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Abstract 
 
This master thesis is entitled ‘Brownian Dynamics Simulation of Polymer Behaviours 

in Microfuidic Systems ’. In this project, Brownian dynamic simulation is used to 

capture the most important features of dynamics of dilute polymer solution in the 

confined geometry, especially for dilute DNA solution. Two kinds of flow pattern in 

confined geometry are mainly examined: 

 

Homogenous flow. A Brownian model of dilute DNA solution based on simple shear 

flow is developed and gives qualitatively agreement with experimental data and 

simulation results available now in free solution and confined geometries. 

 

Inhomogeneous flow. Brownian models of dilute DNA solution based on pressure-

driven flow are developed. Three kinds of models with different levels to treat 

hydrodynamic interaction are examined and compared: Free-draining model, Bulk 

hydrodynamic interaction model and Full hydrodynamic interaction model. Only Full 

hydrodynamic interaction gives correct predictions on the migration effect: DNA 

chain will migrate toward the center of the microchannel under pressure-driven flow. 

 

Theoretical analysis on migration behaviour is carried on by following Jendrejack et 

al’s idea (2004). In addition, simple mechanism (reflection mechanism) on the 

migration behaviour is proposed from a physical perspective.   
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Chapter 1 Introduction 
 
 
In the last two decades, people made lots of efforts on molecular level understanding 

of the rheological properties of dilute solutions of flexible polymers, especially 

isolated polymer deoxyribonucleic acid (DNA) molecules. In 1990s, Steven Chu and 

his co-workers imaged the conformations of DNA molecules in well-defined flows 

(Perkins et al,1995). Before the appearance of the accurate results, it is difficult to test 

the predictions rigorously, though much effort has been devoted to predicting the 

molecular dynamics of polymer in various flows. In recently years, with the increase 

of experimental data, computer speed and developments of methods, simulations of 

the conformations of real polymers by predicting ensembles of coarse-grained chains 

become promising. 

 

Solutions of polymer at extremely low concentrations (≈10-5c*.where c* is the 

polymer overlap concentration) can be called dilute, in which interchain interactions 

or entanglements are absent (Schroeder et al, 2005) and polymer chains interact 

primarily with the slovent. From a theoretical point of view, the interest of dilute 

polymer solutions comes primarily from their importance of understanding the 

molecular response to the hydrodynamic forces free from introducing the 

complication by entanglement. Understanding those classical problems of polymer 

fluid dynamics has proven to be useful for substantial applications. In recent years, the 

emerging biotechnology and nanotechnology is opening up opportunities in the area 

of “DNA processing”, especially for microfludic devices or “lab-on-chip” technology, 

where DNA molecules experienced pressure-driven or electrokineic flow fields, 

leading to DNA transport and stretching. Besides various flow fields, the interaction 

of DNA molecules with different surface patterns in such microfluidic device is 

ubiquitous due to the large surface-to-volume ratios of such devices (Chopra et al, 

2002). 

 

In such devices, molecular migration in flowing dilute polymeric solutions is a well-

known phenomenon (During flow, the chain will migrate away from the confined 

wall). In the typical MEMS device, the gap size is about 10 µm, for example, while λ-
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phage DNA has a radius of gyration (RG) on the order of 1 µm and contour length of 

21 µm .In such systems where the size of the chain is comparable to the channel size, 

the confined effect becomes more and more important; rheology and chain dynamics 

are greatly affected (Jendrejack et al 2004). 

 

Due to this effect, it has been shown that near the confined wall, there exists a region 

called depletion layer, where chain segments are depleted due to the presence of the 

wall Therefore, chain concentration will vary from zero at wall to its bulk value over 

the length scale of this depletion layer. This variation is coupled with variation in 

other quantities such as the diffusivity of the chain and velocity profile. Traditionally, 

the detector of microchips can only detect the concentration of the molecule within 

the depletion layer. It can’t penetrate into the depletion layer to measure the value in 

the bulk flow. Through simulations of the variation of the depletion layer, we can 

understand the migration behaviour in confined geometries better. 

 

The most powerful tool of dealing with this range of length and time scale in dilute 

solutions during the flow is Brownian dynamics (BD). Compared to other numerical 

schemes, BD methods have considerable advantages. By coarsing away the 

uninteresting fast process, such as movements of solvent molecules, the time step in 

the simulation can be taken the value comparable to that of fastest process of real 

interest, which is the time required for the significant movement of macromolecules. 

These methods are based on rescaling the bead drag coefficient and the spring 

elasticity constant by using the suitable methods, in order to keep dynamic properties 

of the coarse-grained chains constant when the bead number in the model is changed. 

Similarly, the time step size can be adjusted within a wide range to optimise speed 

and accuracy without changing the mechanism of the process (Larson et al, 2005). 

Those methods have good agreements with the experiment results and are very useful 

in elucidating the experimental findings, especially for single DNA molecule in well-

defined flows. Exciting results would be expected when we expand their use into 

single molecule in confined geometries under equilibrium and flow conditions.  
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Chapter 2   Theory 
“An actual polymer molecule is an extremely complex mechanical systerm with an 

enormous number of degrees of freedom. To study the detailed motions of this 

complicated system and their relations to noneuquilibrium properties would be 

prohibitively difficult. As a result, it has been customary for polymer scientists to 

resort to mechanical beheavior of macromolecule.” (Ottinger, 1995). Those sentences 

highlight polymer molecules are quite different and complicated compared to other 

simple molecules, such as water and achcol. Therefore, how to describe this 

micromechanical system and various interactions inside the system will be introduced 

in this chapter. 

           

 
 

Fig.2.1 illustration of coarse-grain mapping of real polymer chain, with a carbon–carbon backbone 

containing fixed bond angles, onto a bead-rod chain whose configuration is that of a random walk, and 

further coarse-grain mapping of the bead-rod chain onto a bead-spring chain. 

2.1 Bead-spring model and bead-rod model 

The choice of polymer model will depend on the real polymer one wants to model and 

the level of fine-scale molecular detail one needs to retain or can computationally 

afford to simulate (Doyle et al, 2004). To get the most accurate result, molecular 

simulation is the first choice. However, in the past days, the results by the atomic-

level simulations of long chain polymer are frustrated, even using the most advanced 

c 
c 

c c 

Statistical segment of 
real chain 

Bead-rod model 

Kuhn length 

Bead-spring model 
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computer. Hence, it is needed to take a coarse-graining approximation in which we 

only track the slow variables capturing the coarse-grain features and assume that in 

the small scale, fast process remain at local equilibrium. Therefore, it is very 

important to choose a proper level of coarse-graining in a given flow. The most 

common coarse-grained models are the free jointed bead-rod and bead-spring models 

shown in Figure 2.1 

2.1.1. Bead-rod model 
 
In Kramer’s bead-rod model, a polymer chain is constructed by Nk beads connected 

by Nk −1 rigid rods, which keep a constant length between each rod, corresponding to 

Kuhn length bk (equal to the mean square end-to-end length of the bonds in a 

statistical segment) shown in Figure 2.1.The beads serve to experience the drag force 

given by the solvent molecules. As defined in this way, it can be seen that bead-rod 

model is a discretized flexible chain with inextensible springs, whose flexibility can 

be adjusted by changing the number of beads on a constant chain length. In other 

words, the number of beads can be a parameter to control the internal freedom as well 

as the discretization of the hydrodynamic drag force. But the chains do not experience 

the excluded volume interaction between different chain segments (Hur et al, 2000). 

Although it can give us an accurate description on polymers, the problem is that this 

model is very computationally expensive due to the large number of dynamic 

variables (bead positions) and rapid motion of the individual rods, which requires  

smaller time steps. Therefore, we will use a model less demanding in computing 

resources– Bead-spring model to capture the feature of the real polymer chains in our 

project.  

2.1.2. Bead-spring model 
 
A bead-spring chain is represented by N beads connected by Ns=N-1 entropic springs 

shown in Figure 2.1. Each spring represents a large number of Kuhn steps Nk,s and 

spring constant is dependent on the number of Kuhn length. If the molecular weight 

increases, one can simply increase the number of Kuhn steps without wasting the 

computing time on the increase of the number of the springs. From a physical aspect, 

the springs do not represent the molecular interaction but entropic effects due to the 

loss of more local degrees of freedom. The equilibrium length is zero between the 
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successive beads. In addition, the model assumes that there is no excluded volume 

interaction and hydrodynamic interaction between beads. 

 

2.2 Physical phenomena in the model 
 
In these ranges of length scales (nm to µm) and time scales (µs to s), the following 

effects are of primary importance for rheological properties (Larson, 2005): 

(1) Viscous drag 

(2) Entropic elasticity 

(3) Brownian forces 

(4) Hydrodynamics interaction 

(5) Exclued-Volume (EV) interaction 

(6) Entanglement 

Those effects have been ordered based on their importance. Viscous drag is a kind of 

frictional force exerted by surrounding solvent molecules, which is always important, 

even under the weak flow strength. Entropic elasticity will become important when 

the flow is strong enough to deform the configuration of polymer chains away from 

their equilibrium states. Moreover, the Brownian motion, due to the collisions 

between the polymer molecules and solvent molecules, will also influence the 

distribution of the conformations. In addition to HI, it means that the subchain will 

produce the disturbance to the flow field to influence the motion of other segments of 

the chain. This effect will play an important role for polymers with longer chain. EV 

interaction is the repulsive force which prevents two monomers to overlap, and will 

make the chains tend to expand beyond the ideal random-walk conformations in 

equilibrium. Fortunately, this interaction can be screened out in the good solvents at 

their theta temperature. However, it could become important when the length scale 

goes to the scale comparable to the radius of gyration of the chain. In addition to the 

entanglement, since our target system is dilute solution of polymers, so the interchain 

interaction can be neglected, which means we are focusing on the single molecule 

dynamics.  
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2.3 Equations for bead-spring model 
 

Since the inertial force in the range of length scale of microdevices always can be 

negligible, the force balance on each bead including drag force, spring force, 

Brownian force leads to: 

 0drag s B
i i i+ + =F F F   (2.1) 

2.3.1. Drag force 
 
Hydrodynamic drag force is the Stokes drag acting on the beads. If we neglect the 

hydrodynamic interaction and fluid inertia, it can be simplified as follows: 

  (2.2) ( (drag
i i vζ= −F r& ))ir

Where ξ is the drag coefficient, r  is the velocity of the ith bead and is the 

undisturbed velocity field (namely the solvent velocity) at the position of bead i. For 

simple shear flow, if the velocity at origin is zero, v(r

i ( )iv r

i)=κ · ri ,where κ is the transpose 

of the velocity gradient tensor, κ=(∇ v)T. Substituting the Equation (2.2) into 

Equation (2.1) yields: 

 (1 )s Bi
i i

d
dt

κ
ζ

= ⋅ + +
r r F Fi  (2.3) 

This stochastic differential equation is the famous Langevin equation. The analytical 

approach to this equation is beyond the scope of this project, a short introduction is 

given in  book (1995). 'Ottinger s&&

 

2.3.2. Spring force 
 
  The effective spring force acting in the ith bead is given as 

1 , 1sb i =F  

       s
i =F 1, 1sb sb

i i i N−− < <F F  (2.4) 

   1,
sb
N i N−− =F  

Where sb
iF  is the force that spring i acts on bead i.The spring force sb

iF  is a function 

of the extension Qi of spring i, where Qi= 1i+r - . Several force laws to describe the ir

  



Chapter 2   Theory                                                                                                            12

effective spring are commonly used .The simplest form is the linear force law- 

Hookean law as follows: 

  (2.5) sb
i H=F iQ

where H is the spring constant, which can be given as follows (Larson,2005): 

 2 2
2

,

32 ,
2B s s

k s k

H k T
N b

β β= =  (2.6) 

                              
Figure 2.2 illustration of random coil stretched to its full length-contour length 

However, a Hookean spring can be infinitely extended, which is unphysical. A more 

realistic model should give an upper limitation of the extension-Ls= Nk,s bk, which is 

the full extension of one segment of the chain represented by a single spring, ie. Ls=L/ 

Ns where L is the contour length of the chain as shown in Figure 2.2. For a freely 

jointed chain, Kuhn and Gr n showed the spring force law by statistical mechanical 

calculation as follows (Lasron, 2005): 

u&&

 1( iB
i )

s S

k T
b L

−=
QF L  (2.7) 

which is called inverse Langevin force law and the L is the Langevin function given 

by 
 coth 1/L θ θ= −  (2.8) 

where cothθ  is the hyperbolic cotangent function . It can be seen that for the inverse 

Langevin force law, the force increases linearly with the extension in the small 

extension region; but grows rapidly for the large extension, especially the extension 

goes to the maximum length of the spring..
 

However, Inverse Langevin force law is not often used. Several their approximation 

forms are usually used in various analytical and numerical approaches. One of such 

approximation is the Warner spring Law: 

 2
Q1

sb i
i

i

S

HF

L

=
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

Q  (2.9) 

Random coil
Contour length L
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Q 

Figure 2.3 illustration of FENE dumbbell model 

The simplest Warner spring model is FENE(Finitely extensible nonlinear elastisc) 

dumbbell, which incorporates non-linear effects into the Hookean dumbbell model 

where two beads are connected by a linear spring as shown in Figure 2.3. The 

maximum extension of the spring can be expressed as the dimensionless extensibility 

parameter b as follows: 

 / Bb HL k T=  (2.10) 

Where Ns=1, LS=L. So Nk,s in the FENE dumbbell model will be equal to the total 

Kuhn steps Nk of the chain in bead-rod model. Combining Equation (2.6) and (2.10), 

it leads to: 

 ,( 1)k s kb N b= −  (2.11) 

A more accurate approximation, namely Cohen Padé approximation can be given as 

follows (Larson,2005) : 

 

2

2

3
[

3 1

i

Ssb i
i

i

S

Q
LHF

Q
L

⎛ ⎞− ⎜ ⎟
⎝ ⎠=
⎛ ⎞− ⎜ ⎟
⎝ ⎠

Q ]  (2.12) 

which is much closer to the Inverse Langevin force law. 
 
Since DNA and many other biopolymers have helical structures along the backbones, 

they are bendable but difficult to experience large torsional bond rotations. 

Yamakawa in 1979 established the wormlike chain model for this kind of polymer. 

By statistical mechanics calculations, this model leads to the approximate force law, 

namely Marko-Siggia spring law as follows (Larson, 2005):  

 
2 2

1 1 2 1 1[ 1 ] [ 1
4 4 3 4 4

sb i i iB
i S

p S S S

Q Q Q Qk TF HL
L L Lλ

− −
⎛ ⎞ ⎛ ⎞

= − − + = − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

]i

SL
 (2.13) 

where Pλ  is the persistence length and Kuhn length bk =2 Pλ .The spring constant is 

the same with the coefficient before. Since we have introduced those spring force law, 

the comparison of difference force law is presented in Figure 2.4. 
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It is important to note that various force laws in the bead spring model is derived by 

the equilibrium statistical properties, so it would raise a subtle problem when using 

the bead spring model in flow or nonequilibrium situation. Therefore, it is implicitly 

assumed that the springs are deformed slowly enough in such cases, so that its 

configuration space can be fully sampled. In a sense, we assume that a local 

equilibrium has been created in the phase space (Doyle et al, 2004). 

 

Figure 2.4 Comparison of different spring force law vs normalized molecule extension. The normalized 

extension is the distance between a bead and its successive bead divided by the maximum spring length. 
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2.3.3. Brownian force 

Figure 2.5 illustration of a set random number with zero mean value uniformly distributed in [-1,1] (A) and its 

histogram(B)  

B A 

 
Although macromolecules have longer chain than small molecules, but they are small 

enough that Brownian kicks from the solvent molecules will change the positions and 

configurations rapidly. The characteristic time of this Brownian kicks is much smaller 

than the relaxation time of the polymer chain but this Brownian influence from the 

solvent is large enough to be treated as a kind of stochastic, random force (Schiek et 

al ,1997). Thus, the Brownian force over a time scale dt can be given by 

 
1/ 26( )B Bk Tt

dt
ζ⎛ ⎞= ⎜ ⎟

⎝ ⎠
F  (2.14) 

where n is a random three dimensional vector ,each component of which is random 

number uniformly distributed between [-1,1] as shown in Figure 2.5. The factors of 

kBT  and ζ come out due to the fluctuation-dissipation theorem, which bridges up 

Brownian force with drag force (Larson, 2005). A general form of the fluctuation-

dissipation theorem in three dimensions is represented by 

 
( )

( ) 0

( ) ( )

B

B B

t

t t A t tδ

=

′ ′= −

F

F F
 (2.15) 

Where δ (t- ) is the delta function, when t goes to t′ very close to 0, δ (t- ).and A is 

a constant needed to be determined. Let’s suppose a particle moves in a viscous 

solvent and only influenced by the random force from the solvent, the equation of 

motion can be expressed as following way: 

t′ t′

 
( )Bd t

dt
ζ =

r F
 (2.16) 
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so the mean square displacement at given time t can be got from: 

 2
1 1 2 22 0 0

1( ) (0) ( ) ( )
t tB Bt F t dt F

ζ
− = ⋅∫ ∫r r t dt  (2.17) 

Which can be simplified to :  

 2
1 2 1 22 0 0

1( ) (0) ( ) ( )
t t B Bt dt dt F t

ζ
− = ⋅∫ ∫r r F t  (2.18) 

with Equation (2.15)  

 2
1 1 2 2 12 20 0 0

1( ) (0) ( )
t t tAt dt A t t dt Adδ 2

At t
ζ ζ ζ

− = − = =∫ ∫ ∫r r  (2.19) 

In addition, the mean square displacement of particle is also satisfied with the Einstein 
equation: 
 2( ) (0) 6t − =r r Dt  (2.20) 

Thus, it leads to the analytical form of A: 

 2 266 B
B

k TA D k T6ζ ζ ζ
ζ

= = =  (2.21) 

Therefore, the random force can be expressed as follows: 

 
[ ] [1/ 2 1/ 2

( ) ( ) 6 ( )

6 ( ) 6 /

B B
B

B
B B

t t k T t t

k T t t k T dt

ζ

ζ ζ

′ ′= −

′= − =

F F δ

F δ ]
 (2.22) 

In the simulation, we will keep the time step constant and n is a random three 

dimensional vector ,each component of  which is random number uniformly 

distributed between [-1,1]. In this way, we can not only mediate the magnitude of the 

random force, but also randomize the direction of the force. Therefore, the equation of 

motion only with Brownian force can be expressed as the following way based on 

Equation (2.16) and (2.22): 

 
1/ 2 1/ 26 6i Bd k T

dt dt dtζ
⎛ ⎞ ⎛ ⎞= ⋅ =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

r Dn ⋅n  (2.23) 

where D is actually a 3x3 symmetric tensor, therefore, it should be at least a semi-

definite tensor. We will discuss this issue in details in the next section.Substituting 

Equation (2.14) into Equation (2.1), it leads to the simplest form of Langevin equation 

for bead-spring model as follows: 

 
1/ 2

61 si B
i i

d k T
dt dt

κ
ζ ζ

⎛ ⎞
= ⋅ + + ⎜ ⎟

⎝ ⎠

r r F in  (2.24) 

or 

 
1/ 2

61( ) ( ) ( ) s B
i i i i

k Tdtt t t t dtκ
ζ ζ

⎛ ⎞ ⎛
+ ∆ = + ⋅ + +⎜ ⎟ ⎜

⎝ ⎠ ⎝
r r r F i

⎞
⎟
⎠

n  (2.25) 
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This stochastic equation will govern the probability distribution of the configuration 

and position of the segments of the chain in the confined geometry. One needs to 

integrate this equation forward in time. The Brownian term will lead to many 

independent trajectories. By averaging them together, we can get the ensemble-

averaged properties based on the time-evolution. Therefore, repetition of producing 

the independent trajectories is a time-consuming but necessary part of the simulation. 

After getting the time-averaged properties, it can be assumed as the steady state 

properties of molecules according to ergodic hypothesis (Doyle et al,2004). 

2.3.4. Hydrodynamic interaction 

 
Figure 2.6 Movement of particle 1 generates the motion of solvent molecules, which eases the motion 

of particle 2 in the same direction.  

 solvent 
1 

2

Motion of 
solvent 
molecules 

Many practical applications in dilute polymer solutions are subject to hydrodynamic 

interaction (HI), such as gel permeation chromatography and the flow of biological 

fluids in the living systems. The important physical feature is that in a low Reynolds 

number flow, the hydrodynamic interaction due to a point force or boundary falls 

relatively slowly with the increasing distance. It becomes very important, especially if 

the length scale of the system is comparable to the characteristic length scale of 

polymers. In this section, three models with different levels to treat HI effects are 

introduced: Free-draining model (without HI effect), Bulk HI model (bead-bead 

interaction),Full HI model (Bulk HI+ wall hydrodynamic effect)  

I. Hydrodynamic interaction in a free solution (Bulk HI model) 
The concept of hydrodynamic interaction is the motion of a segment will produce a 

disturbance to the velocity field in the flow due to the point force at this point, which 

will influence the motion of the entire chain accordingly shown in Figure 2.6. If the 

force is weak enough, the disturbance created by this force at rdrag
jF j to the velocity 
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field at position ri of bead i can be approximated by a linear function of the 

hydrodynamic drag force  as follows: drag
j−F

  (2.26) (drag s B
i ij j ij j′ = − ⋅ = ⋅ +v Ω F Ω F F )j

where  is the hydrodynamic interaction tensor or mobility tensor, which is the 

function of the displacement of r

ijΩ

i-rj between the bead i and j. If we incorporate this 

effect into Largevin equation, the following stochastic equation can be get: 

 

1/ 2

1 1 1

6N N N
ij si

i ij j
j j jj B

d
dt k T dt

κ
= = =

∂ ⎛ ⎞= ⋅ + ⋅ + ⋅ + ⋅⎜ ⎟∂ ⎝ ⎠
∑ ∑ ∑

Dr r D F B
r ij jn  (2.27)

where Dij is the diffusion tensor and tensor Bij can be represented as follows according 

to Eq (2.23): 

 
1

N

ij il lj
l=

= ⋅∑D B B  (2.28) 

If Equation (2.28) is statisfied, a Cholesky decompostion can made between Dij and Bij 

as follows 1(Hsieh et al, 2005): 
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∑

∑
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Here , ,α β γ  are the row and column positions of the elements in the tensor D and B. 

Here the diffusion tensors are supposed to be symmetric, positive-definite. However, 

this may be not the case during the simulation. This problem has its physical origin: 

on one hand, we assumed point particles or beads with zero radius during the 

derivation of Oseen-Burgers tensor; on the other hand, when calculating the frication 

coefficient for the given solvent, we implicitly assumed a bead radius a given by 

Stokes law 6 aζ πη= . Hence, Oseen-Burgers tensor only can lead to realistic results 

for the bead separation comparable to 2a (Ottinger et al, 1995)2.Therefore, an 

alternative approach- Chebyshev polynomial approximation is introduced in the 

appendix A-2. 

                                                 
1 Please refer Cholesky decomposition in appendix for details 
2 Please refer this part  Appendix: A-3 
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For the diffusion tensor D, which is 3×3 block components of 3N×3N diffusion 

tensor, there are several forms in use. Mathematically, a Green function represents the 

influence of a bead being moved through the solution. The simplest one is the Oseen-

Burgers tensor , which assumes that the beads can be regarded as point sources 

of drag in the solvent: 

OBΩ

 1(
6ij B ij ij

s

k T
a

δ
πη

=D I Ω )+

Ω

 (2.30) 

  (2.31) (1 ) OB
ij ij ijδ= −Ω

 2

( )( )1
8ij

i j i jOB

S i j i j
πη

⎡ ⎤− −⎢ ⎥= +
⎢ ⎥− −⎣ ⎦

r r r r
Ω I

r r r r
 (2.32) 

Where I is a unit tensor, δij is the Kronecker delata and -  is the separation vector 

between the ith and jth beads. However, Oseen-Burgers tensor is not suitable for 

Brownian dynamics simulation, because it will become nonpositive when -  is 

comparable to or less than the bead radius as we mentioned before. Here  is the 

observation point to see the velocity perturbation due to the point force at  where 

is the source point. Therefore, the perturbation to the flow field at any point is the 

sum of the perturbation from each bead around this point shown in Figure 2.7 

jr ir

jr ir

ir

jr

jr

                                         

rn-1

Ωn,n-1

rn rn+1Ωn,n+1

Figure 2.7  Motion of the nth bead is affected by the surrounding beads through hydrodynamic 

interaction 

In Brownian dynamics simulation, the Rotne-Prager-Yamakawa (RPY) Tensor RPYΩ is 

always used to replace the Oseen-Burgers tensor (Larson, 2005):  
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 1 2 2

( )( )1 , 2
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πη
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Here the first expression indicates the beads are well separated and the second means 

the beads have some overlaps with each other. However, it seems that the second case 

doesn’t happen frequently in the simulation due to the excluded volume effect.  

 

For Oseen tensor and RPY tensor, Ωij=0 for i=j, and 0ijj∂ ∂ ⋅ =r Ω  for all i, j in the 

free solution, things will be different in the confined geometry. Those modifications 

will be discussed in the next section. 

 

The strength of HI effects between beads can be evaluated by the following 

parameters: 

 
( )

1/ 2
*

3 1/ 23

3
36 12s sB s s

Hh
Rk T R

ζ ζ
η ππ π η

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠

ζ  (2.37) 

where  is the elastic constant of the spring and 23 /B SH k T R= ,s k KR b N= S   is the 

root-mean-square end-to-end vector of a spring at equilibrium. Based on this 

definition, Equation (2.33)-(2.34) can be rewritten as follows: 

       
6

B
ii

S

k T
aπη

=D I                                       (2.38) 
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It can be seen that the HI effect will be different due to the different choices of bead 

radius, which will make simulation result far from the experimental data. Therefore, 

when the simulation is carried out, the hydrodynamic interaction parameter could be 

another parameter to optimise. 

 

II. Hydrodynamic interaction in a confined geometry (Full HI model) 
Traditionally, people treat the HI effect to the level of bead-bead(which is named 

Bulk HI model in the above section), but the effect between the wall and bead comes 

into play in the confined geometry, especially when we have lowered down to a 

length scale comparable to the radius of gyration of the polymer. How to treat the 

hydrodynamic interaction and into which level? It is a critical point for us to explain 

dynamics of the biomolecules in the microchannel, because the Green function for 

hydrodynamic interaction is highly dependent on the geometry of the channel. In 

addition, the analytical solution only exists in few special cases, which are needed to 

be highly symmetric geometry. Here we introduced the method proposed by 

Jendrejack et al (2004) to evaluate the HI effect on a more accurate level, which is 

called Full HI model. 

 

Usually, the Green function for the Stokes flow in a general geometry can be 

expressed as follows: 

 OB W= +Ω Ω Ω  (2.41) 

Where  is the Oseen tensor or the Green function for the free solution.  is the 

correction term which is responsible for the no-slip constraint at the wall. The velocity 

perturbation due to the point force at source point x

OBΩ WΩ

( )jf x j can be given as follows: 

                                 ( , ) ( ) ( )j OB j W′ ′ ′= − + −v x x v x x v x x j

j⎤⎦                                             
                           

(2.42) ( ) ( , ) ( )OB W
j j⎡= Ω − +Ω ⋅⎣ x x x x f x
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Since the Stokes equations are linear and homogeneous, the velocity produced by 

different forces and boundaries at the different points in the liquids are additive. 

Therefore, the velocity perturbation ( ),w i j′v x x  can be get by the solving the classical 

incompressible Navier- Stokes flow problem: 

 2 0,s Wp η ′−∇ + ∇ =v 0W′∇ ⋅ =v  (2.43) 

With the boundary condition:   
 0OB W′ ′+ =v v     at the wall (2.44) 

Thus, the boundary condition becomes W OB′ ′= −v v , which means ( , )w
i j =Ω x x  

. Because we always use the RPY tensor instead of the Oseen Tensor, 

we should substitute Equation (2.33) into the boundary condition, then we would find 

the explicit velocity for the boundary. 

(OB
i j− −Ω x x )

Using this boundary condition and point force f1 acting on the direction 1, this Stokes 

flow problem can be solved by finite element method (Jendrejack et al, 2004). Here 

we used the FEMLAB finite element software package(Comosol) to solve this 

classical fluid dynamic problem. After we get the velocity perturbation for the wall, 

the first column of the  could be given as the following way: ( , )w
i jΩ x x
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21
1

31

1
W

W
W

W
f

⎛ ⎞Ω
⎜ ⎟

′Ω =⎜ ⎟
⎜ ⎟Ω⎝ ⎠

v  (2.45) 

Where 1,2,3 represents the three directions. The second and third column of the 

 can be got in the similar way by applying the point forces in the direction 

of 2 and 3, respectively. Since we have the Green function for wall, the total 

Green function can be expressed as following way:  

( , )w
i jΩ x x

( , )w
i jΩ r r

  (2.46) (1 ) ( ) ( , )OB W
ij ij i j i jδ= − − +Ω Ω r r Ω r r

Compared to the flow of the free solution, is nonzero and ijΩ 0ijj∂ ∂ ⋅ ≠r Ω  for i=j, 
which will lead to a nonzero drift term in Equation (2.27). 
 
 
The Green’s function is evaluated on the grids before the Brownian simulation, which 

means we will make those grid data into a lookup table for a given geometry. During 

the simulation, Green’s function and its divergence will be evaluated by the finite 

interpolation (please refer the detail in Appendix A-2). 
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From equation (2.32) and (2.33), it can be seen that the hydrodynamic interaction 

between beads decays relatively fast as 1/r2 .For a particle close to the wall, it falls off 

with the distance to the point force as 1/r  (Jendrejack et al, 2004), which means even 

the beads are far from the wall, the effect from the wall still exists beyond the range of 

excluded volume interaction from we will introduced in section 2.3.6. It indicates that 

hydrodynamic coupling to bounding surfaces could influence molecule’s motions to a 

greater extent and over a longer range (Dufresne et al, 2000).   

 
 
 
 
 
Appendix: 
 
Cholesky Decomposition 
 
Suppose we have a symmetric and positive definite matrix3 or semi-positive 

definite matirx. It can be efficiently decomposed into lower and upper triangular 

matrix as follows: 
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the elements of the  upper and lower triangular matrix can be get as follows: 

                                           

( )

2
11 11 11 11

21 21 11 21 21 11 1 1 11

1/ 22 2 2
22 21 22 22 22 21

/ , , /n n

a l l a
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= → =

= → = =

= + → = −

L  

we can also give a general form of the solution: 

  (2.47) 
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3 A symmetric matrix is positive definite if all the eigenvalues are positive. 
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2.3.5. Excluded Volume Effect 
 

                                        
Figure 2.8 illustration of exclude volume interaction in a polymer chain 

 
In order to include the solvent effects, the excluded volume effect should be 

considered in Equation (2.27). Different solvents will have different impacts on the 

properties of the dilute solutions of polymers. Those effects can be investigated 

qualitatively in the following way (Jendrejack et al, 2004). 

 

In good solvents, the chain tends to swell since it prefers to be surrounded by the 

solvents. Consequently, solvent effects could be achieved by the repulsive bead-bead 

(two-sub molecules) potential. Each submolecule (segment) is considered to be deal 

with a Gaussian probability distribution. Considering the repulsive energy due to the 

overlap of two Gaussian coils (without deformation), the excluded volume potential 

can be expressed as follows (Larson, 2005, Jendrejack et al, 2004): 

 
2

3
2 2

, 2

91 9( ) exp( )
2 2 2

j iEV
ij B K s

s s

r r
U vk TN

Rπ
−

= 2R
−

2

 (2.49) 

where 2
,s k s kR N b=  is the mean-square end-to-end distance of a spring with Nk,s Kuhn 

segments and ν is the energy constant. Since we know the potential, the repulsive 

force on bead i from bead j can be written as the gradient of the potential: 

       ( ) ( ) ( ) ( )
iji i j i j x i j y i j

i i i
U r r U r r U r r U r r z

x y z
∂ ∂ ∂

= −∇ − = − − − − − −
∂ ∂ ∂rF δ δ δ  (2.50) 

Where i jr r− = ( ) ( ) ( )2 2
i j i j i j

2
x x y y z z− + − + − and δ is unit vector.Based on the 

chain rule in differential equation: 

 ( ) ( ) i
i j i j

i i j i j

jx x
U r r U r r

x r r r r
−∂ ∂

− − = − −
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 (2.51) 

the repulsive force can be rewritten as follows: 

 ( ) i j
ji i j

i j i j

U r r
r r r r
∂

= − −
∂ − −

r - r
F  (2.52) 
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Some other potential, such as Lennard-Jones, soft potential are also commonly used in 

the Brownian simulation. However, it is not obvious how the parameters in those 

models adjust with the molecule discretization Nk,s. That’s the reason why they 

developed such kind of potential (Jendrejack, 2003). 

   

In the theta solvents, polymer molecule can’t distinguish the polymer and solvent at 

larger length scale, which means polymers can’t feel ‘itself’. The theta effects can be 

simply realized by removing the potential. In a bad solvent, polymer tends to contract, 

which means polymer prefer to get together, which can be achieved by adding an 

attractive bead-bead potential. 

2.3.6. Physical confinement  
 

 
Figure 2.9 illustration of polymer chain confined in a slit with a gap  width of d 

d

 

To realize the physical boundary condition due to confined geometry as shown in 

Figure 2.9, a bead-wall repulsive potential has been considered as follows (Jendrejack 

et al, 2004): 
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2 ( ) ,
3
0 .

wall wall
i wall wall

k wall
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b
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δ

= − <

= ≥
 (2.53) 

So the repulsive force for bead i from the wall can be given as follows: 
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2 ( ) ,
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wall wall wall
i i wall wall
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AF U h for h
h b

for h

δ δ
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δ

∂
= − = − − <

∂

= ≥
 (2.54) 

Where h is the perpendicular distance between bead i and the wall. wallδ  is the cut-off 

distance for the molecule to feel the repulsive force from the wall and Awall is the 

repulsive energy constant. Here we use Awall =25 kBT and wallδ  =0.236 um. Since we 

want to guarantee that no beads can penetrate the geometry, we assume the parallel 
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walls are perfect elastic. During the process, if bead is the outside the wall, the wall 

can reflect the bead back into the same depth without affecting the bead displacement 

in the direction parallel to the wall. From above statement, it can be seen that the 

repulsive force from the wall is a short-range influence (the effective region is 0.236 

um) compared with the long-range hydrodynamic interaction.   
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Chapter 3 Numerical Scheme 
 
Since the starting point ─ the stochastic differential equation has been developed in 

the last chapter, we must integrate the equation forward in time in order to get the 

trajectories of the molecule. Two most common integration schemes for FENE 

dumbbell and Bead-spring model are introduced in this chapter. 

3.1 Simulation scheme4

3.1.1. Explicit Euler Scheme 

 
Figure 3.1 illustration of the position vector ri, end-to-end vector R,center of mass rc, radius of gyration 

RG in bead-spring model  

 
The governing equation is given as Eq(2.25) as follows: 

1/ 2
61( ) ( ) ( ) s B

i i i i
k Tdtt t t t dt

ζ ζ
⎛ ⎞ ⎛

+ = + ⋅ + +⎜ ⎟ ⎜
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r r κ r F� i
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⎟
⎠
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To integrate this equation, the simplest scheme is the explicit Euler scheme. By 

marching the time, we can update the position of beads. In addition, the trajectories of 

the connector vector Qi (t), center of mass rc(t) and the radius of gyration RG(t)  

shown in Figure 3.1 can be given as follows: 

 1i i i+ += −Q r r  (3.1) 

 
1

1 N

c
iN =

= i∑r r  (3.2) 

 2

1

1 (
N

G i
iN =

= −∑R r )cr

Substituting Equation (2.4) into Equation (2.25) leads to: 
                                                

 (3.3) 

 
4 To illustrate the scheme, Free draining model is taken as the example for simplicity 
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If we take FENE dumbbell model for example, equation (3.4) for two beads becomes 
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Those equations can be decoupled into three components x,y,z, take Equation (3.5) in 

                              

simple shear flow for example: 
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By updating the time, we can update the bead position in three directions, and then 

owever, we have to choose the small time step t =10-4-10−5s for explicit Euler 

collect the molecular configurations by Equation (3.1)-(3.3). 

 

H

method (we will discuss the choice of parameters later). If the time step is larger than 

that, the maximum extension length would be larger than the contour length of the 
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chain, which is unphysical. Since the use of random variables in the simulation and a 

finite number of trajectories in the ensemble, there will be intrinsic statistical noise to 

the method. According to the theory of statistics, the magnitude of this error is 

proportional to N-1/2
T where NT is the number if they are independent trajectories. 

(Doyle et al 2004)  

 

3.1.2. Predictor-Corrector Method 
er scheme and its relatively high error, 

up

Due to the weak convergence of the Eul

O&& ttinger (1995) developed a more efficient second-order algorithm developed by 

dating the dumbbell trajectories of connector vector first. If we take differences 

between Equation (2.25) with successive indices i for FENE dumbbell model, we can 

get the equations as follows:  

predictor:
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Where 1  ( )t t+Q � is the predictor , here we use the value from explicit Euler method 

redictor. as the p

corrector:              
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Equation (3.9) also can be decoupled into three directions in Cartesian coordinates. If 

we take the combination of Equation (2.25) and successive index i, then time 

evolution of the center of mass can be get: 
1/ 2 2

1

6 1  ( ) ( ) ( ) ,
2

B
c c c

i

k Tdtt t t t dt
ξ =

⎛ ⎞
+ = + ⋅ + ⎜ ⎟

⎝ ⎠
i∑r r κ r n�  (3.10) 
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Based on Equation(3.9) and Equation(3.10), we can get the trajectories of the internal 

connectors Qi(t) and the center of mass position vector rc, because we know the 

relationships between Qi(t), rc, and ri(t) as follows: 

 1
1

1 ( ) ( ) ( ) ( ) ( )
2

N

c j c
j

N jt t t t
N=

−
= − = −∑r r Q r Q j t

j t

 (3.11) 

                                     (3.12) 
1

1 1
1

  ( ) ( ) ( ) ( ) ( )
i

i j
j

t t t t
−

=

= + = +∑r r Q r Q

Compared to explicit Euler method, predictor-corrector method don’t have good 

performance on increasing speed on each step, but it saves computing time by 

increasing the step size, since this method can prevent the molecular extension beyond 

the maximal length efficiently.   

 

3.2 Dimensionless parameter 
 
For FENE dumbbell model, we scale the length with /Bk T H and the time with Fτ , 

where Fτ  is the characteristic time of FENE dumbbell and we assume it is the 

relaxation time of molecular stretch (defined in chapter 4). In order to characterize the 

flow strength, the Weissenberg number is defined as follows, which indicates the 

chain relaxation time scale relative to the characteristic flow time scale: 

 FWi γτ= &  (3.13) 

where γ&  is shear rate.In Bead-spring model, the characteristic time and length is the 

relaxation time τ of molecular stretch (defined in chapter 4) and Kuhn length bk 

respectively. Therefore, Weissenberg number for Bead-spring model can be defined 

as follows: 

 Wi γτ= &  (3.14) 

3.3 Pseudo random number generator 
 
In our simulation, it is needed to generate a large number of random numbers, which 

is the stochastic origin of the equation. At first, we used the build-in function 

random_number ( ) in FORTRAN. When we tried to optimize the code to reduce 

computational time, we found the build-in function almost uses most of the time, 
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which is very time-expensive. Therefore, it would be a good idea to code the random 

number generator by ourselves. 

 

System-supplied random number generators are always linear congruential 

generators, which generate a sequence of integers I1,I2,I3,…,each between 0 and m-

1(a large number) by the recurrence relation as follows: 

 1j jI aI c+ = +  (3.15) 

then get the modulus based on m as follows: 
                                                    
 1mod( , )jv I + m=  (3.16) 

then divided by m  
  
 /U v m=  (3.17) 

Where a and c are positive integers called the multiplier and increment respectively. If  

m, a, c are properly chosen and repeating this recurrence relation over a period, all 

possible numbers U between 0 and 1 will occur at some point. 

 

Here we will take random number generator proposed by Lewis, Goodman and Miller 

in 1969, which has passed almost all the theoretical tests in the past years (Press et al 

,1992). Here are their parameters for the random number generator: 

  (3.18) 5 217 16807 0 2 1 2147483647a c m= = = = − =

Implementing the algorithm (3.16)-(3.18), a sequence of random number uniformly 

distributed in [0, 1] can be generated. To get a sequence of random number uniformly 

distributed in [-1,1], the algorithm need to be modified as follows: 

 1 2 /U v m= − + ×  (3.19) 

After tested, this random number generator reduces half of the total time compared 

with that by build-in function in FORTRAN. 
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Chapter 4 Choices of parameter 
 
Since the local physicochemical properties along polymer chains are not that 

important, bead-rod model and bead spring model is enough to capture some critical 

non-linear properties of polymer chains. Although the properties will be unphysical 

as the chains approach full extension and local details become important, many cases 

especially for DNA can be found that bead-rod and bead-spring model can give 

agreement with the experimental data  if reasonable parameters are chosen, such 

bead numbers( Hur et al ,2000). In this chapter, parameters and observable will be 

introduced  

 

4.1 Parameters 
 
From aspects of implementation and parameter optimisation, FENE dumbbell model 

and Bead- spring model are definitely the best candidates because the Bead-rod model 

is very expensive on computing time, although it can lead more accurate results.  

 

The earliest accurate predictions of polymer configuration under flow were carried out 

successfully for long, fluorescently stained DNA molecules in dilute solutions. Chu 

and his co-workers imaged the configuration of DNA molecules in the well-defined 

flow in the mid 1990’s (Perkins et al, 1995), their experimental data should be the 

most important reference data for us to compare with. According to their works, the 

most commonly used DNA molecule was the biologically derived λ-phage DNA and 

hence perfectly monodisperse double stranded DNA molecule, with a contour length 

of 21-22 µm and 0.066 µm for the persistence length. Good results have been achieved 

by the bead-rod model and bead-spring model (Hur et al, 2000). Since we know the 

contour length and persistence length of DNA, the total number of persistence length 

should be 21/0.066=318, which means the Kuhn steps should be 150-160, because 

Kuhn length is twice the persistence length. Although λ-phage DNA is a long chain, it 

has a relatively low extensibility and a larger radius of gyration, around RG=0.73 µm, 

indicating the root-mean-square end-o-end distance of the chain <R2>0 
½= 6 GR =1.8 

µm, which is also closed to <R2>0 
½=N1/2 bk=1.62, when the Kuhn steps N were 150 

and the Kuhn length bk =21/150=0.066 µm(Larson, 2005). In conclusion, our 
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parameters used in FENE dumbbell and Bead-spring model can be summarized as the 

following table 4.1-4.4. 

 
Table 4.1 Environmental parameters 

kB (J/K) 1.38e-23  
T  (K) 296  
Gap width (µm) 3 or 6.36 
viscosity of the solvent sη            (Pa·s) 1e-3 

  
Table 4.2 Parameters in FENE dumbbell model 

Bead number in Bead-rod model  Nk 150 
Kuhn length  bk (µm) 0.132 
Hydrodynamic radius  a  (µm) 0.0693 
Contour length  L  (µm) 21  
 

Table 4.3 Parameters in Bead-spring model 
Bead number in Bead-spring model  Ns 10 
Kuhn length bk (µm) 0.132 
Effective persistence length pλ    (µm) 0.066 

Maximum length for each spring   (µm) SL 2.33 
Hydrodynamic radius  a  (µm) 0.0693 
 

Table 4.4 Implementation parameters 
Time step size           (s) 1e-4~1e-5 
Time step 1e+6~1e+7 
 

4.2 Observable 
 

In order to characterise the behaviours of the polymer in different cases, the following 

parameters will be considered in this work  

4.2.1. Molecular stretch X of the chain 
the real-time molecular stretch X of the chain can be defined  as the maximum length 

between bead and bead along the main flow direction. In other words, it is the 

projected length of the molecule in the flow direction (Jendrejack et al. 2004): 

 ,max( ) min( )i x i x,X r= − r  (4.1) 

where  is the position vector of bead i in the flow direction. The steady state of 

stretch at given condition can be defined as the ensemble average over N trials: 

,i xr

 
1

1 N

n
n

X X
N =

= ∑  (4.2) 
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where n is the nth trial. 

4.2.2. The longest relaxation time of molecular stretch 

 

 

Figure 4.1 Relaxation curve of square of molecular stretch x2  of 21 um2 DNA by bead-spring model   

 

The relaxation time of the molecular stretch is introduced to characterize the flow 

strength. To obtain the longest relaxation time 1τ , we start the simulation from an initial 

value of the stretch x/L =0.7 along the flow direction and run the simulation in absence 

of flow and confined walls until the chains are completely relaxed. Averaging the 

results over 40 repeat simulations, we can get a relaxation curve of square of molecular 

stretch x2 as shown in Figure 4.1.The final 9 % of the curve can be fit into an 

exponential curve as follows: 

 2

1

exp( )tx A
τ

B= − +  (4.3) 

where 1τ is the longest effective relaxation time, which is 0.11-0.13s for Bead-spring 

(10 beads) model and 0.063 for FENE dumbbell model. This relaxation time is close 

to the simulation result 0.095s by Jendrejack et al (2004). In addition, this relaxation 

time indicates that the time step should not be larger than this value, therefore our 

time step from 10-4-10-5 second sounds reasonable. 
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4.2.3. The radius of gyration Rg of the chain 
The radius of gyration can be defined as follows: 

 2

1

1 bN

g i
ib

cR r r
N =

= −∑  (4.4) 

where rc is the center of mass of the chain as follows: 

 
1

1 N

c
iN =

= i∑r r  (4.5) 

where N is the number of beads and i is the index of the bead 
 

4.2.4. Orientation and configuration thickness of the molecule in the shear flow  

                                                        
 

Figure 4.2   illustration of orientation of polymer in the shear flow 

In order to charaterize the orientation of single molecule in the shear flow, the angle 

between the chain and flow direction should be computed. First, it is necessary to 

define the radius of gyration tensor related with section 4.2.3 as follows: 

 2
1 1

1 [ ( )(
2

N N

i j i j
i jN = =

= −∑∑G r r r )]− r  (4.6) 

where  ri is the position vector of ith bead, N is the bead number of the chain. The 

mean orientation angle as illustrated in Figure 4.2 in the shear flow can be defined as 

follows: 

 1
21 tan

2
xy

xx yy

G

G G
θ −

⎛ ⎞
⎜=
⎜ −⎝ ⎠

⎟
⎟

 (4.7) 

Where Gxy, Gxx, Gyy are the elements of the radius of gyration tensor. x is the flow 

direction; y is the velocity gradient direction. Here the angle is defined to be positive 

when measured from the flow direction to positive velocity gradient direction. The 

mean configuration thickness δy of the molecule in the velocity gradient direction can 

be defined as follows: 

 y yGδ = y  (4.8)    

Flow direction 

gradient direction  

θ 
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4.2.5. Diffusivity coefficient of the chain 
In this case, polymer diffuses in the solution by Brownian kicks, the displacement of 

center of mass in three directions can be given as the follows: 

 2 2 2 2x y z D= = = t  (4.9) 

then   
 2 6R Dt=  (4.10) 

Where D is the diffusion coefficient. Here is the plot of the <R2> vs t of 21 um DNA 

by bead-spring model (10 beads) in the free solution without flow to check whether 

the parameters are suitable. 
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Figure 4.2 Mean-square displacement of  center of mass vs, t for Bead-spring model (10) 

 

As shown in Figure 4.2, the diffusion coefficient D of the chain is 0.286 µm2/s. 

Compared with the input value 0.281 µm2/s we set in the simulation, Error= (0.286-

0.281)/0.281=0.18%, which indicates the validity of our method of obtaining the 

coefficient from the simulations 

 

4.2.6. steady state of center of mass distribution and width of center of mass 
distribution 
 
The steady state center of mass distribuation in the cross section of the channel can be 

defined as follows: 
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 , ,( , ) ( ) ( )c c n N
P y z y y z zδ δ= − − c n  (4.11) 

where yc,n and zc,n is the coordinates of center-of-mass in y and z direction at 

observation n and N is the total number of trials for the simulation (Jendrejack et 

al,2004).  

 

In order to characterize to the depletion layer in the channel, the second moment of 

the center-of-mass distribution in the cross section of the channel is introduced as 

follows. 

 2 2 2( ) ( , )cw y z P y z dydz= +∫  (4.12) 

 The quantity w/weq gives a measure of the width of the center of mass distribution 

relative to the equilibrium value (Jendrejack et al, 2004). If w/weq is increasing, it 

indicates that the chain is migrating towards to the wall and vice verse. 
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Chapter 5 DNA in equilibrium5

 
Before analyzing the sheared DNA in confined geometry, it is instructive to consider 

the motion of single DNA molecule in equilibrium. With the variation of the length 

scale of the geometry, the static properties of the chain are significant affected. This 

can give us a simple picture about the dynamics of single DNA molecule in 

equilibrium with confined boundaries.  

5.1 Free solution in equilibrium 

5.1.1. Analytical result  
In order to offer a comparison to the simulation, theoretical analysis is carried on first. 

For simplicity, we take FENE dumbbell model to carry the theoretical analysis. Since 

we have introduced the force law in the FENE dumbbell model as follows, we can get 

the energy for each configuration Q, which is the end-to-end distance vector: 

                                               2

2
max

1

H
Q

Q

=
−

QF                                                                (5.1) 

 
2

2
max2 20 0

max
2
max

1( ) ln(1 )
21

Q Q

p
HE d d HQ

Q Q
Q

= = = − −
−

∫ ∫
QQ F Q Q� �

Q  (5.2) 

Where Qmax  is the maximum molecular extension which means the contour length in 

FENE dumbbell model and Ep is the potential energy for this configuration. Thus, the 

configuration-space distribution function can be calculated based on the theory of 

statistical physics as follows: 

                                           ( , ) 1f d d =∫∫ Q P Q P                                                        (5.3) 

 
                                         ( ) ( , )f dψ = ∫Q Q P P                  (5.4) 

Where ( )ψ Q  is the configuration-space distribution function and f(Q,P) is the phase-

space distribution function. To calculate this function, an important result from 

                                                 
5 Note: In this chapter, we didn’t consider hydrodynamic interaction if not specified 
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classical statistical mechanics will be used: for a system at equilibrium,  f(Q,P)  is a 

canonical distribution:  

 1( , ) exp( )f P H−= −Q Z B/k T

B

 (5.5) 

Where H is the Hamiltonian, the sum of the kinetic energy Ek and potential energy Ep 

and Z is partition function, which can be given as follows:                     

      max

0
exp( H / ) exp( / ) exp( / )

Q

B k B pZ k T d d E k T d E k T d
∞

∞

= − = − −∫ ∫ ∫ ∫
+

-

Q P P Q         (5.6) 

By inserting Equation (5.2), it leads to: 
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HQ
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k B
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∞
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⎡ ⎤
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∫ ∫
+

-
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By inserting Equation (5.5),Equation (5.4) can be rewritten as follows :  
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−
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∫

∫

Q Z P

Z P
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 (5.8) 

So the probability density of finding an end-to-end vector Q can be defined as 

follows: 

 
2 2
max max
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2 2

2 2 2
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( ) [1 ] (1 ) 4B B

HQ HQ
Qk T k TQ Q Q dQ

Q Q
ψ π

⎡ ⎤
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⎢ ⎥⎣ ⎦

∫Q  (5.9) 

This leads to the probability density of finding an end-to-end distance Q  as follows: 

  
2 2
max max
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2 2

2 22 2
2 20
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( ) 4 ( ) 4 [1 ] (1 ) 4B B
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Qk T k TQ QP Q Q Q Q Q dQ
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∫ 2        (5.10) 

Since we know the spring constant 2

3
( 1)

B

K

k TH
N b

=
−

, the constant in Eq (5.10) can be 

rewritten as follows:   

                                                      
2
max 3 ( 1

2 2 k
B

HQ N
k T

)= −                            (5.11) 

Figure 5.1 represents the probability distribution of end-to-end distance Q for 21 um 

DNA molecule in equilibrium. It can be founded that when in equilibrium, the end-to-

end distance Q in the solution is less than 0.2 and the distribution is a Gaussian 

distribution. The mean value is 
1/ 22

0
Q =1.57 um, which is close to the numerical 

result around 1.66 mµ  (Chopra et al, 2002). 
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Figure 5.1 Probability distribution function of end-to-end distance for 21 um DNA molecule( Kuhn 

step =150 ) by FENE dumbbell model, where the bin size is 0.001 and end-to-end distance normalized 

by the maximum spring length Qmax

 
 

5.1.2 Simulation result  
 
In order to compare with the analytical results, DNA in free solution in equilibrium is 

considered first. In this case, polymer molecule only experience the Brownian kicks 

from surrounding solvent molecules, drag force which resists the movements, and 

entropic spring forces which resist configurations changes of polymer molecules. For 

this case, the molecular motion has been studied for 100s, and the length of time step 

is chosen to 10-4-10-5 s. During this period, all the configuration data will be stored in 

every 0.1 s around one relaxation time in order to collect the statistically significant 

data for analysing the behaviour of the molecules with flow. In this way, we sampled 

40-100 chains to get the ensemble properties of polymer, so the total number of 

measure points is 40000-100000, which should be large enough to get good 

approximation to real behaviour of polymers  

  

FENE Dumbbell and Bead-spring model (10 beads) are implemented with their 

corresponding force laws. By averaging those ensembles, statistical properties of 

single chain in equilibrium can be shown in the following table. 
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Table 5.1 Comparison of statistical properties by  bead-spring and FENE model 
 

 Chorpra et al(2002) Bead-spring(10) FENE 
Equilibrium strech  

1/ 22 /x L  ( µm) 1.26(experimental) 1.13 0.74 

End-to-end distance  
1/ 22

0R  ( µm) 1.66 1.43 1.48 

Radius of gyration   
1/ 22

GR   ( µm) 0.68 0.64 0.74 

1/ 22
0R /

1/ 22
GR  2.44 2.23 2.00 

 

As shown in Table 5.1, it can be seen that Bead-spring model have better agreements 

with experimental value and simulation results in equilibrium in free solution from 

Chorpra et al (2002) compared with FENE dumbbell model. However, it seems the 

equilibrium stretch in the model doesn’t agree very well with the experimental value, 

which indicates better parameters for bead-spring model can be found.  

 

5.2 Confined solution in equilibrium 
 

                                          

y 

x
3 um 

 
Figure 5.2 illustration of polymer in equilibrium in the infinite parallel walls  

 
Here we consider molecules are confined in the slit between the two infinite long 

parallel hard plates with a fixed distance (3 µm) between each other as shown in 

Figure 5.26.This width is roughly 2 times of mean-square-root of end-to-end distance 

<R2>0 
½ (1.66 µm) and 5 times of the radius of gyration RG (0.68 µm). This value is 

not only large enough for DNA molecule to display the their near-bulk solution 

behaviour, but also small enough to keep the frequent interaction of molecule with the 

walls. The flow direction is only in x direction, which is parallel to the walls and the y 

direction is normal to the wall (Chropa et al, 2002). Running this simulation, the 

statistical properties are shown in Table 5.2 as follows: 

                                                 
6 Here we treat the wall as pure elastic wall, please refer section 3.1 for details.  
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Table 5.2 comparison of statistical properties withwall and without wall by bead-
spring(Free-draining and Bulk HI) model 

 without wall with wall (FD) with wall (Bulk HI) 

Equilibrium strech  
1/ 22 /x L  ( µm) 1.121 1.12 1.129 

End-to-end distance  
1/ 22

0R    ( µm) 1.43 1.37 1.35 

Radius of gyration   
1/ 22

GR     ( µm) 0.64 0.626 0.619 

1/ 22
0R /

1/ 22
GR  2.23 2.19 2.18 

As shown in Table 5.2, it can be seen that mean square root of end-to-end distance 

and radius of gyration is reduced to some extent but not very much, which means the 

chain is squeezed slightly due to confined effect from the walls, but the confined 

effect is not very strong in the length scale of this confined geometry. This can be 

supported by that the equilibrium stretch in Bulk HI model slightly increases. In 

addition, it can be seen the equilibrium stretch predicted by FD model is not affected 

by the presence of the wall. The reason will be discussed in the end of this chapter. 

 

In addition, Figure 5.3 illustrates a trend that probability density of center of mass 

varies from zero (or close to 0) close to the wall, to the bulk value in the center of the 

channel. In this case, polymers will only experience confinement in y direction, 

theoretical solution is reported by Casassa (I.Teraoka, 2002) as follows: 

 2

1

2 '( , ') sin sin exp[ ( / ) ]g
k

k y k yP y y k R d
d d d

π π π
∞

=

= −∑  (5.12) 

Where P(y,y’) is the probability density function of finding a chain at particular y 

away from a given y’  and d is the gap width .In this case, y’ =d/2 ,which is the center 

of the gap.  

 
Figure 5.3 Probability density distribution of center of mass for a Gaussian chain confined inside two 

parallel plates with gap width=d. The dash line represents unconfined chain and solid line means 

confined chain (Teraoka, 2002) 
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Figure 5.4 represents the comparison of probability density distribution of center-of-

mass by FENE dumbbell model, Bead-spring model and analytical results. It can be 

seen that for FENE dumbbell model, the probability density of center-of-mass 

decreases more slowly from wall to the centre compared with Bead-spring model. 

Bead spring model has better agreement with theoretical result near the wall 

compared with FENE dumbbell model, but it overpredicts at the center of the channel. 

In addition, the probability density is not zero at the wall for FENE dumbbell model. 

The reason for this discrepancy could be the use of a finite number of beads in the 

simulation. To improve the degree of discretization of model, the difference close to 

wall can be reduced, which can be concluded from the results of the bead-spring 

model with 10 beads. From the same point of view, increasing the number of internal 

mode in the bead-spring model will make the results closer to the real behaviour of 

the polymer. 
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Figure 5.4 Comparision of probability density distribution of center of mass for Bead-spring model 

(10) , FENE dumbbell model and theoretical result in equilibrium. The distribution shown is half of the 

symmetric profile in the cross section of the channel 

 

Having analysed probability density distribution of chain segments in the channels, 

we will present the distribution of fractional extension in the flow direction at Wi=0 

for Bead-spring model (10) and FENE dumbbell model as shown in Figure 5.5. It can 

be seen that both distributions display a shape of Gaussian-like distribution as we 

have shown in Figure 5.1. Although the statistical properties of both models are 

almost the same, Bead-spring model has better agreements with experimental data 

(Hur et al 2000) and theoretical analysis. 
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Figure 5.5 Probability distribution of fractional extension for Bead-spring model (10) and FENE 

dumbbell model in equilibrium 
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Figure 5.6 Dimensionless molecular stretch as a function of channel width for 21 um DNA in 

equilibrium by Bulk HI and FD model (please refer to this model on section 2.3.4), X  and 

eqX  is the equilibrium stretch in confined geometries and free solution respectively. H is the 

channel width of the slit.  
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Figure 5.7 Normalized diffusivity of the chain as a function of channel width for 21 um DNA in 

equilibrium by Bulk HI model (please refer to this model on chapter 7), Dfree and D is the 

diffusivity of the chain in free solution and confined geometry respectively. H is the channel width 

of the slit. 
 
 
Figure 5.6 represents the equilibrium stretch of 21 um DNA molecule as a function of 

the channel width in microchannels by free-draining model (without hydrodynamic 

interaction and excluded volume interaction) and Bulk HI model7 (hydrodynamic 

interaction). It can be seen that there is a transition region: the static confinement 

effect appears at RG/H≈0.1, which means when H lowers down to around 10RG, the 

chain will be strongly confined; Larger than this value, the confinement is not 

pronounced. However, in the highly confined regime, for example when RG/H >2 is 

not accurate, because the original bead-wall potential is not suitable for this model 

anymore, since the bead-wall repulsive potential of the two walls in our model begins 

to interfere with each other at this length scale. Compared to the chain in the channel 

with a square cross section (Jendrejack et al, 2003), the stretch in the slit has a weaker 

dependence on the channel width; there should be no plateau at the regime of smaller 

channel width; the stretch should continue to increase as the decrease of the channel 

width.  

 

                                                 
7 Please refer the concepts of  Free-draining model and Bulk HI model in  section 2.3.4 and section 7.2  
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In addition, it can be seen that free-draining model can not predict the transition 

regime of dimensionless molecular stretch from larger channel width to smaller 

channel width and the stretch remains almost constant shown in Figure 5.6, it is quite 

reasonable: Free-draining polymer chain in this parallel plates is equivalent to an ideal 

chain in 3D random walk with confinement in y direction (wall-normal direction).The 

stretch in other two unconfined directions x and z don’t change, since the random 

walk in each direction is independent of each other.  

 

In fact, Free-draining model with exclude volume interaction (but without 

hydrodynamic interaction) also are examined. However, it gives the same prediction 

with Free-draining model. At the first sight, this result is a little confusing. Because 

according to theoretical prediction (de Gennes, 1979), the strong confinement will 

also be expected at highly confined regime in a model with exclude volume 

interaction. However, if you recall how we include this excluded volume interaction 

in Equation (2.27) in chapter 2, it will be clear that we only consider the bonded 

excluded volume interaction (the EV between a bead and its successive bead) and the 

repulsive interactions between this bead and other surrounding beads are not explored, 

since we switch off the bead-bead hydrodynamic interaction. This will lead to a 

weaker EV effect even in extremely confined geometries. 

 

It is related with Langevin equation Equation (2.27): it can be seen that all the non-

bonded interactions between bead and bead have to be incorporated through 

hydrodynamic interaction. This also explains why we only see the confinement on 

center of mass distribution, but almost no confined effect is predicted in molecular 

stretch in the confined geometry for Free-draining model shown in table 5.2. 

 

Besides the confinement on molecular stretch due to the confined geometry, the 

diffusivity of the chain is also significantly affected by the confined boundary shown 

in Figure 5.7. The simulations show that from around RG/H≈0.1, the diffusivity starts 

to decrease significantly, which means highly confined effect will lead to a smaller 

diffusion coefficient. This critical value for highly confined effect agrees with the 

critical channel width in the molecular stretch. In addition, if we correlated with 

simulation results in Figure 5.6 and 5.7, it can be noted that less stretched chains 

move faster than highly stretched chains does. This is because the diffusivity of the 

 



Chapter 5 DNA in equilibriumTP PT                                                                                               48

chain will decrease when hydrodynamic interaction between the segments is being 

screened with the decrease of channel width. 

 

In conclusion, the equilibrium properties and configurations in free solution and 

confined geometries have been studied in this chapter. First, the confined boundaries 

will change the distribution of center of mass. Second, we observed the equilibrium 

properties, such as molecule stretch and diffusivity of the chain began to be 

significant affected by the geometry at around H=10RG, which indicates that at 

H<10RG, polymers can be considered to be highly confined. 
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Chapter 6 DNA in homogenous flow8

 
In this chapter, we turn to the investigation of nonequilibrium properties of single 

DNA molecule inside the confined geometry under simple shear flow. Both orientation 

and elongation of the chain are investigated numerically as a function of flow 

strength (Wi).  

6.1 Geometry and flow field 

                                
Figure 6.1 illustration of polymer in the infinite parallel walls moving in opposite direction. 

 
In this chapter, we consider the dynamics of single DNA molecule inside two infinite 

long parallel plates (gap width H=3 um) .The centerline of the channel is along the x 

axis, which is the direction of the imposed flow field. The cross section is in the y-z 

plane .The imposed simple shear flow field can be given as follows: 

                                              ( ) , 0x yy y zγ= = =v v& v                                     (6.1) 

Whereγ&  is shear rate. To our knowledge, shear rate is a constant independent of the 

position in the channel under simple shear flow. Therefore, the velocity gradient in the 

direction perpendicular to the wall is zero. 

6.2 Simulation result 
Figure 6.2 shows the center of mass distribution of DNA in the cross section of the 

channel under shear by FENE dumbbell model. It can be seen that in this case, the 

region of the depletion layer near the wall didn’t change with the increase of the flow 

strength, which agrees well with the results in a plane coquette flow reported by 

Larson et al (2002). Their results also indicate that the migration of DNA isn’t 

affected by the flow strength the under simple shear flow by FENE dumbbell model. 
                                                 
8 If not specified, the model used in this chapter don’t include the hydrodynamic interaction. 
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The reason may be that the FENE dumbbell can not reproduce the complexity of the 

configurational restrictions on the chain close to a confined boundary.  
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Figure 6.2 Probability density distribution of center of mass for  FENE dumbbell model with flow at 

different Wi in the silt H=3 um 

For Bead-spring model, it is similar with FENE dumbbell model. As shown in Figure 

6.3, it can be seen the probability density distribution of the center-of -mass near the 

wall didn’t change so much with the flow strength. However, Larson et al. (2002) 

reported depletion layer near the wall should be decreased by the increase of the flow 

strength. They hypothesized that the size of the chain will shrink in the shear gradient 

direction at strong flow strength, which will allow the polymer to approach closer to 

the wall. However, according to the results from the same group (Fang et al, 2005), 

the opposite trends have been found. In addition, Pablo et al (1992) hold that the 

thickness of depletion layer near the wall for Bead-rod model would decrease with the 

increase of the flow strength from lower to intermediate flow strength, but increase 

from intermediate flow strength to strong flow strength. They argued that at lower 

shear rate, molecules would tend to align itself to the flow direction, thereby allowing 

itself approach closer to the wall; at higher shear rate, molecule would rotate mole 

rapidly, therefore it has more chances to interact with wall, which leads to the increase 

of the thickness of the depletion layer of the wall. However, the region with 

configuration restriction effect or steric effect from the wall is only around 1/3 to 1/2 

of RG, so the presence of the wall only affects on the chain very close to the wall. 

Therefore, with the increase of flow strength, the depletion region should not change 
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so much. Although weak migration behavior to the wall reported by Larson et al 

(2002),it is still not consistent with the experimental results (Seo et al,1996). 
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Figure 6.3 Probability density distribution of center of mass for 21um DNA by Bead-spring model with 
flow at different Wi in the silt H=3 um 
In order to test Larson’s idea, the mean orientation <θ> and the mean thickness δy of 

DNA molecule in free solution and confined geometry at various flow strength are 

examined in Figure 6.5. It can be seen that with the increase of the flow strength, the 

mean orientation and the mean thickness δy will decrease, which indicates the chain 

becomes slightly thinner in the velocity gradient direction and tends to align itself 

closer to the flow direction. Those trends can be supported by the experimental results 

at Wi <100 in free solution from Teixiara et al (2005) in Figure 6.4, 

 
Figure 6.4 Probability distributions of (A) extension, (B) thickness, and (C) orientation. Both 22 um 
DNA (Wi =1.6 and 12) and 80 um DNA (Wi= 73) are shown. The bin sizes are 0.025, 0.05, and 1°, 
respectively (Teixiara et al ,2005) 
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Figure 6.5 Mean orientation <θ> and mean thckness δy in the velocity gradient direction for 21um 

DNA in free solution (Free-draining) and confined geometry (Free-draining and Bulk HI) by Bead-

spring model under simple shear flow at different Wi in the silt H=3 um  

B 

A 

                  
A favourable  configuration B  unfavourable  configuration 

Figure 6.6 illustration of the favourable configuration in the shear flow 
though their angle decays faster than that in our case. The reason is unknown. 

 

In Figure 6.5A, it can be seen that the mean orientation <θ> is positive, which means 

the configuration in Figure 6.6A in the flow is favourable in the shear flow. This 

hypothesis of favourable configuration can be supported by the probability 

distribution of orientation in free solution and in the confined geometry under simple 

shear flow shown in Figure 6.7, in which positive angles are more probable to appear. 

This agrees qualitatively well with experimental results by Teixiara et al (2005) in 

Figure 6.4C. In addition, the width of probability distribution of orientation becomes 

narrower and shift to the mean orientation <θ> close to 0, with the increase of the 
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flow strength shown in Figure 6.7, which indicates that the chain will be confined in 

the narrower spectrum of orientation space with the increase of the flow strength. 

 

 

Figure 6.7 Probability distribution of orientation of single 

DNA molecule in free solution and confined geometry 

(with and without HI) under simple shear flow by Bead-

spring model. The bin size is 1o, and probability is 

normalized by the total number of the sample data-

200000.  
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However, we didn’t find that the mean thickness δy of single molecule in gradient 

direction change so much but almost remain constant as shown in Figure 6.5B for the 

case free solution and confined geometry by Free-draining model, even the 

probability distribution of the thickness almost remain unaffected by the flow strength 

shown in Figure 6.8A,B. However, when hydrodynamic interaction (Bulk HI) comes 

into the play, things become different. The mean thickness δy decay a lot with the 

increase of flow strength compared with other two models shown in Figure 6.5B, 

which can be supported by that the thickness distribution shifts to small thickness  

direction with increase of the flow strength shown in Figure 6.8C. The result about δy 

predicted by considering the hydrodynamic interaction is similar with the 

experimental result in Figure 6.4B, which indicates hydrodynamic interaction can 

strongly induce the decrease of the mean thickness δy  

 

Furthermore, as shown in Figure 6.7-6.8, only the model with hydrodynamic 

interaction (Bulk HI) gives correct predictions on all the dynamic properties compared 

with the experimental results in Figure 6.4, though other two models (Free solution 

and confined solution by Free draining model) gives partial correct predictions, 

which hydrodynamic interaction plays an important role on the variation of the shape 

of molecule in the solution under shear flow but less important on other properties, 

such as the distribution of orientation.  
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Figure 6.9 Probability distribution of fractional extension for 21um DNA  by FENE dumbbell model 

with flow at different Wi 
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In figure 6.9-6.10, comparisons of probability distribution of molecular stretch at 

different Weissenberg numbers for FENE dumbbell and Bead-spring model are 

presented. Here, molecular stretch means the average ‘extension’ along the flow 

direction or channel direction. It can be seen that at Wi=1.3, the chain does not differ 

much from the equilibrium state in free solution and the distribution is close to a 

Gaussian shape, which indicates the chain remains coiled state most of the time. At 

the intermediate value Wi=6.3, the chain is stretched to some small extension. As the 

flow strength goes to high, such as Wi=76, the chain is unfolded to a large degree.  
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Figure 6.10 Probability distribution of fractional extension and corresponding configuration for 21um 

DNA by Bead-spring model with flow  

stretch coil 

The width of distribution is broadened and it seems that molecular configuration with 

high extension seems to be more probable to appear. This result agrees qualitatively 

well with the prediction by Celani et al (2005). Compared with the results for DNA 

molecule from Simth et al (1999), Hur et al (2000) and experimental results in Figure 

6.4 our results have excellent agreement with them at the lower Weissenberg 

numbers, but their measurements didn’t show a peak at near the maximum stretch in 

the higher flow strength. Their results indicate every configuration of the molecular 

stretch is almost equally probable to appear. This difference may come from the bead 

number we use (10) is smaller than their value (20). Of course, we can use more beads 

to get more accurate result, but it can be seen the difference is not very large, which is 

enough to capture the essence of the phenomena in the length and time scale of our 
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confined geometry shown in Figure 6.1. In addition, as the increase of flow strength, 

the fractional molecular stretch asymptotes to around 0.5 shown in Figure 6.11 , 

which is similar with the value of 0.5 from Hur et al (2000). This is interesting: it 

means the average molecular stretch will remain 0.5 even at very high shear rate. 

Larson (2005) explained these phenomena according to the observation by Simth et al 

(1999): The chain tends to align itself to the flow direction under flow strength. 

However, Brownian force will kick the beads out of the shear plane with a positive or 

negative angle shown in Figure 6.13. According to our knowledge on fluid dynamics, 

a simple shear flow can be regarded as the superimposition of pure elongation flow 

and pure rotation flow shown in Figure 6.12. Due to the coupling of those two flow 

effects, the dynamics of polymer molecules in the shear flow will become 

complicated. After being kicked out of the shear plane, there will be two possibilities 

for a stretched chain: for the positive angle, drag force will stretch molecular further 

and the vorticity will derive the molecular back to the shear plane; for negative angle, 

drag force will help the chain relax and vorticity will carry it to the shear plane shown 

in Figure 6.13. After coming back, the molecule will be kicked out of the shear plane 

and then repeat the above process. During this process, DNA molecule will 

experience stretching, tumbling, coiling state irregularly. Based on this mechanism, 

although molecule has more chances to stretch, it also has a substantial probability to 

tumble, so the average stretch approaches to 0.5 even at the higher shear rate (Larson, 

2005)      
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Figure 6.11 average fractional extension of 21um DNA by Bead-spring model at different Wi 
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Figure 6.12 illustration of simple shear flow can be regarded as the superposition of the pure elongation 

flow and pure rotation flow 

rotation shear elongation

         

stretch 
tumble 

positive angle negative angle 

     Figure 6.13 illustration of the tumbling dynamics of polymer in the simple shear flow 
 
In this chapter, dynamics of DNA molecule under simple shear flow in the confined 

geometry is investigated. It can be seen that statistical properties of single DNA 

molecule, such as probability density distribution of center of mass in physical space, 

have been significantly affected. As the increase of flow strength, the chain will be 

confined in a narrower orientation space and hydrodynamic interaction becomes 

important when we consider the variation of the size of molecule in the velocity 

gradient direction. This indicates that hydrodynamic interaction will play an import 

role on some nonequilibrium properties, and we will discuss this effect in detail in 

chapter 7. 

 

So far, migration behavior of DNA molecule due to the variation of the flow strength 

is not discovered in those models without including hydrodynamic interaction, which 

doesn’t agree with experimental results (Ausserre et al, 1991, Seo et al, 1996) and 

simulation results from others (Hur et al 2000, Pablo et al 1992). There are several 

reasons for these discrepancy mentioned by Pablo et al (1992): first, we neglect the 

hydrodynamic interaction between bead and bead. Second, hydrodynamic interaction 

created by the confined geometry has been neglected for simplicity. Third, since 

molecules have less probability to appear to the region near the wall, it should create 

 



Chapter 6 DNA in homogenous flowTP PT                                                                                    58

inhomogeneous flow, but we assume the flow field won’t be disturbed. Those 

simplifications should be questioned; we will incorporate those effects into the next 

chapter.  
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Chapter 7 DNA in inhomogeneous flow 
 
 

In the last chapter, Dynamics of single DNA molecule in the confined geometry under 

the homogenous flow (simple shear flow) has been investigated. It can be seen that 

DNA molecules display different behaviors in confined geometry compared to the 

case in the free solution. But we didn’t find the migration effect near the wall as 

people reported migration toward the wall (Pablo et al 1992, Larson et al. 2002) or 

migration to the center of the channel (Seo et al 1996, Jendrejack et al, 2004). As 

mentioned before, that’s because we did some assumptions for simplicity. In this 

chapter, those neglected effects in our model will be taken into the play, especially the 

influence of the wall to the hydrodynamic flow. 

7.1 Geometry and flow field 
   

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.1 illustration of single DNA molecule in a microchannel with a square cross section and 

velocity profile under pressure-driven flow. x is the flow direction 

 
In this chapter, we considered the dynamics of single DNA molecule in an infinite 

long microchannel with a square cross section (gap width H=6.36 um) .The center line 

of the channel is along the x axis, which is the direction of the imposed flow field. 

Thus, the cross section is in the y-z plane .The imposed pressure-driven flow field can 

be given by Jendrejack et al (2004) as follows: 
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Where -dp/dx is the pressure difference along the flow direction, η  is the viscosity of 

the solution, H is the width of the channel. The strength of the flow is defined by an 

effective shear rate, max2 /eff v Hγ =& , where max (( 0, 0))y z= = =v v  is the velocity at 

the center line of the channel.  

7.2 Hydrodynamic Interaction model 
In this chapter, three models with different levels to treat hydrodynamic interaction 

are compared9. The hydrodynamic interaction can be incorporated into Brownian 

dynamics through hydrodynamic interaction tensor  in the diffusion tensor   

shown in Equation (2.27) and (2.30) as follows: 

ijΩ ijD

1/ 2

1 1 1

6N N N
ij si

i ij i
j j jj B

d
dt k T dt= = =

∂ ⎛ ⎞= ⋅ + ⋅ + + ⋅⎜ ⎟∂ ⎝ ⎠
∑ ∑ ∑

Dr κ r D F B
r ij in  

1( )
6ij B ij ij

s

k T
a

δ
πη

= +D I Ω
 

The simplest model to treat the hydrodynamic interaction is Free-Draining model, 

which means the hydrodynamic interaction  is neglected and a bead will not be 

affected by the flow field due to the motion of its surrounding beads. Therefore, the 

diffusion tensor can be expressed as follows: 

ijΩ

                                                       
6

FD B
ij ij

k T
a
δ

πη
=D I                                                  (7.2) 

Here it can be seen that  is a symmetric, isotropic and position-independent 

tensor.  

FD
ijD

 

A more accurate approximation to describe the hydrodynamic interaction is Bulk 

Hydrodynamic Interaction model. Hydrodynamic interaction between bead and bead 

in free solution is included into the diffusion tensor as follows: 

                                    1 (1 )
6

Bulk RPY
ij B ij ij ijk T

a
δ δ

πη
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

D I Ω                            (7.3)

Where  is the Rotne-Prager-Yamakawa (RPY) Tensor mentioned in chapter 2. 

It is a symmetric, but anisotropic and inter-configuration dependent tensor, which 

leads to configuration-dependent and anisotropic diffusion tensor. 

RPY
ijΩ

                                                 
9 These three models we have metioned in Chapter 2 
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However, the most accurate model-Full Hydrodynamic Interaction model is to take 

the influence from the confined geometry into the play. Usually, this term can be 

neglected because the length scale of the microchannel is much larger than the radius 

of gyration of DNA molecule. However, in our case, the length scale can be 

comparable to the radius of gyration, therefore the correct term from the wall becomes 

important to the dynamics of DNA molecule in the microchannel. Thus, the diffusion 

tensor in Full HI model can be given as follows: 

                              1 (1 )
6

Full RPY wall
ij B ij ij ij ijk T

a
δ δ

πη
⎡

= + − +⎢
⎣ ⎦

D I Ω Ω ⎤
⎥  (7.4) 

Where is supposed to be an asymmetric, but anisotropic, inter-configuration and 

position dependent tensor due to the configuration dependent bead-bead 

hydrodynamic interaction and position-dependent wall hydrodynamic interaction.  

Full
ijD

 

7.3 Simulation result 
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The effect of the flow strength on the probability distribution of center-of-mass is 

represented in Figure 7.2 for a 21 um DNA molecule by Free-draining model. At 

equilibrium (Wi=0), the center-of-mass has a uniform distribution across the channel, 

except a depletion layer near the wall (Blue area) due to steric hindrance from the 

wall. As the increase of the flow strength, the depletion layer near the wall is 

unaffected, which can be quantified by the width of the center-of-mass in the Figure 

7.8.This is similar with the phenomena we observed in the simple shear flow in 

chapter 6 (the reason will be discussed later). However, this is not consistent with the 

experimental results by Fang et al (2004), they reported that the depletion layer will 

be enlarged with the increase of the flow strength. 
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Figure 7.3 represents the influence of flow strength on the probability distribution of 

chain stretch in the cross section of the channel for a 21 um DNA molecule by Free-

draining model. These plots are plotted as the average stretch at given position in the 

cross section in order to decouple it from the probability of finding a chain at this 

position. It can be seen that the distribution is uniform at equilibrium (the blue area 

means the small probability of finding a chain there), the chain in the depletion layer 

is slightly more elongated than that in the center of the channel due to the steric 

hinderance. It’s because only higher  stretched chain parallel to wall can survive in the 

region near the wall as illustrated in Figure 7.4. Because less restricted configuration 

has a larger thickness in the direction perpendicular to the wall, so at the same 

distance above the wall, the chain with this configuration can be pushed away from 

the wall first. Therefore, it leads to a lower density of center-of-mass near the wall but 

higher average strength there. 

 
Figure 7.4 illustration of configurations of the chain near the lower wall. The red area is the region 

where the chain can feel the repulsive force from the lower wall.  

 

As the increase of the flow strength, the chain is highly elongated if we compared the 

4 plots in the Figure 7.3. The probability distribution of the chain extension becomes 

highly nonuniform compared with the equilibrium case. At higher Weissenberg 

number, the chain near the wall are strongly aligned and elongated to the flow 

direction against the randomizing influence of Brownian motion, but the chain near 

the center is less elongated at the center line of the channel, and a minimum of the 

averaged stretch is shown in Figure 7.3 B, C, D. This is due to the inhomogeneous 

properties of the parabolic flow, the local velocity gradient near the wall is higher than 

that near the center of the channel, which means the shear rate near the wall is higher 

than that near the center.   

 

In Figure 7.5 A, B, C, the effect of the flow strength on the probability distribution of 

center-of-mass is represented for a 21 um DNA molecule by Bulk HI  model.  
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the centerline (near the wall), then decrease to a local minimum at the centerline. The 

maximum is the consequence of the competition between the steric hinderance from 

the wall and the spatial variation of the bead-bead hydrodynamic interation produced 

by the inhomogeneous flow. The steric effect will give the repulsive force to drive the 

molecule (very close to the wall) away from the wall, but the spatial variation of the 

diffusivity along the chain in the velocity gradient direction will make the chain 

migrate out of regions of lower shear rate to regions of higher shear rate. Therefore, a 

maximum appears near the wall, which can be illustrated as a simple picture in Figure 

7.6. As known from Chapter 6, the chain has fewer configurations in gradient 

direction and orientates almost parallel to the flow direction at strong shear rate; at 

smaller shear rate, the chain has more configurations in gradient direction. Therefore, 

the simple mechanism is: the chain near the center (lower shear rate) migrates 

towards wall due to an implicitly position-dependent diffusivity (induced by the 

configuration-dependent hydrodynamic interaction). When it enters into the excluded 

region near the wall, the contribution to the drift toward wall from the diffusion 

becomes less important; at the same time, the drift term toward the center contributed 

by the repulsive wall becomes important. At a particular point near the wall, the 

upward drift term will be equal or larger than the downward drift term. This is where 

the maximum is.  

 
Figure 7.6 illustration of the mechanism of migration behavior of the chain in the microchannel 

predicted by Bulk HI model. The area below the dash line is the region where the chain can feel the 

repulsive force from the lower wall. Here we only plot the lower wall for simplicity. x and y is flow 

direction and its velocity gradient direction. 

 
In addition, it can be seen in Figure 7.8 that as the increase of the flow strength, the 

width of center-of-mass is slightly increased, which indicates the chain migrates 

toward the wall and leads to a thinner depletion layer. It is because the flow strength 
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increases, the velocity gradient perpendicular to the wall is increased compared to the 

smaller flow strength, which indicates the variation of diffusivity along the chain(near 

the center) is larger at stronger flow strength. This stronger driving force under the 

stronger flow strength makes the chain migrate towards the wall further compared 

with the case in smaller flow strength. 

 

Figure 7.5 D, E, F show the average stretch in the cross section is increased with the 

increase of the flow strength and the distribution is still nonuniform as we observed in 

the Free-draining model. At lower Weissenberg number, the average stretch 

decreases monotonically from the maximum near the wall to the minimum in the 

center. The reason is the same: higher local velocity gradient induced the higher 

extension near the wall. The only difference is that the average stretch in the local 

minimum is not as low as that predicted by Free-draining model if we compared with 

Figure 7.3C and Figure 7.5 E. The reason is unknown. It may be because part of the 

less stretched chains migrate toward wall and highly elongated chains will migrate 

toward the center, so the probability of finding a less stretched chain becomes smaller 

near the center, therefore the chain in the center of the channel is predicted with 

higher average stretch in Bulk HI model compared with that predicted by Free-

draining model. In other words, because of the migration of less stretched chain, you 

can find a less extended chain in the region near the wall with a relatively higher 

probability, and more higher stretch molecules near the center, which means the 

average stretch in the region near the center is higher and a relatively smaller stretch is 

predicted near the wall compared with that in Figure 7.3  

 

So far, it seems that we got a reasonable result for the migration behavior, but this is 

not the case, which has an opposite trend on migration behavior. It is because we 

didn’t treat the contribution to the flow field from the wall in an accurate way. 

Although the steric effect has been considered, it is only restricted itself in a boundary 

layer near the wall, which is a short-range interaction and will not influence the whole 

velocity field. Therefore, it is necessary to include the wall hydrodynamic interaction, 

which is Full HI model, to see any difference there. 
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Figure 7.7 Steady state center-of-mass distribution and Steady state of stretch as a function of position of center-

of-mass  in the cross section (y-z plane) of the channel for a 21um DNA chain in a 6.3 um wide channel by Full 

HI model. A,D eff 3.98γ =& s-1( Wi=0.44 ) , B,E eff 30.8γ =& s-1 ( Wi=3.39 ), C,F eff 308γ =& s-1( Wi=33.9 ) 
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Figures 7.7 A, B, C illustrate the effect of flow strength on the probability distribution 

of the center-of-mass distribution. It can be seen that as the increase of the flow 

strength, a hydrodynamic-induced depletion layer (red area) is forming and depletion 

effect is quite strong at stronger flow strength. This can be supported by Figure7.8: 

the width of center-of-mass distribution in the cross section of the channel is 

decreasing with the increase of the flow strength, which indicates the depletion layer 
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is enlarging. Figure 7.7 C also indicates the distribution increases nonmonotonically 

from the pronounced depletion area near the wall and peaks at the halfway between 

the wall and the center, and then decreases to the local minimum in the center. This is 

due to the Brownian drift  away from the centerline and deterministic drift away from 

the wall (due to the asymmetry of the bead mobility and wall hydrodynamic 

interaction due to the presence of the wall). The details of the mechanism will be 

discussed in the next section. 

 

Figure 7.7 D,E,F show the average stretch in the cross section is increased with the 

increase of the flow strength. At the lower Weissenberg number, the distribution is 

fairly uniform, except the depletion layer near wall; higher strength appears there 

which is similar with those we have observed in the previous two models. At stronger 

flow strength, the maximum of average stretch seems to peak at halfway between the 

center and wall. This maybe because the less stretched chain will migrate toward the 

wall, while highly elongated chain near the wall drift away from the wall due to the 

presence of the wall. Therefore, the competition of those two effects leads to 

nonmontonical distribution of molecular stretch in the cross-section of the channel.       
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Figure 7.8 Width of the steady-state center-of-mass distribution w (relative to equilibrium weq) in the 

microchannel as a function of flow strength for 21 um DNA by Free-draining model (black),Bulk HI 

model (red),and Full HI model (blue). 
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Figure 7.8 represents the width of the steady-state center-of-mass distribution 

normalized by the equilibrium width as a function of flow strength. Results are shown 

for Free-draining model, Bulk HI model, and Full HI model. It can be seen that the 

width is unaffected with the variation of the flow strength in Free-draining model, 

which means migration effect is not expected by this model. For Bulk HI model, the 

width slightly increases with the flow strength, which indicates weak migration 

toward the wall. In addition to Full HI model, the width decrease a lot compared with 

other two models, therefore migration away from the wall is predicted and the 

depletion layer increases with the flow strength. Those results indicate that molecular 

migration away from the wall is induced by the coupling of bead-bead hydrodynamic 

interaction and hydrodynamic effect from the confined geometry.The mechanism in 

details will be discussed in the next section.  

7.4 Mechanism on migration behavior 

7.4.1. General analytical approach 
In the last section, the different migration behaviors under pressure-driven flow in the 

confined geometry have been predicted by different hydrodynamic interaction model. 

So far, only Full HI model gives a correct prediction to migration behavior. The 

depletion layer is significant affected by the variation of the flow strength, which 

indicates the chain migrates toward the center of the microchannel. Various 

mechanisms have been explored in order to explain the migration behavior in 

confined geometries. From Jendrejack et al’s work (2004), it is now well accepted 

that configuration dependent hydrodynamic interaction coupled with inhomogenous 

shear flow and confined boundaries are most likely responsible for the migration 

across streamlines. In this section, Jendrejack’s idea is followed and simple modified 

mechanism will be proposed.  

 

To explain those phenomena, the theoretical analysis of elastic dumbbell model (two 

beads connected by a spring) is carried through the generalized diffusion equation. 

The probability distribution functionΨ for a single dumbbell is a function of positions 

of two beads (r1, r2) and time (t) in physical space. So the continuity equation for 

(rΨ 1, r2,t) can be given as follows (Bird et al, 1987): 

                              1 2
1 2

( ) (
t

)∂Ψ ∂ ∂
= − ⋅ Ψ − ⋅ Ψ

∂ ∂ ∂
r r

r r
& &   (7.5) 
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where ,  is the velocity of beads at the r1r& 2r& 1, r2. Since the relationship between r1, r2 
and center of mass rc and the connector vector q as follows: 
                                                          1 22 (c )= +r r r  (7.6) 

                                                            2 1= −q r r      (7.7) 

                                                           1
1
2c= −r r q    (7.8) 

                                                           2
1
2c= +r r q           (7.9) 

So the following derivatives can be got: 

 1 2

1 2 1c c c

∂ ∂∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂q q

r r
r r r r r r r2

 (7.10) 

 1 2

1 2 2

1 (
2

c c

∂ ∂∂ ∂ ∂ ∂ ∂
= + = −

∂ ∂ ∂ ∂ ∂ ∂ ∂r r

r r
q r q r q r r1

)  (7.11) 

Subsituting (7.6)-(7.11) into (7.5), Equation (7.5) can be rewritten as follows: 

 

1 2
1 2

1

( ) ( )

1 1( ) ( )
2 2

( ) ( )

c c

c
c

t
∂Ψ ∂ ∂

= − ⋅ Ψ − ⋅ Ψ
∂ ∂ ∂

∂ ∂ ∂ ∂
= − − ⋅ Ψ − + ⋅ Ψ

∂ ∂ ∂ ∂
∂ ∂

= − ⋅ Ψ − ⋅ Ψ
∂ ∂

r r
r r

r
r q r q

r q
r q

& &

&

& &

2r&  (7.12) 

Where the average velocity of center of mass rc is given as follows (Bird et al 1977) 

 
2 2

1 2
, 1 , 1

2 ( ) ln
s
j

c ij ij
i j i jB jk T= =

∂
= ⋅ + + ⋅ − ⋅ Ψ

∂∑ ∑
F

r κ r r D D
r

&    (7.13) 

and average time evolution rate of connector vector q  is : &

 
2 2

2 1 2 1 2 1
1 1

( ) ( ) ( ) l
s
j

j j j j
j jB jk T= =

∂
= ⋅ − + − ⋅ − − ⋅ Ψ

∂∑ ∑
F

q κ r r D D D D
r

& n      (7.14) 

Now it can be seen that the probability distribution functionΨ can be rewritten as a 

function  of center of mass r( , , )c tΨ r q c and the connector vector q. But what we are 

really interested in the relationship between Ψ and position center of mass rc. Therefore, 

we integrate Equation (7.12) in order to decouple the influence of q and rc : 

                                                       ( , ) ( , , )c cC t t d= Ψ∫r r q q  (7.15) 

So the continuity equation for center of mass rc can be given as follows: 

                                                         ( , )
c

c
c

C t
t

∂
= −∇ ⋅

∂ r
r j  (7.16) 
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where  is the probability distribution of center of mass r( , )cC tr c and c c C=j r&  is the 

momentum-space-averaged center-of-mass, integrated over the internal degrees of 

freedom of the chain, and the average is defined as follow: 

                                                             A A d= Ψ∫ q  (7.17)  

Therefore c Cr&  can be got by multiplying Equation (7.13) by Ψ and integrate by 

connector vector q : 

First, we rewrite the r as follows rc: 

 1 1 1ˆ( ln ln
2 4 2

s
c c

c
)∂ ∂

= + ⋅ − Ψ − Ψ
∂ ∂

r v Ω F D D
r q

&  (7.18) 

Where 

                                                              1 2
s s s= = −F F F  (7.19) 

                                                              1 2
1 (
2cv )= ⋅ +κ r r  (7.20) 

            (7.21) 11 22 21 12
ˆ ( + )+( +=D D D D D )

                11 22 21 12( ) (= − + −Ω Ω Ω Ω Ω )  (7.22) 

              Bk T=D Ω  (7.23) 

Thus c c C=j r&  can be expressed as follows (Jendrejack et al,2004): 

1 1 1 ˆ( ) (
2 2 4

s
c c

B c
C C

k T
⎡ ⎤ ∂ ∂

= + ⋅ − ⋅ − ⋅⎢ ⎥ ∂ ∂⎣ ⎦

Dj v F D D
q r

)C  

11 22
1 1 1ˆ ˆ[2 ( ) ]
2 4 4

s
c

c c
C C⎡ ⎤ ∂ ∂ ∂

= + ⋅ − ⋅ − ⋅ + + ⋅ − ⋅⎢ ⎥ ∂ ∂ ∂ ∂⎣ ⎦
v Ω F D D D D D

q r r rc
C∂

                                                                                                                                (7.24) 

The steady state solution condition for Equation (7.16) is 0
c c−∇ ⋅ =r j , but in our case, 

the confined boundary condition is : 

 , 0c y =j  at the wall (7.25) 

                                                   , 0c z =j  at the wall (7.26) 

It leads to jc,x =0, therefore the steady state solution condition can be simplified as 

follows: 

 0c =j  (7.27) 
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With the corresponding boundary conditions, the corresponding distribution of center 

of mass C(rc) in the physical  space is supposed to be solved by an analytical way. 

However, this is just for dumbbell model; kinetic theory for advanced model such as 

bead-spring model can be much more mathematically complicated. 

 

In equation (7.22), C(rc) can be regarded as probability distribution function in 

physical space of the confined geometry and the terms proportional to C(rc) can be 

regarded as a ‘drift’ term to the probability distribution. The ‘drift’ or ‘migration’ also 

can be understood in this way: the probability distribution in the confined geometry 

will change with the variation of the flow strength.  

 

First, we try to give a physical explanation to those terms. For pressure-driven flow in 

the channel, the first term ( )c cCv r  is the contribution from the flow field, but this 

term is zero in the wall-normal directions, because the components of the flow field in 

wall-normal directions are zero, which indicates the imposed flow field can not induce 

the migration effect directly. 

 

The second term ( )1
2

s
cC⋅Ω F r  indicates that a dumbbell in tension or (compression) 

near a solid boundary may experience a deterministic drift which is not necessary 

along the streamline (Jendrejack et al 2004) due to the difference on bead mobility 

 and bead-bead interaction 11 22( −Ω Ω ) )21 12( −Ω Ω  in the inhomogeneous flow. 

 

The term behind the first two terms is the Brownian contribution to the drift. In fact, 

this term is something between deterministic and stochastic in nature, since this term 

is the coupling of the diffusivity of the dumbbell and Brownian portion. If the 

diffusivity is position-dependent, at least implicitly position-dependent, this 

contribution becomes non-completely Brownian. Further insight into this term, there 

are four parts: the first term in average ∂
⋅

∂
D

q
 is the contribution due to the variation 

on the difference of  bead mobility ( - ) and bead-bead hydrodynamic 

interaction ( - ); the second 

11Ω 22Ω

21Ω 12Ω 11 22(
c

∂
⋅ +

∂
Ω Ω

r
) and third term ˆ

c

∂
⋅

∂
D

r
indicates the 
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contribution due to the spatial variation on the bead mobility and  bead-bead 

hydrodynamic interaction. The last term represents the typical Ficknian diffusion: 

1 ˆ
4 c

C∂
⋅
∂

D
r

,where 1 ˆ
4

D  is the Kirkwood diffusivity ,averaged over all the internal 

coordinates (Jendrejack et al 2004).With this starting point, we will give a physical 

explanation to the phenomena in chapter 6,7.  

 

7.4.2. Migration in Free-draining model 
 
For the case of chain in homogenous flow in Chapter 6, Free-draining model is used 

by neglecting bead-bead interaction and wall hydrodynamic interaction, which 

indicates the diffusivity of the chain is constant and independent of the position in the 

channel. Therefore, the following condition can be deduced: 

                                              11 22 12 21  ,  0Bk T
ζ

= = =D D I D D =  (7.28) 

Thus, Equation (7.24) can be simplified as follows: 

           1 ˆ
4c c

c
C ∂

= − ⋅
∂

j v D
r

C  (7.29) 

Since probability distribution is only function of yc
10 at steady state, the components 

of jc in wall-normal direction for simple shear flow is given as follows: 

            
11 22

1 ( ) (
4

( )
2

cy c
yy c

B
c

c

C y
y

k T C y
yζ

∂
= − + ⋅

∂

∂
= −

∂

j D D )

                                                

 (7.30) 

where yc is the distance away from the centerline of the channel. It can be seen that 

there is no deterministic drift, only Brownian contribution (Fickian diffusion with 

confined boundaries), which predicts a uniform distribution and can not be influenced 

by variations of the flow strength. Therefore, Free-draining model in the simple flow 

can not predict migration behavior.  

 

For the case of the chain in the inhomogeneous flow in chapter 7, Equation (7.30) is 

still suitable for this case, because the diffusivity of the chain is still not configuration 
 

10 In fact, probability distribution is also dependent on , but direction y and z is symmetric, so we can 
assume C is only dependent of y

cz
c for simplicity. 
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or position-dependent. Therefore, deterministic migration still can not be predicted in 

this case with the change of the flow strength. This analysis of both cases by Free 

draining model is consistent with the numerical results in Figure 6.3 (chapter 6) and 

Figure 7.2 respectively. 

 

In general, the Free-draining model is basically a partially confined random walk. The 

segments of the chain undergo random interactions with its bonded neighbors and 

solvents. No deterministic migration will occur, even in inhomogeneous flow.  

7.4.3. Migration with Bulk Hydrodynamic interaction: 

 

 
 
 
Figure 7.9 illustration of example system in Figure 

7.10. In this case, the position r1 of bead 1 is fixed 

and  bead 2 is moving away from bead 1 in x-

direction without changing the distance between 

bead 1 and bead 2 in y direction 

Figure 7.10 illustration of configuration dependence of 

Oseen tensor in the case of Figure 7.9. a. xx component of 

 b. xy component c. yy componet,where a is the bead 

radius 

OBΩ

 
Now, if we build up our model more accurately, Bulk hydrodynamic interaction is 

needed to taken into the play. In this model, bead-bead hydrodynamic interaction is 

configuration dependent illustrated in Figure 7.9, which leads to the anisotropic 

diffusivity. Figure 7.9 represents the one point force is fixed at r1 and another point 

force is moving away from r1 in x direction (the flow field direction) without 

changing the distance in y direction (wall-normal direction). In Figure 7.10, the 
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corresponding evolution of Oseen tensor is presented11. It can be seen that when bead 

2 is moving away from bead 1, all components of Oseen tensor will decrease with the 

increase of q= 2 1−r r . The most interesting part is Figure 7.10 C: yy component will 

fall off with the increase of the distance in x direction and decay slowly (until 5 times 

of bead radius)! It indicates that wall-parallel orientated point forces will induce a 

weaker bead-bead hydrodynamic interaction in the wall-normal direction. In other 

words, highly stretched molecule in the direction of flow field will have smaller 

diffusivity in velocity gradient direction (the wall-normal direction in our case) 

compared to less stretched chains. In simple shear flow, this never happens. However, 

in the pressure-driven flow, the shear rate is higher near the wall than that close to the 

center, which will induce an implicitly position-dependent diffusivity. With this idea 

in mind, theoretical analysis can be introduced.  

 

In this case (pressure-driven flow, Bulk HI model), we use Oseen tensor for 

simplicity: 

 11 22 12 21 12  ,  ( )OBB Bk T k T ζ
ζ ζ

= = = = +D D I D D I Ω  (7.31) 

Thus, Equation (7.24) can be simplified as follows: 

 12 12( )
2 2

OB OBB B
c c

c c

k T k TC C ζ
ζ

∂ ∂
= − ⋅ − + ⋅

∂ ∂
j v Ω Ι Ω

r r
C  (7.32) 

If we take the component of jc in wall-normal direction, 

 ( ) ( )12 12( )
2 2

OB OBB B
cy c cyy

c cyy

k T k TC y C y
y y

ζ
ζ

∂ ∂
= − ⋅ − + ⋅

∂ ∂
j Ω I Ω  (7.33) 

Because in the steady state, probability distribution function C(rc) is only dependent 

on 12
cy , so the component  of j  in wall-normal direction is given as follows c

 ( ) ( )12, 12,( )
2 2

OB OBB B
cy yy c yy c

c c

k T k TC y C y
y y

ζ
ζ

∂ ∂
= − ⋅ − + ⋅ =

∂ ∂
j Ω I Ω 0  (7.34) 

which leads to : 

 
1

12, 12,
ln ( ) (1 )OB OBc

yy yy
c c

C y
y y

ζ ζ
−∂ ∂

= − +
∂ ∂

Ω Ω  (7.35) 

                                                 
11 RPY tensor also can be used,using Oseen tensor is only for simplicity. 
12 In fact, probability distribution is also dependent on , but direction y and z is symmetric, so we can 
assume C is only dependent on y

cz
c for simplicity.  
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As we have mentioned before, the diffusivity or Oseen tensor (bead-bead 

hydrodynamic interaction) is implicitly position dependent, the yy component  

12,
OB

yyΩ 1(1 )yq q q−∝ + 2  (where q = q and is the connector vector) will decrease 

monotonically to an asymptotic value from center to the wall under the pressure-

driven flow and remains positive shown in Figure 7.10. In fact, the decay is very 

similar to Figure 7.10, but not the same. This is because the assumption of Figure 7.10 

is the fixed separation distance in y direction, the real case is that the chain will be 

squeezed in the velocity gradient direction when the chain approaches the wall

q

13. 

Fortunately, the thickness in this direction didn’t change so much compared to the 

increase of the stretch in x-direction as we know from Chapter 6. Therefore, the case 

happened in Figure 7.10 C is dominant in the parabolic flow and the separation 

between two beads in y direction can be assumed to be fixed for simplicity. As shown 

in the Figure 7.10, the maximum of  appears in the center (smallest stretch at 

there), thus 

12,
OB

yyΩ

12, 0OB
yy

cy
∂

=
∂

Ω  at the center, therefore the minimum of C(yc) is predicted at 

the center and C(yc) will increase  monotonically from the center to the wall, which 

agrees well with the numerical results we get in Figure 7.6 C. As the increase of the 

flow strength, decaies faster to the asymptotic value from center to the wall. 

Therefore, the probability distribution will become broader in the wall-normal 

direction with the increase of the flow strength, which means migration toward wall is 

predicted by the Bulk HI model due to the anisotropic diffusivity of the chain (induced 

by spatial variations on the configuration-dependent bead-bead hydrodynamic 

interaction) 

12,
OB

yyΩ

 

7.4.4. Migration with wall hydrodynamic interaction: 
In the above analysis, the contribution to migration from wall hydrodynamic effects 

has been neglected. For the pressure-driven flow in the microchannel, if the 

contribution to hydrodynamic interaction from the wall is considered, we have: 

 11 11 ( wBk T ζ
ζ

= +D I Ω )

                                                

 (7.36) 

 
13 We have proved that the thickness in the velocity gradient direction will decrease with the increase of 
the flow strength in chapter 6;in the parabolic flow, shear rate is higher rate near the wall than that  near  
the center. Therefore, the thickness will decrease when the chain approach the wall. 
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 22 22  = ( wBk T ζ
ζ

+D I Ω )  (7.37) 

 12 12 12( OB wBk T ζ ζ
ζ

= + +D I Ω Ω )  (7.38) 

                                          21 21 21( OB wBk T ζ ζ
ζ

= + +D I Ω Ω )                                       (7.39) 

If we neglect the Brownian drift term in Eq (7.22), Eq(7.22) can be simplified as 

follows: 

 11 22 21 12
1 1 ˆ2 ( ) ( )
2 4

w w w w s
c c

c
C ∂⎡ ⎤= + − + − ⋅ − ⋅⎣ ⎦ ∂

j v Ω Ω Ω Ω F D
r

C  (7.40) 

Since C(rc) is only dependent on yc, the component of  jc  in the wall-perpendicular 

direction and it’s deterministic portion(det) can be given by Eq(7.24): 

 11 22 21 12
1 1 ˆ( ) ( )
2 4

w w w w s
cy yy

yy c
C

y
C∂

= − + − ⋅ − ⋅
∂

j Ω Ω Ω Ω F D  (7.41) 

 det ( ) ( )w
cy c cy

y C= ⋅j Ω F y  (7.42) 

 11 22 21 12( ) (w w w w w= − + −Ω Ω Ω Ω Ω )  (7.43) 

It can be seen that wΩ  is proportional to the difference in bead motility  

and asymmetric portion of bead-bead interaction  due to the presence of 

the wall compared with 

11 22( )w w−Ω Ω

21 12( w w−Ω Ω )

Ω=0 for the case of Bulk HI model in the last section. If we 

can assume that deterministic term can balance with Fickian term at steady state, Eq 

(7.41) can be rewritten as follows: 

 ln 1
12 ˆ
4

w s
yy

c

yy

C
y

⋅∂
=

∂

Ω F

D
 (7.44) 

Although there is no analytical expression for in this confined geometry, it can be 

seen that the distribution will depend on the coupling of the sign and magnitude of the 

spring force, the difference in bead motility and asymmetric portion of bead-bead 

interaction due to the presence of the wall, and the Kirkwood diffusivity. Since it is 

too complicated to get the analytical expression, we will try to give a simple picture 

what happens in the channel. 

wΩ
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Figure 7.11 represents a characteristic configuration near the wall under parabolic 

flow: a highly stretched elastic dumbbell orientated parallel to the wall14.In this case, 

hydrodynamic flow in the local region due to the point forces at the bead 1 and bead 

2, can be described by Oseen tensor. Here we neglect the repulsive force from the 

wall, because the repulsive force is a short distance interaction, the chain can feel its 

presence only when the chain is very close the wall. Therefore, the chain only 

experiences the spring force in the wall-parallel direction. If the chain is in a free 

solution, the hydrodynamic flow generated by point forces at two beads is symmetric, 

so there is no preference for chain to move up or down; Things become different 

when the wall appears: Due to the impenetrable wall, the velocity at wall the must be 

zero. The wall must generate a reflection flow field in order to fulfill the no-slip 

condition. This reflection flow field will counteract the part of the downward 

hydrodynamic flow, which make the total hydrodynamic flow upward or away from 

the wall.  

 

 

 

 

 

    

       
Figure 7.11 a elastic dumbbell in tension, parallel to the lower wall with F1x= -F2x,, induces the 

reflection flow field from the wall. Black line is the flow field induced by the point forces at bead 1 and 

bead 2, the red line is the refection flow field due to the presence of the wall. Here we assume that 

dumbbell is not very close to the wall in order to decouple the influence from the repulsive force from 

the wall and here we assume that the dumbbell can not feel the presence of the upper wall. 

 

To illustrate this, recall that we have evaluated the hydrodynamic influence from wall-  

the correction term   numerically in the chapter 2. Figure 7.12 represents the 

hydrodynamic influence due to the presence of the wall, please note Figure 7.12 only 

presents the reflection velocity contributed from the wall correction term, the 

contribution from Oseen tensor is not included. This can be interpreted as the chain 

(near the wall) in stretch orientated parallel to the wall will experience the drift 

wΩ

                                                 
14 The shear rate is higher near the wall under parabolic flow, so the chain tends to align with the flow 
direction, which we have known from chapter 6.  

F1x F2x

y 

x 
1 2 (flow direction) 
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velocity away from the wall due to the horizontally orientated point forces, and higher 

stretched chain will experience a larger drift velocity. When the chain is far from the 

wall enough, the hydrodynamic flow by point forces at two beads will be symmetric 

again and the drift will disappear. In the above statement, we made an assumption: the 

diffusivity of the chain is not configuration dependent or position dependent. If the 

configuration-dependent diffusivity is considered, the drift direction will depend on 

the competition of the drift toward the center due to the presence of the wall and the 

drift toward the wall induced by the spatial variation on the difference of the bead-

bead interaction under parabolic flow. From the numerical results in Figure 7.7C and 

results by Jendrejack et al (2004), the drift toward the center will dominate near the 

wall in the length scale of our confined geometry. When the chain is far from wall 

enough, the drift toward the wall will be dominant. Therefore, there must be a 

maximum for probability distribution C(yc)  between the wall and center, which is 

consistent with the numerical result in the Figure 7.7 C.  

x

y

r1

14a

r2

 
Figure 7.12 numerical solution of the reflection velocity field generated by the wall but induced 

by the points forces at r1 and r2 .In this case, the elastic dumbbell orients parallel to the lower 

wall with a stretch Q=14a,where a is the bead radius. The dumbbell only experiences the spring 

force in the x direction (the imposed flow direction).   

Lower  
wall 

In fact, we also examined the influence due to the orientation of the molecule near the 

wall. Figure 7.13 represents the similar case with Figure 7.12. In this plot, reflection 

velocity field in the case of dumbbell with different orientation is compared. It can be 
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seen that when molecule orientated smaller or larger than 45o, it will migrate toward 

the wall, and hydrodynamic flow will drive the molecule to align with the flow 

direction during the process. However, it can be seen in Figure 6.6 in the chapter 6, 

molecule has more probability to orientate parallel to the wall. Therefore, the 

configuration with smaller angle close to zero should be dominant in the real case, 

which indicates the deterministic drift of molecule (near the wall) toward the center. 

 

 
Figure 7.13  Comparsion of the reflection velocity field generated by the wall but induced by 

the points forces at r1 and r2 .In this case, the elastic dumbbell oriented smaller and larger than 

45o with the imposed flow direction with a stretch Q= 41 a,where a is the radius of the bead.  

Lower  
wall 

Lower  
wall 

B 

A 
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In addition, as shown in Figure 7.7, as the increase of the flow strength, the reflection 

velocity field will become stronger compared with that at the same position with the 

smaller flow strength, since the higher stretched chain induces a stronger reflection 

velocity field. Therefore, the depletion layer will be significantly increased as the 

increase of the flow strength.  

 

In fact, our explanation is a rather rough approach to migration behavior, especially 

the analytical part: the molecule is regarded as the dumbbell model, which indicates 

lots of contributions from internal configurations of molecule are not explored. 

However, the simple mechanism is still consistent with the simulation results by 

Jendrejack et al (2004): Full HI model will predict migration toward the center in the 

confined geometry, which displays flow induced evolution of configuration of 

polymer chain in an accurate fashion  
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Chapter 8 Conclusion and Future work 
 

8.1 Conclusion 
 
Simulations of dilute DNA solution in equilibrium in free solution and the confined 

geometries are performed in Chapter 5. We observed that there is a transition region 

for molecule stretch and diffusivity of the chain at H ≈10 RG, where H is the width of 

the square channel and RG is the radius of gyration of polymer chain in free-solution. 

It indicates that the chain can be considered strong confined when the characteristic 

length scale of the confined geometry lowers down to certain value; otherwise, the 

chain will behave as it does in the free solution 

 
In Chapter 6, simulations of dilute solution in simple shear flow in confined 

geometries are performed. Molecular orientation, molecule stretch and thickness in 

velocity gradient direction are examined and the results by Bulk HI model give 

qualitative agreements with the newest experimental data (Teixeira et al, 2005). 

Tumble dynamics of polymers in the shear flow proposed by Steven Chu is proved 

indirectly. In addition, migration behaviour is observed in this case, which is 

consistent with the mechanism we motioned in the chapter 7. 

 

In Chapter 7, migration towards the center of microchannel is correctly predicted by 

Full HI model. Through the theoretical analysis of dumbbell model and simulation of 

bead-spring model, the following conclusions can be made on the migration 

beheavior: 

a) There is deterministic hydrodynamic drift away from the walls. This is 

because highly stretched chain near the wall will generate a hydrodynamic 

flow field, which will induce a reflection flow field from the wall to break the 

symmetry of hydrodynamic flow and push the chain away from the wall. 

b) There is non-completely Brownian drift, which couples with the spatial 

variation of configuration-dependent bead-bead hydrodynamic interaction, 

away from the centerline 

c) The center-of-mass distribution of the steady state will depend on the 

competition of those two effects. In our geometry, the deterministic drift term 

will be dominant near the wall and the Brownian drift will be dominant near 
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the centreline of the channel. Therefore, a maximum is predicted at the 

halfway between the wall and center and nonmonotonical distribution of 

center-of-mass is predicted. In addition, the depletion layer is predicted to 

increase with the increase of flow strength.  

8.2 Future Work   
 
So far, we have presented simulation results in the microchannel with square cross 

section under simple shear flow and pressure-driven flow. Since the dynamics of 

polymers in confined geometry are extremely important for many natural and 

industrial processes, the following work may be interesting: 

a) Different geometries will induce different hydrodynamic flow field from the 

boundaries, such as the channel with a triangle cross section has a fundamental 

interest for the SEC (Size Exclusion Chromatography) technology. In addition, 

the surface pattern in the channel would be interesting to explore for the 

purpose of bimolecular sorting. 

b) In our project, the surface of the channel has a weaker repulsive potential to 

mimic the desorbing surface. In fact, adsorbing surface is subject to more 

extensive interests in science and technology. 

c) More complex flow patterns are also interesting to consider. For example, a 

DNA molecule flowing into micro or nano-porous geometries is a contract 

flow, such kind of problem has a fundamental biological interest, eg. How 

virus gets though the membrane of cells. 

d)  Electromagnetic effect is also interesting to be examined. Deep understanding 

on how this effect influences the dynamics of biomolecules in the confined 

geometries will give lots of fresh ideas to the design of microfludic systems. 

e) We are focusing on single molecule dynamics in this project for simplicity. In 

fact, the solution is concentrated in most of cases, therefore multi-chain system 

with different concentration effects will be interesting to be examined. With 

interchain entanglement, the project will become more complex. 

f) To accomplish the above ideas, the algorithm needs to be optimized and more 

advanced computing resources and techniques are needed. 
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 Appendices 
 

A-1 Evaluation for Green’s function 
 
To evaluate the Green’s function for the confined geometries, we need to set right 

boundary condition (2.44). 

To get , using Equation (2.42), we can get 'OBv

                              ( ) ( )OB OB j j′ = − ⋅v Ω r r f r                                           (1.1) 

For simplicity, we write the explicit expression for Equation (1.1) 
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Here we always use   instead of .from Equation (2.33), we know: RPYΩ OBΩ

           1 2 2
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Here rj is the point where the point force f(rj) generates a velocity perturbation  

at r

'OBv

i ,so rj can be regarded as the source point and ri  should be your observation point 

or measurement point for velocity perturbation. 

Here I is a unit tensor and (r- rj)(r-rj) is a dyadic product  as follows: 
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             (1.4) 

Then we can write each component for the velocity perturbation  'OBv
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To use those equations, we take an assumption that the beads are well separated with 

each other. 

   

After setting the boundary condition, we can get velocity perturbation field, then we 

can evaluate the Green’s function for the wall numerically based on the grid. 

                                         
11

21
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31

1
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W
W

W
f

⎛ ⎞Ω
⎜ ⎟

′Ω =⎜ ⎟
⎜ ⎟Ω⎝ ⎠

v                                             (1.8) 

Where 1,2,3 is the three directions of the vector. The second and third column of the 

 can be get in the similar way by applying the point force in the direction 2, 

3, respectively. Here is a trick: when we evaluate each column of the Green’s 

function, we need to set the point forces in other direction to zero and the point force 

in the corresponding direction to a unit point force. During the evaluation, the point 

force in the corresponding direction can be arbitrary value, because this Stokes 

equation is a linear equation, the magnitude of the force will be scaled up in the final 

stage. In addition, from another point of view, the Green’s function here should only 

depend on the geometry, and is independent of the direction and magnitude of the 

point force. The magnitude of the point force will only influence the resulting velocity 

perturbation field, but when we evaluate the Green’s function, this force will be 

removed anyway.   

( , )W
jΩ x x
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A-2 Interpolation for Green’s function 
 
 

y ξ2
Local coordinates  

Local coordinates Source plane (10x10) for source point 
for observation point 

 
Figure a) sketch of the 3D FEM interpolation b) local coordinates for the source point 
rj c) local coordinates for the observation point ri
 
Since we evaluated the Green’s function from the wall on grid points (20x20x30, the 

observation points), we have to do 3D interpolation in order to evaluate the Green’s 

function in the whole region of the channel. During the interpolation, we have two 

kinds of interpolation: one is the interpolation on the source point; the other is on the 

observation points. 

 

Since we assume the channel is infinitely long, we don’t have to evaluate all points in 

the channel as the source point. Choosing mid-plane in the channel (0,y,z) as the 

source plane due to the independence of source point in the x direction (flow 

direction) will reduce lots of computing time. In the evaluation, we will divide the 

source plane into 10x10 grid points. During the Brownian dynamic simulation, each 

time or iteration we can generate position of source point rj. and observation point ri 

at each time or iteration. After converting their global coordinates into local 

coordinates, the following interpolation can be done: 

At the given source grid point j (j=1,..,4) in the Figure b, the Green’s function at any 

point of cubic box in Figure c can be interpolated by the observation grid point i 

(i=1,..,8) due to the source point can be written as follows: 
8

,
1

, 1, 2,3, 4s j i i
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N j
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where Ni is the shape function for the observation point i, which can be defined as 

follows: 

1 1 2

2 1 2

3 1 2

4 1 2

5 1 2

6 1 2

7 1 2

8 1 2
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ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

= − − −

= + − −

= + + −

= − + −

= − − +

= + − +

= + + +

= − + +

 

Where ξ1, ξ2, ξ3 is the local coordinates for the observation points shown in the Figure 

c. It can be seen that the interpolation for observation point is a 3D interpolation, 

while the interpolation for the source point is actually 2D interpolation due to the 

infinite long effect of the channel in the flow direction we mentioned above.   

 

Since we get the Green’s function of any observation point ri in the cubic box in 

Figure c due to the source point at grid point j, if the source point rj in Figure b is in 

the square but not at the grid point, the Green’s function can be interpolated as 

follows:  

                                                      
4
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N
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where Ns,j is the shape function for the source point rj ,which can be defined as 

follows: 
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,3 3 2

,4 3 2
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s

s
 

Where s2,s3 is the local coordinates for the source points. 

 

Finally, is the approximation of the Green’s function for observation point r( , )i jΩ r r i 

due to the point force at rj. To increase the accuracy of evaluation of the Green’s 

function, decreasing the mesh size of each gird or increasing the discretization of the 

space is a choice, but the computing time will be significantly increased, since we 

have to locate the positions of source point and observation point first each time 

before starting the interpolation. 

 

A-3 Chebyshev polynomial approximation 
 

 T= ⋅D B B   

D should be the symmetric semi-definite matrix, whose decomposition B in the above 

equation always can be efficiently solved by Cholesky decomposition. However, 

sometimes it fails during the simulation, so we can’t make sure all eigenvalues of the 

diffusion tensor generated during the simulation is larger or equal to zero.  

 

In addition, the decomposition of the diffusion tensor D is computational expensive 

and scales with N3, while the Chebyshev decomposition scales with N2.5(Kroger et 

al,2000; Jendrejack et al 2000) .Therefore, we introduce a method named Chebyshev 

polynomial approximation by Fixman (1986). B can be approximated by the 

following expression (Press et al, 1992): 

 1
1

1( )
2

L

k k
k

c D−
=

= ∑B T 1c−

l

 (2.1) 
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with 

 
max min
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Where maxλ  and minλ  is the maximum and minimum of D; ck is the Chebyschev 

coefficient , which can be obtained by the following way (Jendrejack et al,2000): 
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Here L is approximation degree. For a fixed L, Equation (2.1) is a polynomial which 

can approximate B in the interval [ maxλ , minλ ].This approximation may be not better 

than other approximation from a point of view of accuracy, but it can be truncated to 

lower degree of M<L in a graceful way. It is difficult to find the minimal value of L,  

50 are typical value used in our case (Press et al, 1992).  

  

Because is our interest, whose polynomial y can be approximated by the same 
approach: 

d⋅B w

 1
1

L

k K
k

d c −
=

= ⋅ =∑y B w x  (2.6) 

                                                       0 d=x w  (2.7) 

                                                   1 1 d= ⋅x T w                                                             (2.8) 
 1 12l l 1l+ −= ⋅ −x T x x  (2.9) 

The Chebyshev expansion is only valid within the chosen eigenvalue range; 

sometimes, a violation of the eigienvalue limits could happen. A method for error 

evaluation is proposed by R.M.Jendrejack et al (2004). Using Equation (2.6) and 

Equation (2.7) we can get 

 lim[ ]
L

d d
→∞

⋅ = ⋅ ⋅y y w D w  (2.10) 

Assuming the eigenvalues we are using are valid.  A relative error Ef can be defined 

as follows(Jendrejack,2004): 
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d d
E

d d
⋅ − ⋅ ⋅

=
⋅ ⋅

y y w D w
w D w

 (2.11) 

Here, we give a initial guess of the eigenvalues of diffusion tensor D first ,then check 

if the error is acceptable. If it is not, we can compute another set of eigenvalues until 

the error requirement is satisfied.  

 

In this way, we check the extent of violation of the fluctuation-disspation theorem is 

small enough to get a desired accuracy. 
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A-4 Construction of positive definite Hydrodynamic 
interaction tensor 
 
As we mentioned before, Oseen tensor in free solution will lead to unphysical 

properties of diffusion tensor, e.g. negative translational diffusion coefficients .The 

main origin is the treatment of segments as point sources of friction according to the 
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Oseen tensor (Yamakawa,1970). Hence RPY tensor is introduced to guarantee the 

diffusion tensor to be a positive-semidefinite for all the chain configurations.  

 

Problem happens when we add the correction term  from the geometry to 

the Green’s function. During the simulation, the diffusion tensor D could become 

non-positive at some points, at which the program will break down. In order to keep 

the positive-semidefinite properties of diffusion tensor, we have to make some 

modifications to the diffusion tensor D. In the following, we will explain this issue. 

( , )W
jΩ r r

 

First, we check the positive definiteness of (the hydrodynamic interaction tensor 

for a point force at r

ijD

j) by determining the eigenvalues of 3×3 matrix. If is non-

positive, it needs to be modified. For computational efficiency, one can set , 

where c<1 until  becomes positive-definite. Here c could be a constant, but if c can 

be designed to be a function of relative distance between source point and observation 

point, the error due to modification of the diffusion tensor can be reduced to some 

extent (Jendrejack, et al, 2004). 

ijD

ij iic=D D

ijD
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