. (3.12)

Fac = 3VpEackyΦ2D , (3.13)

where we have defined Φ2D as the pseudo ’two-dimensional’ acoustic contrast factor

Φ2D =
1

3
f1 +

1

2
fRe

2 sin2(θ) for
π

4
< θ ≤ π

2
. (3.14)

Because the acoustic radiation force is the driving mechanism for the particle dynamics, we will
use the force amplitude Fac as the characteristic force on the particles F ∗ = Fac. In Fig. 3.3, a
plot of the acoustic radiation force Fac from Eq. (3.12) is shown.

The acoustic contrast factor

An important concept to touch upon, is that of the acoustic contrast factor, which was defined in
its pseudo ’two-dimensional’ form in Eq. (3.14). In the one dimensional case of a standing half-
wave across the channel width, we have no modulation in the lateral direction of the channel.
In this case, we have that kx = 0 which implies β → 0 and sin2(θ)→ 1. In this case we recover
the regular acoustic contrast factor Φ = 1

3f1 + 1
2f

Re
2 [29]. This factor expresses how sound waves
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3.4. Single particle dynamics

scatter on the particles compared to the suspending medium. For acoustically hard particles
(Φ > 0), the sound waves scatters ’harder’ on the particles compared to the liquid, and the
radiation force drives the particles towards the pressure nodes, see Fig. 3.3. And vice versa for
acoustically soft particles (Φ < 0).

In this thesis, we model a system of polystyrene particles in water at ambient temperature.
Inserting the mass densities and compressibilities of water and polystyrene given in Table A.1,
we find the acoustic contrast factor from Eq. (2.20) as Φ = 0.165. Because we have chosen
β = 1/3, the angle θ = 1.249, which means that the ’two-dimensional’ contrast factor in this
case is Φ2D = 0.163. This implies that the particles will be attracted towards the pressure nodes
in the system.

3.4 Single particle dynamics

Having derived the acoustic radiation force Fac in the previous section, we can now explore the
resulting particle dynamics from this driving force.

First we consider the dilute limit, where only a few particles are suspended in the liquid,
allowing us, at first, to neglect interaction effects. We therefore look at the motion of one single
particle with diameter 2a, and mass density ρp. We assume the particle to be suspended in
quiescent liquid (v = 0), being initially at rest at some co-ordinate

rp = (x0, y0) , dtrp = up = 0 for t = 0 . (3.15)

Next, we imagine the ultrasound is swicthed on at t = 0 which we approximate to be established
instantaneously. In the experiment, the ultrasonic resonance is established after1 ∼ 0.3 ms [37].
We neglect this build-up time.

As the particle begins to move due to the acoustic radiation force Fac, the liquid acts on the
particle with an equal and opposing Stokes drag force Fd. The two forces will quickly balance,
resulting in a steady particle speed up which is exactly the acoustophoretic particle migration.
This has been sketched in figure 3.4. Typical acoustophoretic speeds for micron sized particles
in water is of the order up ∼ 1 mm/s, and lower [36].

Governing equation for single particle dynamics

The equation of motion for the particle is given by Newtons second law Eq. (2.1), which becomes

mpd2
t rp = Fac + Fd

= Fac − 6πηaup , (3.16)

where the acoustic radiation force Fac is given by Eq. (3.12), and we note that the unmodified
Stokes drag force is used for the drag force. Moreover, we neglected the fact that polystyrene
particles is not neutrally buoyant in water ρp > ρ. With a mass density difference of 5% (see
table A.1), the gravitational forces on the particles will be minute compared to the other forces
involved.

At the typical particle values: 2a = 10 µm and up = 1 mm/s, the movement of the particle is
happening at low Reynolds number, Re = ρaup/η ≈ 10−9 � 1. This implies that viscous forces
are highly dominant for the micro particle dynamics. In this case we find the characteristic

1This follows from knowing the Q factor to be 200-500 [37], meaning that after 200-500 oscillation cycles at
MHz frequency, the steady state resonance mode is reached.
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Figure 3.4: Sketch of the acoustofluidic channel in the xy plane, with vertical symmetry lines,
denoted by dashed lines. The liquid-suspended particles, of diameter 2a are pushed toward the
pressure nodes by the acoustic radiation force Fac, denoted by the green curve to the left. The
liquid acts on the particles with an equivalent and opposing drag force Fd which rapidly results
in a steady particle speed up (green arrow). Lateral pressure nodes are had x = {0,W/β}, and
a transverse pressure node is had y = 0 both denoted by dotted lines. The dashed lines denote
the periodic boundaries.

acceleration time by solving Eq. (3.16) in one dimension with a constant external force. This
yields an exponential decay time τacc before the velocity up reaches terminal speed. This time
[38] is of the order τacc = 2

9ρpa
2/η ∼ 10 µs. Because this timescale is very short, we will often

neglect effects of particle inertia and disregarding the acceleration term in Eq. (3.16).

3.4.1 Transverse particle movement

To make theoretical progress, we note from Eq. (3.12) that the acoustic radiation force Fac, is
weaker by a factor β = 1/3 in the lateral direction. We will therefore, as a first approximation,
disregard the forces in the x-direction.

Barnkob et al. [39] calculated the dynamics of a single particle suspended in a quiescent fluid,
in the case of no forces in the x-direction Fac,x = 0. From Fig. 3.3(b) we see that at x = 1

2W/β
this is fulfilled. By assuming that the fluid is undisturbed and neglecting the inertial term on
the left hand side of Eq. (2.1), Barnkob et al. [39] finds for the particle

x(t) =
W

2β
, y(t) =

W

π
arctan

[
tan (ky(y0 +W/2)) exp

(
t

t∗

)]
, (3.17)

where

t∗ =
3η

4Φ2Dk2
ya

2Eac
. (3.18)

For typical values, the characteristic time scale t∗ varies between 0.1-10 s. In this context, t∗

should be seen as the characteristic migration time for a particle, in a undisturbed flow. Thus, t∗
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will be our fundamental timescale for the movement of particles not interacting in any way with
each other, and will be widely used for comparison when including particle-particle interaction.

3.4.2 Critical particle size 2astr

Here it is important to note that the derivation of Barnkob et al. [39], is for a particle where
acoustic streaming effects are negligible, see Section 2.2.2. As the acoustic streaming gives rise
to a drag force on the particles Fd, it must scale with the radius a. The acoustic radiation force
Fac, scales with volume Vp ∝ a3. Therefore, there will exist a turnover particle size 2a, above
which, the radiation force Fac dominates over streaming. Muller et al. [24], finds the critical
particle size, by balancing streaming drag forces and acoustic radiation force

2astr =

√
12

Φ

vs vstr

v2
1

δ ≈ 2 µm (polystyrene in water) , (3.19)

where we recall that vs is the isentropic speed of sound, v1 is the amplitude of the first-order
acoustic velocity field, vstr is the characteristic streaming velocity (Eq. (2.17)) and δ is the viscous
boundary layer thickness (Eq. (2.16)). A typical streaming velocity, for the system described
here, is vstr ≈ 6 µm/s [24].

As we in this thesis, will make no attempts to incorporate streaming effects, all derivations
of particle dynamics will be valid only for particle sizes well above 2astr.

3.5 Non-interacting many particle dynamics

Having outlined the description for a single particle, we now model the full ensemble of particles
in the micro-channel. To do this, one should ideally account for all N particles and the liquid
simultaneously. As this is highly infeasible, we abandon the idea of the discrete nature of each
particle, and see them as one scalar concentration field.

3.5.1 Continuous particle distribution

Consider some volume of fluid V containing a number of particles N . The average number
per volume is simply c0 = N/V . If we let N and V tend to zero then we can approximate the
distribution of particles with a continuous concentration field, the so-called number concentration

c(r, t) =
dN(r, t)

dV
(point particles) . (3.20)

This means that for a given small volume of liquid dV , we have exactly dN(r, t) = c(r, t)dV
particles inside dV . As the particle volumes Vp are non-zero, fluctuations in particle number will
be present, when looking at small enough liquid volumes. It is therefore important to clarify that
the concentration field approximation in Eq. (3.20), can only give us information on the average
values over a large ensemble of experiments, and not the statistical concentration fluctuations
that will be present in the experiment.

However, this approximation allows us to describe inhomogeneous particle distributions,
changing in both time and space, with just one scalar field c(r, t), and it therefore serves as
a very useful approach in our calculations.
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3.5.2 The particle volume concentration φ

In working with the density of particles, the natural field to use is the ”number per volume”, or
simply ”number concentration” c(r, t) introduced in Eq. (3.20). However, as we in this thesis
work with particle-particle interactions, it turns out that the another useful way to describe
the local concentration of particles is by the particle volume concentration φ, or simply volume
concentration. This concept was used already in section 2.3, but here, we will formally introduce
the concept.

The volume concentration is defined as ’the total fractional volume of particles to total channel
volume’. Using the assumption of a average starting concentration of c0 = N/V , so must the
particle have an initial average volume concentration

φ0 =
N Vp

V
= Vp c0 . (3.21)

The particle volume concentration must likewise take on local values, following that of

φ(r, t) = Vp c(r, t) . (3.22)

It is important to clarify that we will use number concentration c in derivations and volume
concentration φ when presenting results, seeing as the latter is easier to physically visualise.

Closest particle packing

In the optimal case of closest particle packing the particles arrange in the hexagonal close packed
structure, giving the maximum allowed volume concentration anywhere

φmax =
π

3
√

2
≈ 0.74 . (3.23)

The average particle-particle distance dp−p

Another instructive calculation is to calculate the average particle-particle distance, from surface
to surface, given some volume concentration φ. We denote this distance dp−p.

We assume the particles are homogeneously distributed, and described by a hexagonal close
packed structure. We reason that for point particles, the total volume taken up per particle must
scale inversely with the number concentration 1/c, and cubed with particle-particle distance
d3

p−p ∝ 1/c. But seeing as the particles are finite in extent, the particle-particle distance must
be corrected with the particle diameter

dp−p = αc
−1/3
0 − 2a , (3.24)

where is α is an unknown proportionality constant. From Eq. (3.22) we know the relation
between c and φ, and the particle volume is Vp = 4

3πa
3. We exploit that when the particle are

optimally packed φmax, the particle-particle distance dp−p is zero

0 = α

(
φmax

Vp

)−1/3

− 2a , (3.25)

which simply implies for α = 2a (φmax/Vp)1/3. The particle-particle distance becomes

dp−p

2a
=

(
π

3
√

2

)1/3

φ−1/3 − 1 ≈ 0.90φ−1/3 − 1 . (3.26)

Eq. (3.26) is plotted in a LogLog plot in Fig. 3.5
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3.5. Non-interacting many particle dynamics

Figure 3.5: LogLog plot of the particle-particle distance dp−p in terms of particle diameters
2a, here as function of volume concentration φ.

3.5.3 Resulting governing equations

To derive the dynamics of the particles in terms of the concentration field c(r, t), we use the
particle continuity equation defined in Eq. (2.2). Because we are describing single particle
behaviour, but for the full ensemble of N particles, we include only effects of the acoustic
radiation force Fac and diffusion

∂tc = −∇ · [Jdiff + Jac] . (3.27)

The diffusion current is given by Ficks law [5] Jdiff = −D∇c. Here, D is the diffusion con-
stant, which we approximate by the Einstein expression [38] D = kBT/(6πηa). At ambient
temperature, the thermal energy kBT = 4.1 × 10−21 J, which gives diffusion constant of the
order D = 2.8× 10−21 m2/s for 2a = 5 µm.

To derive the particle current density from the acoustic radiation force Jac, we use the general
relation Jp = cup. To find the contribution from acoustic forces alone, we use the velocity caused
only by the radiation force Jac = cuac. Assuming constant force equilibrium on the particle, we
get from Eq. (3.16)

uac =
Fac

6πηa
. (3.28)

In this description no account has been taken for the disturbance of the liquid by the particles.
I.e we assume the liquid to remain at rest v = 0, even though particles are continuously dragged
through it. At sufficiently high particles concentrations, this will of course no longer be true,
and we will account for this effect in the next section.

Inserting the particle currents from diffusion Jdiff and the acoustic radiation force Jac in
Eq. (3.27), we find

∂tc = −∇ ·
[
−D∇c+

1

6πηa
Fac c

]
, (3.29)

where we note that the unmodified Stokes drag force is used as no interactions are included. We
will solve the particle dynamics in the present form, expressed in c, but all the results will be
stated in the particle volume concentration φ, by simply using Eq. (3.22).

Influence of diffusion

To estimate the expected influence of the diffusion term Jdiff , we make a simple scaling argument.
For the diffusion term Jdiff = −D∇c, we again use the Einstein relation for the diffusion
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Chapter 3. Model system

constant D = kBT/(6πηa) and assume a steep concentration gradient ∇ ∼ 20
W . For the acoustic

drift term Jac = Fac c/(6πηa), we see from Eq. (3.13) that the term must scale with Jac ≈
3cVpEackyΦ2D/(6πηa). Comparing the two terms at ambient temperature and assume a rather
low energy density Eac = 10 J/m3 and a small particle 2a = 1 µm we find

Jac

Jdiff
≈ π2a3Φ2DEac

5kBT
≈ 102 . (3.30)

From this it is clear that even for small particle sizes and low acoustic energy density, diffusion
effects are expected to be very small.

Resulting Boundary conditions

The boundary conditions for the particle dynamics are stated in Eqs. (3.1) and (3.2). Both
at the periodic boundaries and at the hard walls, see Fig. 3.2, no-flux conditions must be met
Jp ·n = 0. We note from Eq. (3.12) that the normal components of the acoustic radiation force
n · Fac = 0 automatically goes to zero at the respective boundaries. This leaves the no-flux
condition to be satisfied only the normal derivatives of concentration

n ·∇c = 0 for r ∈ ∂Ω . (3.31)

3.6 Interacting many particle dynamics

Until now, we have assumed that no particle-particle interaction takes place. In this section we
will include three particle-particle interaction effects.

3.6.1 Global interaction through the fluid velocity

As the particles move through the channel the liquid acts on the particles with the Stokes drag
force, slowing them down. Due to Newtons third law, the particles must act with an equal
and opposing force on the liquid. This transfer of momentum from the particles to the liquid
have so far been neglected. In the limit of dilute particle suspensions, this momentum transfer
is minute and was therefore disregarded in the non-interacting case. Going to the regime of
concentrated particle suspensions, we reason that the momentum transfer must at some point
become significant. The resulting fluid velocity v, will globally change the drag forces Fd on
the particles, which in turn changes the particle dynamics. In this way, one of the interaction
effects can be modelled as hydrodynamic particle-particle interactions, mediated by the liquid.

One way to think of this interaction, is by the following simple physical picture: As a particle
is dragged through the liquid by the acoustic radiation force Fac, small perturbations to the
fluid is created in its wake. If the suspension is sufficiently dense, neighbouring particles will
feel these perturbations, and they are slightly dragged along by the wake of the first particle.

To derive the force on the fluid, we consider a small volume of fluid dV . In this volume,
we have dN(r, t) = c(r, t) dV particles. The liquid exerts the drag force Fd on each particle.
Therefore, the particles must each exert the force −Fd on the fluid. Because each particle is
considered to be in a force equilibrium between the drag force and the acoustic radiation force
0 = Fd + Fac, the force on the fluid by each particle is Fac. Having dN(r, t) particles in the
fluid volume dV , the total force on dV is dN(r, t)Fac. In hydrodynamics, we work with force
per volume. The external force density on the fluid exerted by the particles simply becomes

fext =
dN(r, t)Fac

dV
= c(r, t)Fac . (3.32)
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3.6. Interacting many particle dynamics

This inserted in the Navier-Stokes Eq. (2.3a), which then gives rise to non-zero fluid velocities
v. This changes the drag force Fd, as it is given by the movement of the particle relative to the
surrounding fluid

Fd = −6πηa(up − v) . (3.33)

The model of letting the particles act on the liquid with a bulk force density is adopted from
Mikkelsen and Bruus [38].

3.6.2 Local particle-particle interactions through viscosity

In section 2.3, we discussed two effects on viscosity changes when making concentrated particle
suspensions. Effectively, this can be seen as particle-particle interactions, as properties of the
governing equations change with the number concentration φ.

Interactions through effective viscosity

Seeing the particles and the fluid as one effective medium, one could view the effect of the
particles as increasing the effective medium viscosity ηeff . In section 2.3.3, we used an approx-
imative model by Happel and Brenner [18], and found the effective viscosity as function of
particle volume concentration ηeff(φ), see Eq. (2.39). Because this effective viscosity governs the
total effective medium of both particles and liquid, ηeff must enter only in the Navier-Stokes
Eq. (2.3a).

Interaction through effective particle mobility

When a particle is subjected to an external force F , the usual approach is to balance F by
an opposing Stokes drag force Fd, resulting in the velocity up, as we did in Eq. (3.33). In a
concentrated suspension where the particles lie close together, we imagine exerting the same
force F on a particle. Because the no-slip condition on the surface of all particles must satisfied
at all times, additional viscous stresses build up in the liquid between the particles. Thus,
resulting in a lower response up of the particle. In section 2.3.2, we reviewed a model also by
Happel and Brenner [18], for this decrease in effective particle mobility, due to hydrodynamic
particle-particle interactions. The result is a modified drag force, now a function of the volume
concentration

Fd(φ) = −6πηa

χ(φ)
(up − v) , (3.34)

where χ(φ) is the dimensionless function found in Eq. (2.31). The change in particle mobility
can then by inserted in the particle continuity Eq. (2.2)

3.6.3 Resulting governing equations

In analogy with section 3.5.3, we find the contributions to the particle current density Jp. The
diffusion is again given by Ficks law [5] Jdiff = −D∇c, and the particle current from the acoustic
radiation force is again found by considering the general relation Jp = cup. The particle velocity
up associated with acoustic radiation force and fluid convection is found from Eq. (3.34) which
yields two contributions to Jp

Jconv + Jac = v c +
χ(φ)

6πηa
Fac c . (3.35)
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The resulting particle continuity equation becomes

∂tc = −∇ · [Jdiff + Jconv + Jac]

= −∇ ·
[
−D∇c + v c +

χ(φ)

6πηa
Fac c

]
(3.36a)

= −∇ · [−D∇c + v c + χ(φ)uac c] (3.36b)

In the entries for volume concentration we use the relation φ = Vp c, for converting to number
concentration c, and doing this we note that Eq. (3.36) is non-linear. In Eq. (3.36b) we have
introduced the particle velocity due to acoustic drift alone in the dilute limit uac. Since both
terms scale with c, we can physically think of the convective term Jconv and the acoustic drift
term Jac as a matter of comparing the two velocities: v and χ(φ)uac. From Section 2.3.2, we
recall that the relative particle mobility decreases rapidly with high concentration χ� 1. This
implies that we expect the convective term v c to become increasingly important in the high
concentration regime. The physical interpretation is that as the relative particle mobility goes
down, it becomes increasingly difficult for the particles to move relative to the surrounding fluid.
This makes the particles and the fluid follow each other increasingly, and harder to separate, as
the concentration increases.

Governing the fluid dynamics

Since the fluid is no longer quiescent v 6= 0, we have to involve the Navier-Stokes and mass
continuity equations. Because the fluid velocity in this case is comparable to typical particle
speeds up ∼ 1 mm/s, changing very slowly with time ∼ t∗ ∼ 1 s, compared to the oscillating
ultrasound fields, we can assume the fluid to be incompressible. Furthermore, as mentioned in
section 3.4, the Reynolds number is small Re ≈Wupρ/η . 10−1 � 1 which allows us to cancel
the non-linear term in the Navier-Stokes equation. The Navier-Stokes and mass continuity
Eqs. (2.3a) and (2.3b) become

ρ∂tv = −∇p+ η ψ(φ)︸ ︷︷ ︸
ηeff(φ)

∇2v + cFac , (3.37)

∇ · v = 0 . (3.38)

In this approach to find the fluid velocity v and pressure p, no account has been taken for
effects of acoustic streaming, discussed in section 2.2.2. Thus, any influence of the streaming
on the particle dynamics, are by default not included in this treatment. For the analysis of the
particle dynamics to be valid, particle sizes must therefore be above the critical particle size
2a > 2astr ≈ 2 µm, described in section 3.4.2.

Characteristic values

To find the characteristic values of the fluid velocity v∗ and pressure p∗, we consider the resulting
Navier-Stokes Eq. (3.37), and the external forces on the liquid cFac. From the vector plot of
the acoustic radiation force Fac in figure 3.3, we see that significant forces will be on the liquid
in the y-direction, from each side of the channel sidewalls and towards y = 0. This could
imply that large hydrostatic pressures will build up, relieving much of the external forces cFac.
Assuming for the gradient of the pressure ∇ ∼ 2/W , we choose the characteristic pressure as
p∗ = 1

2W c0 Fac. For the fluid velocity, we reason that, since it is the particles that is essentially
driving the fluid, we assume the fluid and particle velocities to be comparable. We therefore
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choose the characteristic fluid velocity to be equal to the single particle acoustic drift velocity
uac in the dilute regime v∗ = uac = Fac/(6πηa) see Eq. (3.28). This will be valid in the regime
where the momentum transfer from the particles to the fluid is significant, i.e. at high volume
concentration φ0.

Boundary conditions

For the fluid velocity and pressure, we get the resulting boundary equations from Eqs. (3.1)
and (3.2)

hard wall: v = 0 (no-slip) for r ∈ ∂Ωwall (3.39)

periodic BC:
vx= 0 (no in/out-flow of fluid)

∂xvy= 0 (no tangential stress)

}
for r ∈ ∂Ωsym−bdy . (3.40)

We note that the boundary condition for the pressure p is no longer there. The pressure can in
a sense adjust freely, balancing the forces in the Navier-Stokes Eq. (3.37). We only demand the
level of the pressure remains fixed in the center of the domain Ω

level set: p = 0 for (x, y) =

(
1

2
W/β, 0

)
. (3.41)

In analogy with the arguments in Section 3.5.3, we note from the resulting governing equations
(3.36a), (3.37) and (3.38) that only the diffusion particle current Jdiff , does not in itself satisfy
the boundary conditions for the particle current density Jp, see Eqs. (3.1) and (3.2). Both
the convective term Jconv and the acoustic term Jac, have normal components that by virtue
of the acoustic radiation force Fac and the fluid velocity v go to zero at the boundary, i.e.
Fac ·n = v ·n = 0 is automatically satisfied at all part of the boundary, thus satisfying the no-
flux condition of the terms Jconv and Jac. Therefore, the boundary equation for the concentration
field, becomes once more

n ·∇c = 0 for r ∈ ∂Ω . (3.42)

Scaling argument

In order to understand what parameters that later will turn out to be important, for the scaling
of hydrodynamic interaction effects, we consider the particle continuity Eq. (3.36a) and Navier-
Stokes Eq. (3.37).

We note that the ’driving’ terms Jac and cFac in Eqs. (3.36a) and (3.37) both contain the
factor kyEacΦ2D, stemming from force amplitude Fac (Eq. (3.13)). We can therefore factor out
these quantities. The same goes for the fluid viscosity η that enters directly in Jac, and in the
Laplace term in the Navier-Stokes Eq. (3.37).

This leaves us to conclude that the two scaling parameters of interest are the initial volume
concentration φ0 and the size of the particle which we choose as the diameter 2a.

3.7 Lists of assumptions and characteristic quantities

To use as a reference tool, we have in Tables 3.1 and 3.2, summarised all the assumptions and
characteristic values of relevance used throughout the thesis.
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Chapter 3. Model system

Table 3.1: Full list of assumptions used throughout the thesis

Assumption for Ref. Assumption

Acoustic fields Eq. (2.11) We assume harmonic time dependence of first order
velocity v1 and pressure p1.

Acoustic fields Eq. (3.1) Assume hard walls to find p1 in the Helmholtz eq.

Acoustic fields Eqs. (2.13) To find v1 and p1 we neglect viscosity in bulk fluid,
and (2.14) and disregard the viscous boundary layers

Acoustic fields Section 3.4 We neglect the fact that the ultrasonic forces builds up
over ∼100 ms, and approximate the acoustic fields to be
established instantaneously.

Acoustic fields Section 3.2 We neglect the irregular lateral changes along the
length of the channel and assume λx = 3λy (β = 1

3)

Acoustic fields Section 7.2 We disregard the fact that high particle concentrations
might alter the effective sound-propagation properties
of the medium, as the volume fraction of particles
increases. This effect is discussed in Section 7.2

Radiation force Section 3.3 Assume the Rayleigh limit 2a� λ = 2π/k.

Radiation force Section 2.2.1 We disregard any effects of thermal conductivity on
the acoustic radiation force

Radiation force Section 7.2 We neglect radiation forces from particle-particle
wave scattering, called Bjerknes forces. Discussed in
Section 7.2

Particle dynamics Eq. (3.20) We assume that the particles can be described by a
continuous field c, disregarding their spatial size.

Particle dynamics Section 3.1.1 We disregard any variations in the z-direction

Particle dynamics Section 3.4.2 Disregard effects of acoustic streaming effects,
implying that our consideration are valid for
particles sizes > astr

Particle dynamics Section 3.4 We neglect inertial effects of the particles.

Particle dynamics Section 3.4 We neglect gravitational forces on both the particles
and the liquid, because we know that polystyrene is
almost neutrally buoyant. Mass density discrepancy of
approximately 5% , see Table A.1.
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Table 3.2: Overview over the characteristic quantities used in the thesis, listed with typical
values.

Quantity Characteristic value Expression Typical value

Particle conc. Initial number concentration c∗ = c0 1× 1015

Initial volume concentration φ∗ = φ0 = Vp c0 0.1

Length Half channel width L∗ = W/2 200 µm

Force on particles Acoustic rad. force F ∗ = Fac = 3VpEackyΦ2D 2 pN

Time Particle Convection time t∗ =
3η

4Φ2Dk2
ya

2Eac
1 s

Particle velocity Maximum particle velocity u∗p = uac = Fac
6πηa 1 mm/s

Fluid velocity Maximum particle velocity v∗ = uac = Fac
6πηa 1 mm/s

Pressure Force Balance in NS Eq. (3.37) p∗ = W
2 c0 Fac 0.1 Pa

3.8 Concluding remarks

We have now proposed physical models, both for non-interacting case, as well as the interacting
case. These two models can now be compared to investigate the effects of particle-particle
interactions, under the assumptions taken. Since the governing equations are inhomogeneous
non-linear coupled differential equations, we perform a a numerical implementation in the next
section, in order to solve the set of equations.
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Chapter 4

Numerical implementation in
COMSOL

In this chapter we introduce a numerical method called the finite element method (FEM).
This method is used for solving partial differential equations in many branches of engineering
and science. The strength of FEM is the ability to provide approximate solutions to complex
differential equations that are otherwise hard to solve. These solutions are called weak solutions.
Our model is implemented in the FEM framework using Comsol Multiphysics, which is a
piece of commercially available software [40]. The specific COMSOL model will be described,
and mesh convergence analysis will be performed to justify the reliability of the numerical results.
Lastly we briefly discuss the numerical stability of the model.

4.1 The finite element method

The basic idea in the finite element method, is to discretize the problem in a finite set of localized
basis functions. The principle of using basis functions to span a solution, is well known from
e.g. Fourier analysis and spherical harmonic functions. In FEM, the computation domain is not
restricted to highly symmetrical geometries, as compared to other methods. But instead, allows
for solving equations with several inter-dependent variables in complex geometries. The theory
in this section is based on [41, 42].

As a starting point we consider the case of a general differential equation problem for the
function g(r)

L {g(r)} = F (r) , (4.1)

where L is a linear differential operator and f(r) is some source term. Next, we define the defect

d(r) ≡ L {g(r)} − F (r) . (4.2)

By definition, the defect is zero for an exact solution of Eq. (4.1). This type of solution is called
a strong solution. Next, the computation domain Ω is discretized in a finite number of grid
points, see Fig. 4.1, and a basis function function is defined for each node in the grid. This
is illustrated in figure 4.1 where we see a linear basis function for the nth node ĝn. The basis
functions fulfil the criteria of being 1 at their own node, and 0 everywhere else, and the sum of
basis functions must be continuous and piecewise differentiable. In Fig. 4.1 the basis function
ĝn is chosen to be linear. However, basis functions of higher order polynomials can also be
used. The order depends partly on the wanted precision between grid points, but is primarily
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Figure 4.1: Discretezation of the computation Ω in triangular elements. The nth basis function
ĝn is 1 at the nth node, and 0 everywhere else. The figure is adapted from [41]

determined by the order of derivatives involved in the problem. It is assumed that g(r) can be
approximately expanded in terms of the spatially discretized basis functions

g(r) =
∑
n

an ĝn , (4.3)

where an is the expansion coefficients for g(r). Mathematically, an is nothing but the value of
g(r) at the nth grid node. To find a solution for g(r), we demand that the projection of all
basis functions onto the defect is zero

〈ĝm, d(r)〉 = 0 for all m. (4.4)

Here we have defined the inner product between two real functions as 〈X(r), Y (r)〉 ≡
∫

ΩdV X(r)Y (r).
By inserting the definition of the defect d(r) in Eq. (4.4), we get∑

n

an 〈ĝm,Lĝn〉 = 〈ĝm, F 〉 for all m. (4.5)

Noting that we have two summation indices (n,m) in Eq. (4.5), and because the inner product
is linear, we can formulate the problem as a matrix equation

Ka = f , (4.6)

where K = {Kmn} is called the stiffness matrix [41], and a = {an} contains the coefficients
that are varied to satisfy the above equations. Solving this matrix equation, is called finding a
weak solution to Eq. (4.1), and is exactly what COMSOL does. The discrepancy between weak
and strong solutions lies in the fact that we only use a finite set of basis functions. As the set is
finite, the function space of the differential equation (4.1), is only approximately spanned. This
means that the demand of the defect being orthogonal to all the basis functions ĝm, implies that
it is only approximately zero d(r) ≈ 0. This stands in contrast to strong solutions, where the
defect is exactly zero d(r) = 0.

4.1.1 Boundary conditions in the weak formulation

To implement boundary conditions in the weak formulation, we recall that all three main gov-
erning equations are in essence continuity equations: Navier-Stokes Eq. (momentum), mass
continuity Eq. (fluid) and particle continuity Eq. (particles). We therefore assume the form of
a continuity equation

∇ · Γ = F . (4.7)
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Again, we take the inner product between Eq. (4.7) and the basis function ĝm

〈ĝm,∇ · Γ− F 〉 =

∫
Ω

dV (ĝm∇ · Γ− ĝm F ) = 0 for all m. (4.8)

Integrating the divergence term in Eq. (4.8) by parts, and using the Gauss theorem for integrals,
we convert some of the integral to an integral over the boundary∮

∂Ω
dAn · Γ +

∫
Ω

dV (− [∇ĝm] · Γ− ĝmF ) = 0 for all m. (4.9)

Neumann boundary conditions

In the case of Neumann boundary conditions where the flux of Γ is a known function h(r) on
the domain boundary

h(r) = n · Γ for r ∈ ∂Ω (Neumann) , (4.10)

h(r) can be inserted directly in Eq. (4.9).

Dirichlet boundary conditions

In the case of Dirichlet boundary condition, it is instead the value of g(r) that is a known
function j(r) on the boundary

j(r) = g(r) for r ∈ ∂Ω (Dirichlet) . (4.11)

The Dirichlet condition can be implemented in the weak formulation, by introducing a constraint
to the problem R(g(r)) = 0. To implement the constraint we introduce a field λ(r) that only
exists on the domain boundary ∂Ω. The so-called Lagrange multiplier. The Lagrange multiplier,
is expanded in a new set of basis functions

λ(r) =
∑
m

bn λ̂m(r) . (4.12)

We require all basis functions of the Lagrange multiplier to to be orthogonal to the constraint〈
λ̂m, R

〉
= 0 for all m. (4.13)

Since the Lagrange multiplier λ(r) only lives on the boundary, we can add the product of the
constraint R and the Lagrange multiplier λ(r), to Eq. (4.7)

∇ · Γ = F +
∑
n

λ(r)ĝn(r). (4.14)

Here R has taken the form of the original set of basis functions {ĝn}. The Dirichlet boundary
condition of Eq. (4.14), is then satisfied by varying the bn coefficients of the Lagrange multiplier.

4.2 Weak form model implementation

Before we rewrite the governing equations into weak form, we first introduce the logarithm of
the concentration

s = log

(
c

c0

)
. (4.15)

Because the particle number concentration c can assume very large numerical values, it is easier
for COMSOL to numerically handle the logarithmic scaled concentration s. We will substitute
s for c in the following.
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4.2.1 Weak form for non-interacting many particle dynamics

To arrive at the weak form for the particle continuity equation in the non-interacting case, we
rewrite Eq. (3.29) using the logarithm of the concentration s = log(c/c0). Inserting the definition
for s in

∂ts = D
(
|∇s|2 +∇2s

)
− 1

6πηa
(∇ · Fac + Fac ·∇s) , (4.16)

Taking the inner product between the basis function ŝn and the defect d(s) of Eq. (3.29) we get
the weak form governing equation for the non-interacting case

0 = 〈ŝn, d(s)〉 =

∮
∂Ω

d`n ·
[
ŝn

(
−D∇s+

1

6πηa
Fac

)]
+

∫
Ω

dA

[
ŝn

(
∂ts−D |∇s|2 +

1

6πηa
Fac ·∇s

)
−
(
−D∇ +

1

6πηa
Fac

)
·∇ŝn

]
. (4.17)

We note that, because the domain Ω is two-dimensional, the surface integral over ∂Ω is converted
into a line integral, and the volume integral over Ω is converted into a surface integral.

4.2.2 Weak form for interacting many particle dynamics

Repeating the process, from the previous section, we insert the logarithm of the concentration s
in the particle continuity equation, now only for the interacting case. From Eq. (3.36a), we find

∂ts = D
(
|∇s|2 +∇2s

)
− (∇ · v + v ·∇s)− 1

6πηa

(
∇ ·

[
1

χ
Fac

]
+

[
1

χ
Fac

]
·∇s

)
. (4.18)

Again, we take the inner product between the basis function ŝn and the defect d(s) of Eq. (4.18),
to find the weak form governing equation for the interacting case

0 = 〈ŝn, d(s)〉 =

∮
∂Ω

d`n ·
[
ŝn

(
−D∇s+ v +

1

6πηaχ
Fac

)]
+

∫
Ω

dA

[
ŝn

(
∂ts−D |∇s|2 + v ·∇s+

1

6πηaχ
Fac ·∇s

)
−
(
−D∇ + v +

1

6πηaχ
Fac

)
·∇ŝn

]
.

(4.19)

The mass continuity equation is not affected by the variable change from c to s, but the Navier
Stokes equation is slightly modified. We get from Eq. (3.37)

ρ∂tv = −∇p+ η ψ∇2v + c0 es Fac (4.20)

For the weak form implementation of the Navier-Stokes equation Eq. (4.20) and the mass
continuity Eq. (3.36a), we use the COMSOL creeping flow module that has these equations
pre-programmed, along with a number of typical boundary conditions [40].

4.3 COMSOL model

The governing equations (4.17) and (4.19) are implemented as explained above in a two-dimensional
rectangular domain Ω, of the type shown in figure 3.2. Symmetry of the problem suggests that
one could simulate only a quarter of the rectangle. But due to particle accumulation in the
channel center over time, it is more stable to simulate the full rectangular domain, ensuring no
particle accumulation at the boundaries. The simulation domain used in COMSOL is shown
in figure 4.2. The letters (a)-(g) denote the points, lines and areas where various properties and
boundary conditions are imposed. The details are summarised in table 4.1.

38



4.3. COMSOL model

Table 4.1: Overview of the imposed mesh sizes and boundary conditions in the computation
domain Ω shown in figure 4.2. The mesh setting shown in this table, corresponds to the finest
mesh (kmesh = 1).

Type Mesh size Growth rate Imposed boundary condition

(a) Bulk dmesh 1.1 s = 1, v = 0, p = 0 for t = 0

(b) Wall boundary dmesh/1.66 1.1 ∂ys = 0, v = 0

(c) Symmetry boundary dmesh/1.66 1.1 ∂xs = 0, vx = 0, ∂xvy = 0

(d) Symmetry center-line dmesh/3.33 1.02 ∂xs = 0

(e) Auxiliary line

(f) Symmetry center-line dmesh/3.33 1.02 ∂ys = 0

(g) Symmetry. center-point dmesh/16.6 p = 0

Mesh grid setup

For our COMSOL model we use a triangular mesh grid. The size of each element is controlled
by defining its side length, and can vary across different areas in the domain. We therefore
introduce a fixed length dmesh = W

90 , which is used to scale the various mesh sizes. The mesh
structure used in the model is shown in figure 4.2. Naturally, the boundaries (b) and (c) require
fine meshing, along with the symmetry lines (d) and (f). But the finest mesh is given in the
center symmetry point (g), where the highest particle concentrations occurs. Furthermore, we
define growth rates for the different parts of the domain. Growth rates control the maximum
allowable rate with which adjacent mesh elements can grow.

By trial and error, mesh grid sizes and growth rates was chosen as shown in table 4.1.

(b)

(a) (d)(c)

(e)

(f) (g)

Figure 4.2: Top view: Two dimensional domain Ω of width W and length W/β used in the
COMSOL model. (a)-(g) shows the different points, lines and areas, where boundary conditions
and mesh sizes are imposed, see details in table 4.1. The mesh grid is shown for a very coarse
mesh, being 10 times larger (kmesh = 10), than that used in the calculations where kmesh = 1.
(a) Bulk, (b) wall boundary, (c) symmetry boundary, (d) and (f) symmetry center lines, (e)
auxiliary line, (g) symmetry center point.
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Chapter 4. Numerical implementation in COMSOL

Figure 4.3: Mesh convergence plots of (a) the logarithmic concentration field s, and (b) the
fluid velocity field v. Plotted in terms of the relative variance σ2

avg−rel, defined in Eq. (4.21).
Both fields are plotted for four different times, and for the values {φ0, 2a} = {0.1, 5 µm}. Note
how the error on the fields increases slightly with increasing times.

4.4 Mesh convergence

The basic idea of mesh convergence analysis is to to check whether the numerical results have
converged. If a sufficiently fine mesh grid is used, and convergence is achieved, the numerical
results are independent of the mesh size dmesh. Oppositely, if the mesh size is too coarse, spatial
details cannot be resolved, making the numerical results a function of the mesh grid size dmesh.
It is therefore very important to identify the mesh size where numerical convergence is achieved.

To vary the different mesh sizes simultaneously, we introduce a dimensionless mesh scaling
factor kmesh, where kmesh = 1 corresponds to the mesh presented in Table 4.1, implying a linear
relation between kmesh and the general mesh size.

To check the mesh convergence of an arbitrary field X(r, t), we introduce the average relative
variance of the field σ2

avg−rel(X), where we use the solution with the finest mesh Xend(r, t) as
reference, corresponding to kmesh = 1

σ2
avg−rel(X) ≡

∫
ΩdA

(
X −Xend

)2∫
ΩdA (Xend)

2 . (4.21)

As our fields are time dependent, we need to run mesh convergence analyses for different times.
In figures 4.3 and 4.4(a) we have plotted mesh convergence plots of logarithmic concentration
s, velocity v and pressure p respectively. All plotted for the high volume concentration and
intermediate particle size {φ0, 2a} = {0.1, 5 µm}.

We note from the figures that mesh convergence is achieved for all fields, for mesh sizes well
above kmesh > 1. The logarithmic concentration field s, exhibits the largest relative variance of
approximately 10−4−10−5, which implies that relative errors is seen at the second or third digits.
Furthermore, we note that relative error increases with simulation times. This is expected,
because more and more particles, accumulate close to y = 0, causing higher numerical errors as
time passes.

4.4.1 Validity regimes

As we saw in the previous section, the relative error increases with simulation times, due to
the accumulation of particles at y = 0. As the mesh convergence analysis was only run for one
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Figure 4.4: (a) Plot of the mesh convergence for the pressure field p, in terms of the relative
variance σ2

avg−rel, defined in Eq. (4.21). Plotted for four different times, and for the values
{φ0, 2a} = {0.1, 5 µm}. Note that the relative error goes up as we simulate for higher times.
(b) Plot of numerically valid regimes for the numerical COMSOL model. The color coding
denotes either rejection or approval of simulations for parameter sets {φ0, 2a}, based on the
validity criteria defined in the text. Green: No problems observed for times well beyond > 4t∗,
Orange: validity was achieved for times t < 4t∗, Red: validity was achieved for times t < 2t∗,
Black: Numerical convergence was not achieved, due to the build-ups of too high numerical
concentration gradients, eventually resulting in simulation crash.

set of parameters {φ0, 2a}, we need to know in what regimes of these values, we can expect
the numerical model to be valid. We have therefore run simulations for various sets of initial
volume concentration and particle size {φ0, 2a}, seen in Fig. 4.4(b). To determine the numerical
validity, we rejected solutions where the structure of mesh elements was visible, or solutions that
were clearly unphysical. Furthermore, COMSOLs internal convergence parameters correlated
well with our performed mesh convergence analysis. On the basis of these criteria, we approved
or rejected the numerical validity of various sets of values of {φ0, 2a} for simulations times
up to t = {2, 4} t∗. These times are chosen since most of the transient particle dynamics has
happened within times of a few t∗. In Fig. 4.4(b) we have color coded the either rejected or
approved simulations with parameter sets {φ0, 2a}: Green: No problems observed for times well
beyond > 4t∗, Orange: validity was achieved for times t < 4t∗, Red: validity was achieved for
times t < 2t∗, Black: Numerical convergence was not achieved, due to the build-ups of too high
numerical concentration gradients, eventually resulting in simulation crash.

From Fig. 4.4(b) we see that the numerical model experiences difficulties only in the high
concentration regimes φ0 > 0.1, and only for particle sizes 2a < 1 µm. This is due to the earlier
mentioned fact of large particle accumulation at y = 0. Also, as the volume concentration goes
up, and the particle size goes down, COMSOL is forced, in this formulation, to handle larger
numerical values, eventually causing errors. In other words, significant numerical errors can be
observed for this model for all parameter sets if simulating to long enough times. For experimen-
tally relevant values of {φ0, 2a}, all behaviour of interest of the respective fields have occurred
within times ∼ 10t∗, implying that sufficient levels of numerical convergence are obtained for
the purposes of our theoretical investigation.

41



Chapter 4. Numerical implementation in COMSOL

4.5 Concluding remarks

In this chapter we implemented a numerical framework for solving our resulting governing equa-
tions, with the respective boundary conditions. We conclude that numerical convergence of
the model is obtained for our purposes of investigation. Moreover, we showed that limits to
the numerical convergence can be reached if simulating to long enough times. As such, we are
now ready to extract results from the numerical model, but to ensure the physical correctness
of the numerical model, we will in the next chapter compare the numerical model with with
experimentally validated results in the non-interacting limit.
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Chapter 5

Results - Non-interacting particle
dynamics

In this chapter, we explore the particle dynamics in the case of no particle-particle interactions.
Because acoustofluidic setups of the type we model in this thesis are very well characterised
in the limit of dilute particle suspensions [24, 25, 36, 39, 43], this chapter serves two main
purposes. Firstly, we use our numerical results in this limit to test against known theory and
experimental results. This will give an indication to the physical reliability of the model in a
well-known limit. Secondly, the results in this chapter serves as a benchmark to compare against
for results including particle-particle interaction effects. This is vital, as we in this thesis aim
to characterise, how particle-particle interactions will affect the particle dynamics, compared to
the well known dilute limit.

5.1 Analytical model in the one-dimensional case

To make progress with analytical modeling, we first look at the concentration in only one
dimension. Later this can be used to compare with numerical results.

The aim of this model, is to derive an expression for the particle concentration as function of
time c(r, t) at x = 1

2W/β, where there are no acoustic forces in the x-direction, see figure 3.3.
In this case of no forces in the lateral direction, we can extend the result by Barnkob et al. [39],
and obtain an analytical solution.

5.1.1 Concentration profile at x = 1
2
W/β

In section 3.4.1, we reviewed the result of Barnkob et al. [39], where they calculate the movement
of a single particle in a transverse standing pressure wave.

Consider first a particle at y to time t, we calculate the starting position y0 by inverting
Eq. (3.17)

y0(y, t) =
W

π
arctan

[
tan (ky[y +W/2]) exp

(
− t

t∗

)]
for x =

1

2
W/β . (5.1)

At t = 0, we assume the distribution of particles to be uniform c(r, 0) = c0. Next, we consider
a thin cross-sectional slice of half the channel of length dx, close to x = 1

2W/β, with half-width
W/2 and height H, sketched from a top-view in figure 5.1.
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Chapter 5. Results - Non-interacting particle dynamics

Figure 5.1: Sketch of top-view of a slice of the micro-channel of thickness dx, height H and
half channel width W/2, at the position x = 1

2W/β. The number of particles dN between y0

and y0 + dy0 at time t = 0, must be conserved between y and y+ dy, at a later time t. Knowing
the initial particle concentration c0, the concentration at a later time c(y, t) is found by relating
dy0 and dy.

We now consider another particle, starting just in front of the first particle in Eq. (5.1),
with starting position y0 + dy0, see fig. 5.1. The two particles, span a small volume element
dV = H dx dy0. As the initial concentration is c(r, t) = c0 everywhere, the number of particles
between the two particles, placed at y0 and y0 + dy0, can be calculated as

dN = c0 dV = c0H dx dy0 for x =
1

2
W/β and t = 0 . (5.2)

As we are neglecting inertial effects, we know that the number of particles spanned by the two
particles, is conserved at later time t, now positioned between y(y0, t) and y(y0 + dy0, t). This
allows us to evaluate dy at position y at time t

dN = c(y, t)H dx [y(y0 + dy0, t)− y(y0, t)] = c(y, t)H dx dy(y0, t)
∣∣
y0(y,t) . (5.3)

Equating the two expressions for the conserved number of particles dN Eqs. (5.2) and (5.3), we
find that the concentration profile simply becomes the inverse derivative of y(y0, t)

c(y, t) = c0

(
d

dy0
y(y0, t)

∣∣∣∣
y0(y,t)

)−1

(5.4)

From Eq. (5.4), we note that if dy < dy0 the concentration goes up c(y, t) > c0, which is
physically reasonable as the same number of particles is distributed over a smaller volume, and
vice versa for dy > dy0.

Carrying out the derivative in Eq. (5.4), inserting y0(y, t) from Eq. (5.1), and changing variable
to the volume concentration φ(r, t), we find

φ (y, t) = 2φ0

[
sinh

(
t

t∗

)
sin2

{
arctan

[
tan (ky(y +W/2)) exp

(
−t
t∗

)]}
+ 1

]
for x =

1

2
W/β .

(5.5)

Because this result is an extension of Barnkob et al. ’s result in Eq. (3.17), which was largely
validated experimentally [39], Eq. (5.5) can be used for comparison with the numerical results
from COMSOL.

5.2 Two-dimensional analytical model

In the previous section we extended the result by Barnkob et al. [39] to find the non-interacting
volume concentration as function of time φ(y, t) at x = 1

2W/β. This was possible because we
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5.3. Concentration fields - non-interacting

neglected forces on the particles forces in the x-direction. In this section, we further extend this
analysis, to be valid at other x co-ordinates.

Again, we neglect the lateral forces (which are down by a factor β = 1/3, see Eq. (3.12)). We
note that y-dependence of Fac,y, remains constant along the x-direction sin(2kyy), see Eq. (3.12).
Therefore, we can view the x-dependence of Fac,y, as, simply a matter of modulating the am-
plitude of the radiation force Fac(x), along the x-direction. From the vector field plot of Fac in
figure 3.3, we see that the maximum force amplitudes occur at (x, y) =

(
1
2W/β,±

1
4W
)
. Inserting

y = −W/4 in Eq. (3.12), we find for the force amplitude of Fac,y

Fac,y(x) = 3VpEacky

[
1

3
f1 sin2(kxx)− 1

2
fRe

2

{
cos2(θ) cos2(kxx)− sin2(θ) sin2(kxx)

}]
︸ ︷︷ ︸

Φ2D(x)

. (5.6)

As indicated by the underbrace, we can view the x-dependence of Fac,y(x) as a ’pseudomod-
ulation’ of the ’two-dimensional’ contrast factor Φ2D(x). Because Φ2D enters directly in the
characteristic time scale t∗, see Eq. (3.18), we introduce the x-dependence directly into the
characteristic time scale

t∗(x) =
3η

4Φ2D(x)k2
ya

2Eac

=
3η

4k2
ya

2Eac

[
1

3
f1 sin2(kxx)− 1

2
fRe

2

{
cos2(θ) cos2(kxx)− sin2(θ) sin2(kxx)

}]−1

. (5.7)

This x-dependence, can be directly inserted in Eq. (5.5), giving the two dimensional concentra-
tion field if lateral forces Fac,x and diffusion are neglected D = 0

φ (r, t) = 2φ0

[
sinh

(
t

t∗(x)

)
sin2

{
arctan

[
tan (ky(y +W/2)) exp

(
−t
t∗(x)

)]}
+ 1

]
. (5.8)

5.3 Concentration fields - non-interacting

In this section, we will compare the results from the analytical models from the two previous
sections 5.1 and 5.2, with the numerical COMSOL model explained in section 4.2.2 and 4.3.

5.3.1 Concentration profiles at x = 1
2
W/β.

In the mesh convergence section 4.4, we showed that the numerical model has reached numerical
convergence. However, in order to rely physically on the results we now compare our numerical
model with the analytical results derived in Eqs. (5.5) and (5.8).

In Eq. (5.5) we derived the concentration profile φ(y, t) at x = 1
2W/β, neglecting diffusion

effects. This is plotted for different times t = {0.5, 1.0, 1.5, 2.0} t∗ in figure 5.2, where the dashed
lines denote the analytical theory from Eq. (5.5), and the full lines denote the numerical solution
by COMSOL of Eq. (3.29), in (a) without diffusion D = 0, and in (b) with diffusion D > 0.

In general, we see excellent agreement between the numerical and analytical model. Because
diffusion is minute and no interaction effects are included, the concentration φ(r, t) is inde-
pendent of particle size (2a) and initial concentration φ0. The first thing we note, is that the
characteristic timescale t∗ (see table 3.2) captures the behaviour of the particles. Within a few
t∗, a large fraction of the particles have gathered at the transverse pressure node at y = 0. In
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Chapter 5. Results - Non-interacting particle dynamics

(a), where diffusion is neglected (D = 0), we expect to have the most direct comparison between
analytics and numerics. We note a slight discrepancy between the two, emerging at t = 2t∗. This
could be due to the fact that the initial particle dynamics close to t = 0 are slightly different in
the analytical and numerical case. In the analytical expression Eq. (5.5) the acoustic radiation
force Fac,y is applied exactly at t = 0, which stands in contrast to the numerical solution of
Eq. (3.29), where the acoustic radiation force is applied with a step-function in time, centred
around t = 0, to improve numerical stability. The stepping time is set to be much smaller than
tstep ∼ 10−4t∗ � t∗, but this difference might account for the slight discrepancy between the
analytical and numerical result for t = 2t∗ in Fig. 5.2(a).

In (b), diffusion is included (D > 0) for a particle of size 2a = 10 µm. As expected , we
generally see diffusion to play a minute role for the particle dynamics. However, at large con-
centrations, we expect diffusion to slightly ”spread out” the particles, in contrast to the acoustic
forces, trying to focus them. This is observed in (b) for t = 2t∗, where the peak value of φ is
slightly lower than compared to its counterpart in (a). We believe the precise overlap between
the analytical and numerical when including diffusion, to be a coincidence in this case.

5.3.2 Non interacting concentration fields

Having found good agreement between analytics and numerics at line of x = 1
2W/β, we now

turn to the full two-dimensional concentration fields φ(r, t).

In Eq. (5.8), we calculated the concentration φ(r, t) analytically, by neglecting transverse
forces on the particles Fac,x. It is of interest to see how well the analytical model in Eq. (5.8),
compares against the numerical solution of Eq. (3.29), where effects of lateral forces Fac,x are
easily included.

In Fig. 5.3 we have plotted the analytical result for φ(r, t)/φ0 from Eq. (5.8) for evolving times,
and in Fig. 5.4 is shown its numerical counterpart of φ(r, t)/φ0 from solving Eq. (3.29), plotted
for the same time values. Comparing the two figures, we see very little difference between the
two. This implies that including only the transverse forces Fac,y on the particles when β ≤ 1/3,
captures much of the particle dynamics in the non-interacting case. However, we note the
effects of the lateral forces Fac,x which is pushing the particles to the sides, This slightly visible
in Fig. 5.4 (numerical) compared to Fig. 5.3 (analytical).

Inspecting Figs. 5.3 and 5.4, we see the particles accumulate in a ribbon of width ∼ 0.2W ,
centred around y = 0. To the sides of the domain close to x = 0 and x = W/β, where the
acoustic radiation force amplitudes go to zero, no focusing of particles takes place. This is
expected, since no interaction takes place between particles.

Because we have observed the differences between the analytical and the numerical model to
be very modest, we will now try quantify their differences more accurately, by introducing an
integral criterion.

5.3.3 Non-interacting particle focusing

We define the number of particles in a ribbon of width 0.2W , centred around y = 0 to time
t as Ncen(t). This is sketched in figure 5.5(a). Normalising by the total number of particles
N = φ0

Vp
HW 2/β, we define

Ncen(t)

N
≡
H
∫

cendAφ(r, t)/Vp

N
=

βVp

φ0W 2

W/β∫
0

dx

+W/2∫
−W/2

dy φ(r, t) . (5.9)

46



5.4. Concluding remarks

Physically, Ncen(t)/N expresses the fractional number of particles in the center ribbon of width
0.2W . In figure 5.5(b), we have plotted Ncen(t)/N for both the analytical and the numerical
model. For times t < 2t∗, the number of particles in the center ribbon Ncen(t) cannot almost not
be told apart in the two models. However, for larger times t > 2t∗, we see that the numerical
model, accumulates slightly fewer particles in the ribbon. This is due to the fact that the lateral
forces on the particles Fac,x pushes some of the particles to the side, away from x = 1

2W/β,
where the transverse forces Fac,y are strongest. This makes the particles in the numerical model
focus slower.

5.4 Concluding remarks

In this chapter, we have benchmarked the numerical COMSOL model against analytical models,
in the regime of no particle-particle interactions. Excellent agreement between numerics and
analytics was shown. Because the analytical model is an extension of an experimentally validated
result [39], confidence can be gained in the COMSOL model proposed in this thesis. With these
result in mind, we are now ready to investigate the results of the particle dynamics in the regime
where particle-particle interactions become significant, and we can no longer rely on analytical
results.
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Figure 5.2: Plot of the volume concentration φ(y, t) at x = 1
2W/β, compared to initial conc.

φ0, in the non-interacting case. The dashed lines, denote the analytical model (Eq. (5.5)), and
the full lines denote the numerical solution of Eq. (3.29), plotted for different times. (a) Diffusion
is neglected (D = 0), allowing for direct comparison between analytics and numerics. Note the
slight discrepancy between the cases, emerging at t = 2t∗. (b) Diffusion effects are included for
a particle of size 2a = 10 µm.

Figure 5.3: Analytical model of the concentration φ(r, t)/φ0 for times t = {0.5, 1.0, 1.5, 2.0} t∗,
derived in Eq. (5.8). The derivation disregards any forces on the particles in the lateral direction
Fac,x, and neglects diffusion. The grey bars denote the channel walls, and the white dashed lines
denote the periodic boundaries. Note the close resemblance with Fig. 5.4
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Figure 5.4: Numerical model of concentration φ(r, t)/φ0 for times t = {0.5, 1.0, 1.5, 2.0} t∗. The
plots are derived numerically in COMSOL from solving Eq. (3.29), with boundary conditions
in Eq. (3.31). The grey bars denote the channel walls, and the white dashed lines denote the
periodic boundaries. As time goes, the particles accumulate in a ribbon of thickness ∼ 0.2W ,
centered around y = 0. Note the close resemblance with Fig. 5.3

Figure 5.5: (a) Graphical illustration of the number of particles Ncen(t), defined in Eq. (5.9),
and N is the total number of particles. (b) Plot of the fractional number of particles in the
center ribbon Ncen(t)/N , defined in Eq. (5.9), and shown in (a), as function of time. The dashed
line denotes the analytical model, found by integrating Eq. (5.8) and the dashed line denotes
the integral of the numerical solution of Eq. (3.29). We see that for times t < 2t∗, almost no
difference in focusing is observable.
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Chapter 6

Results - Interacting particle
dynamics

In this chapter we investigate the interacting particle dynamics, with the particle-particle inter-
action effects, we discussed and modelled in Section 3.6. To understand the behaviour of the
various fields: concentration φ, fluid velocity v and pressure, we plot, for comparison all fields to
the time t = t∗. As discussed in Section 3.6.3, we expect the initial volume concentration φ0 and
the particle size 2a to be the important scaling parameters for the hydrodynamic interaction
effects. For this reason, we initially plot all fields in the four regimes sketched in Fig. 6.1.

Figure 6.1: Principal co-ordinate system, spanning the important scaling parameters in the
study of interaction effects in the particle dynamics.

The four regimes, will be spanned by the values

spanning values: φ0 = {10−5, 0.1} and 2a = {1, 10 } µm . (6.1)

In Section 3.4.2 we defined the critical streaming particle size 2astr ≈ 2 µm. For particle larger
than this value, acoustic streaming effects could be neglected. Since experimentally relevant
particle sizes are approximately < 10 µm, we take this as the upper particle size. Since we
want to investigate a significant differences in particle size, we choose 2a = 1 µm as the smallest
particle size, even if it is strictly below 2astr. It is therefore important to disclaim that streaming
effects will significantly influence the particle dynamics in an actual experiment for 2a = 1 µm.
However, it remains relevant in the sense of understanding the nature of interaction effects
of different particle sizes. For the initial volume concentration φ0, we choose φ0 = 0.1 as
maximum, because higher volume concentrations can causes clogging of the microchannel in the
experimental setup. At φ0 = 10−5, the average particle-particle distance is dp−p/2a = 41 (see
Fig. 3.5), and we expect particle-particle interactions to be negligible. By presenting results for
these ”extreme” values we aim to understand the differences of the particle dynamics in the
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Figure 6.2: Plot of the fluid pressure p, in terms of the characteristic pressure p∗, see Table 3.2.
All plots are for the time t = t∗. The pressure is shown in four different regimes of volume
concentration φ0 and particle size 2a, see Eq. (6.1). Large pressure gradients build up in the
y-direction, relieving the external volume forces on the fluid, exerted by the particles. The grey
bars and the vertical dashed lines, denote the channel walls and periodic boundaries, respectively.

interacting versus the non-interaction case. Knowing how the system behaves differently in the
interacting regime, we define critical values (φc

0, 2a
c) for which we predict the particle focus time

towards the channel center (see Fig. 5.5(a)) to have doubled compared to the dilute limit.

6.1 Fluid velocity and pressure fields

6.1.1 The fluid pressure p

To visualize the resulting pressure fields, we have in Fig. 6.2 plotted the pressure p in the four
different regimes, of initial concentration φ0 and particle size 2a, as indicated in Eq. (6.1). All
are plotted at time t = t∗.

In general, we see qualitatively very little difference of the pressure p, in the four regimes.
Quantitatively, we see that the maximum pressure difference, is slightly bigger in the high
concentration regime φ0 = 0.1. We confirm that large pressure gradients build in the transverse
direction, and note that the pressure force −∇p, points from center y = 0, towards the channel
walls. This is expected, since we argued in Section 3.6.3 that a lot of the external forces on the
fluid cFac, could be relieved by hydrostatic pressure forces −∇p. This assumption is further
confirmed in the fact that all pressure values lies between −0.6p∗ and 0, implying that the
essential physics for the pressure p, is captured by the characteristic pressure p∗, see Table 3.2

6.1.2 The fluid velocity v

In Fig. 6.3, we have plotted the fluid velocity v, for the usual values of initial concentration φ0

and particle size 2a, listed in Eq. (6.1). Again for times t = t∗
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Figure 6.3: Plot of the fluid velocity v, in terms of the characteristic fluid velocity v∗, see
Table 3.2. The color denotes the magnitude of the velocity, and the blue arrows denote the
direction. All plots are for the time t = t∗. The velocity is shown in four different regimes of
initial concentration φ0 and particle size 2a, listed in Eq. (6.1). Note that the velocity magnitudes
span over 5 decades and the plot velocities in (a), (b) and (c) are multiplied different factors in
order to be visible on the figure. The multiplication factors are: (a) 104, (c) 100, (b) 10 and (d)
1. Note how the direction of the fluid convection rolls in (b) and (d), are from the walls towards
the center at y = 0, and vice versa in (a) and (c). The grey bars and the vertical dashed lines,
denote the channel walls and periodic boundaries, respectively.
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In general, we see qualitatively similar behaviour of the fluid velocity v in all four regimes.
To understand the pattern of the velocity field v, we consider at first, only Fig. 6.3(b). As the
particles are pushed towards the transverse pressure node at y = 0 (see Fig. 3.4), the particles
drag the fluid along. Because the acoustic radiation force is strongest at x = 1

2W/β, a convection
rolls is established with the fluid flowing from the channel sidewalls and towards the pressure
node at y = 0. These flow rolls will essentially help the particle transport from the bulk, and
towards the center at y = 0. Considering all the subfigures in Fig. 6.3, the careful reader might
notice that the convection rolls are flowing in opposite directions for φ0 = 10−5, compared to
φ0 = 0.1: in Fig. 6.3 (a) and (c) the fluid is flowing from the transverse pressure node at y = 0,
and towards the walls. And vice versa for Fig. 6.3 (b) and (d). This difference is explained
in detail in Section 6.3 as it is a result of the transient particle dynamics, taking place in the
channel. In Section 6.3, it will also become clear why the shape of the convection roll in (d), is
slightly different compared to the others.

In order to compare the fluid velocity magnitudes in Fig. 6.3(a)-(d) we have multiplied the
velocity magnitudes in (a),(b) and (c) by factors of 104, 10 and 102, respectively, for them to
visible in the plot. Quantitatively, we the see the velocity amplitudes in Fig. 6.3 span over
five decades of amplitude, in terms of the characteristic fluid velocity, chosen as the maximum
particle convection velocity v∗ = up. The lowest velocities are seen in Fig. 6.3(a), where the
amplitudes on the plot are multiplied by 104, to make the velocity magnitudes visible. The high-
est amplitudes are observed in (d), where the velocities approximately reflect the characteristic
fluid velocity v ∼ v∗. As the number of particles goes up, so does the number of point forces
acting on the fluid. It therefore reasonable to find the largest fluid velocity magnitudes v, in
the regime with large volume concentration φ0, and smallest particle size 2a, giving the highest
number of particles N .

6.2 Concentration fields

In Fig. 6.4, we have plotted the volume concentration φ, for the usual values of initial concen-
tration φ0 and particle size 2a, listed in Eq. (6.1). All for times t = t∗.

In general, we see the qualitative similar behaviour of the concentration fields φ in of the four
regimes (a)-(d). In the center atx = 1

2W/β where Fac are strongest the particle are again pushed
towards the transverse pressure node at y = 0, and very little activity is observed to the sides
at the vertical symmetry lines. In the high concentration regime, see (b) and (d), we observe a
qualitative difference between the fields. For the case of small particles in (d) where the fluid
convection rolls have high velocities compared to large particles in (b), see Fig. 6.3(b) and (d),
the convection rolls have squeezed the concentration profile at y = 0 more flat and to the sides
compared to (b).

Quantitatively, large differences are observed. We see that in the high concentration regime
φ0 = 0.1, see (b) and (d), the particle focusing is much slower compared to the dilute regime
φ0 = 10−5, in (a) and (c). This is due to the drastically decreased particle mobility. At φ = 0.1,
the relative mobility is down by a factor χ(0.1) = 0.332, compared to χ(10−5) = 0.97, see
Eq. (2.31). To quantify the influence of the various interaction effects more accurately, we
derive the effective particle focusing in Section 6.3 in analogy with Fig. 5.5(b).
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Figure 6.4: Plot of the volume concentration φ, in terms of initial concentration φ0. All
plots are for the time t = t∗. The concentration is shown in four different regimes of volume
concentration φ0 and particle size 2a, see Eq. (6.1). In all caes, particles are pushed towards
the transverse pressure node, at y = 0. In the high concentration regime φ0 = 0.1, (b) and
(d), particles are seen focus a lot slower, compared to the dilute regime, see (a) and (c). The
grey bars and the vertical dashed lines denote the channel walls and the periodic boundaries,
respectively.

6.3 Particle dynamics over time

In order to understand the different flow directions and shapes of the fluid velocity fields v,
discussed in Section 6.1, we must look closer at the transient development of the concentration
φ and fluid velocity v.

We therefore plot corresponding concentration φ and fluid velocities v, for evolving times
t = {0.625, 1.25, 1.875, 2.5, 3.125}t∗, for the values (φ0, 2a) = (10−3, 5 µm). This is shown in
Fig. 6.5.

In Fig. 6.5(b) at time t = 0.625t∗ we see that a convection roll is established with the fluid
flowing in direction from the channel walls, and towards y = 0. This is caused by particles, being
driven from the bulk of the fluid, towards the center y = 0. The effect is seen in (a), where we
start to see the bulk fluid, slowly being emptied for particles. As the bulk fluid is continuously
emptied for particles (c), the ”driving force” cFac of the convection roll, begins to weaken,
causing the convection roll to slightly change shape, and move to the sides (d). Going back to
Fig. 3.3, we closely inspect the radiation force Fac, close to the center point (x, y) =

(
1
2W/β, 0

)
.

On the line where y = 0, we see modest forces in the x-direction, towards the center point. As
particles are continuously accumulating at exactly this line segment, see Fig. 6.5(e), the force
on the fluid in the x-direction towards the center point c Fac,x, continues to grow in strength.
This causes the formation of a new convection roll (f), now flowing in the opppsite direction,
compared to earlier (a). As particles are accumulated further (g), the counter-flowing convection
rolls gain in strength, and the original convection roll (a) begin to die out (h). Eventually, the
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Figure 6.5: Corresponding plots of volume concentration φ and fluid velocity v, for evolving
times t = {0.625, 1.25, 1.875, 2.5, 3.125}t∗, denoted by the vertical time axis. All plotted for
the values of initial concentration and particle size (φ0, 2a) = (10−3, 5 µm). At first (a) one
convection roll appears due to the forces from the particles. As time passes, the first flow is
initially replaced by another counter-flowing convection roll (j), due to the build-up of lateral
forces at the transverse pressure node y = 0. A full description of the sequence of events seen in
the figure is given in the text of Section 6.3. The grey bars and the dashed vertical lines denote
the channel sidewalls and periodic boundaries, respectively.
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counter-flowing convection roll will overtake the whole velocity field (j).

This transient behaviour explains the difference in convection rolling direction, seen in Fig. 6.3.
At time t = t∗, the particle focusing in the high concentration regime φ0 = 0.1, see Fig. 6.4(a),
(c) compared to Fig. 6.4(b), (d), has not yet emptied enough particles in the bulk fluid to stop
the original flow roll. In terms of convection roll ”phases”, the velocity fields in Fig. 6.3(b)
and (d), are still in the ”phase” depicted in Fig. 6.5(a). The different form of the convection
roll shape of Fig. 6.3(d), can now also be understood, as it is beginning to move slighty to the
side, corresponding to the ”phase” shown in Fig. 6.5(d). We saw in Fig. 6.4 that particles focus
much faster in the dilute regime φ0 = 10−5 due to the much higher relative particle mobility
χ(10−5) = 0.97 compared to χ(0.1) = 0.332. This explains why the dilute regime velocity fields
in Fig. 6.3(a) and (c) already at time t = t∗ have focused enough particles to be in the last
”convection roll phase”, shown in Fig. 6.5(j).

6.4 The Influence of different interaction effects

In Fig. 6.4, we saw that the time scale for particle focusing in the interacting regime, was far
slower compared to the non-interacting case. To quantify the differences more precisely, we
examine how fast particles are focused to the transverse pressure node at y = 0. For this, we
reuse the concept of fractional number of particles in the center Ncen(t)/N defined in Eq. (5.9)
and sketched in Fig. 5.5(a). By using the same values of initial concentration φ0 and particle
size 2a as listed in Eq. (6.1), we plot Ncen(t)/N in the four regimes. This will clarify how the
various hydrodynamic interaction effects influences the focus time.

Since we have introduced different particle-particle interaction mechanisms, it will be useful
to study their impact individually. InFig. 6.6 we have plotted Ncen(t)/N in the four different
regimes listed in Eq. (6.1) with separated interaction effects. All plotted for times t ∈ [0, 4t∗].

Red curves: no interaction effects, solving Eq. (3.29) with quiescent fluid v = 0 and unchanged
particle mobility χ = 1.
Blue curves: Interacting through decreased particle mobility, solving Eq. (3.36a) with quiescent
fluid v = 0, but modified particle mobility χ < 1.
Green curves: Particles interaction only through the velocity field, solving Eqs. (3.36a), (3.37)
and (3.38) with v 6= 0 but unchanged particle mobility and effective viscosity χ = ψ = 1.
Magenta curves: All interaction effects, solving Eqs. (3.36a), (3.37) and (3.38) with v 6= 0,
χ < 1 and ψ > 1.

In the non-interacting regime φ0 = 10−5 (see (a) and (c)), we wee that all four curves, collapse
on the same curve, confirming that the particle transport is well described by the single particle
theory in Eq. (3.29). In the interacting regime φ0 = 0.1 (see (b) and (d)), we clearly see drastic
changes in the particle focusing. Comparing the red and the green curves, we see that the
coupling to the fluid velocity v, has very little influence on the particle focusing before t < 2t∗.
At larger times, the fluid velocity v does have some influence: because the fluid is ”whirling”
the particles around, it is able to transport particles from the sides, close to the symmetry lines
at x = {0,W/β}, to the center at x = 1

2W/β, where the acoustic radiation forces are strongest,
after which they are focused. As expected, this effect is more pronounced for the smaller particles
2a = 1 µm where higher fluid velocities v are had, see Fig. 6.3. Comparing the red and green
curves in (d) for times t < 2t∗ in (d), we see by careful inspection that the curves cross twice.
Before t < t∗, the convection roll direction is slightly ”aiding” the particle transport towards the
transverse pressure node, thus, the green curve has the highest value. This changes after t & t∗

because the convection roll direction reverses, thereby slightly ”slowing” the particle focusing
causing the red curve to have the highest value.
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Figure 6.6: Plot showing particle focusing in the center ribbon of width 0.2W sketched in
Fig. 5.5(a). Plotted as fractional number of total particles Ncen(t)/N defined in Eq. (5.9). (a)-
(d) show for the four regimes of initial volume concentration φ0, and particle size 2a, listed in
Eq. (6.1).The different colors represents the inclusion of one or more particle-particle interaction
mechanisms. The various curves are: Red: no interaction effects, solving Eq. (3.29) with
quiescent fluid v = 0 and unchanged particle mobility χ = 1. Blue: Interacting through
decreased particle mobility, solving Eq. (3.36a) with quiescent fluid velocity v = 0, but modified
particle mobility χ < 1. Green: Particles interaction through the velocity field, solving Eqs.
(3.36a), (3.37) and (3.38) with v 6= 0 but unchanged particle mobility and effective viscosity
χ = ψ = 1. Magenta: All interaction effects, solving Eqs. (3.36a), (3.37) and (3.38) with
v 6= 0, χ < 1 and ψ > 1.
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Figure 6.7: Simulation of five particle trajectories for times t ∈ [0, 2] t∗ in the regime of high
volume concentration φ0 = 0.1 for two different particle sizes: (a) 2a = 10 µm and (b) 2a = 1 µm.
The trajectories are denoted by blue lines, and the circle denote their end position at t = 2t∗. As
background is plotted their respective fluid velocity fields at the last timestep in the simulation
t = 2t∗. The grey bars and the dashed vertical lines denote the channel sidewalls and the
periodic boundaries, respectively. Note the difference fluid velocity magnitudes in the two plots,
giving rise to very different particle trajectories.

Inspecting all four curves in (b) and (d), we see that the decreased particle mobility χ(0.1) = 0.322
(blue and magenta) is the most dominant effect for the net particle transport in our case. Com-
paring the red and green curves with the blue and magenta curves in Fig. 6.6(b) and (d), we
that the particle focusong speed for times t < 2t∗ are looks to down by approximately a factor
three. Very little difference is seen between the blue and the magenta curves, which means that
including the coupling to the fluid velocity v on top of decreased particle mobility effects (χ > 1)
does not yield a large difference in net particle movement.

Particle movement

From Eq. (3.36b), we recall that the convective and acoustic drift contributions to the particle
current density Jp, were comparable by the velocities v and χ(φ)uac. Having chosen the char-
acteristic fluid velocity as v∗ = uac, we note that the fluid velocity in Fig. 6.3(d), reaches values
v = 3.5v∗ = 3.5uac. In this light, it seems counter intuitive that the inclusion of convection
effects v 6= 0, make so little difference in the net focusing of particles, see blue and magenta
curves in Fig. 6.6(d). To investigate this intuitive discrepancy, we have simulated the trajectory
of five particles in the high concentration regime φ0 = 0.1 for two particle sizes 2a = {1, 10} µm
for the times t ∈ [0, 2] t∗. Due to their difference in fluid velocity magnitudes, see Fig. 6.3(b) and
(d), different particle trajectories are expected. The particle trajectories for the five particles
are plotted in Fig. 6.7 along with the corresponding fluid velocity fields v for time t = 2t∗.

From Fig. 6.7, we see that the five particles have quite different different trajectories for the
two different particle sizes. In (a) we see the particles primarily move towards the transverse
pressure node at y = 0, and are only slightly affected by the fluid convection. For the small
particles 2a = 1 µm in (b), the picture is quite different, the particles strongly affected by fluid
convection, carrying them along while simultaneously being slightly pressed towards y = 0.
This simulation clearly explains why the net transport of the particles are almost the same,
with and without fluid convection. When including fluid convection, additional particles get
”whirled in”, like the ones we see in Fig. 6.7(b). This stands in contrast to (a), where the
outermost particles remains almost stationary. However, as additional particles get ”whirled
in”, a number of particles also get ”whirled out” in return, almost cancelling the additional
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particle contribution. This gives us the following physical picture. In the weakly convecting
case Fig. 6.7(a), the particles experience a steady focusing towards the pressure node, compared
to the strongly convecting case Fig. 6.7(b), where the particles are in net, also being transported
towards y = 0, but are undergoing a ”rolling motion”, as they do so. This explains why very
little difference is seen between the concentration fields in Fig. 6.4(b) and (d) since no velocity
information is revealed by concentration values.

The overall conclusion is therefore that the hydrodynamic coupling is crucial for describing the
behaviour of small particles in the high concentration regime, but for the purposes of net particle
focusing in our geometry, the net effect is minute. We therefore propose a new characteristic
time scale for the particle focusing τ∗, involving the change in relative particle mobility

6.4.1 Timescale for particle focusing τ ∗

Based on the discussion in the previous section of the observed changes in particle dynamics at
high volume concentration, we propose a new characterstic mobility timescale for the particle
transport, involving the relative mobility decrease of the initial volume concentration

τ∗ ≡ t∗

χ(φ0)
, (6.2)

Here, our usual characteristic timescale t∗ is given by Eq. (3.18), and the relative particle mobility
is given by Eq. (2.31). For our present cases of φ0 = {10−5, 0.1}, the mobility timescales become
τ∗ = {1.03, 3.1}t∗, respectively. Using this timescale instead of t∗, we can collapse all 16 curves
from Fig. 6.6, into one plot, see Fig. 6.8.

We use the same color notation as in Fig. 6.6. The line symbols denote the parameter sets
of initial concentration φ0, and particle size 2a. We note that blue and magenta curves for
φ0 = 0.1, were not successfully simulated beyond times ≈ 1.8τ∗. This was due to build-ups
of too high numerical concentration gradients, making COMSOL unable to simulate for longer
times with our current model.

For times shorter than t < t∗, the rescaling captures the particles dynamics as all curves almost
collapse to a single line. For longer times, we see the blue and magenta lines for φ0 = 0.1, start
deviating slightly from the other curves. This is due to the fact that mobility is not constant
in the simulation, but changes with the local volume concentration φ(r). The spatial variations
make particles focus overall slower, than predicted by the mobility timescale τ∗. We conclude
that the mobility timescale τ∗ implemented here captures the overall essence of particle focusing
dynamics of the different interaction effects.

6.5 Critical regions for particle-particle interactions

Until now, we have only looked at extreme parameter values for particle size 2a, and volume
concentration φ0. This has allowed us to build intuition as to how concentrated suspensions are
expected to behave, compared to the well characterised dilute suspensions. However, we have
thus so far no insight into when particle-particle interactions become significant for the particle
behaviour. To investigate this, we introduce a particle focus time tfoc. We denote the fractional
number of particles that the non-interacting particle dynamics Eq. (3.29) is able to focus in
t = 1 t∗ as Nfoc/N = Ncen(t∗)/N , i.e the value of the red curves at t = t∗ in Fig. 6.6 which
is found to be Nfoc/N = 0.3204. From this we define the focus time tfoc(φ0, 2a) as the time it
takes, using the parameter set {φ0, 2a}, to focus Nfoc/N particles when including all interactions
effects, given by the magenta curves in Fig. 6.6. This will reveal how much slower the particle
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Figure 6.8: Data collapse of all 16 curves from Fig. 6.6 in one plot, using the timescale τ∗,
defined in Eq. (6.2). The colors denote: Red: no interaction effects, solving Eq. (3.29) with
quiescent fluid v = 0 and unchanged particle mobility χ = 1. Blue: Interacting through
decreased particle mobility, solving Eq. (3.36a) with quiescent fluid velocity v = 0, but modified
particle mobility χ < 1. Green: Particles interaction through the velocity field, solving Eqs.
(3.36a), (3.37) and (3.38) with v 6= 0 but unchanged particle mobility and effective viscosity
χ = ψ = 1. Magenta: All interaction effects, solving Eqs. (3.36a), (3.37) and (3.38) with
v 6= 0, χ < 1 and ψ > 1. The symbols denote the specific parameter set of initial volume
concentration φ0 and particle size 2a, see Eq. (6.1). Note that all curves for φ0 = 10−5 have
collapsed on the red line. Note that blue and magenta curves, for φ0 = 0.1, were not successfully
simulated beyond times of 1.8τ∗.
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Figure 6.9: Contour plot of the particle focusing time tfoc(φ0, 2a), defined as the time it takes
to focus the same number of particles, when including all interactions for the values {φ0, 2a}, as
the non-interacting particle dynamics is able to in the time t = t∗. I.e tfoc is the time it takes
for the magenta curves in Fig. 6.6, to reach the value of the red curves at t = t∗. The plots are
based on 81 parameter sweeps of {φ0, 2a}. (a) Plotted in terms of t∗, see Eq. (3.18), and (b) in
and in terms of τ∗, see Eq. (6.2). Blue contour lines are shown, revealing when particle-particle
interactions become increasingly significant for the particle focusing time. In (b) we begin to see
the influence in focus times for different particle sizes 2a as we scale the times with the mobility
time scale τ∗.

Table 6.1: Summary of the approximate initial volume concentration values φ0 where the
the particles focusing time tfoc increases to certain values, see Fig. 6.9(a). Given along with
the corresponding average particle-particle distance in terms of particle diameter dp−p/2a, see
Eq. (3.26).

tfoc/t
∗ 1.1 1.2 1.5 2.0

φ0 T
22

2× 10−4 1× 10−3 1× 10−2 3× 10−2

dp−p

2a
14 8 3.2 1.9

focusing becomes, compared to the dilute limit, from including the particle-particle interactions
assumed in this thesis. Based on 9 × 9 = 81 parameter sweeps of {φ0, 2a}, we have in Fig. 6.9
plotted tfoc(φ0, 2a), in the regime of interest, though above the critical particle streaming size
2astr = 2 µm.

From Fig. 6.9(a) where tfoc is plotted in terms of t∗, we see that the particle size 2a has
very little influence on the particle on the overall focusing time, making the blue contour lines
practically vertical. We note by the blue contour lines that a 10% percent increase in the
particle focusing time is achieved at φ0 ≈ 2 × 10−4, which is remarkable. The initial volume
concentrations approximately corresponding to the blue contour lines in Fig. 6.9(a), is listed
in Table 6.1, with corresponding average particle-particle distances dp−p (see Eq. (3.26)). We
conclude from the blue contour lines that the critical initial volume concentration where the
focus time has initially doubled tfoc = 2t∗ is approximately φc

0 ≈ 0.03. No specific critical
particle size 2ac can be determined from our findings as the focus time is seen to depend almost
solely on the volume concentration φ0.
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We confirm from Fig. 6.9(a) that at an initial volume concentration of φ0 = 0.1, the focusing
time have increased approximately a factor three, corresponding to the description of the char-
acteristic mobility time τ∗, defined in Eq. (6.2). To see the difference in particle size, we have in
(b), plotted the focusing times in terms of τ∗. In general we see only slight deviations from the
scaling by τ∗, by little over 12%. However, we confirm that particle focusing times are slightly
faster for smaller particles, as the effect of fluid convection slightly increases the acoustophoretic
focusing speed.

6.6 Concluding remarks

In this chapter we presented results for the behaviour interacting particle dynamics. All results
was presented in four regimes: dilute and concontrated suspensions, for both small and large
particles. As a general result we conclude that the overall particle dynamics slows down for
increasing volume concentration φ0. Using the notion of focus time tfoc, defined in Section 6.5
, we find that the critical initial volume concentration to be approximately φc

0 = 0.03. We find
the effects of fluid convection to be important in the description of the particle dynamics for
concentrated suspensions. However, for the geometry and acoustic fields investigated here the
net gain in particle focusing due to convection, proved to be minute. In the next chapter we
draw perspective to these results by comparing with experimental data, and we discuss strengths
and weaknesses of the model in the light of these findings.
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Chapter 7

Comparison with preliminary
experiments and discussion

In this chapter we aim to see the results presented so far, as well as the thesis work as a whole,
in an objective and broader perspective. In the aim of giving an experimental perspective we
have as a part of this thesis work designed and made preliminary experiments in collaboration
with an experimental group at Faculty of Engineering at Lund University, as the first basic steps
in experimental validation.

We discuss some physical effects that has been omitted in the theoretical treatment, as well
the strength and weaknesses of our proposed model framework. On the basis of these discussions,
we will make suggestions for further work.

7.1 Comparison with preliminary experiments

As a part of this thesis work, we have collaborated with an experimental group at Faculty of
Engeneering at Lund University (LTH), headed by professor Thomas Laurell. In particular we
have collaborated with postdoc Kevin Cushing. The design and treatment of these experiments
should be seen as the first basic steps, in the experimental investigation of particle-particle
interactions of micro-particle acoustophoresis, and are as such an addition to the main modelling
work of this thesis. All raw data and experiments were performed by post doc Kevin Cushing,
LTH, and all data analysis and processing were performed by the author.

7.1.1 Experimental setup

The experimental setup is identical to that described in Chapter 3, with channel width W =
373 µm, length L ∼ 4 cm, and height H = 157 µm, see Fig. 3.1. In the experiment we identified a
part of the acoustofluidic channel, where the lateral modulation of the acoustic fields takes place
over a few channel widths ∼ 3W . Next, particle suspension were made polystyrene particles of
sizes 2a = {1, 3, 5} µm with volume concentrations φ0 = {0.001, 0.01, 0.1}. To properly ”see” all
the particles in the channel, it proved a good solution to have a small fraction of the particles
to be coated with a fluorescent dye. In order to later characterise the many particle dynamics,
we first characterised the acoustic fields in the dilute limit
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Figure 7.1: Polystyrene particles of size 2a = 5.1 µm are focused to the transverse pressure node
in the center, at a chosen location in the channel, giving an estimate of the lateral modulation
of the acoustic fields. The image is taken after time t = 3.02 s. The full length of the lateral
modulation takes place on a length scale of approximately 9W , and the local modulation is seen
to happen on a length scale similar to β/W . The green and red rectangles denote areas we use
for investigation in this and the next subsection. Raw image courtesy of Kevin Cushing, LTH.

7.1.2 Characterisation of the acoustic field

The acoustofluidic channel is operated at a peak-to-peak voltage of V = 7.4 V at a frequency of
f = 1.96 MHz. To estimate the lateral modulation of the acoustic fields, we focus a number of
polystyrene particles of size 2a = 5.1 µm, and examine the particle distribution after t = 3.02 s,
see Fig. 7.1.

From the particle distribution in Fig. 7.1, we see that the full length of the lateral modulation,
happens on a length scale of approximately 9W . The local modulation of the ultrasound, from
strong to weak, see red dashed rectangle in Fig. 7.1, takes place on a length scale, similar to
what have been assumed earlier ∼W/β.

In order to be able to find the characteristic timescale t∗ we calculated the acoustic energy
density Eac from measurements. To do this, we examined the transient focusing of 2a = 5.1 µm
polystyrene particles where the acoustic radiation forces are strongest, denoted by the green
dashed rectangle in Fig. 7.1. 14 image frames from t = 0 to t = 350 ms were analysed in the of
area of the green rectangle in Fig. 7.1. A close up of the particle focusing in the green rectangle
is shown for two different times in Fig. 7.2(a) and (b).

We used a Matlab toolbox called PTVlab [44] to track and evaluate the velocities of the
particles. Since the particle velocities are proportional to the acoustic radiation forces up ∝ Fac,
we can represent the particle velocities by a time independent velocity field, being a function
of position only up(x, y). In the area of the green dashed rectangle, we averaged the particle
velocities over 14 frames, and plotted y-component of the velocity up,y(x, y) in Fig. 7.2(c).
Within the green dashed area we assume two things: 1) No lateral modulation ∂xup(x, y) ≈ 0,
and 2) The first-order pressure p1 has the form of a standing half-wave in the y-direction, as
sketched in Fig. 3.1. Thus, the wave numbers become (kx, ky) = (0, π/W ). From Eqs. (3.12)
and (3.13) the acoustic radiation force reduces to

Fac(y) = 3
π

W
VpEacΦ sin(πy/W ) ey . (7.1)

By balancing the acoustic radiation force with the unmodified drag force for a quiescent liquid
Fd = −6πηaup,y(y) ey (see Eq. (3.16)), we find the acoustic energy density

Eac =
2ηaup,yW

ΦVp
. (7.2)
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Figure 7.2: (a) and (b) : The particle velocities are measured inside the area of the green
rectangle, also shown in Fig. 7.1. Particle velocities up are evaluated between 14 image frames,
spanning between t = 0 (a) and t = 350 ms (b), raw image data courtesy of Kevin Cushing,
LTH. By particle tracking in Matlab [44], the time averaged y-component over 14 image frames
of the particle velocities up,y(x, y), are plotted in (c). The average value of up,y(x, y) is taken
over the x-direction in (c), to find the mean value up,y(y) and standard deviation, plotted in
(d), denoted by black dots and error bars. Lastly, a sine curve (blue line) is fitted to the center
data points (red dots), determing the velocity amplitude up,y.
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Note that we have let the identical sine dependencies of up,y(y) and Fac, drop out, leaving only
the amplitudes. By the taking the average of up,y(x, y) over the x-direction, we find the average
velocity up,y(y) and the standard deviation which is plotted in Fig. 7.2(d), denoted by the black
dots and errorbars. Close to the channel edges at y ±W/2, the velocities up,y deviate from the
expected shape a sine function due to increases in drag forces from the nearby walls [45, 43].
We therefore omit these outermost datapoints, denoted by full black dots. Lastly, we find the
amplitude velocity up,y, by fitting the red dotted data points to a sine curve (blue line) as seen in
Fig. 7.2(d). By insertion of the amplitude up,y in Eq. (7.2) we find the acoustic energy density
as Eac = 104 J/m3, which in turn allows us to determine the characteristic time scale t∗ for
various particle sizes (see Eq. (3.18)).

7.1.3 Behaviour of particles in different concentration regimes

To investigate the effects of particle-particle interactions in microfluidic acoustophoresis we recall
that polystyrene particle suspension were made with particles of sizes 2a = {1, 3, 5} µm, and with
volume concentrations φ0 = {0.001, 0.01, 0.1}. Unfortunately, time has not permitted rigorous
quantitative analysis of the experimental data, but instead we will here present some qualitative
findings. In Fig. 7.3 we show an image series of acoustophoretic particle-focusing for times
t = {5, 10, 15, 20} t∗ for two particle suspension with different initial concentration, but same
particle size 2a = 5 µm. In Fig. 7.3(a)-(d): Concentrated suspension φ0 = 0.1 and in (e)-(h):
Semi-dilute suspension φ0 = 0.001. The focusing of both suspensions is carried out in the same
spot of the channel, namely in the red dashed region in Fig. 7.1 where the acoustic radiation
force is seen to fan out. The images are seen from a top-view through the glass lid (see Fig. 3.1),
and the full image series from t = 0 to t = 20t∗ consists of 70 images.

First and foremost, we experimentally confirm from Fig. 7.3 that the particle focusing in
the concentrated regime φ0 = 0.1 in (a)-(d), happens on a much longer timescale, compared
to the dilute suspension (e)-(h). The prolonged focus time for the concentrated suspension,
corresponds approximately to what we expect from our model, namely that the focusing time
has increased several times, compared to the semi dilute suspension φ0 = 0.001 in (e)-(h), see
Fig. 6.9.

Particle movement during focusing

By inspection of both image series, we have manually tracked three different, easily identifiable,
clusters of particles, and marked them by symbols (#, � and 4). The arrows and dotted lines
denote the local particle velocity and approximate trajectories, respectively. For the concen-
trated suspension φ0 = 0.1 (a)-(d) all symbols are given in light blue #, � and 4, and the for
dilute suspension φ0 = 0.001 (e)-(h) all symbols are shown in red #, � and 4.

In the case of the dilute suspension φ0 = 0.001, see (e)-(h), we see as expected that the
particles go towards the transverse pressure node, with very little convective effects from the
fluid. A slight drift to the left is observed for the particles at the pressure node, see # in
(g). Because the particles at the right hand side of images (e)-(h) remains largely at rest, the
mentioned drift in the center is not due to a Poiseuille flow in the channel, but probably more
likely a hydrodynamic interaction effects. To understand this drift effect, investigation over the
full area in Fig. 7.1 is needed. We note that the focusing happens on very long timescales ∼ 20t∗,
compared to what we expect from this set of parameters, see Fig. 6.5. This may be because the
the acoustic radiation forces Fac are weaker than what we expect from employing standing wave
in both directions (see Fig. 3.3), which we assumed in our numerical simulations.
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Figure 7.3: Top view images showing acoustophoretic focusing of 2a = 5 µm polystyrene
particles in red dashed area in Fig. 7.1. For two suspensions with different initial concentration
but same particle size 2a = 5 µm. (a)-(d) Highly concentrated φ0 = 0.1. (e)-(h) Semi dilute φ0 =
0.001 The images for each dataset are for evolving times of t = {5, 10, 15, 20} t∗, representing a
total of 70 images from 0 < t < 20t∗. It is seen how the concentrated suspension, in (a)-(d),
exhibits a far slower particle focusing, compared to its dilute counterpart (e)-(h). The symbols
(#, � and 4) represent the local movement of manually tracked clusters of particles. The
arrows and the dotted lines denote the approximate local velocity and trajectory, respectively.
It is seen how the movement in the concentrated regime (a)-(d), exhibits a form of ”rolling
motion”, while the dilute suspension (e)-(h) are simple focused to the channel center. Raw
images courtesy of Kevin Cushing, LTH. 69
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Inspecting the high concentration φ0 = 0.1 in Fig. 7.3(a)-(d), we see that the particle be-
haviour changes radically. Following # in (a)-(d), we note how the center bulk of particles
are pushed to the right. This is visible in (c)-(d), where # have been displaced a relatively
large distance. The outer particles, represented by the blue square � and the green triangle 4,
are pushed to the left, while also being focused towards the transverse pressure node. Thus,
the liquid and particles almost performs a ”rolling motion”, while at the same time being fo-
cused. This is in some sense similar to the behaviour observed for simulated particle trajectories
in Fig. 6.7(b), though our simulations suggest that fluid convection effects would not so pro-
nounced for particle sizes of 2a = 5 µm. This could be due to the fact that the model by Happel
and Brenner [18] are too mild, giving estimates that are to low compared to the true values.
The experimental data suggests in this way that the actual enhanced effective viscosity ψ(φ)
might in fact be higher, and the particle mobility χ(φ) might in fact be lower.

7.2 Omitted physical effects

We touch upon some of the physical effects we have omitted in the theoretical approach taken
in this thesis.

7.2.1 Acoustic particle-particle wave scattering

One of the known particle-particle interaction effect that exists in ultrasonic acoustofluidics, is
the effects of higher order scattering events of the acoustic field [46, 47]. When an incoming
acoustic field scatters on a particle, other nearby particles feel the scattered field. This gives rise
to secondary acoustic radiation forces, known as Bjerknes forces, and was first discovered for
gas bubbles [48, 49]. As we are in the high concentration regime these effects might play a role
for the particle dynamics. However, because polystyrene particles in water can be considered as
weak scatterers [29], compared to the strong scattering by gas bubbles [48, 49], we have neglected
this effect in this thesis, seeing as it is a full research topic on its own.

7.2.2 Influence of acoustic streaming

Another phenomenon omitted in our theoretical description, is the acoustic streaming [24, 25].
In the context of discussing the influence of acoustic streaming, it is relevant to compare the
effects of convection rolls versus streaming rolls, see sections 6.1 and 2.2.2.

In Section 3.4.2 we defined and calculated the critical particle size 2astr = 2 µm, below which,
streaming effects are dominant. The critical particle size was defined as the turnover size 2astr

where the acoustic radiation force Fac becomes dominant over the streaming drag force 6πηavstr.
For streaming effects to become significant, we briefly consider particles of the critical size 2astr.

For particles of this size, we found the convection roll velocities to be of the order of the
chosen characteristic fluid velocity v ∼ v∗ = up, see Fig. 6.3. Where up is the particle velocity
in the dilute limit, given by up = Fac/(6πηa). This implies that around the critical particle size
2astr = 2 µm, the convection roll velocities are expected to be of the same order of magnitude
as the streaming rolls v ∼ vstr, making their drag force contributions to the particle dynamics
equally important.

From a biological viewpoint, it is of great interest to be able to acoustically manipulate
biological particles smaller than the critical particle size 2astr, e.g. separation of E. coli bacteria
where2a ≈ 1 µm, from other biofilaments [13]. Thus, in a study of very small particles in the high
concentration limit, inclusion of both streaming and convection rolls would indeed be necessary.
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7.2.3 Change of sound propagation properties

The sound propagation properties of the fluid is determined by the fluid compressibility κwa

and mass density ρwa. One could imagine that when the volume of concentration of particles φ
became significantly large, the effective sound propagation properties of the effective medium,
might change. In return this could change the resonance frequency of the system, which would
need to be recalibrated.

As a first approximation, one could try to identify an effective medium compressibility κeff and
mass density ρeff , including the particle compressibility κp and mass density ρp, and recalculate
the resonance frequency and the first-order acoustic fields v1 and p1, which in turn yields a
modified acoustic radiation force Fac,eff .

7.3 Model strengths and weaknesses

7.3.1 Model Strengths

When comparing the model qualitatively with experiment, it is clear that the model captures the
essence of the change in particle behaviour, for highly concentrated suspensions. Namely that
the particle focusing and movement slows down in general. This is due to the decrease in particle
mobility χ < 1 and increase in effective medium viscosity ψ > 1 for high concentrations, see
Fig. 2.3. These effective interaction effects turns out be imperative in the description of particle
focusing of highly concentrated suspensions. In some sense, this result is obvious, since focusing
of particles is fully equivalent to forcing the particles to move relative to the surrounding fluid,
which is exactly what the concept of particle mobility describes.

Moreover, the model captures the essential hydrodynamic coupling between the particles and
the global velocity field of the liquid v. Even though we saw that the net transport of the
particles was largely unchanged by inclusion of the fluid movement in our geometry, one could
imagine other systems where this coupling would be important in a correct description of the net
transport of particles. Mikkelsen and Bruus [38] considers a similar model for the coupling of
the fluid velocity v to particle transport Jp, but for a system of paramagnetic beads subjected to
an external magnetic field. The particle size considered is 2a = 1 µm, approximately similar to
what is considered in this thesis. They find that convective effects become significant at volume
concentrations around φ0 = 0.04, but do not consider the effects of changed particle mobility
χ(φ) and effective medium viscosity ψ(φ). At this level of volume concentrations, the particle
dynamics are significantly affected by the changed particle mobility χ(0.04) = 0.49 and effective
medium viscosity ψ(0.04) = 1.22 which may lead to very different conclusions than presented
by Mikkelsen and Bruus [38].

7.3.2 Model Weaknesses

Variance of the concentration field

In this description of the particles, we have disregarded the discrete nature of the particles.
Thus we describe only the mean values of all quantities. Therefore, in this description, no
information can be obtained about the expected variance of the respective fields. This could
become important when increasing the particle size, thus decreasing the total number of particles
and increasing the expected variances of the various fields.
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Numerical Stability

In our model formulation of the acoustophoretic particle focusing, the particles are so big that
diffusion effects are minute. Therefore, no steady state of the concentration field is reached in
the simulation before COMSOL eventually crashes. This is due to the build-up of very large
numerical concentration gradients. This problem is especially pronounced for simulations with
high number concentrations c, which implies small particles 2a and high volume concentration
φ. This is problematic because one of the goals with our model, is to predict the behaviour of
highly concentrated suspensions. This could possibly be resolved by making a time independent
flow-through model. In such a model we imagine particles continuously being flushed in from
one side of the computation domain Ω with a Poiseuille flow, and leave at the other side of the
computation, after being focused in an active acoustic force region in Ω. The concentration field
undergoing acoustophoretic focusing, could then be studied as function of particle size 2a and
initial concentration φ0. A model of this form would prevent transient the build-ups of very
large numerical concentration gradients, thereby possibly avoiding numerical crashes. In this
context it is worth mentioning that we do not expect these numerical issues to be the result
of too large mesh Péclet numbers1 , as this problem is observed in the COMSOL simulations
regardless of whether or not diffusion effects are in included.

Secondly, as the problem would no longer be transient, one could avoid solving for many time
steps. Lastly, a model of this form would have high experimental relevance as experiments are
often performed as ”flow-through”. Another way to possibly improve this issue, is to rewrite the
fluid dynamical equations directly in weak form, avoiding the in-built Creeping flow module in
COMSOL. This would allow for more direct control over the mathematical details in the model,
e.g. investigating the effects of choosing higher order basis function for the concentration and
fluid fields.

Model for effective viscosity and particle mobility

One of the important points for discussion in our model, is the approximative models used for
effective medium viscosity ψ(φ) and particle mobility χ(φ) by Happel and Brenner [18, 32], see
Section 2.3.

Because these corrections plays such a crucial role in the particle dynamics for concentrated
suspensions, it is important review the physical correctness of the model in an objective light.
We therefore re-examine the imposed boundary conditions in the cell model by Happel and
Brenner.

From Section 2.3 we recall that the boundary condition for the outer surface of the cell is
1) no-normal fluid velocity v · n|r=b = 0, and 2) no tangential stress. If just focusing on the
no-normal fluid flow condition, we imagine pressing an incompressible liquid through a stationary
assemblage of spheres. This is sketched in Fig. 7.4, for cases of increasing of volume concentration
φ.

In the figure it is seen how the boundary condition of no-normal fluid flow at the cell boundary
at r = b is violated v·n|r=b 6= 0, but becomes an increasingly better approximation as the volume
concentration increases, because the streamlines are forced to run increasingly parallel to the
cell boundary. From the principal sketch, we also note that the no tangential stress condition
is also violated, since this would require the streamlines to be symmetrical at all points around
the cell boundary at r = b.

1The Péclet number [5] is given as the ratio between convective and diffusive transport Pé = Jconv/Jdiff . The
mesh Péclet number is the Péclet number over the length scale of mesh element size dmesh. If the mesh Péclet
number is too big, it is known to cause problem when numerically solving convection-diffusion problems.
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Figure 7.4: Principal sketch for investigating the no-normal fluid flow condition v ·n|r=b = 0,
in the Cell model by Happel and Brenner [18, 32], see Section 2.3. In this sketch we imagine
some incompressible liquid, being pressed with velocity v through an assemblage of stationary
spheres. The situation is sketched for three cases of increasing volume concentration φ, with
inner particle radius a and outer cell radius b. It is noted how the no-normal fluid velocity at
the cell boundary is violated in the different cases v · n|r=b 6= 0, where n is denoted by blue
arrows. However, we note how the boundary condition becomes a better approximation for
larger volume concentrations.

For this reason, we have briefly reviewed what other models exists in the literature. In a review
paper from 2003 by Zeidan [30] 28 works are listed on this subject, using different calculation
methods, and for different regimes (dilute vs. concentrated). The most promising paper looks to
be a paper by Smith [50] from 1998 which mentions the models by Happel and Brenner [18, 32],
but tries to include that fluid can enter and leave the cells. Another review paper is that of
Barnea and Mizrahi from 1973 [51]. This paper is of more general interest, as it summarises
some of the different techniques used for calculating the effective viscosity and particle mobility
changes as function of volume concentration, along with some of the pros and cons of the different
approaches. In the literature it is pointed out that not only volume concentration φ influences
the viscous properties of particle suspensions, but also non Newtonian effects are also reported
to play a role [52, 53]. This along with effects of surface roughness of particles [54], and the
degree of flocculation(agglomeration) [55].

From this discussion it is clear that many factors exists within colloidal science that is able
to change the particle mobility χ and the effective medium viscosity ψ, and that the exact
dependence of χ and ψ on these factors quickly can become rather complicated. We therefore
conclude that a more thorough literature study is needed in order to clarify which improvements
one should use beyond Happel and Brenners Cell model.

7.4 Suggestions for further work

Based on the discussion in the previous sections we here list some suggestions for further work
that are natural to pursue.
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7.4.1 Experimental characterisation and calibration

Mapping the acoustic field

One of the uncertainties when comparing the numerical results with experimental data is the
exact form of the acoustic fields v1 and p1. Because the acoustic radiation force Fac is the
driving mechanism for the derivation for the particle dynamics, the specific form of the acoustic
fields v1 and p1 are vital in order to make quantitative predictions for the particle dynamics.
Augustsson et al. [36] showed that the lateral modulation of the acoustic field, in the channel
identical to the one used in the preliminary experiments, to be irregular and unpredictable from
simple theory. But they found the form of the acoustic fields to be reproducible and stable in
time. This would allow us to precisely map the acoustic field a certain part of the channel, and
from this derive the precise acoustic radiation force Fac to enter in our numerical model, for new
quantifiable predictions.

Calibrating particle concentration with pixel intensity

Another issue in order to make quantitative predictions is knowing exactly how the pixel intensity
is related to the concentration of the fluorescent microparticles in the raw images. We recall
from Section 7.1.1 that only a small fraction of fluorescent particles were added to represent
the full ensemble of particles. In our preliminary investigation of the data, we found that the
pixel-intensity saturates at a certain concentration of fluorescent particles. This could be solved
by making a precise calibration between pixel intensity and concentration of fluorescent micro-
particles in the channel. In this way one could choose the optimal dynamic working range of
concentrations of fluorescent microparticles, in which the concentration of fluorescent particles
could be directly related to the pixel intensity, and then simple vary the ratio of fluorescent to
non-fluorescent particles to stay within the dynamic working range.

7.4.2 Improved model for effective medium viscosity and particle mobility

Another improvement of the modelling framework is the approximative model used for the
changes of effective medium viscosity and particle mobility. Following the discussion of Sec-
tion 7.3.2, it is clear that a thorough literature study is needed to clarify what improvements
should be implemented. As a starting point we suggest the review paper by Zeidan [30] sup-
plemented by a study of the model by Smith [50]. On the longer term it would be of interest
to investigate the effects on viscosity of soft deformable particles. This would bring us one step
closer to a theoretical understanding of bioparticle suspensions in acoustophoresis. From a bio-
logical viewpoint this is an interesting scope since red blood cells in blood can occupy volume
concentrations of the order φ0 ∼ 0.4 [16].

7.4.3 Numerical Flow Through model and experiment

Another natural continuation of this thesis work is to develop a ”flow-through” model, mentioned
in the discussion on numerical stability in Section 7.3.2. The main advantages of such a model lies
in several aspects. Better numerical stability could possibly be obtained, along with the fact that
such a model would be time independent, allowing to solve for only one time step. Furthermore,
this type of model would allow for direct comparison between theory and experiment, directly
comparing the particle concentration profiles in the active focusing region. One could then study
these particle focusing profiles as function particle size 2a, concentration φ0 and other parameters
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of interest. Experimentally this would be easy to implement since continuous ”flow-through”
experiments are easily performed in acoustofluidics [8].
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Chapter 8

Conclusion and outlook

8.1 Conclusion

In this thesis we have developed a theoretical modelling framework for predicting the behaviour
of suspended microparticles undergoing acoustophoresis. The main focus has been on under-
standing how highly concentrated particle suspensions behave differently from the well known
dilute suspensions, characterised in previous works [37, 36, 43]. This was achieved by making
a series of simplifications allowing the formulation of a set of numerically solvable governing
equations. In this numerical framework we implemented two categories of particle-particle in-
teractions, giving rise to different behaviours in the dilute versus the concentrated regimes.
The first type of interactions, comes from the fact that the effective viscosity of the suspen-
sion and the Stokes drag force felt by particles increases, for increasing particle concentrations.
The second interaction effect arises from allowing the particles to transfer momentum to the
suspending fluid, setting it in motion. This motion introduces convective contributions to the
particle transport, thus influencing the particle dynamics.

We find that the interaction effects through enhanced effective viscosity and particle drag
forces, are by far the most significant interaction effect for the net transport of particles. This is
relevant for particle sorting and upconcentration purposes. As a general result, we conclude that
the particle dynamics slows down for increasing particle concentrations. Furthermore, we find
that for 1% particle volume concentration, the focus time has increased by ≈ 50%, and by volume
of 3%, the focus time has approximately doubled, thus exhibiting a non-linear dependence of the
particle concentration. Moreover, we conclude that the particle focus times depends minutely
on the particle size.

Since the particle suspension dynamics in our geometry are dominated by the enhanced vis-
cosity effects, we point out that the correctness of these result are limited to the correctness of
the model by Happel and Brenner [18], and we conclude that further studies in these models of
viscosity effects are needed.

In general we find that the second type particle-particle interactions, which is mediated by
the fluid convection, are important for a correct description of concentrated particle dynamics.
However, we find that this interaction effect has very little influence for the purposes of particle
focusing in our geometry. One could imagine other device geometries where the convective
contribution to the particle behaviour might become important for the net transport and focusing
of particles. This could possibly occur in acoustofluidic systems where the ultrasonic actuation
was confined to small parts of the channel [12], giving strong lateral modulation of the overall
particle dynamics.
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8.2 Outlook

Based on the suggestions for further work in Section 7.4, we here list three concrete steps for
improving the theoretical model framework. Thus enabling the model to make quantitative
predictions of the acoustophoretic particle dynamics in concentrated suspensions that can be
directly experimentally validated.

Acoustic characterisation and concentration callibration

In order to make quantitative predictions, the acoustic field used in the experimental system
needs to be characterised in detail. Augustsson et al. [36] showed the lateral modulation of the
acoustic fields in the channel to be irregular, and not directly predictable by theory. However,
they also found the acoustic field to be stable in time and reproducible. In this way, it would be
possible to map a specific part of the channel in detail. This would allow for a more physically
correct form of the acoustic radiation force, to enter in the numerical simulations.

Furthermore it is necessary to perform a series of calibration measurements in order to re-
late the image pixel intensity from the raw microscope images to the precise concentration of
fluorescent microparticles in the channel. Thus allowing quantitative measurements of particle
concentrations directly from images.

Model studies of particle mobility and effective viscosity

In order to further study the models for enhanced effective medium viscosity and drag force on
the particles, we suggest a literature study with a starting point in the review paper by Zeidan
[30], supplemented with the review by Barnea and Mizrahi [51] for more general background.
Furthermore, we suggest studying the extension of Happel and Brenners model by Smith [50].

From a brief discussion on some of the literature on these effects in Section 7.3.2, it is apparent
that these viscosity modifications might also depend upon other parameters, such as particle
surface properties or fluid shear rate [54, 55, 52, 53]. These consideration might be of relevance
on the longer term, as we ultimately want to model the behaviour of complex biological liquid
suspensions.

Theoretical flow-through model and experiment

With the above inputs for the modelling framework, we propose the development of a steady
state numerical ”flow-through” model. In such a model we imagine a homogeneous unfocused
particle suspension continuously being flushed in from one end of the computation domain. The
particles travel through an active acoustic region where they are focused, and leave at the other
end of the simulation domain. The concentration profile throughout the acoustic focusing region
could then be studied as a function of initial particle concentration and size, and be directly
compared with concentration profiles obtained in new flow-through experiments.
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Appendix A

Material parameters

List of relevant material parameters, see Table A.1

Table A.1: Relevant material parameters. Values given at ambient temperature 25 ◦C [20]

Water

Dynamic viscosity η = 0.893 ×10−3 Pa s
Mass density ρ = 0.998 ×103 kg m−3

Isentropic speed of sound vs = 1.497 ×103 m s−1

Polystyrene

Mass density ρps = 1.050 ×103 kg m−3

Isentropic speed of sound vs, ps = 2.350 ×103 m s−1
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Appendix B

Lambs solution to the Stokes
equation

We review some of the fundamental aspects of Lambs general solution to the Stokes equation
[34].

By taking the divergence of the Stokes equation (2.22a), and using the continuity equation
(2.22b), we see that the pressure has to obey a Laplace equation ∇2p = 0, Therefore, the general
solution in spherical co-ordinates, is an infinite sum of spherical harmonics

p(r, θ) =
∞∑

n=−∞
pn(r, θ) . (B.1)

For more information on the spherical harmonic functions, and determining then, see Lamb
[34], chapter 5. Again using spherical harmonic function, one can solve the homogeneous set of
equations

∇2vh = 0 (B.2a)

∇·vh = 0 , (B.2b)

where the subscript h, implies homogeneous velocity field, resulting in the solution

vh =

∞∑
n=−∞

(∇× (rfn) + ∇gn) , (B.3)

where fn, and gn are harmonic functions. The full solution is found by adding the gradient of
the pressure (B.1)

v =

∞∑
n=−∞

(
∇× (rfn) + ∇gn +

n+ 3

2η(n+ 1)(2n+ 3)
r2∇pn −

n

η(n+ 1)(2n+ 3)
rpn

)
. (B.4)

B.1 Solving the specific flow for the particle mobility problem

Next, the boundary conditions Eqs. (2.23) and (2.24) are used to determine coefficients for each
n in Eq. (B.4). To satisfy the boundary conditions, one can set fn = 0, and only retain the term
of gn and pn corresponding to n = −2 and n = 1, this implies that the velocity field simplifies
to

v = ∇g1 + ∇g−2 +
1

5
r2∇p1 −

1

10
rp1 +

1

2
r2∇p−2 + 2rp−2 . (B.5)
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Due to symmetry of the boundary conditions Eqs. (2.23) and (2.24), we are led to assume that

g1 = Az (B.6a)

p1 = Bz (B.6b)

g−2 = −C∂z
(

1

r

)
=
Cz

r3
(B.6c)

p−2 = −D∂z
(

1

r

)
=
Dz

r3
. (B.6d)

In the case of spherical harmonics, Brenner calculates the frictional force on a sphere, see [18],
section 3-2. By evaluating the Cauchy stress tensor at the surface of the sphere, and integrating
over the surface of the sphere, Brenner deduces the simple result

Fd = −4π∇(r3p−2) , (B.7)

implying that only the constant D, needs to be determined to calculate the modified drag force
on the sphere. Inserting Eq. (B.6d) in Brenners result for the drag force Eq. (B.7), it is clear
that Fd = −4πηD. From the boundary conditions Eqs. (2.23), (2.24) and (2.25), Brenner finds

D = aup
3 + 2φ5/3

2− 3φ1/3 + 3φ5/3 − 2φ2
. (B.8)

Inserting the value for D, the modified drag force becomes

Fd = −6πηa

[
2

3

3 + 2φ5/3

2− 3φ1/3 + 3φ5/3 − 2φ2

]
(up − v) , (B.9)
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