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Abstract

As the Lab-On-a-Chip systems becomes increasingly sophisticated, so does the demands
to the embedded tools. This is why acoustic manipulation gain increasingly attention
around the microfluidic community. Recent research have shown that carefully designed
acoustic actuators can be used for both particle handling and mixing. Most research in
the micro-acousto-fluidic field is base on trial and error, as no well-developed theory exists
in this area.

In this thesis we use perturbation theory to investigate the theory behind the acoustic
radiation force, and the equations describing the acoustic streaming flow-patterns. It shows
that the absolute amplitude of the acoustic radiation force is difficult to determine. How-
ever, the calculated shape of the force corresponds very well to what have been reported by
experimentalists. The same thing is the case for the calculated streaming-patterns. The
shape of the patterns match the experimental ones very well, but the amplitude becomes
several magnitudes larger than physical possible.
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Resumé

Efterh̊anden som Lab-On-a-Chip systemerne bliver mere advancerede, øges kravene til
de indbyggede redskaber ogs̊a. Derfor er interessen for manipulation ved hjælp af akustik
stigende i de mikrofluide kredse. Nylig forskning har vist, at man kan bruge nøje designede
akustiske resonnatorer til b̊ade h̊andtering af partikler samt til at mixe. Den primære
forskning p̊a det mikro-akustik-fluide omr̊ade er baseret p̊a ’trial and error’-metoden, da
der ikke eksisterer nogen fyldestgørende teori p̊a omr̊adet.

I denne rapport gør vi brug af perturbations teori for at undersøge teorien bag den
akustiske str̊alingskraft og ligningerne, der beskriver de akustiske strømningsmønstre. Det
viser sig, at den absolutte størrelse p̊a str̊alingskraften er svær at finde, men den beregnede
form p̊a kraften ligner den, eksperimentalisterne har fundet. Det samme gør sig gældende
for de beregnede strømningsmønstre. Formen passer godt med den eksperimentielt fundne,
men amplituderne bliver s̊a mange størelsesordner højere, at de ikke længere giver fysisk
mening.
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Chapter 1

Introduction

One of the rare instances where the non-linear inertia term ρ(u·∇)u plays a significant role
in microfluidics relates to acoustic radiation in liquids. The non-linearity of the term makes
the existence of a non-zero time-averaged velocity component possible for a system where
harmonically oscillating acoustic waves has been emitted into the liquid. Thus acoustic
radiation may be the source of a direct-current liquid flow field[1]. The non-linear term
might also result in non-zero time-averaged pressure field, which can be used for particle
manipulation. This thesis will study both the flow-patterns induced by an acoustic field,
and on the acoustic radiation force affecting any suspended particles.

1.1 The acoustic radiation force

In many µTAS applications there is a need for sorting or separating the input parti-
cles. This could for instance be an input consisting of different biological molecules or
cells. If the concerning analysis is only to be conducted on one type of particles, then
it is sometimes necessary to remove the other particles from the sample. There are sev-
eral very different methods of separating particles. One of the most obvious methods is
the bumper-array[2], which sorts the particles by size. By making a fine grid inside the
channels, the larger particles is forced towards a different outlet than the smaller ones.
Another way of separating particles is by exploiting that particles with different electrical
charge will move with different speed when placed in an electric field. This technique is
known as electrophoresis[3, 4, 5]. A third method is dielectrophoresis, which will work
on charge neutral particles. Dielectrophoresis works if there is a difference between the
dielectric constant of the of a particle and the liquid surrounding it[6, 7]. A fourth separa-
tion technique is magnetophoresis, where magnetic micro beads, coated with appropriate
antibodies, bind to the targeted particles[8, 9].

The fifth method is by use of the acoustic radiation force. If the density and com-
pressibility of the suspended particles and the surrounding fluid has a given ratio, then it
is possible to control the particles. In 1935 L. V. King [10] calculated the acoustic effects
on hard circular discs. The theory was further developed by Yosioka and Kawasima[11]
in 1955. The theory is however only derived for a planar wave system, and have not been
considerably improved since. Hence, to this day scientists[12, 13, 14, 15, 16, 17] must
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Chapter 1 Introduction

suffice with the planar wave theory, when explaining their results. During this thesis we
shall develop a method for calculating the shape(only relative amplitudes) of the acoustic
radiation force in three dimensions. The use of acoustic forces in microfluidic systems is a
relatively new idea, and only a few applications have been presented.

The article by H. Li and T. Kenny[17] points out that one of the greater challenges
when developing a handheld portable blood diagnosis device, is the separation of the
blood constituents. They propose a device based on separation using acoustic radiation
as a possible solution.

Another application is presented by Jonsson, H et al.[18]. They argue that the embolic
load experienced by patients undergoing cardiac surgery, can be greatly reduced by using
acoustic radiation to remove lipid particles from the recirculating blood.

One of the expected strengths of these acoustic applications is the ability to handle
living cells without harming them.

1.2 Acoustic streaming

In microfluidic systems the flow velocity is often very low and as result thereof the flow
becomes laminar. As the word ’laminar’ implies, the fluid consists of layers, which almost
does not mix. Due to the laminar nature(compared to turbulent) mixing is only caused by
diffusion[19]. Even though the length scales in microsystem are very small the diffusion is
often too slow to provide sufficient mixing. The easiest way to achieve a good mixing is
to make the fluidic channel so long that diffusion has time enough to perform the mixing.
The long channels are often constructed in meander-shapes. Of other methods for mixing
laminar fluids we can mention oscillatory pumping of either the main inlet/outlet or a
secondary pair of inlets [20]. Another method is designing a chamber were the inlets
creates an unbalanced driving force, making the liquid swirl around[21, 22]. A slightly
more complex method is that of electro-osmotic induced mixing[23], where the oscillating
charge on the chamber walls create a non-zero slip velocity. A fifth possibility is to use
acoustic streaming. Acoustic streaming is the name of the flow induced in a fluid by an
acoustic source.

Acoustic streaming was first described by Lord Rayleigh in the late 1880’ies. It was
further developed by C. Eckart[24] in 1947, J. Markham[25] in 1951 and by W. Nyborg[26]
in 1952. The results from these three articles have been used as inspiration for developing
the equations in Chapter 3. The use of acoustic streaming have been very limited, it has
mainly been used for teaching purposes in form of the kundt’s tube. Only recently, as the
lab-on-chip systems becomes more sophisticated the need of effective mixing has increased
and the first applications are being developed.

In December 2005 the EU-funded project SMART-BioMEMS started[27]. The project
evolves around testing for generic mutation. During the sample handling, mixing is re-
quired. According to plan, the mixing should be achieved by acoustic streaming, induced
by a piezo-element.

2



Experimental background Section 1.3

1.3 Experimental background

In the early spring 2006, I participated in an experimental special-course with the purpose
of investigating the acoustic radiation force and acoustic streaming experimentally. The
coursed was supervised by Jörg Kutter and Melker Sundin at MIC, DTU. Due to the poor
understanding of the experimentally achieved results, I started the work on this Master
thesis. Hence, the workload for this thesis has been solely theoretical, all references to
experimental work, is refereing to work earlier performed and already credited, or to
experimental work performed by Melker Sundin.

1.3.1 The experimental setup

The chip, which was use in the experiments, consists of three layers. The chip is sketched
in Fig. 1.1. The lower layer consists of silicon with etched holes for in- and outlet. The
middle layer also consists of silicon, in this layer channels have been etched. During the
experiments, these channels were filled with water, in which particles were suspended. The
upper layer is a pyrex plate. This is used to seal of the channels, while providing optical
access. In reality the two lower layers in Fig. 1.1 are actually only one layer. However, to
clarify the description these are shown separated. The silicon wafer were 500 µm thick,
and the channel were etched to have a depth of 200 µm. Hence, the bottom layer has a
thickness of 300 µm, and the middle layer is 200 µm. The top layer has the thickness of
a pyrex wafer, 500 µm. The width of the chip is 15 mm and the length is 47.2 mm. The
entire length of the channel is 25 mm and the chamber measures 2× 2 mm. Notice that
the chip depiction in Fig. 1.1 only sketches the geometry, objects are plotted with different
length scales. A photo of the real chip is shown in Fig. 1.2

Water

�
�

300 µm

200 µm

500 µm

15 mm

47.2 mm

Pyrex

Silicon

Silicon

x

y

�
�

z

Figure 1.1: The chip layout, divided into three layers.

Experiments were also conducted on a similar chip, but with a round chamber with
a diameter of 2 mm. Two different types of particles were used in the experiments. The
first kind was polystyrene beads with a diameter of 10 µm, these beads were chosen since
they have similar physical properties as red blood cells. The second type of particles
were diluted milk containing lipid-particles of approximately 1 µm diameter. When the
experiments were conducted, the microscope was located above the chip, looking down
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Chapter 1 Introduction

through the pyrex layer, into the chamber. To obtain a view of the entire 2 mm× 2 mm
chamber a rather low magnification were used, which resulted in a large depth of field.
The large field depth did not allow us to determine the z-position of the particles. Hence,
the position is only known in the xy-plane. The acoustic field was induced by placing a
piezo-electric crystal against the bottom silicon layer. The piezo-element was about 2 cm
wide, Hence the entire chamber was easily covered. The piezo-element was connected to
a 10 Volt tone generator, on which the frequency could be tuned.

Figure 1.2: This photo shows the chip with the square chamber. Courtesy Melker Sundin.

1.3.2 The experimental results

The experimental results can be divided into two groups, one for large particles (≈ 10 µm)
and one for small particles (≈ 1 µm). The large particles accumulated in specific patterns
at different frequencies, see Fig. 1.3.

(a) 0.67 MHz

(b) 2.42 MHz

(c) 1.28 MHz

(d) 2.17 MHz

(e) 2.06 MHz

(f) 2.08 MHz

Figure 1.3: The large particles accumulate at specific patterns for different frequencies. Panel (b), (e) and (f)
courtesy Melker Sundin.

while the small particles follow the flow-pattern of the fluid.
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Material parameters Section 1.4

Figure 1.4: A PIV-image, showing the steady state velocity(≈ 0.5 mm/s) of the particles at 2.17 MHz. Courtesy
Melker Sundin

We notice that that for the a frequency of 2.17 MHz, we see two different results for
particles of different size.

The rest of this thesis will be an attempt to theoretically explain how and why these
patterns exists.

1.4 Material parameters

Before we calculate any thing, we are going to need some material parameters. In acoustics
the important parameters are the density, ρ0, and the speed of sound, cs. In solids the
speed of sound has two different definitions. One for objects with dimensions close to the
wavelength, and another for larger objects. For small objects cs is defined as

cs =

√
Y

ρ0

, (1.1)

where Y is Young’s modulus. This is the equation we will use when performing calculations
on microsystems. The sound velocity for Silicon and PMMA in Table 1.1 is calculated using
this. For structures much larger than the wavelength the definition must also include the
Poisson’s ratio ν. We notice that that for Silicon the Young’s modulus is lattice dependant.
We shall however assume that Silicon is an isotropic material and hence, use the average
modulus instead.
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Chapter 1 Introduction

Material Silicon Water Pyrex Air PMMA
Density

[ kg
m3

]
ρ0 2331[a] 998.2[a] 2230[b] 1.161[a] 1190[b]

Young modulus [GPa] Y 168[b] - - - 3[c]

Sound velocity
[

m
s

]
cs 8490 1483[a] 5640[a] 343.4[a] 1588

Acoustic impedance
[× 106 kg

m2s

]
Z 19.8 1.48 12.6 0.0004 1.89

Table 1.1: Material parameters @ 20 ◦C. Notice that Silicon is treated as isotropic. Numbers marked with ’[a]’
originates from [28], those with ’[b]’ is from [29] and the one with ’[c]’ is from [30]. Unmarked values are calculated
from the marked ones.
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Chapter 2

Periodic motion in incompressible liquids

When describing microfluidic systems containing a water-like liquid, we usually assume
that the liquid is incompressible. However, if the liquid is incompressible, sound waves
can not be propagated. Our attempt to calculate the acoustic radiation force and acoustic
streaming, are therefore limited by our choice of compressibility. In this chapter we inves-
tigate the basic properties of an oscillating boundary and its effects on an incompressible
liquid. Perhaps the motion of the boundary is enough to account for the experimentally
observed phenomenons. In Chapter 3 we look at compressible liquids.

2.1 Dimensionless equations

We consider the half-space z > 0 bounded by the xy plane at z = 0 and otherwise
unbounded. The oscillating motion is assumed generated by applying an AC-voltage of
angular frequency ω to an infinite array of equidistant interdigitated, flat electrodes spaced
by λ = 2π/k on top of a piezo-electric crystal. This setup is modeled by the standing-wave
slip-boundary condition at z = 0 and no-slip at z = ∞,

u(x, y, z, t) = (u ex, v ey, w ez) (2.1a)

u(x, y, 0, t) = u0 cos(kx) eiωt ex, (2.1b)
u(x, y,∞, t) = 0, (2.1c)

where we have used complex notation for the time dependence. Given these boundary
conditions, the goal of this chapter is to solve the Navier–Stokes equation (Eq. (2.2)) for
an incompressible liquid

ρ
[
∂tu + (u·∇)u

]
= η∇2u−∇p, (2.2)

where p = p(x, y, z, t) is the pressure field.
The system can be characterized by two dimensionless parameters, the Péclet number

Pe and the Reynolds number Re, given by

Pe ≡ ρω

k2η
, (2.3a)
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Chapter 2 Periodic motion in incompressible liquids

Re ≡ ρu0

kη
. (2.3b)

If we furthermore introduce the following dimensionless variables denoted by a underline,

r =
1
k
r, u = u0u, p = (kηu0)p, t =

1
ω

t, (2.4)

the problem, including the incompressible continuity equation, takes the following dimen-
sionless form,

Pe∂tu + Re (u·∇)u = ∇2u−∇p, (2.5a)
∇·u = 0, (2.5b)

u(x, y, 0, t) = cos(x) eit ex, (2.5c)
u(x, y,∞, t) = 0. (2.5d)

Here we have already dropped the underline as we only will use dimensionless variables in
the rest of this chapter.

Finally, if we utilize that the translation invariance along the y-axis results in the
simple 2D velocity field u(r, t) =

(
u(x, z, t), w(x, z, t)

)
we arrive at the final formulation

of our problem:

[
Pe∂t + Re (u∂x + w∂z)

]( u
w

)
=

(
∂2

x + ∂2
z

)( u
w

)
−

(
∂xp
∂zp

)
, (2.6a)

∂xu + ∂zw = 0, (2.6b)
(

u(x, 0, t)
w(x, 0, t)

)
=

(
cos(x) eit

0

)
, (2.6c)

(
u(x,∞, t)
w(x,∞, t)

)
=

(
0
0

)
. (2.6d)

2.2 Perturbation in Pe for Re = 0

2.2.1 Quasi-stationary Stokes flow; Pe = 0

The limit of quasi-stationary Stokes flow is particularly simple to solve, as both Pe and
Re are zero, and Eq. (2.6a) becomes

(
∂2

x + ∂2
z

)( u
w

)
=

(
∂xp
∂zp

)
. (2.7)

By employing the so-called stream function ψ(x, z, t), related to the velocity field by the
expression (

u
w

)
≡

(
+∂zψ
−∂xψ

)
, (2.8)

8



Perturbation in Pe for Re = 0 Section 2.2

the incompressibility condition ∂xu + ∂zw = 0 is automatically fulfilled. We also note
by taking the divergence of the Stokes equation and utilizing ∇ ·u = 0 we find that the
pressure fulfills the Laplace equation

(
∂2

x + ∂2
z

)
p = 0. (2.9)

To find the solution u to our problem, we begin by noting that u(x, 0) = cos(x). This
periodic behavior must also be reflected in the pressure, but as p must fulfill the Laplace
equation, we are led to guess the following solution p ∝ f(x) e−z. This exponential fall-
off, on the other hand, must be reflected back to the behavior of the velocity field away
from z = 0. Thus, it is reasonable to guess that the stream function must be of the form
ψqua ∝ cos(x)e−z, but to ensure a vanishing z-component of the velocity, we throw in an
extra factor z and arrive at

ψqua = cos(x) z e−z. (2.10)

Using the definition from Eq. (2.8) we get:

u = uqua =
(

u
w

)
=

(
cos(x) [1− z] e−z

sin(x) z e−z

)
, (2.11)

and also

∇2uqua =
(

2 cos(x) e−z

−2 sin(x) e−z

)
= ∇p. (2.12)

From this it can be seen that

p = pqua = 2 sin(x) e−z. (2.13)

x

z

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 2.1: Contour plot of ψqua. It can be seen that a row of rolls are located along the actuating boundary(x=0).
We notice that the rolls only stretch ≈ λ into the liquid. We can see from the gradient of ψqua that the velocity is
highest at the wall.
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Chapter 2 Periodic motion in incompressible liquids

2.2.2 Stokes flow; Pe 6= 0

To solve the problem with Re = 0 and Pe 6= 0 we use a perturbation method. Because of
the oscillating boundary condition both pressure and velocity is expected to be oscillating.
Hence, each term in p and u must be of the form:

p(x, z, t) = p(x, z)eit = p̃ eit, (2.14a)

u(x, z, t) = u(x, z)eit = ũ eit, (2.14b)

by differentiating u with time, removing all eit-factors by division Eq. (2.6a) becomes
[(

∂2
x + ∂2

z

)− i Pe

]
ũ = ∇p̃, (2.15)

ũ and p̃ are spilt up in terms of different order of Pe:

ũ = ũ0 + Peũ1 + P 2
e ũ2 + P 3

e ũ3 + . . . , (2.16a)

p̃ = p̃0 + Pep̃1 + P 2
e p̃2 + P 3

e p̃3 + . . . , (2.16b)

and hence, the governing equation becomes

[(
∂2

x + ∂2
z

)− i Pe

](
ũ0 + Peũ1 + P 2

e ũ2 + P 3
e ũ3 + . . .

)
= ∇

(
p̃0 + Pep̃1 + P 2

e p̃2 + P 3
e p̃3 + . . .

)
.

(2.17)

To solve this the equation, it is split into terms of different order of Pe:

O(P 0
e ) : ∇2ũ0 = ∇p̃0, (2.18a)

O(P 1
e ) : ∇2ũ1 − i ũ0 = ∇ p̃1, (2.18b)

O(P 2
e ) : ∇2ũ2 − i ũ1 = ∇p̃2, (2.18c)

O(P 3
e ) : . . . . (2.18d)

These equations can be solved by inserting the results from the first in the second, and so
on. The first equation has already been solved in Section 2.2.1. We see that

ũ0 = ũ0,sto = uqua. (2.19)

p̃0 = p̃0,sto = pqua. (2.20)

To find ũ1 in the O(P 1
e ) equation, we must first guess a streamfunction. To aid our

guess we look at the boundary condition u(x, 0) = cos(x). Since u0(x, 0) = cos(x) then
un(x, 0) = 0. Notice the difference between the zeroth-order velocity in the x-direction,
u0(x, t), and the velocity amplitude of the boundary, u0. This lead to the streamfunction
guess:

ψn = cos(x) zn+1 e−z. (2.21)

By modifying the definition of the streamfunction to:
(

ũn

w̃n

)
≡ cn

(
+∂zψn

−∂xψn

)
≡ cnṽn, (2.22)

10



Perturbation in Pe for Re = 0 Section 2.2

we get:

ũ1 = c1

(
cos(x) e−z [2z − z2]

sin(x) e−z z2

)
= c1ṽ1. (2.23)

Since ∇2ũ1 = c1 ∇2ṽ1, Eq. (2.18b) becomes

c1∇2ṽ1 − i ũ0 = ∇ p̃1, (2.24)

where

∇2ṽ1 =
(

cos(x) e−z [4z − 6]
sin(x) e−z [2− 4z]

)
= −∇p̃0 − 4ũ0. (2.25)

Hence
c1

(∇p̃0 − 4ũ0

)− i ũ0 = ∇ p̃1. (2.26)

This equation can be fulfilled by setting c1 = −i
4 and p̃1 = c1 p̃0. This results in

ũ1 = ũ1,sto =
−i

4

(
cos(x) e−z [2z − z2]

sin(x) e−z z2

)
, (2.27a)

p̃1 = p̃1,sto =
(−i

4

)
2 sin(x) e−z. (2.27b)

Next we solve the O(P 2
e ) equation: ∇2ũ2 − i ũ1 = ∇p̃2. By combining Eq. (2.21) and

Eq. (2.22) we get

ũ2 = c2

(
cos(x) e−z [3z2 − z3]

sin(x) e−z z3

)
= c2ṽ2. (2.28)

Since ∇2ũ2 = c2 ∇2ṽ2, Eq. (2.18c) becomes

c2∇2ṽ2 − i ũ1 = ∇ p̃2. (2.29)

We start by looking at ∇2ṽ2:

∇2ṽ2 =
(

cos(x) e−z [6− 18z + 6z2]
sin(x) e−z [6z − 6z2]

)
= 6ũ0 − 6ṽ1 = 6ũ0 − i 24 ũ1, (2.30)

so that
−i 16 ũ1 =

2
3
∇2ṽ2 − 4 ũ0. (2.31)

Substituting 4 ũ0 using the relation in Eq. (2.25) we get
−i

4
∇ p̃1 = ∇2

[
− 1

24
ṽ2 −

i

4
ũ1

]
− i ũ1. (2.32a)

Hence if

ũ2 = ũ2,sto = − 1
24

ṽ2 −
i

4
ũ1, (2.33a)

p̃2 = p̃2,sto =
−i

4
p̃1 =

1
16

p̃0, (2.33b)

the equation is fulfilled. So for Re = 0 we get the approximate solution

ũsto ≈ ũ0,sto + Peũ1,sto + P 2
e ũ2,sto +O(P 3

e )

≈ e−z

(
cos(x)

[
(1− z)− iPe

4 (2z − z2)− P 2
e

48 (6z + 3z2 − 2z3)
]

sin(x)
[
z − iPe

4 z2 − P 2
e

48 (3z2 + 2z3)
]

)
+O(P 3

e ).
(2.34)
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Chapter 2 Periodic motion in incompressible liquids

2.2.3 Finding the full solution for Re = 0; Pe 6= 0

The differential equation in Eq. (2.15) can also be solved by guessing the right solution.
From the results in Section 2.2.2, we guess that p̃ = A p̃0 = 2 A sin(x) e−z and that
ψ(x, z) = cos(x) h(z) e−z. Where h(z) is a function to be guessed. By differentiating the
streamfunction, ψ we get the velocity

ũ =
(

∂zψ
−∂xψ

)
=

(
cos(x) e−z [h′(z)− h(z)]

sin(x) e−z h(z)

)
. (2.35)

Inserting ũ and p̃ into Eq. (2.15) yields:

[∇2 − iPe

]( cos(x) e−z [h′ − h]
sin(x) e−z h

)
= ∇[

2 A sin(x) e−z
]
,

(
cos(x) e−z [2h′ − 3h′′ + h′′′]

sin(x) e−z [h′′ − 2h′]

)
− iPe

(
cos(x) e−z [h′ − h]

sin(x) e−z h

)
=

(
2A cos(x) e−z

−2A sin(x) e−z

)
.

(2.36)

This leaves us with the following two equations:

2h′ − 3h′′ + h′′′ − i Pe h′ + i Pe h = 2 A, (2.37a)
h′′ − 2 h′ − i Pe h = −2 A. (2.37b)

Adding the two equations together gives a third:

−2h′′ + h′′′ − i Pe h′ = 0. (2.38)

From Eq. (2.38) we can see that one solution could be h(z) = B, where B is a constant.
However, to fulfill the boundary conditions for h(z), which are found from Eq. (2.6c),
Eq. (2.6d) and Eq. (2.35) to be

h(0) = 0, (2.39a)
h′(0) = 1, (2.39b)
h(∞) = 0, (2.39c)

we guess:
h(z) = B(1− eα z). (2.40)

Inserting h(z) into Eq. (2.38) gives

−[−2 α2 + α3 − i Pe α] B eα z = 0. (2.41)

B eα z is divided out and the resulting quadratic equation in α has the two solutions

α∓ = 1∓
√

1 + i Pe. (2.42)

using h(∞) = 0 we get α = α−, and from h′(0) = 1 we get

B =
−1
α

=
1√

1 + i Pe − 1
. (2.43)

12



Perturbation in Re Section 2.3

All that remain is to determine A. This is done by inserting h(z) into Eq. (2.37b) and
solving for A

A =
−i Pe

2α
=

i Pe

2(
√

1 + i Pe − 1)
. (2.44)

To summarize we got:

ψsto = cos(x) e−z 1√
1 + iPe − 1

(1− ez−z
√

1+iPe), (2.45a)

ũsto =

(
cos(x)

√
1+iPe e−z

√
1+iPe−e−z√

1+iPe−1

sin(x) e−z
√

1+iPe−e−z

1−√1+iPe

)
, (2.45b)

p̃sto =
i Pe sin(x) e−z

√
1 + i Pe − 1

. (2.45c)
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Figure 2.2: Contour plot of ψsto, where Pe = 1. It can be seen that the row of rolls does not stretch as far into
the liquid as in the quasi-stationary case.

2.3 Perturbation in Re

To solve Eq. (2.5a) for Pe 6= 0 and Re 6= 0 we once more use a perturbation method. We
begin by rewriting Eq. (2.5a) to

[
∇2 − Pe ∂t − Re(u·∇)

]
u = ∇p, (2.46)

where

u = u0 + Re u1 + Re2 u2 + Re3 u3 + . . . , (2.47a)
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Chapter 2 Periodic motion in incompressible liquids

p̂ = p0 + Re p1 + Re2 p2 + Re3 p3 + . . . . (2.47b)

Splitting Eq. (2.46) into terms of different order of Re yields

O(Re0) :
[∇2 − Pe∂t

]
u0 −∇p0 = 0 (2.48a)

O(Re1) :
[∇2 − Pe∂t

]
u1 −∇p1 = (u0 ·∇)u0, (2.48b)

O(Re2) :
[∇2 − Pe∂t

]
u2 −∇p2 = (u1 ·∇)u0 + (u0 ·∇)u1, (2.48c)

O(Re3) : . . . . (2.48d)

It is recognized that for Pe 6= 0 Eq. (2.48a) is the same as Eq. (2.15). Hence we got

ũ0 = ũsto =

(
cos(x)

√
1+iPe e−z

√
1+iPe−e−z√

1+iPe−1

sin(x) e−z
√

1+iPe−e−z

1−√1+iPe

)
, (2.49a)

p̃0 = p̃sto =
i Pe sin(x) e−z

√
1 + i Pe − 1

, (2.49b)

and for Pe = 0 Eq. (2.48a) is the same as Eq. (2.7), hence,

ũ0 = ũqua =
(

cos(x) [1− z] e−z

sin(x) z e−z

)
, (2.50a)

p̃0 = p̃qua = 2 sin(x) e−z. (2.50b)

2.3.1 The quasi-stationary case, Pe = 0

First we solve the equation in O(Re1), for Pe = 0. Eq. (2.48b) becomes

∇2u1 −∇p1 = (u0 ·∇)u0, where u0 = uqua. (2.51)

Since we assume the system is to be used at high frequencies(≈ 1 MHz), we are not
interested in the velocities at small time scales and hence, we look at the time-averaged
problem, where

〈. . .〉t =
1
T

T∫

0

. . .dt. (2.52)

〈∇2u1〉t − 〈∇p1〉t = 〈(uqua ·∇)uqua〉t. (2.53)

To get rid of artificial real terms, originating from imaginary cross-products, we only use
the real part of uqua, since it appears in a nonlinear term

uqua ≡ Re[ũquae
it] ≡ Re[ũqua] cos(t)− Im[ũqua] sin(t). (2.54)

Hence, we got

(uqua ·∇)uqua =
([

Re[ũqua] cos(t)− Im[ũqua] sin(t)
]
·∇

)

×
[
Re[ũqua] cos(t)− Im[ũqua] sin(t)

]
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Perturbation in Re Section 2.3

= + (Re[ũqua] cos(t)·∇)Re[ũqua] cos(t)

− (Re[ũqua] cos(t)·∇)Im[ũqua] sin(t)

− (Im[ũqua] sin(t)·∇)Re[ũqua] cos(t)

+ (Im[ũqua] sin(t)·∇)Im[ũqua] sin(t)

= + cos2(t)(Re[ũqua]·∇)Re[ũqua]

− cos(t) sin(t)(Re[ũqua]·∇)Im[ũqua]

− sin(t) cos(t)(Im[ũqua]·∇)Re[ũqua]

+ sin2(t)(Im[ũqua]·∇)Im[ũqua]

= +
cos(2t)

2
(Re[ũqua]·∇)Re[ũqua]

− sin(2t)
2

(Re[ũqua]·∇)Im[ũqua]

− sin(2t)
2

(Im[ũqua]·∇)Re[ũqua]

− cos(2t)
2

(Im[ũqua]·∇)Im[ũqua]

+
1
2
(Re[ũqua]·∇)Re[ũqua]

+
1
2
(Im[ũqua]·∇)Im[ũqua]

(2.55)

when time averaging this we find that

〈(uqua ·∇)uqua〉t =
1
2

[
Re[ũqua]·∇Re[ũqua] + Im[ũqua]·∇Im[ũqua]

]
=

1
2
Re [(ũqua ·∇)ũ∗qua],

(2.56)
where ũ∗qua is the complex conjugate of ũqua.

We assume that the velocity, u1 and the pressure, p1 has the following form:

u1 = uDC
1 +

∞∑

n=1

u1n, where u1n = a1n cos(nt) + b1n sin(nt), (2.57a)

p1 = pDC
1 +

∞∑

n=1

p1n, where p1n = c1n cos(nt) + d1n sin(nt). (2.57b)

where the ’DC’ indicates a term is independent of time, and can be a source of direct
current.

Inserting u1 and p1 into Eq. (2.53) it becomes

∇2uDC
1 −∇pDC

1 =
1
2

[
Re[ũqua]·∇Re[ũqua] + Im[ũqua]·∇Im[ũqua]

]
. (2.58)

From Eq. (2.11) we se that Im[ũqua] = 0. Hence we have

∇2uDC
1 −∇pDC

1 =
1
2

[(
Re[ũqua]·∇

)
Re[ũqua]

]
. (2.59)
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Chapter 2 Periodic motion in incompressible liquids

Inserting ũ0 from Eq. (2.50a) gives

∇2uDC
1 −∇pDC

1 =
1
2

[
(
cos(x)e−z[1− z]∂x + sin(x)e−zz∂z

)( cos(x) [1− z] e−z

sin(x) z e−z

)]
,

∇2uDC
1 −∇pDC

1 = −1
4

[(
sin(2x) e−2z

2 [z2 − z] e−2z

)]
. (2.60)

To solve this equation we guess the form of the streamfunction, ψ and pressure to be a
combination of a trigonometric function, an exponential and a polynomial in z.

ψ = sin(2x) e−2z [A + Bz + Cz2], (2.61a)

pDC
1 = e−2z

[
cos(2x)[D + Fz] + [G + Hz + Jz2]

]
. (2.61b)

Using the definition of the streamfunction given in Eq. (2.8) gives

uDC
1 =

( − e−z sin(2x)[2A + 2Cz(z − 1) + B(2z − 1)]
−2 e−z cos(2x)[A + Bz + Cz2]

)
(2.62)

From the boundary conditions

uDC
1 (x, 0) = 0, (2.63a)

wDC
1 (x, 0) = 0. (2.63b)

we immediately see that A = 0 and B = 0. uDC
1 is therefore reduced to

uDC
1 =

( − e−z sin(2x)[2Cz(z − 1)]
−2 e−z cos(2x)[Cz2]

)
. (2.64)

Inserting uDC
1 and pDC

1 into Eq. (2.60) gives the following two equations

1
4
− 12C + 16Cz = −2D − 2Fz, (2.65a)

4C − z

(
1
2

+ 16C

)
+

1
2
z2 + cos2(x)

[− 8C + z(32C)
]

=

2D − F − 2G + H + z(2F − 2H + 2J)− 2Jz2 + cos2(x)
[− 4D + 2F − 4Fz

]
. (2.65b)

Which can be split into seven new equations:

1
4
− 12C = −2D (2.66a)

16C = −2F (2.66b)
4C = 2D − F − 2G + H (2.66c)

−1
2
− 16C = 2F − 2H + 2J (2.66d)

1
2

= −2J (2.66e)
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Perturbation in Re Section 2.3

−8C = −4D + 2F (2.66f)
32C = −4F. (2.66g)

From these equations we find

J = −1
4
, C =

1
64

, F = −1
8
, D = − 1

32
, H = 0, G = 0, (2.67)

and hence, we got

ψ = ψPe=0 =
z2

64
sin(2x) e−2z, (2.68a)

uDC
1 = uDC

1,Pe=0 =
(

sin(2x)
[

z
32 − z2

32

]

− cos(2x) z2

32

)
e−z, (2.68b)

pDC
1 = pDC

Pe=0 = −
[

cos(2x)
( 1

32
+

z

8

)
+

z2

4

]
e−2z. (2.68c)

it is checked that uDC
1,Pe=0 and pDC

Pe=0 given by Eq. (2.68b) and Eq. (2.68c) fulfills Eq. (2.60).

x

z

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 2.3: Contour plot of ψPe=0. It can be seen that the number of rolls have doubled. Maximum- and minimum

values are only about one percent of those from the quasi stationary and stokes case (≈ 0.01 u0 ). We notice that
∂zψ(z = 0) = 0.

2.3.2 The Navier-Stokes case; Pe 6= 0

Next we solve Eq. (2.48b) for Pe 6= 0. This time we substitute u0 with usto given by
Eq. (2.34). Assuming u1 and p1 can be expressed as in Eq. (2.57a) and Eq. (2.57b), and
time-averaging the equation we got

∇2uDC
1 −∇pDC

1 =
1
2

(
Re[usto]·∇Re[usto] + Im[usto]·∇Im[usto]

)
, (2.69a)
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Chapter 2 Periodic motion in incompressible liquids

∇2uDC
1 −∇pDC

1 = −
(

1
4 sin(2x) e−2z[1 + P 2

e
8 (z2 − z)]

1
2e−2z[(z2 − z)− P 2

e
48 (−9z2 + 4z3 + z4)]

)
, (2.69b)

where 〈Pe∂tu〉t = 0
When guessing the form of ψ and pDC

1 , we try adding a fourth order polynomial to all
terms in Eq. (2.68a) and Eq. (2.68c).

ψ = sin(2x) e−2z
[z2

64
+ P 2

e (A1 + B1z + C1z
2 + D1z

3 + E1z
4)

]
, (2.70a)

pDC
1 = e−2z

[
− z2

4
+ P 2

e (A2 + B2z + C2z
2 + D2z

3 + E2z
4)

+ cos(2x)
(
− 1

32
− z

8
+ P 2

e (A3 + B3z + C3z
2 + D3z

3 + E3z
4)

)]
. (2.70b)

We find that

ψ = sin(2x) e−2z
[z2

64
+

P 2
e

12288
(4z4 − 8z3 − 3z2)

]
, (2.71a)

pDC
1 = e−2z

[
− z2

4
+

P 2
e

192
(6z3 + z4) + cos(2x)

(
− 1

32
− z

8
+ P 2

e

[ 1
2048

+
z

512
+

z2

256
− z3

192

])]
.

(2.71b)

uDC
1 = −e−2z

(
sin(2x)

[
1
32(z2 − z) + P 2

e
6144(4z4 − 16z3 + 9z2 + 3z)

]

cos(2x) z2
[

1
32 + P 2

e
6144(4z2 − 8z − 3)

]
)

+O(P 3
e ) +O(Re2).

(2.71c)

solves Eq. (2.69b).
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Figure 2.4: Contour plot of ψ, where Pe = 1 and Re = 1. also here we see that the number of rolls have doubled.
Maximum- and minimum values are only about one percent of those from the quasi stationary and stokes case
(≈ 0.01 u0). We notice that ∂zψ(z = 0) = 0.
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2.3.3 Solution for O(P n
e ) and O(Re1)

From the results in the two previous subsections we see that a solution to the time averaged
Eq. (2.48b)

〈∇2u1〉t − 〈∇p1〉t = 〈(u0 ·∇)u0〉t. (2.72)

can be found by time averaging

∇2uDC
1 −∇pDC

1 =
1
2

(
Re[ũ0]·∇Re[ũ0] + Im[ũ0]·∇Im[ũ0]

)
. (2.73)

and substituting ũ0 by an O(Pn
e ) expansion of ũsto in Pe

ũsto =

(
cos(x)

√
1+iPe e−z

√
1+iPe−e−z√

1+iPe−1

sin(x) e−z
√

1+iPe−e−z

1−√1+iPe

)
, (2.74)

and then guessing

uDC
1 =

(
+∂xψn

−∂zψn

)
, ψn = sin(2x) e−2z

n∑

k=0,2,4...

(
P k

e

k+2∑

m=2...

[
akm zm

])
(2.75a)

pDC
1 = e−2z

[
b z2 +

n∑

k=2,4...

(
P k

e

k+2∑

l=3...

[
ckl zl

])
+ cos(2x)

n∑

k=0,2,4...

(
P k

e

k+1∑

h=0...

[
dkh zh

])]
.

(2.75b)

If these guesses are inserted into Eq. (2.73), we get two equations with a total of 4, 13,
28, 49, 76, 109 unknown constants for n=0, 2, 4, 6, 8, 10, respectively .

2.4 Comparing analytical and numerical solutions

When comparing solutions, we need to establish a specific property which we want to
compare. In this section we have chosen to look at the average value of the absolute
velocity, computed in an square area adjacent to the channel wall with the same width
as the pitch between the piezo elements. The numerical calculation is performed with
dimensions and the following values:

symbol value unit description
Pπ 2π × 10−6 m Piezo pitch
ρ 1000 kg m−3 Fluid density
η 1× 10−3 Pa s Fluid viscosity
Pe to be chosen − Péclet number
s to be chosen, s > 1 − Constant
Re s× Pe − Reynolds number
ω Pe × 106 s−1 Angular frequency
u0 s× Pe m s−1 Slip velocity

Table 2.1: The values used for the numerical simulation(see Appendix A).
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Chapter 2 Periodic motion in incompressible liquids

By defining our values like this, we can choose any value of Pe and Re and we still
fulfill the definitions from Eq. (2.3a) and Eq. (2.3b). In order to justify our time averaging
method we must require that Re > Pe. Hence, we set Re = s× Pe, where s is a constant
larger than 1. For different values of Pe we then compute the Average Absolute Velocity,
AAV

AAV =

∫
Ω |u|dxdz

P 2
π

(2.76)

In Fig. 2.5 and Fig. 2.7 the AAV is plotted for increasing values of Pe for different O(Pn
e )-

expansions. To estimate how well these expansions correspond to the numeric result, we
define the error,

Error =
|AAVO(P n

e ) −AAVnum|
AAVnum

× 100 % (2.77)

The error is plotted in Fig. 2.6 and Fig. 2.8.
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Figure 2.5: A plot of the Average Absolute Velocity,
AAV. Plotted for different expansions. For Pe < 1.5
the analytical results is very close to the numerical So-
lution(NumSol).
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Figure 2.6: A plot of the error. Plotted for differ-
ent expansions. The fluctuations for O(P 6

e Re1) and
O(P 10

e Re1) are caused by the sign change in the dif-
ference.
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Figure 2.7: A plot of the Average Absolute Velocity,
AAV. Plotted for different expansions. Again we see
that for Pe < 1.5 the analytical results is very close to
the numerical Solution(NumSol). Notice that NumSol-
values under 10−4 are uncertain, since the simulations
were conducted with a absolute tolerance of 10−4.
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Figure 2.8: A plot of the error. Plotted for different
expansions. It can be seen that the error is especially
large for small values of Pe, this is a result of comparing
very small unprecise numbers.

From Fig. 2.6 and Fig. 2.8 it can be seen that all the analytic solutions are valid for
Pe < 1.2. For Pe > 1.2 it is only O(P 2

e Re1) and O(P 6
e Re1) that are accurate, and still

these are only accurate until Pe ≈ 2. This show, as expected, that the perturbation
theory becomes invalid, for large parameters. Increased accuracy might be achieved by
calculating higher orders in Re. We attempt to do so in the following section.

2.5 High-order terms

Before we can calculate the second-order terms, we must first calculate the remaining
first-order terms.

2.5.1 Determination of u1n and p1n

To find u1n and p1n we insert Eq. (2.57a) into Eq. (2.48b)

[∇2 − Pe∂t

](
uDC

1 +
∞∑

n=1

u1n

)
−∇

(
pDC
1 +

∞∑

n=1

p1n

)
= (u0 ·∇)u0, (2.78)

After separating known terms from unknown we get:

[∇2 − Pe∂t

] ∞∑

n=1

u1n −∇
∞∑

n=1

p1n = (u0 ·∇)u0 + ∇pDC
1 −∇2uDC

1 . (2.79)
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Chapter 2 Periodic motion in incompressible liquids

Inserting u0, uDC
1 and pDC

1 of order O(P 2
e ) we get:

[∇2 − Pe∂t

] ∞∑

n=1

u1n −∇
∞∑

n=1

p1n =

(
Kx

Kz

)
(2.80)

where

Kx =− e−2z sin(2x)
1536

([
384− 48P 2

e z(1 + z)
]
cos(2t) + 192Pez sin(2t)

)
(2.81a)

Kz =− e−2z

4608

([
− 2304z + 144(16z2 + 3z2P 2

e ) + 384P 2
e z3 − 336P 2

e z4
]
cos(2t)− 48Pe(36z2 − 24z3) sin(2t)

)

(2.81b)

When looking at the terms in Eq. (2.81a) and Eq. (2.81b) we immediately see that there
are only terms proportional to sin(2t) or cos(2t). Since all operators on the left hand side
of Eq. (2.80) are linear with respect to time, t, we can conclude that

∞∑

n=1

u1n = u12,
∞∑

n=1

p1n = p12. (2.82)

Hence, the equation to be solved becomes

[∇2 − Pe∂t

]
u12 −∇p12 =

(
Kx

Kz

)
(2.83)

we find that

ψ12 = e−2z sin(2x)

(
Pe

[
z2

512
+

z3

192

]
sin(2t) +

[
z2

64
+ P 2

e

(
− z2

2048
− 5z3

3072
− z4

1024

)]
cos(2t)

)

(2.84)

u12 =
e−2z

3072

[[
96(z − z2)− P 2

e (3z + 12z2 + 2z3 − 6z4)
]
cos(2t) + 4 Pe(3z + 9z2 − 8z3) sin(2t)

]
sin(2x)

(2.85)

w12 =
e−2z

3072

[[− 96z2 + P 2
e z2(3 + 10z + 6z2)

]
cos(2t)− 4 Pez

2(3 + 8z) sin(2t)
]

cos(2x)

(2.86)

p12 = e−2z

([
− z2

4
+ P 2

e

(
z3

32
+

7z4

192

)
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High-order terms Section 2.5

+
[
− 1

32
− z

8
+ P 2

e

(
1

512
+

3z

512
+

3z2

256
+

z3

192

)]
cos(2x)

]
cos(2t)

+
[
− Pe z3

8
− Pe

(
1

253
+

z

64
+

z2

32

)
cos(2x)

]
sin(2t)

)
(2.87)

solves Eq. (2.83)

2.5.2 Re to second order

After finding the full solution to u1 and p1 we can begin to look at the second order
equation Eq. (2.48c). To find uDC

2 we start with Eq. (2.48c)

O(Re2) :
[∇2 − Pe∂t

]
u2 −∇p2 = (u1 ·∇)u0 + (u0 ·∇)u1. (2.88)

We start by looking at the term (u1 ·∇)u0

(u1 ·∇)u0 =
∞∑

n=0

(
u1n∂x + w1n∂z

)(
Re[ũ0] cos(t)− Im[ũ0] sin(t)

)
. (2.89)

When time averaging these terms we get

n = 0, 〈(uDC
1 ·∇)u0〉t = 0

n = 1, 〈(u11 ·∇)u0〉t =
1
2

(
a11x∂xRe[ũ0] + a11z∂zRe[ũ0]

)
− 1

2

(
b11x∂xIm[ũ0] + b11z∂zIm[ũ0]

)
= 0

n > 1, 〈(u1n ·∇)u0〉t = 0. (2.90)

Since a1 = 0 and b1 = 0 according to Eq. (2.82)
Hence 〈(u1 ·∇)u0〉t = 0. Next we look at the term (u0 ·∇)u1

(u0·∇)u1 =
(
Re[ũ0] cos(t)∂x − Im[ũ0] sin(t)∂x + Re[w̃0] cos(t)∂z − Im[w̃0] sin(t)∂z

) ∞∑

n=0

u1n

(2.91)
When time averaging these terms we get

n = 0, 〈(u0 ·∇)uDC
1 〉t = 0

n = 1, 〈(u0 ·∇)u11〉t =
1
2

(
Re[ũ0]∂xa11 + Re[w̃0]∂za11

)
− 1

2

(
Im[ũ0]∂xb11 + Im[w̃0]∂zb11

)
= 0

n > 1, 〈(u0 ·∇)u1n〉t = 0. (2.92)

Hence (u0 ·∇)u1 = 0. Finally we look at the time average of the entire equation.

〈O(Re2)〉t = ∇2uDC
2 −∇pDC

2 = 0 (2.93)

It is obvious that uDC
2 = 0 and pDC

2 = 0 fulfill Eq. (2.93). However, this result does not
help to increase the precision of uDC . Hence, we must attempt to calculate uDC

3
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2.5.3 Determination of vDC
3

Before we can calculate uDC
3 , we need to find u2n and p2n. We use the same approach as

in Section 2.5.1, we insert the Fourier series for u2 and p2

[∇2 − Pe∂t

](
uDC

2 +
∞∑

n=1

u2n

)
−∇

(
pDC
2 +

∞∑

n=1

p2n

)
= (u1 ·∇)u0 + (u0 ·∇)u1, (2.94)

Inserting u0, u1 of order O(P 2
e ) and removing terms with uDC

2 and pDC
2 we get:

[∇2 − Pe∂t

] ∞∑

n=1

u2n −∇
∞∑

n=1

p2n =

(
Gx

Gz

)
(2.95)

where

Gx = −e−3zz

6144

(
cos(t)

[(− 288 + 576z − 288z2 + P 2
e [6 + 36z − 95z2 + 34z3 + 6z4]

)
cos(x)

+
[− 288 + P 2

e (6 + 36z − 7z2 − 9z3)
]
cos(3x)

]

+sin(t)
[
Pe(−12− 60z + 128z2 − 56z3) cos(x)

+ Pe(−12− 60z + 4z2) cos(3x)
]

+cos(3t)
[(− 96 + 192z − 96z2 + P 2

e [3 + 21z − 7z2 − 34z3 + 18z4]
)
cos(x)

+
[− 96 + P 2

e (3 + 21z + 18z2 − 3z3)
]
cos(3x)

]

+sin(3t)
[
Pe(−12− 60z + 128z2 − 56z3) cos(x)

+ Pe(−12− 60z + 4z2) cos(3x)
])

(2.96a)

Gz = −e−3zz2

6144

(
cos(t)

[(
864− 864z + P 2

e [−18− 117z + 60z2 + 18z3]
)
sin(x)

+ P 2
e (−3z − 9z2) sin(3x)

]

+sin(t)
[
Pe(36 + 192z − 168z2) sin(x)

+ 4 Pez sin(3x)
]

+cos(3t)
[(

288− 288z + P 2
e [−9− 69z − 36z2 + 54z3]

)
sin(x)

+ P 2
e (−2z − 3z2) sin(3x)

]

+sin(3t)
[
Pe(36 + 192z − 168z2) sin(x)

+ 4 Pez sin(3x)
])

(2.96b)
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When looking at the terms in Eq. (2.96a) and Eq. (2.96b) we immediately see that there
are only terms proportional to cos(t), sin(t), cos(3t) and sin(3t). Hence, we conclude that

∞∑

n=1

u2n = u21 + u23,
∞∑

n=1

p2n = p21 + p23. (2.97)

Hence, the equation to be solved becomes

[∇2 − Pe∂t

]
(u21 + u23)−∇(p21 + p23) =

(
Gx

Gz

)
. (2.98)

Fortunately this equation can be split up into two simpler equations

[∇2 − Pe∂t

]
u21 −∇p21 =

(
Gx ∝

[
sin(t) ∨ cos(t)

]

Gz ∝
[
sin(t) ∨ cos(t)

]
)

, (2.99a)

[∇2 − Pe∂t

]
u23 −∇p23 =

(
Gx ∝

[
sin(3t) ∨ cos(3t)

]

Gz ∝
[
sin(3t) ∨ cos(3t)

]
)

. (2.99b)

where Gx ∝
[
sin(t)∨cos(t)

]
means the terms in Gx which depends on either sin(t) or cos(t).

Unfortunately these two equations becomes rather cumbersome and since the contribution
from uDC

3 to uDC is very small we will not attempt to solve them. In a real physical setup
we cannot choose the value of u0 as freely as done in Section 2.4. u0 will be given by the
product of the frequency and the amplitude of the piezo oscillations, Aπ. Hence, if the
frequency is 1 MHz and Aπ is 1 nm, then u0 = 1× 10−3 m/s. This means that for a water
filled system with k = 2π

10 µm we have a Reynolds number, Re = 0.01. Remembering the
pre-factor to uDC

3 is Re3 = 10−6, it is clear that uDC
3 is of less importance. Therefore we

must settle with the results from Section 2.4.

2.6 Concluding remarks

Even though the results from Section 2.4 becomes unprecise for large parameters(as the
perturbation-method breaks down), they are sufficient to reveal that an oscillating bound-
ary alone, only effects the very nearest part of the incompressible liquid and that the
induced motion dies very rapidly as the distance to the wall becomes larger. Hence, we
can not explain the acoustic radiation force and acoustic streaming patterns far from the
boundary. We are forced to discard the incompressible-liquid-model.

25





Chapter 3

Sound absorption in compressible liquids

As it has been shown in Chapter 2 we cannot explain the effects of streaming and focusing,
simply by an incompressible liquid surrounded by oscillating walls. So in our next attempt
we will treat the liquid as compressible, and under the influence of sound waves.

3.1 Acoustic perturbation theory

To describe the absorption of sound in a compressible liquid in the domain Ω, we need
the three fundamental equations; the continuity equation (Eq. (3.1)), the Navier-Stokes
equation (Eq. (3.2)), and an equation of state (Eq. (3.3)).

∂tρ + ∇·(ρu) = 0, u ≡ (uex, vey, wez) (3.1)

ρ
[
∂tu + (u·∇)u

]
= −∇p + η∇2u + βη∇

(
∇·u

)
, (3.2)

p = f(ρ). (3.3)

where

β ≡ 1
3

+
ζ

η
. (3.4)

According to Stoke’s viscosity relation ζ = 4η/3 [31], the numerical value of β is therefore
β = 5/3. We notice that for compressible fluids the normal no-slip boundary condition
changes from velocity u(∂Ω) to flux J(∂Ω)

u(∂Ω, t) = 0 =⇒ J(∂Ω, t) = 0. (3.5)

Since velocities and fluctuations are expected to be small we assume the following
approximations to be valid.

p = p0 + p1 + p2 + . . . , (3.6a)
ρ = ρ0 + ρ1 + ρ2 + . . . , (3.6b)
u = 0 + u1 + u2 + . . . . (3.6c)
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Where the subscript indicates the order of the term. The EOS is found from the expansion

p(ρ0 + [ρ1 + ρ2]) = p(ρ0) +
∂p

∂ρ
(ρ1 + ρ2) +

∂2p

∂ρ2
(ρ1 + ρ2)

2 . . . (3.7)

where
c2
0 ≡

∂p

∂ρ
(3.8)

and to reduce the complexity of the equations, we assume that

∂2p

∂ρ2
= 0. (3.9)

3.2 The non-viscous case

To reduce the complexity of the equations we assume that η = 0 and ζ = 0.

3.2.1 Zeroth-order perturbation

The zeroth-order equations becomes

∂tρ0 = 0, (3.10)

∇p0 = 0, (3.11)

p0 = p(ρ0). (3.12)

From Eq. (3.12) we see that p0 is a function of ρ0. Hence from Eqs. (3.10) and (3.11) it
can be seen that ρ0 as well as p0 is constant in both time and space. ρ0 and p0 can be
thought of as the equilibrium or background density and pressure when no sound field is
present. Notice, we have in Eq. (3.6c) already assumed the velocity to be zero when no
sound field is present.

3.2.2 First-order perturbation

The first-order equations becomes

∂tρ1 + ∇·(ρ0u1) = 0, (3.13)

ρ0∂tu1 = −∇p1, (3.14)

p1 = c2
0ρ1. (3.15)

Taking the divergence of Eq. (3.14) and inserting Eq. (3.13) and Eq. (3.15) we get

∂2
t ρ1 = c2

0∇2ρ1. (3.16)

Taking the time derivative of Eq. (3.13) and inserting Eq. (3.14) and Eq. (3.15) we get

∂2
t p1 = c2

0∇2p1. (3.17)
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By inserting Eq. (3.15) into Eq. (3.14) and taking the time derivative, and then inserting
Eq. (3.13) we get

∂2
t u1 = c2

0∇(∇·u1). (3.18)

However, as η = 0 we may assume that u1 is irrotational and can therefore be defined by
a scalar potential

u1 = ∇ϕ1. (3.19)

since u1 is irrotational (∂iuj = ∂jui), we make use of ∇(∇·u) = ∇·(∇u) = ∇2u

∇(∇·u) = ∂i∂juj = ∂j∂iuj = ∂j∂jui = ∇2u, (3.20)

∇·(∇u) = ∂i∂iuj = ∇2u, (3.21)

to rewrite Eq. (3.18) to a wave equation. Hence, we got

∂2
t u1 = c2

0∇2u1. (3.22)

Since Eqs. (3.16 - 3.17) and Eq. (3.22) all are standard wave equations, they have solutions
consisting of linear combinations of traveling waves (Aei[k0x−ωt] + Bei[−k0x−ωt] in the 1D
case). This indicates that the sound wave propagating in the liquid is described by the
first order terms (u1, p1, ρ1).

By inserting Eq. (3.19) and Eq. (3.15) into Eq. (3.14) and removing ∂x, ∂y, ∂z by means
of integration, we can express ρ1 by ϕ1

ρ1 = −ρ0

c2
0

∂tϕ1. (3.23)

By inserting Eq. (3.23) into Eq. (3.15) we get

p1 = −ρ0∂tϕ1. (3.24)

By inserting Eq. (3.19) and Eq. (3.23) into Eq. (3.13) we immediately see that ϕ1 also
follows the wave equation

∂2
t ϕ1 = c2

0∇2ϕ1. (3.25)

By inserting a plane harmonic wave, ρ1 = ρ̂1e
i(k0x−ωt), k0 = ω/c0 into Eq. (3.23) or

Eq. (3.24) and combining with Eq. (3.19) we can find u1(ρ1) or u1(p1)

u1 =
c0

ρ0

ρ1ex =
c2
0

Z
ρ1ex, (3.26)

u1 =
1

c0ρ0

p1ex =
1
Z

p1ex, (3.27)

where Z = ρ0c0 is the acoustic impedance.
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Chapter 3 Sound absorption in compressible liquids

3.2.3 Second-order perturbation

The governing equations to second order becomes,

∂tρ2 + ∇·(ρ0u2) + ∇·(ρ1u1) = 0, (3.28)

ρ0∂tu2 + ρ1∂tu1 + ρ0(u1 ·∇)u1 = −∇p2, (3.29)

p2 = c2
0ρ2. (3.30)

Introducing the mass-flux
J2 ≡ ρ0u2 + ρ1u1, (3.31)

we can write Eq. (3.28) as
∂tρ2 + ∇·J2 = 0. (3.32)

Inserting both Eq. (3.31) and Eq. (3.30) into Eq. (3.29) we get

∂tJ2 = −F− c2
0∇ρ2, (3.33)

where
F ≡ ρ0(u1 ·∇)u1 + ρ0u1(∇·u1). (3.34)

In the definition of F, we have used Eq. (3.13) to rewrite u1∂tρ1 = −u1∇·(ρ0u1). Taking
the time average of Eq. (3.32) and Eq. (3.33) we get

∇·J′′2 = 0 ⇒ ∇·u′′2 = − 1
ρ0

∇·〈ρ1u1〉t. (3.35)

∇ρ′′2 = − 1
c2
0

F′′, (3.36)

where J′′2 = 〈J2〉t and

〈ρ1u1〉t =
1
2

(
Re[ρ̃1]Re[ũ1] + Im[ρ̃1]Im[ũ1]

)
=

1
2
Re [ρ̃1ũ

∗], (3.37)

F′′ =
1
2
ρ0

[(
Re

[
ũ1

]·∇
)
Re

[
ũ1

]
+

(
Im

[
ũ1

]·∇
)
Im

[
ũ1

]]

+
1
2
ρ0

[
Re

[
ũ1

](∇·Re
[
ũ1

])
+ Im

[
ũ1

](∇·Im[
ũ1

])]

=
1
2
ρ0Re

[
(ũ1 ·∇)ũ∗1

]
+

1
2
ρ0Re

[
ũ1(∇·ũ∗1

]
. (3.38)

From these equations we see to our surprise that Eq. (3.35) and Eq. (3.36) no longer
predicts a relation between u′′2 and ρ′′2. Hence they cannot be solved for a general case. This
shows us that the approximation of neglecting the viscosity is a far to rough approximation.
We can therefore conclude that viscosity must be included.
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3.3 The viscous case

In this section we assume that η 6= 0 and ζ 6= 0.

3.3.1 Zeroth-order perturbation

Same as without viscosity. Again ρ0 and p0 are constant in time and space, and u0 = 0.

3.3.2 First-order perturbation

The first order equations becomes

−∂tρ1 = ∇·(ρ0u1) = ρ0(∇·u1), (3.39)

ρ0∂tu1 = −∇p1 + η∇2u1 + βη∇
(
∇·u1

)
, (3.40)

p1 = c2
0ρ1. (3.41)

Taking the divergence of Eq. (3.40) and inserting the left hand side of Eq. (3.39) we find

∂2
t ρ1 = c2

0∇2ρ1 + (β + 1)
η

ρ0

∇2∂tρ1 (3.42)

by insertion of Eq. (3.41) we get

∂2
t p1 = c2

0∇2p1 + (β + 1)
η

ρ0

∇2∂tp1. (3.43)

In the non-stationary steady state, we may assume that ρ1, p1 and u1 are oscillating
harmonically in time, since the system is driven by a harmonic force, f(r, t) = f(r)e−iωt.
Hence, we introduce

ρ1 = ρ̃1e
−iωt, p1 = p̃1e

−iωt, u1 = ũ1e
−iωt. (3.44)

which allows us to substitute

∂t = −iω and ∂2
t = −ω2 (3.45)

into Eq. (3.43), which yields
[
1− i

ωη(β + 1)
ρ0c

2
0

]
∇2p̃1 +

ω2

c2
0

p̃1 = 0. (3.46)

Furthermore we find the relation between p1 and u1 by inserting Eq. (3.39) into Eq. (3.40)
and then substitute the time derivatives as defined.

∇2ũ1 = −i
ωρ0

η
ũ1 +

[
1− i

ωβη

ρ0c
2
0

]1
η
∇p̃1 (3.47)
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Chapter 3 Sound absorption in compressible liquids

These are the equations describing the first-order pressure field and particle velocity. No-
tice that the particle velocity is the velocity at which a particle oscillates and not at which
the wave travels.

We can extract further information from Eq. (3.46), if we rewrite it using the first
order Taylor expansion, (1− x)p ≈ 1− px

∇2p̃1 = −ω2

c2
0

[
1 + i

ωη(β + 1)
ρ0c

2
0

]
p̃1. (3.48)

The term (β+1)ωη
2ρ0c20

has a typical numerical value of

γ ≡ (β + 1)ωη

2ρ0c
2
0

≈ 106 s−1 × 10−3 Pa s
103 kg m−3 × 106 m2 s−2

≈ 10−6. (3.49)

Hence, we can argue that

[
1 + i

ωη(β + 1)
ρ0c

2
0

]
≈

[
1 + iγ

]2
. (3.50)

Our Helmholtz equation then becomes

∇2p̃1 = −k2
0

[
1 + iγ

]2
p̃1 , k0 ≡

ω

c0

. (3.51)

From simple insertion, we se that the plane attenuated wave,

p̃1 = p̂1e
±ik0(1+iγ)x = p̂1e

±k0(i−γ)x, (3.52)

is a solution to the Helmholtz equation.
By inserting the plane attenuated wave into Eq. (3.39), we see that

∇·u1 = − 1
ρ0

∂tρ1 =
iω

ρ0

ρ̂1e
k0(i−γ)x−iωt. (3.53)

Hence,

u1 =
(1− iγ)c0

ρ0

ρ1ex =
(1− iγ)c2

0

Z
ρ1ex (3.54)

fulfills the equation. We find u1(p1) by inserting ρ1 = p1/c2
0 into Eq. (3.54)

u1 =
(1− iγ)

c0ρ0

p1ex =
(1− iγ)

Z
p1ex (3.55)

Notice that if γ → 0 Eq. (3.54) and Eq. (3.55) are identical to Eq. (3.26) and Eq. (3.27).
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3.3.3 Second-order perturbation

The second order equations becomes

∂tρ2 + ∇·(ρ0u2) + ∇·(ρ1u1) = 0, (3.56)

ρ0∂tu2 + ρ1∂tu1 + ρ0(u1 ·∇)u1 = −∇p2 + η∇2u2 + βη∇
(
∇·u2

)
, (3.57)

p2 = c2
0ρ2. (3.58)

Inserting J2 and F as previously defined we get

∂tρ2 + ∇·J2 = 0, (3.59)

∂tJ2 = −F−∇p2 + η∇2u2 + βη∇
(
∇·u2

)
. (3.60)

Taking the time average of Eq. (3.59) and Eq. (3.60) we find

∇·J′′2 = 0

∇·u′′2 = − 1
ρ0

∇·〈ρ1u1〉t = − 1
c2
0ρ0

∇·〈p1u1〉t = − 1
2c2

0ρ0

∇·Re
[
p̃1ũ

∗
1

]

∇·u′′2 = S, S = − 1
2c2

0ρ0

∇·Re
[
p̃1ũ

∗
1

]
(3.61)

0 =− F′′ −∇p′′2 + η∇2u′′2 + βη∇
(
∇·u′′2

)

η∇2u′′2 + βη∇
(
∇·u′′2

)
=∇p′′2 + F′′, (3.62)

We notice that 〈∂tJ2〉t = 0 in steady state. Hence, to find the streaming velocity, u′′2, we
need to solve a scalar equation and a vector equation where both S and F′′ consists only
of known terms. We notice that if u′′2 is solenoidal, then Eq. (3.62) is identical to that of
Nyborg[26]. In Chapter 7 we shall solve these equations for three different examples. But
first we will look closer at the first-order terms, which contains the acoustic waves.
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Chapter 4

Planer sound waves

As shown in Section 3.2.2 the acoustic waves is introduced in the first-order equation,
which show up to be ordinary wave-equations. In this chapter we shall look closer at the
solutions to the wave-equation.

4.1 Wave-emission from an oscillating wall

We imagine a semi-infinite fluid next to a piezo crystal located such that the fluid-crystal
interface is at (x, y, z) = 0 with the outwards pointing normal vector, n. The crystal is
set to vibrate and the position, dw(t) is thus described by dw(t) = i`ne−iωt, where ` is
the vibration amplitude. The velocity of the wall, uw and the acceleration, aw is found
by single and double differentiation, respectively.

uw = u1(0, t) = `ωne−iωt. (4.1)

aw = ∂tu1(0, t) = −i`ω2ne−iωt. (4.2)

Assuming the wall has vibrated long enough for a steady state to be established, we see,
by using uw as a boundary condition, that the first order velocity of the fluid can be
described as

u1(r, t) = `ωnei(k·r−ωt), (4.3)

where k = k0
n
|n| . By requiring that c0 = ω/k0 we ensure that u1 fulfills the wave equation.

Using Eqs. (3.19 - 3.24) we find ϕ, ρ1 and p1

ϕ(r, t) =− i`c0e
i(k·r−ωt), (4.4a)

ρ1(r, t) =ρ0`k0e
i(k·r−ωt), (4.4b)

p1(r, t) =ρ0ω`c0e
i(k·r−ωt) = Z0ω`ei(k·r−ωt). (4.4c)

where Z0 = ρ0c0 is the acoustic impedance of the media.
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Chapter 4 Planer sound waves

4.2 Wave propagation through a single interface

An unattenuated sound wave traveling (from left to right, hence, the subscript r) in one
media(A), is eventually bound to hit the interface of another media(B). At such an interface
the incoming sound wave, ϕA,r, will be split into a reflected, ϕA,l, and a transmitted, ϕB,r,
wave. Hence, we got

A B

p
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ic
le

v
el

o
ci

ty

uA,r

uB,r

uA,l

uA

Figure 4.1: Since ϕ is not continues over
interfaces we plot the particle velocity. The
incoming wave, uA,r is split up into a re-
flected wave, uA,l and a transmitted wave,
uB,r.

ϕA(x, t) =Are
i(kAx−ωt) + Ale

i(−kAx−ωt), (4.5a)

ϕB(x, t) =Bre
i(kBx−ωt) + 0ei(−kBx−ωt). (4.5b)

To describe the amplitudes of the resulting waves, Al and Br, we define the reflec-
tion coefficient, RI and the transmission coefficient, TI , so they represent the ratio be-
tween the reflected or transmitted intensity and that of the incoming wave (IA,r(L, t) =
〈ZA(∂xϕA,r)

2〉t). The subscript ’I’ reminds us that the coefficients apply to the intensity.
Let the interface be positioned at x = L, then due to conservation of energy we must

require that

IA,r(L, t) =IA,l(L, t) + IB,r(L, t), (4.6a)

〈ZA(∂xϕA,r)
2〉t =〈ZA(∂xϕA,l)

2〉t + 〈ZB(∂xϕB,r)
2〉t, (4.6b)

−1
2
ZAk2

A|Ar|2 =− 1
2
ZAk2

A|Al|2 − 1
2
ZBk2

B|Br|2, (4.6c)

1 =

(
|Al|
|Ar|

)2

+
ρBkB

ρAkA

(
|Br|
|Ar|

)2

, (4.6d)

where we have used Zi = ρici = ρiω/ki. Hence, we define

RI =

(
|Al|
|Ar|

)2

, (4.7a)

TI =
ρBkB

ρAkA

(
|Br|
|Ar|

)2

, (4.7b)

so that RI + TI = 1.
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To determine the the amplitudes of Al and Br we need two equations, which we derive
from boundary conditions.

By requiring that the particle velocity, u is continues over the interface we get the
boundary condition ∂xϕA(L, t) = ∂xϕB(L, t). And from Newton’s third law we know that
the force on the interface must be equal on both sides, hence, the same must be valid
for the pressure, leading us to the another boundary condition: ρAϕA(L, t) = ρBϕB(L, t).
Hence we got the two equations

ikAAre
i(kAL−ωt) − ikAAle

i(−kAL−ωt) =ikBBre
i(kBL−ωt), (4.8a)

ρAAre
i(kAL−ωt) + ρAAle

i(−kAL−ωt) =ρBBre
i(kBL−ωt), (4.8b)

which can be reduced to

kA

kB

Are
ikAL − kA

kB

Ale
−ikAL =Bre

ikBL, (4.9a)

ρA

ρB

Are
ikAL +

ρA

ρB

Ale
−ikAL =Bre

ikBL, (4.9b)

by inserting one into the other we see that

Al

Ar
=

ZB − ZA

ZB + ZA

ei2kAL. (4.10)

Dividing Eq. (4.9b) by Ar and inserting Eq. (4.10) we get

Br

Ar
=

ρA

ρB

(
2ZB

ZB + ZA

)
ei(kA−kB)L. (4.11)

From Eq. (4.10) and Eq. (4.11) we see that

RI(A → B) =

(
|Al|
|Ar|

)2

=

(
ZB − ZA

ZB + ZA

)2

, (4.12a)

TI(A → B) =
ρBkB

ρAkA

(
|Br|
|Ar|

)2

=
ρBkB

ρAkA

[
ρA

ρB

(
2ZB

ZB + ZA

)]2

=
ZA

ZB

(
2ZB

ZB + ZA

)2

. (4.12b)

To verify this result, we check that intensity is conserved

1 =RI + TI ,

1 =

(
ZB − ZA

ZB + ZA

)2

+
ZA

ZB

(
2ZB

ZB + ZA

)2

,

1 =
Z2

B + Z2
A − 2ZBZA

(ZB + ZA)2
+

4ZBZA

(ZB + ZA)2
,

1 =
(ZB + ZA)2

(ZB + ZA)2
= 1. (4.13)
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Chapter 4 Planer sound waves

4.3 Wave propagation through multiple interfaces

When the acoustic wave passes through several interfaces the corresponding equations gets
slightly more complicated. we have four materials(A, B, C, D) divided by three interfaces
at x = LA, x = LB and x = LC as shown in Fig. 4.2.

A B C D

LA LB LC
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u

Figure 4.2: The incoming wave, ur is
propagated through several interfaces.

ϕA(x, t) =Are
i(kAx−ωt) + Ale

i(−kAx−ωt), (4.14a)

ϕB(x, t) =Bre
i(kBx−ωt) + Ble

i(−kBx−ωt), (4.14b)

ϕC(x, t) =Cre
i(kCx−ωt) + Cle

i(−kCx−ωt), (4.14c)

ϕD(x, t) =Dre
i(kDx−ωt) + Dle

i(−kDx−ωt), (4.14d)

From the two boundary conditions

∂xϕj+1(Lj , t) =∂xϕj(Lj , t), (4.15)
−ρj+1∂tϕj+1(Lj , t) =− ρj∂tϕj(Lj , t), (4.16)

we got the two equations

ikj+1ϕ
∗
j+1,re

i(kj+1Lj−ωt) − ikj+1ϕ
∗
j+1,re

i(−kj+1Lj−ωt) =ikjϕ
∗
j,re

i(kjLj−ωt) − ikjϕ
∗
j,le

i(−kjLj−ωt)

(4.17a)

iρj+1ωϕ∗j+1,re
i(kj+1Lj−ωt) + iρj+1ωϕ∗j+1,re

i(−kj+1Lj−ωt) =iρjωϕ∗j,re
i(kjLj−ωt) + iρjωϕ∗j,le

i(−kjLj−ωt).

(4.17b)

Which we can reduce and write as matrix equation


eikj+1Lj −e−ikj+1Lj

eikj+1Lj e−ikj+1Lj





ϕ∗j+1,r

ϕ∗j+1,l


 =




kj

kj+1
eikjLj − kj

kj+1
e−ikjLj

ρj

ρj+1
eikjLj

ρj

ρj+1
e−ikjLj





ϕ∗j,r

ϕ∗j,l


 (4.18a)

We then use the relation
[
a b
c d

]−1

=
1

ad− cd

[
d −b
−c a

]
, (4.19)

to multiply both sides by the inverse of the left matrix.


ϕ∗j+1,r

ϕ∗j+1,l


 =

1
2


e−ikj+1Lj e−ikj+1Lj

−eikj+1Lj eikj+1Lj







kj

kj+1
eikjLj − kj

kj+1
e−ikjLj

ρj

ρj+1
eikjLj

ρj

ρj+1
e−ikjLj





ϕ∗j,r

ϕ∗j,l


 (4.20a)

38



Wave propagation through multiple interfaces Section 4.3


ϕ∗j+1,r

ϕ∗j+1,l


 =

1
2




(
kj

kj+1
+

ρj

ρj+1

)
ei(kj−kj+1)Lj

(
ρj

ρj+1
− kj

kj+1

)
e−i(kj+kj+1)Lj

(
ρj

ρj+1
− kj

kj+1

)
ei(kj+kj+1)Lj

(
kj

kj+1
+

ρj

ρj+1

)
e−i(kj−kj+1)Lj





ϕ∗j,r

ϕ∗j,l




(4.20b)

By introducing the transmission matrix

T(j+1,j) =




1
2

(
kj

kj+1
+

ρj

ρj+1

)
ei(kj−kj+1)Lj 1

2

(
ρj

ρj+1
− kj

kj+1

)
e−i(kj+kj+1)Lj

1
2

(
ρj

ρj+1
− kj

kj+1

)
ei(kj+kj+1)Lj 1

2

(
kj

kj+1
+

ρj

ρj+1

)
e−i(kj−kj+1)Lj


 , (4.21)

the equation simplifies to 
ϕ∗j+1,r

ϕ∗j+1,l


 = T(j+1,j)


ϕ∗j,r

ϕ∗j,l


 . (4.22)

The transmission matrix can be use multiple times with changing indexes, to find ϕN


ϕ∗N,r

ϕ∗N,l


 = T(N,N−1)T(N−1,N−2) . . . T(2,1)


ϕ∗1,r

ϕ∗1,l


 (4.23)

Assuming a piezo electric element is located at x = 0 is vibrating with the angular fre-
quency, ω, and the amplitude, `. We find the particle velocity at the to be

uw = ∂xϕA(0, t) = `ωe−iωt. (4.24)

We use this equation to find a relation between Ar and Al.

uw =∂xϕA(x, t), x = 0 (4.25a)

uw =ikA

(
Are

ikAx −Ale
−ikAx

)
e−iωt, x = 0 (4.25b)

Al =Are
2ikAx + i`cAeikAx, x = 0 (4.25c)

Furthermore we assume the last media stretches towards infinity. Hence, no wave is ever
reflected in this media. This is a quite good approximation to the several meters of air
normally surrounding a micro system in the lab. In the case of four medias as in Fig. 4.2
we require

Dl = 0. (4.26)

By inserting Eq. (4.25c) and Eq. (4.26) into Eq. (4.23) it becomes

Dr

0


 = T(D,C)T(C,B)T(B,A)


 Ar

Ar + i`cA


 . (4.27)

We have now reduced the problem to two equations with two unknowns(Ar, Dr), which is
straight forward to solve. Once Ar and Dr has been found, Al is found using Eq. (4.25c).
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When we know both Ar and Al we can find Br and Bl from

Br

Bl


 = T(B,A)


Ar

Al


 . (4.28)

This procedure is repeated until all unknown amplitudes has been found.
We apply this calculation on the one dimensional sandwich structure from Fig. 4.2,

and define domain A as consisting of silicon with a thickness of LA = 300µm, and domain
B as 200 µm water and domain C as 500 µm pyrex and finally domain D as normal air.
The incoming wave is generated by a piezo element located adjacent to domain A. This
setup is similar to the one described in Section 1.3. The piezo element is set to oscillate
with an amplitude of 1 nm. Below, the pressure and particle velocity has been plotted for
two different frequencies.
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Figure 4.3: Panel (a) and (b) shows the pressure p1 and particle velocity u1 for the randomly picked non-resonance
frequency 2.26 MHz. We notice the pressure is far to high for the perturbation method to be valid. This is due to
the lack of damping. Panel (c) and (d) shows the pressure p1 and particle velocity for the resonance frequency 3.56
MHz. We notice the amplitude for both pressure and particle velocity has increased dramatically for the resonance
frequency.

Due to the resonance frequency the amplitudes of both the pressure and particle veloc-
ity has increased dramatically. If the resonance had been exactly hit, the amplitude would
become infinite. We look closer into the resonance phenomenon in Section 4.4. In order
to calculate the pressure distribution in more than one dimensions use a numerical tool
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embedded in the commercial finite element program, COMSOL, this method is described
in Chapter 5.

4.4 Acoustic Resonances

So far we have only considered one oscillating wall, and the waves induced by it. In this
section we look at one-dimensional system bounded by two oscillating walls. The walls are
located at x = ±L and are assumed to oscillated in opposite directions. Hence, to model
the oscillating walls, we state

J1(±L, t) = ±ρ0ω`e−iωt, (4.29)

4.4.1 Unattenuated waves

In the case of unattenuated waves, the first order velocity field, u1 must be defined as a
linear combination of two opposite travelling waves

u1(x, t) = ũ1(x) e−iωt, ũ1(x) = û1e
−ik0x + Beik0x. (4.30)

However, due to the anti-symmetrically oscillating walls we must require that

ũ1(x) =− ũ1(−x)

û1e
−k0(i−γ)x + Bek0(i−γ)x =− û1e

k0(i−γ)x −Be−k0(i−γ)x

û1 =−B (4.31)

Hence, ũ1(x) gets the form

ũ1(x) =û1

(
e−ik0x − eik0x

)
= −i2û1 sin(k0x) (4.32)

From the antisymmetry we have the boundary conditions

ũ1(−L) = −ω`, ũ1(0) = 0, ũ1(L) = ω`. (4.33)

To tune in to a resonance frequency we choose

k0 =
nπ

L
, n = 1, 2, 3... (4.34)

From the boundary conditions (x = ±L) we get

−i2û1 sin(±nπ) = ±ω`

û1 =
±iω`

2 sin(±nπ)
= i∞. (4.35)

This result implies that at a resonance the unattenuated wave should have an infinitely high
complex amplitude, and consequently contain an infinitely amount of energy. This is of
cause non-physical, but so is the unattenuated waves. We therefore repeat the calculation
with attenuated waves.
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Chapter 4 Planer sound waves

4.4.2 Attenuated waves

For attenuated waves, the first order velocity field, u1 must be a linear combination of two
opposite attenuated traveling waves

u1(x, t) = ũ1(x) e−iωt, ũ1(x) = û1e
−k0(i−γ)x + Bek0(i−γ)x. (4.36)

Again, due to the antisymmetric oscillating walls, we require that ũ1(x) = −ũ1(−x), so
û1 = −B. Hence, ũ1(x) gets the form

ũ1(x) =û1

(
e−k0(i−γ)x − ek0(i−γ)x

)
≈ û1

(
2k0γx cos(k0x)− i2 sin(k0x)

)
(4.37)

where we have used the fact that γ ¿ 1 ⇒ eγx ≈ (1 + γx). It is worth noting that the
small cosine wave is non-zero at boundary, while the much larger sine wave is zero and
therefore contained in the specific region.

We still have the same boundary conditions and the resonance definition of k0

ũ1(−L) = −ω`, ũ1(0) = 0, ũ1(L) = ω`. (4.38)

k0 =
nπ

L
, n = 1, 2, 3... (4.39)

So to fulfil the boundary conditions (x = ±L) we require

û1

(
± 2nπγ cos(nπ)− i2 sin(±nπ)

)
= ±ω`

û1 =
(−1)nω`

2nπγ
. (4.40)

We notice that for attenuated waves (γ > 0) the resonance-amplitude becomes finite.
However, due to the often very low value of γ, the resonance-amplitude can still be much
higher than the wall oscillation amplitude. For n = 3 and L = 1 mm we find that

û1 ≈ −87 m/s. (4.41)
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Chapter 5

Numerical simulations in COMSOL

In this chapter we will describe how the tools embedded in COMSOL has been used to
simulate acoustic fields. COMSOL is a commercial software package used for numerical
simulations of various physical problems. COMSOL utilizes the finite element method. In
this chapter we shall first look at the embedded acoustic module, and secondly look at
how equations can be entered manually.

5.1 The Acoustic module in COMSOL

In this section we examine the two different solving methods, which are embedded in the
acoustic module. First we look at the eigenfrequency solver, which is used to find the
different resonance frequencies, and secondly at the time harmonic solver, which can find
the pressure field for any specified frequency.

5.1.1 The eigenfrequency solver

To find the eigenvalues of a system defined by a wave equation, the wave equation is refor-
mulated to the Helmholtz equation. From Section 3.2.2 we have the first order pressure,
p1, described by a standard three dimensional wave equation Eq. (3.17).

∂2
t p1 = c2

0∇2p1, p1 = p1(x, y, z, t). (5.1)

Moving all terms to the left hand side and dividing by ρ0c
2
0,

− 1
ρ0

∇2p1+
1

ρ0c
2
0

∂2
t p1 = 0. (5.2)

Since we only care for the steady state, we require that the solution must be periodic in
time. Hence, it is required that p1 has the form,

p1(x, y, z, t) = p̃1(x, y, z)e−iωt. (5.3)

Inserting this into Eq. (5.2)

− 1
ρ0

∇2p̃1e
−iωt+

1
ρ0c

2
0

∂2
t p̃1e

−iωt = 0. (5.4)
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Differentiating twice with respect to time,

− 1
ρ0

∇2p̃1e
−iωt+

(−iω)2

ρ0c
2
0

p̃1e
−iωt = 0. (5.5)

Reinserting p1, and introducing1 λe = ω2,

− 1
ρ0

∇2p1 −
λe

ρ0c
2
0

p1 = 0 (5.6)

If substituting λe

ρ0c20
= k this equation is called the Helmholtz equation. The Helmholtz

equation can easily be solved analytically for very simple geometries[32]. For a box with
the side-lengths a, b and c we get

λe = c2
sπ

2

(
n2

a2
+

m2

b2
+

l2

c2

)
(5.7)

where

0 < x < a , n = 1, 2, ...

0 < y < b , m = 1, 2, ... (5.8)
0 < z < c , l = 1, 2, ...

For more complex geometries we use COMSOL to solve the problem numerically.

5.1.2 Example: Pseudo-one-dimensional

An example of a more complicated geometry could be blocks of different materials stacked
together. Due to the differences in materiel parameters the solution will no longer be
trivial. For further comparing, we choose to work on a pseudo one dimensional problem.
By choosing a one dimensional problem, we can verify the numerical results by comparing
with analytical results based on the equations from Section 4.3. The reason why we call
this problem ’pseudo one dimensional’ is that it really is two dimensional. But we keep
one dimension so narrow that, no wave can appear here, except for very high frequencies.
This mean that for relative low frequencies the model can be regarded as one dimensional.
Instead of setting up the problem in the COMSOL GUI we will use scripting. The problem
we are going to solve resembles the sandwich structure from Section 4.3 and Section 1.3.
We start by initiating the variables we are going to use.

COMSOL
1 % Initializing

2 flclear fem

3 MF = 15;

4 NSOL = 4;

5 Lstart = 500;
COMSOL

1Notice that the definition of λe will vary with different versions of COMSOL, This definition is from
ver. 3.2a
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We notice that line 1 has been commented out, this line simply serves to remind us that
this part of the script initializes the variables. The second line makes sure the variable
’fem’ is empty, the ’fem’ variable is used to store the entire FEM-environment. The third
line sets the value of the variable ’MF’, this is to be used later on when defining the mesh.
’NSOL’ is the number of solutions we want COMSOL to find. ’Lstart’ is the value, on
which the search for eigenvalues should be centered. ’Lstart’ must not be an eigenvalue
itself.

Next we define the geometry. We keep the geometry to three domains, hence the
surrounding air is omitted. We make the three domains 300 µm, 200 µm and 500 µm
wide, but only 10 µm high. This way we keep a sufficiently high aspect ratio to treat the
system as one dimensional.

COMSOL
6 % Geometry

7 g1 = rect2(3e-4,10e-6);

8 g2 = rect2(2e-4,10e-6,’pos’,[3e-4,0]);

9 g3 = rect2(5e-4,10e-6,’pos’,[5e-4,0]);

10 fem.draw.s.objs = {g1,g2,g3};

11 fem.geom = geomcsg(fem);
COMSOL

Line 7-9 defines the three domains. ’g2’ and ’g3’ are furthermore repositioned. Line 10
stores the geometry in the ’fem’ variable. Line 11 analyzes the stored geometry, and saves
it in ’fem.geom’ if it proves valid. The resulting geometry can be seen in Fig. 5.1, notice
the axes are scaled differently.

Figure 5.1: The pseudo one-dimensional geometry.
Notice the axes are scaled differently. The aspect ratio
is 1:100 The numbers indicate the index of the domain
boundaries.

Figure 5.2: The mesh configuration. To improve vi-
sualization the mesh has been plotted for MF = 5.
For accurate results MF should at least be a few times
greater.

The next step is to define the mesh, in this calculation we use a rectangular mesh, we
could also have used a triangular mesh.

COMSOL
12 % Meshing

13 fem.mesh=meshmap(fem, ...

14 ’edgelem’,{2,[3*MF],3,[3*MF],...

15 5,[2*MF],6,[2*MF],...

16 8,[5*MF],9,[5*MF],...

17 10,[5],1,[5]});
COMSOL
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Actually this box only contains one real line. The three successive dots simply implies that
the line is continued below. In line 13 and forth we only define the number of elements on
the outer boundaries. It is important that opposite boundaries have the same number of
elements, otherwise the ’meshmap()’ function will not work. The syntax of the ’edgelem’
part is ,’edgelem’,{index,[number of elements],index,[number of elements]}.
Hence, we set the boundaries with index 2 and 3 to ’3*MF’, and the boundaries with
index 5 and 6 to ’2*MF’ and so on. In Fig. 5.2 the mesh is plotted for MF=5.

After defining the mesh, the physics are added.
COMSOL

18 % Physics

19 fem.appl.mode.class = ’Acoustics’;

20 fem.appl.prop.analysis=’eigen’;

21 fem.appl.equ.cs = {8490,1483,5640};

22 fem.appl.equ.rho = {2331,998.2,2230};

23 fem.appl.equ.ind = [1,2,3];

24 fem.appl.bnd.type = {’SS’,’SH’,’cont’};

25 fem.appl.bnd.ind = [2,2,2,3,2,2,3,2,2,1];
COMSOL

When adding the physics we need the governing equations and the boundary conditions.
In line 19 the acoustics module is loaded, this module contains the necessary equations,
we only have to specify them. This is done in line 20 where the type of analysis is chosen
to be an eigenfrequency analysis. Hence, the governing equation in all domains becomes,

−1
ρ
∇2p1+

λe

ρc2
s

p1 = 0 (5.9)

Which, fortunately is the exact same as Eq. (5.6) derived above. In line 21 and 22 we
define the material parameters for three different domain groups, which are distributed to
the three available domains in line 23.

Material Silicon Water Pyrex
Group nr. 1 2 3

cs 8490 1483 5640
ρ 2331 998.2 2230

Table 5.1: The material parameters for the three different domain groups.

Hence, the leftmost domain receives the parameters of Silicon, the middle domain
becomes water, and the rightmost domain becomes pyrex. We follow the same procedure
when assigning boundary conditions. First, in line 24 we define three boundary groups.
Then in line 25 the groups are distributed. When doing eigenfrequency analysis, three
different boundary conditions are available, the soft, the hard and the continuity condition.
The soft condition imitates a soft wall, where the particles are free to oscillate back and
forth. Hence, the soft boundary condition is defined as,

p1 = 0. (5.10)

To see how this relates to the particle velocity, we recall from Eq. (3.24) that for a time
harmonic pressure we have ϕ1 = −ip1/ρ0ω. Hence, u1 = ∇ϕ1 = −i∇p1/ρ0ω. The soft
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condition therefore gives no constraints on u1. The hard condition imitates a hard wall,
where the particle velocity is fixed to the steady wall. The hard boundary condition is
defined as,

n·∇p1

ρ0

= 0. (5.11)

This condition locks the particle velocity, but leaves no constraint on the pressure. The
continuity condition simply states that both pressure and particle velocity must be con-
tinues across the boundary. The continuity condition can only be applied to internal
boundaries. The question, that now remains, is how to distribute these three condition
to the ten boundaries in our problem. First we notice that boundary 4 and 7 are internal
boundaries. Hence, it is obvious that these should be of the continues type. Since we want
to compare this system with one placed on top of a piezo element. The boundary facing
the piezo is forced to move together with the piezo, hence boundary 1 should be of type
hard. Since boundary 10 is supposed to be adjacent to normal air it should be free to
move, and hence, be of the type soft. The remaining boundaries are all set to be of the
hard type, as this makes the pressure constant across the boundaries. This mean that the
system will act as one dimensional, as long as the shortest wavelength is more than twice
of the height of the domains. The speed of sound is lower in water than in silicon and
pyrex, so the smallest wavelengths will be in the water domain. We can therefore find the
critical frequency as,

Fc =
cs

2λ
≈ 1500 ms−1

20× 10−6 m
≈ 75 MHz. (5.12)

This result is very important, as it tells us that all eigenfrequencies found to be more than
75 MHz are not valid. Line 25 distributes the boundary groups in the following way:

Boundary type Hard (SH) Soft (SS) Continues (cont)
Boundary number 1, 2, 3, 5, 6, 8, 9 10 4, 7

Table 5.2: The distribution of the boundary conditions. The letters in the parenthesis are the abbreviations used
in line 24.

Now the problem has been fully defined we begin to solve it. Before the actual solving step
the FEM-structure must be prepared. This is done in line 27-28, where we use the functions
’multiphysics()’ and ’meshextend()’, which combines the defined physics applications with
the defined mesh.

COMSOL
26 % Solving

27 fem=multiphysics(fem);

28 fem.xmesh=meshextend(fem);

29 fem.sol=femeig(fem, ...

30 ’neigs’,NSOL, ...

31 ’shift’,Lstart, ...

32 ’solcomp’,{’p’}, ...

33 ’outcomp’,{’p’});
COMSOL
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In line 29 the eigensolver, femeig() is called. We use the argument ’neigs’ to tell the
solver how many solutions we are looking for. In this case we are looking for NSOL, which
was set to four in line 4. The next argument is ’shift’, which tells the solver where to begin
the search for solution. Since we in this example wants the first four eigenvalues we set
’shift’ to Lstart, which was set to 500 in line 5. Finally we tell the solver to solve for the
specific variable , p, representing pressure. Finally we take a look at the results.

COMSOL
34 % Plotting

35 for j=1:length(fem.sol.lambda)

36 figure

37 postcrossplot(fem,1,[0 0.001;5e-6 5e-6], ...

38 ’lindata’,’p’, ...

39 ’solnum’,j);

40 end

41 (fem.sol.lambda.^0.5./(2*pi))’
COMSOL

The lines 35 and 40 starts and ends a loop, which is executed once for each found solution.
The variable ’j’ serves as a counter, hence, it refers to the current solution number. Line
36 creates a new figure window, to avoid the coming plots from overlapping each other. In
line 37-39 we make a cross section plot of the pressure. The argument in square brackets is
coordinates for the cross section. Since the simulation is supposed to be one dimensional
the y-coordinates are unimportant as long as they are identical. The x-coordinates are 0
and 0.001. In line 38 we tell the plotter that it is the pressure we wish to see plotted. Line
39 makes sure we plot the j’th solution. Finally in line 41 we ask the script to compute
and print the found eigenfrequencies. In Fig. 5.3 the output from the script is shown,
however only the third solution-plot is shown.

Result
ans =

1.0e+006 *

0.4746

3.5581

5.5887

6.7202
Result

Figure 5.3: The left side of this figure shows the output of the script, while the right side shows a cross section
plot of the pressure distribution corresponding to the third eigenfrequency. The four found eigenfrequencies are 0.47
MHz, 3.56 MHz, 5.59 MHz and 6.72 MHz.

When using the eigenfrequency analysis we must be aware that there might be solu-
tions, which has not been found, and a second execution of the script may yield a different
result. This problem seems only to apply to the ends of the eigenvalue list. So for any
other purposes than this example the number of eigenvalues sought should be large enough
to allow the exclusion of a few values at each end of the list. If the list starts at zero, as
in this example, the first eigenvalues should all be found. Notice that the second eigen-
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frequency corresponds to the one shown in Fig. 4.3 panel (c), while we will look at the
third resonance in the next subsection.

5.1.3 The time harmonic solver

To see how the pressure will distribute in our sandwich structure for any given frequency,
we must make a time harmonic analysis. For this analysis we add a new domain to the right
side of the geometry from the eigenfrequency analysis. This domain represent the ambient
air. The governing equations for time harmonic analysis is the same, however a few more
boundary conditions are added. When loading the acoustic module, COMSOL will select
the harmonic analysis by default, hence, the line fem.appl.prop.analysis=’eigen’;
must be omitted. In this analysis we include two new boundary conditions, one to describe
how the piezo element(not included in model) effects the adjacent boundary, and one to
describe how the sound waves leak to the surroundings. To model a vibrating piezo element
we use the normal acceleration boundary condition.

n·∇p1

ρ0

= an. (5.13)

Fortunately, we have already determined the inward acceleration, an. From Eq. (4.2)
we have aw = −i`ω2ne−iωt, where ` is the amplitude of the piezo, and ω is the angular
frequency. When choosing ω we must be sure to stay below the critical frequency, since our
model still is pseudo-one-dimensional. To implement the normal acceleration boundary
condition the type abbreviation ’NA’ is used. The acceleration is introduced with the line
bnd.nacc = a;. To model the leakage of sound waves, we use the impedance boundary
condition

n·∇p1

ρ0

− iωp1

Z
= 0. (5.14)

The origin of this equation is the same assumption as we used in Section 4.3, which was
that there should be no reflected wave, Dl = 0. This can be seen by remembering that
the wave, in domain D has the form p1,D(x, t) = Dre

i(kDx−ωt) + Dle
i(−kDx−ωt). We then

perform the following manipulation,

n·∇p1

ρ0

− iωp1

Z
= 0, (5.15)

∂x

(
Dre

i(kDx−ωt)

ρ0

+
Dle

i(−kDx−ωt)

ρ0

)
− iωDre

i(kDx−ωt)

Z
− iωDle

i(−kDx−ωt)

Z
= 0, (5.16)

ikDDre
i(kDx−ωt)

ρ0

− ikDDle
i(−kDx−ωt)

ρ0

− iωDre
i(kDx−ωt)

Z
− iωDle

i(−kDx−ωt)

Z
= 0. (5.17)

We then use k = w/c and Z = ρ0c

iωDre
i(kDx−ωt)

Z
− iωDle

i(−kDx−ωt)

Z
− iωDre

i(kDx−ωt)

Z
− iωDle

i(−kDx−ωt)

Z
= 0, (5.18)

−2
iωDle

i(−kDx−ωt)

Z
= 0, (5.19)

49



Chapter 5 Numerical simulations in COMSOL

Dl = 0. (5.20)

The impedance boundary condition has the type abbreviation ’IMP’. The impedance
is introduced by the line bnd.Z={’343.4*1.161’};. With this condition the pressure
wave will stream away from the structure as it would from a speaker. With these new
boundaries at each end, we can now numerically solve the same time harmonic system
that we already have solved analytically. The frequency, f is defined using the line
appl.var = {’freq’,’f’};. Instead of the eigensolver the linear solver, femlin() is
used, and the arguments, neigs and shift are dropped(see Appendix B). By doing the
same calculation by both analytical and numerical methods, we have the possibility of
validating the numerical algorithm. In Fig. 5.4 both the numerical and analytical result
for the resonance frequency 5.5887 MHz is plotted. As it can be seen from the figure
the two results are very similar. In order to get a better impression of the difference
between the two, the absolute difference is plotted in Fig. 5.5. The largest difference is
approximately 3800 Pa, but this should be compared to values of the results, which are
of the order of several billions (109) Pa. By comparing these numbers, we see that the
error is only of the order of ≈ 10−6. The same analysis is repeated for the non-resonance
frequency 5.6887 MHz. In Fig. 5.6 both results are shown. The difference between these
two is shown in Fig. 5.7. This time the largest difference is approximately 1.3 Pa. This
error is also ≈ 10−6. From the size of these errors, we can conclude that the numerical
model is sufficiently valid. Furthermore, due to large increase in pressure amplitude, we
have confirmed that the frequency 5.5887 MHz is in fact very close to a resonance, had
we hit the exact resonance the amplitude would become infinite. This proves that also
the eigenfrequency analysis is sufficiently correct. We now understand the basics of the
acoustic module and can in Chapter 6 move on to complicated geometries, which cannot
be solved analytically.
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Figure 5.4: The results of a calculation performed
both numerically(black) and analytically(yellow). The
calculation shows the pressure distribution at the res-
onance frequency 5.5887 MHz.
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Figure 5.5: The absolute difference between the an-
alytical and numerical results at the resonance fre-
quency 5.5887 MHz. The error is approximately ≈
10−6.
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Figure 5.6: The results of a calculation performed
both numerically(black) and analytically(yellow). The
calculation shows the pressure distribution at the non-
resonance frequency 5.6887 MHz.
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Figure 5.7: The absolute difference between the an-
alytical and numerical results at the non-resonance
frequency 5.6887 MHz. The error is approximately
≈ 10−6.

5.2 General PDE formulation for COMSOL

In Chapter 3 we derived three equations necessary for finding u′′2. The three partial
differential equations we wish to solve using COMSOL, are the compressible continuity
equation Eq. (3.61)

∂xu′′2 + ∂yv
′′
2 = S (5.21)

and the x and y components of the steady-state Navier-Stokes equation Eq. (3.62)

η∇2u′′2 =∂xp′′2 + F ′′
x − βη∂x

(
∂xu′′2 + ∂yv

′′
2

)
(5.22)

η∇2v′′2 =∂yp
′′
2 + F ′′

y − βη∂y

(
∂xu′′2 + ∂yv

′′
2

)
(5.23)

where S, F ′′
x and F ′′

y are known functions of both x and y. These three equation each has
an associated dependent variable. The continuity equation has p′′2 (∂tp

′′
2 + ∇·J ′′2 = 0), and

the x and y component of the Navier-Stokes equation has u′′2 and v′′2 , respectively. Hence,
we have the three dependent variables a = {u′′2, v′′2 or p′′2}. Each of the three equations
Eqs. (5.21 - 5.23) must be formulated using the general PDE formulation,

∇·Γa = fa. (5.24)

where all terms containing the associated dependent variable, a, are collected in the vector
Γa. All other terms are listed in the scalar fa

Γp′′2 =
(

0
0

)
, fp′′2 = −(∂xu′′2 + ∂yv

′′
2) + S (5.25)

Γu′′2 =
(

(β + 1)η∂xu′′2
η(∂yu

′′
2 + β∂xv′′2)

)
, fu′′2 = ∂xp′′2 + F ′′

x (5.26)
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Γv′′2 =
(

η(∂xv′′2 + β∂yu
′′
2)

(β + 1)η∂yv
′′
2

)
, fv′′2 = ∂yp

′′
2 + F ′′

y (5.27)

In the general PDE formulation, the boundary conditions are defined as a combination of
a Dirichlet and a Neumann condition

−n·Γa = Ga + µ
(
∂aRa

)T
; Ra = 0, (5.28)

where a is the dependent variable associated to Γa, µ is the Lagrange multiplier and Ga

and Ra are to be specified. n is normal vector of the boundary. If we define Ra ≡ 0, then
the term ∂aRa becomes zero, and since the Dirichlet condition (0 = 0) does not contribute
with any restraints, the only remaining condition is the Neumann condition

−n·Γa = Ga. (5.29)

If we instead define Ra, for instance Ra ≡ a − 4, so the term ∂aRa differs from zero,
then the Lagrange multiplier can be scaled to achieve any desired value. Hence the entire
Neumann condition can be discarded and any definition of Ga becomes obsolete. The only
remaining condition is the Dirichlet condition a− 4 = 0 or

a = 4. (5.30)

If we define Ra 6= 0 such that ∂aRa = 0 we get both Dirichlet and the Neumann condition.
For internal boundaries the definition is slightly different

−n·(Γa,1 − Γa,2) = Ga + µ
(
∂aRa

)T
; Ra = 0; a1 = a2, (5.31)

where the numeric subscripts refer to the two adjacent domains divided by the boundary.
We notice that this condition requires the dependent variable to be continues across the
boundary (see Appendix D).

5.3 Executing a COMSOL-script

To execute a COMSOL-script, both Matlab and COMSOL must be installed. The pro-
grams are simultaneously initiated by the command

C:\COMSOL32\bin\comsol.exe matlab.

This command will most likely already exist as a shortcut in the ’programs’-folder. When
the programs are up and running, the script can be entered into the Matlab-editor. Once
the script has been entered, it can be executed by hitting the ”F5”-button. A selected
part of the script can be executed by the ”F9”-button.
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The acoustic radiation force

6.1 The force in one dimension

When a microfluidic channel is affected by a standing acoustic wave, any suspended parti-
cles will be affected by a force called the ’acoustic radiation force’, Far. The induced force
will move particles towards either pressure nodes or anti-nodes. The acoustic radiation
force is commonly [16] quoted in one dimension as

Far =−
(

πp̂2
1Vp

2λ

)
φ(β, ρ) sin(2kd) (6.1)

where
φ(β, ρ) = βl

5ρp−2ρl

2ρp+ρl
−βp (6.2)

and

p̂1 = Pressure amplitude.
Vp = Volume of the particle.
d = Distance from closest pressure node(p1).
λ = Wavelength of the acoustic wave.
k = 2π

λ
βl, βp = Compressibility of either the liquid or the particle.
ρl, ρp = Density of either the liquid or the particle.

By looking at Eq. (6.1) it is clear that once the standing wave is achieved, several
different factors has influence on the size of the force. First of all the pressure amplitude,
this can somewhat be controlled by the tone generator connected to the piezo element and
by ensuring that the element is properly connected to the chip, but it is mainly a matter
of how perfect a resonance is achieved. The second factor is the volume of the particles, it
simply implies that the larger a particle; the greater the force(more on this in Chapter 8).
Note that the particles must be smaller than half of the wavelength. The third factor is
the wavelength, since the force decreases as wavelength increases, higher frequencies yields
higher force. The fourth factor is φ(β, ρ), this factor is determined by the characteristics
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of the particles in use. The factor can either be positive, negative or zero. If φ is zero,
the particles are unaffected by the acoustic waves. It is because of the sign-change in the
φ-factor that blood cells and lipid particles moves in opposite directions[18]. See Fig. 6.1.

Figure 6.1: The Piezoelement creates a standing wave inside the channel. Depending on their density or com-
pressibility, particles will either move towards the center of the channel, or towards the sidewalls. Blood cells gather
in the center while lipid particles gathers at the walls.

6.2 The force in more dimensions

If the method described above should be used for non-planar waves, we can only say
that particles will eventually end up in pressure nodes or anti-nodes. So by solving the
Helmholtz equation Eq. (5.1) we can find the different eigenmodes and the corresponding
nodes. Hence, we can (in principle) calculate where the beads will accumulate for different
frequencies. How fast the particles will move in different parts of the chamber, can not be
determined.

A way to predict the shape of the multi-dimensional acoustic radiation force, is to
look at the elastic energy. We regard the particles as springs governed by Hooke’s law
(Fh = −ksx). The potential energy in such systems is found as

Epot =
1
2
ksx

2 =
1
2

F 2
h

ks
=

1
2

A2(p′′2)
2

ks
(6.3)

where A is the area of the particle, and p = p′′2, where p′′2(r) > 0 as other contributions are
constant or has zero time average. The force acting on a particle can then be found as

Far = −∇Epot = −1
2

A2

ks
∇(p′′2)

2 = −τp′′2∇p′′2 (6.4)

where τ is constant in both space and time, but different for different types of particles.
The value of τ is not straight forward to find, so in this work we simply define it as
positive for blood cells. As a consequence we can still only calculate the relative acoustic
radiation force. We do notice that τ ∝ A2 ∝ r4, where r is the radius of the particle.
Hence, particles with a radius 10 times larger, will be 10000 times more affected by the
acoustic radiation force. Unfortunately the calculation of p′′2 is not straight forward. So
until Chapter 8 we will stick to finding nodes for eigenmodes.
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6.3 Dimensional analysis; from 3D to 2D

The obvious way to calculate the resonance pressure field, is a three dimensional eigenfre-
quency analysis. When trying to model the chip presented in Section 1.3.1 in three dimen-
sions, it proved to be a complicated matter to define the mesh. Usually a mesh of isotropic
tetrahedron is used. However, this is not a possibility because of the Length:width:height
ratio being 47:15:1, meaning that if we wish to have 15 elements in the height, which still is
a rather low resolution, we would end up with approximately (15×1)×(15×15)×(15×47) ≈
2.4 × 106 elements. With so many elements the calculation would require far more phys-
ical memory than is found in a standard computer. So, in order to obtain anisotropic
elements we must use an extruded mesh of quadrilaterals. The extrusion, however, forces
us to model each layer independently, in order to define several different domains in the
z-direction. The three layers are then connected using ’Identity Boundary Conditions’.
However, it quickly proved that also this combination of still many elements and the iden-
tity boundary conditions, also required far too much computational power. This meant
that it would be necessary to figure out if the calculations could be made in only two
dimensions.

6.3.1 Validation of the 2D approximation

Instead of doing the calculation i three dimension it is suggested, that due to the rela-
tive low frequency(or long wavelengths) we can neglect the z-direction, and perform the
calculation on a two dimensional cross section of the second layer. In order to validate
the results of a two dimensional approximation, a new geometry was invented(only for
simulation purposes). The plan was to simplify the geometry so much that it would be
possible to perform full three dimensional simulations. The results of the two- and three
dimensional simulations could then be compared. The new geometry took root in the old
one. The chamber was kept at 2mm×2mm while the channel was shorted down, so it only
extended 2.4 mm on each side of the channel. The distance from the end of the channel to
the edge of the chip was shortened to 0.6 mm, giving the new chip a total length of only
8 mm. The distance from the chamber to the edge of the chip was shortened to 2 mm on
each side. Hence, resulting in a total width of 6 mm. The Heights of the three layers were
kept at original values. By cutting down the chip size three dimensional eigenfrequency
analysis became possible, but only for a very coarse mesh. When doing finite element sim-
ulations it is very important to keep the wavelengths larger than the mesh size, otherwise
the problem cannot be well defined. Hence, in order to keep the wavelengths long enough,
we only calculate the first 49 eigenfrequencies. The new smaller geometry is converted
into two dimensions and solved using the same coarse mesh. Since we do not expect the
solutions to be in the exact same order in two and three dimensions, we calculate the first
50-two dimensional eigenfrequencies. To compare the calculated pressure fields, a cross
section in the xy-plane in the middle of the chamber were visually compared. Only the
50th two-dimensional solution could not be matched. Had the three dimensional analysis
reached further a matching solution might have been found. Hence, the 50th solution is
discarded. In Fig. 6.2 the results from the three dimensional calculation have been plot-
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ted(with a blue ’x’). In the same figure the results from the two dimensional calculation,
which had a similar pressure field to one of the three dimensional solutions, have also been
plotted(with a red ’o’). In Fig. 6.3 the solutions are sorted based on the two dimensional
solutions. From the lack of gaps in these two figures we can conclude that for low fre-
quencies, the same pressure fields exist for both the two and three dimensional geometries.
Furthermore, the shift between two frequencies, corresponding to the same pressure field,
is almost constant at 0.5 MHz.
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Figure 6.2: Both 2D and 3D solutions sorted based
on the three-dimensional solutions. The lack of gaps in
the two-dimensional solutions indicate that all calcu-
lated three-dimensional pressure fields were also found
in the two dimensional calculation.
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Figure 6.3: The figure show both 2D and 3D solutions
sorted based on the two dimensional solutions. The
lack of gaps in the three dimensional solutions indicate
that all calculated two dimensional pressure fields were
also found in the three dimensional calculation.

This shows us that even though there is a shift in frequency, all pressure fields can be
found from the two dimensional analysis as long as the frequency is low enough to prevent
waves in the z-direction.

6.3.2 Density of states

The curves in Figs. 6.2 and 6.3 can be approximated analytically by assuming we only
have one domain, where the speed of sound is an average value of those otherwise present.
From the analytical solution (Eq. (5.7)) we have the relation

ω2 = c2
sπ

2

(
n2

a2
+

m2

b2
+

l2

c2

)
. (6.5)

From this equation we calculate the frequency for any integer combination of n,m and
l. The results are sorted in increasing order and plotted in Fig. 6.5 as ’analytical fit’.
Furthermore we can approximate this by rewriting Eq. (6.5) as

ω2

c2
s

= k2, (6.6)

where k is defined as
k = (kx, ky, kz) =

(πn

a
,
πm

b
,
πl

c

)
. (6.7)
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Hence,
ω

cs
= |k|. (6.8)

To find the number of solutions below a given frequency, we divide the area/volume of the
circle/sphere with radius |k|, by the area/volume of a single solution. In Fig. 6.4 the two
dimensional analogy is shown.

|k| = 2

1 2

2

1

kx

ky

k
=

(kx
, ky

)

Figure 6.4: The definition of k, which can be used to determine the density of states. For enhanced visibility only
the two dimensional case is shown.

Hence, we find the number of solutions to be

N3D(f) =
Vsphere

Vsol
=

4
3π|k|3
π
a

π
b

π
c

=
4 (2πf)3 a b c

3 c3
s π2

. (6.9)

By turning this equation around we can predict the frequency of the N’th solution,

f3D(N) =
cs

2π

3

√
3π2

4
3

√
N

abc
. (6.10)

The same procedure is valid for two dimensional problem.

N2D(f) =
Acircle

Asol
=

π|k|2
π
a

π
b

=
(2πf)2 a b

c2
s π

. (6.11)

f2D(N) =
cs

2π

√
Nπ

ab
(6.12)

We then plot the frequency as a function of the solution number, for both the two and three
dimensional analysis, together with the simulation results. For the analytical solutions the
speed of sound have been fitted to fit the simulations. The reason for this is that there
does not seem to be an obvious way to estimate the speed of sound. We could have used
the sum of the speeds in each domain and divide by the number of domains. However,
we must also take into account that each speed should be weighted by the relative size of
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the corresponding domain. Furthermore, domains with a low speed of sound, will support
more solutions, and should somehow be emphasized. From Fig. 6.5 it is seen that the
shape of the analytical approximations are relatively close to the simulation results. This
indicate the applied eigenfrequency solver have not skipped any solutions, nor has it found
artificial solutions originating from bad meshing amongst other modeling features.
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Figure 6.5: Comparison of the analytical eigenfrequencies to those from the simulations. For the 3D and 2D
approximations and the analytical fit we used c3D = 8400m/s, c2D = 7500m/s and cFit = 5250m/s

We have now shown that as long as we stick to low frequencies all pressure fields can be
found using only a two dimensional analysis. Furthermore, the f(N)-curves follow those
analytically predicted. Hence, we can generalize these conclusions to also apply for the
original geometry shown in Fig. 1.1. Should this generalization be valid, we are now able
to simulate the pressure fields inside the real chip.

6.4 The symmetric chamber model

In Section 6.3 we have shown that it is sufficient to perform the simulations in only two
dimensions. However, the two original chips used in the experiments, were designed for
easy fabrication and handling. At that time it was not considered to design the chips with
a geometry, which could easily be remodeled. This meant that parts of the chips easily
broke off leaving unpredictable shapes. Hence, the simulated geometries should not be
considered exact replicas, but rather geometric approximations. Since the geometry will
not be exact anyway, we look at the simplest working approximation. The large difference
in the acoustic impedance between silicon and water,

Zw

Zsi

=
cwρw

csiρw
=

1483 m s−1 × 998.2 kg m−3

8490 m s−1 × 2331 kg m−3
= 0, 075 (6.13)

allows us to treat the water/silicon interface as a hard wall. Hence, we can discard the
silicon domain and only simulate the domains containing liquid. Hence, we rather discard
the silicon domain that simulate it using wrong dimensions. By this approximation the
geometry simplifies to a 2 mm× 2 mm chamber, centered on a 25 mm× 0.4 mm channel
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(see Fig. 6.6). The boundary conditions are set to hard wall, n ·∇p1 = 0, except at the
two ends of the channel were we set p1 = 0 to mimic the in- and outlets. This geometry
will here forth be called the symmetric chamber model.

2 mm

25 mm

2 mm0.4 mm

Figure 6.6: The chamber model

The system could of cause be approximated even further, by simply simulating the
chamber itself, but this have proved to be too rough an approximation, as the found
eigenmodes could not be experimentally confirmed.

The result of the simulations(see Appendix C) on both the square and the circular
symmetric chamber model yielded several hundreds of eigenmodes in the frequency range
0.5 MHz − 3 MHz, from which only a small fraction could be experimentally verified. It
is difficult to predict which of the calculated eigen-modes will be possible to determine
experimentally, as the pressure field amplitude is normalized to fulfill

∫
Ω p2

1 dxdy∫
Ω 1 dxdy

= 1. (6.14)

However, if the calculation shows a much higher amplitude in the chamber than in the
channel, the probability of experimentally observing this mode is greatly increased. Some
of the results are shown in Fig. 6.7. Notice that the shown examples have been chosen
based on their geometric differences, and not based on the quality of the frequency match.
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(1a) 0.73 MHz (1b) 0.67 MHz (2a) 2.49 MHz (2b) 2.42 MHZ

(3a) 1.35 MHz (3b) 1.28 MHz (4a) 2.23 MHz (4b) 2.17 MHz

Figure 6.7: Four examples of how the simulated eigenmodes can be confirmed by experiments. The top row is
from a chip with a round chamber, while the bottom row is a square chamber. We see that the simulated frequencies
does not match the experimental ones completely. Panel (2b) courtesy Melker Sundin.

Fig. 6.7 compares the simulated eigenmodes with the experimental obtained bead
patterns. An important lesson learned from studying these pictures, is that the beads not
only accumulate at the nodal-lines, but seems to be more confined to the nodal-line the
steeper the gradient of eigenmode pressure field is at that location. This is especially clear
in panel (1b) and (2b) but can also be seen in panel (3b) This strongly indicates that the
definition of the acoustic radiation force, Far, should include a term dependant on the
spatial derivative of p. We notice this is not the case in Eq. (6.1) but in Eq. (6.4). When
looking at panel (4b) we see that some beads have accumulated at the pressure extremes.
These are in fact a different kind of beads than the blood cell phantoms, and apparently
these other beads have an opposite compressibility ratio than blood cells. (τ < 0 in
Eq. (6.4)). An important feature not revealed by Fig. 6.7 is the strength of the acoustic
radiation force. In panel (1b) and (3b) the force was extremely weak, while a little stronger
in panel (2b). In the final case of panel (4b) the force was many times stronger than in
other eigenmodes. The pattern formed at 2.17 MHz was the only observed pattern strong
enough to withstand a flow through the chamber. All other patterns were immediately
washed away. We notice that there seems to be a small offset between the calculated
frequencies and the corresponding experimental ones. This offset might be caused by
variations in the temperature during the experiments. Despite the small deviation in
frequency the simulations are very precise for describing where the beads will accumulate.

6.5 Breaking of symmetry

Since the original chips were asymmetric, some of the experimentally observed eigenmodes
also were. These eigenmodes can not be explained from the symmetric chamber model,
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so to ensure our understanding we must expand the model. In reality the chambers were
placed off center relative to the channel on both chips. Furthermore the channel/chamber
region was shifted in both x- and y-direction, also on both chips. All these shifts could of
cause be implemented at once, but it proved very difficult to estimate the correct lengths
of these shifts. This meant that only some of the experimentally observed eigenmodes
could be found for a set of shift-length-parameters. So instead of wasting time searching
for the exact values of the parameters, it was decided to just break the symmetry in a
simple way. There are two obvious ways to bring asymmetry into the system (see Fig. 6.8).

(a) (b)

Figure 6.8: Two simple ways of introducing asymmetry to the model. In panel (a) the chamber/channel part
has been shifted as a whole. This method requires that the surrounding silicon is also simulated. In panel (b) the
chamber has been shifted relative to the channel. The dotted line indicate former symmetry lines.

One way is to simulate the surrounding silicon in which both the channel and chamber
both has been shifted slightly, or a second and easier way is to shift the location of the
chamber relative to the channel. In Fig. 6.9 we compare the experimental patterns with
those achieved using the two asymmetric models. Panel (a) and (b) shows the asymmetric
patterns corresponding to 2.06 MHz and 2.08 MHz, respectively. We notice how the left
side appear strongest in panel (a) and the right one in panel (b). Panel (c) and (d)
shows the corresponding results from simulations on the asymmetric model where silicon
surrounds the liquid region. The liquid region is shifted 0.5 mm right and 0.5 mm up. The
difference in frequency between panel (c) and (d) is only 1 kHz. When we compare panel
(c) and (d) to panel (a) and (b), we notice how the blue(low) areas just left and right of
the red(high) center peak is of different strengths. In panel (c), as well as in panel (a) we
see that left side is the strongest. In panel (d) and (b) it is the other way around. Hence,
the method of applying an asymmetric silicon part around the chamber is sufficient to
account for the split eigenmode.

61



Chapter 6 The acoustic radiation force

(a) (b)

(c) (d)

(e) (f) (g)

Figure 6.9: Panel (a) and (b) shows the asymmetric patterns corresponding to 2.06 MHz and 2.08 MHz, respec-
tively. Panel (c) and (d) shows the corresponding results from simulations on the asymmetric model where silicon
surrounds the liquid region. The liquid region is shifted 0.5 mm right and 0.5 mm up. The difference in frequency
between panel (c) and (d) is only 1 kHz. Panel (e) and (g) shows the result of shifting the otherwise symmetric
placed chamber 1 mm to the right. The frequency difference is 28 kHz. Panel (f) shows the corresponding symmetric
solution. Panel (a) and (b) courtesy Melker Sundin.

Panel (e) and (g) shows the result of shifting the, otherwise symmetric placed, chamber
1 mm to the right relative to the channel. The frequency difference between panel (e) and
(g) is 28 kHz. Panel (f) shows the corresponding symmetric eigenmode solution. By
comparing the nodal lines(black) in panel (e) and (g) to the experimental bead patterns,
we can see that this very simple approach also can explain the eigenmode splitting.
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6.6 Concluding remarks

We have shown that for a relatively shallow chamber, it is sufficient to find the eigenmodes
for the governing Helmholtz equation in two dimensions instead of three, as long as the
wavelength is more than twice the length of the third dimension. One consequence of
using the Helmholtz equation for unattenuated waves is that simulations yields far more
solutions than can be experimentally verified. This can be explained by arguing that, in
the laboratory, acoustic damping in the liquid and any energy dissipation will smear out
the theoretically perfect peaks. Hence, some modes will entirely disappear, while others
might be clouded by stronger modes. The mismatch in frequency between experimental
and calculated values, can be related to geometric uncertainties and thermally induced
changes to material parameters.

Furthermore it has been shown that it is not necessary to include the material sur-
rounding the chamber and channel (silicon in this case), as long as there is a large acoustic
impedance mismatch.

It has also been shown that if the symmetry is broken the eigenmodes will spilt up.
So finally it can be concluded that the chamber model is very effective, when calculating

where beads will accumulate.
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Chapter 7

Examples of sound absorption in liquids

In this chapter we will look at some examples of how to calculate the second-order terms
from Section 3.3.3. We start with two one-dimensional systems and finally in Section 7.3
we look at a two-dimensional system. In each example we calculate the first-order terms
before we can find the second-order terms.

7.1 Analytic Example 1: plane traveling wave

In the first example we study a liquid under influence of a plane harmonic traveling wave.
The wave is created by a oscillating wall at x = 0. Where the positive half space is
containing the liquid. This system can be regarded as one dimensional. k0 = ω/c0 and γ
is the viscous damping parameter.

7.1.1 First order pressure, p1, and velocity u1

Since we prefer to use a steady coordinate system, we model the oscillation of the wall by
stating that the flux at x = 0 is oscillating with the angular frequency ω ≈ 106 s−1 and
the amplitude ` ≈ 10−9m.

J1(x, t) = ρ0u1 = ρ0ω`e−iωt. (7.1)

Hence, we may assume the velocity field, u1, and the pressure field p1 has the form

u1(x, t) = ω`eϕ(x,t), (7.2)

and

p1(x, t) =
p̂1

ω`
u1(x, t) = p̂1e

ϕ(x,t), (7.3)

where
ϕ(x, t) = (i− γ)k0x− iωt, (7.4)

and

γ =
(β + 1)ωη

2ρ0c
2
0

. (7.5)
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We note that Eq. (7.3) already fulfills the one dimensional edition of Eq. (3.51)

∂2
xp1 =− k2

0

[
1 + iγ

]2

p1. (7.6)

To find p̂1(x), we insert u1 and p1 into the one dimensional edition of Eq. (3.47)

∂2
xu1 =− i

ωρ0

η
u1 +

[
1− i

ωηβ

ρ0c
2
0

]1
η
∂xp1, (7.7)

we find

p̂1 =
[
1 + iγ

]
ρ0c0ω`. (7.8)

To summarize the first order terms we got

u1(x, t) = εc0e
ϕ(x,t), (7.9)

p1(x, t) = p̂1e
ϕ(x,t) = ε(1 + iγ)ρ0c

2
0e

ϕ(x,t), (7.10)

where we have introduced the perturbation parameter ε

ε =
ω`

c0

≈ 10−6. (7.11)

We can now calculate the second order terms.

7.1.2 Second order pressure, p′′2, and velocity u′′2

We can now begin to solve the one dimensional editions of Eq. (3.61) and Eq. (3.62)

∂xu′′2 = − 1
2c2

0ρ0

∂xRe
[
p̃1ũ

∗
1

]
, (7.12)

η∂2
xu′′2 + βη∂x(∂xu′′2) =∂xp′′2 + F ′′

(β + 1)η∂2
xu′′2 =∂xp′′2 + F ′′ (7.13)

We insert the known first order terms into Eq. (7.12) and integrate to find u′′2

u′′2 =− 1
2c2

0ρ0

∫ (
∂xRe

[
p̃1ũ

∗
1

])
dx

=− 1
2c2

0ρ0

Re
[
p̃1ũ

∗
1

]
+ Cu

=− 1
2c2

0ρ0

c3
0ε

2ρ0e
−2k0γx + Cu

=− ε2
1
2
c0e

−2k0γx + Cu. (7.14)
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where Cu is an integration constant. Next we calculate F ′′ according to Eq. (3.38) in one
dimension

F ′′ =
1
2
ρ0Re

[
ũ1∂xũ∗1

]
+

1
2
ρ0Re

[
ũ1∂xũ∗1

]

= ρ0Re
[
ũ1∂xũ∗1

]

= −ε2γc0ωρ0e
−2k0γx. (7.15)

We can now find p′′2 by inserting Eq. (7.14) and Eq. (7.15) into Eq. (7.13) and integrate

∂xp′′2 =(β + 1)η∂2
xu′′2 − F ′′

p′′2 =
∫ [

(β + 1)η∂2
xu′′2 − F ′′

]
dx

p′′2 =ε2γc0ωρ0

∫ [
(1− 4γ2)e−2k0γx

]
dx

p′′2 =− ε2
1
2
c2
0ρ0(1− 4γ2)e−2k0γx + Cp (7.16)

where Cp is an integration constant. Here we assume Cp ≡ 0.
We now calculate the time averaged flux J ′′2 . Keeping in mind that in a one dimensional

system with one wall the time-averaged flux must be zero in steady state, otherwise some
areas of the system would end up depleted.

J ′′2 = 〈ρ1u1〉t + ρ0u
′′
2 = 0. (7.17)

We can quickly see that

ρ0u
′′
2 =− ε2

1
2
c0ρ0e

−2k0γx + ρ0Cu. (7.18)

and that

〈ρ1u1〉t =
1
2
Re

[
p̃1

c2
0

ũ∗1

]

=ε2
1
2
c0ρ0e

−2k0γx. (7.19)

Hence, we find

J ′′2 = −ε2
1
2
c0ρ0e

−2k0γx + ε2
1
2
c0ρ0e

−2k0γx + ρ0Cu = 0, (7.20)

if Cu = 0. From Eq. (6.4) we have the acoustic radiation force

Far =− τp′′2∂xp′′2

=
ε4γ

2
τρ2

0c
3
0(1− 4γ2)e−4k0γx (7.21)

we notice that for all positive x values, the radiation force is also positive. Hence, the
particles are repelled by the oscillating wall.
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7.2 Analytic Example 2: Wave resonance, 1D

The second example concerns a liquid under influence of a cavity wave. The wave is
created by two oscillating walls at x = −L and x = L. The walls are set to oscillate
asymmetrically at a resonance frequency.

7.2.1 First order pressure, p1, and velocity u1

Since, this system is identical to that in Section 4.4.2 we immediately see from Eq. (4.40)
that

û1 =
(−1)nεc0

2nπγ
, where ε =

ω`

c0

, (7.22)

fulfills the boundary conditions. To find p1 we make the following guess

p1(x, t) = − p̂1

û1k0(i− γ)
∂xu1 = p̂1

(
e−k0(i−γ)x + ek0(i−γ)x

)
e−iωt, (7.23)

so that

∂xp1(x, t) = −k0(i− γ)
p̂1

û1

u1, (7.24)

and inserts this into the one dimensional edition of Eq. (3.47)

∂2
xu1 =− i

ωρ0

η
u1 +

[
1− i

ωβη

ρ0c
2
0

]1
η
∂xp1. (7.25)

We find that

p̂1 =− ρ0c0

[
1 + iγ

]
û1. (7.26)

So to summarize the first order terms we got

u1(x, t) =
(−1)nεc0

2nπγ

(
e−k0(i−γ)x − ek0(i−γ)x

)
e−iωt (7.27)

≈(−1)nεc0

nπ

(
k0x cos(k0x)− i

γ
sin(k0x)

)
e−iωt,

p1(x, t) =− (−1)nε[1 + iγ]
2nπγ

ρ0c
2
0

(
e−k0(i−γ)x + ek0(i−γ)x

)
e−iωt, (7.28)

≈(−1)nε

nπ
ρ0c

2
0

(
1
γ

cos(k0x) + i
[
cos(k0x)− k0x sin(k0x)

])
e−iωt,

We notice the maximum value of u1 becomes εc0
nπγ ≈ 0.35c0 for n = 1. Hence, the validity of

the perturbation method becomes questionable, since 0.35 ≈ 1. We shall however proceed
anyway.
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7.2.2 Second order pressure, p′′2, and velocity u′′2

We can now begin to solve the one dimensional editions of Eq. (3.61) and Eq. (3.62)

∂xu′′2 = − 1
2c2

0ρ0

∂xRe
[
p̃1ũ

∗
1

]
, (7.29)

η∂2
xu′′2 + βη∂x(∂xu′′2) =∂xp′′2 + F ′′

(β + 1)η∂2
xu′′2 =∂xp′′2 + F ′′ (7.30)

We insert the known first order terms into Eq. (7.29) and integrate to find u′′2

u′′2 =− 1
2c2

0ρ0

∫ (
∂xRe

[
p̃1ũ

∗
1

])
dx = − 1

2c2
0ρ0

Re
[
p̃1ũ

∗
1

]
+ Cu

=− 1
2c2

0ρ0

c3
0ε

2ρ0

4(nπγ)2
(
e−2k0γx − e2k0γx + 2γ sin(2k0x)

)
+ Cu

=− ε2

8(nπγ)2
c0

(
e−2k0γx − e2k0γx + 2γ sin(2k0x)

)
+ Cu. (7.31)

Next we calculate F ′′ according to Eq. (3.38) in one dimension

F ′′ =
1
2
ρ0Re

[
ũ1∂xũ∗1

]
+

1
2
ρ0Re

[
ũ1∂xũ∗1

]
= ρ0Re

[
ũ1∂xũ∗1

]

=
ε2

4(nπγ)2
c0ωρ0

(
− γe−2k0γx + γe2k0γx + 2 sin(2k0x)

)
(7.32)

We can now find p′′2 by inserting Eq. (7.14) and Eq. (7.15) into Eq. (7.13), integrate and
expand in γ

p′′2 =
ε2(4γ2 − 1)

4(nπγ)2
c0ωρ0

∫ (
− γe−2k0γx + γe2k0γx + 2 sin(2k0x)

)
dx

=
ε2(4γ2 − 1)

8(nπγ)2
c2
0ρ0

(
e−2k0γx + e2k0γx − 2 cos(2k0x)

)
+ Cp

≈− 1
2

(
c0ε

nπγ

)2

ρ0 sin2(k0x) + Cp. (7.33)

In order for us to use p′′2 in the calculation of the acoustic radiation force, Cp must be
defined such that p′′2(r) > 0. Hence,

Cp =
1
2

(
c0ε

nπγ

)2

ρ0. (7.34)

We now calculate the time-averaged flux J ′′2 . As in Section 7.1 we must require that the
flux in steady state is zero.

J ′′2 = 〈ρ1u1〉t + ρ0u
′′
2 = 0. (7.35)
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We can quickly see that

ρ0u
′′
2 =− 1

8

(
ε

nπγ

)2

c0ρ0

(
e−2k0γx − e2k0γx + 2γ sin(2k0x)

)
+ ρ0Cu, (7.36)

and that

〈ρ1u1〉t =
1
2
Re

[
p̃1

c2
0

ũ∗1

]
=

ε2

8(nπγ)2
c0ρ0

(
e−2k0γx − e2k0γx + 2γ sin(2k0x)

)
. (7.37)

Hence, we find

J ′′2 =
ε2(1− 1)
8(nπγ)2

c0ρ0

(
e−2k0γx − e2k0γx + 2γ sin(2k0x)

)
+ ρ0Cu = 0. (7.38)

if Cu = 0. Finally we calculate the shape of the acoustic radiation force from Eq. (6.4)

Far =− τp′′2∂xp′′2

≈− 1
2

(
c0ε

nπγ

)4

τk0ρ
2
0 cos(k0x) sin3(k0x) (7.39)

we notice that particles with τ > 0 accumulate at p1-nodes.

p̃
1

F ′′

ar

L1

2
L0−

1

2
L−L

Figure 7.1: The red line shows the amplitude of the first order pressure, p̃1. The blue line shows the acoustic
radiation force affecting blood cell like particles. Both for n = 3. We notice that the force makes the particles
accumulate at the p̃1 nodes. Both amplitudes are shown normalized.
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7.3 Numeric Example 3: Wave resonance, 2D

In this example we consider a two dimensional system with walls at x = ±L and y = ±L.
we assume that parallel walls oscillate antisymmetric.

7.3.1 First order pressure, p1, and velocity u1

To model the oscillating walls we state

J1 =
(

Jx,1(±L, t)
Jy,1(±L, t)

)
=

( ±ερ0c0e
−iωt

±reiθερ0c0e
−iωt

)
, (7.40)

where θ describes the phase shift and r the amplitude ratio. The first order velocity field,
u1 must then be defined as a linear combination of two opposite traveling waves in both
the x− and y−direction

u1(x, y, t) =
(

ũ1(x) e−iωt

ṽ1(y) e−iωt

)
,

(
ũ1(x) = û1

(
e−k0(i−γ)x − ek0(i−γ)x

)
ṽ1(y) = v̂1

(
e−k0(i−γ)y − ek0(i−γ)y

)
)

(7.41)

From the antisymmetry we have the boundary conditions

ũ1(−L) = −ω`
ṽ1(−L) = −reiθω`

ũ1(0) = 0
ṽ1(0) = 0

ũ1(L) = ω`
ṽ1(L) = reiθω`.

(7.42)

We find from Section 4.4.2 that
û1 =

(−1)nεc0

2nπγ
, (7.43)

and using the same approach that

v̂1 = reiθ (−1)nεc0

2nπγ
, (7.44)

which fulfills the boundary conditions. To find p1 we make the following guess

p1(x, y, t) =− p̂x,1

û1k0(i− γ)
∂xu1 −

p̂y,1

v̂1k0(i− γ)
∂yv1

=

[
p̂x,1

(
e−k0(i−γ)x + ek0(i−γ)x

)
+ p̂y,1

(
e−k0(i−γ)y + ek0(i−γ)y

)]
e−iωt, (7.45)

so that

∂xp1 = −k0(i− γ)
p̂x,1

û1

u1 (7.46)

∂yp1 = −k0(i− γ)
p̂y,1

v̂1

v1 (7.47)

this guess fulfills the Helmholtz equation Eq. (3.51). We find p̂1 by inserting Eq. (7.45)
into Eq. (3.47)

∇2u1 =− i
ωρ0

η
u1 +

[
1− i

ωβη

ρ0c
2
0

]1
η
∇p1. (7.48)
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Hence, we get

p̂x,1 = −ρ0c0

[
1 + iγ

]
û1. (7.49)

p̂y,1 = −ρ0c0

[
1 + iγ

]
v̂1. (7.50)

To summarize the first order terms we got

u1(x, y, t) =
(−1)nεc0

2nπγ

(
e−k0(i−γ)x − ek0(i−γ)x

reiθe−k0(i−γ)y − reiθek0(i−γ)y

)
e−iωt, (7.51)

p1(x, y, t) = −
[
1+iγ

](−1)nε

2nπγ

(
e−k0(i−γ)x+ek0(i−γ)x+reiθe−k0(i−γ)y+reiθek0(i−γ)y

)
ρ0c

2
0e
−iωt,

(7.52)
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Figure 7.2: This is scalar 2D-plot, red colors mean high values, while blue colors are low. The plot shows the form
of the first order pressure amplitude, p̃1, at a k0 = 3π

L
-resonance. The horizontal walls oscillate three times stronger

than the verticals, r = 3, θ = 0. Data range ±109 Pa.

By carefully selecting the right parameters, we have obtained a first order pressure
field, which is similar to that of Fig. 6.7 panel 4b. We notice the maximum value of 109 Pa
is far to extreme to give any physical meaning. The amplitude reaches such heights because
we have chosen a resonance frequency. A real system would shatter if a pressure of 104

atm were induced. Hence, it becomes apparent that the derivation of û1 in Section 4.4.2
is flawed. Somehow, the amplitude of u1 must be much smaller. So even though these
high amplitudes ruins the perturbation method, we continue anyway as all terms in the
end will depend on û1. So, if future work can prove that û1 is in fact much smaller, this
theory will be valid. The parameters used for Fig. 7.2 will also be used in the following
figures.
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7.3.2 Second order pressure, p′′2, and velocity u′′2

To find the second order terms we must solve the two second order equations Eq. (3.61)
and Eq. (3.62)

∇·u′′2 = − 1
2c2

0ρ0

∇·Re
[
p̃1ũ

∗
1

]
= S (7.53)

η∇2u′′2 =∇p′′2 + F′′ − βη∇(∇·u′′2). (7.54)

To solve these equations, we will first have to calculate S and F. We start by finding the
two components of 〈p1u1〉t = 1

2Re
[
p̃1ũ

∗
1

]
. We expand to the second leading order of γ and

assume θ = 0, as in Fig. 7.2

1
2
Re

[
p̃1ũ

∗
1

] ≈ γû2
1ρ0c0

[
− 2k0x + sin(2k0x)− 2rk0x cos(k0x) cos(k0y)

− 2rk0y sin(k0x) sin(k0y) + 2r cos(k0y) sin(k0x)
]

(7.55)

1
2
Re

[
p̃1ṽ

∗
1

] ≈ γû2
1ρ0c0

[
− 2r2k0y + r2 sin(2k0y)− 2rk0y cos(k0x) cos(k0y)

− 2rk0x sin(k0x) sin(k0y) + 2r cos(k0x) sin(k0y)
]

(7.56)

Eq. (7.55) and Eq. (7.56) are plotted in Fig. 7.3 panel (a) and (b), respectively.
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Figure 7.3: Panel (a) shows 〈p1u1〉t and panel (b) shows 〈p1v1〉t, both at k0 = 3π
L

, r = 3, θ = 0. The data range

for panel (a) is ±7× 106 Pa m s−1, while r times larger for panel (b).

Then we can find S

S = ∇·u′′2 = − 1
2c2

0ρ0

∇·Re
[
p̃1ũ

∗
1

]
= − 1

c2
0ρ0

(
∂x

1
2
Re

[
p̃1ũ

∗
1

]
+ ∂y

1
2
Re

[
p̃1ṽ

∗
1

])

≈ 2γωû2
1

c2
0

(
1 + r2 − cos(2k0x)− r2 cos(2k0y)

)
. (7.57)
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Figure 7.4: S at k0 = 3π
L

, r = 3, θ = 0. Data range is 0− 16 s−1

We notice that S depends on û2
1. Hence, if û1 is greatly reduced, we see that S ≈ 0

for a water-like liquid. This corresponds very well to the incompressible(∇·u = 0) liquid
normally use for microfluidic calculations.

Next we find F′′ from equation Eq. (3.38)

F′′ =
1
2
ρ0Re

[
(ũ1 ·∇)ũ∗1

]
+

1
2
ρ0Re

[
ũ1(∇·ũ∗1).

]
(7.58)

We split it into the x− and y−component

F ′′
x =

1
2
ρ0Re

[
(ũ1∂x + ṽ1∂y)ũ

∗
1

]
+

1
2
ρ0Re

[
ũ1(∂xũ∗1 + ∂yṽ

∗
1)

]

≈ 2û2
1k0ρ0

(
sin(2k0x) + r cos(k0y) sin(k0x)

)
, (7.59)

and

F ′′
y =

1
2
ρ0Re

[
(ũ1∂x + ṽ1∂y)ṽ

∗
1

]
+

1
2
ρ0Re

[
ṽ1(∂xũ∗1 + ∂yṽ

∗
1)

]

≈ 2û2
1k0ρ0

(
r2 sin(2k0y) + r cos(k0x) sin(k0y)

)
. (7.60)
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Figure 7.5: Panel (a) shows F ′′x and panel (b) shows F ′′y , both at k0 = 3π
L

, r = 3, θ = 0. The data range in panel

(a) is ±5× 1011 N m−3, while 9 (r2) times larger in panel (b)

Now that S and F′′ have been calculated, we can use COMSOL to solve the three
coupled partial differential equations numerically(see Appendix D). In this model we can
safely state that the flux normal to any boundary must be zero, as we have non-porous
walls. On the other hand, it is not obvious what conditions we can assume parallel to
the walls, as these are oscillating. But if we have a water-like liquid, we see that the
characteristic length scale of momentum diffusion is LD =

√
η

ρ0ω = 1 µm, which is much

smaller than the element size, used in the numerical calculations. This means that the
model should not be sensitive to small changes in the boundary conditions. Hence, we
choose a neutral boundary condition; we assume the viscous stress is zero. These conditions
are implemented using the method from Section 5.2 by setting

R ={Rp′′2 , Ru′′2 , Rv′′2 } = {0, J ′′2,x, 0}
G ={Gp′′2 , Gu′′2 , Gv′′2 } = {0, 0, 0} (7.61)

for the vertical walls and

R ={Rp′′2 , Ru′′2 , Rv′′2 } = {0, 0, J ′′2,y}
G ={Gp′′2 , Gu′′2 , Gv′′2 } = {0, 0, 0} (7.62)

for the horizontal walls.

The numerical results for u′′2, v′′2 and p′′2 are shown below.
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Figure 7.6: Numeric results from COMSOL for k0 = 3π
L

, r = 3, θ = 0. Panel (a) and (b) shows u′′2 and v′′2 ,

respectively. Panel (c) shows p′′2 . The data range in both panel (a) and (b) is ±2.5 × 106 m s−1. The data range
for panel (c) is 0− 5× 108 Pa.

Again, we notice that the amplitude of several million meters per second is far to high.
In Chapter 8 we shall non the less try to compare these results with those experimentally
obtained.
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Chapter 8

Comparing theory and experiments

As mentioned earlier, we have a huge problem regarding the amplitudes of all the fields
involved in this calculation. But by normalizing the numeric results, their relative values
can still be compared to those from the experiments.

8.1 Simulated streaming patterns

By plotting the numeric results for u′′2 and v′′2 in a vector plot we can still compare the
resulting flow-pattern. In Fig. 8.1 panel (a) we see that a pattern of 6 × 6 vortices has
appeared. We notice that this pattern is very similar to that obtained during the exper-
iments, Panel (b). The frequency corresponding to the k0 = nπ

L = 3π
0.001m−1 resonance

is 2.2245 MHz. For the corresponding experiment (Fig. 8.1 panel (b)) the frequency was
approximately 2.17 MHz. Panel (c) shows the result of a calculation performed at the
k0 = nπ

L = π
0.001m−1 resonance with a frequency at 0.74 MHz. This 2× 2 vortex pattern

was also observed experimentally, at 0.76 MHz. Even though the experimental data shown
in panel (d) does not show four complete vortices, it is so close that we assume the correct
state has been found. The lack of uniformity in the experimental data, might by caused
by asymmetries in the chip itself or in the entire experimental setup.
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Figure 8.1: Comparison of vector-plots of the calculated velocities to the PIV-pictures of the experimental velocities
of the small particles. Panel(a) shows a pattern of 6×6 vortices found at the k0 = 3π/L resonance(2.2 MHz). Panel
(b) shows the flow-pattern found at 2.17 MHz. We notice that the predicted 6x6-vortices were indeed observed,
and since the experiment were made with small particles they are not noticeably affected by the radiation force.
Panel(c) shows a pattern of 2 × 2 vortices found at the k0 = π/L resonance(0.74 MHz). Panel (b) shows the
flow-pattern found at 0.76 MHz for small particles. We notice that the predicted 2× 2-vortices also were observed.
PIV-pictures(panel (b) and (d)) courtesy Melker Sundin.

The velocity observed in the experiments corresponds to û1 ≈ ω` ≈ 0.001 m/s were
the calculations were performed with û1 ≈ 87 m/s as predicted in Section 4.4.2.
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8.2 Simulated radiation force

If we turn to look at the acoustic radiation force acting on a particle, we find the expression
from Eq. (6.4)

F′′ar = −τp′′2∇p′′2 (8.1)

By plotting the normalized acoustic radiation force we can see that the corresponding
bead pattern corresponds very well to the experimental bead pattern.
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Figure 8.2: We see that the larger particles were observed to accumulate where the theory predicts.

By assuming the particle motion can be described by a quasi-stationary steady state
flow, we can express the particle velocity as proportional to the acoustic radiation force.
Hence, if both are normalized they become identical. Fig. 8.3 shows the experimen-
tally measured bead velocity in the y-direction for x = ±L/3. Due to symmetry the
y-component of the theoretically radiation force is the same for x = ±L/3. Hence, only
one line represents Far,y
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Far,y

vr

vl

y = −L y = 0 y = L

0

Figure 8.3: Vertical cross-sectional plots of the experimental velocity in the y-direction for x = −L/3 (vl) left
and 1x = L/3 (vr) right of the center of the chamber. Far,y is the calculated force in y-direction. By assuming
a quasi-stationary steady state motion of the particles, we can directly compare force to velocity. Velocity data
courtesy Melker Sundin.

Taking the relatively coarse derivation of Far (Section 6.2) into account, the shape of
the calculated acoustic radiation force is very similar to the experimental data.

82



Chapter 9

Conclusion

In Chapter 2 it has been shown that the assumption of oscillating walls surrounding an
incompressible liquids, is not sufficient to explain how relatively strong flow patterns can
exist far from the boundary. However, by comparing analytical solutions to numerical
solution, we have confirmed that the perturbation method is an acceptable approach for
this kind of system.

The realization that the no-slip condition actually applies to the flux and not only
to the velocity of a compressible liquid, must be emphasized, as the lack of this (in the
hindsight) obvious statement caused some huge problems in the early development of this
work.

In Chapter 6 it is shown that the nodal-lines in solutions to a eigen-frequency analysis
of the pressure-based Helmholtz equation, provide a very accurate hint to were suspended
beads will eventually accumulate. If the location of the nodal-lines is combined with
the gradient of the corresponding first-order pressure field, one can estimate the relative
strength of acoustic radiation force. It is also shown that as long as the acoustic wave-
lengths are more than twice the length of a dimension, the dimension can be omitted from
the eigen-frequency analysis and the result will still be reasonably accurate.

From the comparisons in Chapter 8 it can be seen that the expression derived in Sec-
tion 6.2 for the acoustic radiation force is very useful. The expression can not only account
for where the particles will accumulate, but it also tells where they will collect fastest, and
finally it gives a reasonable argument to why small particles seems unaffected(Far ∝ r4).

However, from the apparently un-physically high amplitudes calculated, we are lead to
the conclusion that the derivation of the resonance amplitudes in Section 4.4.2 is flawed.
One can argue if it is the oscillation amplitude of walls that has been estimated to be too
high(1 nm) or if the damping in the system is artificially low. Perhaps it is necessary to
include a loss because of heating.

In Chapter 8 it can be seen the equations developed in Chapter 3 are able to explain
the experimentally observed flow patterns, though again the amplitudes were far to high.

Hence, it can be concluded that the main contributions to the acoustic radiation force
and to acoustic streaming have been understood, with the exception of the amplitudes at
resonance-frequencies.
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Chapter 10

Outlook

To improve the work presented in this thesis, it is obvious that the theory for the attenuated
resonating waves most be remodeled. To validate the results in this thesis, it must be
explained why the particle velocity amplitude is much lower than assumed. To support
any new theory it would be a huge advantage to perform experimental measurements of
some of the properties (u1, p1, p′′2 etc.) on carefully designed symmetric chips. This would
ease the process when comparing simulations and experiments.

Another interesting aspect to investigate, would be whether the approach used for
finding flow-patterns in the square chamber, can directly be used for the round chamber.

It would also be interesting to derive the acoustic radiation force in greater detail, and
hopefully find an expression for the absolute force and not only the relative.

To calculate the the flow-patterns for any given geometry and resonance frequency, it
might be necessary to develop a method to extract the first order terms from the eigen-
frequency analysis. By doing so it would not be necessary to guess the strength and
phase-shift for each oscillating wall.

Finally the consequences of assuming that all the materials used are isotropic, when
we know the that the speed of sound in silicon is highly lattice dependant, should be
investigated.
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Appendix A

COMSOL-script; Periodic motion in incompressible
liquids

This appendix contains the COMSOL-script use to obtain the numerical solution in Sec-
tion 2.4. The script is compiled for COMSOL ver. 3.2

COMSOL
1 % Cleaning up

2 clc;close all;clear;flclear fem

3

4 % Definig the Constants

5 PE = 1e-9; % Piezo Expansion, 1nm

6 Pd = 2*pi*1e-6; % Piezo distance,

7 qq =2*pi/Pd; % wavenumber

8 ee = 1; % Becomes Pe

9 w = 2*pi*1e6*ee; % Angular frequency

10 frek = w/(2*pi); % Frequency

11 vv0 = frek*PE; % Slip velocity

12 Tp = 1/frek; % time of one period

13 n = 15; % number of cycles, endtime = n*Tp

14 Ntrans = 10; % number of cycles to be discarded (transient)

15 nt = 100; % number of timesteps per cycle

16 int =Tp/nt; % time interval

17 smesh = Pd/25; % mesh size

18

19 % Introducing the Constants to COMSOL

20 fem.const = {’bl’,Pd,’q’,qq,’eta’,’1e-3’,’rho’,’1e3’,’f’,frek,’v0’,vv0, ...

21 ’w’,w,’epss’,’rho*w/(eta*q^2)’,’Re’,’rho*v0/(q*eta)’};

22

23 % Creating geometry

24 g1=square2(’bl’,’base’,’corner’,’pos’,{’0’,’0’},’rot’,’0’,’const’,fem.const);

25 s.objs={g1};

26 s.name={’SQ1’};

27 s.tags={’g1’};

28 fem.draw=struct(’s’,s);

29 fem.geom=geomcsg(fem);

30

31 % Initialize mesh

32 fem.mesh=meshinit(fem,’hgrad’,1.025,’hmaxedg’,[2,smesh]);

33

34 % Application mode 1
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35 clear appl

36 appl.mode.class = ’FlNavierStokes’;

37 appl.gporder = {4,2};

38 appl.cporder = {2,1};

39 appl.assignsuffix = ’_ns’;

40 clear pnt

41 pnt.pnton = {0,1};

42 pnt.ind = [1,2,1,1];

43 appl.pnt = pnt;

44 clear bnd

45 bnd.u0 = {0,’v0*cos(q*x)*sin(w*t)’,0};

46 bnd.type = {’noslip’,’uv’,’neutral’};

47 bnd.ind = [3,2,1,3];

48 appl.bnd = bnd;

49 clear equ

50 equ.init = {{0;0;0}};

51 equ.rho = ’rho’;

52 equ.eta = ’eta’;

53 equ.cporder = {{1;1;2}};

54 equ.gporder = {{1;1;2}};

55 equ.ind = [1];

56 appl.equ = equ;

57 fem.appl{1} = appl;

58 fem.border = 1;

59 fem.units = ’SI’;

60

61 % Coupling variable elements

62 clear elemcpl

63 % Extrusion coupling variables

64 clear elem

65 elem.elem = ’elcplextr’;

66 elem.g = {’1’};

67 src = cell(1,1);

68 clear bnd

69 bnd.expr = {{{},’u’},{{},’v’},{{},’p’}};

70 bnd.map = {’0’,’0’,’0’};

71 bnd.ind = {{’1’,’2’,’3’},{’4’}};

72 src{1} = {{},bnd,{}};

73 elem.src = src;

74 geomdim = cell(1,1);

75 clear bnd

76 bnd.map = {{{},’1’},{{},’1’},{{},’1’}};

77 bnd.ind = {{’2’,’3’,’4’},{’1’}};

78 geomdim{1} = {{},bnd,{}};

79 elem.geomdim = geomdim;

80 elem.var = {’pconstr1’,’pconstr2’,’pconstr3’};

81 map = cell(1,1);

82 clear submap

83 submap.type = ’linear’;

84 submap.sg = ’1’;

85 submap.sv = {’1’,’2’};

86 submap.dg = ’1’;

87 submap.dv = {’3’,’4’};

88 %submap.dv = {’9’,’10’};
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89 map{1} = submap;

90 elem.map = map;

91 elemcpl{1} = elem;

92 % Point constraint variables (used for periodic conditions)

93 clear elem

94 elem.elem = ’elpconstr’;

95 elem.g = {’1’};

96 clear bnd

97 bnd.constr = {{’pconstr1-(u)’,’pconstr2-(v)’,’pconstr3-(p)’}};

98 bnd.cpoints = {{’2’,’2’,’1’}};

99 bnd.ind = {{’1’}};

100 elem.geomdim = {{{},bnd,{}}};

101 elemcpl{2} = elem;

102 fem.elemcpl = elemcpl;

103

104 % Solve problem

105 fem=multiphysics(fem);

106 fem.xmesh=meshextend(fem);

107 fem.sol=femtime(fem, ...

108 ’solcomp’,{’u’,’p’,’v’}, ...

109 ’outcomp’,{’u’,’p’,’v’}, ...

110 ’tlist’,[0:int:n*Tp], ... %Give output at these time-steps

111 ’atol’,{’1e-10’}, ...

112 ’rtol’,0.001, ...

113 ’estrat’,1, ...

114 ’tout’,’tlist’);

115

116 % Save parameter in fem structure

117 fem.tgj.n = n;

118 fem.tgj.Ntrans = Ntrans;

119 fem.tgj.nt = nt;

120 fem.tgj.v0 = vv0;

121 fem.tgj.int = int;

122 fem.tgj.smesh = smesh;

123 fem.tgj.epss=postint(fem,’epss’, ’dl’,[3],’edim’,0);

124 fem.tgj.Re=postint(fem,’Re’,’dl’,[3], ’edim’,0);

125

126 % Calculating the time-averaged solution

127 femsolu=fem.sol.u;

128 SIZEU=size(femsolu);

129 r = SIZEU(1);

130 s = SIZEU(2);

131 U = zeros(r,1);

132 k =fem.tgj.Ntrans*fem.tgj.nt;

133 for i = k:s % Sum up solutions, without transint

134 U = U + femsolu(:,i);

135 end

136 U = U./(s-k);

137 fem.tgj.avgU = U;

138

139 % Find Absolute Average Velocity

140 U = fem.tgj.avgU;

141 int = postint(fem,’(U_ns^2)^0.5’,’U’,U,’dl’,[1]); %use U as input (not fem)

142 fem.tgj.INT_ER = int/(Pd*Pd)
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143

144 % Investigate the transient

145 figure

146 SIZEU = size(fem.sol.u);

147 r = SIZEU(1);

148 s = SIZEU(2);

149

150 field = 2251;

151 p = round(fem.tgj.nt);

152 for i=1:s

153 i/s

154 u(i)=postint(fem,’u’,’dl’,[3],’solnum’,i,’edim’,0);

155 t(i) = fem.sol.tlist(i);

156 end

157

158 t0 = 2; % Two random timesteps

159 t1 = 8;

160 plot(t(t1:p:end),u(t1:p:end),’r-’),hold on

161 plot(t(t1:p:end),u(t1:p:end),’ro’),hold on

162 plot(t(t0:p:end),u(t0:p:end),’ro’),hold on

163 plot(t(t0:p:end),u(t0:p:end),’r-’),hold on

164

165 bc = -sin(fem.tgj.n*2*pi*(fem.sol.tlist)./fem.sol.tlist(end)’)/1e6;

166

167 plot(t,bc,’k:’),hold on

168 plot(t,u,’b-’),hold on

169 plot(t,u,’bx’)

170

171 % Plot Averaged solution

172 figure

173 %fem.xmesh=meshextend(fem);

174

175 postplot(fem,’tridata’,{’u’,’cont’,’internal’}, ...

176 ’trimap’,’jet(1024)’, ...

177 ’U’,fem.tgj.avgU,...

178 ’arrowdata’,{’u’,’v’}, ...

179 ’arrowxspacing’,30, ...

180 ’arrowyspacing’,30, ...

181 ’arrowtype’,’arrow’, ...

182 ’arrowstyle’,’proportional’, ...

183 ’arrowcolor’,[1.0,0.0,0.0], ...

184 ’solnum’,1, ...

185 ’title’,[’Time-averaged velocity - first ’, num2str(10),’ periods discarded’], ...

186 ’refine’,3);
COMSOL
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COMSOL-script; Wave propagation through
interfaces

This appendix contains the COMSOL-script use to obtain the numerical solution in Sec-
tion 4.3. The script is compiled for COMSOL ver. 3.2

COMSOL
1 % Cleaning up

2 clear,flgc,clc,flclear fem

3

4 % Constants

5 fem.const = {’f’,’5.6887e6’,’w’,’2*pi*f’};

6

7 % Geometry

8 clear draw

9 g1=rect2(0,300e-6,0,10e-6);

10 g2=rect2(300e-6,500e-6,0,10e-6);

11 g3=rect2(500e-6,1000e-6,0,10e-6);

12 g4=rect2(1000e-6,1200e-6,0,10e-6);

13 draw.s.objs = {g1,g2,g3,g4};

14 fem.draw = draw;

15 fem.geom = geomcsg(fem);

16

17 % Create mapped quad mesh

18 MeshFactor = 30;

19 fem.mesh=meshmap(fem,’edgelem’,{2,[3*MeshFactor],...

20 3,[3*MeshFactor],...

21 5,[2*MeshFactor],...

22 6,[2*MeshFactor],...

23 8,[5*MeshFactor],...

24 9,[5*MeshFactor],...

25 11,[2*MeshFactor],...

26 12,[2*MeshFactor]});

27

28 % Application mode 1

29 clear appl

30 appl.mode.class = ’Acoustics’;

31 appl.assignsuffix = ’_aco’;

32 clear bnd

33 bnd.type = {’NA’,’SH’,’cont’,’IMP’};

34 bnd.nacc = {’-i*w^2*1e-9’,0,0,0};
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35 bnd.Z = {’0’,’0’,’0’,’343.4*1.161’};

36 bnd.ind = [1,2,2,3,2,2,3,2,2,3,2,2,4];

37 appl.bnd = bnd;

38 clear equ

39 equ.cs = {8490,1483,5640,343.4};

40 equ.rho = {2331,998.2,2230,1.161};

41 equ.ind = [1,2,3,4];

42 appl.equ = equ;

43 appl.var = {’freq’,’f’};

44 fem.appl{1} = appl;

45 fem.border = 1;

46 fem.units = ’SI’;

47

48 % Solve problem

49 fem=multiphysics(fem);

50 fem.xmesh=meshextend(fem);

51 fem.sol=femlin(fem,’solcomp’,{’p’}, ...

52 ’outcomp’,{’p’});

53

54 % Plot cross-section along all domains

55 postcrossplot(fem,1,[0 0.0012;0 0], ...

56 ’lindata’,’p*exp(i*w*(0.6/f))’, ...

57 ’axis’,[0 1200e-6]);
COMSOL

92



Appendix C

COMSOL-script; The symmetric chamber model

This appendix contains the COMSOL-script use to obtain the numerical solution in Sec-
tion 6.4. The script is compiled for COMSOL ver. 3.2

COMSOL
1 % Cleaning up

2 clc;close all;flclear fem

3

4 % Constants

5 k = 8; %number of eigenvalues to be found

6 startF =2.2e6; %where to start eigenvalue search

7 CorS = 1; %0=circle-geom, 1=square-geom

8

9 % Geometry

10 g1=rect2(’0.025’,’400e-6’,’base’,’center’,’pos’,{’0’,’0’},’rot’,’0’);

11 if CorS <=0.5

12 g2=circ2(’1e-3’,’base’,’center’,’pos’,{’0’,’0’},’rot’,’0’);

13 elseif CorS >= 0.49

14 g2=square2(’2e-3’,’base’,’center’,’pos’,{’0’,’0’},’rot’,’0’);

15 else

16 k=1;

17 disp(’CorS - Error’)

18 end

19 g3=geomcomp({g1,g2},’ns’,{’g1’,’g2’},’sf’,’g1+g2’,’edge’,’none’);

20 g4=geomdel(g3);

21 clear s

22 s.objs={g4};

23 s.name={’CO2’};

24 s.tags={’g4’};

25 fem.draw=struct(’s’,s);

26 fem.geom=geomcsg(fem);

27

28 % Initialize mesh

29 fem.mesh=meshinit(fem,’hmax’,[50e-6]);

30

31 % Application mode 1

32 clear appl

33 appl.mode.class = ’Acoustics’;

34 appl.assignsuffix = ’_aco’;

35 clear prop

36 prop.analysis=’eigen’;
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37 appl.prop = prop;

38 clear bnd

39 bnd.type = {’SH’,’SS’};

40 if CorS <=0.5

41 bnd.ind = [2,1,1,1,1,2,1,1,1,1];

42 elseif CorS >= 0.49

43 bnd.ind = [2,1,1,1,1,1,1,1,1,1,1,2];

44 else

45 k=1;

46 disp(’CorS - Error’)

47 end

48 appl.bnd = bnd;

49 clear equ

50 equ.cs = 1483;

51 equ.rho = 998.2;

52 equ.ind = [1];

53 appl.equ = equ;

54 fem.appl{1} = appl;

55 fem.border = 1;

56 fem.units = ’SI’;

57

58 % Solve problem

59 fem=multiphysics(fem);

60 fem.xmesh=meshextend(fem);

61 fem.sol=femeig(fem,’solcomp’,{’p’}, ...

62 ’outcomp’,{’p’}, ...

63 ’neigs’,k, ...

64 ’shift’,(2*pi*startF)^2); %Start search here

65

66 % Plot the found solutions

67 for i=1:k

68 w=fem.sol.lambda(i);

69 F = w^0.5/(2*pi);

70 figure(’position’, [100, 100, 1201, 900])

71 subplot(’position’, [0, 0, 1, 1])

72 postplot(fem, ...

73 ’tridata’,{’p’,’cont’,’internal’}, ...

74 ’trimap’,’jet(1024)’, ...

75 ’tribar’,’off’,...

76 ’tridlim’,[-2,2], ...

77 ’solnum’,i, ...

78 ’refine’,3);

79 axis off

80 disp([i F])

81 end
COMSOL
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COMSOL-script; Numeric Example 3

This appendix contains the COMSOL-script use to obtain the numerical solution in Sec-
tion 7.3. The script is compiled for COMSOL ver. 3.2

COMSOL
1 % Cleaning up

2 close all,clear fem,flclear fem,flgc,clc

3

4 % GEOMETRY

5 L=0.001;

6 fem.geom = rect2(-L,L,-L,L)+point2(-L/6,-L/6);

7 fem.mesh = meshinit(fem);

8

9 % Mesh

10 sm=0.25e-4;

11 bm=sm;

12 fem.mesh=meshinit(fem,’hmaxedg’,[1,bm,2,bm,3,bm,4,bm], ...

13 ’hmaxsub’,[1,sm]);

14

15 % Space dimension

16 fem.sdim = {’x’ ’y’};

17

18 % Dependent variables

19 fem.dim = {’u’ ’v’ ’p’};

20 fem.shape = [2 2 1];

21

22 % Constants

23 fem.const = {’k’,’n*pi/L’, ...

24 ’n’,’3’, ...

25 ’c’,’1483’, ...

26 ’th’,’0’, ... %theta

27 ’r’,’3’, ...

28 ’epss’,’w*l/c’, ...

29 ’l’,’1e-9’, ...

30 ’bl’,’2*L/n’, ...

31 ’f’,’c/bl’, ...

32 ’w’,’2*pi*f’, ...

33 ’L’,L, ...

34 ’rho’,’998.2’, ...

35 ’ga’,’(beta+1)*w*eta/(2*rho*c^2)’, ... %gamma

36 ’beta’,’5/3’, ...
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37 ’eta’,’1e-3’,...

38 ’uhat’,’-epss*c/(2*n*pi*gamma)’};

39

40 fem.expr = {

41 ’sigmaxx’ ’-p+(beta+1)*eta*ux’ ...

42 ’sigmaxy’ ’eta*(uy+beta*vx)’ ...

43 ’sigmayx’ ’eta*(vx+beta*uy)’ ...

44 ’sigmayy’ ’-p+(beta+1)*eta*vy’, ...

45 ’S’,’(2*uhat^2*w*ga/(c^2))*(1+r^2-cos(2*k*x)-r^2*cos(2*k*y))’, ...

46 ’Fx1’,’(2*uhat^2*w*rho/c^2)’, ...

47 ’Fx2’,’(c*sin(2*k*x)+ga*r*w*y*sin(k*x)*sin(k*y)*sin(th))’, ...

48 ’Fx3’,’(r*cos(k*y)*(c*cos(th)*sin(k*x)+ga*(w*x*cos(k*x)-c*sin(k*x))*sin(th)))’, ...

49 ’Fx’,’Fx1*(Fx2+Fx3)’, ...

50 ’Fy1’,’(2*uhat^2*w*rho*r^2/c^2)’, ...

51 ’Fy2’,’(c*r*sin(2*k*y)-ga*w*x*sin(k*x)*sin(k*y)*sin(th))’, ...

52 ’Fy3’,’(cos(k*x)*(c*cos(th)*sin(k*y)+ga*(-w*y*cos(k*y)+c*sin(k*y))*sin(th)))’, ...

53 ’Fy’,’Fy1*(Fy2+Fy3)’, ...

54 ’tp1u1a’,’-2*ga*r*w*x*cos(k*x)*cos(k*y)*cos(th)’,...

55 ’tp1u1b’,’+ga*(c*sin(2*k*x)-2*w*(x+r*y*cos(th)*sin(k*x)*sin(k*y)))’,...

56 ’tp1u1’,’uhat^2*rho*(tp1u1a+tp1u1b+2*c*r*cos(k*y)*sin(k*x)*(ga*cos(th)+sin(th)))’, ...

57 ’tp1v1a’,’r*y*ga*w+w*x*ga*cos(th)*sin(k*x)*sin(k*y)-1/2*c*r*ga*sin(2*k*y)’, ...

58 ’tp1v1b’,’cos(k*x)*(w*y*ga*cos(k*y)*cos(th)+c*sin(k*y)*(-ga*cos(theta)+sin(th)))’, ...

59 ’tp1v1’,’-2*uhat^2*r*rho*(tp1v1a+tp1v1b)’, ...

60 ’J2X’,’rho*u+tp1u1/c^2’, ...

61 ’J2Y’,’rho*v+tp1v1/c^2’

62 };

63

64 % Governing equations

65 fem.form = ’general’;

66 fem.equ.ga = {{{’sigmaxx’ ’sigmaxy’} {’sigmayx’ ’sigmayy’} {’0’ ’0’}}};

67 fem.equ.f = {{{’Fx’} {’Fy’} {’ux+vy-S’}}};

68

69 % Boundary conditions

70 fem.bnd.ind = {[1 4] [2 3]};

71 fem.bnd.r = {{{’J2X’} {’0’} {’0’}} {{’0’} {’J2Y’} {’0’}}};

72 fem.pnt.constr = {0,{0;0;’p’}};

73 fem.pnt.ind = [1,1,2,1,1];

74

75 % Solve problem

76 fem.xmesh = meshextend(fem);

77 fem.sol = femnlin(fem,’report’,’on’);

78

79 % Plot solution

80 postplot(fem, ...

81 ’tridata’,{’p’,’cont’,’internal’}, ...

82 ’trimap’,’jet(1024)’, ...

83 ’refine’,3);
COMSOL
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