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Abstract

A low-order modeling technique known as equivalent circuit (EC) theory is in widespread
use within the field of microfluidics. Representing the studied microfluidic system as an
equivalent electrical network due to mathematical similarity, the behavior of the fluidic
system is found from simple ODEs rather than cumbersome field equations. This thesis
suggests the exploitation of this analogy to the fullest, namely to use it as a predictive
tool for deducing component or systems-level dynamics from simple experiments.

Currently, the equivalent circuit theory approach lacks experimental justification for
dynamic systems, which is provided by this thesis for both the transient and pulsatile case.
The origin of the circuit elements and their mathematical expressions have been derived
from theoretical investigations of fluid mechanics, thermodynamics and solid mechanics,
and a theoretical investigation of pulsatile flow in microfluidics revealed several interesting
features including a frequency dependence of the resistance. Moreover, models of time-
dependent viscous fluid flow (pulsatile and transient) in elastic tubes have been derived.

A pressure source capable of delivering a pulsatile pressure up to frequencies of 0.8 kHz
has been developed based on a linear voice coil actuator. Using this, the pulsatile motion of
an air bubble is studied and good agreement is found between EC model and experiment.
The same is found for the transient flow in a highly elastic tube arising due to an abruptly
started pressure difference.

The deduction of component dynamics from simple parameters failed, in part due
to the presence of air bubbles, and in part because of an inadequate valve model. The
proposed method still appears promising, although this first attempt clearly showed that
much care must be taken for the method to work.
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Resumé

Til simpel analyse af mikrofluide systemer benyttes ofte en teknik kaldet ækvivalent
kredsløbsteori, hvorved det modellerede system repræsenteres som et netværk af elek-
triske komponenter. Gyldigheden af metoden findes ud fra simple analyser af mikrofluide
systemer samt antagelsen om inkompressibel strømning hvorved det kan vises, at disse
systemer kan beskrives ud fra simple elementer, der er matematisk identiske til elektriske
netværk. Opførslen af det mikrofluide system antages s̊aledes at kunne bestemmes ud
fra den matematiske løsning til det tilsvarende ækvivalente elektriske kredsløb, omend
dette ikke er sandsynliggjort eksperimentelt. Det er målet med denne afhandling at be-
vise gyldigheden af metoden for b̊ade transiente of harmonisk oscillerende systemer, alts̊a
systemer hvor inertien ej kan negligeres.

Ud fra den analytiske løsning til harmonisk oscillerende strømning i stive rør udledes
et ikke-lineært kredsløbselement, der er gyldigt for alle frekvenser. Der udledes desuden
matematiske udtryk for eftergiveligheden af elastiske vægge og luftbobler samt for den
viskose modstand og de inertielle tab i Poiseuille strømning.

En konstrueret trykkilde baseret p̊a en s̊akaldt lineær voice coil aktuator præsenteres,
som kan levere pulserende tryk med frekvenser op til 0.8 kHz. Denne beskrives ud fra en
simpel kredsløbsmodel, hvorved den kan kobles til de mikrofluide ligninger. Trykkilden er
benyttet til at studere bevægelsen af en luftbobbel i frekvensintervallet 1-100 Hz, og det
vises, at systemet kan beskrives fyldestgørende vha. ækvivalent kredsløbsteori. Det samme
gør sig gældende for abrupt startet tryk-drevet strømning i et tyndvægget elastisk rør, hvor
der ogs̊a findes god overensstemmelse mellem den simple model og de eksperimentelle
resultater.

Givet denne overensstemmelse foresl̊as i afhandlingens næstsidste kapitel at de dy-
namiske egenskaber af mikrofluide komponenter, s̊a som eftergivelighed (compliance) e.l.,
kan udledes fra studier af trykamplituden nedestrøms for komponenten som funktion af
frekvens, meget lig metoderne kendt fra elektronikindustrien. Metoden illustreres med en
kommercielt tilgængelig gummiventil (en s̊akaldt duckbill ventil), men d̊arlig overensstem-
melse findes mellem de eksperimentelle resultater og modellen. Der argumenteres for
den stadige gyldighed af metoden, men det erkendes, at dens anvendelse er sværere end
oprindeligt antaget.
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s Curve fit parameter Varies
qel Electric charge C
T = 1/f Period s
T Temperature K
U Voltage V
u Displacement vector m
u Displacement m
∆uv Valve opening height m
V Volume m3

v Velocity vector m s−1

v Velocity m s−1

w Valve width m



xviii List of symbols

β Wall compliance correction
ǫ Relative error
η Dynamic viscosity Pa s1

κ Elastic constant m Pa−1

λ Wavelength m
λw Second Lamé coefficient Pa
µw First Lamé coefficient Pa
ν Kinematic viscosity m2 s−1

νw Poisson’s ratio
ρ Mass density kg m−3

τ Characteristic time s
ω = 2πf Angular frequency rad s−1

Chyd Compliance m3 Pa−1

Lhyd Hydraulic inductance (inertia) kg m−4

Rhyd Hydraulic resistance Pa m3 kg−1

Zhyd Hydraulic impedance Pa m3 kg−1

Cel Capacitance C V−1

Lel Electrical inductance V s A−1

Rel Electrical resistance V A−1

Re ≡ ρℓv/η Reynolds number
α ≡ a

√
ω
ν

Womersley number
αc ≡ α/γ1 Critical Womersley number

∂i = ∂
∂i

Partial derivative with respect to di-
rection i

er, eφ, ex Cylindrical unit vectors
(r, φ, x) Cylindrical coordinates
y = r/a Non-dimensional radial coordinate
e Euler’s number, ln(e)=1
Re [...] Real part of ...
Im [...] Imaginary part of ...
i Imaginary unit
Jn Bessel function of the first kind of

order n
Yn Modified Bessel function of the first

kind of order n
n Surface outward normal vector
O (...) Order of ...
γn nth root of J0

〈...〉 Time-average of ...
(...)∗ Complex conjugate of (...)
.̂.. ... per unit length
... Mean value of ...
|...| Absolute value of ...
.̃.. Complex amplitude



Chapter 1

Introduction

1.1 Time-dependent microfluidics

Microfluidics is the term used to describe fluid dynamics at the mm and sub-mm scale,
although strictly speaking, the term only applies to flows in systems with a characteristic
length scale of O (1 µm). Fabricated microfluidic systems exploit the steady laminar flow
properties to use a liquid as a transport medium for samples of e.g. biological material or
liquid drug solutions, but capillary blood flow and other small-scale biological flows are
also considered part of microfluidics. More advanced microfluidic systems known as “lab-
on-a-chip” systems seek to miniaturize conventional laboratory equipment to produce a
fully integrated analysis system on a single microchip. These chips combine microfluidics
with microelectronics, optics, biotechnology and other scientific fields with the goal of
mass-production of simple, reliable and disposable microchips with the potential to speed
up the analysis while requiring much smaller sample sizes and eliminating the need for
specialized laboratory personnel.

The inertial time-scale of microfluidics is approximately 1 ms and the viscous force
dominates inertia, as will be shown in chapter 2, so the fluidics of most microfluidic
systems operate in a steady state although time-dependent phenomena such as chemical
reactions, diffusion, etc. still take place. Notable exceptions are pumps and valves along
with AC electroosmosis and acoustofluidics1. Although the fluid can be thought of as
quasi-static, full understanding and hence potential exploitation of the capabilities of a
system cannot be achieved without considering the transient behavior. For a system of
chemical reaction or a system delivering a liquid drug solution, knowing the exact amount
delivered at any time is critical if the chemical system is to remain in equilibrium and the
patient is to receive the correct amount of drug. Delivering too little and the chemical
system/patient will not react as intended (cure in the patient’s case), while delivering
too much may adversely affect the reaction or jeopardize the patient’s life. For systems
performing more than one task, full understanding of the transient behavior is absolutely

1In both these cases, an AC phenomenon is used to generate a DC flow behavior, in an attempt to
develop new pumping mechanisms for the disposable lab-on-a-chip systems: Acoustofluidics exploit the
two forces arising when an acoustic field is applied to a liquid-filled microfluidic channel, see [1, 2], while
AC electroosmosis uses the flow generated in an electrolyte by an applied electric voltage, see [3].
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critical for the performance of the system; the success of the system of Thorsen et al,
[4], consisting of 256 sub-nanoliter reaction chambers and 2056 microvalves, would not be
possible without correct control of these valves and the flow around them. Apart from the
few cases mentioned above, the field of time-dependent microfluidics is almost unexplored:
This author has found only three accounts of the exploitation of such time-dependent
effects, [5, 6, 7].

For a typical pressure driven microfluidic system consisting of elastic tubing, this elas-
ticity of the fluid confinement along with the inertia and resistance of the fluid itself means
that the system has several inherent characteristic time scales. These dynamic time scales
set the upper limit on the time scale that can be probed by the system since for times
faster than the slowest of these inherent time scales, the system has not reached equilib-
rium so the flow velocity will only reach a certain fraction of its maximum value. Thus,
the correct prediction of these time scales is closely linked to the understanding of the
transient behavior of the system.

A typical method for probing the dynamic time scale, in wide use in all branches of
physics, is to expose the system to pulsatile2 external fields. Unfortunately, the only work
on pulsatile microfluidics into the inertially dominated region, i.e. the region where the
inherent time scales of the system become important, appears to be by Morris and Forster,
[8, 9], who considered a membrane pump and the flow it delivered. Reciprocating pumps
are a large research field in itself and many theoretical investigations of the pulsatile flow
delivered by such pumps in microsystems has been reported, e.g. [10, 11], but most are
inadequate in their description of the fluid physics, as will be shown in chapter 2. Hence,
even the basics of probing the time-dependence of microfluidics remains unexplored.

1.2 Systems-level modeling in microfluidics

A close mathematical similarity exists between electric circuits and low-order modeling
of microfluidics, extending so far that the modeling technique is known as “equivalent
circuit” (EC) modeling. In this lumped-parameter approach, the circuit elements repre-
sent viscous losses, inertial losses or compliance, which is sufficient to describe most flows.
Such low-order models make obsolete the time-consuming numerical solution of the gov-
erning equations of fluid flow and are thus very attractive when developing microfluidic
systems. Experimental and theoretical validation of the individual circuit elements is well-
described, as is systems level modeling of steady state systems, e.g. [12], and while no
such validation has been presented for dynamic systems, perfunctory use of the approach
for time-dependent systems abounds, e.g. [6, 9, 10, 11, 13, 14, 15].

If valid, exploitation of the conceptual analogy to electronic circuits can be used to de-
duce the dynamic properties of microfluidic components. Not only will the computational
time of a full numerical simulation be avoided in this case, but the parameters influencing
component dynamics will be apparent and hence allowing for application-tuning of mi-
crofluidic components. One simple case has been reported, [6], where the compliance of a

2The word pulsatile will be used as a synonym to harmonically oscillating throughout the thesis to
describe a temporal dependence of either cos (ωt) or sin (ωt).
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tube was deduced from the decay time of a pressure reading, but the analogy can be ex-
ploited much further by considering full systems and subsequently deducing the dynamic
properties of any system component.

1.3 Objective

The current thesis has grown from a project entitled “Development and experimental
verification of dynamic models of drug delivery systems”, with the goal of developing
an experimental setup for the characterization of the dynamic properties of microfluidic
components for Novo Nordisk A/S, while also devising simple yet accurate low-order mod-
els for the system. This setup would exploit the analogy to electronics to the fullest by
deducing the characteristics from a comparison of EC model and experimental results.

The setup must deliver pulsatile pressures into the low kilohertz range to resolve the
inertial time scale of about 1 ms previously alluded to. Given the lack of previous work in
the field of pulsatile microfluidics, performance verification of the setup and thorough the-
oretical treatment of the fundamental physics are required, before turning the attention to
the characterization of component dynamics. However, to get to this point, experimental
verification of systems level EC modeling is necessary and will be provided.

The method will be applied to an elastomeric valve for illustration, but can be applied
to any time-dependent component. No current method is able to predict the dynamic
characteristics of a component from simple steady state variables, and the properties
specified by the manufacturer are often insufficient for deriving these characteristics. It
is hoped that the proposed method will be applied across the field in conjecture with
systems-level EC modeling.

1.4 Notational convention

A consistent use of notation throughout the thesis has been attempted. Italics are used
for scalar variables, such as the coordinate direction x, and bold face types for vectors,
such as the velocity vector v; vector components are denoted by a coordinate subscript
so that vx is the velocity component in the x-direction. Exceptions are explicitly defined
functions and operators, which are typeset in upright Roman type, e.g. the maximum
operator max. The shorthand notation dS is used for derivatives with respect to some
variable S of any function ϕ(S)

dSϕ(S) ≡ dϕ(S)

dS
.

For partial derivatives this becomes ∂S .

The author has adopted the convention of including radian in the unit for angular
frequency and wave number, so that these have units [k]=rad m−1 and [ω]=rad s−1.
Finally, relative error is denoted by ǫ.
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1.5 Outline

The work presented in the following is a selection of the work carried out during the project.
The topics left out include various mathematical derivations, experimental verification of
equipment and dynamics characterization of two Novo Nordisk components. In addition
to this thesis, excerpts of chapter 2 have been presented at the Annual Meeting of the
Danish Physical Society in June 2008.

The content of the following chapters is summarized in the following:

Chapter 2 presents the theoretical background on which the thesis is built. The
appropriate equations of fluid flow are introduced along with the basic solutions from
which all thesis work is derived. Equivalent circuit modeling of microfluidic systems
is derived and explained, and an EC description of pulsatile flow is presented. Most
content of this chapter will be well-known to readers familiar with microfluidics.

Chapter 3 is dedicated to the derivation of circuit elements specific to this work,
namely the compliance of air bubbles and elastic walls. Pressure driven flow (both
steady and pulsatile) in elastic tubes is discussed in the EC framework.

The experimental verification of the Hagen–Poiseuille law is presented in chapter 4

along with the experimental investigation into the validity of an EC model of tran-
sient flow in an elastic tube. For this experiment, a Poiseuille flow is abruptly
started in a water-filled thin-walled silicone rubber tube, and the pressure measured
downstream of the pressure source. The model reproduces the experimental results,
although there is not complete coincidence.

Chapter 5 presents a pressure source developed for delivering pulsatile pressures
into the low kilohertz range. The design and properties of the source are presented
along with a low-order circuit model coupling the pressure source to the EC equa-
tions. Critical parameters for the model are determined from simple experiments.

The motion of an air bubble exposed to pulsatile pressures is studied in chapter 6

as a test of the pressure source performance. The observed motion of the air-water
interfaces are compared to the predictions of an EC model and good accordance is
found.

The analogy between microfluidics and electronic circuits is exploited to the fullest in
chapter 7, which details a method for the characterization of dynamics of microflu-
idic components based on pulsatile flow, much akin to the methods of component
testing of electronics.

The thesis is rounded off with conclusions and outlook in chapter 8.



Chapter 2

Basics of microfluidics and

equivalent circuit theory

2.1 Fluid compressibility in kilohertz actuation

When applying pressure fluctuations in the low kilohertz range the effects of acoustics must
be considered. As argued by Landau and Lifshitz [16] the assumption of incompressibility
is justified when the characteristic fluid velocity v is much smaller than the speed of sound
ca and if the characteristic dynamic length scale ℓd is much smaller than the distance
traveled by the sound waves during each oscillation cycle, i.e. the wavelength λ.

v ≪ ca, (2.1a)

ℓd ≪ λ. (2.1b)

Since the speed of sound can be rewritten as ca = λf where f is the frequency, eq. (2.1b)
can be reformulated as

ℓd ≪ ca
f
. (2.2)

The speed of sound in water at atmospheric pressure and 20 ◦C is ca = 1483 m s−1, so the
first criterion is inherently satisfied for all microfluidic systems with v ≤ 1 m s−1. For a
frequency of 1 kHz, the wavelength of the sound waves is λ ≈ 1.5 m while the characteristic
length scale is ℓd = O

(
1 × 10−3 m

)
, so the second criterion is also inherently satisfied. The

assumption of incompressibility of water in kilohertz actuation is therefore valid.

2.2 Governing equations for fluid flow

Assuming the volume of fluid under consideration to have a characteristic length scale
above ℓ = 10 nm, one can consider the fluid to be a continuum rather than consisting of a
large but finite number of particles. Neglecting thermal effects, conservation of mass and
momentum are sufficient to describe the fluid motion.

As argued in the previous section, the water of a microfluidic system in low kilohertz
actuation may still be considered incompressible. Thus, conservation of mass is imposed
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by the incompressible version of the so-called continuity equation, [1]:

∇ · v = 0, (2.3)

where v is the fluid velocity.
The conservation of momentum for an incompressible and Newtonian fluid in a har-

monically driven microfluidic system is given by the time-dependent Stokes equation, [1]

ρ∂tv = −∇p+ η∇2v, (2.4)

so long as the Reynolds number

Re ≡ ρℓv

η
, (2.5)

satisfies the condition Re < 1; ρ denotes the density, v a characteristic scalar velocity,
p the pressure and η the dynamic viscosity in these equations. The Reynolds number
is a non-dimensional measure of inertial forces to viscous forces. Viscosity dominates at
Re < 1, meaning that any perturbation to the velocity field quickly will be damped and
the resulting flow is fully laminar. As the Reynolds number increases past 1 (but stays
below 2000) inertial effects are no longer damped at the same rate so bends, kinks or
other geometric changes to the confinement will introduce perturbations to the velocity
field that are not immediately damped by the fluid viscosity. Overall the flow is still
laminar, but inertial effects are not negligible. For Re & 2300 the fluid flow enters the
turbulent regime where any perturbation in the velocity field may grow uncontrollably
without immediate viscous damping, resulting in chaotic flow.

Gravity has been omitted from eq. (2.4) since the hydrostatic pressures on the millime-
ter and sub-millimeter scales are negligible compared to the externally applied pressure
differences.

2.3 Pressure driven fluid flow

2.3.1 Fluid flow driven by constant pressure gradient

The analytical solution to the fluid flow driven by a constant pressure gradient is known as
“Poiseuille” or “Hagen–Poiseuille” flow, and its derivation is thoroughly described in the
literature, [1, 17, 18]. In a cylindrical reference frame away from tube inlet and outlet, the
velocity field takes the form v(r, φ, x, t) → vx(r, t)er under the assumption of azimuthal
symmetry. The velocity in the start-up of such a fluid flow in a channel of circular cross-
section of radius a and axial dimension ℓ, where a pressure difference ∆p is applied at
x = 0 is given by, [1]

vx(r, t) =
∆p a2

4ηℓ

[
1 − r2

a2
−

∞∑

n=1

8

γ3
n J1 (γn)

J0

(
γn
r

a

)
exp

(
−γ

2
n ν

a2
t

)]
, (2.6)

where Js is the Bessel function of the first kind of order s, γn are the roots to J0, of which
the first three are γ1 = 2.4048, γ2 = 5.5201 and γ3 = 8.6537 and ν = η/ρ is the kinematic
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viscosity. The steady state solution is obtained as time tends to infinity:

vx(r, t) =
∆p a2

4ηℓ

(
1 − r2

a2

)
. (2.7)

The volume flowrate1 is defined as Q =
∫
A v · n dA, where A is the cross-sectional area

of the flow confinement and n is an outward pointing normal vector. The flowrate in
Poiseuille flow is

Q =
1

Rhyd
∆p, (2.8)

where Rhyd is termed the hydraulic resistance, which for a tube of circular cross-section is
given by, [1]

Rhyd =
8ηℓ

πa4
. (2.9)

Inertial time scale in Poiseuille flow

The analytical solution to the start-up of a Poiseuille flow, eq. (2.6), has an eigenfunction
expansion which decays exponentially in time. The time constant for the nth term in the
expansion is

τn =
a2

γ2
nν
, (2.10)

Since γn, the roots of J0, appear in the denominator and γn+1 > γn for all n, the first
term of the expansion (that of n = 1) last the longest. Thus, for a water-filled microfluidic
system with a ≈ 0.1 mm and ν ≈ 10−6, the flow reaches steady state on a time scale of

τ ≈ 1.7 ms. (2.11)

2.3.2 Pulsatile flow solution

The solution to flow in a straight tube of constant cross section exposed to a harmonically
oscillating pressure gradient is usually credited to J. R. Womersley [19], although the
problem also has been solved independently by S. Uchida [20], P. Lambossy [21] and T.
Sexl [22].

The general setup differs from the regular Poiseuille problem only by the harmonically
oscillating pressure difference, ∆p → ∆p eiωt, where the complex notation is used for
convenience and ω = 2πf is the angular frequency of the pressure oscillations. The actual,
physical solution is found by taking the real part of the complex solution to the problem.
The setup is sketched in fig. 2.1. The physics is described in a cylindrical reference frame
(r, φ, x) with x coinciding with the tube axis. Assuming no azimuthal dependence due to
symmetry and fully developed flow so that v(r, φ, x, t) → vx(r, t)er, the governing equation
for the problem is

ρ∂tvx(r, t) = −∂xp(x, t) + η

[
∂2

r +
1

r
∂r

]
vx(r, t). (2.12)

1The word ‘flowrate’ will be used throughout the thesis in the meaning volume flowrate.
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a

r

x

ℓ
p(t) = ∆peiωt + p0

p = p0

Figure 2.1: Schematic representation of pulsatile flow. The tube has inner radius a and axial dimension
ℓ.

The boundary conditions for the problem are the same as for the Poiseuille problem, only
now with the harmonic oscillations of the applied pressure difference

p(0, t) = ∆p eiωt + p0, (2.13a)

p(ℓ, t) = p0, (2.13b)

vx(a, t) = 0, (2.13c)

∂rvx(0, t) = 0. (2.13d)

Guessing of a harmonically oscillating solution void of start-up effects, vx(r, t) =
w(r) eiωt, and inserting, one obtains a Bessel ODE for w(r). Imposing the boundary
conditions, the solution is found as:

vx(r, t) =
∆p

iρωℓ



1 −
J0

(
y α i

3
2

)

J0

(
α i

3
2

)



 eiωt, (2.14)

where the non-dimensional radial coordinate y = r/a has been introduced along with the
Womersley number α given by

α ≡
√
a2ω

ν
. (2.15)

Examples of the velocity profiles at different values of the Womersley number is given in
figs. 2.2 and 2.3, and the associated flowrate is found to

Q(t) = 2π

∫ a

0
vx(r, t) r dr =

π∆pa2

ρiωℓ



1 − 2

i
3
2α

J1

(
α i

3
2

)

J0

(
α i

3
2

)



 eiωt. (2.16)
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αc = 1
5

-6
x

y∆p eiωt

+p0
p0

αc = 1 αc = 5
2

αc = 5

Figure 2.2: Snapshots of the velocity profiles for flow driven by a pulsatile pressure gradient at four
values of the critical Womersley number αc = α/γ1, discussed in sec. 2.3.3. The snapshots are taken at the
same time in the oscillation cycle, and the pressure differences are applied from left to right as shown for
αc = 1/5, but are not drawn to scale. The full lines are the velocity profiles while the dashed lines mark
the axial positions along which the velocities are obtained. The profiles oscillate harmonically in time, as
shown in fig. 2.3 for αc = 5/2. αc strongly influences the profile shape.

2.3.3 Notes on the Womersley number and its relation to the flow

The Womersley number is a non-dimensional measure of the diffusion of momentum across
the tube. The kinematic viscosity ν is the diffusivity of momentum diffusion in Poiseuille
flow, [1], while a2ω is the diffusivity required for the momentum to diffuse across the tube
radius between pressure peaks. Thus, for α ≪ 1 momentum has ample time to diffuse
completely across the channel as in regular Poiseuille flow, while for α > 1 momentum
does not have time to diffuse across the tube between pressure oscillations. Therefore,
for α ≪ 1 the velocity profile will be the regular Poiseuille parabola, while for α > 1 the
profile will change since the no-slip boundary condition forces the velocity at the wall to
be zero, while momentum does not have time to diffuse across the tube between pressure
oscillations.

By considering the solution to the start-up of the Poiseuille problem, eq. (2.6), a crit-
ical Womersley number αc may be derived to determine the deviation from the Poiseuille
parabola. Eq. (2.6) describes the time it takes the fluid to react to changes in pres-
sure, given by the characteristic relaxation time for the fluid to reach a steady state
τ = a2/

(
γ2
1ν

)
, as previously discussed. Thus, by defining the critical Womersley number

as

αc ≡
√

a2

γ2
1ν
ω =

α

γ1
, (2.17)

this is a measure of the fluid relaxation time versus the time scale of the pressure oscilla-
tions ω. αc = 1 marks the point where the fluid no longer has time to reach a steady state
before the pressure varies, and the velocity profile begins to deviate from the Poiseuille
parabola as shown in fig. 2.2. For αc ≥ 1 the flow never reaches a steady state before the
pressure changes, so when the pressure gradient is reversed, the flow still has inertia acting
in the opposite direction, and it will therefore take some time before the pressure gradi-
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(a)

x

r

∆p eiωt
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(b)

x
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x

r
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Figure 2.3: 3D snapshots of the velocity profile for Womersley flow for αc = 5/2 taken at four different
times over the oscillation period T (plotted to scale). The pulsatile pressure gradient is applied from left
to right in all snapshots; the profiles are only shown for half of the tube for clarity. The dotted black grid
lines outline the tube wall and the full red lines the coordinate system; the velocity profiles of fig. 2.2 are
obtained along the dashed red line. (a) t = 0 (same as fig. 2.2). (b) t = T /5. (c) t = 2T /5. (d) t = 3T /5.

ent can counteract and subsequently change the direction of the inertia. This introduces
a phase-shift between the fluid and the pressure gradient. However, at the confinement
walls, the no-slip boundary condition forces very low velocities with correspondingly low
inertia, so fluid close to the walls have a smaller phase-shift than fluid in the center of the
confinement, and at αc & 5 a full π/2 phase-shift is observed between the flow close the
the walls and that at the center. These effects are observed in fig. 2.2: for αc < 1 the
normal Poiseuille parabola is retrieved, for αc > 1 the profile deviates noticeably while at
the critical value, the profile is almost parabolic.

As the critical Womersley number surpasses unity maximum velocity decreases, due
to the constantly changing pressure gradient and the fact that there is a characteristic
time needed to accelerate a fluid. The flowrate amplitude decreases accordingly so that
less and less fluid is moved, until finally at high αc the fluid is completely dominated by
inertia of constantly changing direction resulting in no fluid motion.
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Table 2.1: Summary of equivalent circuit elements for microfluidic and electric circuits.

Fluidic circuits Electric circuits

Pressure drop ∆p Pa Voltage drop ∆U V
Volume V m3 Charge qel C
Flowrate Q m3 s−1 Current I C s−1

Resistance Rhyd Pa s m−3 Resistance Rel V A−1

Compliance Chyd m3 Pa−1 Capacitance Cel C V−1

Inertia Lhyd Pa s2 m−3 Inductance Lel V s A−1

2.4 Equivalent circuit theory

Most branches of physics are governed by field equations, such as the Stokes equation,
eq. (2.4), for fluid pressure and velocity in a microfluidic system, or Maxwell’s equations
for the electromagnetic fields. The recent advent of high-performance computing finally
allows scientists to solve these field equations for (almost) arbitrary systems in reason-
able time, but going back just two decades, such luxury was rarely allow mere mortals.
Instead, several approximation techniques were developed yielding various degrees of ac-
curacy. Among these is lumped-parameter modeling known from electric circuits, where
the governing electromagnetic equations are supplanted by networks of idealized electric
components, each exhibiting only one property, e.g. resistance or inductance. These low
order models proved very effective in describing the observed effects and in addition have
very attractive mathematical properties and highly intuitive applicability. Apart from
electronics the lumped-parameter approach has also been successfully applied to thermal
transport, optics, solid state mechanics, electron transport and acoustics.

Equivalent circuit theory in the context of microfluidics is such a lumped-parameter
modeling approach. It derives its name from the 1:1 mathematical similarity between
microfluidic components and the equivalent electronic component. The basic assumption
of EC theory is that the flow is incompressible and pressure driven with Re < 1.

Eq. (2.8) forms the backbone of EC modeling of microfluidic systems. It predicts a
linear relationship between an applied constant pressure difference ∆p and the resultant
flowrate Q as ∆p = RhydQ. Comparing to Ohm’s law which describes the drop in electrical
potential, ∆U , across a resistor with resistance Rel in which a current I is running, [23]

∆U = RelI, (2.18)

the analogy is obvious. However, the analogy extends further and also includes inertia
and compliant effects of the fluid or its surroundings. The basic microfluidic components
will be derived in the following, with a summary given in table 2.1.

2.4.1 Inertia

The hydraulic resistance is caused by the internal fluid friction known as viscosity, and is
ultimately a result of the conversion of mechanical (kinetic) energy into heat, [1], just as
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the Ohmic resistance in electric circuits is caused by the conversion of electrical energy
into heat. As only steady state considerations led to the concept of hydraulic resistance,
it does not account for inertial effects.

Consider a volume of fluid V of density ρ confined in some geometry of constant cross-
section of area A, where V = ℓA. Assuming the only force acting on the fluid is a pressure
difference ∆p along the axis of ℓ — and thus neglecting viscosity, which has already been
accounted for in the hydraulic resistance — Newton’s second law reads F = m dtv, where
v is the average velocity. With the pressure force and m = ρAℓ this becomes

∆pA = ρAℓdtv, (2.19)

and since Av = Q, one finds

∆p = LhyddtQ, (2.20)

where the proportionality constant

Lhyd =
ρℓ

A , (2.21)

is termed the “hydraulic inductance”, since the following holds for an inductor with in-
ductance Lel in an electrical circuit, [23]

∆U = Lel dtI. (2.22)

As expected, inertia in EC theory is found to be a time-dependent phenomena giving
rise to a pressure drop.

2.4.2 Compliance

The term compliance is used to describe any deviation from incompressibility in the fluidic
system, i.e. compressibility of the liquid, any trapped air bubbles or the yielding of the
confinement caused by a pressure increase. Following [1], any compliance in the fluidic
system is defined as the negative change in volume with a change in pressure:

Chyd = −dV
dp
. (2.23)

Again, an exact electric equivalent exists namely the capacitor, which stores charge in the
circuit. It is characterized by its capacitance Cel, which is a measure of the capacitor’s
ability to store charge and is defined by, [23]

Cel =
dqel
dU

, (2.24)

where qel is the electric charge. Hydraulic compliance can be thought of as a storage of
volume in the hydraulic circuit since change in pressure will cause a change in volume
according to eq. (2.23), just as capacitance is a storage of electric charge.
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2.4.3 Coupling of several equivalent circuit components and applicabil-

ity of the method

Due to the assumption of Re < 1, the governing equation — the Stokes equation — is linear
and superposition is valid. Hence, if the fluid in a system experiences e.g. both resistance
and inertia, the two elements (resistor and inductor) are simply superposed to describe the
physics. In the EC framework this is a series coupling. Moreover, if fluid flow branches off
(e.g. in a T-junction) the total flowrate leaving and entering the junction must be identical
because of the assumption of incompressible flow. These simple arguments illustrate the
EC framework: understanding a microfluidic system as a network of parameters. The two
arguments for series and parallel coupling are identical to Kirchhoff’s laws from electric
circuits, so Kirchhoffian network analysis is applied to EC models of microfluidics, and it
is customary to represent the system using a diagram of the EC network.

For Re ≮ 1, perturbations to the flow are not readily damped out so the assumption
of fully axial flow underlining the idealized Poiseuille and Womersley solutions of sec. 2.3
are violated and losses not included in the models will be inflicted on the fluidic system.
Consequently, the method is only applicable for microfluidics or the fluid flow of very low
velocity usually referred to as “creeping flow”, [18].

2.5 Equivalent circuit description of Womersley flow

In addition to viscous drag, Womersley flow also has a ever-present inertial contribution
because of the pulsatile pressure gradient, and the simplest EC model of this flow would
therefore consist of a linear combination of resistance and inductance. Using complex
notation and assuming all fields oscillate harmonically one finds the following relation for
the amplitudes

∆p = (Rhyd + iωLhyd)Q, (2.25)

or, introducing the notion of hydraulic impedance, ∆p = ZhydQ, where Zhyd = Rhyd +
iωLhyd. Noting the proportionality between the pressure gradient amplitude and flowrate
in Womersley’s solution, a correct impedance for pulsatile flow certain to include all inertial
and resistive effects is found directly from eq. (2.16) as

ZWom =
ρωℓ

πa2
i



1 −
2J1

(
α i

3
2

)

i
3
2 αJ0

(
α i

3
2

)




−1

, (2.26)

where the subscript ‘Wom’ is introduced to distinguish from a “regular” fluidic impedance,
such as Zhyd = Rhyd+iωLhyd above. Upon the introduction of this impedance, this author
later found that Morris and Forster already has introduced it, [9].

The simple impedance of pulsatile flow Zhyd = Rhyd + iωLhyd and ZWom both predict
dominating inertia with increasing frequency (and thus increasing Womersley number
α). This is obvious for the simple case, and becomes apparent for ZWom by using the
asymptotic expansion for Jn for large arguments and in turn the first two terms of a series
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expansion of cosine for both J0 and J1 in eq. (2.26), see appendix A. The fraction in the
square bracket of eq. (2.26) then becomes to second order accuracy

2 J1

(
αi

3
2

)

i
3
2 α J0

(
α i

3
2

) ≈ 2

α i
3
2

. (2.27)

Noting that the prefactor to eq. (2.26) is in fact iωLhyd for a tube of circular cross section,
the full equation for ZWom may now be rewritten as

ZWom = iωLhyd
1

1 − 2

α i
3
2

. (2.28)

The fraction tends to unity as ω → ∞ since α ∝ √
ω. Hence, both the simple and

the Womersley impedances become increasingly dominated by inertia as the frequency is
increased, which should come as no surprise, given sec. 2.3.3. However, it is noteworthy
that the simple expression for inertia in Poiseuille flow also appears in the EC description
of Womersley flow.

2.5.1 Resistance in Womersley flow

Following the arguments in [1], the time rate of change of the dissipation of mechanical
energy into heat (which is the fluidic power consumption due to viscosity, i.e. the amount
of kinetic energy converted to heat) for a fluidic system consisting of tubes of circular cross
section of radius a and total length ℓ is given by

P = ∂tWvisc = 2πℓη

∫ a

0
[∂r vx(r, t)]2 dr = Q(t)∆p(t). (2.29)

For Poiseuille flow, the relation between power consumption and resistance is found by
rearranging and inserting eq. (2.8) to obtain

P =
∆p2

RPois
hyd

, (2.30)

where the superscript ‘Pois’ is included to remind the reader of the temporal behavior of
the pressure.

Because of its pulsatile behavior, the time-averaged resistance over an oscillation period
for Womersley flow is the proper measure of resistance; this in turn, is calculated from the
time-averaged hydraulic power consumption. To compute the time-average over one period
of the product of two harmonically oscillating quantities f(t) and g(t), where f(t) = f̃ eiωt

and g(t) = g̃ eiωt and f̃ and g̃ are the complex amplitudes, one relies on the following
classical theorem from complex analysis:

〈f(t)g(t)〉 =
1

2
Re

[
f̃ g̃∗

]
, (2.31)
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where the asterisk indicates the complex conjugate and the brackets 〈〉 the time-average
over one period. Hence, the time-averaged fluidic power consumption in Womersley flow
is

〈P 〉 =
1

2
Re

[
Q̃∆p∗

]
, (2.32)

where Q̃ is the complex amplitude of the pulsatile flowrate, Q(t) = Q̃ eiωt and ∆p is the
(real) amplitude of the applied oscillatory pressure2, ∆p(t) = ∆p eiωt. Since in general
Q̃ = ∆p/Zhyd, eq. (2.32) may be rewritten as

〈P 〉 =
1

2
Re

[
1

ZWom

]
∆p2. (2.33)

The difference from a regular equivalent circuit resistance derived from Poiseuille flow is
found by inserting the same pressure difference in the two expressions. Thus, inserting the
root mean square pressure amplitude3 ∆prms = ∆p/

√
2 into the expression for the power

consumption in Poiseuille flow, eq. (2.30), one finds

P =
1

2

∆p2

RPois
hyd

. (2.34)

Comparing eqs. (2.33) and (2.34), the hydraulic resistance for Womersley flow may be
obtained as

RWom
hyd =

1

Re
[

1
ZWom

] . (2.35)

Unlike the hydraulic resistance of Poiseuille flow, RWom
hyd is frequency dependent since ZWom

has this property. This result has been presented by Zielke in his dissertation4, [24], and
hinted at by Uchida, [20], although he only focused on the excess work of pulsatile flow.
The time-averaged Womersley resistance normalized by the Poiseuille resistance is shown
in fig. 2.4(a) as a function of the critical Womersley number. The Poiseuille and Wom-
ersley resistances agree until αc ≈ 1/γ1 (equivalent to α = 1), whereafter the Womersley
resistance increases because of the increasing velocity profile gradients as already shown
in fig. 2.2. At αc ≥ 1, i.e. from the point where the velocity profile begins to deviate no-
ticeably from the Poiseuille parabola, the resistance is proportional to α3

c ; a mathematical
derivation of this dependence is given in appendix A.

The velocity profile gradient and thus the hydraulic resistance increases with the Wom-
ersley number5, while the profile itself is confined to an increasingly more narrow band
band close to the confinement walls. Again is a similar effect observed in AC electric
circuits where the effective resistance increases with frequency caused by a decrease of the
electric current density away from the surface of the conductor. Even though the effects
are caused by different physical phenomena, it is remarkable that the hydraulic analogies
extend as far as a increasing resistance in AC flow caused by a “hydraulic skin effect”.

2The pressure amplitude may, of course, be complex as a consequence of a phase-shift, however, when
considering a single tube, any phase-shift is removed so that the pressure amplitude is a real number.

3By the mathematical similarity to voltage the root mean square of p(t) = ∆p eiωt is ∆prms = ∆p/
√

2.
4His results are expressed in a somewhat different form.
5And thus the critical Womersley number.
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Figure 2.4: (a) Hydraulic resistance in Womersley flow normalized by the regular Poiseuille resistance.
For αc < 1/γ1 the Poiseuille and Womersley resistances are identical, but for αc > 1/γ1 the Womersley
resistance increases due to the change in velocity profile gradient. The circle marks the point of α = 1
where the resistance begins to deviate from the hydraulic resistance of Poiseuille flow. αc = 1 is observed
to mark the onset of the regime regime of RWom

hyd ∝ α3
c. (b) Inertial contribution to ZWom divided by the

resistive contribution as a function of αc. As expected, the two are identical for αc = 1. The decrease in
slope above αc = 1 is caused by the frequency dependence of the resistive contribution shown in (a).

Resistance to inertia measured by αc

It was argued in sec. (2.3.3) that αc = 1 marked the point where the fluid no longer has
time to reach a steady state before the pressure varies, and the velocity profile begins
to deviate from the Poiseuille parabola, that is, when inertial effects begin to be on the
same order as the resistive effects. With the EC formalism in place, it is evident from the
simple hydraulic resistance for Womersley flow, Zhyd = Rhyd + iωLhyd, that the resistive
losses inflicted by the flow at any point in time are found as the real part of the impedance
and the inertial losses are the imaginary part of the impedance. These resistive effects
should not be confused with the time-averaged resistance derived above, which compares
the effective resistive loss over one oscillation period to the loss the system would have
experienced, had the pressure gradient been constant in time.

Fig. 2.4(b) shows the imaginary part of ZWom normalized by its real part, as a measure
of the ratio of inertial to resistive effects in the flow. The resistive effects dominate for
αc < 1 while inertia dominates for αc > 1 and the two effects are identical for αc = 1.
This is further proof that αc, and not Womersley’s α, is the proper measure for describing
the behavior of the flow. The decrease in slope for their ratio above unity is caused by the
frequency dependence of the resistance.



Chapter 3

Compliances and flow in elastic

tubes

The results of sec. 2.3 are only valid for flow in infinitely stiff tubes which is unfortunately
a case rarely encountered. Most tubing has some compliance stemming from the elasticity
of the tube wall, which not only will cause the flow to deviate from the idealized solutions,
but also will introduce new time scales to the physics. These effects must be accounted
for if one is to deduce the dynamic response of a component inserted into the system.

The first part of this chapter is devoted to the derivation of appropriate circuit ele-
ments, to be used in EC analysis in the following work, while two new equations along
with modeling techniques for elastic tubes will be presented in the second part. Additional
work in this field not relevant for the thesis is included in appendix B for the benefit of
future students.

3.1 Coupling compliance to flowrate and pressure

Consider a compliant medium in a liquid-filled microfluidic system. Assuming the volume
of the medium obeys a thermodynamical equation of state as

Vmed = Vmed (pmed) , (3.1)

which is the case for e.g. air and linearly elastic solids, the medium will expand when a
pressure difference is applied across it. This change in medium volume will be filled with
a flow of incoming liquid, so the negative time-rate of change of volume of the medium
equals a positive liquid flowrate

Qliq = −dVmed

dt
, (3.2)

since Qliq = dtVliq. The chain-rule of differentiation yields

Qliq = −∂pVmed ∂tpmed, (3.3)

where the factor −∂pVmed is recognized as the definition of compliance, so eq. (3.1) may
be reformulated as

Qliq = Chyd ∂tpmed. (3.4)
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3.2 Air bubble compliance

If present in the microfluidic system, air bubbles are often the most compliant parts, and as
any experimentalist working in the field of microfluidics can attest to, air bubbles seem to
always find ways to get stuck inside the system. Furthermore, the laminar flow conditions
makes air bubble removal a daunting task.

Assuming the isothermal ideal gas law applies to the air bubbles, the product of the
bubble volume and pressure is constant, pV = p0V0, where the subscript ‘0’ indicates a
reference state. The compliance of the air bubble is then

Chyd = −∂p
p0V0

p
=
p0V0

p2
. (3.5)

Expanding the bubble pressure in a Taylor series about p0 one finds to lowest order

Chyd ≈ V0

p0
. (3.6)

Changes to the bubble volume removes it from thermal equilibrium and the isothermal
version of the ideal gas law only applies to systems, in which the heat generated by the
bubble volume change is transported away from the system on time scales significantly
faster than the time scale of the volume changes. The temperature difference between
the bubble and the surrounding liquid reaches equilibrium as a decaying exponential with
time constant

τ =
ρCth ℓ

2
th

κth
, (3.7)

according to [25]. Here, ρ is the density of the surrounding liquid and ℓth the characteristic
length of the conduction path, while Cth is the specific heat and κth the thermal conduc-
tivity. Typical values for air in water at room temperature in a microfluidic system are
ρ = 998 kg m−3, Cth = 4.2 × 10−3 J kg−1, ℓth = 0.5 × 10−4 m and κth = 56.1 × 10−2 W
m−1 K−1 leading to a characteristic time of τ ≈ 2 × 10−8 s. Thus, the volume changes
to a small bubble in a microfluidic system can be considered isothermal for a pulsating
pressure even in the low kilohertz range.

At the other extreme, where the time scale of the volume change is significantly faster
than the time scale of the heat transfer, the adiabatic version of the ideal gas law applies
with pVγ = p0Vγ

0 where γ = cp/cV is the ratio of specific heats, so Chyd ≈ V0
γ p0

.

3.3 Compliance of elastic vessels

Consider one half of a linearly elastic tube of Young’s Modulus E, circular cross section
of inner radius a, thickness h, and axial length ℓ, see fig. 3.1. Inside the tube, an added
pressure p works to expand it while the wall stress counteracts the tube radial expansion.
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Figure 3.1: Sketch of the upper half of a segment of elastic tube of axial length ℓ, inner radius a before
pressure is applied and wall thickness h. The pressure p from the liquid acts on the tube walls which have
Young’s Modulus E.

3.3.1 Effects of wall inertia

Assuming only radial wall displacements, the displacement field becomes u(r, φ, x, t) =
ur(r, t) er in a cylindrical reference frame and the elastodynamic equation governing u for
an arbitrary wall thickness h is, [26]

ρw∂
2
t u = (2µw + λw)∇2u, (3.8)

where ρw is the wall density and µw and λw are the Lamé coefficients, which in terms of
Young’s Modulus and Poisson’s ratio νw are given by

µw =
E

2 (1 + νw)
, (3.9a)

λw =
Eνw

(1 + νw) (1 − 2νw)
. (3.9b)

Eq. (3.8) is recognized as the regular wave equation with wave speed c =
√

(2µw + λw) /ρw,
and the wave will traverse the tube radius in the time t = h/c. With the parameters
listed in table 3.1 and a wall thickness of h ≈ 5 × 10−4 m, the time for the motion of
the wave across the wall thickness ranges from t ≈ 2.86 × 10−6 s for silicone rubber to
t ≈ 2.10 × 10−7 s for PEEK1. Pressure oscillations in the low kilohertz regime will thus
be several orders of magnitude slower than the time it takes for the wall to reach its
equilibrium position as a result of the change in fluid pressure and consequently, the
inertia of the wall may be neglected.

3.3.2 Wall compliance

Since wall inertia can be neglected, only the solution to the associated equilibrium equation
to eq. (3.8) is needed to derive a wall compliance. Under the assumption u = ur(r)er with
the pressure p inside the tube, the solution to this equilibrium equation is given by Lautrup,
[29]

ur(r) = (1 + νw)

[
(1 − νw) +

(a+ h)2

r2

]
a2

(a+ h)2 − a2

p

E
r, (3.10)

1PEEK (Polyetheretherketone) is a very hard polymer material in wide use in experimental microflu-
idics.
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Table 3.1: Properties for selected tube materials as listed by [27] for the polymer materials and [28] for
stainless steel.

Material E [MPa] νw ρw [kg m−3] c [m s−1]

Silicone rubber 2.05 0.49 1.15 × 103 174.7
Teflon 5.00 × 102 0.45 2.14 × 103 941.4
PEEK 3.60 × 103 0.40 1.31 × 103 2375.6
Stainless steel 2.10 × 105 0.30 7.75 × 103 6039.6

and the volume increase associated with the wall displacement is

V = 2π aur(a) ℓ. (3.11)

As for the air bubbles, the time-rate of change of the volumetric expansion is the flowrate

Q =
2πa3ℓ

Eh

a

h+ 2a
(1 + νw)

[
2 (1 − νw) + 2

h

a
+
h2

a2

]
∂tp, (3.12)

from which the wall compliance may be read off immediately as

Chyd =
2πa3ℓ

Eh
β. (3.13)

The factor β is comprised of geometric and material variables and is given by

β =
a

h+ 2a
(1 + νw)

[
2 (1 − νw) + 2

h

a
+
h2

a2

]
. (3.14)

In the limit of very thin walls h≪ a this factor becomes β ≈ 1 − ν2
w. The term of ν2

w

is negligible since 0 ≤ νw ≤ 0.5, which yields a well-known result for thin walls, [30]:

Chyd ≈ 2πa3ℓ

Eh
for h≪ a, (3.15)

used in many instances to model the compliance of the arterial wall, e.g. [31, 32, 33, 34, 35].
In the other limit of h≫ a which is usually found in experimental microfluidics, eq. (3.13)
tends to

Chyd ≈ 2πa2ℓ

E
(1 + νw) for h≫ a, (3.16)

where all dependence on h vanishes. Both these limits are found in fig. 3.2 which shows
the compliance for a silicone rubber tube (E = 2.05 × 106 Pa) and three different values
of νw as a function of h/a.

Limitations

It is an underlying assumption of the elastodynamic equation, eq. (3.8), that the displace-
ment fields are small, while the solutions to said equation used in deriving the expressions
for Chyd assume no axial deformation of the tube. Deviations from these assumptions
would obviously make the derived expressions invalid.
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Figure 3.2: Wall compliance for varied Poisson ratio as a function of h/a. The dashed line is the limit
of h/a ≪ 1. Squares (2): νw = 0.00. Circles (◦): νw = 0.25. Triangles (△): νw = 0.50. The remaining
parameters are E = 2.05 × 106 Pa, a = 0.125 × 10−3 m and ℓ = 5.0 cm.

3.4 Flow in elastic tubes

Viscous flow in elastic tubes is a coupled fluid-solid interaction problem which is very
difficult to solve analytically. In the pulsatile case its solution would yield great insight
into the physics of arterial blood flow, prompting the interest of scores of workers, while
the transient case is of great interest in systems where a predescribed volume of fluid is
to be delivered in a specified time.

3.4.1 Simple EC model

The fluid flow in an elastic tube experiences resistance and inertia along with the compli-
ance caused by the elastic wall. In the simplest EC model, these three circuit elements each
act in a point, so the positioning of the three relative to each other may become important,
depending on their relative magnitude. Three approaches are illustrated in fig. 3.3, where
in each case the flowrate enters at penter and exits at pexit with a total pressure drop of
∆p = penter − pexit. The compliances are relative to atmospheric pressure (i.e. ground in
the EC diagram), since the tube over-pressure relative to atmospheric pressure determines
the displacement of the elastic tube wall. When the flowrate meets a compliance, some of
it inflates the tube while the rest continues downstream, so the compliance branches the
flowrate into an inflating flowrate and a flowrate exiting the tube.

In (a), the compliance is placed upstream of the resistance and inertia, so that all
incoming flowrate experiences both resistive and inertial losses before some of it is used to
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Figure 3.3: Three simple approaches for EC modeling of flow in elastic tubes. The flow enters at penter

and leaves at pexit, in all three cases, which only differ in the positioning of the wall compliance Chyd.
(a) The compliance is placed downstream of the resistance and inertia, meaning that all incoming flow
experiences drag and inertial losses. (b) The compliance is placed upstream of Rhyd and Lhyd, so some
of the incoming flowrate is branched off into the compliance without experiencing losses. (c) The original
tube of axial length ℓ is modeled as two segments of length ℓ/2, with the compliance placed in between.
The circuit elements of these tube segments have half the numerical value of the original elements due to
the linear dependence of all circuit elements on axial length ℓ.

inflate the wall. The situation is reversed in (b), where the inflation takes place before the
flowrate experiences any losses, so only some of the incoming flowrate experiences losses.
In the case of a very hard wall, only a very small volume will be used to inflate the wall,
and these two approaches will yield almost the same result, but in the other extreme of a
very soft wall, the two models will strongly disagree. The first model will over-predict the
losses since it assumes all incoming flowrate is exposed to the resistance and inertia, while
the second model will under-predict the losses as the inflationary flowrate is branched off
before any losses are applied to the it.

Compliance, resistance, and inertial losses are continuously distributed at every axial
position in the actual tube, so the further downstream one goes, the more of the flowrate
is stored in the inflating tube walls and less continues downstream to be inflicted resistive
and inertial losses. To lowest order, this is captured by splitting the original tube of axial
length ℓ into two segments of length ℓ/2, and then place the compliance of the original
tube in between the resistances and inductances of the new tube segments, as shown in (c).
Since all circuit elements depend linearly on axial length ℓ (see eqs. (2.9), (2.21), (3.6) and
(3.13)), the elements of the new tube segments have half the numerical value of the original
tube circuit elements. In this case, the incoming flowrate experiences both inertial and
resistive losses, before some is used to inflate the tube while the rest continues downstream
towards the tube exit while being exposed to the resistive and inertial losses of the second
tube segment. This last modeling approach has been used in the present work as a low-
order model of flow in elastic tubes unless otherwise stated, since a similar approach for
heat transfer has been shown to be in very good accordance with the analytical solution,
[1]. It may easily be extended to pulsatile flow by exchanging the resistance and inertia
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Figure 3.4: Improved EC model of flow in elastic tube. The tube has been divided into NEC segments,
each of axial length ∆x = ℓ/NEC. All circuit elements listed are for these new segments, so that e.g. the
resistance Rhyd is given in terms of ∆x and not the length of the entire tube, ℓ.

with a Womersley-type impedance ZWom.

3.4.2 Continuum model

The physiological interest in understanding the physics governing arterial blood flow has
been the driving factor behind most of the theoretical work in the field of inertially dom-
inated flow in elastic tubes. Many models have been presented to various degree of accu-
racy, but few have proved well against experimental data, arguably due to the tapering
and branching of the arterial network. Of special note is the extensions of the theory for
pulsatile flow in a rigid confinement by Womersley summarized in [31], the work of Morgan
and various co-workers, [32, 33], and the solution of the full wall equations coupled with
the fluid equations by Cox, [36], who in addition required the wall to be incompressible
and viscoelastic. A good overview of existing blood flow models may be found in [37, 38].
The general problem of pressure driven flow in elastic tubing has drawn comparatively lit-
tle attention. Work of note is Iberall’s derivation of a Laplacian for pressure, [39], and the
work by Olsen and Shapiro, [40], who considered large-amplitude oscillations theoretically
and experimentally. Unfortunately, none of the presented models are appropriate for the
present work due to their assumptions of either thin or viscoelastic walls, neither of which
are good approximations in experimental microfluidics: a tube of inner diameter a ≈ 0.25
mm usually has a wall thickness of h ≈ 0.60 mm corresponding to h/a ≈ 2 which cannot
be considered thin, and the tube walls show no signs of pronounced viscoelastic behavior.

The accuracy of the model introduced in the section above for flow in elastic tubes
may be improved by dividing the tube into more than two segments. Fig. 3.4 shows the
tube split into NEC segments each of axial length ∆x = ℓ/NEC. Considering one mask of
this model, the incoming flowrate Q(x) splits into an inflationary flowrate Qwall

comp(x) and
a flowrate continuing downstream, Q(x+ ∆x), i.e.

Q(x) = Qwall
comp(x) +Q(x+ ∆x). (3.17)
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Qwall
comp(x) is given in terms of the pressure at x in the usual manner as Qwall

comp(x) =
Cwall ∂tp(x). Meanwhile, the pressure drop along one tube segment is given by

p(x) − p(x+ ∆x) = RhydQ(x+ ∆x) + Lhyd ∂tQ(x+ ∆x). (3.18)

The circuit elements Rhyd, Lhyd and Cwall all depend linearly on the axial dimension of
the element, in this case ∆x for each tube segment. Collecting and rearranging eqs. (3.17)
and (3.18) yields

Q(x) −Q(x+ ∆x)

∆x
= Ĉwall ∂tp(x), (3.19a)

p(x) − p(x+ ∆x)

∆x
= R̂hydQ(x+ ∆x) + L̂hyd ∂tQ(x+ ∆x), (3.19b)

where the hat is used to indicate an element per axial length, i.e. R̂hyd ∆x = Rhyd.
The resolution of the model increases as NEC → ∞ corresponding to ∆x → 0. In this
continuum limit the equations become

−∂xQ(x, t) = Ĉwall ∂tp(x), (3.20a)

−∂xp(x, t) = R̂hydQ(x) + L̂hyd ∂tQ(x). (3.20b)

Combining these two equations, one arrives at the following damped wave PDE for the
pressure

∂2
xp(x, t) =

1

D ∂tp(x, t) +
1

c2
∂2

t p(x, t), (3.21)

where the constants are

D =
1

R̂hydĈwall

=
aEh

16ηβ
and c =

1√
L̂hydĈwall

=

√
Eh

2ρaβ
. (3.22)

D has units of a diffusion constant (m2 s−1) while c is the speed of the pressure waves.
The energy losses associated with the resistance causes the damping of the wave motion
which is intuitively correct, as one always finds a pressure wave traveling in an elastic tube
to die out at some point downstream of the source.

3.4.3 Continuum model in the pulsatile case

The arguments leading to eq. (3.20) may be repeated for the case of pulsatile flow, where
a Womersley impedance is used instead of a resistor and inductor in series. Eq. (3.20b)
then becomes

−∂xp(x, t) = ẐhydQ(x), (3.23)

and the governing equation for the pressure is

∂2
xp(x, t) = ẐWomĈwall ∂tp(x, t), (3.24)
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while the flowrate is the found from eq. (3.23). At first glance this looks like a diffusion
equation, but since ẐWom is a complex number, this is also a damped wave equation. One
solution to this equation is a pair of traveling waves

p(x, t) = ψ1 ei(kx−ωt) + ψ2 e−i(kx+ωt) + p0, (3.25)

where the constants ψ1 and ψ2 are determined by the boundary conditions, and p0 is a
reference pressure. The wave number k is found by plugging eq. (3.25) into the governing
equation:

k = ±
√

iωẐWomĈwall (3.26a)

= ±ω
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, (3.26b)

which is recognized as the regular dispersion relation k = ω/c multiplied by ta factor
comprising effects pertaining to the change in velocity profile for pulsatile flow. The
associated flowrate is

Q(x, t) =
ik

ẐWom

[
ψ1 ei(kx−ωt) − ψ2 e−i(kx+ωt)

]
. (3.27)

Considering the case of pulsatile flow entering the tube at x = 0 and leaving the tube
at x = ℓ with the boundary conditions

p(0, t) = ∆pentere
−iωt + p0, (3.28a)

p(ℓ, t) = ∆pexite
−iωt + p0, (3.28b)

the traveling wave solution satisfies these conditions if the constants are given by

ψ1 = ∆penter

(
1 − eikℓ

2i sin (kℓ)

)
+

∆pexit

2i sin (kℓ)
, (3.29a)

ψ2 =
∆penter eikℓ − ∆pexit

2i sin (kℓ)
, (3.29b)

where use has been made of the complex sine function. The flowrate at x = 0 and x = ℓ
of this system is given by

Q(0, t) =
k

ẐWom

[
∆pexit

sin (kℓ)
− ∆penter cot (kℓ)

]
e−iωt, (3.30a)

Q(ℓ, t) =
k

ẐWom

[
∆pexit cot (kℓ) − ∆penter

sin (kℓ)

]
e−iωt. (3.30b)

The attractive mathematical property of proportionality between flowrate and pressure
difference so far encountered has been lost in this continuum limit, and speaking of a linear
impedance relating pressure to flowrate is no longer meaningful. A 1:1 mathematical
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relation still exists, although the algebraic operations required to arrive at the expressions
are more cumbersome than for the idealized case of single circuit elements. However, these
new expressions do relate flowrate and pressure difference at every single axial position,
and knowing one of the variables, the other can be computed directly. Various other
transmission line models for the pressure in elastic tubes has been presented, [41, 42, 43,
44], but none have included the exact Womersley impedance of eq. (2.26).

3.5 Summary

Appropriate compliances for the work of the thesis have been derived from quasi-equilibrium
expressions, and the validity of these compliances have been justified. Low order modeling
of flow in elastic tubes has been discussed, and continuum equations governing damped
wave motion have been derived for the over-pressure for both regular and pulsatile flow.



Chapter 4

Experimental flow in elastic tubes

As a first step towards full systems-level modeling, the simpler case of tube flow is studied.
Two separate experiments have been conducted: verification of the Hagen–Poiseuille law,
eq. (2.8) for a very stiff tube, and the transient pressure build-up towards a steady state
in an elastic tube exposed to an abruptly applied pressure gradient.

The hydraulic resistance of a hollow fiberglass tube is determined in the first case.
Fiberglass has very high Young’s Modulus1 with small variation in wall thickness and
inner radius when pulled into hollow fibers, and meanwhile, the hydraulic resistance is
the easiest circuit element to determine experimentally, so this experiment will set the
upper limit for the attainable accuracy between theory and experiment for the thesis. All
steps will be detailed for this simplest of experiments to illustrate the care taken in all
experimental work presented in the thesis.

The second experiment will be used to investigate a transient phenomenon and from
this, determine the agreement between EC model and experiment for said dynamic system.
In addition to insight into the characteristic dynamic time scales of microflow in elastic
tubing, this also serves as a first step towards experimental treatment of pulsatile flow.

4.1 Measuring the hydraulic resistance of a tube

Of the three basic circuit elements of inductance, resistance and compliance, Rhyd is the
only which is independent of time, so the hydraulic resistance of a component is by far the
easiest circuit element to determine experimentally. This is usually done by simultaneously
measuring flowrate through and pressure difference across the component once the flowrate
is constant and hence void of transient effects; its resistance is found as the ratio of the two.
The experimentally determined resistance may be compared to the theoretically derived
expression of eq. (2.9). A hollow glass-fiber was used as the component due to the high
accuracy of its inner radius as well as its very low compliance.

Although simple in theory, much care must be taken when conducting this experiment.
The theoretical expression for Rhyd is a function of viscosity which in turn depends heav-

1E = 6.03 × 1011 Pa, according to [28].
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ily on temperature2 thus necessitating accurate temperature measurements. Moreover,
flowrates are rarely measured directly, rather, the mass of fluid exiting the component is
continuously measured and divided by the sample time. In microfluidic systems where
only small volumes of liquid exit the component, evaporation at the mass measurement
station must be prevented or quantified for this method to work.

All experiments in this thesis have been conducted under controlled thermodynamic
conditions of T = 20.00 ± 1.00 ◦C and 45.0 ± 5.0 % relative humidity.

4.1.1 Method

Prior to experimentation, the water for the measurements (approximately 100 mL) was left
undisturbed in a glass in the laboratory for approximately 30 minutes to ensure laboratory
and water temperatures were identical. The viscosity was measured with a falling ball
viscometer in which a spherical object of known size and density is dropped into a tube of
well-known length and diameter, filled with the fluid of consideration. Only gravity and
viscous drag are acting on the ball, so the steady state velocity of the ball can be related
to the viscosity of the fluid, from the time it takes the ball to drop between two sets of
markings on the viscometer tube.

A reference liquid of known viscosity is required for the viscometer. Using DI water
as the reference fluid for the viscosity measurements since tabulated values for this are
readily available in the literature, e.g. the CRC Handbook of Chemistry and Physics [45],
the viscosity of the tap water for the experiments was measured a number of times before
the ∆p − Q measurements for Rhyd, and again after the conclusion of these. In both
cases, the temperature was taken before and after each individual viscosity measurement.
Recording the exact drop time of the viscometer ball was very difficult leading to small
errors.

A syringe pump mounted with a 10 cm3 plastic syringe filled with tap water was used
to generate flowrates. The pressure was measured at the tip of the syringe, right before
the fiberglass tube, which was press fitted to the fluidic system using a small piece of thick-
walled silicone rubber tubing. The free end of the fiber was directed into a laboratory cup
on a precision scale, without the fiber glass tube touching the cup walls. Finally, a piece
of aluminum foil was placed on the cup as a lid to prevent evaporation, leaving only a
small hole for the glass fiber to enter.

To conduct a measurement series, a flowrate was set on the pump and the mass detected
by the scale was read out every second. Once the pressure sensor reached a constant level,
the average pressure was recorded over a period of about 20 s. The laboratory temperature
was measured before and after each experiment.

4.1.2 Instrumentation

Pressure sensor: Comark C9551 Pressure Meter (silicon sealed) (Comark Instruments,
Beaverton, Oregon, USA), differential pressure meter. Pressure range: 0 − 14 kPa with

2The viscosity of water varies roughly 2 % per degree celsius, [45].
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Table 4.1: Relative deviations of the measured viscometer constants from the mean, Kvisc = 5.4547 ×
10−8 m4 s−2, without correcting for temperature variations. Obtained using DI water.

Exp. # 1 2 3 4 5 6 7 8

ǫK [%] 0.99 0.32 0.83 0.82 0.86 0.16 0.30 0.30

resolution of 10 Pa.

Viscosity measurements: Gilmont Instruments GV-2200 Falling Ball Viscometer, us-
ing size 2 ball. Fall times measured using a Bonett stop watch with 0.01 s resolution.

Syringe pump: Cole-Parmer (Vernon Hills, Illinois, USA), catalog # 789200C.

Scale: Mettler-Toledo (Mettler-Toledo, New York, USA) Ax105 DeltaRange, readability
0.01 mg.

Syringe and tubing: A BD 10 mL syringe (14.48 mm inner diameter) with Luer-Lok fit-
ting system. Hollow fiber glass tubing (fused silica, ℓ = 84.7 cm, a = 0.53 mm by Supelco,
Pennsylvania, USA), fitted to the syringe via a press fit in a small piece of thick-walled
silicone rubber tubing.

Data acquisition and handling: IBM T41 ThinkPad for acquisition using BalanceLink
software by Mettler-Toledo and Dell Inspiron 6400 with Matlab 7.0.1 (The MathWorks
Inc., Natick, Massachusetts, USA) for handling.

4.1.3 Results

Viscosity experiment

Using DI water as the reference fluid, 8 measurements of the viscometer constant was
completed. The temperature variations for each measurement was at most 0.1 ◦C, so
the temperatures recorded before and after was averaged for each measurement. The
viscometer constant was computed for each measurement using the interpolated values
of the rheological constants from [45] at this average temperature; the average of these
viscometer constants for all eight measurements was Kvisc = 5.4547 × 10−8 m4 s−2. Devi-
ations of less than 1 % from the mean value of the viscometer constant Kvisc was found
for the results of the individual measurements, see table 4.1, even without corrections for
temperature variations, so Kvisc is used for all viscosity computations in the following.

The viscosity of tap water was determined from Kvisc and the results are given in
fig. 4.1. As before, only variations of up to 0.1 ◦C were observed during each measurement,
so the mean temperature is used in the figure. The data is distributed evenly about the
data for DI water, which has been obtained by interpolation using a fifth order polynomial
curvefit to the data from CRC Handbook of Chemistry and Physics, [45]. The measured
viscosities of tap water deviate around 1 % from the interpolated data for DI water when
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Figure 4.1: Measured viscosities, computed using the average viscometer constant Kvisc. “Before” and
“After” in the legend indicates when each measurement was made in reference to the ∆P−Q measurements,
and the reference is obtained by interpolation using a fifth order polynomial curvefit to the data for DI
water from CRC Handbook of Chemistry and Physics, [45]. The errorbars are a result of the previously
mentioned timing difficulties when measuring the drop time of the viscometer ball.

taking temperature into account, but due to the even distribution about the data for DI
water, the viscosity variation between DI and tap water is neglected and the interpolated
data for DI water is used for all computations in the following.

∆p−Q experiments

Using different flowrates, the recorded relation between specified flow rate and measured
pressure drop is given in fig. 4.2. Without correcting for temperature variations, a linear
relation passing through the origin is observed and the slope of a linear curve fit to the data
is R

meas
hyd = 419.08 × 109 Pa s m−3, where the superscript ‘meas’ is included to distinguish

between theoretically calculated and measured hydraulic resistance. The relative error
between R

meas
hyd and the individual measurements conducted at different temperatures is

low as shown in table 4.2, validating the use of the linear approximation. The theoretical
values of the hydraulic resistance at all measurement temperatures have been computed
using the interpolated data for DI water for the viscosity, also given in table 4.2, and the

mean value, R
theo
hyd = 435.61×109 Pa s m−3, has been used in fig. 4.2. The relative variations

from the mean of less than 0.1 % for R
theo
hyd can be attributed to the low temperature

variations resulting in small variations of the viscosity.

The results indicate good agreement between theory and experiment even without
the negligible temperature variations initially thought to introduce deviations, but the
data is not completely coinciding; rather, the same overshooting of the theoretical values
exceeding the errors on the viscosity measurements is observed throughout. The relative
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Table 4.2: Variations of the individual measurements and theoretical calculations of Rhyd with tempera-
ture. All entries of Rhyd has the unit GPa s m−3. ǫRmeas

hyd
is the relative variation between the slope of the

linear curvefit in fig. 4.2 given by R
meas
hyd = 419.08 × 109 Pa s m−3, and each measurement. No corrections

for temperature have been made. For the theoretically determined values, ǫRtheo
hyd

is the relative deviation

from the mean R
theo
hyd = 435.61 × 109 Pa s m−3, of which the latter also is given in fig. 4.2.

T [◦C] 20.30 20.20 20.10 20.20 20.15 20.40 20.30 20.25

Rmeas
hyd 432.30 400.19 405.13 419.95 419.95 407.60 416.99 419.95

ǫRmeas
hyd

[%] 3.15 4.51 3.33 0.21 0.21 2.74 0.50 0.21

Rtheo
hyd 434.95 436.01 437.08 436.01 436.55 433.89 434.95 435.48

ǫRtheo
hyd

[%] 0.15 0.09 0.34 0.09 0.21 0.40 0.15 0.03

error between R
meas
hyd and R

theo
hyd is 3.80 %, which is more than what can be attributed to the

errors introduced by the simplifications above, and the repetitiveness of the error suggests
a wrong numerical value has been used in the theoretical calculations. Having eliminated
viscosity as the source of error, eq. (2.9) suggests a variation of the tube inner radius to be
the source: such a variation of 1.40 % on the tube radius, which is equivalent to 3.6 µm,
would be sufficient to account for the deviation. The manufacturer has specified the tube
inner diameter to 0.53 mm, so the above variation is below the given tolerances and the
experiment cannot be conducted to higher precision with the available equipment.

4.1.4 Validation of result

The Reynolds number depends on the selected flowrate; for the above experiments the
Reynolds number based on the diameter lies in the range 4-80, meaning that inertial
effects dominate viscous effects and that the flow of tap water does not fully satisfy the
Stokes flow assumption. However, the flow is still in the lower end of the laminar regime
and the tube has no kinks, bends etc., so the Hagen–Poiseuille law is valid.

The flow is fully developed at a distance ℓent downstream of the inlet according to
Shah and London, [46]

ℓent ≈
0.6

1 + 0.035Red
d+ 0.056Red d, (4.1)

where Red is the Reynolds number based on the tube inner diameter d. For the present
∆p − Q experiments using the largest value of Red above, this distance is no more than
ℓent ≈ 2.46 mm, and since the fiber glass pipe has a total length of 84.7 cm, only small
errors are introduced by assuming fully developed flow throughout the tube. The observed
variation between theory and experiment in fig. 4.2 is likely caused by variations in the
tube radius.
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Figure 4.2: Measurements (dashed) and theoretically determined (solid) flowrate and pressure drop.
The errorbars are a result of the viscosity error. A small, but constant, overshooting of the theoretically
determined Rhyd exceeding the errorbars is observed.

4.2 Transient build-up of pressure in an elastic tube

The fairly complex physics of transient viscous fluid flow in an elastic tube contains all
three basic EC elements: fluid resistance, fluid inertia and compliance of the elastic wall.
The simple case of only a tube is used to gauge the validity of EC modeling of dynamic
flow, and allows for estimating the characteristic relaxation3 time when wall elasticity is
introduced.

4.2.1 Pressure generation considerations

Ideally, the pressure increase driving the flow should be applied instantly to ensure that
only the effects of transient flow in an elastic tube are observed, but due to the inher-
ent time-lag in any pressure generating device this is not physically achievable. However,
applying the pressure difference on a time-scale significantly faster than the temporal res-
olution of the pressure sensor (which is 1 ms), the pressure will appear to have been added
abruptly to the sensor. This, too, is unfortunately also not possible with conventional elec-
tromagnetic, piezoelectric, or servo valves which all have a temporal resolution of about
2 ms, [47, 48, 49].

A simple way of generating a pressure difference on time scales faster than 1 ms is to
drop a weight on the outside of the tube. As soon as the falling weight hits the elastic tube,
a pressure increase propagates through the tube wall, but the water contained in the tube
will not experience the pressure increase before it has traveled across the tube. Relying
on the usual assumption of incompressibility for the water, the only elastic part of the

3Recall that the characteristic relaxation time is circa 1ms for rigid walls as discussed in sec. 2.3.1.
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Figure 4.3: Setup for the transient Poiseuille experiment. (a) The constituent parts. (b) The setup ready
for experimentation. The pressure difference is generated by swiftly yanking the wedge in the direction of
the arrow. Legend (1): Pressure sensors, (2): Tube, (3): 9 V battery, (4): Weight, (5): Wedge, (6): Data
acquisition connector unit.

system is the silicone rubber tube4. Solely the elastic p-waves are of interest since these
transfer the pressure increase to the contained water, so the wave speed may be taken
directly from table5 3.1. Since the wall thickness is h = 0.3 mm, the pressure increase is
deposited in the water in t = h/c ≈ 2 × 10−6 s after the weight is dropped, much faster
than the 1 ms temporal resolution of the pressure sensor.

4.2.2 Experimental setup and procedure

For these experiments, a primed pressure sensor was connected to each end of a water-filled
silicone rubber tube segment, and an over-pressure was suddenly generated by dropping
a 5 kg weight on the tube. Prior to generating the over-pressure, the weight was leaned
onto a common door stopper wedge keeping the bottom of the weight just above the tube.
By swiftly pulling the wedge out it drops onto the tube and compresses it, thus generating
an over-pressure. The experimental setup is shown in fig. 4.3.

The pressure sensors were connected to common 9 V batteries for voltage supply in
an effort to minimize readout noise. Data was sampled for 5 s from both pressure sensors
at a rate of 100 kHz, to ensure the capture of all time scales, and the weight was dropped
roughly 1 s after the commencement of data logging.

4.2.3 Instrumentation

Pressure sensors: Sensortechnics (Puchheim, Germany) 26PC02K0D6A differential
pressure sensors with a range of 0-2 bar and a manufacturer specified temporal resolu-
tion of 1 ms. The sensors are fitted with Upchurch Scientific (Oak Harbor, Washington,

4This is of course an approximation, but since the bulk modulus of water is K = 2.2 × 109 Pa while
Young’s Modulus of silicone rubber is E = 2.05 × 106 Pa the approximation is justified.

5Strictly speaking, the simplifications leading to eq. (3.8), on which the table is based, are not valid
since all wave motion along the axis of the tube has been ignored. Including this motion yields a slightly
different p-wave speed given by c =

√
(λw + µw) /ρw, but for estimates, this is not of importance.
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Table 4.3: Values of EC elements for the simple model of tube flow of eq. (4.2).

Element Value

Rhyd 1.97 × 109 Pa s m−3

Lhyd 8.82 × 107 Pa s2 m−3

Cwall 2.99 × 10−13 m3 Pa−1

USA) NanoPort fittings, which are glued on using Loctite (part of Henkel Corporation,
Düsseldorf, Germany) 495 glue. One end of each sensor is left in ambient conditions so
the sensors measure relative to atmospheric pressure.

Batteries: Regular 9 V batteries by Memorex (Imation Electronic Products, Weston,
Florida, USA).

Tubing: Silicone rubber tubing (ℓ = 20 cm, a = 0.6 mm, h = 0.3 mm).

Data acquisition and handling: National Instruments (National Instruments Inc.,
Austin, Texas, USA) DAQCard-6062E with 500.000 samples/s connected to pressure sen-
sors by a National Instruments SCB-68 Connection Unit. Data acquisition on an IMB
T43 laptop using a simple program developed in National Instruments LabVIEW 8.5.1.
based on ExpressVIs and handling using Matlab 7.0.1 on a Dell Inspiron 6400 laptop.

4.2.4 Equivalent circuit model of the system

The (almost) abruptly generated pressure difference starts a Poiseuille flow of the water
towards the pressure sensors. The flow cannot enter the pressure sensors as these are
already liquid filled and have no open ends, so the flowrate at the pressure sensors is zero.
The EC model for this system has already been presented in sec. 3.4.1, and since the
weight was placed at the middle of the tube, the two sensors experience the same pressure
build-up, and consequently, behave according to the same model. The model of fig. 3.3(b)
has been used instead of the more correct model of fig. 3.3(c) because the condition of
no flow to the sensor would require no flow through the elements downstream of the wall
compliance in the latter case, resulting in the model of fig. 3.3(b). The following relation
is readily found from the normal relations

∆psens(t) +RhydCwall ∂t∆psens(t) + LhydCwall ∂
2
t ∆psens(t) = ∆p, (4.2)

where ∆psens(t) and ∆p are the sensor and applied over-pressures respectively. This second
order ODE governs a damped oscillatory motion. The values of the circuit elements are
listed in table 4.3. As for an RCL-circuit in electronics, this system has three inherent
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time-scales

τ = RhydCwall = 3.33 × 10−4 s, (4.3a)

τ =
√
LhydCwall = 3.86 × 10−3 s, (4.3b)

τ =
Lhyd

Rhyd
= 4.48 × 10−2 s, (4.3c)

of which only the latter two can be resolved by the sensors. The RC-time is related to the
oscillation period as T = 2π

√
LhydCwall ≈ 24 ms, while the LR-time relates to the decay

of the pressure amplitude for each oscillation. However, for a system of no compliance,
the LR-time corresponds to the characteristic relaxation time and is thus the EC version
of the characteristic inertial relaxation time τ = a2/(γ2

1ν) of sec. 2.3.1. This latter is
τ = 62.0 ms for the present case, so the EC result is close.

As already discussed, this model may be improved by dividing the tube into more than
two segments, or using the continuum limit of infinitely many segments. In this limit, the
governing equation is exactly that given in eq. (3.21), with the boundary conditions of
∆psens(0, t) = ∆p and ∂x∆psens(ℓ, t) = 0, where this latter follows from setting Q(ℓ, t) = 0
in eq. (3.20b).

4.2.5 Statistical analysis

Noise from the pressure sensor output signals are removed by filtering. Although batteries
are used to supply the pressure sensor input voltage, noticeable noise is still present in
the output signals. A frequency analysis of the pressure sensor output revealed several
noise peaks at frequencies around 3 kHz and one large peak at f ≈ 8.1 kHz, see fig. 4.4,
corresponding to time scales of approximately 5.9 × 10−4 s and 1.2 × 10−4 s, respectively.
These frequencies are faster than the specified sensor resolution and have been removed
by filtering.

A lowpass Butterworth filter has been chosen as it, contrary to most filters, has no
ripples in the passband, but still rolls off fairly steeply in the stopband6. Butterworth
filters are characterized by their order o and the cutoff-frequency ωc (the angular frequency
above which no output is desired). The higher the order, the steeper the roll-off at the
cutoff-frequency, but unfortunately higher order filters are more time-consuming to employ
as more computation is needed. An undesirable property of filters is their propensity of
introducing a phase-shift to the filtered signal, although this may be minimized by first
filtering the signal in the direction of its acquisition, i.e. from time t0 to time tend, and
subsequently filtering the just filtered signal in reverse, i.e. from time tend to time t0. For
an in-depth discussion of signal filters the reader is referred to [50].

For all results in this chapter a Butterworth filter of order o = 7 with a cutoff-frequency
of ωc = 2 × 103 rad s−1 has been employed, and filtering has been carried out “in both
directions” to minimize phase-shifts.

6The “passband” is the frequencies allowed to pass and the “stopband” is the blocked frequencies.
For a lowpass filter this constitutes the frequencies above the cutoff-frequency, the first of the unwanted
frequencies.
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Figure 4.4: Measurement noise spectrum obtained by performing a fast Fourier transform on a reference
measurements of the primed system sans the over pressure.

4.2.6 Results

The measured pressures from each sensor as a function of time is shown in fig. 4.5.
Following a curve somewhat resembling the characteristic curve of damped oscillations,
the pressure reaches a constant value of ∆p = 7.3 × 104 Pa roughly 0.4 s after the weight is
dropped. Only half of the mass of the weight will go to the fluid pressure increase since one
end of the weight continuously rests on the table, and assuming the contact area between
the weight and the tube to be A ≈ 1 × 10−1 m×2 × 10−3 m ≈ 2 × 10−4 m2, the maximally
attainable fluid pressure is ∆p ≈ 1.2 bar. Since some of this pressure is used to compress
the wall and given the level of uncertainty in the estimated value of the area, the found
pressure increase of 7.3 × 104 Pa is probable. The input signal was cutoff above 4.25 bar
due to limitations on maximum input voltage on the data acquisition card, causing the
abrupt cutoff of the first pressure peak in fig. 4.5(a).

The results of the EC model using either one or four terms are also shown in the
figure along with a numerical solution to the continuum equation. The low-order models
have been solved using Matlab’s ode45 ODE solver. The PDE governing the continuum
model is easily solved analytically for a traveling pressure pulse, but the startup problem
considered here is more demanding and has therefore been solved numerically with the
generic finite element solver of Comsol Multiphysics using a first order BDF method
in time and second order Lagrange elements in space.

All three models agree with the experimentally observed behavior of a damped har-
monic oscillatory pressure reaching a steady state ∼ 0.4 s after the weight was dropped.
The oscillation period from the one-term EC model is roughly 24 ms, while the higher-
order EC models have oscillation periods of about 20 ms; both of these compare favorably
to the oscillation period of about 27 ms found in the experimental data.
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Figure 4.5: Transient Poiseuille flow results. Pressure builds very quickly after the weight is dropped,
and goes to a constant value of ∆p = 7.3 × 104 Pa in a manner somewhat resembling a damped harmonic
oscillator. Also included are the results of the simple EC model of eq. (4.2) (solid blue), a slightly more
elaborate EC model in which the original tube is divided into four segments with compliances positioned in
between them (blue dash-dot), and the continuum limit of infinitely many such tube segments (solid red).
The four-term EC model and continuum model only have slight disagreements. (a) The full measurement of
sensor pressure shows a rapid increase at first followed by a relaxation to a constant value in approximately
0.4 s. The pressure sensor input was cut off at 4.25 bar, so the prediction of the continuum model of 5.45
bar pressure at the initial peak cannot be verified. (b) Zoom on the pressure oscillations following the
initial peak. Although none of the three models reproduce the measurements exactly, they all capture the
essential behavior, the total relaxation time and the frequency of the damped oscillations. In addition, the
continuum model also captures the amplitude peaks of the subsequent waves.
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The fluid can only flow when the compliant wall yields due to the blockage at each
end, and it is found that only the time scales where inertia enters are found in the model
results; the RC-time is not dominant while the LR and LC times are. Comparing to the
simple cases of sec. 2.3 where the walls were assumed infinitely stiff, the inclusion of elastic
walls has introduced a second time-scale to the physics, which all the models account for.
The shortcomings of the EC model are many, with the most glaring being disregard of
wall inertia, so the fact that the model fairly well captures the measured physics using a
maximum of four terms, indicates that the dominating physical phenomena are accounted
for.

4.3 Summary

The simplest microfluidic experiment was conducted by experimentally determining the
hydraulic resistance of a hollow glass fiber tube. Much care was taken to account for
temperature variations when conducting the experiments, as it was expected the strong
dependence of viscosity on temperature would yield noticeable deviations. Theory and
experimental data was found to be in good agreement, even without correcting for the
small temperature variations during experimentation, but the theoretical and experimental
results did not completely coincide. It was argued that deviation of the tube inner radius
below the specified tolerance would explain this discrepancy, so the attainable resolution
of the lumped-parameter EC models is set by the manufacturer-specified tolerance of the
inner radius of the tube used.

A transient experiment of abruptly started pressure driven flow in an elastic tube was
conducted. A simple EC model was used to model the system, and was found to be in
fair agreement with the experimental data. A difference in characteristic time for the fluid
pressure to reach a steady state was found to increase by roughly one order of magnitude
by inclusion of the elastic walls, and a second time scale was observed as the pressure
approached a constant value. It was discovered that the continuum model, thought to
exceed the simple low-order models in accuracy, was only slightly better in capturing this
transient phenomenon.



Chapter 5

The constructed pressure source

An experimental setup capable of probing the low kilohertz range is required for the
characterization of component dynamics that is the ultimate goal of the thesis. This
chapter presents a driving mechanism constructed for said purpose.

5.1 Initial considerations

A microfluidic driving mechanism delivers either a specified volume (flowrate) or a specified
pressure. However, one cannot arbitrarily select both pressure and flowrate for a given
system since the Stokes equation governing microfluidic flow, eq. (2.4), must be satisfied,
and flowrate is a manifestation of fluid velocity. Rather, pressure or flowrate may be
specified while the other is determined by the system. Independently of the choice of
specified physical quantity in the setup, properties such as frequency and amplitude ranges
are critical and should be maximized. The driving mechanism will be used to expose
compliant media to pulsatile pressure and flowrate, so although the inertial time scale
is believed to be about 1 ms from theoretical considerations, the transient experiment of
chapter 4 suggests that the relaxation time scale of the system might be closer to 10 ms.
Microfluidic tubing has an inner radius of approximately 0.2 mm, so in order to observe
the pulsatility, displacements of minimum 2 mm in the tubing is desirable. This, in turn,
requires that the setup delivers stroke volumes of about 0.1 mm3.

A thorough survey of micropumps and flow generators, both commercially available
and documented in scientific literature, [51, 52], show that while few can operate in the
low kilohertz range, none have been developed for this purpose. Those capable are all
pressure generators displaying an interdependence between amplitude and frequency while
generating very small flowrates, so a new driving mechanism has been developed to better
probe the desired frequency range.

5.2 Choice of actuator

Actuators deliver either a torque or a force. The first category of actuators include,
but is not limited to, rotating electro motors known from a wide variety of commercial
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applications e.g. automatic car windows, kitchen blenders, radio-controlled toy cars. Due
to their construction, the controlling parameter is the angular velocity rather than the
torque; this latter simply adjusts itself to deliver the specified angular velocity, as long as
the required torque is below the maximum torque capability of the motor. Thus, electro
motors are well-suited as the driving mechanism in a flow generator, since they will adjust
the torque (which will determine the pressure in the fluidic system) to the system on which
they operate while delivering a specified number of rotations per unit time. This latter
can be related to a specified stroke volume of fluid per unit time, i.e. a flowrate. However,
no electro motors with an angular velocity above 10 × 103 rpm ≈ 160 Hz are available, so
the required frequency range is not attainable with these devices.

Two types of force-delivering actuators are appropriate for oscillations in the low kilo-
hertz range: linear electromagnetic actuators and piezoelectric1 actuators. Piezoelectric
actuators are most appropriate as pressure generators due to the proportionality between
voltage and stress, however, very high voltages are required for even minute deflections
(20 Vpp usually causes deflections of O (1 nm)), which in turn yields high temporal resolu-
tion. It is thus a trivial task to produce oscillations of about 5MHz, but the very limited
amplitude of the oscillations means that very low volumes of fluid can be displaced. This
problem may be overcome by stacking the piezoelectric material in layers and hence am-
plifying the deflection, since the total deflection of the stack is the sum of the deflection of
all layers. Even still, a very large stack (about 1m thickness) is required for a deflection
of 1 mm, and such a stack should not be operated above 160 Hz, [53], so piezoelectric
actuation is also not a viable option for the present work.

Of the linear electromagnetic actuators, a simple type is the “voice coil actuator”
which is the traditional actuator used in loud speakers. It consist of a permanent magnet
fixed behind a coil of electrically conducting wire, which moves, when an electrical current
is sent through the wire. To concentrate the energy of the magnetic field, a soft iron
core attached to the permanent magnet fills the middle of the coil, without impeding its
movement. The force generated is proportional to the current in the coil, and frequencies
up to about 20 kHz are known to be achieved by some commercial loud speakers. Thus,
having a voice coil actuator deliver a well-known force F on specified area of fluid A, a
known pressure p = F/A is generated, well into the low kilohertz range. Additionally,
by varying the current in the coil, the force and hence the pressure amplitude is varied
independently of the frequency. This type of actuator has been chosen for the driving
mechanism, which then acts as a pressure source.

5.2.1 Actuator

The actuator used in the source is a LA08-10-000A voice coil actuator (BEI Kimco Mag-
netics, San Marcos, California, USA). The permanent magnet and the coil assembly are
not held together but are two separate pieces, as shown in fig. 5.1. The actuator delivers
KF = 1.1 N A−1 and has a characteristic electrical time of τ = 160 µs, corresponding

1The piezoelectric effect exhibited by certain materials (notably crystals and certain ceramics) is the
ability to generate and electric potential in response to an applied stress. The effect is reversible since the
materials experience a stress when a voltage drop is applied.
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(a) (b)

Figure 5.1: BEI Kimco LA08-10-000A voice coil actuator next to an American quarter dollar coin. The
grid lines intersect every 5 mm. (a) The two parts constituting the actuator: The coil (with the wires
exiting) and the permanent magnet. (b) The assembled actuator, mounted with the plunger and membrane
(see sec. 5.3.2 for details on the plunger).

to a characteristic frequency of f = 0.99 kHz. The peak force of this actuator is 6.7 N,
the “continuous stall force” (the maximum continuous force the actuator is capable of
delivering for a sustained period of time) is 1.97 N and the stroke length is maximally 2.03
mm. Since the force depends linearly on the current, F = KFI, the following holds for the
generated pressure

p =
KF

A I. (5.1)

With an area of circa 40 mm2, the actuator will be able to deliver a volume per stroke
up to 80 mm3, while the pressure can be varied independently through the current. The
actuator data sheet is included in appendix C.

5.3 Pressure source design

The basic pressure source design is shown in fig. 5.2. A liquid-filled chamber is separated
from the actuator by a thin silicone rubber membrane. The actuator delivers its force on

F eiωt

Membrane

ChamberLiquid

Holder

Q

Figure 5.2: Working principle of the constructed pressure source. A silicone rubber membrane separates
the liquid-filled chamber from the actuator, and the actuator acts on the membrane. A holder fixates the
actuator in the setup.
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Figure 5.3: Constructed pressure source. (a) CAD drawing showing the parts of the pressure source.
(b) The fabricated parts prior to assembly. An American quarter is placed to the right of the device for
scale and the grid lines intersect every 5 mm. The actuator (3) has been mounted with the plunger and
membrane. (c) The assembled pressure source with two of the three exits blocked. Legend (1): Actuator
holder, (2): actuator guide, (3): actuator, (4): plunger, (5): membrane, (6): O-ring and (7): chamber.

said membrane, and is held in place by a rigid holder. The membrane is clamped between
the holder and chamber, which are held together by screws. The pressure source was
designed in close collaboration with workshop director Henrik Ljunggren of Novo Nordisk
A/S, Hillerød, who also fabricated the device. CAD drawings and photos of the source
are given in fig. 5.3.

5.3.1 Holder and actuator guide

The holder consists of two parts. One part holds the permanent magnet of the actuator,
while the other is used to guide the motion of the actuator. Both parts are made of
aluminum.

The permanent magnet and iron core of the actuator have an outer casing of circular
cross section (diameter 19.05 mm). The holder, made from a slab of aluminum of height
3 cm, width 6 cm and length 6 cm, has a throughhole in the center of the slab of diameter
19.50 mm, slightly larger than the actuator magnet. A cut of roughly 2 mm thickness for
the height of the slab is made from the throughhole to one of the corners, and a screw
is inserted normal to the cut. The actuator magnet is placed in this holder and fastened
using this screw. The permanent magnet holder is labeled ‘1’ in fig. 5.3(a)-(b), and the
cut is visible in (b).

The actuator guide is mounted underneath the magnet holder. Also made from alu-
minum of same length and width but of height 1 cm, the guide has a throughhole of
circular cross section and radius 4 mm along the same axis as the holder throughhole.
Another hole of diameter 19.50 mm and of depth 2.5 mm, is made in the top of the guide
along the same axis to allow the coil to move back and forth during operation. The coil
should then move only in the axis of the holes and not move sideways. A grove is milled
to lead out the electric wires to the coil, and the guide and holder are held together by
screws.
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Figure 5.4: The pressure source chamber has three fluid exits and a number of threaded holes (threads
not shown) for fastening to the actuator guide. The O-ring is positioned in a groove around the chamber
cavity edge and the unit for all measures in (b) and (c) is mm. (a) 3-D CAD drawing of the chamber and
O-ring. (b) Top view of the chamber. (c) Cut through the middle of the chamber.

5.3.2 Plunger

The actuator coil and membrane are connected via a steel plunger, which is lead through
the guide throughhole. The plunger is fastened into the a threaded hole in the top of the
actuator coil assembly as shown in fig. 5.1(b). A hole is made in the membrane through
which the plunger is drawn. Two cylindrical titanium spacers (outer diameter 7.05 mm)
clamp the membrane when the plunger is fastened into the actuator coil.

5.3.3 Chamber

The chamber, shown in fig. (5.4), is made of a transparent acrylic polymer with a 6.5
mm deep cavity of circular cross section of radius 4.5 mm. A small indentation of 0.4 mm
depth and 8.5 mm radius is made at the top of the chamber around the cavity, to make
room for the membrane, which itself is 0.2 mm thick and roughly 8 mm radius. A rubber
O-ring (9.0 mm inner diameter) is used to seal the membrane against the holder. It is
placed in a groove around the edge of the cavity.

The chamber has three exitholes to connect it to fluid systems. These have been made
to comply with fittings by Upchurch Scientific of thread 10-32, to be used with tubing of
1/16” outer diameter.

5.4 Instrumentation used for driving the pressure source

A short description of the instrumentation used in connection with the pressure source in
the following chapters is given below.

5.4.1 Electronics

Two voltage generators have been used: Agilent E3632A DC generator (Agilent Technolo-
gies, Santa Barbara, California, USA) and an Agilent 33250A AC generator in connection
with a LPA01 power amplifier (Newtons4th Ltd., Mountsorrel, Loughborough, UK).
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(a) (b)

Figure 5.5: LabVIEW program used for data acquisition. (a) Front panel. (b) Block diagram.

The pressure source can operate in both DC and AC mode, depending on the current.
The DC generator allows the user to set an upper limit on both current and voltage.
Whichever of the two is reached first dictates the generator performance; even though
the coil current dictates the applied force, the current itself depends on the voltage. The
AC generator does not have this property. One may specify an output voltage on the
instrument, but the output current depends on the system and the internal electrical
impedance of the instrument. A power amplifier was used to drive the pressure source at
the desired current.

A small electrical resistance of Rel = 1.1512 Ω was connected in series to the actuator
coil, and the voltage drop ∆U across said resistance was measured. The resultant current
in the system during operation was then found from Ohm’s law, eq. (2.18), as I = ∆U/Rel.

5.4.2 Data acquisition and handling

Data acquisition from pressure sensors and the electrical resistance mentioned above was
realized using the same equipment as in the previous chapter (DAQCard-6062E data
acquisition card along an SCB-68 Connector Unit). A simple LabVIEW program based
on ExpressVIs was developed for the acquisition. The front panel and block diagram of
this program is shown in fig. 5.5. All data handling has been carried out in Matlab on
a Dell Inspiron 6400 laptop.

5.4.3 Pressure detection

Pressure was measured using Honeywell 40PC series pressure sensors (Honeywell Inter-
national Inc., Morristown, New Jersey, USA). These sensors measure change in electric
resistance of a silicon membrane as it deflects due to pressure changes, and relates this
change in resistance to the pressure difference. Sensors of limit 15 psi (40PC015G) and of
± 50 mmHg (40PC001B) were used. Using a DC input voltage of 5 V, the sensors have a
built-in amplifier so the output voltage from both sensors is in the range 0.5-4.5 V. The
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Table 5.1: Results from simple experiment to determine pressure sensor compliance. The pressure
difference was in all cases ∆p ≈ 1 bar and the tube radius a = 0.254 mm. The mean compliance for each
sensor was determined to C15 psi

hyd = 1.67 × 10−15 m3 Pa−1 and C±50 mmHg
hyd = 5.66 × 10−15 m3 Pa−1.

15 psi ± 50 mmHg

Meas. # 1 2 3 1 2 3

∆x [mm] 0.5 1.0 1.0 3.0 3.0 2.5
Chyd [10−15 m3 Pa−1] 1.00 2.00 2.00 6.00 6.00 4.99

pressure sensors were coupled to the fluidic tubing using a silicone rubber sleeve mounted
over both tubing and sensor inlet. The silicone rubber sleeve has an undeformed inner
diameter of d = 1 mm and a wall thickness of h = 1 mm.

Pressure sensor compliance

Pressure sensor compliance stems from both the silicon membrane and the sleeve men-
tioned above. This compliance has been estimated by the following experiment: A water-
filled syringe is coupled to the primed sensor, which has been vacated of air, via transparent
teflon tubing of dimensions ℓ = 10 cm, a = 0.254 mm and h = 0.540 mm, with a millimeter
scale placed right next to the tubing. An air-bubble of about 10 mm length is placed in
the tube, and pressure is applied manually with the syringe. Noting the initial position of
the bubble front as well as the bubble length, the bubble front position is noted again once
the bubble axial length has halved. Assuming negligible effects of curvature at the bub-
ble fronts, the bubble volume is estimated from the bubble length using the known tube
radius, and since a halving of volume is associated with a doubling of pressure according
to the ideal gas law, the bubble pressure is then twice atmospheric pressure.

Any motion of the bubble (as indicated by a difference in position of the bubble front
prior to and after the pressure difference has been applied) will be the consequence of
a compliant medium expanding to accommodate the pressure increase. The increase in
volume is then ∆V = πa2∆x, where ∆x is the change in position of the bubble front.
From the coupling of compliance to flowrate, eq. (3.4), one finds ∂tV = Chyd ∂tp, so the
following holds

Chyd =
∆V
∆p

. (5.2)

This has been used for the estimates. The experiment was redone three times and the
mean value of the compliance taken as a good estimate. Table 5.1 lists the result of the
individual experiments; the mean values of the compliances are C15 psi

hyd = 1.67 × 10−15 m3

Pa−1 and C±50mmHg
hyd = 5.66 × 10−15 m3 Pa−1.

Air bubble trapping in the sensors

Priming the sensors without trapping small air bubbles is very difficult. Not only are the
sensors not transparent, but the internal volume of the sensors appears to expand away
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Figure 5.6: Schematic illustration of the physical quantities in the pressure source circuit model. A
voltage drop is applied to the coil (red wires) giving rise to an electrical current. This current generates
a force on the coil, which in turn moves in the direction x. The displacement of the coil inflates the free
part of the membrane with water of volume Vtent since it is easier to expand the membrane than leave
the chamber, but a flowrate Qc exits the source nonetheless, all the while the pressure difference ∆p is
generated in the pressure source chamber.

from the inlet towards the membrane, so once an air bubble is trapped inside, it is almost
impossible to remove it.

The sensors have been primed using a syringe with a small-diameter needle inserted into
the sensor inlet as far down as possible without breaking the delicate silicon membrane,
and although much care has been taken, it cannot be ruled out that small bubbles have
been present inside the sensors during experimentation. An upper limit to the size of these
bubbles is the total internal volume of the sensors, which has been estimated by noting
the volume of water needed to fill each of them. The total internal volume of both sensors
is estimated to 1.0 × 10−7 m3.

5.5 Pressure source circuit model

To fully understand the performance of the pressure source, one must consider the electric
circuit of the actuator and the mechanics of the coil motion in addition to the microfluidics
of the system. A circuit model of the entire pressure source is presented in the following
as a low-order model coupling it to the EC equations, and a schematic drawing is given
in fig. 5.6.

5.5.1 Coil mechanics

The motion of the coil is governed by Newton’s second law, where the external forces are
the electromagnetic force on the actuator Fact, the spring force of the membrane Fm, and
the force arising when a pressure difference exists across the membrane Fp. Denoting the
mass of the coil, plunger and membrane M and letting x be the coordinate of displacement
for the coil (positive when a positive pressure difference is generated in the chamber, i.e.
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when liquid is pushed out), the three forces are given by

Fact(t) = KFI(t), (5.3a)

Fm(t) = −Kx(t), (5.3b)

Fp(t) = −Aeff∆p(t), (5.3c)

where the membrane is assumed to act as a linear spring with constant K, ∆p(t) is the
pressure difference across the membrane, i.e. the pressure difference relative to atmospheric
pressure, and Aeff is the effective plunger area. The plunger motion is then given by

Md2
tx(t) = KFI(t) −Kx(t) −Aeff∆p(t), (5.4)

and the coil velocity is found as v(t) = dtx(t).

5.5.2 Coil electric circuit

The coil electric circuit obeys the equation

∆U(t) = RelI(t) + Lel∂tI(t) + E(t), (5.5)

where the resistance is the sum of the coil resistance Rcoil
el and the outer resistance of Rout

el =
1.1512 Ω, and E(t) is the back-EMF arising from the moving coil, which is approximately
given by E(t) = Kemfv(t). The resistance and inductance of the coil are Rcoil

el = 1.28 Ω
and Lel = 2.05 × 10−4 H according to the data sheet, appendix C, which also lists Kemf =
1.1 V s m−1.

5.5.3 Chamber fluidics

During operation, the volume of the chamber Vc depends on the position of the plunger
and the expansion of the membrane due to the generated over-pressure in the chamber,
but when the system is at rest, the volume of the chamber is Vc = Vinit, see fig. 5.6.
The plunger diameter is d = 7.05 mm while the chamber diameter is d = 9.00 mm, so a
small free membrane area exists between the plunger and the chamber/holder walls. This
part of the membrane will expand when a pressure difference is present across it due to
the elastic nature of the membrane, and the expanded volume will be filled with fluid.
Denoting the volume of fluid stored in the expanded membrane Vtent — so named due
to the resemblance of the expanded membrane to a tent — and noting that the volume
displaced by the actuator is Vdisp = Aeffx, the chamber volume is given by

Vc = Vtent −Aeffx+ Vinit. (5.6)

The negative sign arises since a positive displacement of the plunger pushes liquid out of
the chamber. Using arguments similar to those leading to eq. (5.2), the volume Vtent is
related to the generated over-pressure through a compliance as

Vtent = Ctent ∆p. (5.7)

A positive flowrate Qc exits the chamber when its volume is diminished, so this flowrate
is found as the negative time-rate of change of eq. (5.6),

Qc(t) = Aeffv(t) − Ctent ∂t∆p(t). (5.8)
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5.5.4 Pulsatile case

When run in AC mode — generating a pulsatile pressure and flowrate — the govern-
ing ODEs listed above simplify greatly. Assuming all time-dependent variables to vary
harmonically, the governing equations become

M iωv = KFI −Kx− ∆pAeff , (5.9a)

v = iωx, (5.9b)

∆U = RelI + iωLelI + Kemfv, (5.9c)

Qc = Aeffv − iωCtent∆p. (5.9d)

These are four equations for the six unknown amplitudes x, v, ∆U , I, ∆p and Qc, so two
additional equations is required to solve the system. These equations are derived from
the “fluidic loading” on the source, i.e. expressions for the flowrate and total pressure
difference of the system driven by the source. However, the following equation for the
generated over-pressure may be deduced from eq. (5.9)

∆p =
KFI

Aeff
−

( K
A2

eff

1

iω
+

M

A2
eff

iω

)
vAeff , (5.10)

which reveals that the actuator acts as a pressure source — as expected — with a maximum
pressure of ∆pmax = KFI/Aeff . However, not all of the actuator force is deposited as
pressure in the fluid, as some is used to accelerate the plunger and membrane. These
time-dependent losses are observed to enter the fluid equations as a hydraulic inductance
M/A2

eff and compliance A2
eff/K. The compliance is a consequence of the spring behavior of

the membrane but should not be confused with the aforementioned Ctent. Rather, A2
eff/K

should be thought of as another compliance in addition to Ctent, which arises because
some of the coil force is required to elongate the (assumed Hookean) membrane, meaning
that not all coil force is deposited in the fluidic system. Hence, the flowrate leaving the
chamber is less than what would have been the case, if no force was required to elongate
the membrane. This, in the view of the microfluidics, is the same as a storage of volume
inside the chamber, and it is therefore not surprising to find the membrane elasticity enter
into the equations as an additional compliance.

The EC diagram for the pressure source is shown in fig. 5.7 along with a symbol to
be used for the pressure source in EC diagrams in the following chapters. This symbol,
shown in panel (b), is to be understood to comprise eq. (5.9) as given in panel (a).

5.6 Pressure source performance

Rigorous testing of the developed pressure source has been completed to fully characterize
its performance, and determine the values of the constants K, Aeff and Ctent. It is shown
in fig. 5.8(a) that the pressure source is capable of delivering a pulsatile pressure, in this
case at 10 Hz.
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Figure 5.7: (a) EC diagram of the pressure source. The hydraulic inductance and compliance arising in
the fluidic domain as a consequence of the moving plunger and membrane are included. Zhyd is the “fluidic
loading” of the system, i.e. the impedance of the fluidic system driven by the source. (b) Symbol for the
pressure source to be used in EC diagrams in the rest of the thesis, shown with the three chamber outlets.

5.6.1 Frequency capability

Fig. 5.8(b) shows the over-pressure amplitude in the source chamber as a function of
frequency, and gives an impression of the frequency capabilities of the pressure source.
Filled with Milli-Q water, two of the chamber exits have been blocked and a pressure
sensor (15 psi) is connected to the third via a teflon tube (ℓ = 4.8 cm, a = 0.125 mm,
h = 0.670 mm). The figure shows the source delivers pulsatile pressures up to 800 Hz,
with an attenuated resonance at f ≈ 350 Hz.

5.6.2 Effective area Aeff

The pressure delivered by the source at different levels of coil electrical current has been
measured using the same setup as above, but exposed to DC current. Upon specifying an
upper current limit Ilim on the DC power generator, voltage was supplied to the actuator.
The pressure was observed to build from atmospheric pressure to a constant value exceed-
ing atmospheric pressure, pend, see fig. 5.9(a), while the current rose to the specified limit.
The experiment was conducted at several current limits, taking several measurement at
each limit. The mean of pend over all measurements made at the same Ilim depends linearly
on said current as shown in fig. 5.9(b). It was shown in eq. (5.10) that the found cor-
rections to the actuator force acts as transients (a hydraulic inductance and compliance,
respectively), so at time t = ∞ these effects will disappear and the generated over-pressure
will satisfy ∆p(t = ∞) = pend = KFIlim/Aeff . Since the water cannot escape the system,
all flowrates will be zero at t = ∞, so the pressure will be the same in the whole system.

Assuming the manufacturer-specified value of KF = 1.1 N A−1 to be true, the effective
area may be derived from the slope s of the curve in fig. 5.9(b), which satisfies s = KF/Aeff

(eq. (5.1)) with s = 1.45 × 104 N A−1 m−2. The effective area hence found to

Aeff =
KF

s
= 76.10 mm2, (5.11)

which corresponds to a radius of aeff = 4.92 mm. The chamber cavity radius is 4.50 mm
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Figure 5.8: (a) Example of pressure source performance at f = 10 Hz harmonically oscillating current,
measured 4.8 cm from the chamber with the remaining two chamber exits closed. The pressure (solid
curve) and current (dashed) oscillate slightly out of phase, but the generated pressure is clearly pulsatile.
(b) Frequency dependence of pressure amplitude for pressure source operated at I = 1.7 A. Resonance is
found at f ≈ 350 Hz with a low Q-value suggesting much attenuation in the system. The pressure source
is observed to deliver pressures in the kilopascal range for frequencies up to 0.8 kHz.
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Figure 5.9: Measured pressure vs. DC coil current. (a) With a specified current limit Ilim on the DC
power supply, the pressure source was switched on for a period of about 5 s. Pressure (solid) was observed
to quickly built to a constant value pend as current (dashed) built to the specified limit. The experiment
was repeated at different current limits, conducting it several times at each current limit. (b) A linear
dependence of the mean of the reached pressure pend for all experiments at the same current limit on Ilim

is observed. The slope of the linear curve fit (dashed) is s = 1.45 × 104 N A−1 m−2.
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and the radius to the middle of the O-ring is 5.30 mm, so the effective radius is roughly
the mean of the chamber cavity and center O-ring radii. This latter radius is where the
membrane meets the actuator guide, so the effective area of eq. (5.11) is probable. The
small deviations are likely inflicted since some of the applied pressure is absorbed in the
sealing O-ring and some in the membrane, thus lowering the amount of pressure delivered
to the fluid in the chamber.

5.6.3 Membrane spring stiffness K
The membrane is assumed to work as a linear spring on the plunger, which is the crudest
approximation that still captures the essentials of the phenomenon. The associated spring
stiffness K of the membrane is not easily found from theoretical considerations, as the
plunger is attached at the middle of the membrane and the membrane shape changes
during operation. It may, however, be determined from an easy experiment. Using a DC
current with two of the three pressure source chamber exits blocked, the pressure source
is used to displace a Milli-Q water front in a long transparent tube of radius a = 0.30 mm
connected to the third chamber exit. The results are given in fig. 5.10.

The water front stops when equilibrium is reached, which according to eq. (5.4) happens
when

Kx = KFI. (5.12)

The plunger displacement x is deduced from the displacement of the water front ∆ℓ
since all volume changes in the pressure source chamber must exit through the tube, so
Aeffx = πa2∆ℓ. The linear curve fit to the experimental data of fig. 5.10 thus obeys
∆ℓ = sI where s = 2.70 × 10−2 m A−1, so the membrane stiffness is found from

K =
AeffKF

πa2s
. (5.13)

The value of the constant is K = 1.10 × 104 N m−1, which is much higher than expected.
A piece of silicone rubber of height 0.2 mm and length 16.0 mm with E = 2.05 × 106 Pa
deforming the maximum stroke length of 2.03 mm has a spring constant of

K ≈ 2.05 × 106 Pa × 0.2 × 10−3 m × 16.0 × 10−3 m

2.03 × 10−3 m
≈ 6.6 × 103 N m−1, (5.14)

and since the membrane is not elongated in the axial direction, but at an angle, the spring
constant is expected to be below the this. However, the two separate measurement series
conducted on two separate dates strongly indicate otherwise.

5.6.4 Membrane compliance Ctent

The compliance of the pressure source membrane is difficult to characterize from theoreti-
cal considerations alone since, as shown above, there is a strong interdependence between
fluid pressure, plunger displacement, and electrical current. Ctent may, however, be deter-
mined experimentally be use of the analogies to an electric circuit.
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Figure 5.10: Displacement of water front as a function of DC current. The simple circuit model assumes
the membrane acts as a linear spring, although this is probably not the case. However, a linear approx-
imation to the data is used (dashed) which is a fair approximation. Two data sets are shown, taken at
different dates (dots and triangles), which agree on the behavior. The slope of the fit is s = 2.70× 10−2 m
A−1.

Mounting a pressure sensor to one of the chamber exits and a syringe filled with Milli-
Q water to another chamber exit while blocking the remaining exit, an over-pressure is
generated in the chamber by the syringe. This will decay exponentially to zero when the
syringe piston is released, since the resistance thoroughly dominates in this setup, so the
time constant of the decay is given by τ = RhydCtent by direct analogy to an electric
RC-circuit. A thick-walled PEEK tube segment (ℓ = 9.38 cm, a = 0.063 mm) of negligible
compliance connected the syringe and chamber. An example of a pressure reading and
the derived values for Ctent are given in fig. 5.11.

The compliance is found to decrease as the applied pressure difference increases, since
it becomes increasingly more difficult to further expand the membrane. A second order
polynomial fit to the data is

Ctent (∆p) ≈ s1∆p
2 + s2∆p+ s3, (5.15)

with s1 = 1.6801 × 10−23 m3 Pa−3, s2 = −3.1971 × 10−18 m3 Pa−2 and s3 = 2.9927 ×
10−13 m3 Pa−1. However, given the small variation in Ctent and the level of approximation
otherwise used, a mean value of Ctent ≈ 2.0 × 10−13 m3 Pa−1 is used in the following
chapters.

5.7 Summary

A pressure source has been constructed based on a linear voice coil actuator. The pressure
source has been shown to work in both AC and DC, generating pulsatile pressure in the AC
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Figure 5.11: Experimental results for Ctent determined from the decay time of pressure. (a) A pressure
reading shows the pressure decays exponentially, in this case with time constant τ ≈ 2.3 s. (b) Computed
values for Ctent for different pressure levels. The compliance decreases as pressure increases since it becomes
increasingly more difficult to further expand the membrane. A second order curve fit (dashed) indicates
the dependence with fitting parameters given in text.

case into the low kilohertz range as expected. A circuit model has been presented for the
coupled electric, mechanic and microfluidic physics governing the pressure source. This
model shows that not all actuator force is deposited as pressure in the fluid: some is used
to accelerate the pressure source plunger and some is used to counteract the membrane
elasticity. The compliance Ctent and spring constant K of the membrane are determined
experimentally along with the effective area of the plunger, Aeff .
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Chapter 6

Pulsatile flow detected by bubble

motion

The motion of an air bubble in a water-filled tube exposed to a pulsatile pressure was
studied to understand and quantify the agreement between experiment and systems-level
modeling of a pulsatile flow, as well as to build confidence in the performance of the
pressure source. The bubble motion was recorded using a high-speed camera.

Pulsatile pressure source Syringe

Pressure sensor

Ruler

High-speed camera

Air bubble

Figure 6.1: Schematic of the experimental setup. The pressure source is represented by the symbol
introduced in chapter 5.

6.1 Experimental setup and method

6.1.1 Setup

A pressure sensor was connected to one of the three chamber outlets through a teflon tube
(ℓsens = 4.1 cm, asens = 0.125 mm, hsens = 0.669 mm) and a water-filled 10 mL syringe
(filled to 8.1 mL) to another of the outlets via a teflon tube of dimensions ℓsyr = 17.5 cm,
asyr = 0.125 mm and hsyr = 0.669 mm. A long transparent tube (ℓ = 42.9 cm, a =
0.254 mm, h = 0.540 mm) was connected to the last chamber outlet, allowing the tube to
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Figure 6.2: Example of raw bubble image from the camera showing part of the tube exiting the pressure
source chamber; the right end of the tube is connected to the pressure source while the left end is left in
atmospheric conditions. The bubble is found roughly in the middle of the tube. A mm-scale ruler (inverted
and mirrored) is positioned above the tube.

exit into atmospheric conditions. The bubble (relaxed axial length ℓbub = 1.35 cm) was
placed in this tube, roughly halfway between the chamber and the tube outlet. A metric
ruler was placed next to the tube and just above the bubble for scale. The pressure source
is to the right in all pictures in the following and a schematic illustration of the setup is
shown in fig. 6.1.

The bubble motion was detected using a high-speed camera fitted with a 1:2.8D lens,
with dedicated software used for storage and movie generation. Individual gray scale
images were stored in tiff format and movies in avi format, for a time interval comprising
several oscillation periods. Pictures were framed at 1 kHz sampling rate for pressure
oscillations up to 100 Hz. An example of an image is given in fig. 6.2. The photographic
setup was designed by Ulrik Ullum of Novo Nordisk A/S.

The pressure source was operated with the equipment detailed in chapter 5, generating
only sinusoidal pressures.

6.1.2 Instrumentation

Tubing: Upchurch Scientific (Upchurch Scientific Inc., Oak Harbor, Washington, USA)
teflon tubing of various lengths and inner diameters but all of 1/16” (1.588 mm) outer
diameter.

Camera: Photron (Photron USA Inc., San Diego, California, USA) Fastcam APX RS
high-speed camera with dedicated Photron Fastcam software used for storage and movie
generation.

Lens: Nikon (Nikon Corp., Imaging Company, Tokyo, Japan) AF Micro Nikkor 1:2.8D
lens.
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6.1.3 Method

The bubble position was adjusted using the syringe. Once in place and with a specified
pressure frequency and framing rate, the AC generator and camera were activated almost
simultaneously. Images were taken for 6 s, after which the supply voltage to the pressure
source was turned off. The experiment was conducted at two different pressure amplitudes
at the frequencies 1 Hz, 10 Hz, 15 Hz, 20 Hz, 30 Hz, 50 Hz and 100 Hz.

As the pressure source and camera were not activated at the exact same time, the
pressure data and images were not directly correlated. However, the pressure amplitude
at the sensor may be obtained from the pressure measurements, and the motion of the
bubble interfaces may be related to the flowrates up- and downstream of the bubble,
which in turn depend on said pressure amplitude. Hence, systems-level modeling and
experimental data can be compared to test the applicability of the model.

6.2 Image processing routine

An image processing routine has been developed in Matlab to deduce the motion of the
air-water interfaces. Upon loading the raw tiff image and converting it to black/white
(represented as 0 and 1, respectively), the routine searches for the first white pixel in
a specified region. This first pixel of the bubble is approximately the position of the
boundary and has the numerical value 1, see fig. 6.3, so the routine searches for the first
pixel with value above 0.5. The position of this pixel is stored and the routine continues
to the next image in the set. The search region is rectangular and specified by selecting
the coordinates of the diagonal corners of the region in the black/white image.

This analysis is done for both left and right bubble interface, and finally, the positions
of both interfaces are plotted versus time to yield a figure like those in fig. 6.5. A scale
is found as the horizontal distance between two millimeter marks on the ruler in the first
image of the set. The steps of the image processing routine are illustrated in fig. 6.3,
where the found positions of the interface are shown for the first image of the data from
the experiment with f = 20 Hz.

6.2.1 Pixelation and resolution

When using a digital camera to record the bubble position as a function of time, the actual
smooth bubble motion is recorded as a piece-wise constant motion with the step-size given
by the resolution of the setup used. In general, the resolution along an coordinate direction
xi is given by

∆xi =
N

ℓ
, (6.1)

where N is the total number of pixels in the direction, and ℓ is the physical distance in
the same direction, which is recorded in the image. For the present case, the horizontal
resolution in the images is ∆xhor = 4.00 × 10−2 mm pixel−1 since ℓ = 40.5 mm and
N = 1024 pixel.
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BubbleTube

Ruler(a)

(b)

(c)

Figure 6.3: Steps of the image processing routine. (a) The grayscale tiff image is loaded into Matlab

and (b) converted to black/white. (c) The result of the routine: the left and right air-liquid interfaces
are marked by green and red crosses. The boxes show the regions in which the routine searches for the
interfaces, in the same color coding as the crosses.
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Figure 6.4: Selected snapshots of bubble motion during one oscillation period at f = 1Hz in steps of
T /7. The bubble is displaced almost the entire length of tube in the field of view of the camera, during
the period.

A digital image is said to be pixelated when the pixels become observable, [54]. For
the present case, this would be the case when the displacements of the bubble interfaces
become of the same order as the resolution.

6.3 Motion of air-water interfaces

A time-series of one period for the experiment at 1 Hz frequency is given in fig. 6.4. The
bubble moves noticeably during the oscillation, but the bubble volume does not change
substantially during one such period.

Fig. 6.5 shows the motion of the bubble boundaries for the frequencies 1 HZ, 30 Hz,
50 Hz and 100 Hz, as detected from the image processing routine. The bubble oscillates
about an equilibrium position so the graphs show both the absolute motion as well as
the relative motion of the boundaries about said position. The absolute motion is given
in terms of the distance xabs, which is the distance from the left image boundary, i.e.
the left-most column of pixels in the images, to either of the two bubble interfaces. The
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relative, or oscillatory motion, defined from the distance xabs as

xrel(t) = xabs(t) − xabs(t), (6.2)

where the mean is taken over the number of periods shown in the figures.

6.3.1 Observed motion

At f = 1 Hz the leading and trailing interface move in phase and are displaced the
same distance throughout the oscillation period, which is evident from fig. 6.5(a)-(b).
The motion is almost sinusoidal, although a noticeable — and repeatable — deviation is
observed at the regions of maximum positive displacement (i.e. at t ≈ 1 s and t ≈ 2 s in
fig. 6.5(a)). Interestingly, the interfaces have a slightly larger displacement amplitude when
moving backwards (i.e. when the pulsatile pressure component is negative); it is during the
subsequent forward motion a kink is observed in the otherwise sinusoidal displacements.

The motion of both interfaces at 30 Hz actuation is still sinusoidal, and a phase-shift
is observed between the two as well as a large amplitude difference, not only between
the case of 1 Hz actuation and this present 30 Hz actuation, but also between the two
interface displacements at 30 Hz. Of special note is that the trailing interface has the
larger displacement amplitude (almost twice that of the leading interface displacement),
indicating a resonance. A small drift in the bubble position is evident in panel (d), although
only a total displacement of about 0.5 mm is observed over the 10 periods shown in the
figure.

The occurrence of a resonance close to 30 Hz is further indicated by the dramatically
diminishing trailing interface displacement at f = 50 Hz, along with a phase-shift of almost
π/2, while the leading interface displacement is roughly the same. At 100 Hz very little
motion is detected by the leading interface and none by the trailing, as is the case at
frequencies above resonance.

Pixelation is observed in the relative motion at 50 Hz and 100 Hz, in the latter case
in both time and space. The resolution was found to 0.04 mm pixel−1 which is clearly
observable in fig. 6.5(h). It cannot be ruled out that the trailing interface did oscillate,
only that the motion must have been below 0.04 mm. The kinks on the trailing interface
motion curve are a result of this, and not of motion exceeding the resolution, as is the
flat apices on the leading interface motion curve. Since the images were framed at 1 kHz,
there are only 10 images per period of the bubble motion at f = 100 Hz, which is obvious
in fig. 6.5(h), so temporal pixelation is also found in this case.

6.3.2 Physical interpretation of the observed motion

To interpret the observed resonance frequency at f0 = 30 Hz, the physical system of the
bubble in the long, water-filled tube is analyzed as an electric RCL-circuit, just like the
abruptly started Poiseuille flow of chapter 4, and therefore has the three regular resonance
frequencies. Since f0 ≈ 30 Hz, the critical Womersley number is αc = 1.45 and inertia
thus dominates, and consequently, the observed resonance is believed to be of the LC-type.
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(d) f = 30 Hz, αc = 1.45
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(g) f = 100 Hz, αc = 2.64
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Figure 6.5: Motion of bubble interfaces as detected by the image processing routine for selected fre-
quencies. Left column (panels (a), (c), (e) and (g)) gives the distance of the bubble interfaces from the
left image boundary, while the right column (panels (b), (d), (f) and (h)) shows the same data only with
the mean of the distance for each interface subtracted, and plotted versus normalized time. The effect of
pixelation is observed in the trailing bubble interface (black line) in (h).
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Using the simple expression for Lhyd of eq. (2.21) f0 is calculated to be

f0 =
1

2π
√
LhydCbub

= 30.86 Hz, (6.3)

which is in good agreement with the experimental observation of f0 ≈ 30 Hz. The RC-
resonance frequency of the system is

f0 =
1

2πRhydCbub
= 48.08 Hz, (6.4)

which will never be observed, since the critical Womersley number for the system at
f = 48.08 Hz is αc = 1.83, where the system is dominated by inertia and the resistance
can be neglected. The LR-resonance is the inverse of the characteristic time which enters
into the definition of αc. At αc = 1 this relaxation time and ω are identical, so only for
αc < 1 does the system have time for the LR-resonance to occur.

6.4 Equivalent circuit model

The motion of gas bubbles in liquids has been studied extensively in the literature. Most
work fall in one of two categories: bubble motion as caused by liquid flow driven by
a constant pressure gradient, [55, 56, 57, 58, 59], or cavitation of small bubbles when
exposing a system to ultrasound pressure fluctuations, [60]. The current work falls under
neither category, and will be modeled using EC theory.

The system consists of four parts: the pressure source, the syringe and connecting
tubing, the pressure sensor and connecting tubing, and the tubing with the bubble. The
pressure sensor is connected to the chamber through a teflon tube, as described in sec. 6.1.1.
In addition to the regular Womersley-type impedance describing resistance and inertia in
the tube, a compliance element Cwall must also be included in the model of the tubing
due to the elastic behavior of the teflon wall. Moreover, the pressure sensor is also known
to be compliant with the parameter Csens, and the inertia of the water contained in the
sensor is also included.

The elastic walls have been modeled as described in sec. 3.4.1 as two rigid tube segments
with a compliant point placed between them, while the sensor has been modeled as a
hydraulic inductance in series with the sensor compliance. The inductance is included
since the flow must be accelerated to generated a detectable pressure difference at the
sensor. The symbol ZWom is used instead of the more correct ZWom/2 for convenience.

The syringe is connected to the pressure source chamber using the same teflon tubing
as for the pressure sensor, which is modeled in accordance with the discussion above. In
theory, the connecting tubing and the syringe should each be modeled using individual
Womersley-type impedances and compliances, however, the syringe itself has a much larger
radius than the tubing, so the syringe inertia and resistance may be neglected to a good
approximation, but its compliance cannot. The wall compliance of eq. (3.13) depends on
a3, so while resistance and inertia can readily be neglected, syringe compliance cannot.
Although care was taken in keeping the system free of air bubbles, a small bubble was
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Table 6.1: Numerical values for the circuit elements in simple EC model at f = 1Hz computed from the
parameters previously mentioned. The compliance of the pressure sensor has been estimated in sec. 5.4.3
and the inertia of the water in the sensor is estimated by setting the radius to 2.0 mm and the length to
8.0 mm. SI units have been used ([ZWom] = Pa s m−3, [Lhyd] = Pa s2 m−3, [Chyd] = m3 Pa−1).

Element Value Element Value

Zsens
Wom 3.40 × 1011 + i 5.54 × 109 Csens

wall 1.90 × 10−17

Zsyr
Wom 9.14 × 1011 + i 1.49 × 1010 Csyr

wall 5.12 × 10−17

Zup
Wom 6.59 × 1011 + i 4.43 × 109 Cup

wall 2.84 × 10−16

Zdown
Wom 6.13 × 1011 + i 4.13 × 109 Cdown

wall 2.65 × 10−16

Lbub 7.99 × 104 Cbub 2.70 × 10−14

Lsens 1.25 × 106 Csens 1.67 × 10−15

Cair 6.46 × 10−16

observed in the syringe as the experiments were carried out. This bubble is included in
the model.

The compliant bubble is trapped in the tubing, which itself is compliant. Upstream
of the bubble, the flowrate entering the tube from the pressure source chamber can either
flow downstream to the bubble or expand the tube wall. The former then branches off
into a component compressing the air bubble and a component continuing downstream.
This last flowrate finally branches into two: one continuing out of the tube and a second
expanding the tube downstream of the trapped air bubble. In addition to compliance,
bubble inertia Lbub is included in the model since at high frequencies, this may not be
neglected. The full model may now be constructed from the submodels above; the diagram
is given in fig. 6.6, while table 6.1 lists the values of the circuit elements at f = 1Hz.

In the experiments, the pressure psens(t) and the electric coil current is measured.
Using systems-level analysis, this pressure may be related to the pressure in the pressure
source chamber, pc(t), and subsequently to the pressure in the imaged air bubble, pbub(t).
Assuming all pressures can be represented as p(t) = ∆p eiωt + p0, the pressure amplitudes
at the chamber and sensor are related by

∆pc =
[
(iωCsens

wallZ
sens
Wom + 1)

(
iωCsensZ

sens
Wom + 1 − ω2CsensLsens

)

+iωCsensZ
sens
Wom

]
∆psens. (6.5)

Similarly, a relation may be established between the over-pressures at the chamber and
the bubble:

∆pc =
[
iωCup

wallZ
up
Wom + 2

]
∆pup − ∆pbub, (6.6)

where

∆pup =

[

iωCbubZ
up
Wom

(
1 − ω2LbubCbub

ω2LbubCbub − 1

)

+
Zup

Wom

Zdown
Wom

− Zup
Wom

iωCdown
wall Z

down2
Wom + 2Zdown

Wom

+ 1

]

∆pbub. (6.7)
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Figure 6.6: The full EC model of the bubble experiments. The elastic walls and the pressure source have
been modeled as discussed previously, and the compliances of the syringe and the air bubble contained in
it may be added due to the linearity of the governing equations. Inertia of the water in the pressure sensor
and of the bubble has also been included.
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The amplitudes of the flowrates Qup(t) and Qdown(t) may be found from

Qup =
∆pup − ∆pbub

Zup
Wom

, (6.8a)

Qdown =
∆pbub − ∆pdown

Zdown
Wom

, (6.8b)

once the pressures ∆pc, ∆pbub have been determined along with the pressure

∆pdown =
1

iωCdown
wall Z

down
Wom + 2

∆pbub. (6.9)

The displacement of the bubble interfaces may be derived from these flowrates since V =∫
Q(t) dt and V = πa2xrel, where xrel is the relative motion of the bubble interface as

discussed in sec. 6.3

xLI
rel =

Qup

iωπa2
up

, (6.10a)

xTI
rel =

Qdown

iωπa2
down

. (6.10b)

The superscript ‘LI’ is used for the leading interface and similarly ‘TI’ for the trailing
interface.

Pressure sensing and image capturing was done independently of each other during
experimentation, so the predicted phase-lags between pressure and bubble interface dis-
placements of the model cannot be tested versus the experiments. However, the phase-
shifts between the bubble interfaces can, and it is expected that agreement in one such
part of the model is associated with agreement in all parts of the model.

6.4.1 Model shortcomings

All circuit elements depend linearly on the axial length ℓ of the modeled quantity, e.g.
Rhyd = 8ηℓ/

(
πa4

)
. These lengths are assumed constant in the model, but should be

allowed to change due to the motion of the bubble. For the experiments at f = 1 Hz
the total bubble movement is about 2 cm while the axial lengths of the tubing up- and
downstream of the bubble are roughly 20 cm, so significant deviation (about 10 %) of
the numerical value of the circuit elements is expected. Thus, using constant lengths
will introduce noticeable deviations between experiment and model result, although the
order of magnitude will be the same. For the experiments at the higher frequencies, the
total bubble motion is below 2 mm, so there will be only negligible changes in the circuit
elements during an oscillation period. Hence, using constant lengths in the circuit elements
is justifiable except for the case of f = 1 Hz. The constant axial length is also a concern
for the air bubble. As the experiments indicate, the bubble length is only constant for low
frequencies, but has been modeled as such for all frequencies.



66 Pulsatile flow detected by bubble motion

6.4.2 Extending the model

The model may be extended by using the continuum limit for the EC models of the elastic
tubes, as discussed in chapter 3. The overall model does not change substantially but
the mathematics become a little more elaborate. Most notably is the departure from the
regular linear interdependence of flowrates and pressure amplitudes. Using the model
outlined above and the relations of sec. 3.4.3, one may arrive at the equations below. The
usual subscripts (e.g. ‘sens’) are used on the wave numbers k for distinction, the circuit
elements per unit length are indicated by a hat as usual, and the flowrates and pressures
are evaluated at the same positions as in the model above, e.g. Qdown below is evaluated
at the bubble and is hence the same as the flowrate Qdown of eq. (6.8b):

∆pc =

[

cos (ksensℓsens)
(
1 − ω2CsensLsens

)
+
Ẑsens

Wom sin (ksensℓsens)

ksens
iωCsens

]

∆psens,

(6.11a)

∆pc =

[

cos (kupℓup) − Ẑup
Wom sin (kupℓup)

kup

iωCbub

ω2LbubCbub − 1

+
Ẑup

Wom

Ẑdown
Wom

kdown

kup
sin (kupℓup) cot (kdownℓdown)

]

∆pbub, (6.11b)

Qup =
kup

Ẑup
Wom

[
∆pbub cot (kupℓup) −

∆pc

sin (kupℓup)

]
, (6.11c)

Qdown = − kdown

Ẑdown
Wom

cot (kdownℓdown)∆pbub. (6.11d)

As in the simple model above, all axial lengths entering into the expression for circuit
elements are assumed constant.

6.5 Comparison

6.5.1 First attempt

Using the measured pressure at the sensor as the input, the model is used to predict the
motion of the bubble interfaces. The model results for the same four frequencies as fig. 6.5
are given in fig. 6.7.

The model predicts the correct dynamics. At 1 Hz the displacement amplitudes are
identical with (almost) no phase-lag, while at 30 Hz the displacement of the trailing in-
terface is larger than that of the leading interface and a phase-lag of roughly π/4. The
phase-lag is close to the experimental results, but the amplitude difference is roughly a
factor of 3/2 in the model while the experiments show a factor of 2. At 50 Hz the model
predictions of almost π/2 phase-lag and larger leading interface displacement of a factor of
approximately 5/2 is in good agreement with the experiments, as is the prediction of much
larger leading interface displacement at 100 Hz. However, the model prediction of numeri-
cal values of said displacements become increasingly worse as the frequency is increased: at
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Figure 6.7: Modeled bubble displacements using Csens estimated in sec. 5.4.3 (Csens = 1.67 × 10−15 m3

Pa−1). Comparing to the experimental data of fig. 6.5 panels (b), (d), (f) and (g), the model is observed
to capture the dynamics but its numerical values become increasingly worse as the frequency is increased.

100 Hz the experiments show a leading interface displacement amplitude of nearly 0.1 mm
while the model predicts the same displacement amplitude to 3.65 × 10−3 mm.

The slight undershooting of the displacement amplitudes at f = 1 Hz by the model are
a result of the constant axial lengths used in the circuit elements, as discussed in sec. 6.4.1
above. Whereas the model predicts displacements of about ±6.5 mm the experimental
results show these to be ±8.5 mm. The discrepancy of the displacement amplitude ratio
at 30 Hz cannot, however, be attributed to the constancy of the axial lengths, but is an
artifact of the model.

The good qualitative agreement of the model and the experimental data suggest the
correct model has been developed, but one or more of the circuit elements has an incorrect
numerical value. Since the model predictions worsen with increasing frequency the culprit
is a transient circuit element.

6.5.2 Correcting the model

The circuit element whose numerical value is most likely to be incorrect is the compliance
of the sensor Csens, since an air bubble easily could have been trapped inside the sensor
during experimentation. If this was the case, Csens would exceed the estimate in sec. 5.4.3,
which in turn would mean that much of the flowrate entering the sensor would be used to
compress the bubble. This would not be of consequence at low frequencies since the system
at all times would be in quasi-equilibrium, but at higher frequencies at or above resonance,
much of the flowrate would be absorbed in the bubble and the flowrates in the rest of the
system would be correspondingly lower. This notion is backed by the good agreement of
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Figure 6.8: Sensor pressure computed from EC model using electrical current while letting Csens be a
fitting parameter. The best agreement (shown) is found for Csens = 4.10 × 10−14 m3 Pa−1, corresponding
to the presence of a small air bubble of radius a = 0.98 mm.

the experiment and model below resonance at 1 Hz (αc = 0.26) where the system is in
quasi-equilibrium and the observed increase in model deviation with increasing frequency.
The correct numerical value of Csens is determined from the EC model using the measured
electrical coil current as input. The sensor pressure is computed and compared to the
measured ditto, and Csens is used as a fitting parameter. The best agreement for all four
frequencies is found when Csens = 4.10 × 10−14 m3 Pa−1 (instead of Csens = 1.67 × 10−15

m3 Pa−1), as shown in fig. 6.8, while fig. 6.9 shows that the bubble interface displacements
predicted by the EC model coincide with the experimental data for this choice of Csens.

Assuming the estimated value of Csens = 1.67 × 10−15 m3 Pa−1 to be correct, the
additional compliance of 3.94 × 10−14 m3 Pa−1 must be attributed to air. The volume of
this amount of air is 3.99×10−9 m3, which is roughly twenty times lower than the estimated
internal volume of the pressure sensor of 1.0 × 10−7 m3. This, coupled with the annoying
ability of air bubbles to get stuck in microfluidic systems and the inherent sensor priming
difficulties makes it very likely that an air bubble was trapped in the sensor during these
experiments. Assuming the bubble to be spherical, its radius would be 0.98 mm, which
could easily be have been stuck in the sensor.

The model and experiments now agree on both dynamics and numerical values through
the whole probed frequency range. The model still undershoots at f = 1 Hz, but this is
to be expected as already discussed. Overall, the model predicts the leading interface
displacement slightly better than the trailing interface, but becomes increasingly better
in this regard as the frequency is increased, which is of course associated with a general
trend of decreasing trailing interface displacement. The model predicts a non-zero trailing
interface displacement at f = 100 Hz, contrary to the experimental data. However,
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Figure 6.9: Modeled bubble displacements (simple model: starred thin lines, extended model: thin lines
with triangles) with an added air bubble (Csens = 4.10 × 10−14 m3 Pa−1) and experimental results (thick
lines). Very good agreement is found between the models and the experiments through the entire frequency
range, but the simple model predicts displacement amplitudes and phase-lags better. Both models capture
the leading interface displacement slightly better than the displacement of the trailing interface.
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the predicted displacement is below the resolution along the horizontal image axis of
4.00 × 10−2 mm pixel−1, so the results of the model are trustworthy. The results of the
extended model based on the continuum limit of the EC equations are also given in fig. 6.9.
This model still captures the dynamics, but its results are inferior to those of the simple
model, which better captures both phase-lags and displacement amplitudes. The wave
speed is related to the wave number through c = ω/Re [k], and a pressure wave traverses
the tube from the pressure source chamber to the atmosphere in t = ℓ/c. This time ranges
from about 1.1 ms at 1 Hz to about 5.0 × 10−2 ms at 100 Hz, so the pressure waves can be
neglected and the pressure is in quasi-equilibrium at all times. However, the continuum
model should still reproduce the results of the simple model. The biggest deviation by
far is found for the case at f = 30 Hz close to the resonance frequency, and it is thought
that it is related to the resonance, but the reasons for this disagreement have not been
investigated further due to a lack of time.

In the experiments, a Young-Laplace pressure drop was present at the water-air inter-
face at the outlet of the tube downstream of the imaged bubble, which was not included
in the models. This pressure drop is estimated as

∆pYP ≈ 72.9 × 10−3 N m−1

2 × 0.254 × 10−3 m
≈ 1.44 × 102 Pa, (6.12)

while the pressure amplitude at the bubble is the case of f = 100 Hz is ∆pbub = 1.20×103

Pa, or approximately one order of magnitude greater. The Young-Laplace pressure has
thus been excluded for simplicity, and the model still capture the observed physics.

6.6 Summary

Using the developed pressure source, a trapped air bubble was exposed to pulsatile con-
ditions at the frequencies 1 Hz, 30 Hz, 50 Hz and 100 Hz. The motion was recorded via
a digital photography setup, and the bubble interface motion was obtained from a simple
image processing routine developed in Matlab. An EC model was developed to describe
the system which captured the dynamics but underpredicted the displacements of the bub-
ble interfaces increasingly poor as the frequency — and thus the system’s dependence on
inertial effects — was increased. Using the measured electrical coil current as input, it was
demonstrated that the experimentally observed behavior of the system was retrieved if a
small air bubble had been trapped in the sensor. Considering the persistence of air bubbles
trapped in microfluidic systems, the inherent priming difficulties of the sensor and the fact
that changing this one parameter yielded agreement in the entire probed frequency range,
the presence of such an air bubble is very likely. A more elaborate continuum model was
also presented for the system, which did not yield better results than the simple model.
The physics is thus well described by the simple low-order model, and there is no physical
reason to use the mathematically more cumbersome extended model.



Chapter 7

Characterization of component

dynamics

The presented EC models have so far proven effective in describing the behavior of the
dynamic systems modeled, capturing both phase-shifts and amplitudes of the pressure
and flowrate for the pulsatile case and correctly predicting the start-up of a fairly complex
transient system. In this chapter, the predictive capabilities of the models will be used
for the characterization of the dynamics of microfluidic components using only simple DC
characteristics of the component as input. The method is applied to a commercially avail-
able duckbill valve for illustration, but may be applied to any passive yet time-dependent
component.

7.1 Proposed method

The dynamic characteristics of some components may easily be deduced from theoretical
considerations, e.g. the behavior in an elastic tube as discussed in chapter 3, since well-
known solutions to the governing equations may be extended to accommodate the elastic
walls. In other cases, however, the dynamics are not easily predicted from theoretical
considerations, since complex interplay between solids and fluids inside the component is
difficult to quantify and often extremely shape-dependent.

Due to the similarity to electric circuits, time-dependent microfluidic components ex-
posed to pulsatile pressure will have inherent cutoff-frequencies1. Above this frequency the
component never reaches steady state and very little flowrate, and consequently pressure,
is transmitted downstream. As an example, consider a compliance exposed to a pulsatile
pressure which oscillates so fast that the compliance never inflates to the level required
by the pressure amplitude; in this case almost all incoming flowrate is absorbed in the
compliance leaving very little to continue downstream. In the simplest exploitation of the
electric circuit analogy, the compliance of a component can be deduced from the cutoff-
frequency as described in [6], or alternatively from the decay time of an over pressure as

1The cutoff-frequency is usually defined as the frequency at which the transmitted amplitude is 90 %
of the passband amplitude.
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(a) (b)

ℓh
∆uv

Figure 7.1: Duckbill valve with flow direction indicated by the arrows. Also shown are the dimensions
for the EC model. (a) The valve is closed in the negative flow direction by design. (b) In the positive flow
direction, the pressure difference across the valve opens it. Courtesy of Minivalve International, [61].

demonstrated for Ctent in chapter 5. However, the approach can be used to derive more
complex dynamic characteristics, as long as an adequate EC model of these exists. An
example of this was the use of the EC model to predict the presence of an air bubble in the
pressure sensor during experimentation in the previous chapter. Only one free parameter,
such as the compliance, is allowed if the method is to determine a unique value of the
parameter.

The proposed method simply consists of applying a pulsatile pressure while measuring
pressure up- and downstream of the component in question to locate the cutoff-frequency
since this is a manifestation of the dynamic response of the component. The parameter
value which fits the results of an EC model of the system to experimental data is then
deduced from this, while taking the remaining parameters for this model from theoretical
considerations or DC experiments. The approach applies to all passive components ex-
hibiting temporal dependence e.g. elastic tubes, valves, nozzles, etc., and will be applied
to a passive valve in the following for illustration.

7.2 An introduction to microvalves

A valve allows fluid to flow in one direction and impedes flow in the opposite direction.
Valves that stop backward flow are known as check valves or rectifying valves, and valves
for microfluidics are known as microvalves. A short introduction to microvalves is given
below while more thorough introductions may be found in [61, 62].

A valve opens when a pressure difference exists in its positive direction as shown in
fig. 7.1(b), and it is imperative that it closes when no or a negative pressure difference is
applied. Due to the small inertial forces of microfluidics, fluid cannot be counted on to
close the valve in backflow so the valves are closed by design when no pressure difference is
applied. Valve opening is realized in positive flow by elastic deformation, which depends
on the applied pressure difference, so a non-zero pressure difference ∆popen is required to
open the valve. Moreover, a characteristic opening volume of fluid Vopen must pass into
the valve before it opens, which may be thought of as a compliance in the EC framework,
henceforth denoted Cvalve

hyd .



7.2 An introduction to microvalves 73

Cvalve
hyd

pleft pright

Figure 7.2: EC model of generic elastomeric valve. A compliance is coupled in parallel to the diode, since
a characteristic volume of fluid must enter, before the valve opens. Flow enters from the left and leaves to
the right. pleft and pright will be used in this chapter to denote the pressure just up- and downstream of
the valve as shown here.

The valves used in this work are of the duckbill type (DU 027.001 made of silicone rub-
ber by Minivalve International, Oldenzaal, The Netherlands), named for the resemblance
of the closed valve to the bill of the duck, see fig. 7.1(a).

7.2.1 EC model

Valves are the microfluidic equivalent of a diode: a circuit element that only allows flow in
one direction. However, the elastomeric duckbill valve does not behave as an ideal diode
since a certain volume of liquid must be supplied before it opens, so the valve is modeled
as an ideal diode and a capacitor in parallel, see fig. 7.2. This model is due to industrial
supervisor Laurits Højgaard Olesen.

If opened, the valve is modeled as a rectangular slit2, which is justifiable since the
length to width ratio of the valve is small and inertial effects are negligible. The hydraulic
resistance of the valve is then given by, [1]

Rvalve =
12ηℓ

1 − 0.63∆uv
w

1

∆u3
vw

, (7.1)

where ∆uv and w are the opening height and width of the slit, respectively, with w ≫ ∆uv

and ℓ is the length of the valve in the flow direction, i.e. the length of the bill, see fig. 7.1.
The opening height of the valve depends on the flowrate passing through it, which in turn
depends on the pressure difference across the valve ∆p, so it is a good assumption that
∆uv = ∆uv(∆p). Said pressure difference must exceed ∆popen (otherwise the resistance
is infinite), so it is posited that

∆uv (∆p) = max {0, κ (∆p− ∆popen)} , (7.2)

which will ensure an infinite resistance when the pressure difference does not exceed
∆popen. The constant κ is an elastic parameter of unit m Pa−1 measuring the valve
opening per unit pressure difference, and is the valve parameter to be deduced from the
dynamic response. The value of κ may be estimated by considering the valve as consisting

2The shape of the valve orifice depends on the pressure difference across it, but is almost rectangular
when the slit height ∆uv is small.
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Figure 7.3: Experimental setup for pulsatile valve tests. (a) Close-up of the fluidic system seen from
above. (b) The full setup with electronics. Legend (1): Pressure source, (2): Valve holder, (3): Upstream
pressure sensor, (4): Downstream pressure sensor, (5): Syringe, (6): T-junction, (7): Outlet chamber and
(8): Electrical resistance.

of two elastic beams, one for each part of the bill. Although very crude, this is expected
to capture the basics of dynamics. The deflection of a simple linear beam of rectangular
cross section h×w, axial length ℓ and Young’s Modulus E exposed to a pressure difference
is given by Tvergaard in [63], and since two beams deflect in the case of the valve, κ is
estimated to

κ = 3

(
ℓ

h

)3 ℓ

E
. (7.3)

The valve dimensions are estimated to ℓ ≈ 4mm and h = 0.5 mm, where this latter
is the manufacturer specified thickness of the bill. Using these values one finds κ =
7.49 × 10−7 m Pa−1.

7.3 Experimental method and setup

7.3.1 Method

To experimentally detect its dynamic response, the valve is exposed to a pulsatile pressure
and flowrate, while measuring the pressure up- and downstream of it. The experiment
is conducted at different frequencies spanning two orders of magnitude. Appropriate
component characteristics are determined from simple DC experiments (detailed below),
which for a duckbill valve are compliance and the opening pressure. Data acquisition was
carried similarly to the pressure measurements of the previous chapter.

7.3.2 Setup for pulsatile experiments

The setup is much akin to that of the previous chapter, only now the pressure is measured
downstream of the valve in addition to the pressure reading at the chamber. A 15 psi
pressure sensor is connected to one of the pressure source chamber exits (its pressure
denoted psens1) through a teflon tube (ℓsens1 = 4.1 cm, asens1 = 0.125 mm, hsens1 = 0.669
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(a) (b)

Figure 7.4: Duckbill valve holder. (a) The assembled holder with tubing. (b) The individual holder parts
with a centimeter ruler. A valve is placed below the holder.

mm) and a syringe filled with Milli-Q water is connected to the chamber exits using a
PEEK tube (ℓsyr = 9.4 cm, asyr = 6.25 × 10−2 mm, hsyr = 0.731 mm); a small air bubble
of radius a ≈ 0.5 mm was observed in the syringe. The component of interest — in this
case a valve fastened in a holder to be detailed below — is connected to the last chamber
exit via a teflon tube (ℓup = 6.1 cm, aup = 0.125 mm, hup = 0.669 mm), downstream
of which the tube branches into two via a T-junction: one for measuring the pressure
psens2 downstream of the valve (teflon tube of ℓdown = 6.3 cm, adown = 0.125 mm and
hdown = 0.669 mm) and another exiting into atmospheric conditions via yet another piece
of teflon tubing of length ℓexit = 2.1 m, radius aexit = 0.254 mm and wall thickness
hexit = 0.540 mm. Pictures of the setup are given in fig. (7.3).

7.3.3 Valve holder

The valve was mounted in a holder fabricated of layered polymer sheets. Three layers of
polycarbonate of roughly 2 mm thickness are glued together, with the valve fixed between
the stack and an additional sheet. The stack and extra sheet were held together by four
screws and the valve was placed in a throughhole of radius 1.0 mm which is wide enough
that the valve could open fully yet narrow enough that it was not swept downstream. The
resistance, hydraulic inductance and compliance of the holder have been neglected since
polycarbonate is stiff (E ≈ 30 GPa according to [28]) and the throughhole radius exceeds
the tubing radius of roughly one order of magnitude. The holder is shown in fig. 7.4.

7.3.4 Steady state experiments leading to valve characteristics

Opening pressure

Using the pressure source to generate a DC pressure difference and the same setup as
described above, the pressure is measured from the source chamber exit and downstream
of the valve at the T-junction. The pressure in the source is ramped up to about 10 kPa
before ramping down to zero again, all in a time interval of roughly 30 s. With the pressure
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Figure 7.5: Typical measurement of opening pressure. (a) The ramping segment of the experiment with
the pressures measured at the sensors. (b) Close-up showing the first few seconds after the pressure ramp-
up has begun, with pressures now given at the valve. The first downstream pressure measurement is at
t = 4.5 s signifying the opening of the valve with ∆popen ≈ 250 Pa.

measured on both sides of the valve, the pressure at the valve is found from the EC model
using the estimated value of κ from eq. (7.3) and the opening pressure can be determined.
A typical measurement is given in fig. 7.5, which shows that the opening pressure is
∆popen ≈ 250 Pa, a value that agrees with the manufacturer specified ∆popen < 500 Pa.

Compliance

Cvalve
hyd is estimated by noting the volume of water stored in the valve at a given applied

pressure difference as indicated by the motion of an air bubble in the valve tubing, which is
the same method as already discussed for the estimates of the compliance of the pressure
sensors, see sec. 5.4.3. Since the valves open when the pressure difference surpasses ∆popen,
hydrostatic pressures were used in the estimates as they allow for better resolution than a
manually operated syringe, and care was taken in not exceeding the opening pressure. In
backflow, the valve will act as a compliant element even though no flow passes through,
and consequently, negative compliance, i.e. compliance when a under-pressure is applied,
is also estimated. The results are given in fig. 7.6.

Due to the blocking of the flow, a non-symmetric behavior of Cvalve
hyd about the origin

is expected, and the backflow compliance is found to noticeably exceed the compliance
in the positive flow direction, so more liquid is stored in the valve at a given negative
pressure difference, when it cannot open. Assuming a linear compliance is justified as long
as one considers only the positive or negative flow direction. The numerical value of this
compliance is then

Cvalve
hyd =

{
1.21 × 10−13 m3 Pa−1 for ∆p > 0
9.01 × 10−13 m3 Pa−1 for ∆p < 0.

(7.4)

Given the found value of ∆popen ≈ 250 Pa, it is surprising to find the pressure differences
of ∆p ≈ 1.2 kPa reached in the compliance experiments without detecting an opening
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Figure 7.6: ∆p − ∆V results for the duckbill valve; as usual, the compliance is the slope of the curve.
A non-symmetric compliance is found with backflow compliance exceeding Cvalve

hyd in the positive flow
direction.

of the valve. Although care was taken, the valve might have opened slightly during the
experiments, which in turn would require additional experimental determination of Cvalve

hyd

for 0 ≤ ∆p ≤ ∆popen. However, the manufacturer sets the the opening pressure for the
first use to ∆popen ≤ 5 kPa, so the results might reflect this effect. The experiment was
not redone, and the values of eq. (7.4) will be used in the following.

7.4 EC model

The pressure source was driven with pulsatile electric current, but the flow in the system
is not entirely pulsatile since the valve transmits positive pressures (as long as the pressure
drop across it exceeds its opening pressure), but blocks negative pressures. However, it
is assumed that the pressure source delivers pulsatile pressures to the sensor and syringe
connected to the chamber, while the rest of the system is exposed to transient phenomena
rather than pulsatile. Thus, this sensor and syringe connected to the pressure source
chamber are modeled just as in the bubble experiments of the previous chapter using
simple AC fluidic elements, while the rest of the system is modeled with the regular DC
elements. An inductor for the inertia of the water in the downstream sensor (sensor 2)
is included similarly to the sensor at the chamber. The tubing from the chamber to the
valve and from the valve and to the T-junction are both about 5 cm long and made of
thick-walled teflon, so their compliances are nominal, and it makes little physical difference
if the compliance of the entire wall is placed downstream of the resistance and inductance,
rather than in the middle as previously done. Since the former is mathematically more
convenient, this approach has been used for these two tube segments. A Womersley-type
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Table 7.1: Circuit elements for characterization of valve dynamic response in SI units ([Zhyd] = Pa s m−3,
[Rhyd] = Pa s m−3, [Lhyd] = Pa s2 m−3, [Chyd] = m3 Pa−1).

Element Value Element Value Element Value

Zsens1
Wom 2.14 × 1011 + i 3.49 × 109 Rsens2 3.66 × 1011 Csyr

wall 8.97 × 10−19

Lsens1 6.35 × 105 Lsens2
tube 7.12 × 108 Cup

wall 1.78 × 10−17

Zsyr
Wom 7.84 × 1012 + i 3.20 × 1010 Lsens2 6.35 × 105 Cdown

wall 1.84 × 10−17

Rup
Wom 6.38 × 1011 Rexit 6.44 × 1011 Cexit

wall 2.58 × 10−15

Lup 1.24 × 109 Lexit 5.17 × 1011 Cair 4.14 × 10−14

Rdown 6.58 × 1011 Csens1
wall 1.20 × 10−17 Csyr 2.51 × 10−13

Ldown 1.28 × 109 Csens2
wall 1.02 × 10−17

resistance of sec. 2.5.1 is used for the tube segment from the chamber to the valve, as the
flow here is assumed to be almost pulsatile and the valve compliance is given by eq. (7.4)
and thus changes value when the pressure difference changes sign. The EC model for the
whole system is presented in fig. 7.7. The continuum model has not been included in the
modeling of these experiments, as it has not proven superior to the simple EC models in
the cases previously studied.

The system has several inherent time scales due to the many circuit elements, whose
values are listed in table 7.1 for f = 1 Hz actuation. The resulting ODEs must be solved
numerically to capture the valve dynamics, so the presence of these different time scales
renders the problem stiff3. The model is solved using Matlab’s ode15s ODE solver,
which handles stiff problems, but to speed up the solution time, the compliances of the
tube from the chamber to the valve and from the T-junction to the downstream sensor
have been left out; the RC times for these tube segments are of O

(
10−6 s

)
while the valve

dynamics were studied for f ≤ 30 Hz, so these omissions are justified.

7.5 Comparison

The level of agreement between experimental data and model results are somewhat poor for
this characterization of component dynamics. As already shown in the previous chapter,
elimination of air bubbles in the pressure sensors is very difficult, which in turn means
that there are three fitting parameters, Csens1, Csens2 and κ, all to determined from one
experiment. At best, one is left with a non-unique solution, but arriving at this solution
requires much trial-and-error tuning of the parameters. Secondly, the order of magnitude
of the sensor compliances required to somewhat recreate the experimental data turned
out to be so large that these thoroughly dominate the system, with only nominal effects
of changes of κ, the one parameter describing the valve, whose value was hoped to be

3A stiff problem contains several time scales, and the numerical method employed to solve the problem
must resolve the finest of these scales. If the problem has a very fast inherent time scale — several orders
faster than the time scale of the studied dynamics — the solver must take many more time steps, which
is very time consuming but does not yield additional insight to the studied dynamics, [64].
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Figure 7.7: EC model of pulsatile setup for component dynamics characterization. The elastic walls
are modeled as usual, except for tubing connecting the chamber to the valve and from the valve to
the T-junction, where the compliance has been placed downstream of the inductance and resistance for
mathematical simplicity. Since the thick-walled teflon is only a little compliant, this does not introduce
much error. Lsens2 is the inertia of the liquid inside sensor 2, not to be confused with Lsens2

tube which is
the inertia of the water in the tubing, connecting sensor 2 and the T-junction. Due to the mathematical
properties of the governing equations, Lsens2 and Lsens2

tube are superposed and therefore represented by only
one symbol, as are Cair and Csyr. Legend (1): Pressure sensor 1 and tubing, (2): syringe and tubing,
(3): tube connecting pressure source and valve holder, (4): tube from holder to T-junction, (5): pressure
sensor 2 and tubing, (6): tube exiting to atmospheric conditions.
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deduced from the model. The observed valve dynamics is found to be in accordance with
the experimental data, but the pressure amplitudes are poorly captured.

7.5.1 Valve dynamics

Using the pressure recorded by the sensor connected to the chamber as input, the pressure
at the downstream sensor is computed from the model with two examples given in fig. 7.8.
The figure displays the best coincidence of the model and the experimental data, which
is found at Csens1 = 1.67 × 10−15 m3 Pa−1, Csens2 = 8.0 × 10−13 m3 Pa−1 and κ =
7.49 × 10−7 m Pa−1, corresponding to the presence of a air bubble of V = 8.05 × 10−8 m3

in sensor 2 which is roughly the entire internal volume of this sensor. As the figure clearly
shows, the model poorly predicts the pressure level.

The experimental data and model both display the same dynamics: the valve opens as
the pressure difference across it exceeds the opening pressure and pressure is transmitted
from the valve to the downstream sensor. The valve closes again once ∆p < ∆popen letting
no flow through, but since pleft continues to decay because of the pulsatility, a negative
pressure difference arises across the valve. A volume is stored in the valve due to this
pressure difference as a consequence of the compliant nature of the valve, causing a small
negative flowrate downstream of the valve, even though it is closed. Since the pressure
outside the system is atmospheric, this negative flowrate requires a pressure drop to occur
downstream of the valve. The amplitude of this negative pressure is smaller than the
positive pressure amplitude which arises, when the valve opens. The negative pressure is
observable in figs. 7.8(a) and (c).

A small knee is observed in both measurement and model results as the valve pressure
difference ∆p = pleft−pright reaches zero when increasing from maximum negative pressure,
most obvious in fig. 7.8(b). At this point when pleft = pright, the compliance of the valve
decreases with almost one order of magnitude as stipulated by eq. (7.4) which means that
the valve suddenly can store a much smaller volume of fluid at the same pressure difference.
The incoming flowrate from the chamber is unaffected by this sudden change in valve
compliance, so the pressure drop across the valve is increased according to ∆p = ∆V/Cvalve

hyd

to accommodate the volume of fluid no longer stored in the valve compliance. Since pleft

is given by the chamber pressure4, this increase of ∆p forces a rapid decrease of pright,
which continues until ∆p > ∆popen where the valve opens and pressure again begins to
increase downstream of it. psens2 obviously depends on pright, so the presence of such a
knee in pright will also show up in psens2. The reverse effect is observed when the valve
closes, although to a much lesser extend. The model results for 1 Hz actuation (panels (c)
and (d)) display the same sharp increase for pleft and pright although after the apex of the
pulsatility, but no knee is observed in psens2.

Although the predictions of the model are fair in terms of dynamics, the deviations in
numerical value are roughly a factor of 1 to 2 throughout the probed frequency range of
0.1-30 Hz.

4pleft, of course, also depends on the system downstream of the valve, but it is found that this dependence
is weaker than the dependence on the chamber pressure.
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Figure 7.8: Measured (solid black) and predicted (dashed black) pressure at downstream sensor during
one period, along with the the pressure just around the valve as predicted by the model (pright is blue
while pleft is red). The compliances of the system are Csens1 = 1.67 × 10−15 m3 Pa−1 and Csens2 =
8.0 × 10−13 m3 Pa−1 with κ = 7.49 × 10−7 m Pa−1. (a) At 0.1 Hz actuation showing a full period. (b)
Zoom in (a) showing the jump in pressure in both measurements and model data as the valve opens. (c)
1 Hz actuation shows no sign of knee in neither modeled nor measured pressure psens2. (d) A small knee
is observed when zooming in even for 1 Hz actuation, although only in the model results.
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Figure 7.9: Maximum sensor pressure as a function of frequency, where as usual psens1 and psens2 are
the pressures in the up- and downstream sensors, respectively. The compliances are Csens1 = 1.67 ×
10−15 m3 Pa−1 and Csens2 = 8.0×10−13 m3 Pa−1, i.e. the same value of Csens2 as in fig. 7.8. (a) Using the
measured pressure in sensor 1 as input, the pressure in the downstream sensor is computed from the EC
model (circles). The two agree reasonably well except at f = 0.1Hz and f = 20 Hz. (b) With the actuator
coil electrical current as input, the pressure at both sensors are computed from the EC model; triangles
are psens1 and circles psens2. The model is found to also reproduce the pressure using the current as input.

7.5.2 Frequency dependence

Fig. 7.9 shows the maximum value of the downstream pressure computed from the chamber
pressure for Csens1 = 1.67 × 10−15 m3 Pa−1, Csens2 = 8.0 × 10−13 m3 Pa−1 and κ =
7.49× 10−7 m Pa−1, the same sensor compliances and κ as in the previous section. Using
the measured actuator coil electrical current, the idea was to use the elastic parameter κ to
fit the pressures at the sensors to the measured values. This has not been possible, however,
as no value of κ has been found which applies in the entire frequency range 0.1-30 Hz.
Moreover, the sensor compliances required for the model to reproduce the experimental
data makes κ insignificant, as long as κ ≤ 0.1 m Pa−1, while at and above this value, the
model results deviate by several orders of magnitude. Thus, the one parameter hoped to
be determined by the experiment has been voided.

The overall behavior of the experimental data is recreated from the model with the
same values of sensor compliances and κ, using either the actuator electric current or
the measured pressure at the sensor by the chamber as input. The distinct kink in the
measurements of psens2 at f = 20 Hz is not reproduced by the model, and noticeable
deviations between the two approaches are found at the lowest frequencies, when the
system is quasi-static. This, along with the insignificance of κ, suggests a flaw in the EC
model.

7.5.3 Validation of method

Due to the previous success with EC modeling of pulsatile flow, a frequency sweep of the
system without a valve has been conducted, and the system modeled using Womersley-
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Figure 7.10: Frequency sweep of system without valve. The pressure at sensor may be found from the
model using either electric coil current I or pressure at sensor 1 as input, if the compliances of these sensors
are Csens1 = 1.67 × 10−15 m3 Pa−1 and Csens2 = 1.7 × 10−13 m3 Pa−1.

type impedances with the regular method for modeling the elastic tubes throughout. Using
either the coil electric current or the measured pressure in the upstream sensor as input,
the pressures at the downstream sensor was fairly well captured for f > 0.3 Hz if no
bubble was present in the sensor by the chamber (Csens1 = 1.67 × 10−15 m3 Pa−1) and a
spherical bubble of radius 1.6 mm was present in the sensor at the T-junction (Csens1 =
1.7 × 10−13 m3 Pa−1), see fig. 7.10. In addition to the already observed disagreement at
low frequencies, the kink at 20 Hz is also found from these measurements, and is thus
thought to be a feature of the setup and not just a false measurement. The reason for this
has not be studied.

The overall agreement between EC model and experimental data in the absence of
valves, using either electric current or pressure as input, suggests that this model is correct,
and that the discrepancies observed when the valve is included arise due to an insufficient
EC model of the valve or flawed values of Cvalve

hyd or ∆popen. As already discussed, the found

value of Cvalve
hyd is doubtful. However, the presented EC model for the valve is observed to

recreate the dynamics found from the measurements, suggesting that at least the basics
of the model are correct. Moreover, since the model results for the whole system deviate
the most in the quasi-static limit of f < 0.3 Hz, and such deviations are found even when
no valves are present in the system, it is thought that these deviations are features of the
system rather than the valve model, possibly caused by non-linearities in the behavior of
the pressure source. Furthermore, nothing has been found which suggests the proposed
method of using the predictions of an AC EC model to infer component characteristics
from experiments is not valid, only that the developed experimental setup is not ideal due
to seemingly constant presence of air bubbles in the sensors.



84 Characterization of component dynamics

7.6 Summary

A method has been presented for deducing the dynamic characteristics of a time-dependent
microfluidic component based on the analogies making up EC theory. Exposing the com-
ponent to pulsatile pressure and flowrate at different frequencies, the dynamic response of
the component in conjecture with an AC EC model can be used to determine the time-
dependent parameter of the component. The method was applied to a soft elastomeric
duckbill valve, and although a cutoff-frequency was indeed discovered, the EC model was
unable to consistently reproduce experimental data. Given the proof of the modeling
technique presented in the previous chapters and the good accordance found for certain
parameter values in the present case in the absence of the valve, it is believed the dis-
crepancies are caused by an insufficient model of the valve. This, however, has not been
studied due to a lack of time.



Chapter 8

Conclusion and outlook

8.1 Conclusion

This thesis has extended and demonstrated the applicability of a lumped-parameter mod-
eling technique known as equivalent circuit (EC) modeling to inertially dominated mi-
crofluidics, while also developing an experimental setup to deliver a pulsatile pressure
difference into the low kilohertz range. This setup was used to study the motion of an air
bubble exposed to pulsatile pressure and flow, and it was used in an attempt to derive the
dynamic response of a commercially available duckbill valve.

Having introduced the simple method, it was showed that pulsatile flow may also
be included in the method. A corrected dimensionless parameter αc was derived whose
value determines the relative importance of inertia and resistance in the flow: resistance
dominates for αc < 1 while inertia prevails for αc > 1. Moreover, a frequency dependence
of the resistance unlike regular steady state pressure driven flow was found and quantified.
All tubing used in experimental microfluidics are compliant due to their elasticity, so
the time-dependent (pulsatile or transient) pressure driven fluid flow in elastic tubes has
several inherent time scales, and the quantification of these time scales is imperative if
one is to fully understand and correctly model the system. To this end, an expression for
the compliance of an elastic wall has been derived along with the compliance of an air
bubble while ensuring the validity of these expressions even for pulsatile flow in the low
kilohertz range. Following a discussion of EC modeling of flow in elastic tubes, continuum
equations for pressure and volume flowrate were derived for both pulsatile and transient
flow.

When studying time-dependent phenomena experimentally one automatically intro-
duces a plethora of potential sources of error, so much care has been taken in addressing
the most likely of these. To this end the experimental verification of the Hagen–Poiseuille
law was used as evidence that the highest attainable accuracy is given by the manufacturer-
specified tolerances on the tubing, while the effects of temperature variations on the rhe-
ological parameters were shown to be of no importance.

No current setup is capable of delivering pulsatile pressures into the low kilohertz range
while also delivering stroke volumes of about 0.1 mm3. Such a setup has been developed



86 Conclusion and outlook

based on a linear voice coil actuator acting on an elastomeric membrane, which separates
the water from the actuator. A circuit model was developed for this setup, coupling it to
the EC equations. The setup was operated using standardized laboratory equipment and
data acquisition was done with the software LabVIEW.

The motion of an air bubble exposed to a pulsatile pressure was studied to test the
performance of the setup and quantify the agreement between the developed EC models
and the experimental data. Assuming the presence of a small air bubble, model and ex-
periment yielded the same results through the entire probed frequency range of 1-100 Hz.
The build-up of pressure in a transient Poiseuille flow problem was also studied experi-
mentally and its results compared to EC model predictions, again to good agreement. The
continuum models were also tested against this experimental data, but their performance
was not superior to the mathematically simpler EC models, and was thus abandoned.

With the good agreement found between EC models and experiments, it was suggested
to use the experimentally determined dynamic response of a component to deduce a char-
acteristic parameter for said component, and the proposed method was illustrated using
a commercially available elastomeric duckbill valve. The agreement between model and
experimental data was not convincing, and the characteristic elastic valve parameter was
insignificant compared to the influence of air bubbles. Removal of the valve resulted in
good agreement between model and experiment, suggesting the proposed model of the
valve to be insufficient or that wrong input parameters were used. This has not been
studied further due to a lack of time.

8.2 Outlook

The current proof of the applicability of EC modeling to transient and pulsatile flows
builds further confidence in the method as a predictive tool for microfluidics. Even fairly
disparate systems such as those studied in this thesis are hence sufficiently described by
the approach, which in itself is remarkable, but which also renders analysis of complex
microfluidic systems very easy as long as care is taken in accounting for all elements. Many
numerical tools have been developed specifically for solving such lumped-parameter sys-
tems, e.g. Matlab’s SimuLink, and any of these can be employed to solve the governing
equations, greatly reducing the computational time and effort.

The predictive capabilities studied in chapter 7 of exposing a component to a pulsatile
pressure and deducing its characteristics from the transmitted pressure amplitudes can
be taken much further, although changes must be made if the developed setup is used,
as a method for eliminating the presence of air bubbles in the sensors is required. The
time-dependence of any component may be studied using the approach as long a said
component can be modeled within the EC framework. It is imperative for the ultimate
success of the method that only one free parameter is to be deduced from the pulsatile
measurements, as one is otherwise not certain of the uniqueness of the solution found.



Appendix A

Mathematical derivations for ZWom

The mathematical derivation of various properties relating to the behavior of ZWom will be
given in this appendix. The Womersley impedance is given by eq. (2.26), but is restated
here for convenience:

ZWom =
ρωℓ

πa2
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A.1 Asymptotic behavior of ZWom

It is argued in sec. 2.5 that ZWom → iωLhyd for α→ ∞ where Lhyd is the regular hydraulic
inductance of eq. (2.21); the mathematical arguments were left out of the main text, but
are given here.

The Bessel functions Jn (x) may for large x be approximated by, [65]
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(A.2)

From the series expansion of cosine have to second order accuracy, [65]

cos (x) ≈ 1 − x2
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(A.3)

Thus, to second order for large x find
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Hence, the fraction in the bracket in the definition of ZWom, eq. (A.1) is to second order
accuracy given by
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Noting that the prefactor to eq. (A.1) is in fact iωLhyd for a tube of circular cross section,
the full equation for ZWom may now be rewritten as

ZWom = iωLhyd
1

1 − 2

α i
3
2

(A.6)

The fraction tends to unity as ω → ∞ since α ∝ √
ω so ZWom → iωLhyd in this limit,

meaning that inertia dominates for high frequencies.

A.2 Dependence of R
Wom
hyd on α

It was shown in sec. 2.5.1 that the time-averaged hydraulic resistance of Womersley flow
over an oscillation period can be obtained from the hydraulic impedance, eq. (2.35) as

RWom
hyd =

1

Re
[

1
ZWom

] (A.7)

and it was observed that RWom
hyd ∝ α3 in fig. 2.4. The origin of this relation will be revealed

in this appendix.
As argued above, the fraction from the definition of ZWom eq. (A.1) becomes to second

order accuracy
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α depends on
√
ω, so by rewriting the prefactor to the parenthesis in the expression for

ZWom, one obtains
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From complex analysis one finds i
5
2 =

√
2

2 (−1 + i), and the prefactor in the denominator

is recognized as a fraction of the hydraulic resistance of Poiseuille flow, πa4

ℓη
= 8

RPois
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, by

comparison to eq. (2.9). Inserting these into the equation above and taking the real value,
one reaches the sought expression as
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Since αc = α/γ1, eq. (2.17), this result is also valid for αc.



Appendix B

Additional topics in elastic tube

flow

The work on flow in elastic tubes has yielded theoretical results which have not been
used for the work presented in the thesis. These results include derivation of the famed
Moens-Korteweg PDE for flow in elastic tubes (which is a special case of the result stated
in eq. (3.21)), a method for including (small) liquid compliance in the EC framework and
an attempted full solution to the coupled elastodynamic and fluid dynamics equations for
pulsatile flow. These results are included in this appendix in no particular order for the
future use of other students.

B.1 Liquid compliance

As stated in sec. 2.1, the liquid may for most purposes of this work be considered incom-
pressible to a high level of approximation. If one was to deviate from this notion, liquid
compressibility may easily be included into the EC framework as a compliance. Consider
the definition of the bulk modulus K:

K = −V ∂p
∂V (B.1)

where V is the volume of liquid and p its pressure. From the definition of compliance, eq.
(2.23), it is evident that liquid compressibility is given by:

Chyd =
V
K

(B.2)

The bulk modulus for water at 20 ◦C and standard atmospheric conditions is K =
2.2 × 109 Pa, so for a 10 cm tube of inner radius 0.1 mm the compliance from liquid
compressibility is Chyd = 1.43 × 10−18 m3 Pa−1. If the tube is made of silicone rubber
(which has Young’s Modulus of E = 2.05 × 106 Pa) and has a wall thickness of 0.1 mm
the wall compliance is Chyd = 3.06× 10−15 m3 Pa−1, two to three thousand times greater
than the liquid compliance which hence is negligible. Contrarily, if the tube was made of
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teflon with E = 5 × 108 Pa the wall compliance would be Chyd = 1.26 × 10−17 m3 Pa−1,
only about 8 to 10 times greater than the liquid compliance which then cannot readily be
neglected.

B.2 The Moens-Korteweg pressure equation

The first analytical model of the arterial pulse pressure1 was presented in 1878 by Moens,
[34], and Korteweg, [35]. Neglecting viscous effects and using the thin-wall approximation
in the wall compliance, eq. (3.13) (i.e. β = 1), the much-celebrated Moens-Korteweg
pressure equation may be read off eq. (3.21) immediately

∂2
xp(x, t) =

1

c2MK

∂2
t p(x, t) (B.3)

with cMK =
√

Eh
2ρa

. Since viscosity has been omitted, no losses are inflicted to the pressure

which thus travels undamped throughout the tube. This equation is often stated in bio-
physical textbooks, e.g. [67]; although theoretical and experimental results disagree with
its predictions, it does hint at the correct dynamics.

B.3 Full solution to the governing fluid and solid equations

A solution to the full coupled problem of viscous flow in elastic tubes has been attempted,
although in vain. The attempted solution is detailed in the following.

B.3.1 Governing equations

In the absence of external body forces and under the assumption of negligible heat exchange
in the solid during times on the order of oscillatory motions, the equation of motion of the
solid - the socalled elastodynamic equation - is given by, [26]

ρw∂
2
t u = µw∇2u + (λw + µw)∇ (∇ · u) (B.4)

The governing equations for the fluid motion are the Stokes and continuity equations in
their incompressible forms, eqs. (2.4) and (2.3).

Due to the geometry of the problem a cylindrical reference frame (r, φ, x, t) is chosen,
with x placed along the axis of the tube. As for the problem of pulsatile fluid flow in
a fully rigid tube of sec. 2.3, the present problem may be simplified by introduction of
rotational symmetry. No further simplifications may readily be made, so all fields must
depend on r, x and t. Thus without angular dependence, the components of the equation

1The first analytical expression for pulsatile flow in elastic vessels was derived by Witzig, [66].
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of motion of the tube in cylindrical coordinates are

ρw∂
2
t ur(r, x, t) =µw

[
∂2

rur(r, x, t) +
1

r
∂rur(r, x, t) −

ur(r, x, t)

r2
+ ∂2

xur(r, x, t)

]

+ (λw + µw)

[
1

r
∂rur(r, x, t) −

ur(r, x, t)

r2
+ ∂2

rur(r, x, t) + ∂r∂xux(r, x, t)

]

(B.5a)

ρw∂
2
t ux(r, x, t) =µw

[
∂2

rux(r, x, t) +
1

r
∂rux(r, x, t) + ∂2

xux(r, x, t)

]

+ (λw + µw)

[
1

r
∂xur(r, x, t) + ∂x∂rur(r, x, t) + ∂2

xux(r, x, t)

]
(B.5b)

The simplified equations of motion for the fluid flow are similar to those governing
the Womersley problem with one notable exception: due to the dilatation of the walls, a
radial velocity component vr(r, x, t) must be included. As a result, the simplified Stokes
equation is non-zero in two coordinate directions as opposed to the one dimensionality of
the simplified Womersley problem. The velocity components are

∂tvr(r, x, t) = −1

ρ
∂rp(r, x, t) + ν

[
∂2

rvr(r, x, t) +
1

r
∂rvr(r, x, t) −

vr(r, x, t)

r2
+ ∂2

xvr(r, x, t)

]

(B.6a)

∂tvx(r, x, t) = −1

ρ
∂xp(r, x, t) + ν

[
∂2

rvx(r, x, t) +
1

r
∂rvx(r, x, t) + ∂2

xvx(r, x, t)

]
(B.6b)

and the continuity equation becomes

∂xvx(r, x, t) + ∂rvr(r, x, t) +
vr(r, x, t)

r
= 0 (B.7)

B.3.2 Boundary conditions

The boundary conditions coupling the fluid and wall motions involve the continuity of
stress and velocity at the interface and boundedness of the velocity and pressure fields;
the conditions may be specified as:

1. Fluid velocity components and pressure are finite at r = 0.

2. The no-slip boundary condition requires the radial and axial velocity components of
the tube and the fluid to be continuous at r = a.

3. The fluid and tube stresses at r = a are continuous.

4. The wall stresses at r = b are zero.

By use of the incompressible fluid stress tensor (see [1]) along with the wall stress tensor
(see [26]), each evaluated under the assumption of rotational symmetry, these conditions
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are equivalent to

vr(0, x, t) =0 (B.8a)

|p(r, x, t)| <∞ (B.8b)

∂rvx(0, x, t) =0 (B.8c)

vr(a, x, t) =∂tur(a, x, t) (B.8d)

vx(a, x, t) =∂tux(a, x, t) (B.8e)

η [∂xvr(a, x, t) + ∂rvx(a, x, t)] =µw [∂xur(a, x, t) + ∂rux(a, x, t)] (B.8f)

−p(a, x, t) + 2η∂rvr(a, x, t) =2µw∂rur(a, x, t)

+ λw

[
ur(a, x, t)

a
+ ∂rur(a, x, t) + ∂xux(a, x, t)

]
(B.8g)

0 =µw [∂xur(b, x, t) + ∂rux(b, x, t)] (B.8h)

0 =2µw∂rur(b, x, t)

+ λw

[
ur(b, x, t)

b
+ ∂rur(b, x, t) + ∂xux(b, x, t)

]
(B.8i)

B.3.3 Solving the fluid problem

The pressure and velocity components are assumed to be of the form

p(r, x, t) =

∞∑

n=0

Pn(r)ei(nωt−knx) (B.9a)

vr(r, x, t) =

∞∑

n=0

V n
r (r)ei(nωt−knx) (B.9b)

vx(r, x, t) =

∞∑

n=0

V n
x (r)ei(nωt−knx) (B.9c)

where ω is the angular frequency of the oscillations, n is the harmonic number and kn

is the propagation constant (wave number) of the nth harmonic. The superscript n in
the functions Pn(r), V n

r (r) and V n
x (r) is used to indicate that a distinct function exists

for each harmonic. Contrary to regular Womersley flow in rigid confinement, a radial
dependence on the pressure is assumed.

Plugging these guesses into the simplified fluid equations, eqs. (B.6a), (B.6b) and (B.7),
yields for all n
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(B.10b)

0 = −iknV
n
x (r) + ∂rV

n
r (r) +

1

r
V n

r (r) (B.10c)
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The solution to this set of two Bessel-type ODEs with the additional constraint imposed
by the continuity equation may be solved using any of the readily available symbolic ma-
nipulation software such as Maple or Mathematica. The general solution to this problem
is for all n given by

V n
r (r) = C1I1 (knr) + C2K1 (knr) + C3J1 (iκnr) + C4K1 (κnr) (B.11a)

V n
x (r) = −iC1I0 (knr) + iC2K0 (knr) −

iκn

kn
[C3J0 (iκnr) + C4K0 (κnr)] (B.11b)

Pn(r) = − inωρ

kn
[C1I0 (knr) − C2K0 (knr)] (B.11c)

where as usual Js is the Bessel function of the first kind of order s, while Is and Ks are
the modified Bessel functions of the first and second kind, respectively, both of order s.
The constant κn is given by

κ2
n = k2

n +
inω

ν
(B.12)

and C1, C2, C3 and C4 are complex constants of integration.
Boundedness on the pressure, eq. (B.8b), requires C2 = 0 since K0(x) → ∞ as x→ 0

while I0(x) → 1 as x → 0, so the sum inside the square bracket of eq. (B.11c) would go
towards −∞ as r → 0 unless C2 = 0.

At r = 0 the radial velocity component becomes

V n
r (0) = C2K1 (0) + C4K0 (0) (B.13)

since I1 (0) = J1 (0) = 0. Satisfaction of the condition vr(0, x, t) = 0 therefore requires
C2 = −C4 which implies C4 = 0 since it was just found that C2 = 0.

Thus, the temporary solution to the fluid problem is given by

vr(r, x, t) =

∞∑

n=0

[−iC1J1 (iknr) + C3J1 (iκnr)] e
i(nωt−knx) (B.14a)

vx(r, x, t) =

∞∑

n=0

[
−iC1J0 (iknr) +

κn

kn
C3J0 (iκnr)

]
ei(nωt−knx) (B.14b)

p(r, x, t) =

∞∑

n=0

[
− inωρ

kn
C1J0 (iknr)

]
ei(nωt−knx) (B.14c)

where use have been made of the following relationship, [65]: Is(x) = i−sJs(ix).

B.3.4 Solving the wall problem

A general theorem of vector analysis states that any vector may be decomposed into the
sum of a rotation free vector and a divergence free vector. As noted by Landau and Lifshitz
in [26], by using the decomposition technique on the displacement vector u, the PDEs for
radial and axial displacements, eqs. (B.5a) and (B.5b), may be decoupled into two ODEs,
one for each direction. Thus, the displacement vector is reformulated as

u = ∇ψ + ∇ × H (B.15)
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Substituting this into eqs. (B.5a) and (B.5b) using the results of [68] one obtains the
equations

∂2
rψ +

1

r
∂rψ + ∂2

xψ − ρw

λw + 2µw
∂2

t ψ = 0 (B.16a)

∂2
rHφ +

1

r
∂rHφ − Hφ

r2
+ ∂2

xHφ − ρw

µw
∂2

tHφ = 0 (B.16b)

where Hφ is the component of H in the azimuthal direction2.

Assuming solutions in the same form as the fluid fields

ψ(r, x, t) =

∞∑

n=0

Ψn(r)ei(nωt−knx) (B.17a)

Hφ(r, x, t) =

∞∑

n=0

hn(r)ei(nωt−knx) (B.17b)

and inserting these into eqs. (B.16a) and (B.16b) one obtains a regular Bessel pseudo-ODE
in each unknown for each harmonic n

∂2
r Ψn(r) +

1

r
∂rΨ

n(r) − k2
nΨn(r) +

n2ω2ρw

λw + 2µw
Ψn(r) = 0 (B.18a)

∂2
rh

n(r) +
1

r
∂rh

n(r) − hn(r)

r2
− k2

nh
n(r) +

n2ω2ρw

µw
hn(r) = 0 (B.18b)

The general solutions to Ψn(r) and hn(r) for all n are

Ψn(r) = C5J0

(Fnr
)

+ C6Y0

(Fnr
)

(B.19a)

hn(r) = C7J1

(wnr
)

+ C8Y1

(wnr
)

(B.19b)

where Ys(x) are used for Bessel functions of the second kind of the sth order, C5, C6, C7

and C8 are complex constants of integration and the constants Fn and wn are given byF2
n =

n2ω2ρw

λw + 2µw
− k2

n (B.20a)w2
n =

n2ω2ρw

µw
− k2

n (B.20b)

The displacement components ur and ux are determined from eq. (B.15) as

ur(r, x, t) = ∂rψ(r, x, t) − ∂xHφ(r, x, t) (B.21a)

ux(r, x, t) = ∂xψ(r, x, t) + ∂rHφ(r, x, t) +
Hφ(r, x, t)

r
(B.21b)

2Only the displacement vector u is assumed zero in the azimuthal direction, no such assumptions are
made on the divergence and rotation free decomposites of u.
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Plugging in eqs. (B.17a) and (B.17b) with the expressions for Ψn(r) and hn(r) from
eqs. (B.19a) and (B.19b), one finds

ur(r, x, t) =

∞∑

n=0

(
−Fn

[
C5J1

(Fnr
)

+ C6Y1

(Fnr
)]

+ ikn

[
C7J1

(wnr
)

+ C8Y1

(wnr
)])

ei(nωt−knx)

(B.22a)

ux(r, x, t) =

∞∑

n=0

(
−ikn

[
C5J0

(Fnr
)

+ C6Y0

(Fnr
)]

+ wn

[
C7J0

(wnr
)

+ C8Y0

(wnr
)])

ei(nωt−knx)

(B.22b)

Using the remaining boundary conditions of eqs. (B.8d)-(B.8i), a system of six homoge-
neous equations for the integration constants C1, C3, C5, C6, C7 and C8 is obtained. In
theory, this system may be solved to yield a closed solution to the problem.

B.3.5 Determining the propagation constant kn

As noted above, inserting the solutions to the fluid and wall problems into the remaining
boundary conditions, one finds a system of six homogeneous equations for the integration
constants. It is known from mathematics that the determinant for this system must be zero
for the system to have non-trivial solutions. From this determinant, given in eq. (B.24), it
is possible to determine the propagation constant kn as a function of frequency, harmonic
number and system parameters. The variable Yn is introduced for notational convenience
in eq. (B.24) and is given by Yn = 2µwF2

n + λw

(
k2

n + F2
n

)
(B.23)

Determining the value of kn, for which the determinant is 0 is not a trivial task due to
the non-linearity of the Bessel and modified Bessel functions. A solution may be found for
each harmonic n using a numerical root finding algorithm such as the Newton-Raphson
algorithm or its more sophisticated relatives.
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B.4 The motion of the liquid

The fluid problem is a function of the two constants C1 and C3, but may be reformulated
using only one arbitrary constant as follows. The six boundary conditions that gives rise
to the determinant of eq. (B.24) may formally be written as a linear and homogeneous
system of equations as

AC = 0 (B.25)

where A is the 6×6 coefficient matrix to which eq. (B.24) is the corresponding determinant,
C = [C1, C3, C5, C6, C7, C8]

T is the vector of unknown constants and 0 is a 6 × 1 vector
of zeros. Normalizing all equations by the variable C3 results in the following system of
equations

ÃC̃ = b (B.26)

where

Ã =





A1,1 A1,3 A1,4 A1,5 A1,6

A2,1 A2,3 A2,4 A2,5 A2,6

A3,1 A3,3 A3,4 A3,5 A3,6

A4,1 A4,3 A4,4 A4,5 A4,6

0 A5,3 A5,4 A5,5 A5,6

0 A6,3 A6,4 A6,5 A6,6




C̃ =

1

C3





C1

C5

C6

C7

C8




b =





−A1,2

−A2,2

−A3,2

−A4,2

0
0




(B.27)

The indices on the entries Ai,j refer to the original coefficient matrix A. This system of
equations may be solved for the new constants C̃i to establish the following correlation
between the two constants of the fluid problem:

C1

C3
= −A4,2

A4,1
= −

2iη
[
κnI0 (κna) − I1(κna)

a

]

2η
a
I1 (kna) −

(
2ηkn + inωρ

kn

)
I0 (kna)

= −zn (B.28)

With the propagation constants from eq. (B.24) for each n in hand, the motion of the
liquid is fully determined by eqs. (B.14a)-(B.14c) and the interdependence of the constants
C1 and C3 stated above. Expressed in only one constant, the nth harmonic of the velocity
components in the liquid are

V n
r (r) = −C1

[
iJ1 (iknr) +

1zn

J1 (iκnr)

]
(B.29a)

V n
x (r) = −C1

[
J0 (iknr) +

κn

kn

1zn

J0 (iκnr)

]
(B.29b)

The axial flowrate is found as the integral of vx(r, x, t) across the tube cross section; the
nth harmonic of this parameter is given by3

Qn = −nωρC1J0 (ikna)

[
2J1 (ikna)

nωρknaJ0 (ikna)
− 2izn

J1 (iκna)

nωρknaJ0 (ikna)

]
πa2 (B.30)

3The summation and integration operations may be interchanged since the integral over the tube cross
section reduces to an integral in r; this last property arises as a consequence of the assumption of no
azimuthal dependence.
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The prefactor outside the bracket is recognized as the axial pressure gradient, so for
each harmonic, the flowrate depends linearly on the pressure gradient. Thus, the nth

harmonic of the hydraulic impedance is given by

Zn
hyd =

([
2J1 (ikna)

nωρknaJ0 (ikna)
− 2izn

J1 (iκna)

nωρknaJ0 (ikna)

]
πa2

)−1

(B.31)

B.4.1 Problems

Although this theory appears flawless, numerical solutions to the determinant explode
yielding very un-physical results, subsequently leading to the abandoning of the theory.
A thorough investigation of the reasons for this shortcoming has not been conducted to
save to time, but is left to any reader of these pages.

B.4.2 A note on turbulent pipe flow

It is an experimentally well-documented fact that pipe flow forRe & 2300, the flow will first
become unstable a certain distance downstream of the inlet before breaking up into fully
chaotic turbulent flow further downstream. To the knowledge of this author, theoretical
explanations for this phenomenon have not been presented. However, as shown in this
chapter, when one includes the elasticity of the pipe walls, a radial velocity component
is introduced; this component is not present in the Poiseuille solution which is purely
axial. At values of Re around 2000 where inertia dominates, this velocity component will
introduce disturbances to the flow which conceivably could spur turbulence. Since the
pipe of any experiment is elastic, this may explain the discrepancy between experiment
and theory.



Appendix C

BEI Kimco LA08-10-000A data

sheet

The data sheet for the actuator used as the driving mechanism of the pressure source is
shown here for good measure. It may be found online at
http://www.beikimco.com/pdf/LA08-10-000%20(LTR).pdf
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