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Abstract

Taylor dispersion, is a well known and studied phenomena both in the physical and chem-
ical community. The phenomena occurs in nearly every flow where velocity gradients are
present for a solute distribution.
In this thesis the delta function also called the point concentration, will be investigated
with respect to the effects of the no flux wall boundary, and other anomalous effect will
be seen depending on the transverse placement.
These effects off the transverse placement for the point concentrations, is investigated
in the infinite parallel plate channel and a circular channel, for a steady flows, single-
frequency pulsating flows and a plus one frequency flow superimposed on the steady flow.
This is done by using Vedel and Bruus framework from ”Transient Taylor-Aris dispersion
in time-dependent flows”[1], to derive the effective diffusion for the point concentration.
The Taylor dispersion for a point concentration is also calculated for the non-Newtonian
fluids, The Power law fluid and the Casson fluid. Where these steady velocity fields are
implemented in the framework.
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Resumé

Taylor spredning, er et velkendt og studeret fænomen b̊ade i de fysiske og kemiske akademiske
miljø. Dette fænomen optræder i næsten alle flow, hvor hastigheden gradienter er til stede
for et opløst stof.

I denne afhandling delta funktionen eller punkt koncentrationen vil blive undersøgt med
hensyn til virkningerne af ikke flux randbetingelsen. Andre effekter vil ogs̊ablive un-
dersøgt med hensyn til tværg̊aende placering af point koncentrationen. Dette sker foreg̊ar
i en kanal med to uendelige store parallel plader og i en cirkulær kanal. Pulserende
strømme og punkt koncentration tværg̊aende placering er ogs̊aundersøgt, hvor forskellige
dynamikker ses afhængig af den tværg̊aende placering. Dette gøres ved hjælp af S. Vedel
og H. Bruus formel ”Transient Taylor-Aris dispersion in time-dependent flows” [1], til at
udlede den effektive diffusion for punkt koncentrationen. Taylor dispersion for punkt kon-
centrationen beregnes ogs̊afor nogle ikke-Newtonske væsker, The Power law fluid og the
Casson fluid. Hvor disse stabil hastighed felter er bliver indsat i formlen for dispersionen.
Dette er et dansk resumé af afhandlingen
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Chapter 1

Introduction

G.I. Taylor was the first to discover the enhanced solute diffusion due to shear from the
solvent flow [2]. He derived the well known result Deff = (1+Pé2/48)D where the channel
has a circular cross section of radius a and Pé = aUo/D where the flow was a steady
Poiseuille flow. With mathematical finesse Aris gained increased insight by using the
method of moments to solve the effective diffusivity [3] for a steady flow. Barton did some
further work, by changing some details of Aris [4]. Other work has been done on the shear
enhanced dispersion in steady flows[5, 6, 7, 8, 9].

In many circumstances where flows are unsteady and shear is generated by the ever chang-
ing gradient of the velocity field, this causes time-dependent changes in the effective dif-
fusivity Deff (t). Bruus and Vedel derived an expression for the effective diffusivity Deff(t),
that is a general expression for the transient effective Taylor Aris diffusivity for any lami-
nar time dependent flow, in any constant cross-sectional shape [1]. Previous research have
been done in transient analysis by Mazumder and coworkers [10, 11].

My thesis will investigate an delta function also called point concentration, were a con-
tinuation of Vedel and Bruus article ”Transient Taylor-Aris dispersion in time-dependent
flows”[1] is used. The mathematical procedures and principles comes from this article.
Earlier work have been done by Latini and Bernoff; Were the anomalous spread of the
delta function in the transverse direction was investigated, where they neglected the pipe
wall boundary [12]. Camassa investigated the transient behaviour with anomalous diffu-
sion of a steady flow and also applied solid wall boundary conditions, and found a exact
evolution [13].
In this thesis the delta function or the point concentration will be investigated with respect
to the effects of the no flux wall boundary, and other transients anomalous effect will be
seen depending on the transverse placement. A the steady region is found where all the
initial point concentrations converges to the value of the uniform distribution in the cross
sectional steady effective diffusion DPoint

effSteady(r⊥, t) = Dsteady
eff .

These investigations is done in the infinite parallel plate channel and a circular channel,
for steady flows, single-frequency pulsating flows and for a plus one frequency flow super-

1



2 CHAPTER 1. INTRODUCTION

imposed on the steady flow.

The point concentration is often used in biophysics to simulate an injection of a substance.
In medicine a concentration is injected with a narrow needle and often the point concentra-
tion is a good approximation and presents nice mathematical behaviour. Dispersion effects
are created in pulsating flows that could occur in the Cardiovascular System. Dependent
on initial placement of the point concentration, the anomalous diffusion DPoint

eff (r⊥, t) will
change.
Womersley solved the velocity field for an oscillating pressure with a mathematical simple
treatment, which had strong similarities with the distribution of alternating current in a
conductor of finite size [14]. Pulsating flows occurs in the terminal arteries to the aorta
with different velocity profiles depending on the Womersley number.

Besides the ordinary Newtonian fluid, Non-Newtonian fluids effective diffusivity will also
be investigated. Since Blood is a fluid which is non Newtonian, different models are used
to describe it. Two models will be presented; the Power Law fluid with shear thinning
properties and the Casson model. An other model is often used the Carreau-Yasuda
model, but I will refrain from using it[15], [16] and [17]. Research in Taylor dispersion
with regards to the non Newtonian fluids and capillaries is an ongoing subject [15].

1.1 Lab on a chip devices application to bioscience

Lab on a chip is a fast growing field both theoretically and industrially. Lab on a chip
systems are small and typically deal with samples of the size 1 µL to 1 pL, giving the
possibility for an easy transport of the devices and a fast analysis on locating[18]. New
lab on a chip system is developing for example a cheap and portable medical test that
makes different genetic tests [19]. Also acoustophoresis is used in lab on a chip devices, to
separate species via acoustic waves, this is a new field in rapid growth.
My supervisor, professor H. Bruus, his fellow Ph.D. student R. Barnkob and collaboraters
in Lund have, in order to enhance the separation of cells, used ultrasonic standingwaves
and microfluidics. The cell lines investigated have been living human embryonic ventral
mesencephalic cells within studies of Parkinson and isolating circulating tumor cells from
White blood cells within studies of cancer [20], [21]. Currently, my supervisor and his
other Ph.D. Student S. Vedel are also working on the collective motile behaviour of cells
[22].

Hopefully, in the future these devices will help doctors diagnose diseases in their prac-
tices for a faster diagnoses. These devices could eventually help diagnose aids or other
diseases. This may sound easy and fantastic but lab on a chip systems requires a lot of
skill with regards to experimental and theoretical knowledge. There is a lot of theory in
making lab on a chip systems, especially with regards to flow. Fortunately, they often
have low reynolds numbers, making Navies-Stokes equation easier to handle and the flow
laminar, which is also the case in the cardiovascular system.



1.2. GOVERNING EQUATIONS AND EFFECTIVE DIFFUSION 3

This gives the solute limited mixing abilities, yielding the effective diffusion as one mix-
ing effect for the solute. Other mixing method are magnetophoresis, electroosmoostic
pumping, electrophoresis e.t.c

1.2 Governing Equations and effective diffusion

To use the Navier-Stokes Equation, the continuum hypothesis needs to be valid. The
continuum hypothesis simple states that the fluid can be seen as perfectly continuous
in structure on a macroscopic scale, although it is not on a particle level[18]. But on a
macroscopic level the fluctuations of the consisting of molecules can be averaged out by
representative elementary volume(REV). The Navier-Stokes equation is using an Eulerian
description where fixed points in space are use to represent the field variable for example,
velocity or mass as value’s averaged over the volume of (REV) and the Navier-Stokes
equation describe how these fixed point value change over time, specially for the velocity
field.
In microfluidics, the fluid water can be seen as incompressible fluids so,

∇·v = 0. (1.1)

Getting the Navier-Stokes equation for an incompressible fluid,

ρ
(

∂tv + (v·∇)v
)

= −∇p+ η∇2v + ρ g . (1.2)

The Navier-Stokes equation is used for calculating the velocity profile from the forces
acting on the fluid. The forces on the fluid can be pressure or liquid friction also called
viscosity this is treated in chap.5 along with other forces as electro forces.

The Navier-Stokes equation is hard to solve or, in many cases, impossible since its a
non-linear differential equation. Often in text book examples, special geometries with
symmetries are used to remove the convective acceleration term (v ·∇)v. This also hap-
pens in Microfluidics because of low Reynolds numbers or when long straight symmetric
channels are used, as in this thesis where a long translational invariant channel is used
making the Navier-Stokes equation solvable and getting the velocity field.
It is assumed that the solute does not affect the flow of the solution when inserted to the
media or the density of the fluid. When the solute is transported around in fluid, the
Navier-Stokes equation only gives the velocity field. The description of the concentration
distribution is done by the Advection-Diffusion equation. The concentration distribution
is changed in time ∂tc two ways, by diffusion D∇2c a thermally induced random motion
of the particles[18] and from convection v·∇c where the velocity field v was found in the
Eq. (1.2).

∂tc+ v·∇c = D∇2c. (1.3)

When no convection is present, we get the diffusion equation, this is solvable for differ-
ent initial concentrations, also the point concentration. But when convection is added,
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Eq. (1.3) has generally no solutions, leading us to Taylor dispersion and Aris method of
statistical moments. Once the governing equation are in place, the Taylor dispersion can
be discussed.

1.3 Taylor dispersion and combining the governing equation

Combining the two governing equations and solving them will give the time evolution of
the concentration field and the dispersion but this is, unfortunately, impossible for most
cases and numerical tool as Comsol and Matlab is used often. Extra smearing occurs in the
Advection Diffusion equation when the solute is in the solution’s velocity field, from the
advection term v·∇c. A Sketch of what happen in the simple Poiseuille flow Fig. 1.1, when
the concentration Fig. 1.1(black) diffuses out in the transverse direction Fig. 1.1(green),the
parabolic velocity profile Fig. 1.1(red) changes the shape of the concentration because of
the changing velocity in the transverse direction Fig. 1.1(blue). This gives rise to an extra
spread in the concentration in the longitudinal x-direction (black interval).

1.3.1 Aris moments

But with Aris statistical method of moments, the spread can be calculated in one direction
with the assumption of unidirectional flow that eliminates all convective terms except in
the axial one. In this way a solution is found for the Taylor dispersion see (chap. 2). A lot
of research have been done in Taylor dispersion, also on the skewness of the concentration,
here are some references to the work that has been done [23, 24, 25, 26, 27, 28, 12]. Even
in pharmacokinetic, there is a need to take account for the Taylor dispersion [29].

1.4 Theoretical foundation and goals

In my thesis a continuation of the work done by S. Vedel and H. Bruus will be presented.
Here a point concentration will be applied to the framework. To observe and compare the
dynamic of the point concentration compared to the uniform cross sectional distribution.
To observe anomalous diffusion effects in different time scale in the steady flow as well
as single-frequency pulsating flows and many-frequency pulsating flows. To applied the
frame work to non-Newtonian fluids, and see Deff for fluid that have common features to
blood, and see how Deff changes for the parameters of the fluid.

1.5 Outline of thesis

1.5.0.1 Chapter 2: Basic Theory

A summary of the theory in Transient Taylor-Aris dispersion in time dependent flows
by Vedel and Bruus [1]. First the geometry of the long straight channel are set, then
the operators are defined. The Navier-Stokes equation and the advection diffusion are non
dimensionalized and a bracket notation is used for easy handling the integrals. The method
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Figure 1.1: Deff(t). Here is a sketch of the Taylor dispersion for a point concentration
placed in the center. Extra spreading, due to the velocity field can be seen.

of statistical moments are used to set up the axial moments so the effective diffusion can
be solved. This is done by solving the axial moments recursively, and subsequently getting
the effective diffusion.

1.5.0.2 Chapter 3: Point concentration in the infinite parallel-plate channel

Once the theoretical framework has been presented, the formula for Deff(t) can be used
for a specific geometry. The infinite parallel plate channel is set-up, the velocity field is
solved and the coefficient for DPoint

eff (z0, t) is found with respect to the location of the point
concentration. Different parameters sweep are done, especially changing the location of
the point concentration in the transverse direction.

1.5.0.3 Chapter 4: Point concentration in cylinder

The same is done here as in chapter 3, slight differences appear in the circular channels Deff

due to the geometry of the channel. Peak in the effective diffusivity Deff are thoroughly
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investigated in this chapter. Phase shift is examined for the differently initial placed point
concentrations and period doubling is also investigated.

1.5.0.4 Chapter 5: Non-Newtonian fluids

A Power law fluid and a Casson Fluid is investigated forDeff(t) and for different parameters
specific for these fluids and the effect on Deff(t). The placement of the point concentration
will also be changed to observe the effect of the initial placement.



Chapter 2

Basic Theory

Here is an overview of how S. Vedel and H. Bruus expressions are derived. The derivation
is done in the same way and great resemble to the article will occur since is rewritten. For
greater detail see the article [1] or in appendix. B.
First, the coordinates and the channel are arranged, the non-dimensionel numbers are
found and nondimensionalization of the governing equation are done. The statical mo-
ments are setup and solved and the genereal formula or framework is found for Deff .

2.1 Long straight channel

The channels characteristics: long, straight, parallel to the x-axis and translational invari-
ant along the x-axis.
The coordinates system is written r = (x, r⊥), where the transverse (y, z)-plane is denoted
r⊥, so that the full coordinates are written as r = (x, r⊥). The gradient operator ∇ and
the Laplace operator ∇2 are using the same notation.

r = (x, r⊥), with r⊥ = (y, z), (2.1a)

∇ = ex∂x +∇⊥, with ∇⊥ = ey∂y + ez∂z, (2.1b)

∇2 = ∂2
x +∇2

⊥, with ∇2
⊥ = ∂2

y + ∂2
z . (2.1c)

The channel is described with length L and with the cross sectional Ω area is A =
∫

Ω dr⊥1, and the volume is V = LA. The concentration field is denoted c(x, r⊥, t), and
the velocity ~v = u(r⊥, t)~ex.

2.1.1 Non-dimensionalising

For an easier handling of the equations we non-dimensionalize them using the following
characteristic transverse length Lo, diffusion time To, advection velocity Uo from a scale

7
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Uchar in the time-dependent flow, shear-induced pressure Po, and solute concentration Co,

Lo = a, To =
L2
o

D
, Uo = Uchar, Po =

ηUo

Lo
, Co =

1

V

∫ 1
2
L

− 1
2
L
dx

∫

Ω
dr⊥ c(r⊥, 0).

the choice of Uchar is not unique, normally the mean velocity is chosen, but if the velocity
field consists of oscillating flow, a different characteristic velocity should be chosen to
describe the magnitude of the velocity.
By non-dimensionalising the Navier–Stokes equation, we get the stokes equation and non-
dimensionalising advection-diffusion equation we get the well known three dimensionless
numbers: the Péclet number Pé (the ratio of convection speed to mass diffusion speed), the
Schmidt number Sc (the ratio of momentum diffusion speed to mass diffusion speed), and
the Womersley number Wo (the square root of the ratio of oscillation speed at frequency
ω̃o to momentum diffusion speed),[1]

Pé =
Lo Uo

D
, Sc =

ν

D
, Wo =

√

L2
oω̃o

ν
. (2.2)

2.1.2 the Velocity field

The velocity field is derived from the incompressible Navier-Stokes equation Eq. (1.2),
because of symmetry in the long straight channel (v ·∇)v = 0 and non-dimensionalizing
with respect to the diffusion time, we get the time-dependent Stokes equation,

∂tu(r⊥, t) = Sc
[

∇2
⊥u(r⊥, t) +

1

L∆p(t)
]

, (2.3)

now ~v = u(r⊥, t)~ex is linear and the velocity field can be represented by a Fourier series
representation with Fourier components u` for each higher harmonics `ωo (` being an
integer), where the harmonics in this problem is given a priori,

u(r⊥, t) =
∞
∑

`=−∞
u`(r⊥) e

i`ωot, (2.4)

so Eq. (2.4) is set into Eq. (2.3), and the velocity field spatial representation is found in
the specific geometry and then its dimensionlized with respect to Uchar which is chosen to
be the mean velocity. Then the velocity profile is non-dimensionalized,

ũ(r̃⊥, t̃) =
∞
∑

`=−∞
ũ`(r̃⊥) e

i`ω0t̃, (2.5)

By requiring u−`(r⊥) = u∗` (r⊥), the asterisk is the complex conjugation, then the velocity
field is real. The momentum of the fluid reacts to changes in driving pressure with an the
momentum diffusion time 1/αfl, this is equivalent to the diffusion of concentration. The
momentum diffusion time is derived from the momentum equation,∂tu = Sc∇2

⊥u,

αfl ∝ Sc (2.6)
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and where this relation also occurs,

Wo2 =
ωo

Sc
∝ ωo

αfl

(2.7)

2.1.3 The bra-ket notation for spatial dependence

The definition and the relations for the bra-ket notation.

〈

f
∣

∣g
〉

=
1

V

∫ 1
2
L

− 1
2
L
dx

∫

Ω
dr⊥ f∗(x, r⊥, t) g(x, r⊥, t). (2.8)

the longitudinal direction is averaged out and a bra-ket’s defined in the transverse coor-
dinates r⊥ is also needed,

〈

f⊥
∣

∣g⊥
〉

=
1

A

∫

Ω
dr⊥ f∗

⊥(r⊥, t) g⊥(r⊥, t), (2.9)

as the x-integration trivially gives unity. linearity

〈

f
∣

∣A1g1 +A2g2
〉

= A1

〈

f
∣

∣g1
〉

+A2

〈

f
∣

∣g2
〉

, (2.10)

since the velocity field is real, the relations occurs,

〈

u`
∣

∣g
〉

=
〈

g
∣

∣u`
〉∗

=
〈

g∗
∣

∣u−`

〉

, (2.11a)
〈

u` e
i`ωot

∣

∣g
〉

= e−i`ωot
〈

u`
∣

∣g
〉

. (2.11b)

completeness and orthonormal conditions,

∞
∑

n=0

∣

∣fn
〉〈

fn| = 1, and
〈

fm
∣

∣fn
〉

= δm,n, (2.12)

Any function
∣

∣g
〉

can be expanded by an orthonormal basis,

∣

∣g
〉

=

∞
∑

n=0

an
∣

∣fn
〉

, (2.13a)

am =
〈

fm
∣

∣g
〉

, m = 0, 1, 2, . . . . (2.13b)

Note that other similar bra-ket notation will be defined when the infinite parallel plate
and the circular channel Deff are derived.

2.1.4 The advection-diffusion equation

The transport of solute is described is by the dimensionless advection-diffusion equation.

∂tc(x, r⊥, t) + Pé u(r⊥, t) ∂xc(x, r⊥, t)

= (∂2
x +∇2

⊥) c(x, r⊥, t). (2.14)
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The boundary conditions,

~n ·∇⊥c = 0, on all walls, (2.15a)

c(x, r⊥, 0) = c̃(x, r⊥), (2.15b)

xs∂q
xc → 0, for |x| → L

2
and s, q = 0, 1, 2, . . . , (2.15c)

with no flux on the wall of the channel, where ~n is the surface normal of the channel and
c̃ is the given initial concentration, the last condition (2.15c) just states that all spatial
gradients in c and c itself vanish far away the center in the longitudinal direction of the
channel.

2.2 Method of statistical moments

The method of statistical moments is used to rewrite the advection-diffusion equation to
give additional information about the solute distribution. The statistical moments are
solved recursively starting with the first c0 then afterwards obviously c1[3]. The lower
moment have direct physical meaning as M0 is the averaged out concentration of the
whole volume and M1 the time-dependent axial center of mass x̄.

2.2.1 Definition of the statistical moments

the concentrations c(x, r⊥, t) axial moment pth cp(r⊥, t) and the associated full moment
Mp(t) are defined as

cp(r⊥, t) =
1

L

∫ 1
2
L

− 1
2
L
dx xpc(x, r⊥, t), p = 0, 1, 2, . . . , (2.16a)

Mp(t) =
〈

xp
∣

∣c
〉

=
1

A

∫

Ω
dr⊥ cp(r⊥, t), p = 0, 1, 2, . . . . (2.16b)

Taking Eqs. (2.16a) and (2.16b) and using the advection-diffusion equation (2.14) on the
moment’s, the recursive equations of motion for cp and Mp is found,

∂tcp(r⊥, t)−∇2
⊥cp(r⊥, t) = p(p− 1)cp−2(r⊥, t) + Pé u(r⊥, t)p cp−1(r⊥, t), (2.17a)

∂tMp(t) = p(p− 1)
〈

1
∣

∣cp−2

〉

+ Pé p
〈

u
∣

∣cp−1

〉

, p = 0, 1, 2, . . . , (2.17b)

with the boundary conditions and initial conditions

~n ·∇⊥cp = 0, on all walls, (2.18a)

cp(r⊥, t) < ∞, (2.18b)

cp(r⊥, 0) = c̃p(r⊥), (2.18c)

Mp(0) =
〈

xp
∣

∣c̃
〉

. (2.18d)



2.3. MATHEMATICAL PROCEDURE 11

M0 is the averaged out concentration of the whole volume, gives the unit norm of c and
M1 is the time-dependent axial center of mass x̄ of c,

M0 =
〈

1
∣

∣c
〉

= 1, (2.19a)

M1 =
〈

x
∣

∣c
〉

= x̄(t). (2.19b)

It is also useful to define the pth moment µp about the center of mass,

µp(t) =
〈

(x− x̄)p
∣

∣c
〉

, (2.20)

and by the linearity, Eq. (2.10), we find for p = 0, 1 and 2,

µ0(t) =
〈

1
∣

∣c
〉

= 1, (2.21a)

µ1(t) =
〈

(x− x̄)
∣

∣c
〉

= 0, (2.21b)

µ2(t) =
〈

(x− x̄)2
∣

∣c
〉

= M2(t)−M1(t)
2. (2.21c)

µ2 relates to the time-dependent spatial variance of the solute concentration and thus to
the solute diffusivity D and the effective diffusivity Deff . Notice that µ2 is in an moving
frame since the spatial variance should be defined from the center of mass.

2.2.2 Effective diffusivity and statistical moments

From [1] they derived dµ2/dt = 2D when no advection was present u(r⊥, t) = 0. Which
gives a perfect expression for the diffusivity for u = 0 then 1

2
dµ2

dt is calculated a nonzero
velocity velocity field which gives the effective diffusivity, which is time derivative of the
solute spatial variance,

Deff(t) =
1

2

dµ2

dt
=

1

2

dM2

dt
−M1

dM1

dt
, (2.22)

2.3 Mathematical procedure

To find the effective diffusivity, Eq. (2.22) a number of calculations are needed first to
determine co(r⊥, t). Then by recursively solving Eq. (2.17a) we get c1(r⊥, t). Now the full
moments M1 and M2 is found from Eq. (2.17b) with p = 1 and 2, which then are fed into
Eq. (2.22) to determine Deff .

2.3.1 The zeroth axial moment and basis functions

We begin by analyzing the p = 0 axial moment equation (2.17a) for co(r⊥, t),

(

∂t −∇2
⊥
)
∣

∣co(r⊥, t)
〉

= 0. (2.23)

This moment fulfills the Neumann boundary condition

~n ·∇⊥co = 0, on all walls, (2.24)
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and has the initial condition

co(r⊥, 0) = c̃0(r⊥) =

∫ 1
2
L

− 1
2
L
dx c̃(x, r⊥). (2.25)

Using separation of variables, the solution for co(r⊥, t) can be written as the expansion

∣

∣co(r⊥, t)
〉

=

∞
∑

n=0

a0ne
−λnt

∣

∣fn(r⊥)
〉

, (2.26)

where the time-independent eigenfunctions fn(r⊥) with eigenvalues λn are defined by

(λn+∇2
⊥)
∣

∣fn(r⊥)
〉

= 0, n = 0, 1, 2, . . . , (2.27a)

~n ·∇⊥
∣

∣fn(r⊥)
〉

= 0, on all walls, (2.27b)

and form a complete orthonormal basis in the sense of Eq. (2.12). Note that the lowest
eigenvalue is zero, λ0 = 0, and the corresponding eigenfunction is unity, f0(r⊥) = 1, while
for n > 0 the eigenvalues are positive, λn > 0. This method is particularly convenient for
problems involving the Laplace operator, because often the corresponding basis functions
and eigenvalues are known.

As in Eq. (2.13b), the expansion coefficients a0m are found by multiplying Eq. (2.26)
at t = 0 by

〈

fm|,
a0m =

〈

fm
∣

∣c̃0
〉

, m = 0, 1, 2, . . . . (2.28)

When time approaches infinity, all terms in the expansion except n = 0 decay exponen-
tially, and we obtain

∣

∣co(r⊥,∞)
〉

= a00
∣

∣f0(r⊥)
〉

=
〈

1
∣

∣c̃0
〉
∣

∣1
〉

=
∣

∣1
〉

, (2.29)

representing the state where by diffusion the solute concentration has spread out uniformly
in space.

2.3.2 The first axial moment and basis functions

The p = 1 axial moment equation (2.17a) for c1(r⊥, t) is analyzed in a similar manner.
Using that co(r⊥, t) is now a known function, we have

(

∂t −∇2
⊥
)
∣

∣c1(r⊥, t)
〉

= Pé u(r⊥, t)
∣

∣co(r⊥, t)
〉

(2.30a)

= Pé u(r⊥, t)
∞
∑

n=0

a0ne
−λnt

∣

∣fn(r⊥)
〉

,

where c1 fulfills the Neumann boundary condition

~n ·∇⊥c1 = 0, on all walls, (2.30b)

and the initial condition

c1(r⊥, 0) = c̃1(r⊥) =

∫ 1
2
L

− 1
2
L
dx x c̃(x, r⊥). (2.30c)
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solving the inhomogeneous partial differential equation (2.30a) for c1 see [1], from this
solution the coefficient are used to find the effective diffusivity

γ1n =
〈

fn
∣

∣u0(r⊥)
∣

∣fn
〉

, (2.31)

and the β-coefficients are given by

β`
kn = (1− δ`,0δk,n)

〈

fk
∣

∣u`(r⊥)
∣

∣fn
〉

λk − λn + i`ωo

. (2.32)

note that, β−`
kn = (β`

kn)
∗ ensures real values of the resulting fields. The coefficients a1n

a1n =
1

Pé

〈

fn
∣

∣c̃1(r⊥)
〉

−
∞
∑

k=0

a0k

∞
∑

l=−∞
β`
nk. (2.33)

Collecting all terms, we write the formal solution as

∣

∣c1(r⊥, t)
〉

= Pé

∞
∑

m=0

∞
∑

n=0

[

(a0nγ1nt+ a1n)δn,m (2.34)

+ a0n

(

∞
∑

`=−∞
β`
mne

i`ωot
)

]

e−λnt
∣

∣fm
〉

.

All results are explicitly real because of the pairwise summation of complex conjugate
terms with index ` and −`.

2.3.3 Expressions for the effective diffusivity

Now that c0 and c1 are found in the form of basis functions, the effective diffusivity
Deff = 1

2
dM2
dt −M1

dM1
dt can now be expressed in terms of a basis function expansion. The

time derivative dM1
dt = Pé

〈

u
∣

∣co
〉

of the full moment M1 in Eq. (2.17b) becomes

dM1

dt
= Pé

∞
∑

n=0

∞
∑

`=−∞
a0n
〈

u`
∣

∣fn
〉

e−(λn+i`ωo)t, (2.35a)

where we have used Eq. (2.11b) for the phase factor. By proper choice of the coordinate
system, the initial centroid x̄(0) of the distribution is zero. This combined with Eq. (2.19b)
determines the initial value M1(0) = x̄(0) = 0, and time integration of Eq. (4.42a) gives

M1 = Pé

∞
∑

n=0

∞
∑

`=−∞
a0n
〈

u`
∣

∣fn
〉 1− e−(λn+i`ωo)t

λn + i`ωo

. (2.35b)

Here, the term (n, `) = (0, 0) depends linearly on time because limq→0

[

(1 − e−qt)/q] =

t. Similarly, for the time derivative dM2
dt =

〈

1
∣

∣co
〉

+ Pé
〈

u
∣

∣c1
〉

of the full moment M2,
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Eq. (2.17b), we obtain

1

2

dM2

dt
= 1 + Pé2

∞
∑

m=0

∞
∑

n=0

∞
∑

k=−∞

〈

uk
∣

∣fm
〉

e−(λn+ikωo)t

×
[

(a0nγ1nt+ a1n)δn,m + a0n

∞
∑

`=−∞
β`
mne

i`ωot

]

, (2.35c)

valid for any initial distribution of solute, in this thesis the initial distribution will be a
point concentration in different geometries.

The time-averaged diffusivity Davr
eff (t) over one oscillation period τ0 = 2π/ωo is defined

as,

Davr
eff (t) =

1

τ0

∫ t+τ0

t
Deff(t) dt. (2.36a)

2.3.4 Axial moments for the point concentration

A point concentration C(x, r⊥, t) is used where V is the volume of the channel and N0

is the number of particles. The point concentration is always placed in the middle of
the longitudinal direction at x = 0, this is a convenient placement regarding the initial
condition and the formalism since c̃1(r⊥, 0). Transversely it is placed r0⊥

C(x, r⊥, t) = N0δ(x)δ(r⊥ − r0⊥) (2.37)

〈

1
∣

∣C0

〉

= N0
V = N0

AL is the average concentration, and normalising with respect to this
average concentration we get the initial non-dimensional concentration,

C̃(x, r⊥, t) = ALδ(x)δ(r⊥ − r0⊥) (2.38)

The initial condition for the zero axial moments,

c̃0(r⊥, 0) =
1

L

∫ 1
2
L

− 1
2
L
dxALδ(x)δ(r⊥ − r0⊥) = Aδ(r⊥ − r0⊥) (2.39)

and the first axial moments, where the first axial moment is always equal to zero since the
concentration is always placed in the middle of the longitudinal direction δ(x)x = 0,

c̃1(r⊥, 0) =
1

L

∫ 1
2
L

− 1
2
L
dxALδ(x)δ(r⊥ − r0⊥)x = 0 (2.40)



Chapter 3

Point concentration in the infinite

parallel-plate channel

Now the infinite parallel-plate channel effective diffusivity DPoint
eff (z0, t) will be examined,

in this case for a point concentration. This is a more complicated calculation than the
uniform concentration since spatial dependence is present in the transverse direction. First
the problem is set-up and all the equations are solved.
The velocity profile is solved from the stokes equation Eq. (2.3) in the infinite parallel
plate channel. Then the basis functions are found from the zeroth axial moments in this
geometry. Because of the basis functions, a convenient bra-ket notation is made for this
problem. The bra-ket can be calculated and the formalism can be used, depending on the
initial concentration location and its form.

The set-up is similar to the rectangular cross sections in [1], where in this case the initial
concentration is a point concentration and the velocity field only has velocity gradients
in the z-direction due to the parallel plate. Now the effective diffusivity can be calcu-
lated from the formalism. For shortness sometimes the initial point concentration will be
referred to as the point, and the uniform distribution in the cross sectional plane as the
uniform concentration.

3.1 The velocity profile

The channel has x as longitudinal direction and y, z in the transverse direction with 2a
as the distance of the plate or height. First step is to find the well known parallel plate
steady state velocity profile and then nondimensionalize it with respect to mean velocity,

0 = ∂2
zu0(z) +

∆p0
ηL . (3.1)

the solution, with no slip at u0(−a) = u0(a) = 0,

u0(z) =
∆p0
2ηL (a2 − z2). (3.2)

15
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finding the mean velocity,

Uchar =
1

2a

∫ a

−a

∆p0
2ηLdz(a2 − z2) =

∆p0a
2

3ηL . (3.3)

Now nondimensionalizing with respect to the mean velocity Uchar, and z = az̃ where the
characteristic length scale is determined to be L0 = a, with a ≤ w as an aspect ratio
R = w

a . In the nondimensionlized units the rectangular cross section is placed such that
−1 ≤ z̃ ≤ 1 where z = az̃ and y

a = ỹ where −R ≤ ỹ ≤ R the width is later used for

placement of a boundary condition Fig. 3.1 and where εl =
∆pl
∆p0

and ∆p0
∆p0

= ε0 = 1.

ũ0(z̃) =
3ε0
2

(1− z̃2). (3.4)

Then using the stokes equation Eq. (2.3) to find the time dependent velocity profiles where
l 6= 0,

∂2
zul(z) =

ilω0

ν
ul(z)−

∆pl
ηL . (3.5)

the solution that satisfies the no slip boundary condition ul(−1) = ul(1) = 0 using z = az̃

so −1 ≤ z̃ ≤ 1 and kl =
√

a2lω0
iν =

√
−ilWo,

ul(z̃) =
∆pla

2

k2l ηL

(

cos (z̃kl)

cos (kl)
− 1

)

. (3.6)

nondimensionalizing ul(z̃) with respect to mean velocity Uchar,

ũl(z̃) =
3εl
k2l

(

cos (z̃kl)

cos (kl)
− 1

)

. (3.7)

where the whole velocity field is,

ũ(z̃, t̃) =

∞
∑

`=−∞
ũ`(z̃) e

i`ω0t̃, (3.8)

3.2 Basis functions

The time-independent eigenfunctions f(n,m)(y, z) = gn(y)hm(z) and eigenvalues λ(n,m) are
needed for the parallel plate problem to solve the zeroth axial moment equation p = 0,

(λ(n,m) −∇2
⊥) | gn(y)hm(z)〉 = 0. (3.9)

Then only Neumann boundary conditions exist on the top and bottom plate. The Bound-
ary condition on the sides is missing, but creating special no flux side walls with slip
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Figure 3.1: Here is the infinite parallel plate channel with length L(L) and height 2a.
The light green walls are slip boundaries with no flux. The yellow points are examples of
solutes particles.

conditions takes care of this problem. This wall can be seen in the Fig. 3.1. With these
assumptions the basis functions gn(y)hm(z),

gn(y) =

√

2

1 + δn,0
cos

(

nπ
1 + y

R

2

)

(3.10)

hm(z) =

√

2

1 + δm,0
cos

(

mπ
1 + z

2

)

.

and the eigenvalues,

λ(n,m) =

(

nπ
1

2R

)2

+

(

mπ
1

2

)2

. (3.11)

are the same as in Bruus and Vedel [1]. For the no slip walls the placement in y is irrelevant
since the velocity profile is only changing in the z direction and only inducing shear in
that direction. Later in the calculation, it will be seen that the basis functions gn(y) will
drop out from the bra-kets and Deff (t). Thereby the fluid momentum equilibration rate
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can be found as,

αfl =

(

π2

4

)

Sc. (3.12)

Due to n = 0 in the expression for DPoint
eff (z0, t) giving only one inherent length: the z-

direction. Since only one inherent length along the z-direction is present this introduces
the solute equilibration rate,

λ(0,1) =
(π

2

)2
. (3.13)

The time when most of the anomalous diffusion is decreased is around 1
λ(0,1)

= 4
π2 ≈ 0.4 < t.

This is similar to Vedel and Bruus, ”The rectangular cross section” [1].

3.2.1 Inner product

Because of the basis functions, a convenient bra-ket notation is made for this problem,
where orthogonality is used in the bra-ket thereby getting rid all the y dependence, this
is later used for the Deff (t) formalism. For the Cartesian coordinates f⊥(r⊥) = g(y)h(z)
and f̃⊥(r⊥) = g̃(y)h̃(z) in 2D we have,

〈f⊥ | f̃⊥〉 =
1

A

∫

Ω
dr⊥f

∗
⊥(r⊥)f̃⊥(r⊥) = 〈g | g̃〉〈f | f̃〉, (3.14)

where we have introduced the new bra-ket in y, z with 2a as height and 2w as width.
Defined as,

〈g | g̃〉 = 1

2w

∫ w

−w
dyg∗(y)g̃(y). (3.15)

and z,

〈h | h̃〉 = 1

2

∫ 1

−1
dzh∗(z)h̃(z). (3.16)

Also having the relation

〈ul(z) | gn(y)hm(z)〉 = 〈gn(y)hm(z) | ul(z)〉∗ (3.17)

since we have the geometry, basis functions, eigenvalues and the velocity profiles. Now
the bra-ket defined is used, starting with 〈ul(z) | f(n,m)(y, z)〉,

〈ul(z) | gn(y)hm(z)〉 = 〈1 | gn(y)〉〈ul(z) | hm(z)〉 = δn,0〈ul(z) | hm(z)〉. (3.18)

because g0(y) = 1 and 〈g0(y) | gn(y)〉 = δn,0. The next bracket 〈f(n,m)(y, z) | u0(z) |
f(n,m)(y, z)〉,

〈gn(y)hm(z) | u0(z) | gn(y)hm(z)〉 = 〈hm(z) | ul(z) | hm(z)〉 (3.19)

obviously 〈gn(y) | gn(y)〉 = 1, since it is a basis function. To the last and most complicated
bra-ket 〈f(n,m)(y, z) | u0(z) | f(p,j)(y, z)〉

〈gn(y)hm(z) | u0(z) | gp(y)hj(z)〉 = δn,p〈hm(z) | ul(z) | hj(z)〉 (3.20)

this gives significantly simplifications in further calculations and now the placement of the
no-flux wall is irrelevant since no y-dependence is in the bra-kets.
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3.2.2 Reproducing results existing in Literature for the infinite parallel

plate channel.

Before the results of the analysis are shown, earlier results from the literature will be
found for the uniform distribution in the cross- sectional plane. Thereby verifying the
implementation of the work Deff (t) with an uniform distribution in the cross-sectional
plane in matlab. It was possible to recover the coefficient χrect found by Chatwin and
Sullivan for the infinite parallel plate with a uniform concentration in the cross sectional
plane [27],

Dsteady
eff (∞) = 1 + χrectPé

2, for R → ∞, (3.21a)

χrect =
2

105
≈ 0.019, infinite parallel plates (3.21b)

This result can also be seen in Fig. 3.2.
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Figure 3.2: The effective diffusionDeff (t), for the uniform distribution in the cross sectional
plane in a infinite parallel plate channel with Pé = 20. The result from Chatwin and
Sullivan are obtain by getting the χrect = 0.019 [27], for the infinite parallel plate channel.
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1
2L

2a

x

z

y

• N0δ(x)δ(y − a)δ(z − b)

Figure 3.3: Half of the infinite parallel plate channel 1
2L with 2a as height and L as length.

The coordinate z̃ is chosen to run as z = az̃ and −R ≤ ỹ ≤ R, a point concentration is
placed in the middle of the longitudinal direction x = 0 with freedom in the transverse
direction (y, z).

3.3 Framework for the applied point concentrations in the

parallel plates channel

Firstly, the geometry is set-up and then the velocity field, the basis function and the bra-
ket are found. Now the point concentration can be applied in the formula for Deff . From
now on we denote y, z as nondimensionlized units, meaning that z̃ = z, ỹ = y. The initial
placement of the point concentration will determine the effective diffusion DPoint

eff (z0, t).

3.3.1 Analysis of the point concentration with random placement

Putting the initial point concentration in the transverse placement (y, z) = (a, b) which is
normalized C̃0 = 1. The initial normalized concentration is given by,

c(x, r⊥, 0) = V δ(x)δ(y − a)δ(z − b). (3.22)

finding the initial condition for the zero axial moments from Eq. (2.25),

c̃0(y, z, 0) =
1

L

∫ 1
2
L

− 1
2
L
dxV δ(x)δ(y − a)δ(z − b) = Aδ(y − a)δ(z − b). (3.23)

and the initial first axial moment is zero because of the location in the center x = 0 of the
longitudinal x-direction. Since the basis function and the velocity field are known, then
the different coefficients are needed to calculate the effective diffusion coefficient starting
with a0,(m,n) from Eq. (2.28),

a0,(m,n) =

〈

2 cos (nπR+y
2R ) cos (mπ 1+z

2 )
√

(1 + δn,0)(1 + δm,0)
| Aδ(y − a)δ(z − b)

〉

(3.24)

giving

a0,(m,n) =
2cos

(

nπ
1+ a

R

2

)

cos
(

mπ 1+b
2

)

√

(1 + δn,0)(1 + δm,0)
(3.25)
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all the a0,(m,n) coefficients give values unless a, b is placed in some period of the cosines or if
it is placed in the center, many terms will drop out this is investigated later in this section.
Then calculating the coefficient βl

(n,m),(p,j) with n = (n,m) and m = (p, j) because of the

geometry from Eq. (3.27),

βl
(n,m),(p,j) = (1− δl,0δn,pδm,j)

〈gn(y)hm(z) | ul(z) | gp(y)hj(z)〉
λ(n,m) − λ(p,j) + ilω0

, (3.26)

using Eq. (3.20),

βl
(n,m),(p,j) = (1− δl,0δn,pδm,j)

δn,p〈hm(z) | ul(z) | hj(z)〉
λ(n,m) − λ(n,j) + ilω0

, (3.27)

so βl
(n,m),(p,j) can be rewritten,

δn,pβ
l
(n,m),(p,j) = βl

(n,m),(n,j) (3.28)

Calculating a1,(n,m), since c̃1〉 = 0 and using earlier defined coefficients. Remembering
orthogonality when n 6= p removing the p-sum,

a1,(n,m) = −
∞
∑

p=0

∞
∑

j=0

a0,(p,j)

∞
∑

l=−∞
βl
(n,m),(p,j) = −

∞
∑

j=0

a0,(n,j)

∞
∑

l=−∞
βl
(n,m),(n,j), (3.29)

finding γ1,(0,m)

γ1,(0,m) = 〈gn(y)hm(z) | u0(z) | gn(y)hm(z)〉 = 〈hm(z) | u0(z) | hm(z)〉 (3.30)

Now all the coefficients are found and we can calculate dM1
dt and since it contains δn,0〈ul(z) |

hm〉, the n sum is removed,

dM1

dt
= Pe

∞
∑

m=0

∞
∑

l=−∞
a0,(0,m)〈ul(z) | hm(z)〉e−(λ0,m+ilω0)t (3.31)

and calculating M1,

M1 = Pe

∞
∑

m=0

∞
∑

l=−∞
a0,(0,m)〈ul(z) | hm(z)〉1 − e−(λ(0,m)+ilω0)t

λ(0,m) + ilω0
(3.32)

multiplying M1
dM1
dt ,

M1
dM1

dt
= Pe2

∞
∑

k=−∞

∞
∑

j=0

∞
∑

m=0

∞
∑

l=−∞
a0,(0,m)a0,(0,j)〈ul(z) | hm(z)〉 (3.33)

〈uk(z) | hj(z)〉
1 − e−(λ0,m+ilω0)t

λ0,m + ilω0
e−(λ0,j+ikω0)t
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finding 1
2
dM2
dt using Eq. (4.42c) but now where the sums n = (n,m) and m = (p, j).

Because of Eq. (3.18) and Eq. (3.20), when n 6= 0 the sum is always zero and δp,n,

1

2

dM2

dt
= 1 + Pe2

∞
∑

n,m=0

∞
∑

k=−∞

∞
∑

p,j=0

δn,0〈uk(z) | hm(z)〉e−(λ(p,j)+ikω0)t (3.34)

×δn,p

[

(a0,(p,j)γ1,(p,j)t+ a1,(p,j))δm,jδ0,p + a0,(0,j)

∞
∑

l=−∞
βl
(0,m),(0,j)e

ilω0t

]

simplifying 1
2
dM2
dt by removing the sums n, p because δn,0δn,p = δn,0δp,0 and for increasing

computational speed in Matlab implementation, the sums are split and also using δm,j ,

1

2

dM2

dt
= 1 + Pe2

∞
∑

m=0

( ∞
∑

k=−∞
〈uk(z) | hm(z)〉e−ikω0t

) ∞
∑

j=0

e−(λ(0,j))t (3.35)

(

(a0,(0,j)γ1,(0,j)t+ a1,(0,j))δm,j + a0,(0,j)

∞
∑

l=−∞
βl
(0,m),(0,j)e

ilω0t

)

combining to the expression DPoint
eff (z0, t) =

1
2
dM2
dt −M1

dM1
dt .

3.3.2 Notes on DPoint
eff (z0, t) and Changing the Peclet number

As mentioned before, the y dependence vanished, this can been seen in both 1
2
dM2
dt and

M1
dM1
dt where no dependence in the y-direction is present. This means that the place-

ment of the point concentration in y has a symmetry and this is due to the velocity field
independence of the y-direction. Note also that, there is a term in the sum of dM1

dt that is
increasing linearly with time, when k = j = m = l = 0 and using limq→∞ [(1−e−qt)/q = t]
the term is a0,(0,0)a0,(0,0)〈u0(z) | 1〉〈u0(z) | 1〉t = 〈u0(z) | 1〉〈u0(z) | 1〉t since a0,(0,0) = 1.

But also 1
2
dM2
dt has a linearly increasing terms with respect to time for k = j = m = l = 0,

this is equal to 〈uk(z) | hm(z)〉e−ikω0te−(λ(0,0))t(a0,(0,0)γ1,(0,0)t.
1
2
dM2
dt and M1

dM1
dt are re-

moving each other with respect to the terms, which are increasing linearly with time,
because of opposite signs this ensures convergence of Deff(t).
The Peclet number Pé occurs here as square with respect to the effective diffusion Deff ∝
Pé2 ∝ U2

o as expected. Since Pé appears as a square in both 1
2
dM2
dt and M1

dM1
dt .

3.3.3 Analysis of Point concentration in the center

The initial point concentration is placed in the center in the transverse plane (y, z) =
(0, 0), this gives some reduction in the number of terms because of symmetry. The initial
normalized concentration C̃ = 1 is,

C̃(x, r⊥, 0) =
N0δ(x)δ(y)δ(z)

N0
V

= ALδ(x)δ(y)δ(z) (3.36)
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The initial condition for the zero axial moment,

c̃0(r⊥, 0) =
1

L

∫ 1
2
L

− 1
2
L
dxALδ(x)δ(y)δ(z) = Aδ(y)δ(z) (3.37)

and the initial first axial moment is zero. then the different coefficients is needed to
calculate the effective diffusion coefficient starting with a0,(n,m),

a0,(n,m) = 〈gn(y)hm(z) | Aδ(y)δ(z)〉 = gn(0)hm(0) (3.38)

Since a0,(n,m) only takes values when n and m are even. Now if n,m are assumed even
a0,(n,m) can be written,

a0,(m,n) =
2cos (nπ 1

2 ) cos (mπ 1
2 )

√

(1 + δn,0)(1 + δm,0)
=

2(−1)
n+m

2

√

(1 + δn,0)(1 + δm,0)
, n,m even (3.39)

for the point concentration in the center, the calculations and results are nearly the same
as in the random placement with the slight change that values only occurs for n and m
even. Since a0,(n,m) is multiplied with all the terms, the following restriction in the formula

DPoint
eff (0, t) exists; n and m are even written as n,m even.

3.4 Simulations of effective diffusion DPoint
eff (z0, t) for the point

concentration in the infinite parallel plate channel

Notice that from now on the effective diffusion Deff (t) for the point concentration will
be denoted as DPoint

eff (z0, t), taking care of the spatial dependence of z and utilizing y-
directional independence. In these simulations, the effective diffusivity denotedDPoint

eff (z0, t),
is investigated with respect to especially the initial position of the point concentration de-
noted z0. Because of symmetry, the interval 0 ≤ z0 ≤ is only used for the initial positions
of the point concentrations. For the steady flow ε0 = 1 the short time anomalous diffusive
behaviour, also called transient phase, happens around the time 0 ≤ t0.1 and is different
from uniform cross sectional distribution in the short time behaviour of the Deff (t).

Other parameters are also investigated, such as the frequency. A Steady flow ε0 = 1,
a single frequency flow ε1 = 1 and a Steady plus oscillating flow is investigated ε0, ε1.

3.4.1 Applied point concentration in a steady flow ε0 = 1

A point concentration can be applied at different locations. In the analysis above the x, y
location was discarded ending with the z as a parameter for investigation of DPoint

eff (z0, t).
Four phases are discovered, a short time dynamic phase before t < 0.04(with intersections
of the curves), a linear phase around 0.04 < t . 0.25 and a phase of very small peak
in DPoint

eff (z0, t) around 1.1 < t < 1.3 and at last a convergence phase where the point
concentration converges to the uniform cross sectional distribution at around 0.18 . t.
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Figure 3.4: DPoint
eff (z0, t) in a infinite parallel plate channel with Pé = 20. Placing z0

the initial point concentration at r0 = 0(blue), r0 = 0.25(green), r0 = 0.5(red), r0 =
0.75(turquoise) and r0 = 1(violet). The vertical turquoise line shows the diffusion time
1/λ1 and the horizontal black line shows the steady value DPoint

eff (z0, t) that converges to
the well known steady result DPoint

eff (z0, t) = 1 + 0.019Pé2 for the uniform distribution in
the cross sectional plane for the infinite parallel plate[27]. The point concentrations has
different transient or short time dynamic of DPoint

eff (z0, t) before the convergence depending
on the placement z0 of the point concentration. The point concentration z0 = 0(blue) has
a slower increase than z0 = 0.75(turquoise) in the effective diffusion DPoint

eff (z0, t).

These phases can be observed in the Fig. 3.4 and will later be described.
First the short time anomalous dynamic is thoroughly analysed and afterwards the re-
maining phases will be described. The short time anomalous dynamic has intersections of
the effective diffusion depending on the initial position of the point concentration.

3.4.1.1 Description and modelling of the short time anomalous Dynamic of

the effective diffusivity DPoint
eff (z0, t)

The behaviour of DPoint
eff (z0, t) depends strongly on the starting position of the point con-

centration. The gradient of the velocity field near the center z ≈ 0 is very small for
a parabolic velocity profile see Fig. 3.7(a). This creates small shear and thereby low
effective diffusion DPoint

eff (z ≈ 0, t) for point concentrations in the center in the time pe-
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riod t < 0.1. Initial position of the point farther from the center, where the gradients
are larger Fig. 3.7(a)(r0 > 0) will lead to an earlier increase in the effective diffusivity
DPoint

eff (z0 > 0, t). All this can be seen in the Fig. 3.4 where the point concentrations ini-
tially starting in the small gradients around z0 ≈ 0 as z0 = 0(blue) and z0 = 0.25(green),
increases slowly in effective diffusion DPoint

eff (z ≈ 0, t). Whereas the point concentra-
tions initially starting in the larger gradients around z0 > 0.4 for z0 = 0.5(red) and
z0 = 0.75(turquoise), increases faster in the effective diffusion DPoint

eff (z > 0.4, t).
The short time anomalous dynamic of the initial placement of the point concentration will
be modelled with different approximations of the starting concentrations. These models
will be compared to the implemented framework of DPoint

eff (z0, t).

The nondimensionlized velocity is found in Eq. (2.14) to be Pé u(z, t), where Pé = 20
was used for the simulations of Deff(t) like the Fig. 3.4(a). The models of DPoint

eff (z0, t) are
based on the equation Eq. (2.21c) and approximations of the concentrations. Afterwards
the Eq. (2.21c) is differentiated with respect to time yielding the expression for the effec-
tive diffusion Deff = dµ2/dt. The four below mentioned different approximations of the
concentration will be used.
1). A uniform normalized diffusing line in the z-direction.
2). A uniform normalized diffusing box in 3D.
3). A Gauss distribution spreading in the z direction.
4). A Gauss distribution, spreading in the z-direction using method of images.
These models are investigating the short time anomalous dynamics 0 < t < 0.1. and the
initial placement of the point concentration. In these models the y-direction is normalized
out for the uniform models and for the Gauss distributions the diffusion is ignored in this
direction. The time-dependent axial center of mass x̄ = u(z0)t, is set to move with the
velocity of the fluid in the starting position of z0.

3.4.1.2 A uniform normalized diffusing line in the z-direction

Here diffusion in the x-axes is ignored, but unity is added to the effective diffusion for
molecular diffusion Deff(t) = dµ2/dt+1. Since no velocity gradients are in the y-direction,
it is later divided out by a normalising factor for the concentration.
In order to define the approximation of the concentration, the Heaviside function Sz will
be used to spread uniformly and normalised in the z-direction. The concentration will
be moved with the speed vx(z) in the x-direction, at the position z. This will lead to a
parabolic infinite thin uniform shaped concentration which is flowing with the speed of
the velocity field. From the initial placement z0 of the growing Heaviside function, the
diffusion speed of the Heaviside function in the z direction is chosen to be

√
6t. Where√

6t is the speed for diffusion of a point concentration in 3D.

Sz(z, t) = s(z +
√
6t− z0)− s(z −

√
6t− z0) (3.40)

c(x, y, z, t) = Aδ(x− Pé
3

2
(1− z2)t)Sz(z, t)
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Figure 3.5: Simulation of the short time dynamics in the time period 0 ≤ t ≤ 1, ε0 =
1 and Pé = 20, with the 6 different initial placed point concentrations z0 = 0(blue),
z0 = 0.1(green), z0 = 0.25(red), z0 = 0.5(black), z0 = 0.7(violet) and z0 = 0.8(yellow).
(a) The implemented framework for effective diffusivity in the time region 0 � t � 0.1.
(b) A uniform normalized diffusing line in the z direction, the DPoint

eff (z0, t) has increasing
transients for increasing displacement in the center of z0.(c)A uniform normalized diffusing
box in 3D. The effective diffusion DPoint

eff (z0, t) has increasing transients for increasing
displacement in the center of z0.

where the mass center is set to follow the starting position x̄ = u(z0)t,

µ2(t) =
〈

(x− u(z0)t)
2
∣

∣c
〉

= 2t+

∫

√
6t+z0

−
√
6t+z0

dz(Pé32(1− z2)t− Pé32 (1− z20)t)
2

∫

√
6t+z0

−
√
6t+z0

dz1
(3.41)

1

2

dµ2

dt
= 1 + 900z20t− 1800z30t+ 2700t2 + 900z40t (3.42)
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Problem with the uniform normalized diffusing line in the z-direction. The concentration
will be a uniform concentration profile, this is a very rough approximation compared to
the Gaussian distribution. This model also has the problem since it divides with zero at
the time t = 0, when normalizing the concentration. The model will be started in the
time t0 = 10−6, to avoid singularity. Note that in medicine, the drug injection will happen
at a finite volume, so it seems reasonable to start at for example t0 = 10−6 with a very
small volume, this could be comparable to the injection of a needle. The model also has
the problem that it neglects the spread in the x-direction, which has the effect that makes
the concentration profile plug like. For big molecular diffusion coefficients, this model will
have a problem as this model overestimates the effective diffusion. Also neglecting the
molecular diffusion, this will be included in the next model.

3.4.1.3 A uniform normalized diffusing box in 3D

Nearly the same model as the one presented previously, a concentration profile diffusing
as a box in 3D but neglecting the y diffusion, because of independence of the velocity and
thereby it is divided out by normalising factor. The box sides moving with the diffusion
speed

√
6Dt and a velocity which is depending on the z-placement. Here diffusion is

included and unity molecular diffusion will not be added, calculating 1
2
dµ2

dt the molecular
diffusion apparently appears as unity.

Sx(x, z, t) = s(x+
√
6t− Pé(1− z2)t)− s(x−

√
6t− Pé(1− z2)t) (3.43)

Sz(z, t) = s(z +
√
6t− z0)− s(z −

√
6t− z0)

c(x, y, z, t) = ASx(x, z, t)Sz(z, t)

So calculating the spread, since y is independent of the velocity and divide out by the
normalising factor.

µ2(t) =
〈

(x− u(z0)t)
2
∣

∣c
〉

(3.44)

=

∫

√
6t+z0

−
√
6t+z0

dz
∫

√
6t+Pé 2

3
(1−z2)t

−
√
6t+Pé 2

3
(1−z2)t

dx(Pé23(1− z2)t− Pé23(1− z20)t)
2

∫

√
6t+z0

−
√
6t+z0

dz
∫

√
6t+Pé 2

3
(1−z2)t

−
√
6t+Pé 2

3
(1−z2)t

dx

= 2t+ 7200t3z20 + 6480t4

1

2

dµ2

dt
= 1 + 10800t2z20 + 12960t3 (3.45)

Problems with the uniform 3D box; Same problems are observed as for the uniform line,
here the molecular diffusion is included in the model. This model also has the problem
that it divides with zero at the starting time t = 0, to normalize the concentration. This
model will also be started in the time t0 = 10−6, to avoid singularity.
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3.4.1.4 Comparing the two uniform models to the implemented framework

of DPoint
eff (z0, t)

In the Fig. 3.5(a) the framework DPoint
eff (z0, t) is used to plot different located point con-

centrations. In the Fig. 3.5(b) the uniform line is increasing faster than the framework in
effective diffusivity. The uniform line model achieves to represent the initial placement of
z0 versus the increase in effective diffusion DPoint

eff (z0, t) well compared the framework of
DPoint

eff (z0, t). Getting the importance of the gradients versus the placement of the point
z0 right with respect to the the short time anomalous dynamic. The effect of the wall is
neglected and more fine dynamics is not observed in the uniform model.
Fig. 3.5(c) The uniform 3D model is also increasing faster than the framework in effec-
tive diffusivity. The uniform 3D model also achieves to represent the initial placement of
z0 versus the increase of effective diffusion well compared the framework of DPoint

eff (z0, t).
Actually this is done better by the uniform 3D model than the uniform line model since
greater difference between the DPoint

eff (z0, t) and the placement is observed as in the frame-
work (a). The effect of the wall is also neglected here and more fine dynamics is not
observed in here either.
For a more precise description of the concentration profile in z-direction a Gauss distribu-
tion is now used.

3.4.1.5 A Gauss distribution spreading in the z-direction

The Gaussian distribution is used for a more precise description of the concentration profile
in z-direction,

c(z, t) = (4πt)−
1
2 e−

(z−z0)
2

4t δ(x − 3

2
(1− z2)t) (3.46)

where the mass center is set to follow the starting position x̄ = u(z0)t,

µ2(t) = 2t+
〈

(x− u(z0)t)
2
∣

∣c
〉

=

∫ 1

−1
dz(Pé

3

2
(1− z2)t− Pé

3

2
(1− z20)t)

2c(z, t) (3.47)

dµ2

dt is calculated numerically in matlab and is shown in the Fig. 3.6(b).

Problems with the Gaussian distribution Here the concentration very fast starts diffusing
out of the integral, underestimating the DPoint

eff (z0, t) of the initial point concentrations
located around the wall. The next model takes care of the no flux boundary condition by
using the method of mirrors.

3.4.1.6 A Gauss distribution, spreading in the z-direction using method of

images.

The last and most complex model is using the method of images to simulate the con-
centration. A concentration, symmetrical placed around the wall, takes care of the lost
concentration due to the no-flux boundary condition on the wall. This should give a more
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Figure 3.6: Simulation of the starting period of the steady flow in the time period 0 ≤ t ≤
1, ε0 = 1 and Pé = 20, with 6 different initial placed point concentrations z0 = 0(blue),
z0 = 0.1(green), z0 = 0.25(red), z0 = 0.5(black), z0 = 0.7(violet) and z0 = 0.8(yellow).
(a)The implemented framework for effective diffusivity in the time region 0 � t � 0.1.
(b) The Gauss model in the first time period 0 ≤ t ≤ 0.07. c)The Gauss model with
method of images in the time interval 0 ≤ t ≤ 0.1

accurate description of the concentration profile, when the point concentration is located
near the wall.

c(z, t) =(4πt)−1e−
(z−z0)

2

4t δ(x− Pé
3

2
(1− z2)t) + (4πt)−1e−

(z−(2−z0))
2

4t δ(x − Pé
3

2
(1− z2)t)

(3.48)

+(4πt)−1e−
(z−(z0−2))2

4t δ(x− Pé
3

2
(1− z2)t)
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this is set into µ2(t) and then dµ2/dt is calculated numerically in Matlab. Furthermore
unity is added for molecular diffusion.

3.4.1.7 Discussion of the models

Common features for the models see in Fig. 3.5(b), (c) and Fig. 3.6(b),(c) are noted, the
initial placement of the point concentration gives similar dynamics with respect to the
increase of Deff(t) as the framework. The point concentrations placed in the middle is
increasing slower in DPoint

eff (z0, t). But all the simulated curves increase faster than the
formula for Deff (t) and the intersection is not present in the models except in model 3,
Fig. 3.6(b) but here the decrease of the curves yellow z0 = 0.8 and violet z0 = 0.7 is be-
cause the concentration flow trough the wall, or the integral only goes to the wall, losing
some of Deff (t).

A problem exists in all four models; after a short time the axial center of mass x̄ is
wrong because it changes with time. Especially the initial point concentrations located
close to the wall will be estimated to have a low axial center of mass x̄ for the models.
This is the reason for the high estimated values of the effective diffusion DPoint

eff (z0, t) for
the initial point concentrations located close to the wall. On the other hand, if the points
concentrations are located around the middle, the speed of the axial center of mass x̄ is too
high also overestimating DPoint

eff (z0, t). Neglecting the diffusion or not handling it correctly
in the x-direction and z-direction also give errors. The diffusion in the z direction due to
the velocity profile is neglected and the plug like shaped of the concentration, normally
known from Taylor dispersion [18], will be missing.

So all the models could show the slower short time anomalous dynamic of the diffusion
for the point concentration placed in the middle, compared to the point concentrations
placed in bigger gradients in the start. This is obvious since the concentration gets more
stretched by the velocity gradients near the wall and the concentration gets pushed from
each other by the varying velocity in the z direction.

This behaviour is caused by reflections of particles from the wall returning to the same
low velocities, see in Fig. 3.8(right). This does not enhance the dispersion as much as
meeting new gradients. So for z0 = 1(violet) hitting the wall happens already in the start
t = 0 for z0 = 0.75(turquoise) at little later and for z0 = 0.5(red) even later and this can
been seen in Fig. 3.4a).

3.4.1.8 Intersections of DPoint
eff (z0, t) for point concentrations and the wall

For further investigation of the wall behaviour and a plot of z0 = 0.8(turquoise) intersected
by point concentrations located closer to the middle can be seen in the Fig. 3.7(c). In this
figure the point located at z0 = 0.8 has a slower anomalous diffusion DPoint

eff (z0 < 0.8, t)
than the points initially placed closer to the center at some time around 0.01 < t < 0.04.
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Figure 3.7: Investigating the intersections of Deffpz compared to the initial placement of
z0 = 0 where Pé = 20 and Sc = 103. a)The velocity profile for the steady flow with ε0 = 1

(b)The absolute value of the velocity gradients dvx(r)
dz . (c) the Deff(t) with varied starting

position of the z0 location from 0.5 ≤ z ≤ 0.8 where z0 = 0.5(blue), z0 = 0.6(green), z0 =
0.7(red) and z0 = 0.8(turquoise). (d)Time tintersect for point concentrations located at
z0 < 0.8 to reach the value or intersect the value of DPoint

eff (0.8, tintersect)(turquoise). With
respect to figure (c-d); the point concentration located at z0 = 0.8(turquoise), the inter-
section of z0 = 0.8(turquoise) and z0 = 0.7(red) happen around tintersect ≈ 0.011. Another
intersection of z0 = 0.8(turquoise) and z0 = 0.6(green) happen around tintersect ≈ 0.02. At
last intersection of z0 = 0.8(turquoise) and z0 = 0.5(blue) happen around tintersect ≈ 0.039

In Fig. 3.7(b) the absolute value of the gradient is taken Eq. (3.2), |u′0(z)| = 3ε0z. In
the Fig. 3.7(c) through the time 0.012 ≤ t ≤ 0.04, z0 = 0.8(turquoise) gets intersected
in DPoint

eff (z0, t) by the point concentrations placed closer to the center z0 = 0.7(red),
z0 = 0.6(green), z0 = 0.5(blue). When a certain time has gone for the point concentration
z0 = 0.8, the concentration starts to reach the wall and the wall slows down the spreading
of the particles. This effect is sketched in Fig. 3.8(right), when the concentration(black)
starts to diffuse into the(lightblue) into the no flux wall(darkblue arrow), it is reflected
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Figure 3.8: Sketch of three proposed effects for the concentration in the Steady flow. The
asymmetric spread of the concentration when the point concentration is applied in the
bottom to (left). The point concentration is spread symmetrical when it is applied in the
middle (top). Wall effect, the concentration is reflected back by the no flux boundary to
the same small velocity (right).

back into the same velocities(red arrow), thereby not enhancing the spreading much.
Whereas for the point concentration farther away from the wall z0 = 0.7(red), z0 =
0.6(green) and z0 = 0.5(blue) will continue to hit new gradient where just a very little part
of the concentration has reached the wall when t < 0.04. In Fig. 3.8(left)the concentration
will be pulled by the gradient in the x-direction creating a large DPoint

eff (z0, t) which is
denoted asymmetric spread. This must be the reason for the intersection of the initial
point z0 = 0.8 and the initial point concentration 0.5 ≤ z0 < 0.8. The walls slow the
spread of z0 = 0.8 and the asymmetric spread increases the DPoint

eff (z0, t). The Fig. 3.7(d)
shows the time it takes for point concentrations placed closer to the center than z0 < 0.8,
to overtake or intersect z0 = 0.8 the value of DPoint

eff (z0, t). It takes more time for 0.5 to
intersect z0 = 0.8, since it is placed in the middle and needs to reach the bigger gradients.
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Figure 3.9: Steady flow and Pé = 20(a)DPoint
eff (z0, t) for the initial point concentra-

tion placed at r0 = 0(blue), r0 = 0.25(green), r0 = 0.5(red), r0 = 0.75(turquoise) and
r0 = 1(violet) z0 = 0. (b) Peaks of DPoint

eff (z0, t) versus the placement z0 of the point
concentration, the largest peak occur for the initial placement of the point concentration
at z0 = 1.

3.4.1.9 Linear phase

Fig. 3.4(a) a linear phase for the point concentrations effective diffusionDPoint
eff (z0, t) occurs

at around the time 0.03 ≤ t ≤ 0.3 could be seen in Fig. 3.4, similar to the uniform concen-
tration in the cross-sectional plane case. The linear phase for the uniform cross sectional
concentration distribution can be seen in Fig. 3.2(the linear phase occurs directlyt = 0).
Because the concentration is already smeared out and utilizing the gradients. Where the
point concentration needs to be diffused out in the transverse direction, before the linear
phase occurs. The reason that the linear phase does not occur around 1/λ1 = 0.4 is not
discovered yet, altough in the circular channel the linear phase start around 1/λ1 = 0.068.
Maybe it is due to diffusion in the y-direction or the infinite parallel plates inducing less
shear.

3.4.1.10 Peaks in the DPoint
eff (z0, t)

Peaks in the Deff (t) does not happen for the steady flow of a uniform distribution in the
cross-sectional plane, this can be seen in Fig. 3.2. Peaks in the DPoint

eff (z0, t) were found
and from now on the peaks are defined as the maximum before an asymptotic decrease
towards the steady state value of Deff(∞), or just the largest value of DPoint

effPeak(z0, tpeak).

These peaks may have been found solving 1
2

d(
dµ2
dt

)

dt = 0, but this is a very complicated
expression and it may not give a lot of physical insight. These peaks are also dependent
on the position z0 of the point concentration as seen in Fig. 3.9(a). The max peak is
small in relative size compared to the steady Deff value 100% × 8.6191−8.619

8.619 = 6 × 10−4%
and occurs later compared to the diffusion time 1/λ(0,1) = 0.4 around 1.1 < t < 1.3. The

peak DPoint
effPeak(z0, tpeak) are largest around the initial points placed towards the wall z0 ≈ 0.
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Larger peaks will later be observed for the steady flows in the circular channel with the
Newtonian fluid and the non-Newtonian Power law fluid.

Reason for the peak must be the spatial relation between concentration and the gra-
dients in the transient period, before convergence. The wall could play an effect and how
the wall is placed, since the largest peak for the circular channel is when the initial point
is placed at z0 = 0.

3.4.1.11 DPoint
eff (z0, t) convergence

After the time period 1.6 < t, when the concentration has diffused to a approximately
uniform concentration in the transverse direction, removing the spatial dependence of the
point concentration. The same steady flow results as in the uniform distribution in the
cross-sectional plane, is obtainedDPoint

effSteady(z0,∞) = Duniform
eff (∞) = 8.6191 = 1+2020.019

as Chatwin and Sullivan [27]. This can also be seen in Fig. 3.4(a) where all the points
converges to the same value as the uniform concentration, seen in Fig. 3.2.

3.4.2 Applied point concentration with only a pulsating flow ε0 = 0, ε1 = 1

If only a single frequency flow is applied many effects can be studied with respect to
the effective diffusivity DPoint

eff (z0, t). When making this analysis, there are overall three
numbers in the equations you can change to check the different dynamics; the Schmidt
number Sc, the Womersley number Wo and the Peclet number Pé. With fixed amplitude
ε0 = 0, ε1 = 1 and Pé = 20 and a Schmidt NaCl D = 10−9 m2

s as the solute and water as

the solution ν = 10−6m2

s we obtain Sc = ν
D = 103. This leaves us with the Womersley

number as the only variable, since the nondimensionlized frequency is determined by the
Womersley number.

First changing the initial placement z0 of the point concentration is examined with re-
spect to the effective diffusion DPoint

eff (z0, t).
Compared to the uniform concentration [1], the point concentration will have different
short time dynamics and slightly different behaviour is expected for different placement
in the z-direction, especially for higher frequencies and larger Womersley number due to
the spatial change of the velocity profile see Fig. 4.4(a). Changing the Womersley number
gives rise to different phenomena; a change in the spatial form of the velocity profile and
a decrease in momentum diffusion. This gives a decrease in Deff(t) and the characteristic
of the Deff(t) curve changes due to the slightly different gradient.

3.4.2.1 Reversal of flow, oscillating value of Deff (t) and frequency of the flow

ωo

Now the parameters are fixed and only the Peclet number or the frequency ωo can be
changed. The frequency of the flow compared to the solute equilibration rate determines if
theDPoint

eff (z0, t) experiences negative effective diffusionDPoint
eff (z0, t). Negative D

Point
eff (z0, t)
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is experienced when diffusion relaxing is not possible at around ωo > λ0,2 = π2 This means
that the larger the frequency the smaller value Deff(t) and vice versa, this effect can be
seen in the later appearing Fig. 3.15(a) where ωo = 0.1 the blue has higher value of Deff(t)
than ωo = 2.5 red.

When the flow is reversing, and if there is time for the diffusion in the transverse direction
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Figure 3.10: The Schmidt number Sc = 1000 and the Peclet number Pé = 20, with an
amplitude ε1 = 1 for the single frequency flow. The point concentration was placed in
the center z0 = 0. (a) The minimum peak of DPoint

eff (z0, t) versus the frequency ωo. (b)
Example of a low frequency flow ωo = 1 where 1 ≤ Deff(t) oscillates above the molecular
diffusion.

to relax before the reversal of the flow begins, then 1
2
dµ2

dt minimum is around the molecular
diffusion, when the ω0 > 1 the reversal of the flow begins to be faster than the diffusion
can relax and the concentration in the middle starts to get thrown forth and back with the
flow before it can diffuse in transverse direction. Because the concentration of the solute
around the wall moves slower relative to the solute in middle, this creates a bigger spread
µ2(t) in the time period of where the flow has peak velocity. When the flow reverses, the
solute molecules in the middle travel back and get closer to the solute molecules at the wall
decreasing the spread µ2(t) and making 1

2
dµ2

dt negative. In the Fig. 3.10(b) the frequency
ωo = 1, here the diffusion has time to relax and effective diffusion is only increased by
the oscillating flow. In Fig. 3.10(a) the negative values of the effective diffusion is investi-
gated with respect to the frequency omega ωo. In the Fig. 3.10a) The negative effective
diffusion starts appearing around ω0 = 1, this is due to the relaxation time of diffusion is
exceeded. The minimum Deff (t) is reached around ωo ≈ 22, later the curves start getting
more positive, this is due to limited momentum diffusion. Altough the momentum diffu-
sion time 1/αfl is larger, still a decrease will occur. In Fig. 3.10a) the effective diffusion
oscillates above the molecular diffusion, meaning that at each half period diffusion has
time to diffuse out before the flow reverses. Later the flow will reverse to a settled uniform
concentration profile. So if a good mixing of the solute is wanted with a single frequency
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flow, then a smaller frequency will give better mixing. Also because ω0 is a damping factor
in DPoint

eff (z0, t), this can be seen the equation for Eq. (2.22).
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Figure 3.11: A harmonically oscillating flow, Sc = 1000, with amplitude ε1 = 1, ε0 = 0,
Pé = 20 and varied Wo = 0.72,Wo = 1.82,Wo = 3.9. (a-c) Normalized velocity profiles
at time t = 0 for Wo = 0.72,Wo = 1.82,Wo = 3.9. (d-f) different starting position for the
point concentration zloc = 0, 0.2, 0.4, 0.6, 0.8, 1, also with the respecting Wo = 0.72,Wo =
1.82Wo = 3.9. Deff(t) amplitudes decrease significantly with each of the new increased
Womersley numbers by a factor of around 10.

3.4.2.2 The velocity profile versus Wo and the DPoint
eff (z0, t)

In Fig. 4.4from a) to c) the amplitude of the velocity field gets weaker and thereby the
velocity gradients too, which induces less shear and thereby the gradient decreases, see
d) to f)Fig. 4.4. A slight difference in the shape of the velocity profile can be seen in
Fig. 4.4from a) to c). Since it is an infinite parallel plate channel, less shear is induced
because no side walls with no-slip conditions are present in the y-directions compared to
a cylinder. The amplitude of the velocity profile gets smaller since momentum diffusion
cannot follow the oscillation of the pressure, this also makes the Deff(t) smaller Fig. 4.4(d)
to (f).
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Figure 3.12: Transient behaviour, of a harmonically oscillating flow, ε1 = 1 and Sc = 1000,
point concentration located at z0 = 0, 0.2, 0.4, 0.6, 0.8, 1 and Pé = 20. (a-b) Varied point
concentrations locations with Wo = 0.72 and Wo = 1.82. (c-d)Time for the transient to
develop 15% of the steady peak for 0 ≤ z0 ≤ 1 for the Womersley numbers Wo = 0.72 and
Wo = 1.82.
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3.4.2.3 Transient of Deff(t) versus placement of point concentration

The transient behaviour is also investigated in the single frequency flow. The placement
of the point concentration has similar behaviour as in the steady flow case. The transient
behaviour depends on the placement of point concentration compared to the gradients. If
the point concentration is placed around the middle, a slower transient increase of Deff(t)
will happen this can be seen in the Fig. 4.5(a)z0 = 0(blue).

Increasing the Womersley number will change the velocity profile shape and thereby also
the transient behaviour for the Deff . For very large Womersley number Wo > 10, the
region in the middle will be larger since the momentum diffusion cannot reach the middle
from the plates.
the Fig. 4.5c) and d) the transient build up to 15% of the steady max peak ofDPoint

eff (z0,∞),
which is investigated with different placement z0 of the point concentration. It is seen that
the point concentrations which start in the high velocity gradient 0.4 ≤ z0 ≤ 1 are faster
in reaching the 15% of the positive steady peak of effective diffusion for Wo = 0.72 and
Wo = 1.82. In the Fig. 4.5(c) and (d), the locations of the point concentrations z0 had a
big significance for the transient build up.

3.4.2.4 Peaks in the effective diffusion ε0 = 0 ε1 = 1, where the Schimdt number

is Sc = 103

So earlier the minimum was found for DPoint
eff (z0, t), now the peak are investigated, that

also occur in the single frequency flow ε0 = 0 ε1 = 1 as it did in the steady case ε0 = 1.
First looking at DPoint

eff (z0, t) for different initial placed point concentrations and varying
the Womersley numbers Wo = 0.72 and Wo = 3.9.
For the Fig. 3.13(a) and (b) a plot of the effective diffusion DPoint

eff (z0, t) where peaks in
DPoint

eff (z0, t) are present for placements around z0 ≈ 0.75 for the point concentration when
Wo = 0.72. For Wo = 3.9 the peak are nearly neglectable in size, but a shift happens of
the peaks DPoint

eff (z0, t) in the initial placement z0 ≈ 1. Probably due to the change of the
velocity profile when the Womersley number is changed to Wo = 3.9 and the momentum
diffusion from the wall will not reaching the middle. For the Fig. 3.13(c) and (d) the max-
imum peak of DPoint

eff (z0, t) versus the initial placements z0 of the point concentrations. In
Fig. 3.13(c)Wo = 0.72 the peak occur for the point concentrations with initial placements
around z0 ≈ 0.75 where the gradients are presented, probably because of the parabolic
velocity profile. In Fig. 3.13(d)Wo = 3.9 the peaks are shifted towards the wall due to the
change of gradient of the velocity.

Concluding why the peak occur, the peaks occur due to the gradients and is expected
to move towards the wall for higher Womerley numbers Wo. Since the momentum dif-
fusion can reach the middle, giving a flat velocity profile in the middle. Probably also
because the larger concentration can be used in the high gradients around the wall(high
Wo), before the solute diffusion time tpeak < 0.4 = 1/λ1. Since it diffuses to lower gradients
with a low concentration.
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Figure 3.13: A harmonically oscillating flow, Sc = 1000, with amplitude ε1 = 1, Pé = 20
and varied Wo = 0.72 and Wo = 3.9. (a-b) investigated peaks for the initial placement
z0 = 0(blue), z0 = 0.25(turquoise), z0 = 0.5(black), z0 = 0.75(red) and z0 = 1(yellow) for
Wo = 0.72 and Wo = 3.9. (c-d)Maximum peak of DPoint

eff (z0, t) for the z interval with the
respecting Wo = 0.72 and Wo = 3.9. (c-d)time before maximum peak versus the initial
placement z0, with the respecting Wo = 0.72 and Wo = 3.9.
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Figure 3.14: A harmonically oscillating flow, ε1 = 0, ε0 = 1, zloc = 0 and Pé = 20.
(a)Varying the frequencies ω0 = 100, 200, 300, 400, 500, 600 in the time interval 0 � t �
0.8(b)A plot of the peak steady effective diffusivity DPoint

eff (z0, t) versus the frequency ωo.

3.4.2.5 Frequency ωo versus the size of Deff(t)

I have chosen the steady state peak, to measure the size of the effective diffusivity Deff(t)
for the different frequencies ωo. For high frequencies the pressure oscillation is so fast that
solvent-momentum diffusion is limited and the momentum diffusion does not have time to
react to the fast changing frequency of the pressure. This will happen when the frequency

of the flow exceeds the fluid momentum diffusion rate ωo > αfl =
(

π2

4

)

Sc. This can be

seen in Fig. 3.14(b).

3.5 Decreasing the Schmidt number to Sc = 10−1, for larger

effect of the number Womersley Wo

Due to the earlier small values of the DPoint
eff (z0, t) and large frequencies ωo, for moderate

Womersley numbers, the Schmidt is decreased. This will give a more clear idea of the
effect of the momentum diffusion from the no slip wall.
The relationship between the Womersley number and the Schmidt number is given by
ω0 = Wo2Sc, for a fixed ω0 and varyingWo and Sc will give rise to different effects. Because
of the small momentum diffusion when Sc = 103 gives high frequencies ωo > 25000 for
the moderate Womersley numbers Wo > 5. To get the Womersley number to affect the
velocity profile more for smaller frequencies ωo. The Schmidt number is now decreased
to the value of gas Sc = 0.1 and the incompressibility assumption is still used. Then the
velocity profiles where the momentum diffusion from the wall is smaller λd, is found by
using the dimensionless numbers Wo, ω0 and Sc. Where the momentum diffusion length

λ̃d =
√

ν
ω̃o

from [30], then the dimensionless momentum diffusion length is found by using
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the dimensionless numbers Wo, ω0 and Sc.

λd =

√

Sc

ω0
=

1

Wo
(3.49)

3.5.1 Womersley numbers and phase shift in DPoint
eff (z0, t), for Sc = 10−1

Phase shift in DPoint
eff (z0, t) is discovered between initial point concentrations located at

large gradient compared to the region with small gradients. When the diffusion time to
reach the large gradient was longer than the frequency of the flow, then phase shift will
be discovered between the point concentrations.
In the Fig. 3.15(a) to (c) the point concentrations in the center z0 hit the gradients later,
but still nearly in phase with the other point concentration, in Fig. 3.15(c) a slight phase
shift can be seen. First in Fig. 3.15(d) a phase shift occurs for the initial point concentra-
tion in the center z0 = 0(blue) versus the point concentrations located at z0 > 0.5. This is
because the diffusion in the transverse direction first hits the velocity gradients when the
flow reverses. in Fig. 3.15(d) the point concentration placed in the middle z0 = 0(blue)
and another point concentration placed a bit from the center z0 > 0.5(z0 = 0.5green,
z0 = 0.7red and z0 = 0.9violet). These two point concentrations will meet the velocity
gradient at different times due to the diffusion time to the gradients. If the frequency is
fast enough then the two points can be out of phase, because the concentration in the
middle first has reached the gradient at the reversal of the flow. This can been seen in
Fig. 3.15 for the point z0 = 0(blue) compared to the other points(r0 > 0.5).

In order of magnitude, phase shift will happen between the two point concentrations z0 = 0
and z0+λd

= 1−λd, when the diffusion cannot reach the momentum region 1−λd >
√

6tDeff
,

before the reversal of the flow π
ω0

� tDeff
. This order of magnitude, has the problem that

√

6tDeff
is too large a part of the concentration, so small part of the concentration will

meet the gradients already raising the DPoint
eff (z0, t).

The initial point in the middle z0 = 0(blue) from Fig. 3.15(d) is used as an exam-
ple of calculating the order of magnitude. The first peak of the flow is missed since
the distance to where the momentum reaches 1 − λd = 1

Wo = 0.96 is too far com-
pared with the diffusion length 0.96 =

√

6tDeff
and the time the peak is lasting(half

period) 0.5π
62.5 = 0.0251 << (0.96)2/6 = 0.1536. Simply the time was too short before

the reversal of flow compared to the diffusion in the transverse direction to reach mo-
mentum diffusion or the velocity gradients. First when the flow reversed at the time
t = 0.05, cos (0.05 × 62.5) = −0.99 the diffusion’s first standard deviation has reached√
0.05 × 6 = 0.54, but now a sufficiently part of the concentration has reached the annular

region of gradient to get a increase in DPoint
eff (z0, t).

3.5.1.1 Peaks in the effective diffusion ε0 = 0 ε1 = 1, for Sc = 10−1

Peaks in DPoint
eff (z0, t) are also observed here and the peak probably arises due to the

high level of concentration gradient, that is able to use the velocity gradient to spread the
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Figure 3.15: DPoint
eff (z0, t) with Pé = 20 and Sc = 0.1 for different parameters. (a)The

DPoint
eff (z0 = 0, t) for Wo = 1(blue), Wo = 3(green), Wo = 5(red) and the steady flow

DPoint
eff (z0 = 0,∞) for ε0 = 1, in the time 0 ≤ t ≤ 20. (b)For Wo = 1 with the

positions of the point concentration z0 = 0(blue), z0 = 0.5(green), z0 = 0.7(red) and
z0 = 0.9(turquoise) 0 ≤ t ≤ 0.4.(c)For Wo = 3. (c)For Wo = 10. (d)For Wo = 25. (e)the
envelope function is used to represent DPoint

eff (z0, t) for Wo = 50. (f)the envelope function
is used to represent DPoint

eff (z0, t) for Wo = 75. In (c) a phase shift occur between the point
located in the center and the point located z0 > 0.5. Peaks are observed for Wo = 25,
Wo = 50 and Wo = 75.
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Figure 3.16: Observing maximum peak in DPoint
eff (z0, t) versus the initial point place-

ment, for Pé = 20 and Sc = 0.1 and for different Womersley numbers Wo. (a)initial
position z0 of the point (horizontal axes), versus the normalised maximum peaks
DPoint

eff (z0, t)/D
PointPeak
eff (z0, tpeak)(vertical axes) for the Womerley numbers Wo = 1(red),

Wo = 10(turquoise), Wo = 15(violet), Wo = 25(yellow), Wo = 50(black), Wo = 75(blue)
numbers the peaks of the different point concentration are plotted.(b)Same plots as (a),
just a zoom in on the highest peak of DPoint

eff (z0, t)/D
PointPeak
eff (z0, tpeak) with respect to

the initial placement z0 of the point, only regarding the highest Womersley numbers,
Wo = 15(violet), Wo = 25(yellow), Wo = 50(black), Wo = 75(blue). (c) a plot of the
diffusion length of momentum versus the Wo number. (d) A plot of the initial point
concentration with the maximum peak DPoint

eff (z0, t) placement in 1 − z0(horizontal axes)
versus the Wo number(vertical axes). Its seen that the the initial point concentrations

with the maximum peak, distance to the wall 1 − zpeak0 follows the momentum diffusion
length from the wall nicely.
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concentration, later the concentrations is lower in the high velocity gradients giving a lower
spread. This becomes a more present effect for higher frequencies where the relative peaks
get bigger compared to the steady peak, this can be seen in Fig. 3.15(e-f) and the point
concentration placed in the middle z0 = 0(blue) has a long diffusion path in the transverse
direction before meeting the region where the momentum diffusion is present. Further
investigation is done in order to find the peaks of DPoint

eff (z0, t) for the initial location of
the point concentrations versus the momentum diffusion length for higher Wo numbers.
So for higher Wo it is expected that the initial point concentration with the maximum
peak in DPoint

eff (z0, t) is moved with the momentum diffusion towards the wall where the
velocity gradients are present. This effect can be seen in Fig. 3.16(a-b) when Wo increases
the maximum peak of the point(z0) in the DPoint

eff (z0, t) gets moved towards the wall with
respect to the initial point concentration where the momentum diffusion can reach. In
Fig. 3.16(c) the calculated momentum diffusion length λd = 1

Wo is plotted versus the
Wo number. In Fig. 3.16(d)the initial point concentration z0 with the maximum peak in
DPoint

eff (z0, t) is plotted versus the Wo number, note that is plotted as the distance to the
wall 1 − z0 and not z0, for comparison of Fig. 3.16(c). The highest peak for the point
concentration gets moved towards the right for higher Wo number. it was shown that,
the initial point concentration with maximum peak gets shifted towards the region with
velocity gradients and where the momentum diffusion reaches in the z-direction.

3.5.2 Remarks about the single frequency flow, ε0 = 0, ε1 = 1

Here phase shift was shown and further investigation will be done in the cylinder geometry
since the cylinder encapsulates the whole fluid, thereby induced more shear and more
reaction from the wall giving more curvature to the velocity profile for smaller Wo and
ωo while Sc = 1000 numbers. Because of the complexity of the implemented model in
Matlab and running time, high frequencies requires a high number of data points, for a
good resolution off the frequency and the behaviour of Deff(t).

3.5.3 Applied point with steady and a plus one frequency flow ε0 = 1, ε1,
with the Schmidt number 10−1

Now the Schmidt number is reset to Sc = 103. Period doubling will occur for the point
concentration as in the uniform distribution [1] and the same behaviour was observed. In
Fig. 3.17(a) different located point concentrations with a steady flow and a one frequency
flow ε0 = 1, ε1 = 0.05 here the steady flow dominating the Deff(t). What happen if
the amplitude of the oscillating flow is turned up to ε1 = 50, ε0 = 1 this is shown in
Fig. 3.17(b) it looks like a period doubling occurred. This is because when the oscillating
flow is decreasing the steady flow will take over making an additional smaller peak in the
Deff(t). This can be seen in Fig. 3.17(d) whereDeff(t) is normalized asDeff (t)/D

avr
eff (∞), by

dividing with the time-averaged diffusivity Davr
eff (t) over one oscillation period τ0 = 2π/ωo,

where

Davr
eff (t) =

1

τ0

∫ t+τ0

t
Deff(t) dt (3.50a)
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Figure 3.17: A harmonically oscillating flow superimposed on a steady flow, with the
frequency ω0 = 200, Wo = 0.447 and Pé = 20. (a) Point concentrations with the starting

positions zloc = 0, 0.25, 0.5, 0.75, 1 and ε1 = 0.05, ε0 = 1 (c) Deff(t) − Dsteady
eff (t) for the

steady regime 0.9 < t < 1 with zloc = 0.5, showing the same behaviour as [1] and [10](d)
Normalized effective diffusivity Deff(t)/D

avr
eff (∞), period doubling occurs with increased

amplitude of oscillating flow ε1 = 50 this shows again the same dynamic behaviour as [1].

this is calculated in Matlab. This can be compared with the Fig. 3.17(c) for ε1 = 0.05 where
no period doubling occurs, here Deff(t) is subtracted from the steady effective diffusion
to get the effect just from the oscillatory flow. Other investigations can be made as S.
Vedel and H. Bruus where ε1 is increased and a cross-over from the linear regime occurs,
where Davr

eff (∞)/Dsteady
eff (∞) ≈ 1, to a non-linear regime, where Davr

eff (∞)/Dsteady
eff (∞) ∝ ε21,

happens at the frequency-dependent critical value εc1 which is Wo . ξ0,1 ≈ 2.40 [1].

3.5.3.1 Concluding Remarks

It was possible to show for the points concentration convergence towards the uniform dis-
tribution in the cross-sectional plane in the effective diffusion. This is a good result and
indicates the correctness of the framework theoretically and the implementation in Matlab
for the point concentration. The linear phase also shows some common features between
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the point concentration and the plane uniform distribution.

Depending on the initial starting placement z0 = 0 of the point concentration, differ-
ent short time dynamic 0 < t < 0.0 < 0.08 will be obtain dependent on the gradients in
the z-direction. In the case of a steady flow the point concentration initially placed around
the center z0 ≈ 0, will have slower increase for the DPoint

eff (z0, t). The point concentration
starts near the wall will have greater gradients and thereby a bigger increase in Deff (t) in
the short time dynamic. It was possible to partially model this short time dynamic with
the four models with the exception of the effect from the wall.
For a single frequency flow, the frequency ωo determines if Deff(t) gets to minus, due to
diffusion time in the transverse direction compared to the dimensional frequency. If the
diffusion has time to reach the wall before the reversal of the flow Deff (t) will oscillate
above molecular diffusion if not, the concentration in the middle will shifted forth and
back making Deff (t) oscillate around the molecular diffusion. This effects start to happen
around ω0 = 1, when the frequency gets over around ω0 > 20 the momentum diffusion
cannot reach the middle and also the amplitude of the velocity profile gets smaller. This
gives a smaller DPoint

eff (z0, t) and a different shape of the velocity profile. Phase shifts will
also occur dependent on the position of the initial point concentration and if high enough
frequency is applied. Period doubling also occurs, if a steady flow is superimposed on a
harmonically oscillating flow, and the oscillating flow has a big enough amplitude ε1.

My conclusion is that the behaviour of DPoint
eff (z0, t) can mainly be explained by just

looking at the gradient of the velocity field. The exact physical explanation for the peak
of DPoint

eff (z0, t) is hard to explain since many physical phenomena occur simultaneously.



Chapter 4

Applied point concentration in a

circular channel

Now a circular channel’s effective diffusivity DPoint
eff (r0, t) will be investigated. First the

formula for the point concentration in the circular channel will be made from the velocity
profile, basis functions, 1

2
dM2
dt and M1

dM1
dt are calculated to find DPoint

eff (r0, t). Similar
effects for the circular channel as in the parallel plate channel can be expected. Just with
a slight difference, which is that the wall encapsulates all the fluids now inducing more
shear stress. Some investigations from the parallel plate channel will be left out like the
four models of short time dynamic, since the same behaviour is expected.

First the steady case will be investigated, then the single frequency flow and finally the
single frequency superimposed on the steady flow.

4.1 The velocity profile

The circular channel velocity profile depends on the time-dependent pressure drop with the
components ε`∆p ei`ωot (ε` is the dimensionless amplitude) in the longitudinal direction of
a circular tube of unit radius. Using cylindrical coordinates and the generalized wavenum-
ber k`, then the velocity component u` fulfilling the boundary conditions u|r=1 = 0 and
∂ru|r=0 = 0[1, 18, 14] is,

k` = k`(Wo) =
√

−i`Wo2 =
√

−i`ωo/Sc, (4.1a)

∣

∣u`
〉

= ε`
8

k2`

[

J0(k`r)

J0(k`)
− 1

]

. (4.1b)

where the steady-state Poiseuille solution in the limit of ` goes to zero is u0(r) = lim`→0 u`(r) =
ε02(1 − r2). The Characteristic velocity is taken to be the average steady state velocity
Uo = ∆p a2/(8ηL) for ε0 = 1.

47
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4.2 Basis functions

From the diffusion equation,

(λm+∇2
⊥)
∣

∣fm(r, ϕ
〉

= 0, m = 0, 1, 2, . . . , (4.2)

having the Laplacian in cylinder coordinates,

1

r
∂r(r∂rfm) +

1

r2
∂2
ϕfm = −λmfm. (4.3)

using seperation of variables, fm(r, ϕ) = R(r)mΦ(ϕ),

−∂2
ϕΦ = CΦ (4.4)

since einϕ is the solution, then the constant is C = n2, then getting n = −∞,−1, 0, 1, ..,∞
equations for each m,

(r2∂2
r + r∂r + n2 + r2λn,m)fn,m = 0 (4.5)

with the eigenvalues λn,m, coming from the boundary conditions where m is the root and
n is the order of the Bessel function Rm,n(r) and n oscillation counter for Φn(ϕ).

~n ·∇⊥
∣

∣fn,m(r, ϕ)
〉

= 0, on the wall, (4.6a)

~n = ~er, so ~n ·∇⊥ = ∂r (4.6b)

and ξn,m is the solution to,

1

2
(Jn−1(ξn,m)− Jn+1(ξn,m)) = 0, (4.7)

finding the eigenvalues and eigenvectors

λn = (1− δn,0δm,0)ξ
2
m,n (4.8)

getting the solution and remembering normalizing constants,

f(n,m)(r, ϕ) =
Jn(ξn,mr)

√

(1− n2/ξ2n,m)Jn(ξn,m)
einϕ, (4.9)

Rn,m(r) =
Jn(ξn,mr)

√

(1− n2/ξ2n,m)Jn(ξn,m)
, Φn(ϕ) =

1
√

1 + δ(n,0)
einϕ (4.10)

with the condition,
f(−n,m)(r, ϕ) = f∗

(n,m)(r, ϕ) (4.11)

later ϕ independence will be shown, then it is possible to find the solute equilibration rate
and the fluid momentum equilibration rate. Thereby the fluid momentum equilibration
rate can be found as,

αfl = Scξ20,1 (4.12)

and the solute equilibration rate,
λ(0,1) = ξ20,1 (4.13)

The time when most of the anomalous diffusion is decreased is around 1
λ(0,1)

= 1
ξ20,1

≈
0.068 < t from [1].
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4.2.1 Inner product

The bra-kets for the cylindrical coordinates are defined as

〈

Rn,m

∣

∣R̃p,j

〉

= 2

∫ 1

0
dr rR∗

n,m(r) R̃n,m(r), (4.14)

〈

Φ
∣

∣Φ̃
〉

=
1

2π

∫ 2π

0
dϕΦ∗Φ̃ (4.15)

where we have,
〈1 | Φn(ϕ)〉 = 〈Φ0(φ) | Φn(ϕ)〉 = δn,0 (4.16)

and
〈Φn(ϕ) | Φp(ϕ)〉 = δn,p, n 6= 0 (4.17)

so for the fn,m(r, ϕ) = Rn,m(r)Φn(ϕ) and f̃p,j(r, ϕ) = R̃p,j(r)Φ̃p(ϕ) we have

〈fn,m | f̃p,j〉 =
1

A

∫

Ω
dr⊥f

∗
n,mf̃p,j = 〈Rn,m | R̃p,j〉〈Φn | Φ̃p〉 = (4.18)

〈Rn,m | R̃p,j〉δn,p = δn,pδm,j(1− n2/ξ2n,m)Jn(ξn,m)2

Now orthogonality is used again as in the rectangular channel, with a similar notion,

〈ul(r) | Φn(ϕ)Rn,m(r)〉 = 〈1 | Φn(ϕ)〉〈ul(r) | Rn,m(r)〉 = δn,0〈ul(r) | Rn,m(r)〉 (4.19)

The next bracket 〈f(n,m)(r, ϕ) | u0(r) | f(n,m)(r, ϕ)〉,

〈Φn(ϕ)Rn,m(r) | u0(r) | Φn(ϕ)Rn,m(r)〉 = 〈Rn,m(r) | ul(r) | Rn,m(r)〉 (4.20)

To the last 〈f(n,m)(r, ϕ) | ul(r) | f(p,j)(r, ϕ)〉

〈Φn(ϕ)Rn,m(r) | ul(r) | Φp(ϕ)Rp,j(r)〉 = δn,p〈Rn,m(r) | ul(r) | Rp,j(r)〉 (4.21)

now that all the bra-kets are defined the analysis can start.

4.2.2 Reproducing results existing in Literature for the circular channel.

Before the formula derived earlier for the DPoint
eff (r0, t) is implemented in Matlab, earlier

results in the literature is reproduced to check the bra-kets and verify the code. For the
cylindrical coordinates

〈

f
∣

∣g
〉

=
∫ 1
0 dr 2rf∗(r) g(r), the bra-ket was calculated numerically

in Matlab and compared to the value,

〈

fn
∣

∣u`
〉

= −ε`
16

(ξ21,n − k2` )k`

J1(k`)

J0(k`)
, for n > 0, (4.22)

and
〈

fn
∣

∣u0
〉

= lim`→0

〈

fn
∣

∣u`
〉

= −8/ξ21,n for the steady term [1]. These bra-kets were
possible to get with numerical implementation in Matlab. Then Barton’s steady-flow
result [4] was implemented, Dsteady

eff (t) = 1 + Pé2
[

1
48 −∑∞

n=1(64/ξ
6
1,n) exp(−ξ21,nt)

]

This
can be seen in Fig. 4.1(a). A harmonically oscillating flow of frequency ωo superimposed
on the steady flow shows period doubling for ε0 = 1, ε1 = 50 in Fig. 4.1(d) compared to
ε0 = 1, ε1 = 0.05 in Fig. 4.1(c) as in S. Vedel and Bruus [1].
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Figure 4.1: Deff(t) for the uniform distribution in the cross sectional plane in cylinder
channel with the value Pé = 20. (a) Deff(t) for ω0 = 200, Wo = 0.447 and velocity ampli-

tudes ε1 = 0.05 , ε0 = 1 (black line) oscillating around Dsteady
eff (t)(blue line). (b)Davr

eff (t) for
velocity amplitudes ε1 = 0, ε0 = 1 (red line), ε1 = 3, ε0 = 1 (blue line) and ε1 = 12, ε0 = 1
(black line),(c) the steady regime 0.9 < t < 1 for ε1 = 0.05 � ε0 = 1 is in agree-
ment with Mukherjee and Mazumder [10] and [1](d) for Normalized effective diffusivity
Deff(t)/D

avr
eff (∞) showing period doubling when ε1 = 50, ε0 = 1. All this is in agreement

with S.Vedel and H.Bruus [1].

4.3 Random placement of point concentration

The calculation is quite similar to the rectangular channel since the velocity profile in this
case is independent of the angle ϕ because of rotational symmetry. This later makes a
simplification in the bra-kets, that is also why the notion with the indices m, n are used.
The point concentration is defined so

C̃(x, r⊥, 0) =
V
N0

N0δ(x)δ(r)δ(ϕ) = LAδ(x)δ(r − r0)δ(ϕ − ϕ0) (4.23)
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The initial condition for the zero axial moments,

c̃0(r⊥, 0) =
1

L

∫ 1
2
L

− 1
2
L
LAδ(x)δ(r)δ(ϕ) = Aδ(r − r0)δ(ϕ − ϕ0) (4.24)

finding a0,(n,m)

a0,(n,m) = 〈 Jn(ξn,mr)
√

(1− n2/ξ2n,m)Jn(ξn,m)
einϕ | Aδ(r−r0)δ(ϕ−ϕ0)〉 =

Jn(ξn,mr0)
√

(1− n2/ξ2n,m)Jn(ξn,m)
einϕ0

(4.25)
calculating dM1

dt and since it contains the expression as in Eq. (4.16), δn,0〈ul(r) | Rn,m(r)〉,
the n sum is removed due to independence of the angle ϕ. Then having only Bessel zero
functions, where m is the root of the Bessel zero functions,

dM1

dt
= Pe

∞
∑

m=0

∞
∑

l=−∞
a0,(0,m)〈ul(r) | R0,m(r)〉e−(λ0,m+ilω0)t (4.26)

and calculating M1,

M1 = Pe

∞
∑

m=0

∞
∑

l=−∞
a0,(0,m)〈ul(r) | R0,m(r)〉1− e−(λ(0,m)+ilω0)t

λ(0,m) + ilω0
(4.27)

then the βl
(n,m),(p,j) is defined,

βl
(n,m),(p,j) = (1− δl,0δn,pδm,j)

〈Φn(ϕ)Rn,m(r) | ul(r) | Φp(ϕ)Rp,j(r)〉
λ(n,m) − λ(p,j) + ilω0

, (4.28)

because of orthogonality Eq. (4.17) and the independence of the velocity in the angular
direction ϕ,

βl
(n,m),(n,j) = (1− δl,0δm,j)

〈Rn,m(r) | ul(r) | Rn,j〉
λ(n,m) − λ(n,j) + ilω0

, (4.29)

in this case λ(n,m)−λ(n,j) 6= λ(0,m)−λ(0,j) since n describes the order of the Bessel function
and m, j describes the Bessel roots. Then calculating a1,(n,m), since c̃1〉 = 0 and using
earlier defined coefficients. Remembering orthogonality when n 6= p removing the p-sum,

a1,(n,m) = −
∞
∑

p=0

∞
∑

j=0

a0,(p,j)

∞
∑

l=−∞
βl
(n,m),(p,j) = −

∞
∑

j=0

a0,(n,j)

∞
∑

l=−∞
βl
(n,m),(n,j), (4.30)

the γ1,(n,m),
γ1,(n,m) = 〈Φn(ϕ)Rn,m(r) | u0(r) | Φn(ϕ)Rn,m(r)〉 (4.31)

a last finding 1
2
dM2
dt , again because of orthogonality Eq. (4.17), p runs to

∑∞
p=−∞ since it

is the angles,

1

2

dM2

dt
= 1 + Pe2

∞
∑

k=−∞

∞
∑

j=0

∞
∑

m=0

〈uk(r) | R0,m(r)〉e−(λ(0,j)+ikω0)t (4.32)

×
[

(a0,(0,j)γ1,(0,j)t+ a1,(0,j))δm,j + a0,(0,m)

∞
∑

l=−∞
βl
(0,m),(0,j)e

ilω0t

]
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at last combining the calculated coefficients to Eq. (2.22) Deff(t) =
1
2
dµ2

dt = 1
2
dM2
dt −M1

dM1
dt ,.

4.4 Placement of point concentration in the center r0 = 0

When the point concentration is placed in the center, further simplifications occurs. The
initial concentration is first placed in the center r = 0, and in the middle of the longitudinal
direction. The initial normalized concentration C̃ = 1 is,

C̃(x, r⊥, 0) =
V
N0

N0δ(x)δ(r)δ(ϕ) = LAδ(x)δ(r)δ(ϕ). (4.33)

The initial condition for the zero axial moments,

c̃0(r⊥, 0) =
1

L

∫ 1
2
L

− 1
2
L
LAδ(x)δ(r)δ(ϕ) = Aδ(r)δ(ϕ) (4.34)

and the initial first axial moments is zero c̃1 = 0 Eq. (2.40). All the angular dependence ϕ
is gone and the problem is similar to one-length-scale cross section in [1]. So the general
solution with the corresponding eigenfunctions and eigenvalues is [1],

∣

∣fn
〉

= δn,0 + (1− δn,0)
J0(ξ1,n r)

J0(ξ1,n)
, (4.35a)

λn = (1− δn,0)ξ
2
1,n, (4.35b)

Js(x) is the Bessel function of the first kind J of order s, and ξs,n is the nth root of
the Bessel function Js(x)[1]. Now the basis functions and the velocity profile is found,
the inner products can be calculated. Some of the inner products are already calculated
Eq. (4.22). Also needing the bra-ket

〈

fn
∣

∣u0
∣

∣fn
〉

(4.36)

and

〈

fn
∣

∣ul
∣

∣fm
〉

(4.37)

these bra-kets are calculated numerically in Matlab for the later simulations. Now the
formalism can be used starting with finding the coefficients a0,m,

a0,m = 〈fm | c̃0〉 = δm,0 + (1− δm,0)
1

J0(ξ1,m)
(4.38)

γ1n =
〈

fn
∣

∣u0
∣

∣fn
〉

, (4.39)

where the β-coefficients is,

β`
kn = (1− δ`,0δk,n)

〈

fk
∣

∣u`
∣

∣fn
〉

λk − λn + i`ωo

. (4.40)
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finding a1n where 1
Pé

〈

fn
∣

∣c̃1
〉

= 0 since c̃1 = 0

a1n = −
∞
∑

k=0

a0k

∞
∑

l=−∞
β`
nk. (4.41)

finding dM1
dt

dM1

dt
= Pé

∞
∑

n=0

∞
∑

`=−∞
a0n
〈

u`
∣

∣fn
〉

e−(λn+i`ωo)t, (4.42a)

then M1

M1 = Pé

∞
∑

n=0

∞
∑

`=−∞
a0n
〈

u`
∣

∣fn
〉 1− e−(λn+i`ωo)t

λn + i`ωo

. (4.42b)

and 1
2
dM2
dt

1

2

dM2

dt
= 1 + Pé2

∞
∑

m=0

∞
∑

n=0

∞
∑

k=−∞

〈

uk
∣

∣fm
〉

e−(λn+ikωo)t

×
[

(a0nγ1nt+ a1n)δn,m + a0n

∞
∑

`=−∞
β`
mne

i`ωot

]

, (4.42c)

combining these into,

DPoint
eff (r0, t) =

1

2

dM2

dt
−M1

dM1

dt
(4.43)

4.5 Simulations of DPoint
eff (r0, t) for the point concentration in

the circular channel

Notice that from now on the effective diffusion Deff (t) for the point concentration will
be denoted as DPoint

eff (r0, t), taking care of the spatial dependence of r and utilizing ϕ-
directional independence. Once the DPoint

eff (r0, t) is implemented in Matlab by the above
calculations of the framework, simulations be made of the point concentration. Similar
investigation, as in the case for infinite parallel plate channels, is made and comparison is
made. Different studies will be made with respect to the placement of the point concen-
tration in the r-direction and the behaviour of DPoint

eff (r0, t).
In the single frequency flow, more emphasis will be made on changing the Wo with the
Schmidt number Sc = 1000. More shear stress is generated by the wall, because it encap-
sulates the whole fluid. Then at lower Womersley number greater changes occurs in the
velocity profile and more dynamics can be seen.

A plus one frequency flow superimposed on the steady flow, is also investigated with
respect to period doubling for DPoint

eff (r0, t).
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Figure 4.2: DPoint
eff (r0, t) in a cylinder with unit radius and Pé = 20, varying the starting

position of the z-location from 0 ≤ z ≤ 1 with 5 equally spaced points and where ε0 =
1. (a)DPoint

eff (r0, t) in the time period 0 ≤ t ≤ 1 for the five differently placed point
concentrations r0 = 0(blue), r0 = 0.25(green), r0 = 0.5(red),r0 = 0.75(dotted turquoise)
and r0 = 1(violet). (b)Deff (t) in the time period around 0 ≤ t < 0.08where the diffusion
time is 0.0681 = 1/λ1. The short time anomalous dynamic can be seen here for the five
point concentrations and their intersections. (c) Deff(t) in the time period 0 � t � 1
peaks occur in the Deff(t) for r0 = 0(blue), r0 = 0.25(green), r0 = 0.5(red). Notice that
y-axes is zoomed in 9.32 < Deff < 9.46. d) the absolute value of the gradient of the
velocity profile.
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4.6 Applied point concentration with a Steady flow ε0 = 1

In the steady flow the initial placement of point concentration will be investigated and
comparison of the point concentration in the infinite parallel plate channel will be made.
DPoint

eff (r0, t) is affected by the initial placement of the point concentration. This can be
seen in the Fig. 4.2(a) where the point concentrations are located differently. Four phases
can be seen, a short time dynamic phase before t < 1

λ1
. Where the transverse diffusion

time 1/λ1 = 0.068 is plotted as the vertical pink line in Fig. 4.2(a). A linear phase
around the time 0.068 < t . 0.15, peaks occur around the time 0.15 . t . 0.7 depending
on the initial placements of the point concentrations, at last the time phase 0.7 . t of
convergence towards the same value as the uniform distribution in the cross sectional plane
1 + Pé2/48. Where in this case Pé = 20, making 1 + Pé2/48 = 9.3333 the black vertical
line in Fig. 4.2(a).

4.6.0.1 Time dynamic t < 0.1

In the Fig. 4.2(b), the short time behaviour for the placement of the point is similar to
what was observed in the infinite parallel plate case. The point concentration located in
the center r0 = 0(blue) has a slow increase in DPoint

eff (r0, t) due to the gradient which is
zero in the center. The absolute gradient can be seen in the Fig. 4.2(e). The increase
gets bigger in DPoint

eff (r0, t), when the point concentration gets placed more towards the
gradient r0 = 0.25(green), r0 = 0.5(red) and r0 = 0.75(turquoise). Then a slight change
occur when the point concentration gets closer to the wall around the point concentration
z0 = 0.75(turquoise) is intersected by r0 = 0.5(red). The z0 = 1(violet) has a slower
increase in DPoint

eff (r0, t) due to the wall as described in chap. 3. The intersection was
thoroughly investigated in the infinite parallel plate and the intersections in the circular
channels looks similar so other dynamics will be studied.

4.6.0.2 The linear phase

Fig. 3.4(a) a linear phase for the DPoint
eff (r0, t) occurs at the time 0.068 ≤ t . 0.2 similar to

the uniform concentration in the Fig. 4.1(a) the blue line with ε0 = 1. This suits perfectly
with the diffusion time 1/λ(0,1), since the concentrations just has diffused in the transverse
direction yielding a possible similar concentrations profile as the uniform cross sectional
concentration distribution. In the uniform cross sectional concentration distribution the
linear phase occurs directly, because the concentration is already smeared out and can
utilize the gradients. The ending of the linear phase occurs around the same time t ≈ 0.2
for the uniform and the point concentration.

4.6.0.3 DPoint
eff (r0, t) convergence

The initially point concentrations DPoint
eff (r0, t) converged towards the uniform distribution

in the cross sectional planeDPoint
effSteady(r0,∞) = Duniform

eff (∞) = 1+Pé2/48 = 9.33, Pé = 20,
Barton’s steady-flow result citeBarton1983, this is shown in Fig. 4.2(a)(black line).
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4.6.0.4 Analyses of peak in the effective diffusivity of the steady flow ε0 = 1

The peaks are also investigated in the circular channel with the same definition as in the
infinite parallel plate channel. The peaks in the circular channel is arranged differently
compared to the infinite parallel plate channel.
In the circular channel the peaks are biggest for the point concentration in the middle see
Fig. 4.2c) r0 = 0(blue) and r0 = 0.25(green) the peaks decreases for the point concentra-
tions towards the wall r0 = 1(dotted violet) this can be seen in Fig. 4.3a). In Fig. 4.3b)
The time where the peak occurs versus the initial placement of the point concentration.
The peaks occur earlier for the initial point concentration around the center, also due to
the fact that the initial points around r0 < 0.5 just converged towards their steady value.
The relative size of the peak compared to the steady value is 100% (9.43−9.33

9.33 ) = 1% this
is a bigger effect in the circular channel probably due to the wall encapsulating the fluid.
This effect is not seen in the uniform concentration in the cross section and must be an
effect due to spatial evolution of the concentration in the velocity field.
The point concentration located r0 > 0.5 did really not experience any peak and also
shown by the time which suits the time where the steady region is.

Proposing reasons for the peak in DPoint
eff (r0, t); more gradients are present in the circular

geometry compared to the infinite parallel plates. The point in the middle Fig. 4.2c)r0 =
0(blue) is diffusing out to new gradients and when the concentration has spread suffi-
ciently in the r-direction. So before the concentration is uniform around the wall a peak
will occur, due to the relative velocity of the center concentration and the concentration
closer two the wall. When the concentration is uniform in the r-direction , the wall will
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Figure 4.3: Steady flow with Pé = 20. (a) Maximum of DPoint
eff (r0, t) dependent on the

initial placement of the point concentration in r0. The maximum is biggest for the initial
position of the concentration in the center and decreases towards the wall. Probably it is
due to the initial point in the center reached the wall later with the concentration, not
getting slow down with respect to the relative velocities. b)time t, to reach the maximum
peak of DPoint

eff (r0, t) depending on the placement of the point concentration in r, note that
the initial points located r0 > 0.6 never experience a real peak in DPoint

eff (r0, t).
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slow the spreading and make a small decrease in DPoint
eff (r0, t) as also discussed in chap.

3. This is my guess for the peak phenomena in the circular channel. The velocity field
and the geometry of the gradients in the circular channel is probably more comparable to
the rectangular geometry from the ”Two-length-scale-cross sections” example in S. Vedel
and H. Bruus [1]. Where the infinite parallel plate channel only has gradients in the z-
direction. The effect of the wall and the gradients on DPoint

eff (r0, t) is very complex and a
proposals has been made for the behaviour of the peaks.

4.7 Applied point concentration with only a single frequency

flow ε0 = 0, ε1 = 1

There are overall three number in the equations you can change to get different dynamics,
the Peclet number Pé, Womersley number Wo and Schmidt number Sc which is from
the start fixed as Sc = 103. Now time-dependence occurs with respect to the oscillating
flow and further complexity occurs when spatial dependence of placing the initial point
concentration.
As long as the Womersley number is low, a parabolic shaped velocity field will occur for
larger Womersley numbers a change of the shape will happen for the velocity profile and
give rise to different velocity gradients and thereby different behaviour of DPoint

eff (r0, t).
This can be seen in Fig. 4.4(a)-(c). In Fig. 4.4(a)Wo = 0.72(blue) the velocity profile is
close to parabolic velocity profile. When the Wo is larger the profile changes shape, the
maximum velocity moves out to the side and getting and a concave velocity shape in the
center see Wo = 3.9(red). The oscillating effective diffusion Deff(t) will be represented in
most of the figures as as envelope functions showing the maximum amplitudes in plus and
minus of Deff(t).
When the solute-diffusion limit occurs at ξ21,1 = 14.6819 � ωo and for the Womersley

number 0.1212 < Wo. The time before the steady oscillating of DPoint
eff (r0, t) occurs earlier

around t ≈ 0.068 than for the steady flow around 1.6 < t. Since diffusion has not got
enough relaxation time in the oscillating period and the molecules are just pushed forth
and back in the middle, as discussed in Reversal of flow in chap. 3. Since momentum
diffusion has time to relax while ωo < αfl = Scξ20,1, since the Schmidt number is Sc = 103

getting the values ωo < 5.7831 × 103 and for the Womersley number Wo < 2.4048. This
can be seen in Fig. 4.4(d) the reason for the increase in the amplitude of DPoint

eff (r0, t) is
that the point concentration needs to be diffused out transversely Fig. 4.4(blue vertical
line), before the concentration can be pushed forth and back. This can also be seen in the
Fig. 4.4(d) because the steady period occurs around t > 0.068. This makes sense since the
uniform distribution in the cross-sectional plane for high frequencies flow ε0 = 1, ε1 = 1
has no transient period for solute diffusion of Duniform

eff (t)Fig. 4.4(c), but has a transient
period for the momentum diffusion when t < 1/αfl. The uniform plane distribution and
the point concentration converges towards the same values this can be seen in Fig. 4.4(c)
versus (d) for Wo = 0.72 and Fig. 4.4(e) versus (f) for Wo = 1.82.
Changing the initial position r0 of the point concentration gives similar result to the steady
flow ε0 = 1 if the oscillating DPoint

eff (r0, t) is represented as an envelope function. As in the
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Figure 4.4: A harmonically oscillating flow, Sc = 1000, with amplitude ε1 = 1, ε0 =
0, Pé = 20 and varying the Womersley numbers Wo = 0.72,Wo = 1.82 and Wo =
3.9. Different initially placed point concentrations r0 = 0(blue), r0 = 0.25(green), r0 =
0.5(red), r0 = 0.75(turquoise) and r0 = 1(violet). These are compared to the uniform
concentrations in the plane with Womersley number Wo = 0.72 and Wo = 1.82. All the
Deff(t) are represented with envelope functions and in the time region 0 ≤ t ≤ 0.4.(a)
Normalized velocity profiles at time t = 0 for Wo = 0.72(blue), Wo = 1.82(green) and
Wo = 3.9(red). (b) A plot of DPoint

eff (r0, t) for Wo = 3.9, represented by an envelope
function showing the maximum amplitude of the curves plotted in the time region 0 ≤ t ≤
0.4. (c) A plot of Duniform

eff (t) for Wo = 0.72. (d) A plot of DPoint
eff (r0, t) for Wo = 0.72.(e)

A plot of the uniform distribution in the plane Duniform
eff (t) for Wo = 1.82.(f)A plot of

DPoint
eff (r0, t) for Wo = 1.82.
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steady flow the different behaviours for ε0 = 0, ε1 = 1 will be examined for the different
time scales, The short time dynamic and peaks in DPoint

eff (r0, t).
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Figure 4.5: A harmonically oscillating flow, ε1 = 0, ε0 = 1, Pé = 20 and Sc = 1000.
Different initial placements of the point concentration for r0 = 0(blue), r0 = 0.25(green),
r0 = 0.5(red), r0 = 0.75(turquoise) and r0 = 1(violet).(a)DPoint

eff (r0, t) for the five point
concentrations with Wo = 0.72, The oscillation of the DPoint

eff (r0, t) can be seen, where r0 =
0(blue) has the smallest amplitude. (b)DPoint

eff (r0, t) for the five point concentrations with

Wo = 1.82.(c-d) Time for the transient to develop 15%DPoint
eff (r0, t), defined as (Dpeak

eff (∞)−
1)0.15 for 0 � r0 � 1, for the Womersley numbers Wo = 0.72 and Wo = 1.82, the time
to reach 15% is longest for the initial point in the middle r0 = 0, due to the low gradients
in the velocity field. A slight change occur when Wo = 1.82, time larger to reach 15% and
this is due to the change of the velocity profile.

4.7.1 Time, t for 15% increase in DPoint
eff (r0, t)

The time to reach 15% of the effective diffusion without the molecular diffusions contribu-
tion is defined as (Dpeak

eff (∞)−1)0.15. Looking at the short time dynamic in 0 ≤ t ≤ 0.03 of
the increase in DPoint

eff (r0, t), is dependent on the initial placement r0 of the point concen-
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tration. The Fig. 4.5(a)z0 = 0(blue) has a very slow increase in DPoint
eff (r0, t) compared to

Fig. 4.5(a)z0 = 0.75(dotted turquoise)located closer to the wall and the velocity gradients.
In the Fig. 4.5(c)-(d) the time for reaching 15% compared to the initial placement of
the point concentrations r0. The farther away from the center r0 the faster the increase
DPoint

eff (r0, t). This is because the point concentrations in the center start in smaller ab-
solute gradients Fig. 4.4a) giving rise to a slow transient of effective diffusivity in the
center. The center of mass is just pushed forth and back in the longitudinal direction
until the concentration has diffused out to the gradient in the transverse direction. The
point concentrations located close to the wall 0.4 � r0, reached 15% earlier, these point
concentrations experience more shear in the short time t < 0.07. In the Fig. 4.4 (b-d) a
peak can be seen around the time period 0.04 ≤ t ≤ 0.6, these peaks are only present in
the point concentrations located around certain initial placement from the center around
0.4 ≤ r0.

4.8 Increasing the Womersley number

Increasing the Womersley number or frequency will decrease the width of the momentum
diffusion from the wall λd =

√

ν
ω . giving rise to a wider region around the center where

the gradients are low and an even slower increase of DPoint
eff (r0, t) would be expected for

higher frequency and subsequently also the Womersley number.

4.8.1 Analyses of peak in the effective diffusivity of the single frequency

flow ε0 = 0, ε1 = 1

Peaks are also present in the single frequency flow, they apparently, are located differently
with respect to the initial placement of the point concentration than in the steady flow
of the circular channel, peaks also occur for uniform distribution in the cross-sectional
plane see Fig. 4.4(b). The peak is dependent on the Womersley number and the frequency
since the velocity profile changes with increasing Wo. The proposal is, when the point
concentration has diffused a certain amount and it lies in the high gradient but still has a
high concentration it will give rise to peak in the effective diffusivity.

The peak appears for the point concentrations located around 0 ≤ r0 ≤ 0.6 see
Fig. 4.6(d)-(f). The peak also moves with respect to the initial placement r0 = 0.53
for Wo = 0.72 to increasing r0 = 0 for Wo = 3.9, the moving of the peak seems reasonable
since the velocity profile changes drastically shape see Fig. 4.4(a)(blue) compared to (red).
How is not discovered yet.

4.8.2 Frequency contra Momentum diffusion

As seen in some of the earlier plots, the DPoint
eff (r0, t) decreases for higher frequencies this is

because momentum diffusion from the wall cannot reach the fluid λd = 1
Wo , thereby smaller

velocity gradients are created and subsequently a smaller DPoint
eff (r0, t). I have chosen the



4.8. INCREASING THE WOMERSLEY NUMBER 61

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1.5

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.6

t

D
ef

f

 

 

r
0
=0

r
0
=0.25

r
0
=0.5

r
0
=0.75

r
0
=1

Wo = 0.72

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

1.0018

1.0018

1.0019

1.0019

1.0019

1.0019

1.0019

1.002

t

D
ef

f

 

 

r
0
=0

r
0
=0.25

r
0
=0.5

r
0
=0.75

r
0
=1

Wo = 3.9

0 0.2 0.4 0.6 0.8 1
1.525

1.53

1.535

1.54

1.545

1.55

r

M
ax

im
um

 P
ea

k,
 D

ef
f

Wo = 0.72

0 0.2 0.4 0.6 0.8 1
1.0019

1.0019

1.0019

1.0019

1.0019

1.0019

1.0019

1.0019

1.0019

1.0019

1.0019

r

M
ax

im
um

 P
ea

k,
 D

ef
f

(a) (b)

(c) (d)

Figure 4.6: A harmonically oscillating flow, ε1 = 1, ε0 = 0 Sc = 1000, point concentration
placed at r0 = 0(blue), r0 = 0.25(turquoise), r0 = 0.5(black), r0 = 0.75(red) and r0 =
1(yellow) where Pé = 20. (a) Zoom in on the values of DPoint

eff (r0, t) where peaks occur
versus the initial placements of the point concentrations, The initial point located at
r0 = 0.5 has the largest peak. (b)Plot of the peaks in DPoint

eff (r0, t) for the different initially
located point concentrations with Womersley numbers Wo = 0.72(a) and Wo = 3.9(b), in
the time region 0 ≤ t ≤ 0.45. (c-d)The size of the peak in DPoint

eff (r0, t) versus the initial
placement of the point concentration in r0, for the Womersley numbers Wo = 0.72(c),
Wo = 3.9(d). Note that the largest peak for Wo = 3.9 occur in the middle r0 = 0, this is
because they happen later than t > 0.45 and that why they do not appearing on the (b)
plot.
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Figure 4.7: A harmonically oscillating flow, ε1 = 0, ε0 = 1, zloc = 0 and Pé = 20.
(a)Varying the frequencies ω0 = 100(blue) ω0 = 200(green) ω0 = 300(red) ω0 =
400(turquoise) ω0 = 500(violet) and ω0 = 600(yellow) in the time interval 0 � t � 0.8,
the amplitude of DPoint

eff (r0, t) is decreasing for increasing frequencyωo. (b)A plot of the
peak steady effective diffusivity versus the frequencies, where the dotted vertical blue line
is the momentum diffusion αfl.

steady state peak to measure the effective diffusivity DPoint
eff (r0, t) for the frequencies ωo.

For high frequencies, the pressure oscillation is so fast that the momentum diffusion does
not have time to react, this happens at ωo > αfl where αfl = Scξ20,1[1].

4.8.3 Phase shift of Deff(t) for higher Womerley numbers

Phase shift was presented in the parallel plate and is also present in the cylinder case.
In Fig. 4.9(d) phase shift in DPoint

eff (r0, t) occurs between the point concentrations initially
located differently with respect to the velocity gradients. Phase shifts in DPoint

eff (r0, t)
happens when the oscillation time gets shorter than the diffusion time for a point concen-
tration to reach substantial velocity gradient. The phase shift can be seen in Fig. 4.9(d)
for Wo = 5 where r0 = 0(blue) is shifted compared to a point concentration located at
the highest velocity gradient r0 = 0.9(turquoise). In order of magnitude, phase shift will
happen between the two point concentrations for example the point concentration in the
middle r0 = 0 and the point concentration located at the gradient rλd

= 1− λd, when the
diffusion has reached the velocity gradient 1 − λd =

√

6tDeff
where λd = 1

Wo is the mo-
mentum diffusion length from the wall. The phase shift then happens when the diffusion
time exceeds the first oscillation peak of the pressure π

ω0
< tDeff

.
This calculation has the following problem; it assumes that 1− λ is a flat region and this
only starts happens around Wo > 3 for Wo = 5 the phase shifts can be seen Fig. 4.9(d).
When the point concentrations is located at z0 = 0.9 in the highest gradient at the start
t = 0 gives rise to the biggest increase in DPoint

eff (r0, t). Where r0 = 0t(blue) curve in
Fig. 4.9(d) is starting in the middle where the velocity gradients are small. Now phase
shift was shown for the circular channel as also seen in the parallel plates. Since the
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Figure 4.8: A harmonically oscillating flow with the frequency, Wo = 1, Wo = 5, Wo = 10
and Pé = 20 with 5 different points concentrations located at r0 = 0, 0.5, 0.7, 0.9. (a)The
5 point concentrations with a Womersley number Wo = 1. (b)The 5 point concentrations
with a Womersley number Wo = 5.(c)The 5 point concentrations with a Womersley num-
ber Wo = 10.(d)The 5 point concentrations with a Womersley number Wo = 5 zoomed in
to the start 0 ≤ t ≤ 10−3 to see phase shift.
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cylinder encapsulates the whole fluid, thereby inducing more shear and more reaction
from the wall and giving more curvature to the velocity profile for smaller Wo numbers.
Thereby phase shift also occur at lower Wo, since it depends on a long flat region in the
middle. in Fig. 4.9 the same behaviour as in the infinite parallel plate channel is observed,
though, the early peak starts to occur at lower Wo numbers for the point concentration
initially located at the region of momentum diffusion. Since ω0 = ScWo2 because Sc = 103

makes the frequencies higher and thereby the momentum diffusion limited at smaller Wo
numbers.
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Figure 4.9: A harmonically oscillating flow superimposed on a steady flow with the fre-
quency, ωo = 200 and Pé = 20. The initial four point has already converged. (a)oscillating
flow superimposed on a steady flow ε0 = 1, ε1 = 0.05,The steady flow is dominating, so
the oscillating part of DPoint

eff (r0, t) is only due to the oscillating flow.(c) Oscillating flow
superimposed on a steady flow ε0 = 1, ε1 = 25, the period doubling occurs due to both
contributions of the flow.

4.9 A harmonically oscillating flow superimposed on a steady

flow and period doubling ε0 = 1, ε1.

Period doubling also occurs in the circular channel, here the oscillating flow amplitude
was turned up compared to the steady ε0 = 1 from ε1 = 0.05 to ε1 = 25 to see the
period doubling. This period doubling was observed in Fig. 4.9(a) to Fig. 4.9(b). The
reason for period doubling is that the steady flow will take over and make an extra peak
in DPoint

eff (r0, t), when the dominating oscillating flow is decreased to a low level of flow.

Complicated phase shifts could be imagined in many frequency flows due to different
time-dependent gradient appears also with spacial change in the amplitude of the velocity
profile. Funny peaks or double peaks could happen with the right combination of ε1 and
ε0.
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4.10 Concluding Remarks

Earlier results were reproduced to verify the implementation in Matlab. For the steady
flow convergence towards the uniform concentration Deff was obtained. A steady flow was
first examined and the point concentration was located differently, the short time dynamic
was similar to the infinite channel. The peak behaved differently than the infinite parallel
plate channel both with regard to the initial point concentration and also where present
at later time scales with respect to the diffusion rate.

For the oscillating flows the short time dynamic was similar to the steady flow of the
circular channel, the peak in the single frequency flow behaved differently than the steady
case.
The peak in the steady flow could be explained by, the initial point concentration in the
center experiences most gradients before at last reaching the wall. This peak that occur
later than the diffusion time also observed next in the non-Newtonian fluids with steady
velocity field.

The peak in the oscillating flow could be explained by, the high concentration that are
able to use the fasting changing gradients, before the diffusion time t < λ1.
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Chapter 5

Rheology and non-Newtonian

fluids in a Cylinder

Rheology is the study of Non-Newtonian fluid where the fluid viscosity varies non linearly
with the shear rate.
The Newtonian fluids have a linear relationship between shear stress and shear rate where
the coefficient of proportionality is called the viscosity µ,

τrx = µγ̇x = µ
dvx
dr

. (5.1)

When the viscosity changes with the shear rate, the fluid is Non-Newtonian, this can been
seen in ketchup or quick sand, which have shear thinning and shear thickening properties.
Here the apparent viscosity η for the Non-Newtonian fluid is presented as the ratio of the
shear stress to the shear, rate [31]

η(T, p, γ̇) =
τrx
γ̇x

. (5.2)

Where the apparent viscosity η is dependent of temperature, pressure and shear rate.
Normally when looking at complex fluids, the viscosity at certain shear rate is measured
by viscometers. Viscometers in micro fluidics are also available and consist of magnetic
beads that rotate within the fluid to measure the viscosity. Blood is a Non-Newtonian
fluid which has shear thinning properties. Furthermore, blood exhibits yield stress de-
pending on the hematocrit value, which is the volume fraction of blood. Yield stress is the
minimum shear stress required to get the fluid moving. Above the yield stress and below
the shear rate 100s−1 blood behaves as a Power law fluid, above the shear rate 100s−1 as a
Newtonian fluid. This complex behaviour of blood is because the fluid consists of different
components as white blood cells, red blood cells, proteins e.t.c. Blood is a two phase fluid
consisting of an aqueous phase, that contains proteins, salt, sugar and is called the plasma.
The second phase, is the cellular phase, which contains white blood cells, red blood cells
and platelets[31]. The Casson model was derived to simulate a two-phase medium and
adequately represents the rheology of blood. Blood exhibits yield stress depending on the

67
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hematocrit value which is the volume fraction of blood. An approximation of the yield
stress is [31],

τ0 ≈ (Hct−Hctc)
3 (5.3)

where HCt varies dependent on your gender and the leverage you live in, typically men
have 45% and women 40%. Hctc = 0.04 is the critical level for the experience of yield
stress of hematocrit. At low flow rates the velocity profile is flat, but at higher flow rates
the velocity profile approaches the parabolic shape of the Newtonian fluid, this phenomena
describes the Casson model. The constitutive equation for a Casson fluid is,

√
τ =

√

ηN γ̇ +
√
τ0 (5.4)

where ηN is the viscosity at high shear rates, where blood behaves as an Newtonian fluid.

5.1 The velocity profile for a Casson flow in cylinder

The veloctiy profile for a Casson flow is solved from Eq. (5.4), and these derivations comes
from M. K. Sharp ”Shear-Augmented Dispersion in Non-Newtonian Fluids”.

u0(r) = − 1

4η
∆p0

(

a2 − r2 − 8

3
r1/2c (a3/2 − r3/2) + 2rc(a− r)

)

rc ≤ r ≤ a (5.5a)

u0c(r) = − 1

4η
∆p0

(

a2 − 8

3
r1/2c a3/2 + 2rca−

1

3
r2c

)

, 0 ≤ r ≤ rc

Where the rc region is determined by the yield stress from,

rc =
2τy

−dp/dx
(5.6)

if the pressure is increased the rc region is decreased and the velocity profile goes toward
the parabolic Newtonian velocity profile. finding the mean velocity of the Casson fluid,

Uchar = − 1

4η
∆p0

1

a2

∫ a

rc

dr2r

(

a2 − r2 − 8

3
r1/2c (a3/2 − r3/2) + 2rc(a− r)

)

(5.7)

− 1

4η
∆p0

1

a2

∫ rc

0

(

a2 − 8

3
r1/2c a3/2 + 2rca−

1

3
r2c

)

(5.8)

=
1

a2168η
∆p0(−27r4c + 48

√
rca

7/2 − 21a4 − 28rca
3)

and normalizing the velocity by dividing with the characteristic velocity Uchar to find the
nondimensionalized velocity profile and setting the tube radius to a = 1.

u(r) = − 1

Uchar

1

4η
∆p0

(

12 − r2 − 8

3
r1/2c (13/2 − r3/2) + 2rc(1− r)

)

rc ≤ r ≤ 1 (5.9)

uc(r) = − 1

Uchar

1

4η
∆p0

(

12 − 8

3
r1/2c 13/2 + 2rc1−

1

3
r2c

)

, 0 ≤ r ≤ rc
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Figure 5.1: Cross sectional plot of the normalized velocity profile for the Casson fluid.
(a)Velocity profile for the Casson fluid with rc = 0.05, the profile looks similar to the
parabolic velocity profile. (b)Velocity profile for the Casson fluid with rc = 0.1. (c)Velocity
profile for the Casson fluid with rc = 0.15. (d)Velocity profile for the Casson fluid with
rc = 0.4. Notice that for larger rc the center becomes flat and the the region close to the
wall gets big velocity gradients.

In the Fig. 5.1, different normalised velocity profiles are seen for the Casson fluid where
the parameter rc was varied. The Casson velocity profile changes shape dependent on rc
the larger rc the longer the flat region see the blue curve rc = 0.4. At low flow rates the
velocity profile is more flat in the center having a larger rc region. When the flow rates
get higher, the profile reaches the parabolic shape of the Newtonian flow, see the black
dotted line rc = 0.05.
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5.1.1 DPoint
eff (r0, t) for the Casson fluid

Applying the normalized the Casson fluid’s velocity into the framework and getting the
effective diffusion DPoint

eff (r0, t), this is straight forward since the normalized velocity profile
just occurs in the bra-kets and setting the Peclet number to previous simulations Pé =
20. In Fig. 5.2 the DPoint

eff (r0, t) is shown for the four velocity profiles, where the point
concentration is located at z0 = 0(blue), z0 = 0.25(turquoise), z0 = 0.5(black dotted),
z0 = 0.75(red) and z0 = 1(yellow dotted). Since the shape of the velocity changes for
rc so does the velocity gradients and thereby the DPoint

eff (r0, t). The smaller rc the larger
the gradients and thereby larger DPoint

eff (r0, t). For rc = 0.4 has a significantly smaller
DPoint

eff (r0, t) than DPoint
eff (r0, t) for rc = 0.05. This is because the flat region does not

induce shear and no velocity gradients are present in the rc region, this do not increase
the DPoint

eff (r0, t).
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Figure 5.2: Changing the initial placement of the point concentration from 0 to 1, with
5 equally spaced points and where z0 = 0(blue), z0 = 0.25(turquoise), z0 = 0.5(black
dotted), z0 = 0.75(red) and z0 = 1(yellow dotted), where Pé = 20 and Sc = 103. (a)
DPoint

eff (r0, t) for rc = 0.05, here it converges very close to 1 + Pé2/48. (b)DPoint
eff (r0, t) for

rc = 0.1. (c)DPoint
eff (r0, t) for rc = 0.15. (a)DPoint

eff (r0, t) for rc = 0.4. Notice that the
parabolic(small rc ≈ 0) gets larger DPoint

eff (r0, t) than the more flat profiles(higher rc).
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5.1.2 Comparing the rc with respect to DPoint
eff (r0, t)

Comparing the DPoint
eff (r0, t) for four different rc values for a initial point concentration

located at z0 = 0 seeing that the smaller rc gets bigger DPoint
eff (r0, t), this can be seen in

Fig. 5.3(a) and (b). These behaviours are investigated in this Fig. 5.3(a). In Fig. 5.3(a)
The curves have different transient behaviour dependent on the rc value and the smaller
the value of rc, the faster the increase in the effective diffusion DPoint

eff (r0, t) happens and
the larger steady value of DPoint

eff (r0, t). In Fig. 5.3(b) a zoom in on the curves in the
transient period, here the blue curve rc = 0 has a shorter flat region for DPoint

eff (r0, t) and
the larger rc the longer the flat region of DPoint

eff (r0, t). In Fig. 5.3(d) the time before
1 + 0.15(Deff (t)

steady(∞) − 1) is reached for the point concentration located z0 = 0, here
the larger rc the longer the transient period and this is obvious since the time before the
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Figure 5.3: for a point concentration located in z0 = 0, rc is varied to see the effect on
the DPoint

eff (r0, t) with Pé = 20 and Sc = 103. (a)The DPoint
eff (r0, t) for rc = 0.05(blue),

rc = 0.1(green), rc = 0.15(blue) and rc = 0.4(black). (b) A zoom on the starting period
0 � t � 0.1 for rc = 0.05(blue), rc = 0.1(green), rc = 0.15(blue) and rc = 0.4(black). (c)
The DPoint

eff (r0, t) normalizes with the steady DPoint
eff (r0, t)/D

Point
effSteady(r0,∞) for the same

value of rc. (d) Changing the rc value and finding the time to develop to 15% of the
steady value DPoint

effSteady(r0,∞).
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concentration has diffused to the velocity gradient is longer.

5.1.2.1 Discussing of the Casson fluid

In this simulation the velocity profile is normalized, so when rc gets smaller, the amplitude
of the velocity profile is nearly the same as seen in Fig. 5.1. So the DPoint

eff (r0, t) will not
get increased enough compared to simulating blood, since the amplitude of the velocity
profile will increase when the pressure is increased, due to the Eq. (5.6), this would give
rise to additional DPoint

eff (r0, t) for low rc values.
In this example it is only the shape of the velocity profile that is investigated, and the
smaller rc the larger DPoint

eff (r0, t).
Converging towards 1 + Pé2/48 = 8.61 when rc → 0 is assumed since rc0 = 0 steady
effective diffusion DPoint

effSteady(r0,∞), is converging towards 1+Pé2/48 = 8.61 when rc → 0.

5.2 Power Law fluid

The velocity profile for the Power law fluid is from [31].

ux(r) =

(

∆p

2ml

)1/n
(

a1+1/n

1 + 1/n

)

[

1−
( r

a

)1+1/n
]

(5.10)

the average velocity is the characteristic velocity Uchar and where the characteristic length
is chosen as a = 1.

Uchar =

(

∆p

2ml

)1/n( 1

1 + 1/n

)(

1− 2

1/n+ 3

)

(5.11)

and normalizing with Uchar,

ux(r) = ε0
1

(

1− 2
1/n+3

)

[

1− (r)1+1/n
]

(5.12)

shear thinning occur when n < 1 and this is the case for blood. Since the velocity
profile is normalized with the average velocity, it is the shape of the velocity profile that
determines the DPoint

eff (r0, t), The velocity profile for different ns Fig. 5.4(a), the larger the
n the more linear velocity profile.

5.2.1 DPoint
eff (r0, t) for the Power law fluid

In Fig. 5.4(b-d) theDPoint
eff (r0, t) for different ns. The larger the n the larger theDPoint

eff (r0, t)
will be for the point concentration placed at z0 = 0. This can also be seen in Fig. 5.4(f)
where the n are compared with respect to DPoint

eff (r0, t) for r0 = 0.
In Fig. 5.4(d), for n = 100 a large peaks occur in DPoint

effPeak(r0, tpeak), as in the the Newto-
nian fluid for point concentrations in the circular channel. They behave similarly, where
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Figure 5.4: The Power law fluid where examined for different power of n where Pé = 20
and Sc = 103. (a)The velocity profile for different Power of n, the higher power n the more
linear gradient. (b) The DPoint

eff (r0, t) for n = 0.2. (c)The DPoint
eff (r0, t) for n = 0.5. (d)

The DPoint
eff (r0, t) for n = 100. (e) the maximum peak minus the steady effective diffusion

DPeak
eff −DPoint

effPeak(r0, tpeak) versus the value of the power n of the fluid, the peak increases
towards around 0.44 for n → ∞. (f) The point concentration is located in r0 = 0 where
the DPoint

eff (r0, t) is plotted for different values of n for the time 0 ≤ t ≤ 0.5, the larger
power n the larger peak in DPoint

effPeak(r0, tpeak) also relative to the DPoint
effSteady(r0,∞).
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the largest peak occur in the middle for the initial placement of the point, at least for
power 1 ≤ n. In Fig. 5.4(e) the peaks for different powers can be seen and they increase
with the power n. This is due to the gradients are present in more of the r direction
when n is bigger. The biggest DPoint

eff (r0, t) will be for the highest n for the point con-
centration in the middle z0 = 0. A table of the relative peak calculated, calculated as
(DPoint

effPeak(r0, tpeak)−DPoint
effSteady(r0,∞))/DPoint

effSteady(r0,∞),

n relative peak

0.0001 0
0.001 0
0.01 0
0.1 0
0.5 0.13%
1 0.77%
2 1.59%
10 2.74%
100 3.08%

The effect becomes significant around when 10 . n is large.

5.2.1.1 Discussing of the Power law fluid

when n is high the concentration will hit new gradients all the time, giving rise to a bigger
DPoint

eff (r0, t). Because gradient will appear in a larger region of the r-direction. The point
concentrations located in the middle have access to the new gradients for a long while the
wall is hit and that is probably why the peaks occur later.

Intersection are also seen and behave similarly to the Newtonian fluid in the both the
channel for the point concentration.

5.3 Concluding remarks

convergence towards 1 + Pé/48 = 8.61 was expected and tested for both fluid and was
obtained. In Fig. 5.4(e)n = 1(yellow) and In Fig. 5.2(a)rc = 0.05 very close to 1+Pé/48 =
8.61 as expected. Peak was observed and intersection between the point concentrations.
Different constitutive equations have been giving for the description of blood; the Power
Law fluid, the Casson fluid, Quemada model and the Carreau-Yasuda model. The Carreau-
Yasuda model has shown to be the most promising model altough it needs numerical solvers
as COMSOL. For different shear stresses there will be a different behaviour of DPoint

eff (r0, t)
due to the shape of the velocity profile. An increase in DPoint

eff (r0, t) will also happen for
higher shear stresses due to the increase in amplitude of the velocity profile. It was shown
that the shape of the velocity profile would increase the DPoint

eff (r0, t) for the power of n
increasing and decreasing rc → 0. But since we normalized, the behaviour of the ampli-
tude of the velocity profile was not included in this model.
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Where blood experiences shear thinning at lower flow rates, this will affect the effective
diffusion, since at higher flow rates the velocity gradients and magnitude of the velocity
will be greater. Where shear thinning decreases the effective diffusion due to lower velocity
gradients in the center see 5.2.
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Chapter 6

Conclusion

For the steady flow comparing to the uniform distribution in the cross-sectional plane in
[1], the point concentration behaves differently in DPoint

eff (z0, t) and DPoint
eff (r0, t) due to the

spatial dependence of the initial starting point of point concentration and the spatial ar-
rangement of the gradients. The initial placement of the point concentration, determines
the first phase of the behaviour of Deff in the time period before the steady region. A
more flat increase in effective diffusion Deff for the point was present in the short time
scales compared to the uniform cross section distribution. A linear phase in the point
concentration was observed as in the uniform concentration for both the infinite parallel
plate channel and circular channel. For the point concentration in the circular channel,
the linear phase occur later around t > 0.068 when the solute had diffused transversely
chap. 4. So when the point concentration was diffused out resembling the uniform con-
centration in the transverse direction the effective diffusion Deff was similar. At last the
steady region occur for the point concentrations where both the circular and the infinite
parallel plate channel converged to 1 + Pé2/48 and 1 + 0.019Pé2 for all placements of the
point concentrations the initial position.

For both the circular and infinite parallel plate the initial position of the point concen-
tration gave rise to the same short time dynamic, which showed that the larger gradients
the point concentration initially is placed, the larger increase in Deff , unless a wall is
present. The wall will reflect the molecules back to the same velocity and concentration
field, thereby decreasing the effective diffusion Deff(t). The intersections of the initial
point concentrations effective diffusion DPoint

eff (z0, t) was examined and the wall effect on
this behaviour, for the infinite parallel plate channel.
Four models was made in the infinite parallel plate channel for DPoint

eff (z0, t) and these
models showed some common features to the framework, as the relation of the initial
starting position with respect to the gradient and the increase in DPoint

eff (z0, t).

Peaks in DPoint
eff (r0, t) occurred in the infinite parallel channel and the circular channels

and also in the non-Newtonian steady flows in the circular channel. Peak was also present
in the oscillating flows for these channels.
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The peaks in the steady flows behaved differently for the circular and the infinite parallel
plate channel, probably due to the geometry of the wall and the shear it produces.
The peak in the circular channel was shown to be biggest when the initial placement of
the point was in the center. This was also the case for the non-Newtonian, where the peak
was very large for the Power fluid with n = 100 around 10% of the steady value. The peak
occurred late compared to the transverse diffusion time around tmathrmpeak = 0.28 �
0.068.
Peaks in DPoint

eff (z0, t) was present for the steady flow in the infinite channel with a applied
point concentration. These peak was a small effect around 0.1% of the steady effect and
they also occurred later the than the transverse diffusion time around tmathrmpeak =
1.1 � 0.4.

Peaks in the single frequency flow for the circular channel was present and moved to-
wards the wall for higher Womersley numbers, due to the gradients moving that way too.
Peak in the single frequency flow for the steady flow in the infinite channel, was pre-
sented and a thorough analysis was done where it was shown that the maximum peak in
DPoint

eff (z0, t) for initial point concentration follows the momentum diffusion length towards
the wall, when the Womersley number is increased.

Phase shift was discovered between initial point concentrations located at large gradi-
ent compared to the region with small gradients. When the diffusion time to reach the
large gradient was longer than the frequency of the flow, then phase shift will be discovered
between the point concentrations, These effect was discovered in both channels.
So generally some new features was discovered and the short dynamic was clearified with
respect to the initial placement of the point concentration. Peak in Deff (t) was observed
and discussed, the linear phase and the convergence was common features to the uniform
concentration in the cross-sectional plane. Negative values of DPoint

eff (z0, t) was discussed
with respect to diffusion and momentum time and when it occurs. Phase shift and period
doubling also occurred.

6.1 outlook and discussion of the project

Many effects were discovered and good suggestions were made to these effects. A more
theoretical or mathematical treatment of these effect might have been appropriate, but
due to the complexity of the phenomena and the frame work is was not possible in the
time frame of this project. A more thorough investigation could have been made of the
peak in Deff where the rectangular channel was included and the gradient was studied
with respect to geometry. The phase shift could have been investigated with respect to a
combination of many oscillating flows and so could the peak.
Physiological Modelling of blood vessel and non-Newtonian fluid could have been made
and predictions of theDeff effects on the physiology. Comsol models of the Carreau-Yasuda
rheological model could have been made and the Deff could have been compared to the
Powerlaw fluids and the Casson fluid.
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Chapter 7

Matlab implementation of a point

concentration for the Deff(t)

The script for DPoint
eff (z0, t) in the infinite parallel plate channel

1 %clear all

2 %close all

3 %clc

4 %point source location

5 %zloc=0.62; funny curve

6 %zloc=0.9;

7 figure

8 hold off

9 %figure

10 yloc=0;

11 % Constants (Remember to adjust beta to the new constants)

12 pih=pi/2;

13 Sc=1e3;

14 %nu=10^(-6);

15 I=sqrt(-1);

16 epsvec =[1];%husk periode dobbling for zloc=0.5

17 Pe=20;

18 PeSqr=Pe^2;

19 mMax=20;

20 %Wo=1.82

21 Wo=0.72%sqrt (5/10^3);

22 omega0=Wo^2*Sc;%200;

23 %Wo=sqrt(omega0/Sc);%1/sqrt(5);

24 R=10;

25 %tmax=floor(omega0 *50/pi);

26 %avr

27 %tvec= linspace(tmax -,tmax ,1000);Davr=trapz(tvec ,Deff)/tau=131.8146

28 tvec= linspace(0 ,2 ,5000)%floor(omega0 *30))%ceil(omega0 *1/(2* pi)));

29

30 %tvec= logspace( -3 ,0 ,1000);

83
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31 SaveData2File=0;

32

33 % END OF USER INPUT !!

34 count =0;

35 %Derived constants

36 NumHarm=length(epsvec) -1;

37 Iomg0=omega0*I;

38

39 anullar=sqrt(Sc/omega0)

40 Position=0:0.25:1;

41 sizePosition=size(Position);

42 Deff=zeros(sizePosition ,length(tvec));

43 for zloc=Position

44 %Variables used for summing in loop ’s

45 count =1+count;

46 %for M1

47 M1=0;

48 %linear time term in M1

49 M1t=0;

50 %Steady term for M1 still decaying

51 M1Steady=0;

52

53 %for dM1/dt

54 ddM1dt =0;

55

56 %steady decaying term for dM1/dt when m different from zero

57 %(m~=0 && l==0)

58 ddM1dtSteady=0;

59

60 %multiply them... M1*dM1/dt

61

62

63 %1/2* dM2/dt

64 hM2=0;

65 hM2t=0;

66

67 % --------------------------

68 %Vector’s

69

70 %to compare the M’s

71 M1vector=zeros(1, length(tvec));

72 M1dddM1dtvector=zeros(1,length(tvec));

73 M2vector=zeros(1, length(tvec));

74 %see linear time terms and compare for ..M2. and ..M1.

75 M1t=zeros(1,length(tvec));

76 M2t=zeros(1,length(tvec));

77 %IMPORTANT vectors

78

79
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80

81 %Braket vectors

82 ulh0m=zeros(mMax ,NumHarm*2+1);

83 gamma1=zeros(1,mMax);

84 %betanmj

85 betalmj=zeros(NumHarm ,mMax ,mMax);

86

87 %Vectors for constant ’s

88 a0=zeros(mMax ,mMax);

89 a1=zeros(1,mMax);

90

91 %----------z dismonsionless coordinet -1<=z<=1

92 %z is numerical points used for the integration of brackets

93 dz=1/(mMax*100);

94 z = -1:dz:1;

95 sizez=size(z);

96 %-------------- velocity field

97

98

99 u=zeros(NumHarm ,sizez (1,2));

100 for l=0:NumHarm

101 if(l==0)

102 %u0(z)

103 u(1,:)=3/2* epsvec (1)*(1-z.^2);

104 else

105 %ul(z)

106 k=sqrt(-I*l*Wo);

107 u(l+1,:)=3*epsvec (1+abs(l))/(k^2)*(cos(z*k)/cos(k) -1);%just

conj=>-l..

108 end

109

110 end

111

112 % figure

113 % plot(z,real(u(1,:)))

114

115

116 %-------------Basis Function

117 %finding all h(m+1,:) for the interval of z

118 h=zeros(mMax ,sizez (1,2));

119 for m=0:mMax

120 %husk forskydning af m

121 h(m+1,:)=cos(pih*m.*(1+z))*sqrt (2/(1+ KroneckerDelta(0,m)));

122 end

123

124 %--------------- Eigenvalues

125 %Sorting the lambdaa ’s for size

126

127 %lambdaaSort=zeros((mMax*2)^2,3);
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128 %first column, value lambdaa , second column n value , third column m

value

129 %creating eigenvalues

130 % counter=1;

131 % for n=0:(mMax*2-1)

132 % lambdaan=(n*pih/R)^2;

133 % for m=0:( mMax*2-1)

134 %

135 % lambda (1,m+1)=(m*pih)^2;

136 %

137 % lambdaaSort(counter ,2)=n;

138 % lambdaaSort(counter ,3)=m;

139 % lambdaaSort(counter ,1)=lambda (1,m+1)+lambdaan;

140 % counter=1+counter;

141 % end

142 % end

143 % lambdaaSort=sortrows(lambdaaSort);

144 % _____________________________________________________

145

146

147 %---------lambdaa/eigenvalues

148 %finding eigenvalues , only needed in z-direction

149 lambda=zeros(1,mMax);

150 for m=0:mMax -1

151 %husk forskydning af m

152 lambda(1,m+1)=(m*pih)^2;

153 end

154 % --------------------------------------

155

156 %------------Calculating a0

157 for n=0:mMax -1

158 for m=0:mMax -1

159 %multi with 2????????? , see hm also!!!

160 a0(n+1,m+1)= (cos(n*pih*(1+ yloc/R))*cos(m*pih*(1+zloc)))*2/

sqrt ((1+ KroneckerDelta(n,0))*(1+ KroneckerDelta(0,m)));

161 end

162 end

163

164 % --------------------------------------------------------------

165

166 %------------------- Beta and a1

167 %Calculating everything that contains beta. Now a1(n,m)=a1(0,m) and

beta used in M2

168 %change a1 and beta...

169 Suma1 =0;

170

171 %n=0 since 1/2dM2/dt ..<u_k | gn hm > => gn=0..See later

172 for m=0:mMax -1

173 Suma1 =0;
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174 for j=0:mMax -1

175

176 for l=0:NumHarm

177 if(KroneckerDelta(m,j)*KroneckerDelta(l,0)==1)

178 beta=0;

179 else

180 betafrac=(1)/( lambda(1,m+1)-lambda(1,j+1)+Iomg0*l);

181 beta = betafrac*trapz(z,h(j+1,:).*u(l+1,:).*h(m

+1,:))/2;

182 end

183 betalmj(l+1,m+1,j+1)=beta;

184 if(l>0)

185 Suma1=Suma1 - a0(1,j+1)*2*real(beta); %beta(l,n,m

,k,omega0,epsvec);

186 %betalmj , k is harmonics , m and j is basis indexs.

187 else

188 Suma1=Suma1 - a0(1,j+1)*beta;

189 end

190 end % l-loop ends

191

192 end %j-loop ends

193 %a1 have a value for each m,where n=0

194 a1(1,m+1)=Suma1;

195 end %m-loop ends

196

197

198 %finding gamma1 =<fnm|u_0|fnm > and the bra -ket <ul|f0m >

199 for m=0:mMax -1

200 %gamma1 = <fnm | u_0 | fnm >=

201 %<hm | u_0 | hm >

202 %normalising

203 gamma1(m+1)=trapz(z,h(m+1,:) .^2.*u(1,:))/2;

204 for l=0:NumHarm

205 ulh0m(m+1,l+1) = trapz(z,conj(u(l+1,:)).*h(m+1,:))/2;

206 end %l-loop ends

207 end %m-loop ends

208 % ------------------------------------

209 %Ending gamma1 =<fnm|u_0|fnm > and <ul|f0m > bracket

210

211

212 %

--------------------------------------------------------------------------

213 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

214

215 %starting calculating Deff for different times

216 %
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--------------------------------------------------------------------------

217 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

218

219 %starting calculating Deff for different times

220 for tt=1:length(tvec)

221 t=tvec(tt);

222 Iomg0t=Iomg0*t;

223

224 if(tt >2)

225 disp([’Time ’ num2str(t) ’ Step #’ num2str(tt -1) ’ of ’

num2str(length(tvec) -1) ’ sum ’ num2str(Deff(1,tt -1))])

226 end

227

228 %

--------------------------------------------------------------------

229 %first calculating M1 and M1/dt

230 %using dM1/dt and M1 summing variables

231

232 %M1 summing

233 M1=0;

234 %dM1/dt summing variables

235 dM1dt =0;

236 %using (1-e^(-q)t)/..=t

237 %m=0, l=0

238 M1=a0(1,1)*ulh0m(1,1)*t;

239 for m=0:mMax -1

240 lambdat=( lambda(1,m+1))*t;

241 %l=0

242 %dM1/dt

243 dM1dt=dM1dt+a0(1,m+1)*ulh0m(m+1,1)*exp(-lambdat); %+Iomg0*

l)*t);

244 %steady state term , still decaying

245 if(m>0)

246 M1=M1+a0(1,m+1)*ulh0m(m+1,1)*(1-exp(-lambdat))/( lambda

(1,m+1));%(1-exp(-(lambda (1,m+1)+Iomg0*l)*t))/(

lambda (1,m+1)+Iomg0*l);

247 end

248 %l>0

249 for l=1:NumHarm

250 lambml=lambda (1,m+1)+Iomg0*l;

251 expmlt=exp(-lambml*t);

252 a0ulhm=a0(1,m+1)*ulh0m(m+1,1+l);

253 %dM1/dt oscillations

254 %oscillations

255 dM1dt=dM1dt +2*real(a0ulhm*expmlt);
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256 %M1

257 %oscillations ,

258 M1=M1+2*real(a0ulhm *(1-expmlt)/lambml);

259 end %l-loop ends

260

261 end %m-loop ends

262 %

263 % %saving value for M1*dM1/dt

264 M1ddM1dtvector(1,tt)=(M1)*(dM1dt);

265 % M1vector(1,tt)=M1;

266 % dM1dtvector(1,tt)=dM1dt;

267 %

268 %

269

270 % ----------------------------------------------------------

271 %starting calculating dM2/dt

272 summ=0;

273 for m=0:mMax -1%k-loop for beta and NOT FOR M1-dM/dt

274

275 %k sum

276 sumk=ulh0m(m+1,1);%k=0

277 for k=1:NumHarm

278 sumk=sumk+2*real(ulh0m(m+1,k+1)*exp(-Iomg0t*k));

279 end % end k-loop

280

281 %j-sum

282 sumj=0;

283 for j=0:mMax -1

284

285 %l-sum

286 suml=betalmj(1,m+1,j+1);%l=0

287 for l=1:NumHarm

288 suml = suml + 2*real(betalmj(l+1,m+1,j+1)*exp(Iomg0t*

l));

289 end %end l-loop

290 suml=a0(1,j+1)*suml;

291

292 if(j==m)

293 sumj=sumj+(suml+(a0(1,m+1)*gamma1(m+1)*t+a1(1,m+1)))*

exp(-lambda (1,j+1)*t);

294 else

295 sumj=sumj+suml*exp(-lambda(1,j+1)*t);

296 end

297 %hM2=hM2+exp(-lambda (1,j+1)*t)*ulhmexp*(Sum2+ Sumbeta);

298 end % end j-loop

299

300 summ=summ+sumk*sumj;

301 end %end m-loop

302
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303 hM2=summ;

304

305

306

307 M2vector(1,tt)=hM2;

308 % -----------------------------ending M2

309

310

311 Deff(count ,tt)=1 + PeSqr*(hM2 -M1*dM1dt);

312

313

314 % resetting the sums for the new time calculation

315

316

317

318 end %t-loop ends ------------------

319

320

321 %

--------------------------------------------------------------------------

322 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

323 %loglog(tvec ,Deff)

324 %semilogx(tvec ,Deff)

325 % x = tvec; y = Deff(count ,:);

326 %

327 % k = convhull(x,y);

328 % plot(x(k),y(k))

329

330 plot(tvec ,Deff(count ,:))%/Deff(length(Deff)))

331 xlabel(’t’)

332 ylabel(’D_{eff}’)

333 hold all

334 deffpoint{count }=[’z_0=’ num2str(zloc)];

335 % hold on

336 % plot(R^2/10^( -9),linspace(min(Deff),max(Deff) ,50),’--’)

337

338 end% end zloc loop

339 legend(deffpoint ,0)

340 %plot (1/(1* pi/2)^2, linspace(min(Deff),max(Deff) ,50),’--’)

341 %plot ([0 tvec(length(tvec))],[1 1],’--’)

342 %

343 % if NumHarm >1

344 % title([ num2str(NumHarm) ’ harmonics , Sc = ’ num2str(Sc) ’, Wo

= ’ num2str(Wo) ’, R = ’ num2str(R)])

345 % else

346 % title([ ’Sc= ’ num2str(Sc) ’, Pe=’ num2str(Pe)])
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347 % end

348

349 %

350 % tvec= linspace(0 ,0.0005 ,ceil(omega0 *1/(2* pi)));

351 % figure

352 % plot(tvec ,real(exp(I*omega0*tvec)))

353 % hold on

354 % tvec= linspace(0 ,0.0005 ,ceil(omega0 *10/(2*pi)));

355 % plot(tvec ,real(exp(I*omega0*tvec)))

356

357 figure

358 plot(tvec ,0+ PeSqr*( M2vector),’--rs’)

359 hold on

360 plot(tvec ,0+ PeSqr*(-M1ddM1dtvector),’--bs’)

361

362 plot(tvec ,Deff)

The script for DPoint
eff (r0, t) in the circular channel

2 clear all

3 close all

4 % clc

5 %cylinder

6 %placement

7 % Constants (Remember to adjust beta to the new constants)

8 pih=pi/2;

9 Sc=1e3;

10 nu=10^(-6);

11 I=sqrt(-1);

12 epsvec =[1 50];

13 Pe=20;

14 PeSqr=Pe^2;

15 mMax=40;

16 Wo =1/(10^(3/2));%0.72%1/sqrt (5);

17 R=5;

18

19 %tvec= linspace(0 ,1 ,1000);

20 SaveData2File=0;

21

22 % END OF USER INPUT !!

23

24 %Derived constants

25 NumHarm=length(epsvec) -1;

26 omega0=Wo^2*Sc;

27 Iomg0=I*omega0;

28

29 %Variables used for summing in loop ’s

30

31 %for M1

32 M1=0;
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33

34 %for dM1/dt

35 dM1dt =0;

36 %1/2*dM2/dt

37 hM2=0;

38

39 % IMPORTANT vectors

40 %Deff=zeros(1,length(tvec));

41

42

43 %the first have more than pi 3.14 in distance , easier just to

input value

44 %lambd(1,1) =3.83170597020751;

45 %lambd(1,2) =7.01558666981561;

46 %lambd(1,3) =10.1734681350627;

47 xi=zeros(1,mMax);

48 bessj1 = inline(’besselj(1,x)’);

49 xi(1,1)=0;

50 for m = 1:mMax -1

51 xi(1,m+1) = fzero(bessj1 ,[m-1 m]*pi+[0.8 0.8]);

52 end

53

54 % --------------------------------------

55

56 % ---------------------------------------

57 %z is numerical points used for the integration of brackets

58 % dependent on mMax

59 r = 0:1/( mMax*100) :1;

60 % finding all R(m+1,:) for the interval of z

61 sizer=size(r);

62 R=zeros(mMax ,sizer (1,2));

63 %f index is push one to the right

64 R(1,:)=ones(1,sizer(1,2));

65 for m=1:mMax -1

66 %husk forskydning af m

67 R(m+1,:)=besselj(0,r.*xi(1,m+1))/besselj(0,xi(1,m+1));

68 end

69 %trapz(r,r.*R(5,:).*R(5,:))*2=1

70 %check bessel roots

71 %close all

72 %plot(r,R(4,:))

73 % ---------------------------------------

74 lambda=zeros(1,mMax);

75 lambda (1,1)=0;

76 for m=1:mMax -1

77 lambda(1,m+1)=xi(1,m+1)^2;

78 end

79

80
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81

82

83 %----------- the velocity fields

84 u=zeros(NumHarm ,sizer (1,2));

85 k=zeros(1,NumHarm);

86 %steady Veloctiy

87 u(1,:)=2*epsvec (1)*(1-r.^2);

88 %oscillating Velocity

89 for l=1:NumHarm

90 k(l)=sqrt(-I*l*Wo^2);

91 u(l+1,:)=8*epsvec (1+l)/(k(l)^2)*(besselj(0,r*k(l))/besselj

(0,k(l)) -1);

92 end

93 %plot(r,real(u(2,:)));

94 %----------gamma1=<fnm|u_0|fnm >

95

96 %finding gamma1 =<fnm|u_0|fnm > and <ul|f0m > bracket

97 for m=0:mMax -1

98 %gamma1 = <fnm | u_0 | fnm >=

99 %<hm | u_0 | hm >

100 gamma1(m+1)=2*trapz(r,r.*u(1,:).*R(m+1,:).^2);%.*R(m+1,:));

101 %Bra -ket <u_l|Pih_n=0 Rm >

102 %first <u_0| Rm >

103 %ulRm(m+1,1) = 2*trapz(r,r.*R(m+1,:).*u(1,:));

104 %Test for l=0 and m not 0

105 % if(m~=0)

106 % ulRm(m+1,1);

107 % -8/(xi1(1,m+1)^2);

108 % end

109

110 %Next <u_l| Rm >

111 for l=0:NumHarm

112 %<ul|Rm >

113 ulRm(m+1,l+1) = 2*trapz(r,r.*conj(u(l+1,:)).*R(m+1,:));

114 %Test

115 % if(m>0)

116 % ulRm(m+1,l+1);

117 % -epsvec(l+1)*16/(( xi1(1,m+1)^2-k(l)

^2)*k(l))* besselj(1,k(l))/ besselj(0,k(l));

118 % end

119 end %l-loop ends

120 end %m-loop ends

121

122 % ------------------------------------

123 %Ending gamma1 =<fnm|u_0|fnm > and <ul|f0m > bracket

124 %tperiod=5*pi/omega0;

125 tvec= linspace(0 ,1 ,5000)%omega0 *50/pi)%linspace(0,tperiod ,200)%

omega0 *40/pi)%floor(omega0 *40/pi));

126 count =0;%used in plot
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127 Position=[0 0.5]%:0.25:1;%0:0.2:1

128 sizePosition=size(Position);

129 Deff=zeros(sizePosition ,length(tvec));

130 for rloc=Position

131 count =1+count;

132 % --------------------------------------------------------------

133 % Calculating a0(n=0,m)

134 a0=zeros(1,mMax);

135 for n=0:mMax -1

136

137 a0(1,n+1)= besselj(0,rloc*xi(1,n+1))/besselj(0,xi(1,n+1));

138

139 end

140

141 % --------------------------------------------------------------

142 %beta

143 % Calculating everything that contains beta. Now a1(n,m)=a1(0,m)

and beta used in M2

144 %change a1 and beta...

145 Suma1 =0;

146 for m=0:mMax -1

147 Suma1=0;

148 for j=0:mMax -1

149 for l=0:NumHarm

150

151 %(1- KroneckerDelta(m,j)*KroneckerDelta(l,0))<fnm|ul

|fpj >/(xi1

152 %(1,m+1)-xi1(1,j+1)+I*l*omega0)

153 %betafrac=(1-KroneckerDelta(m,j)*KroneckerDelta(l

,0))/(xi1(1,m+1)-xi1(1,j+1)+I*l*omega0)

154

155 if(KroneckerDelta(m,j)*KroneckerDelta(l,0)==1)

156 betafrac=0;

157 else

158 %lambda

159 betafrac=1/( lambda (1,m+1)-lambda (1,j+1)+I*l*

omega0);

160 end

161 %integral <f0j|u_l|f0m >=

162 %<hj|u_l|hm>

163 beta = betafrac*2*trapz(r,r.*R(j+1,:).*u(l+1,:).*R(

m+1,:));

164

165 %

----------------------------------------------------------

166 %Finish calculating beta for the step

167

168 if(l~=0)
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169 Suma1=Suma1 - a0(1,j+1)*2*real(beta); %beta(l

,n,m,k,omega0,epsvec);

170 %betalmj , k is harmonics , m and j is basis

indexs.

171 else

172 Suma1=Suma1 - a0(1,j+1)*beta;

173 end

174 betalmj(l+1,m+1,j+1)=beta;

175 end % l-loop ends

176

177 end %j-loop ends

178

179 %a1 have a value for each m.

180 a1(1,m+1)=Suma1;

181 end %m-loop ends

182

183

184

185 %

--------------------------------------------------------------------------

186 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

187

188 %starting calculating Deff for different times

189 %

--------------------------------------------------------------------------

190 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

191

192 %starting calculating Deff for different times

193 for tt=1:length(tvec)

194 t=tvec(tt);

195 Iomg0t=Iomg0*t;

196

197 if(tt >2)

198 disp([’Time ’ num2str(t) ’ Step #’ num2str(tt -1) ’ of ’

num2str(length(tvec) -1) ’ sum ’ num2str(Deff(1,tt

-1))])

199 end

200

201 %

--------------------------------------------------------------------

202 %first calculating M1 and M1/dt

203 %using dM1/dt and M1 summing variables
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204

205 %M1 summing

206 M1=0;

207 %dM1/dt summing variables

208 dM1dt=0;

209 %using (1-e^(-q)t)/..=t

210 %m=0, l=0

211 M1=a0(1,1)*ulRm(1,1)*t;

212 for m=0:mMax -1

213 lambdat=(lambda(1,m+1))*t;

214 %l=0

215 %dM1/dt

216 dM1dt=dM1dt+a0(1,m+1)*ulRm(m+1,1)*exp(-lambdat); %+

Iomg0*l)*t);

217 %steady state term , still decaying

218 if(m>0)

219 M1=M1+a0(1,m+1)*ulRm(m+1,1)*(1-exp(-lambdat))/(

lambda (1,m+1));%(1-exp(-(lambda (1,m+1)+Iomg0*l)*

t))/(lambda (1,m+1)+Iomg0*l);

220 end

221 %l>0

222 for l=1:NumHarm

223 lambml=lambda (1,m+1)+Iomg0*l;

224 expmlt=exp(-lambml*t);

225 a0ulhm=a0(1,m+1)*ulRm(m+1,1+l);

226 %dM1/dt oscillations

227 %oscillations

228 dM1dt=dM1dt +2*real(a0ulhm*expmlt);

229 %M1

230 %oscillations ,

231 M1=M1+2*real(a0ulhm *(1-expmlt)/lambml);

232 end %l-loop ends

233

234 end %m-loop ends

235 %

236 % %saving value for M1*dM1/dt

237 % M1ddM1dtvector(1,tt)=(M1)*(dM1dt);

238 % M1vector(1,tt)=M1;

239 % dM1dtvector(1,tt)=dM1dt;

240 %

241 %

242

243 % ----------------------------------------------------------

244 % starting calculating dM2/dt

245 summ=0;

246 for m=0:mMax -1%k-loop for beta and NOT FOR M1 -dM/dt

247

248 %k sum

249 sumk=ulRm(m+1,1);%k=0
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250 for k=1:NumHarm

251 sumk=sumk+2*real(ulRm(m+1,k+1)*exp(-Iomg0t*k));

252 end % end k-loop

253

254 %j-sum

255 sumj=0;

256 for j=0:mMax -1

257

258 %l-sum

259 suml=betalmj(1,m+1,j+1);%l=0

260 for l=1:NumHarm

261 suml = suml + 2*real(betalmj(l+1,m+1,j+1)*exp(

Iomg0t*l));

262 end %end l-loop

263 suml=a0(1,j+1)*suml;

264

265 if(j==m)

266 sumj=sumj+(suml+(a0(1,m+1)*gamma1(m+1)*t+a1(1,m

+1)))*exp(-lambda(1,j+1)*t);

267 else

268 sumj=sumj+suml*exp(-lambda(1,j+1)*t);

269 end

270 %hM2=hM2+exp(-lambda (1,j+1)*t)*ulhmexp*(Sum2+

Sumbeta);

271 end % end j-loop

272

273 summ=summ+sumk*sumj;

274 end %end m-loop

275

276 hM2=summ;

277

278

279

280 % M2vector(1,tt)=hM2;

281 % -----------------------------ending M2

282

283

284 Deff(count ,tt)=1 + PeSqr *(hM2 -M1*dM1dt);

285

286 end %t-loop ends ------------------

287 plot(tvec ,Deff(count ,:))%/Deff(length(Deff)))

288

289 %x = tvec; y = Deff(count ,:);

290 %

291 % k = convhull(x,y);

292 % plot(x(k),y(k))

293

294 xlabel(’t’)

295 ylabel(’D_{eff}’)
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296 hold all

297 deffpoint{count }=[’r_0=’ num2str(rloc)];

298

299 end %zloc loop ends -------

300 legend(deffpoint ,0)

301

302 %plot(tvec ,Deff)

303 xlabel(’t’)

304 ylabel(’D_{eff}’)

305

306 figure

307 plot(r,real(u(2,:)))

308 xlabel(’r’)

309 ylabel(’Normalized Velocity , u_x(r,0)’)

310

311 figure

312 plot(tvec ,epsvec (2)*real(exp(I*omega0*tvec)))

313 xlabel(’t’)

314 ylabel(’Pressure amplitude \ epsilon_0=50’)

315

316 % figure

317 % plot()
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Taylor–Aris dispersion, the shear-induced enhancement of solute diffusion in the flow
direction of the solvent, has been studied intensely the past half century for the case
of steady flow and single-frequency pulsating flows. Here, combining Aris’s method of
moments with Dirac’s bra-ket formalism, we derive an expression for the effective so-
lute diffusivity valid for transient Taylor–Aris dispersion in any given time-dependent,
multi-frequency solvent flow through straight channels. Our theory shows that the so-
lute dispersion may be greatly enhanced by the time-dependent parts of the flow, and
it explicitly reveals how the dispersion coefficient depends on the external driving fre-
quencies of the velocity field and the internal relaxation rates for mass and momentum
diffusion. Although applicable to any type of fluid, we restrict the examples of our theory
to Newtonian fluids, for which we both recover the known results for steady and single-
frequency pulsating flows, and find new, richer structure of the dispersion as function
of system parameters in multi-frequency systems. We show that the effective diffusivity
is enhanced significantly by those parts of the time-dependent velocity field that have
frequencies smaller than the fluid momentum diffusion rate and the solute diffusion rate.

Key Words: Taylor–Aris dispersion, time-dependent dispersion, advection, diffusion

1. Introduction

In his seminal work G.I. Taylor (1953) clarified the basic physical principles for the
dispersion of the concentration profiles of solutes in a steady Poiseuille flow: the shear
from the solvent flow acts to increase the dispersion, or effective diffusivity, of the solute
in the direction of the flow. For a channel with a circular cross section of radius a, he
derived the now classical expression for the effective diffusivity Deff = (1 + Pé2/48)D,
where Pé = aUo/D is the Péclet number for the system, Uo being the average solvent
flow speed and D the solute molecular diffusivity. This work was extended to a wider
range of Péclet numbers and geometries by Aris (1956) using the elegant method of
statistical moments. Many other aspects of shear-enhanced solute dispersion in steady
flows have since been studied in the literature, including buoyancy and channel curvature
(Erdogan & Chatwin 1967), interphase mass transfer (Sankarasubramanian & Gill 1973),
transient phenomena (Chatwin 1977), effects of walls in 3D dispersion (Doshi et al.
1978), a stochastic description (van den Broeck 1982), influence of channel aspect ratio
(Chatwin & Sullivan 1982), and generalized dispersion of mass, energy, and momentum
in unbounded systems (Goddard 1993; Brenner & Edwards 1993). Taylor dispersion is
now textbook material (Brenner & Edwards 1993; Probstein 1994; Bird et al. 2006).
Even today shear-flow-enhanced dispersion is studied actively as illustrated by the

recent analyses of Deff in transient anomalous diffusion of point discharges (Latini &
Bernoff 2001), in electro-osmotic flow with random zeta potentials (Gleeson 2002), in
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steady flows in a wide class of channel cross-sections (Dutta et al. 2006; Ajdari et al.
2006; Bontoux et al. 2006), in harmonically oscillating Couette–Poiseuille flows (Paul &
Mazumder 2008), in steady Poiseuille flows using a Brownian-motion approach (Camassa
et al. 2010), and in steady, non-Newtonian fluid flow (Vikhansky & Wang 2011).
In many practical applications (Skafte-Pedersen et al. 2009; Vedel et al. 2010) flows are

unsteady and therefore typically generate more shear than their steady counterparts. The
chemical engineering community long have recognized that increased mass transfer can be
achieved by pulsating the flow, see e.g. Taylor & Leonard (1965) and Molloy & Leighton
(1998), but many physical interpretations and quantitative aspects of this additional
shear remains to be investigated theoretically. This is surprising given that the first
investigation of Taylor dispersion in time-dependent flows dates back to Aris (1960) and
its generalization by Brenner & Edwards (1993), and also given the large volume of studies
dedicated to steady flows. Time-dependent phenomena that have been studied are non-
transient, single-frequency pulsating flows (Harris & Goren 1967; Chatwin 1975; Watson
1983; Thomas & Narayanan 2001; Jansons 2006), the first examples of transient-flow
analysis of single-frequency flows by Mazumder and coworkers (Mukherjee & Mazumder
1988; Bandyopadhyay & Mazumder 1999), and dispersion in a time-dependent flow in
an unbounded system (Leighton 1989).
Here, we go beyond the previous results on dispersion in single-frequency flows and

study any given time-dependent laminar flow in a straight channel of any constant cross-
sectional shape, in particular relevant for microfluidic systems. Based on Aris’s scheme we
derive a general and compact expression for the transient, effective Taylor–Aris diffusivity
Deff(t) with explicit dependence on the externally applied flow frequencies ℓωo and the
internal relaxation rates λ1 and αfl for solute mass diffusion and solvent momentum
diffusion, respectively. We show that Deff is enhanced significantly by those frequency-
components of the time-dependent velocity field which have an oscillation frequency
smaller than any relaxation rate of the system, and thus provide enough time for the
solute to equilibrate. We further show how this enhancement is diminished each time a
frequency is increased and becomes larger than a given relaxation rate. Moreover, for the
start-up of a Poiseuille flow, which includes any flow frequency, we find that the transient
time of Deff is determined by the slowest of the relaxation processes, i.e. the maximum of
1/λ1 and 1/αfl. Finally, we demonstrate the practical usefulness of our theory as a design
tool by characterizing the dispersion generated by a microfluidic, peristaltic pump.

2. The physical model and Aris’s method of moments

In the following we establish our physical model together with our notation and present
the well-known method of moments for calculating the dispersion coefficient Deff . We
consider a long, straight channel parallel to the x-axis, and assume that it is translational
invariant along this axis with an arbitrary, but constant, cross section Ω. The coordinates
in the transverse yz-plane are denoted r⊥ = (y, z), so that the full coordinates are written
as r = (x, r⊥), and likewise for the gradient operator ∇ and the Laplace operator ∇2,

r = (x, r⊥), with r⊥ = (y, z), (2.1a)

∇ = ex∂x +∇⊥, with ∇⊥ = ey∂y + ez∂z, (2.1b)

∇2 = ∂2
x +∇2

⊥, with ∇2
⊥ = ∂2

y + ∂2
z . (2.1c)

The channel has length L, cross-sectional area A =
∫
Ω
dr⊥1, and volume V = LA. Our

analysis involves expansion of the spatial dependence of functions into linear combina-
tions of suitably chosen basis functions. For notational convenience we shall therefore rely
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on a Hilbert-space representation using the compact Dirac bra-ket notation, employed
more often in quantum mechanics (Dirac 1981) than in fluid mechanics (Bruus 2008;
Mortensen et al. 2006; Mortensen & Bruus 2006). For any pair of functions f(x, r⊥, t)
and g(x, r⊥, t) represented by the bra

⟨
f | and the ket

∣∣g⟩, the inner product
⟨
f
∣∣g⟩, is

defined by the integral, where the asterisk indicates complex conjugation,⟨
f
∣∣g⟩ = 1

V

∫ 1
2L

− 1
2L
dx

∫
Ω

dr⊥ f∗(x, r⊥, t) g(x, r⊥, t), (2.2)

This definition also includes the case, where the involved functions only depend on the
transverse coordinates r⊥. For f⊥(r⊥, t) and g⊥(r⊥, t) we obtain⟨

f⊥
∣∣g⊥⟩ = 1

A

∫
Ω

dr⊥ f∗
⊥(r⊥, t) g⊥(r⊥, t), (2.3)

as the x-integration trivially gives unity. Details and useful properties of the bra-ket
notation are given in the Appendix.
From now on we use dimensionless quantities defined in terms of the characteristic

transverse length Lo, often the shortest distance a from the center line of the channel
to the wall, the diffusion time To from the molecular diffusivity D of the solute, the
advection velocity Uo from a scale Uchar in the time-dependent flow, and the average
solute concentration Co of the solute concentration field c(x, r⊥, t),

Lo = a, To =
L2
o

D
, Uo = Uchar, Co =

⟨
1
∣∣c(x, r⊥, 0)⟩. (2.4)

The specific choice of Uchar in Eq. (2.4) is not unique: for a steady flow it could be
taken as the mean velocity; for a single-frequency oscillating flow as the rms-velocity. See
Appendix for a list of symbols.
Denoting the base angular frequency of the solvent flow ω̃o (rad/s), the system is char-

acterized by three dimensionless numbers: the Péclet number Pé (the ratio of advection
speed to mass diffusion speed), the Schmidt number Sc (the ratio of momentum diffusion
speed to mass diffusion speed), and the Womersley number Wo (the square root of the
ratio of oscillation speed at frequency ω̃o to momentum diffusion speed for a Newtonian
fluid of kinematic viscosity ν),

Pé =
Lo Uo

D
, Sc =

ν

D
, Wo =

√
L2
oω̃o

ν
. (2.5)

For non-Newtonian fluids with an internal molecular stress relaxation time τmol, the
Deborah number De = τmol ωo would appear, but this is not treated in this work.

2.1. The time-dependent velocity field

We take the velocity field to be any axis-parallel channel flow v = u(r⊥, t)ex, and repre-
sent u(r⊥, t) by a standard Fourier series with components uℓ for each higher harmonic
ℓωo (ℓ being an integer) in the dimensionless base frequency ωo = ω̃oTo = Wo2Sc,

u(r⊥, t) =

∞∑
ℓ=−∞

uℓ(r⊥) e
iℓωot, (2.6)

where complex notation is introduced for the time with i =
√
−1. By demanding that

u−ℓ(r⊥) = u∗
ℓ (r⊥), we ensure that the velocity field is real (Brenner & Edwards 1993).

The fluid responds to changes in external conditions on a time scale which depends on
its internal stress relaxation time, and whether fluid inertia dominates may be estimated
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by the product of the driving frequency ω̃o and this internal time scale. For Newtonian
fluids the stress relaxation time scale is given by the momentum diffusion time 1/αfl,
related to the momentum diffusion rate αfl, which is derived from the momentum diffusion
equation ∂tu = Sc∇2

⊥u and given by

αfl ∝ Sc (2.7)

with a geometry-dependent proportionality factor. Note that since αfl ∝ Sc, the square of
the Womersley number is proportional to the ratio of the dimensionless driving frequency
ωo and the momentum diffusion equilibration rate,

Wo2 =
ωo

Sc
∝ ωo

αfl

. (2.8)

2.2. Dispersion and the advection-diffusion equation

The transport of the diffusive solute concentration c in the above-mentioned velocity field
is given by the dimensionless advection-diffusion equation,

∂tc(x, r⊥, t) + Pé u(r⊥, t) ∂xc(x, r⊥, t) = (∂2
x +∇2

⊥) c(x, r⊥, t). (2.9)

The corresponding boundary conditions are

n ·∇⊥c = 0, on all walls, (2.10a)

c(x, r⊥, 0) = c̃(x, r⊥), (2.10b)

xs∂q
xc → 0, for |x| → L

2
and s, q = 0, 1, 2, . . . , (2.10c)

where n is the surface normal and c̃ is a given initial concentration field, and condi-
tion (2.10c) states that all spatial gradients in c as well as c itself vanish far away along
the axis of the channel.
Using Aris’s method of moments the effective diffusivity Deff(t) is defined by the time-

derivative of the axial variance µ2(t) =
⟨
(x − x̄)2

∣∣c⟩ of the solute distribution, x̄(t) =
M1(t) being the center of mass, Eq. (A 5b), and may be computed as (Aris 1956, 1960;
Chatwin 1975; Barton 1983; Mukherjee & Mazumder 1988; Brenner & Edwards 1993)

Deff(t) =
1

2

dµ2(t)

dt
=

1

2

dM2

dt
−M1

dM1

dt
, (2.11)

where the pth full moment Mp(t) of the solute concentration field c(x, r⊥, t) and the
associated axial moment cp(r⊥, t) are defined by

Mp(t) =
⟨
xp

∣∣c⟩ =
1

A

∫
Ω

dr⊥ cp(r⊥, t), p = 0, 1, 2, . . . , (2.12a)

cp(r⊥, t) =
1

L

∫ 1
2L

− 1
2L
dx xpc(x, r⊥, t), p = 0, 1, 2, . . . . (2.12b)

The derivation of Eq. (2.11) is sketched in the Appendix, where we also show that the
moments cp(r⊥, t) and Mp(t) evolve according to the recursive equations of motion,

∂tcp(r⊥, t)−∇2
⊥cp(r⊥, t) = p(p− 1)cp−2(r⊥, t) + Pé u(r⊥, t)p cp−1(r⊥, t),

p = 0, 1, 2, . . . , (2.13a)

dMp(t)

dt
= p(p− 1)

⟨
1
∣∣cp−2

⟩
+ Pé p

⟨
u
∣∣cp−1

⟩
, p = 0, 1, 2, . . . , (2.13b)
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with the boundary and initial conditions

n ·∇⊥cp = 0, on all walls, (2.14a)

cp(r⊥, t) < ∞, (2.14b)

cp(r⊥, 0) = c̃p(r⊥), (2.14c)

Mp(0) =
⟨
xp

∣∣c̃⟩. (2.14d)

The main goal of this paper is to solve Eq. (2.11) for general time-dependent flows in
straight channels of arbitrary, constant cross-section, and to study how Deff depends on
the physical frequencies and relaxation rates of the systems.

3. Dispersion for multiple-frequency flow

The solution solution procedure of the problem was introduced by Barton (1983) for
steady flows and later extended to also include single-frequency harmonic pulsatile flows
by Mukherjee & Mazumder (1988). The expressions presented in this section generalize
their results to any given time-dependent flow. We derive them using the more compact
bra-ket formalism as follows: from Eq. (2.13a) with p = 0 and 1 we determine the axial
moment co(r⊥, t) and subsequently c1(r⊥, t). With these at hand, the full moment M1 as
well as the time derivatives dM1

dt and dM2

dt can be obtained from Eq. (2.13b) with p = 1
and 2, which then are fed into Eq. (2.11) to determine Deff .

3.1. The zeroth axial moment and basis functions

We begin by analyzing the p = 0 axial moment equation (2.13a) for co(r⊥, t),(
∂t −∇2

⊥
)∣∣co(r⊥, t)⟩ = 0. (3.1)

This moment fulfills the Neumann boundary condition

n ·∇⊥co = 0, on all walls, (3.2)

and has the initial condition

co(r⊥, 0) = c̃0(r⊥) =

∫ 1
2L

− 1
2L
dx c̃(x, r⊥). (3.3)

Using separation of variables, the solution for co(r⊥, t) can be written as the expansion∣∣co(r⊥, t)⟩ = ∞∑
n=0

a0ne
−λnt

∣∣fn(r⊥)⟩, (3.4)

where the time-independent eigenfunctions fn(r⊥) with eigenvalues λn are defined by

(λn+∇2
⊥)

∣∣fn(r⊥)⟩ = 0, n = 0, 1, 2, . . . , (3.5a)

n ·∇⊥
∣∣fn(r⊥)⟩ = 0, on all walls, (3.5b)

and form a complete orthonormal basis in the sense of Eq. (A 3). Note that the lowest
n = 0 eigenvalue is zero, λ0 = 0, with eigenfunction unity, f0(r⊥) = 1, while for n > 0
the eigenvalues are positive, λn > 0. We remark that although the general advection-
diffusion problem Eq. (2.9) is non-Hermitian, the reduced, transverse problem Eq. (3.5)
is Hermitian, and we can take full advantage of the Dirac Hilbert-space formulation.
The expansion coefficients a0m are found by multiplying Eq. (3.4) at t = 0 by

⟨
fm|,

a0m =
⟨
fm

∣∣c̃0⟩, m = 0, 1, 2, . . . . (3.6)
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For infinite time, all terms in Eq. (3.4) except n = 0 decay exponentially, and we obtain∣∣co(r⊥,∞)
⟩
= a00

∣∣f0(r⊥)⟩ = ⟨
1
∣∣c̃0⟩∣∣1⟩ = ∣∣1⟩, (3.7)

representing the state where, by diffusion, the solute concentration has spread out uni-
formly in space.

3.2. The first axial moment and basis functions

The p = 1 axial moment equation (2.13a) for c1(r⊥, t) is analyzed in a similar manner.
Using that co(r⊥, t) is now a known function, we have

(
∂t −∇2

⊥
)∣∣c1(r⊥, t)⟩ = Pé u(r⊥, t)

∣∣co(r⊥, t)⟩ = Pé u(r⊥, t)
∞∑

n=0

a0ne
−λnt

∣∣fn(r⊥)⟩, (3.8a)

where c1 fulfills the Neumann boundary condition

n ·∇⊥c1 = 0, on all walls, (3.8b)

and the initial condition

c1(r⊥, 0) = c̃1(r⊥) =

∫ 1
2L

− 1
2L
dx x c̃(x, r⊥). (3.8c)

As pointed out by Barton (1983), solving the inhomogeneous partial differential equa-
tion (3.8a) for c1 requires some care regarding the null-space of the differential operator
(∂t−∇2

⊥). Using the time Fourier expansion Eq. (2.6) of the velocity field u(r⊥, t), we see
that, due to the time-independent ℓ = 0 component of u, the right-hand side of Eq. (3.8a)
contains terms of the form Péa0nu0(r⊥)e

−λnt
∣∣fn⟩, which have nonzero overlap with kets

of the form e−λnt
∣∣fn⟩. Noting that

(∂t −∇2
⊥)

[
e−λnt

∣∣fn⟩] = 0, (3.9a)

(∂t −∇2
⊥)

[
t e−λnt

∣∣fn⟩] = e−λnt
∣∣fn⟩, (3.9b)

we thus expand c1(r⊥, t) in terms of both e−λnt
∣∣fn⟩ and t e−λnt

∣∣fn⟩, and seek solutions

of
∣∣c1(r⊥, t)⟩ of the form

∣∣c1⟩ = Pé
∞∑

n=0

[
(γ1na0nt+ a1n)

∣∣fn⟩+ a0n
∣∣ϕn

⟩]
e−λnt, (3.10)

where the unknown coefficients, γ1n and a1n, as well as the unknown time-dependent ket∣∣ϕn(r⊥, t)
⟩
are determined in the following. Inserting this trial expansion of

∣∣c1(r⊥, t)⟩
into the equation of motion (3.8a) leads to

(∂t −∇2
⊥ − λn)

∣∣ϕn(r⊥, t)
⟩
=

[
u(r⊥, t)− γ1n

]∣∣fn(r⊥)⟩. (3.11)

The unknown ket
∣∣ϕn(r⊥, t)

⟩
is now expanded in a Fourier series in time and a

∣∣fm(r⊥)
⟩

series in space, ∣∣ϕn(r⊥, t)
⟩
=

∞∑
ℓ=−∞

∞∑
m=0

βℓ
mne

iℓωot
∣∣fm(r⊥)

⟩
, (3.12)

which upon insertion into Eq. (3.11) followed by multiplication by
⟨
fk| results in the

following matrix equation for the coefficients βℓ
kn,

(λk − λn + iℓωo)β
ℓ
kn =

⟨
fk
∣∣uℓ

∣∣fn⟩− γ1n δℓ,0 δk,n. (3.13)
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Here, we see that the special case of the time-independent term ℓ = 0, together with the
diagonal term k = n, only allows a solution if we choose

γ1n =
⟨
fn

∣∣u0(r⊥)
∣∣fn⟩, (3.14)

while the β-coefficients are given by

βℓ
kn = (1− δℓ,0δk,n)

⟨
fk
∣∣uℓ(r⊥)

∣∣fn⟩
λk − λn + iℓωo

. (3.15)

Note that any value of β0
nn is allowed, so for convenience we set it to zero. Moreover,

β−ℓ
kn = (βℓ

kn)
∗ ensures real values of the resulting fields.

Lastly, the coefficients a1n are found using the initial condition (3.8c) in Eq. (3.10) at
t = 0, multiplying by

⟨
fk|, and finally exchanging the indices n and k,

a1n =
1

Pé

⟨
fn

∣∣c̃1(r⊥)⟩− ∞∑
k=0

a0k

∞∑
l=−∞

βℓ
nk. (3.16)

Collecting all terms, we write the formal solution as∣∣c1(r⊥, t)⟩ = Pé
∞∑

m=0

∞∑
n=0

[
(a0nγ1nt+a1n)δn,m+a0n

( ∞∑
ℓ=−∞

βℓ
mne

iℓωot
)]

e−λnt
∣∣fm⟩

. (3.17)

3.3. Expressions for the effective diffusivity

The effective diffusivity Deff = 1
2
dM2

dt − M1
dM1

dt can now be expressed in terms of a

basis function expansion. The time derivative dM1

dt = Pé
⟨
u
∣∣co⟩ of the full moment M1 in

Eq. (2.13b) becomes

dM1

dt
= Pé

∞∑
n=0

∞∑
ℓ=−∞

a0n
⟨
uℓ

∣∣fn⟩ e−(λn+iℓωo)t, (3.18a)

where we have used Eq. (A 2b) for the phase factor. By proper choice of the coordinate sys-
tem, the initial centroid x̄(0) of the distribution is zero. This, combined with Eq. (A 5b),
determines the initial value M1(0) = x̄(0) = 0, and time integration of Eq. (3.18a) gives

M1 = Pé

∞∑
n=0

∞∑
ℓ=−∞

a0n
⟨
uℓ

∣∣fn⟩ 1− e−(λn+iℓωo)t

λn + iℓωo

. (3.18b)

Here, the term (n, ℓ) = (0, 0) depends linearly on time because limq→0

[
(1− e−qt)/q] = t.

Similarly, for the time derivative 1
2
dM2

dt =
⟨
1
∣∣co⟩ + Pé

⟨
u
∣∣c1⟩ of the full moment M2,

Eq. (2.13b), we obtain

1

2

dM2

dt
= 1 + Pé2

∞∑
m=0

∞∑
n=0

∞∑
k=−∞

⟨
uk

∣∣fm⟩
e−(λn+ikωo)t

×
[
(a0nγ1nt+ a1n)δn,m + a0n

∞∑
ℓ=−∞

βℓ
mne

iℓωot

]
. (3.18c)

All expressions derived so far are explicitly real because of the pairwise summation of
complex conjugate terms with index ℓ and −ℓ. Furthermore, they apply to any initial
solute distributions, such as the non-uniform distributions recently studied by Camassa
et al. (2010), as well as any given velocity field, which can be represented by Eq. (2.6).
We now study the special case of an initial solute distribution c̃ being uniform in the
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cross-sectional plane. This introduces significant simplifications in Deff , which otherwise
depends on the channel cross-section, the flow profile u, and the initial solute distribution
c̃ through the coefficients uℓ, a0n, a1n, γ1n, and βℓ

kn. Transverse uniformity leads to∣∣c̃0⟩ = ∣∣1⟩, and
∣∣c̃1⟩ = 0, (3.19)

and a0n, β
ℓ
j0 and a1n therefore reduce to

a0n = δn,0 (3.20a)

βℓ
j0 = (1− δℓ,0δj,0)

⟨
fj
∣∣uℓ

⟩
λj + iℓωo

, (3.20b)

a1n = −
∞∑

ℓ=−∞

(1− δℓ,0δn,0)

⟨
fn

∣∣uℓ

⟩
λn + iℓωo

, (3.20c)

where
⟨
fj
∣∣uℓ

∣∣f0⟩ =
⟨
fj
∣∣uℓ

∣∣1⟩ = ⟨
fj
∣∣uℓ

⟩
has been used. Hence Eq. (3.18) becomes

dM1

dt
= Pé

∞∑
k=−∞

⟨
uk

∣∣1⟩ e−ikωot, (3.21a)

M1 = Pé
∞∑

ℓ=−∞

⟨
uℓ

∣∣1⟩1− e−iℓωot

iℓωo

= Pé

{⟨
u0

∣∣1⟩ t+ ∞∑
ℓ=−∞

(1−δℓ,0)
⟨
1
∣∣uℓ

⟩eiℓωot − 1

iℓωo

}
,

(3.21b)

1

2

dM2

dt
= 1 + Pé2

{ ∞∑
ℓ=−∞

⟨
uℓ

∣∣1⟩⟨u0

∣∣1⟩ t e−iℓωot +
∞∑

m=0

∞∑
ℓ=−∞

∞∑
k=−∞

⟨
uk

∣∣fm⟩⟨
fm

∣∣uℓ

⟩
λm + iℓωo

× (1− δm,0δℓ,0)
[
eiℓωot − e−λmt

]
e−ikωot

}
, (3.21c)

and after a final index change of m to n we arrive at

Deff(t) = 1 + Pé2
∞∑

n=1

∞∑
ℓ=−∞

∞∑
k=−∞

⟨
uk

∣∣fn⟩⟨fn∣∣uℓ

⟩
λn + iℓωo

[
ei(ℓ−k)ωot − e−(λn+ikωo)t

]
. (3.22)

This is the main theoretical result of our work: a closed expression for the transient
Taylor–Aris dispersion Deff(t) for any given time-dependent, axial flow field u(r⊥, t) in
the case of complete transverse diffusion. The flow frequencies ℓωo and solute diffusion re-
laxation rates λn appears explicitly, while the momentum relaxation rates αfl are implicit
in

⟨
fn

∣∣uℓ

⟩
. The result (3.22), which generalizes previous steady and single-frequency re-

sults, is particularly relevant in the field of microfluidics characterized by laminar flow
in channels of small cross-sectional dimensions compared to the channel lengths.

The time-averaged diffusivity Davr
eff (t) over one oscillation period τ0 = 2π/ωo is

Davr
eff (t) =

1

τ0

∫ t+τ0

t

Deff(t) dt (3.23a)

= 1 + Pé2
∞∑

n=1

∞∑
ℓ=−∞

∞∑
k=−∞

⟨
uk

∣∣fn⟩⟨fn∣∣uℓ

⟩
λn + iℓωo

[
δℓ,k − 1− e−λnτ0

(λn + ikωo)τ0
e−(λn+ikωo)t

]
,

(3.23b)
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which in the long-time limit t ≫ 1/λ1 reduces to

Davr
eff (∞) = 1 + Pé2

∞∑
n=1

[
|
⟨
u0

∣∣fn⟩|2
λn

+
∞∑
ℓ=1

2λn|
⟨
uℓ

∣∣fn⟩|2
λ2
n + ℓ2ω2

o

]
. (3.24)

Note that the ℓ-sum only runs over positive integers and not as previously over all integers.
Finally, in the case of a steady flow given by∣∣uℓ

⟩
= δℓ,0

∣∣u0

⟩
, (3.25)

expression (3.22) for the effective diffusivity reduces to

Dsteady
eff (t) = 1 + Pé2

∞∑
n=1

|
⟨
u0

∣∣fn⟩|2
λn

(
1− e−λnt

)
, (3.26)

and hence we recover the steady-flow, transient-solute result of Barton (1983).

4. General aspects of dispersion and relaxation rates

Our main result Eq. (3.22) implies directly that for all time-dependent flows the effec-
tive diffusivity depends on the velocity squared, Deff ∝ Pé2 ∝ U2

o . However the specific
form of Deff depends on the magnitude of the amplitude ||uℓ||, of a given velocity com-
ponent with frequency ℓωo, relative to the amplitude ||u0|| of the steady component.
For small oscillation amplitudes ||uℓ|| ≪ ||u0||, the velocity field remains unidirectional,

but its magnitude, and hence the shear gradients in the velocity, oscillates with frequency
ℓωo around the steady value. Consequently, Deff(t) oscillates with frequency ℓωo around
its time-averaged value Davr

eff (∞). For sufficiently large amplitudes ||uℓ|| ≫ ||u0|| (the
exact limit depends on the channel cross section geometry), the direction of the velocity
field changes sign with frequency 2ℓωo. As a result, due to the terms with k = −ℓ in
Eq. (3.23b), Deff(t) also oscillates with the double period 2ℓωo. Moreover, because this
period-doubling ensures a non-zero, time-averaged effective diffusivity Davr

eff ∝ ||uℓ||2Pé2,
Davr

eff increases above Dsteady
eff . This reflects that now ||uℓ||Uo and not Uo should be chosen

as Uchar in Eq. (2.4), thus quantifying the observations made in the chemical engineering
community that pulsating flows lead to increased mass transfer (Taylor & Leonard 1965).
By definition, the variance of the solute distribution µ2(t) is positive at all times,

but this does not imply that the differential variance Deff(t) =
1
2
dµ2

dt also remains posi-
tive; in fact, negative values of Deff(t) are often encountered. In general, for short times

t ≪ 1/λ1, 1/(2ℓmaxωo), we find Deff(t) = 1 + t Pé2
∑∞

n=1

∣∣⟨fn∣∣u(0)⟩∣∣2 > 0 , see Ap-
pendix, while for steady flow oscillations of large amplitudes ||uℓ|| ≫ ||u0|| the transient
contraction of the solute concentration field associated with each reversal of the solvent
flow direction leads to negative values of Deff(t). The cross-over point to negative val-
ues of Deff(t) depends on the relative amplitudes of all components of the velocity field,
and is therefore not easily estimated in the general case. However, for the simple case
of a single-frequency flow the cross-over point can be identified from Eq. (3.24). The
time-averaged (positive) level is set by the diagonal terms ℓ = k for −1, 0, and 1 in the
n-sum given by |

⟨
u0

∣∣fn⟩|2/λn + |
⟨
u1

∣∣fn⟩|22λn/(λ
2
n + ω2

o), while the cross-terms ℓ = −k

for −1 and 1 gives the oscillating terms 2Re
[(⟨

u1

∣∣fn⟩eiωot
)2
/(λ1 + iωo)

]
. For the dom-

inant n = 1 term at the intermediate frequency λ1 ≪ ωo . Sc, we can neglect λ1 in
the denominators, and since Wo =

√
ωo/Sc . 1 we have

⟨
u1

∣∣fn⟩ ≈
⟨
u0

∣∣fn⟩||u1||/||u0||,
which results in Deff ∝ 1 + 2 ||u1||2

||u0||2
λ1

ωo

[
λ1

ωo
+ sin(2ωot + 2ϕ0)

]
, where the phase ϕ0 is



10 S. Vedel and H. Bruus

given by
⟨
u1

∣∣fn⟩ =
∣∣⟨u1

∣∣fn⟩∣∣ eiϕ0 . Negative values of Deff(t) are therefore expected for

||u1|| > ||u0||
√
ωo/(2λ1).

In the absence of a steady component in the velocity field, u0 = 0, the period doubling
is always present. Thus, for purely oscillating flows one finds a shear-enhanced dispersion
above molecular diffusion, even though there is no net flow.
General conclusions for the shape dependence ofDeff may be obtained by applying ran-

dom matrix theory (Mehta 2004) to the geometry-dependent inner product/eigenvalue
expressions (3.22), (3.24), and (3.26) following the analysis of the shape-dependent quan-
tum transport through quantum dots (Bruus & Stone 1994). For a non-integrable system
the values of the inner products in Eq. (3.26) can be regarded as a random distribution
with an average of the order unity. We therefore expect the sum to be dominated by the
lowest eigenvalues, for which λn ∝ 1/R2, where R is the aspect ratio of the characteristic
length scales of the two cross section directions (R ≥ 1), which for a rectangle is the wide

“width” divided by the short “height”. Consequently (Dsteady
eff − 1) ∝ Pé2R2, indicating

that the dominating length scale no longer is the short “height” but the wide “width”.
This is in agreement with the analysis of the shallow, slowly varying cross-sections studied
by Ajdari et al. (2006) and Dutta et al. (2006).
The solute dispersion can be calculated from Eq. (3.22), if the Fourier series of the

flow velocity is known, e.g. the single-frequency flow in a Newtonian fluids (Womersley
1955) or steady non-Newtonian fluid flow (Fan & Wang 1966). However, in the rest of the
paper we restrict the application of our theory to the case of incompressible Newtonian
fluids of kinematic viscosity (or momentum diffusivity) ν in the laminar regime which
are governed by the time-dependent Stokes equation,

∂tu(r⊥, t) = Sc
[
∇2
⊥u(r⊥, t) +

1

L
∆p(t)

]
. (4.1)

Here, ∆p(t) is the time-dependent pressure drop along the channel of length L, resolved
by the components εℓ∆p eiℓωot (εℓ is a dimensionless amplitude) with the dimensionless
base frequency ωo = Wo2Sc, and the dimensionfull pressure has been normalized by the
shear-induced pressure Po = ηUo

Lo
. The Schmidt number Sc appears since the time scale

has been chosen to be the transverse mass diffusion time, and not the momentum diffusion
time. The linearity of this equation allows us to solve the flow problem analytically and
thereby obtain the Fourier coefficients uℓ and the momentum diffusion rate αfl. The
dispersion Deff(t) depends on αfl, and thus on Wo by Eq. (2.8), implicitly through the
velocity components uℓ.
The effective diffusivity varies greatly depending on the system parameters. Below, we

provide explicit estimates of the relaxation rates of the solute and fluid momentum, by
analyzing specific time-dependent systems of increasing complexity through the addition
of more time scales to both motion of the solvent and diffusion of the solute. We interpret
the results for Deff in terms of the relaxation rates and the flow frequencies in agreement
with the general considerations just outlined.

5. Multiple-frequency flow in one-length-scale cross sections

We begin by analyzing channel cross sections with only one inherent length scale, such
as the circular tube or the infinite parallel-plate slit, and the associated time scale for
transverse solute diffusion. All results presented in this section are computed for the
circular cross section, but qualitatively they apply to other single-length cross sections.
We consider a circular tube of unit radius (the radius being a = Lo in dimensionfull
coordinates) and calculate the velocity field from the Stokes equation, Eq. (4.1). Using
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cylindrical coordinates and a generalized wavenumber kℓ, the velocity component uℓ

fulfilling the boundary conditions u|r=1 = 0 and ∂ru|r=0 = 0 is (Womersley 1955)

kℓ = kℓ(Wo) =
√

−iℓWo2 =
√
−iℓωo/Sc, (5.1a)∣∣uℓ

⟩
= εℓ

8

k2ℓ

[
J0(kℓr)

J0(kℓ)
− 1

]
, (5.1b)

where the steady-state Poiseuille solution is u0(r) = limℓ→0 uℓ(r) = ε02(1 − r2). The
velocity scale is taken to be the average steady state velocity Uo = ∆p a2/(8ηL) for
ε0 = 1. The eigenfunctions and eigenvalues corresponding to Eq. (3.4) are∣∣fn⟩ = δn,0 + (1− δn,0)

J0(ξ1,n r)

J0(ξ1,n)
, (5.2a)

λn = (1− δn,0)ξ
2
1,n, (5.2b)

where Js(x) is the Bessel function of the first kind of order s, and ξs,n is the nth root of

Js(x). For cylindrical coordinates (axisymmetric case)
⟨
f
∣∣g⟩ = ∫ 1

0
dr 2rf∗(r) g(r), so⟨

fn
∣∣uℓ

⟩
= −εℓ

16

(ξ21,n − k2ℓ )kℓ

J1(kℓ)

J0(kℓ)
, for n > 0, (5.3)

and
⟨
fn

∣∣u0

⟩
= limℓ→0

⟨
fn

∣∣uℓ

⟩
= −8/ξ21,n for the steady term. Using these

⟨
fn

∣∣uℓ

⟩
in

Eq. (3.22) allows us to calculate Deff(t) for an unsteady flow, and by inserting them in

Eq. (3.26) we recover Dsteady
eff (t) = 1 + Pé2

[
1
48 −

∑∞
n=1(64/ξ

6
1,n) exp(−ξ21,nt)

]
, the classic

result for a transient solute concentration in a steady-flow obtained by Barton (1983).
The fluid momentum equilibration rate for the circular cross section is αfl = Sc ξ20,1, so

the generalized wavenumber kℓ =
√
−iℓWo2 = ξ0,1

√
−iℓωo/αfl and the overlap integrals

Eq. (5.3) depend explicitly on the fluid inertia through the ratio of the driving frequency
ωo to the fluid momentum equilibration rate αfl.

5.1. A steady-plus-one-frequency flow

We consider now the simple case of a steady flow of fixed amplitude ε0 = 1 with the
addition of one oscillating component of variable amplitude ε1. The dispersion in this
particular flow has previously been studied to various levels of detail (Aris 1960; Chatwin
1975; Mukherjee & Mazumder 1988). Our theory both recovers, quantifies, and provides
insight to the underlying physical mechanisms encountered in these previous studies.
Deff(t) transiently builds towards a steady-oscillation level on the time scale 1/λ1 =

1/ξ21,1 = 0.068, as seen in the example Fig. 1(a) (black line) for ε1 = 0.05, Pé = 20, Sc =

1000, ωo = 200, and Wo =
√
ωo/Sc = 0.447. As expected from the general observations

in Sec. 4, Deff(t) oscillates around Davr
eff (t) ≈ Dsteady

eff (t) for ε21 ≪ ε20 = 1 (gray line).
The inset shows increasing Davr

eff (t) for growing oscillation amplitude, ε1 = 0, 3, and 12,
where Davr

eff changes from following Deff fairly closely at ε1 = 3 to being substantially
enhanced for ε1 = 12. In Fig. 1(b) we zoom in on the two gray zones of panel (a)

to show the excellent agreement between our theory for Deff(t) − Dsteady
eff (t) (full line),

numerics (circles, see Appendix for details), and the single-frequency theory of Mukherjee
& Mazumder (1988) (stars).
Extending the physical analysis provided by Mukherjee & Mazumder (1988), we have

augmented ε1 by a factor 1000 to the value 50 in Fig. 1(c), and the normalized plot
Deff(t)/D

avr
eff (∞) illustrates that the oscillation-induced enhancement of Davr

eff (t) shown in
the inset of panel (a) is accompanied by both a period doubling in, and negative values of,
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Figure 1. Deff(t) calculated by Eq. (3.22) in a tube of circular cross section for a harmonically
oscillating flow of frequency ωo superimposed on a steady flow, Pé = 20. (a) Deff(t) for ω0 = 200,

Wo = 0.447 and velocity amplitudes ε1 = 0.05 ≪ ε0 = 1 (black line) oscillating aroundDsteady
eff (t)

determined by theory Eq. (3.26) (gray line), and by direct numerical simulation (gray circles).
The inset shows Davr

eff (t) for ε1 = 0, 3, and 12, Eq. (3.23b). (b) Zoom-in on Deff(t) for the initial
transient period 0 < t < 0.1 (left) and the steady regime 0.9 < t < 1 (right) showing agreement
between our theory (black line), our numerics (circles), and the theory of Mukherjee &Mazumder
(1988) (M & M). (c) Normalized effective diffusivity Deff(t)/D

avr
eff (∞) showing period doubling;

parameters as in panel (b) except now ε1 = 50. (d) Davr
eff (∞)/Dsteady

eff (∞), Eq. (5.5), versus ε1
for four different frequencies ωo. The cross-over point εc1 (open circles) from the linear regime

(Davr
eff /Dsteady

eff ≈ 1) to the non-linear one (Davr
eff /Dsteady

eff ∝ ε21) increases for increasing ωo, as

described by Eq. (5.6). (e) Davr
eff (∞)/Dsteady

eff (∞) versus ωo for two fluids. For Sc = 0.1 (gas-like,
dashed line) it decreases to 1 once ωo > αfl (solvent-momentum-diffusion limited), while for
Sc = 1000 (water-like, gray line), it decreases to 1 when ωo > λ1 (solute-diffusion limited).
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Deff(t) as discussed in Sec. 4. The onset of this non-linearity in the dispersion is further

investigated in Fig. 1(d), where Davr
eff (∞)/Dsteady

eff (∞) is plotted versus the oscillation

amplitude ε1: A cross-over from the linear regime, where Davr
eff (∞)/Dsteady

eff (∞) ≈ 1,

to the non-linear regime, where Davr
eff (∞)/Dsteady

eff (∞) ∝ ε21, happens at a frequency-
dependent critical value εc1. We estimate εc1 in the low-frequency limit Wo . ξ0,1 ≈ 2.40
from Eq. (3.24) using that in this case

⟨
u1

∣∣fn⟩ ≈ ⟨
u0

∣∣fn⟩, and since

εℓ = δℓ,0 + ε1
(
δℓ,−1 + δℓ,1

)
, (5.4)

it follows that

Davr
eff (∞) ≈ 1 + Pé2

∞∑
n=1

[
1 +

2ε21
1 + (ωo/λn)2

] |
⟨
u0

∣∣fn⟩|2
λn

. (5.5)

Thus, the cross-over to period-doubled behavior (dominance of the ε21 term) happens
when ε1 equals

εc1 =
1√
2

√
1 +

ω2
o

λ2
1

=


1√
2
, for ωo ≪ λ1,

ωo√
2 λ1

, for ωo ≫ λ1.
(5.6)

When ωo ≪ λ1, the solute fully equilibrates by diffusion (λ1 is the solute diffusion
equilibration rate) and thereby exploits all velocity gradients, so the cross-over to period-
doubled behavior happens as soon as the amplitude of the sinosoidal part of the velocity
field exceeds that of the steady component, i.e. at the rms value εc1 = 1/

√
2 for ε0 = 1. In

contrast, for ωo ≫ λ1 the solute diffusion cannot fully follow the solvent oscillations, and
only by increasing the amplitude significantly will the oscillation component contribute
to Deff , and as a consequence the cross-over amplitude scales as εc1 ∝ ωo/λ1. In Fig. 1(d)
is shown that the estimates of Eq. (5.6) are correct. This result further agrees with, and
quantifies, the observations of Chatwin (1975) and Watson (1983), but disagrees with
Aris (1960), who based on cases with ε1 ≤ 1 predicted that the pulsatile contribution
to Davr

eff (∞) is less than one percent, which is clearly incorrect for large values of ε1. For
ε1 > εc1 we have (Davr

eff − 1) ∝ ε21Pé
2 signalling the change of characteristic velocity scale

discussed in Sec. 4.
In addition to these limitations set by the equilibration of the solute, the dispersion

may also be limited by fluid inertia, which similarly to the solute diffusion equilibration
rate is characterized by a solvent-momentum equilibration rate αfl. All time scales can be
resolved by the solute when the driving frequency is much lower than the two equilibration
rates, allowing time enough to establish the time-dependent velocity gradients and for
the solute to diffuse in them, see Fig. 1(e). However, Deff decreases if ωo exceeds either
of these equilibration rates.
The behavior of Deff seems quantitatively similar whether the limiting factor is solute

diffusion or solvent momentum diffusion, but the underlying physical mechanisms are
different. For solute/solvent combinations which are limited by solute diffusion, λ1 ≪ αfl

(full gray line in Fig. 1(e)), the solute is constantly oscillating back and forth in addition
to the steady motion as caused by the velocity field. This is still the case when ωo > λ1,
but here the solute only has time to diffuse by the gradients created by the steady velocity;
new solute gradients are created by the oscillating part faster than the old gradients are
smoothed out by diffusion. This corresponds to the case where the fluid is water.
In the other limit of solute/solvent configuration, αfl ≪ λ1, the limiting factor is the

diffusion of fluid momentum (inertia): The fluid momentum does not have time to react
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to the pressure oscillations at the driving frequency, so the fluid will only be moved by
the steady part of the pressure. Thus, only the steady velocity field will shear the solute
distribution resulting in the dispersion of only the steady flow. This effect is seen in the
dashed black line in Fig. 1(e), which corresponds to the case where channel radius is the
same as for the water case above (thus keeping λ1 fixed) but the fluid is air (Lide 1995).

5.2. A steady-plus-two-frequencies flow

Through the driving pressure, we now add a second time scale to the flow so it consists of
a steady component, and the two frequencies ωo and ℓ̃ωo, ℓ̃ being an integer. The effects
in Deff of the previous subsection extend to the second frequency, and we continue to
find good agreement between theory and numerics, see Fig. 2. We first take ℓ̃ = 2.
As expected from the general observations in Sec. 4, Deff(t) oscillates around Dsteady

eff

with the frequencies of the velocity field when the oscillation amplitudes ε1 and ε2 are
sufficiently small (limits given below), see Fig. 2(a), while period-doubling and negative
values appear when ε1 and ε2 become large, see Fig. 2(b). As for the single-frequency

case, there is substantial increase of Davr
eff (∞)/Dsteady

eff (∞) for large values of ε1 and ε2
and the cross-over to non-linearity for ℓ̃ = 2 may be predicted from simple estimates for
Wo . ξ0,1 as follows. Since

εℓ = δℓ,0 + ε1
(
δℓ,−1 + δℓ,1

)
+ ε2

(
δℓ,−2 + δℓ,2

)
, (5.7)

we distinguish between the three regimes ε2 ≪ 1, ε1 ≪ 1 and ε1 = ε2. In the first case
we trivially retrieve the result Eq. (5.6), while the second case similarly yields

εc2 =
1√
2

√
1 +

4ω2
o

λ2
1

=


1√
2
, for ωo ≪ λ1,

√
2 ωo

λ1
, for ωo ≫ λ1.

(5.8)

Hence, the period doubling for each of the velocity field frequencies is independent, since
a significant non-linear effect is found when either ε1 > εc1 or ε2 > εc2. In the third case
of ε1 = ε2 = ε, we find

εc =
1√
2

√√√√√1 +
5ω2

o

λ2
1
+

4ω4
0

λ4
1

1 +
5ω2

o

λ2
1

=


1√
2
, for ωo ≪ λ1,√
2

5

ωo

λ1
, for ωo ≫ λ1,

(5.9)

where both thresholds are slightly lower than those of the single-frequency Eq. (5.6).
Our understanding of the behavior of Davr

eff from the involved diffusion processes of
fluid momentum and solute, presented in the previous section on single-frequency flow,
applies to each of the frequencies of the flow. The addition of a second velocity frequency
introduces more shear and hence more gradients to the concentration field and Davr

eff

therefore increases even further when all velocity frequencies can be resolved, see dashed
line in Fig. 2 (c), where solute diffusion is the limiting process (λ1 ≪ αfl) and where
for clarity the second frequency is 30ωo instead of the 2ωo. Two distinct decreases are
found in this curve: the first is when the solute equilibration rate λ1 surpasses 30ωo,
and the second when λ1 increases past the base frequency. The decreases arise because
the gradients created by 30ωo and ωo, respectively, can no longer be exploited by the
solute. When both frequencies can be resolved Davr

eff is almost a factor two greater than
the single-frequency case of Fig. 1(e), here reproduced as the gray line, so the second
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Figure 2. Calculated Deff(t) for a circular cross section as in Fig. 1, but with a second oscillating

velocity component added. (a) Deff(t) − Dsteady
eff (t) from Eq. (3.22) (black line) and numerics

(circles) the transient period (left) and the steady regime (right) for small amplitudes, ε1 = 0.01
and ε2 = 0.04. (b) As in panel (a), but for large amplitudes, ε1 = 20 and ε2 = 50, showing

period doubling for both ωo and 2ωo. (c)D
avr
eff (∞)/Dsteady

eff (∞) versus ωo for Sc = 103 and ε0 = 1,

ε1 = ε30 = 5 (dashed curve). For clarity ℓ̃ = 30 is used instead of ℓ̃ = 2 to better illustrate
the effects of each frequency. Davr

eff (∞) decreases in two steps as ωo crosses λ1/30 and λ1. The
one-frequency case Fig. 1(e), Sc = 103 (gray curve), is shown for comparison. (d) Startup of tube
flow from rest: Calculated Deff(t) versus time for Pé = 20. For Sc . 1 the dispersion saturates
on the solvent acceleration time scale 1/αfl ≈ 1/Sc, while for Sc ≫ 1 it saturates on the solute
diffusion time 1/λ1 = 1/ξ21,1 ≈ 0.07. The Fourier series has T = 5 and contains 1000 terms.

velocity frequency leads to a large enhancement of Deff . Had we chosen αfl ≪ λ1 in the
figure, the same decreases would have been observed around 30ωo ≈ αfl and ωo ≈ αfl.

5.3. Unsteady, unidirectional flow: startup of Poiseuille flow

In the previous sections we found that fluid inertia limits the solute dispersion because
the flow does not equilibrate to a steady state. To further investigate the inertial effects
we consider solute in a circular channel where the solvent, after initially being at rest,
suddenly at t = 0 begins to move due to an instantly applied pressure drop along the
channel. The analytical solution of this startup of a Poiseuille flow is found in terms of a
Fourier–Bessel expansion in the radial coordinate, where each term is multiplied by an
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exponential time decay of rate αm (Batchelor 1967),

u(r, t) = 2
(
r2 − 1

)
−

∞∑
m=1

16

ξ30,m

J0(ξ0,mr)

J1(ξ0,m)
e−αmt, (5.10a)

αm = Sc ξ20,m, for m = 1, 2, 3, . . . . (5.10b)

The smallest of these inertial decay rates, α1 = ξ20,1Sc ≈ 5.78Sc = αfl, sets the character-
istic time of the acceleration 1/αfl as in Eq. (2.7) and in Sec. 5.1. To align this solution
with the developed theory, the temporal functions are written as Fourier series with a
base-period T much larger than the acceleration time, T ≫ 1/αfl. Hence, the flow will
reach a steady state significantly faster than the base-period T , and the approximation
will be the correct solution for 0 < t < T . We obtain

u(r, t) = 2
(
1− r2

)
−

∞∑
m=1

∞∑
ℓ=−∞

16J0(ξ0,mr)

ξ30,mJ1(ξ0,m)
Aℓmeiℓωot, (5.11a)

Aℓm =
1− e−αmT

αmT + iℓ2π
, (5.11b)

where ωo = 2π/T so that Wo =
√
2π/(ScT ) = ξ0,1

√
2π/(αflT ). The velocity scale is the

same as for a steady flow in a circular tube, so the ℓth velocity component uℓ(r) is

uℓ(r) = 2
(
1− r2

)
δℓ,0 −

∞∑
m=1

16AℓmJ0(ξ0,mr)

ξ30,m J1(ξ0,m)
. (5.12)

Combining this with the eigenvalue solution of Eq. (5.2), we find for n > 0

⟨
fn

∣∣uℓ

⟩
=− 8δℓ,0

ξ21,n
−

∞∑
m=1

32
(
1− e−αmT

)
ξ20,m

(
ξ20,m− ξ21,n

)(
αmT + iℓ2π

) . (5.13)

The two physical processes of fluid acceleration and solute dispersion happens on the
two time scales 1/αfl and 1/λ1, respectively, but since fluid motion is required to generate
the shear needed for the Taylor–Aris dispersion effect, the dispersion is limited by either
the solute diffusion, or solvent inertia. In the first case (αfl ≫ λ1), the fluid reaches steady
state much faster than the solute, and the dispersion therefore behaves as in the case of a
steady flow. Since αfl ∝ Sc this can be thought of as having Sc = ∞, so the only transient
behavior observed is that of the solute diffusion; this is the case of water. For the second
case (αfl ∝ Sc ≪ λ1) with slower momentum equilibration rates 0.1 < Sc < 10 found
in gases (Lide 1995), the solute dispersion evolves in the slow increase of the velocity
shear gradients, which now dominates the transient behavior, and Deff(t) is thus smaller

than Dsteady
eff (t). These inertial effects are illustrated in Fig. 2(d), where dispersion co-

evolves with the transient start-up of a Poiseuille flow in a straight tube at Pé = 20, and
where the equilibration rates for solute mass diffusion and solvent momentum diffusion
are equal for Sc = ξ21,1/ξ

2
0,1 = 2.54. We take T = 5, and to diminish unphysical effects of

the Gibbs phenomenon close to t = 0, we include 1000 terms in the Fourier series.

In conclusion, fluid inertia limits fluid shear and hence the solute dispersion. However,
given the characteristic time scale 1/αfl ∝ 1/Sc ≪ 1/λ1, inertial effects only become
important for Taylor–Aris dispersion in gasses.
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6. Multiple-frequency flow in two-length-scale cross sections

We move on to consider the effects of adding a second length scale to the cross sectional
geometry. We illustrate this case by use of the rectangle, but the presented findings hold
quantitatively for other cross section with two length scales, e.g. the ellipse.

6.1. The rectangular cross section

We denote the height of the channel 2a and the width 2w, with w ≥ a so that the aspect
ratio R = w/a satisfies R ≥ 1. We take the characteristic length scale to be Lo = a, so
Pé = Uoa/D and Wo =

√
a2ω̃o/ν, and in non-dimensional units we place the rectangular

cross section such that −R ≤ y ≤ R and −1 ≤ z ≤ 1. The analytical velocity field for the
steady Poiseuille flow is well-known, see e.g. Bruus (2008), and in analogy with Eq. (5.1b)
by introducing a generalized wavenumber qjℓ, the pulsatile velocity field is found by a
trivial extension thereof,

qjℓ = qjℓ(Wo) =

√
i4Wo2ℓ+ j2π2, (6.1a)∣∣uℓ

⟩
= εℓ(1 + δℓ,0)

24

Γ

∞∑
j,odd

1

jπq2jℓ

[
1−

cosh
(
qjℓ

y
2

)
cosh

(
qjℓ

R
2

)] sin(jπ z + 1

2

)
, (6.1b)

where the pre-factor Γ and the velocity scale Uo (chosen as the is the cross-sectional
average of the steady flow with ε0 = 1) are given by

Γ = Γ(R) = 1−
∞∑

j,odd

1

j5
192

π5

1

R
tanh

(
jπ

R

2

)
, (6.2a)

Uo =
∆p a2 Γ

3ηL
. (6.2b)

The steady flow profile is retrieved from Eq. (6.1b) by the limit u0(y, z) = limℓ→0 uℓ(y, z)
using qj0 = jπ. Similar to the circular cross section, the generalized wavenumber qjℓ

depends explicitly on the fluid momentum equilibration rate αfl = (1 + 1/R2)π
2

4 Sc since

qjℓ = π
√
iℓ(1 + 1

R2 )
ωo

αfl
+ j2. The corresponding basis functions and eigenvalues are

∣∣fnm⟩
=

2 cos
(
nπ y+R

2R

)
cos

(
mπ z+1

2

)√
(1 + δn,0) (1 + δm,0)

, (6.3a)

λnm =
(nπ
2R

)2

+
(mπ

2

)2

, n,m = 0, 1, 2, . . . (6.3b)

which satisfy the requirement
∣∣f00⟩ = 1 with λ00 = 0. The single index n of Eq. (5.2)

is here changed to the double index (n,m), and n = 0 to (n,m) = (0, 0). The inner
products

⟨
fn

∣∣uℓ

⟩
of Eq. (3.22) become

⟨
fnm

∣∣uℓ

⟩
given by,

⟨
fnm

∣∣uℓ

⟩
=


ϵℓ(1 + δl,0)√

(1 + δn,0) (1 + δm,0)

96R

Γπ2

∞∑
j,odd

qjlRδn,0 − 2 tanh
(

qjlR
2

)
qjl(j2 −m2)(n2π2 + q2jlR

2)
, n,m even,

0, otherwise,
(6.4)

and sums
∑∞

n=1 =
∑∞

n̸=0 become
∑∞

{n,m}̸={0,0}.
The two inherent length scales of this cross section introduce two diffusion times, one
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along each coordinate direction, and hence two solute equilibration rates,

λ20(R) =
π2

R2
(width) and λ02 = π2 (height). (6.5)

We have previously described how the behavior of Deff can be understood in terms of
the involved diffusion processes of fluid momentum and solute, and it follows directly
that while this obviously extends to the present case, the presence of the additional
time scales from the second geometric dimension introduces more structure: for each
frequency in the fluid velocity field, the solute dispersion will increase if it has time to
equilibrate along either of its transverse directions (i.e. if ωo . λ20 or ωo . λ02), with
more dispersivity when the frequency allows equilibration along both directions. Thus,
for a velocity field with two frequency scales there will be four critical frequencies: the
two solute equilibration rates for each of the two fluid time scales. This is illustrated
in Fig. 3(a) for the case of ε0 = ε1 = ε30 = 1 with Pé = 20 and R = 100, and for
a solvent/solute composition such that the equilibration rate of the solvent momentum

αfl = (1+ 1/R2)π
2

4 Sc is much greater than those of the solute diffusion, λ20 and λ02. As
function of driving frequency ωo, D

avr
eff decreases in four steps: The first two and most

significant drops happen near λ20/30 and λ20, where the diffusion across the width no
longer can exploit the gradients of first the 30ωo-harmonic and then the ωo-harmonic.
The last two (minor) drops happen near λ02/30 and finally λ02, where the height-diffusion
ceases to be able to follow the 30ωo-harmonic and lastly the ωo-harmonic. The substantial
increases in time-averaged dispersion found for the two-frequency-flow of the previous
section is again found in this case: for low frequencies ωo which allow complete solute
equilibration, Davr

eff is almost a factor of two greater than when only the steady velocity
contributes to the solute dispersion (Davr

eff (∞) = 120.41 at ωo = 10−8 compared to
Davr

eff (∞) = 60.70 at ωo = 104). For comparison we have also included the special case of
R = 1, a one-length-scale cross section, where the two solute diffusion equilibration rates
λ20 and λ02 are identical, and where we consequently find only two decreasing steps. We
have also validated our theory against numerics for the case R = 1 (details given in the
Appendix), and find excellent agreement.

Since the solute equilibration rate λ20 depends on the aspect ratio R, Eq. (6.5), the
same frequency ωo and velocity component amplitudes εℓ will give rise to different be-
haviors of Deff in channels of different R. This is plotted in Fig. 3(b) for ωo = 104 and
ωo = 10−7 with the flow chosen as in (a) to be a two-frequency flow with amplitudes

ε0 = ε1 = ε30 = 1. For reference we have also plotted the dependence of Dsteady
eff in the

limit R → ∞ where we retrieve the well-known result (Doshi et al. 1978; Chatwin & Sulli-

van 1982)Dsteady
eff (∞) = 1+χrectPé

2 with χrect =
2

105+
11532 ζ(5)2

π10 where ζ(x) =
∑∞

j=1 j
−x

is the Riemann zeta function. For sufficiently fast oscillation, here ωo = 104 (lower black
line), we have ωo ≫ λ02, and as in Fig. 2(b) this is too fast for the solute diffusion

to follow, and we recover the steady-flow case (triangles) and Davr
eff (∞) = Dsteady

eff (∞).
Had we chosen larger oscillation amplitudes εℓ the non-linear effect discussed in Sec. 4
would had set in and increased Davr

eff . For the fixed slow oscillation frequency ωo = 10−7

(top black line), Davr
eff initially increases with R, as the solute diffusion now is able to

follow the fluid movement. However, due to the R-dependence of λ20 in Eq. (6.5), a
point is reached beyond which λ20(R)/30 < ωo, and Davr

eff decreases to a lower value.
Later, when λ20(R) falls below ωo, a second decrease occurs, after which Davr

eff settles at

Dsteady
eff (∞) = 1+χrectPé

2, since none of the added shear of the time-dependent velocity
components contribute to Davr

eff .

The highest value of Davr
eff achievable for a fixed velocity field with fixed frequency ωo
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Figure 3. Davr
eff (∞) for a two-frequency flow ε0 = ε1 = ε30 = 1 in rectangular channels of aspect

ratio R. (a) Davr
eff (∞) versus base frequency ωo for R = 1 and R = 100 at Pé = 20, and with the

agreement with numerics (circles) illustrated at R = 1 (details given in the Appendix). As ωo

increases Davr
eff decreases in four steps, namely when ωo crosses λ20/30, λ20, λ02/30, and λ02 (for

R = 100). For R = 1 there are only two steps, namely when ωo crosses λ02/30 and λ02 this rate
being the same for R = 1 and R = 100. (b) Davr

eff (∞) versus R for fast oscillation (ωo = 104) and
steady flow, both recovering the behavior of Fig. 1(a), and for slow oscillation (ωo = 10−7), for
which Deff(∞) reaches a maximum before decreasing in two steps at λ20(R) = 30 × 10−7 and
λ20(R) = 10−7, marked by the aspect ratios Rslow

30ωo
and Rslow

ωo
, respectively.

is found in a region with the upper limit set by 3 ℓmaxωo ≈ λ20 = π2/R2, where ℓmax is
the maximum frequency component in the velocity field, and the lower limit is set by the
value of R which ensures that the steady part of the velocity field reaches the maximum
dispersion of Dsteady

eff (∞) = 1 + Pé2χrect, R . 100.

Finally, a brief discussion is in order regarding the behavior of Dsteady
eff (∞) in the limit

R → ∞. It is well-known that χrect = 2
105 + 11532 ζ(5)2

π10 ≈ 7.95χplate where χplate =
2/105 is the coefficient for infinite parallel plates (no side walls), which might seem to
contradict the general scaling of (Deff − 1) ∝ Pé2/R2 described in Sec. 4. However, the
rectangular cross section is integrable, and the inner products

⟨
fn0

∣∣u0

⟩
∝ 1/R, because

as function of the width coordinate y, u0 is constant except for the ends covering a
fraction 1/R of the width, while fn0 oscillates, see Eqs. (6.1b) and (6.3a). As a result,
the factor R2 from 1/λnm is canceled by the factor 1/R2 from the inner product, and

(Dsteady
eff −1) ∝ Pé2, making the small height the dominant length scale. This explains why

in χrect ≈ χplate instead of χrect ≈ χplateR
2. Physically, the steady flow in high-aspect

ratio rectangular channels is independent of the channel width except for boundary layers
of width unity near the side walls, while it remains parabolic in the height. Compared to
the infinite parallel plate channel, the side walls therefore increase both the mean velocity
and the created gradients in the concentration field along the height, causing an increase
of Deff(∞), which none the less remains on the order of Deff(∞) from the parallel plates.
For channel cross sections which vary continuously along both cross section directions
(e.g. elliptic), the characteristic length scale of velocity variations is of order R, resulting

in shear along all of R and the scaling (Dsteady
eff − 1) ∝ Pé2R2 as described in Sec. 4

6.2. Analysis of a peristaltic micropump

To illustrate the pratical usefulness of the developed theory, we here shortly describe
dispersion-limiting of a micropump. The pressure delivered by the novel 12-channel,
eight-roller, peristaltic pump for microfluidics of Skafte-Pedersen et al. (2009)is pulsating



20 S. Vedel and H. Bruus

R 2.67 ε0 1.000 αfl 2810
Pé 6.92 ε1 0.352 exp(−2.19i) ωo 2.94
Wo 0.05 ε2 0.203 exp(−2.24i) λ20 1.39
Sc 1000 ε3 0.059 exp(+1.54i) λ02 9.87

Table 1. Dimensionless parameters of the flow generated by the peristaltic pump of
Skafte-Pedersen et al. (2009), see Sec. 6.2.

Figure 4. (a) Two periods of the measured time-dependent pressure delivered by the peristaltic
pump (black) by Skafte-Pedersen et al. (2009) and of the approximate Fourier series (|ℓ| ≤ 3)
used in the analysis (gray). (b) Calculated Deff(t) for the two cycles of the peristaltic pump
following period N = 104 after the decay of all transients: the Fourier series (black), only the
steady component (dashed), and the time-averaged Fourier series (gray).

with the operating base frequency ω̃o = 0.52 rad/s, as measured in a rectangular channel
of R = 2.67 (a = 75 µm, w = 200 µm), and shown by the black line in Fig. 4(a).
To analyze the influence of this time-dependent flow on the dispersion of a solute with
typical molecular diffusivity D = 10−9 m2/s, we approximate the pressure by a Fourier
series with |ℓ| ≤ 3 (gray line). The discrepancy between the approximation and the actual
signal fluctuates faster than the highest harmonic and is not resolved by the solute. The
velocity scale Uo is taken as the (dominating) steady component, and the dimensionless
parameters of the system are listed in Table 1.
The pump is designed to have minimal dispersion, which follows from our theory: It

is normally operated at ωo = 2.94, which is faster than the solute equilibration rate
λ20 = 1.39 of the width, so only the diffusion in the height-direction with λ02 = 9.87 is
resolved. Furthermore, because the square of all oscillation amplitudes are small, |εℓ| <
0.12, their contribution to Deff is minute, and Davr

eff (∞) = 1.004Dsteady
eff (∞), see Fig. 4(b).

The dispersion may be increased by running the pump at lower frequency, e.g.Davr
eff (∞) =

1.17Dsteady
eff (∞) changing ωo to 0.1ωo, or with higher oscillation amplitudes, Davr

eff (∞) =

1.39Dsteady
eff (∞) changing εℓ to 10εℓ for ℓ ̸= 0. If these changes are made simultaneously,

we find Davr
eff (∞) = 2.76Dsteady

eff (∞).

7. Concluding remarks

By combining Aris’s method of moments and Dirac’s bra-ket formalism, we have de-
rived the compact, closed form (3.22) for the transient Taylor–Aris dispersion or effective
diffusivity Deff(t) valid for any time-dependent flow in a long, straight channel of arbi-
trary but constant cross section. For a general time-dependent flow, and as a function of
system parameters, Deff(t) exhibits a rich and non-trivial structure due to the interplay
between internal equilibration rates and external driving frequencies. Our analysis based
on Eq. (3.22) has led to the following conclusions:
(i) In general, the effective diffusivity is enhanced significantly by those parts of the

time-dependent velocity field that have frequencies ℓωo lower than the fluid momentum
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diffusion rate αfl and the solute diffusion rate λ1, in which case the dispersive effect has
sufficient time to fully evolve.

(ii) We have explained why sufficiently large oscillation amplitudes ||uℓ|| lead to neg-
ative values of the instantaneous effective diffusivity Deff(t). In Sec. 4 an amplitude
threshold value for this transition has been derived for a steady-plus-one-frequency flow.
This threshold depends on the ratio

√
ωo/(2λ1).

(iii) As function of the normalized amplitudes εℓ of the oscillatory flow components,
scaling laws have been derived for the cross-over εc of the time-averaged effective diffu-
sivity Davr

eff (t) from the linear regime of small oscillatory flow components superimposed
on a large steady flow component of normalized amplitude ε0, to the nonlinear, period-
doubled regime of large oscillation amplitudes. Specific examples are shown in Secs. 5.1
and 5.2 for steady-plus-one- and steady-plus-two-frequency flows.

(iv) Our formulation ofDeff in terms of inner products (overlap integrals) and eigenval-
ues facilitates general analyses in terms of random matrix theory. As an example of such
an analysis we have sketched an explanation for the well-known fact that the relevant
Péclet number for the Taylor–Aris dispersion in a channel of rectangular cross section
involves the short height and not as expected on general grounds, the wide width.

(v) For Newtonian solvents we have validated our theory by comparing it with the
special cases of dispersion in steady flow and single-frequency pulsating flow treated in
the literature, and by direct numerical simulations of single- and multiple-frequency flows
in circular, Fig. 1(b) and Fig. 2(a), and rectangular cross sections, Fig. 3(a).

(vi) For Newtonian solvents in the cases of one-length-scale and steady-plus-one-
frequency flow, Fig. 1(e), one-length-scale and steady-plus-two-frequency flow, Fig. 2(c),
and two-length-scale and steady-plus-two-frequency flows, Fig. 3(a), we have character-
ized the explicit suppression of the oscillatory enhancement of Davr

eff (ωo) each time a
driving frequency ℓωo becomes larger than the internal diffusion relaxation rate λ1 or the
momentum relaxation rate αfl. In particular in Fig. 1(e) and Fig. 2(d), we found that
this suppression is controlled by the solute mass diffusion in liquids and by the solvent
momentum diffusion (or inertia) in gasses.

(vii) In Sec. 6.2 we have illustrated the practical usefulness of the developed theory as
a design tool for dispersion-control in microfluidic systems.

Our work has resulted in a compact, transparent, and efficient theoretical method for
analyzing transient Taylor-Aris dispersion in straight channels. Using it, we have gained
physical insight in, and made explicit predictions of, the effects of general time-dependent
flows on dispersion. The theory opens up for further generalizations such as including
the effects of non-Newtonian solvents and non-trivial channel topologies.
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work, and Howard A. Stone, Roberto Camassa, and Richard M. McLaughlin for stim-
ulating discussions on the background literature. This research was supported by grant
no. 2106-08-0018 “ProCell”, under the Programme Commission on Strategic Growth
Technologies, the Danish Agency for Science, Technology and Innovation.
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Quantity Symbol

Cross-sectional part of the ∇ operator ∇⊥ = ey∂y + ez∂z

Bra of •, and ket of •
⟨
• |, and

∣∣ • ⟩
Complex conjugation ∗
Cross-sectional area A
Channel radius/half-height a
Concentration field of solute c
pth axial moment of concentration cp
Initial value for c(x, r⊥, t) c̃(x, r⊥)
Characteristic concentration Co

Molecular diffusivity D
Effective diffusivity Deff

Effective diffusivity, time-averaged Davr
eff

Effective diffusivity, steady flow Dsteady
eff

Cartesian basis vectors ex, ey, ez

nth basis function fn
Bessel function, first kind of order s Js

Generalized wavenumber, Eq. (5.1a) kℓ
Channel length L
Characteristic length Lo

pth full moment of concentration Mp

Surface normal vector n
Pressure p
Characteristic pressure Po

Péclet number Pé = UoLo/D
Generalized wavenumber, Eq. (6.1a) qjℓ
Channel aspect ratio R = w/a
Position vector r
Cross-sectional position vector r⊥ = (y, z)
Schmidt number Sc = ν/D
Characteristic time To

Time t
Characteristic velocity Uo

Axial velocity component of solvent u
Volume V
Velocity field of solvent v
Channel half-width w

Womersley number Wo =
√

L2
oω̃o/ν

Solute center of mass x
Cylindrical coordinates x, r, φ
Cartesian coordinates x, y, z
Fluid momentum equilibration rate αm, αfl

Pre-factor Eq. (6.2a) Γ
Kronecker delta δn,m

ℓth velocity component amplitude εℓ
Dynamic viscosity η
nth root of Bessel function Js ξs,n
nth diffusion rate eigenvalue λn

pth moment of conc. about the mean µp

Kinematic viscosity of solvent ν
Density of solvent ρ
Diffusivity enhancement χplate, χrect

Cross section Ω
Base frequency, non-dimensionalized ωo = Wo2Sc
Base frequency, dimensionfull ω̃o

Oscillation period τ0 = 2π/ωo

Table 2. List of quantities used in this work alphabetized by symbol (latin before greek).
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Appendix A. Mathematical and numerical details; list of symbols

A.1. The Dirac bra-ket notation for spatial dependence

The basic concept of the bra-ket notation is the inner product of functions, defined by
Eq. (2.2). It is linear ⟨

f
∣∣A1g1 +A2g2

⟩
= A1

⟨
f
∣∣g1⟩+A2

⟨
f
∣∣g2⟩, (A 1)

and given the complex representation Eq. (2.6) of the velocity field, we often use that⟨
uℓ

∣∣g⟩ =
⟨
g
∣∣uℓ

⟩∗
=

⟨
g∗
∣∣u−ℓ

⟩
, (A 2a)⟨

uℓ e
iℓωot

∣∣g⟩ = e−iℓωot
⟨
uℓ

∣∣g⟩. (A 2b)

The bra-ket notation is particularly compact when working with basis function expan-
sions. A set of functions

∣∣fn⟩, n = 0, 1, 2, . . ., is said to form an orthonormal basis when
it fulfills the so-called completeness and orthonormal conditions given by

∞∑
n=0

∣∣fn⟩⟨fn| = 1, and
⟨
fm

∣∣fn⟩ = δm,n, (A 3)

respectively, where by definition δm,n = 1 for m = n, and 0 for m ̸= n. Any function
∣∣g⟩

can formally be expressed by an expansion in this basis as∣∣g⟩ = ∞∑
n=0

an
∣∣fn⟩, (A 4a)

am =
⟨
fm

∣∣g⟩, m = 0, 1, 2, . . . . (A 4b)

Here Eq. (A 4b) follows from multiplication of Eq. (A 4a) from the left by
⟨
fm| and using

Eq. (A 3). Since the functions f and g in general depend on time, the inner product
may also depend on time. We find that the bra-ket notion allows for better overview
during formal manipulations and lets the underlying structure of the theory stand out
more clearly without the clutter of voluminous expressions of integrals. The formalism
is particularly convenient for problems involving the Laplace operator, like the present,
because often the corresponding basis functions and eigenvalues are known.

A.2. Method of statistical moments

The great insight of Aris was to realize that the advection-diffusion problem can be rewrit-
ten as a series of equations for statistical moments of the solute distribution, which then
can be solved sequentially (Aris 1956). Each additional moment adds new information
about the distribution, and some of the lower moments have direct physical interpreta-
tions. We here give Aris’s definitions and resulting equations of motion for the statistical
moments reformulated in the bra-ket notation.
The pth axial moment cp(r⊥, t) of the solute concentration field c(x, r⊥, t) and the

associated full moment Mp(t) are defined by Eqs. (2.12b) and (2.12a) in the main text.
Taking the time derivative of these equations and using the advection-diffusion equa-
tion (2.9), we obtain the recursive equations of motion Eqs. (2.13a) and (2.13b) for cp
and Mp as well as their boundary conditions, Eq. (2.14). M0 corresponds to the unit
norm of c, while M1 is the time-dependent, axial center of mass x̄ of c,

M0 =
⟨
1
∣∣c⟩ = 1, (A 5a)

M1 =
⟨
x
∣∣c⟩ = x̄(t). (A 5b)
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The pth moment µp about the center of mass is defined by,

µp(t) =
⟨
(x− x̄)p

∣∣c⟩, (A 6)

and by the linearity of the inner product, Eq. (A 1), we find for p = 0, 1 and 2,

µ0(t) =
⟨
1
∣∣c⟩ = 1, (A 7a)

µ1(t) =
⟨
(x− x̄)

∣∣c⟩ = 0, (A 7b)

µ2(t) =
⟨
(x− x̄)2

∣∣c⟩ = M2(t)−M1(t)
2. (A 7c)

In particular the time-dependent spatial variance µ2 of the solute concentration is of key
interest as it relates the to the solute molecular diffusivity and the effective diffusivity
Deff . For a vanishing velocity field, u = 0, µ2 relates to the diffusivity D of the solute by
dµ2/dt = 2D, or in dimensionless form, dµ2/dt = 2, since:

dµ2

dt
=

⟨
(x− x̄)2

∣∣∂tc⟩− 2
⟨
(x− x̄)

∣∣c⟩ dx̄

dt
=

⟨
(x− x̄)2

∣∣∇2c
⟩
− 2µ1

dx̄

dt
= 2

⟨
1
∣∣c⟩ = 2, (A 8)

where in the last term we have integrated by parts twice and used the boundary conditions
Eqs. (2.10a) and (2.10c). This corresponds to the well-known result for diffusion in one
dimension, (∆x)2 = 2Dt, with µ2 ∼ (∆x)2.
When the solvent velocity field u is nonzero the time-dependence of the variance is no

longer linear. However, by a traditional generalization (Aris 1956; Barton 1983; Aris 1960;
Mukherjee & Mazumder 1988; Chatwin 1975; Brenner & Edwards 1993) the dispersion
or effective diffusivity Deff(t) is defined as done in Eq. (2.11) in the main text Deff(t) =
1
2
dµ2

dt = 1
2
dM2

dt − M1
dM1

dt . Other works have been concerned with the skewness µ3 of
the solute distribution (Barton 1983; Camassa et al. 2010). More information about the
distribution of c is added with each moment, however, the information contained in each
moment remains valid no matter how many moments have been determined.

A.3. The dispersion for short times

We show here that Deff(t) is positive for short times t ≪ 1/λ1, 1/(2ℓmaxωo). In this limit
we have

ei(ℓ−k)ωot − e−(λn+ikωo)t = (λn + iℓωo)t+O(t2), (A 9)

thus reducing Eq. (3.22) for Deff(t) to

Deff(t) ≈ 1 + Pé2
∞∑

n=1

ℓmax∑
ℓ=−ℓmax

ℓmax∑
k=−ℓmax

⟨
uk

∣∣fn⟩⟨fn∣∣uℓ

⟩
t

= 1 + t Pé2
∞∑

n=1

⟨ ℓmax∑
k=−ℓmax

uk

∣∣fn⟩⟨fn∣∣ ℓmax∑
ℓ=−ℓmax

uℓ

⟩
= 1 + t Pé2

∞∑
n=1

∣∣∣⟨fn∣∣u(0)⟩∣∣∣2, t ≪ 1

λ1
,

1

2ℓmaxωo

. (A 10)

Here u(0) is the total velocity field u(t) evaluated at time t = 0. This expression becomes
problematic to apply in the case where infinitely many harmonics of the velocity field is
present at t = 0 as for the startup of the Poiseuille flow, but for flows with a maximum
frequency we have shown Deff(t) > 0.

A.4. Numerics

For numerical evaluations of the effective diffusivity Deff(t) we relied on three methods.
First, using the commercial finite element package Comsol Multiphysics version 3.5a,
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we calculated Deff(t) numerically directly from the definition Eq. (2.11) by solving for
the concentration field c in the governing advection-diffusion equation (2.9) using the an-
alytical solutions for the velocity field as input. From the obtained c(r, t) we determined
M1(t), dM1(t)/dt and dM2(t)/dt, and from these Deff(t). To ensure mass conservation
the number of mesh elements was chosen so that the local Péclet number in each cell (as
given by the velocity in the mesh element, the mesh element length and the global diffu-
sivity) was approximately 0.5. Where possible, the available symmetries were exploited
for computational efficiency. To this end the solutions of the flow problems in channels
of circular cross section took advantage of the azimuthal symmetry and the solution was
computed in a frame of reference traveling with the mean speed of the flow.
Second, for rectangular cross sections the problem was only solved for one quarter of

the cross section in a frame of reference moving with the flow mean speed. However, due
to memory limitations even these simplifications proved unfeasible for Péclet numbers
exceeding ∼2 and aspect ratios above ∼2. Thus, for the results presented in Fig. 3(a)
we numerically solved the axial moment equation Eq. (2.12b) for co and c1, and from
these obtained M1(t), dM1(t)/dt, and dM2(t)/dt, as well as Deff(t). Time-averages of the
numerical simulation results were computed by running the simulation for a full period
of the base frequency after the decay of all transients, followed by numerical integration
of Deff(t) over the period.
Third, we calculated Deff(t) based on our theoretical expression (3.22), but reduced the

number of terms needed to be calculated by separating the ℓ- and k-sums and collecting
complex conjugated pairs of index {ℓ,−ℓ} and {k,−k},

Deff(t) = 1 + Pé2
∞∑

n=1

{⟨
fn

∣∣u0

⟩
λn

[
1− e−λnt

]
+ 2

∞∑
ℓ=1

Re

[ ⟨
fn

∣∣uℓ

⟩
λn + iℓωo

(
eiℓωot − e−λnt

)]}

×

{⟨
fn

∣∣u0

⟩
+ 2

∞∑
k=1

Re

[⟨
fn

∣∣uk

⟩
eikωot

]}
. (A 11)

Furthermore, The involved n-, ℓ-, and k-dependent terms are calculated and placed in lists
before evaluating the sums. The latter converge quickly, and we have therefore truncated
them after the first fifty terms unless stated otherwise in the text.
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