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Abstract

A low-order modeling technique known as equivalent circuit (EC) theory is in widespread
use within the field of microfluidics. Representing the studied microfluidic system as an
equivalent electrical network due to mathematical similarity, the behavior of the fluidic
system is found from simple ODEs rather than cumbersome field equations. This thesis
suggests the exploitation of this analogy to the fullest, namely to use it as a predictive
tool for deducing component or systems-level dynamics from simple experiments.

Currently, the equivalent circuit theory approach lacks experimental justification for
dynamic systems, which is provided by this thesis for both the transient and pulsatile case.
The origin of the circuit elements and their mathematical expressions have been derived
from theoretical investigations of fluid mechanics, thermodynamics and solid mechanics,
and a theoretical investigation of pulsatile flow in microfluidics revealed several interesting
features including a frequency dependence of the resistance. Moreover, models of time-
dependent viscous fluid flow (pulsatile and transient) in elastic tubes have been derived.

A pressure source capable of delivering a pulsatile pressure up to frequencies of 0.8 kHz
has been developed based on a linear voice coil actuator. Using this, the pulsatile motion of
an air bubble is studied and good agreement is found between EC model and experiment.
The same is found for the transient flow in a highly elastic tube arising due to an abruptly
started pressure difference.

The deduction of component dynamics from simple parameters failed, in part due
to the presence of air bubbles, and in part because of an inadequate valve model. The
proposed method still appears promising, although this first attempt clearly showed that
much care must be taken for the method to work.



iv

Abstract




Resumé

Til simpel analyse af mikrofluide systemer benyttes ofte en teknik kaldet sekvivalent
kredslgbsteori, hvorved det modellerede system repraesenteres som et netveerk af elek-
triske komponenter. Gyldigheden af metoden findes ud fra simple analyser af mikrofluide
systemer samt antagelsen om inkompressibel strgmning hvorved det kan vises, at disse
systemer kan beskrives ud fra simple elementer, der er matematisk identiske til elektriske
netvaerk. Opferslen af det mikrofluide system antages saledes at kunne bestemmes ud
fra den matematiske lgsning til det tilsvarende ackvivalente elektriske kredslgb, omend
dette ikke er sandsynliggjort eksperimentelt. Det er malet med denne afhandling at be-
vise gyldigheden af metoden for bade transiente of harmonisk oscillerende systemer, altsa
systemer hvor inertien ej kan negligeres.

Ud fra den analytiske lgsning til harmonisk oscillerende strgmning i stive rgr udledes
et ikke-linesert kredslgbselement, der er gyldigt for alle frekvenser. Der udledes desuden
matematiske udtryk for eftergiveligheden af elastiske vaegge og luftbobler samt for den
viskose modstand og de inertielle tab i Poiseuille strgmning.

En konstrueret trykkilde baseret pa en sakaldt lineser voice coil aktuator praesenteres,
som kan levere pulserende tryk med frekvenser op til 0.8 kHz. Denne beskrives ud fra en
simpel kredslgbsmodel, hvorved den kan kobles til de mikrofluide ligninger. Trykkilden er
benyttet til at studere bevaegelsen af en luftbobbel i frekvensintervallet 1-100 Hz, og det
vises, at systemet kan beskrives fyldestggrende vha. sckvivalent kredslgbsteori. Det samme
gor sig geeldende for abrupt startet tryk-drevet strgmning i et tyndvaegget elastisk ror, hvor
der ogsa findes god overensstemmelse mellem den simple model og de eksperimentelle
resultater.

Givet denne overensstemmelse foreslas i afhandlingens nzestsidste kapitel at de dy-
namiske egenskaber af mikrofluide komponenter, sa som eftergivelighed (compliance) e.l.,
kan udledes fra studier af trykamplituden nedestrgms for komponenten som funktion af
frekvens, meget lig metoderne kendt fra elektronikindustrien. Metoden illustreres med en
kommercielt tilgaengelig gummiventil (en sakaldt duckbill ventil), men darlig overensstem-
melse findes mellem de eksperimentelle resultater og modellen. Der argumenteres for
den stadige gyldighed af metoden, men det erkendes, at dens anvendelse er svaerere end
oprindeligt antaget.
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Chapter 1

Introduction

1.1 Time-dependent microfluidics

Microfluidics is the term used to describe fluid dynamics at the mm and sub-mm scale,
although strictly speaking, the term only applies to flows in systems with a characteristic
length scale of O (1 um). Fabricated microfluidic systems exploit the steady laminar flow
properties to use a liquid as a transport medium for samples of e.g. biological material or
liquid drug solutions, but capillary blood flow and other small-scale biological flows are
also considered part of microfluidics. More advanced microfluidic systems known as “lab-
on-a-chip” systems seek to miniaturize conventional laboratory equipment to produce a
fully integrated analysis system on a single microchip. These chips combine microfluidics
with microelectronics, optics, biotechnology and other scientific fields with the goal of
mass-production of simple, reliable and disposable microchips with the potential to speed
up the analysis while requiring much smaller sample sizes and eliminating the need for
specialized laboratory personnel.

The inertial time-scale of microfluidics is approximately 1ms and the viscous force
dominates inertia, as will be shown in chapter 2, so the fluidics of most microfluidic
systems operate in a steady state although time-dependent phenomena such as chemical
reactions, diffusion, etc. still take place. Notable exceptions are pumps and valves along
with AC electroosmosis and acoustofluidics’. Although the fluid can be thought of as
quasi-static, full understanding and hence potential exploitation of the capabilities of a
system cannot be achieved without considering the transient behavior. For a system of
chemical reaction or a system delivering a liquid drug solution, knowing the exact amount
delivered at any time is critical if the chemical system is to remain in equilibrium and the
patient is to receive the correct amount of drug. Delivering too little and the chemical
system/patient will not react as intended (cure in the patient’s case), while delivering
too much may adversely affect the reaction or jeopardize the patient’s life. For systems
performing more than one task, full understanding of the transient behavior is absolutely

In both these cases, an AC phenomenon is used to generate a DC flow behavior, in an attempt to
develop new pumping mechanisms for the disposable lab-on-a-chip systems: Acoustofluidics exploit the
two forces arising when an acoustic field is applied to a liquid-filled microfluidic channel, see [1, 2], while
AC electroosmosis uses the flow generated in an electrolyte by an applied electric voltage, see [3].
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critical for the performance of the system; the success of the system of Thorsen et al,
[4], consisting of 256 sub-nanoliter reaction chambers and 2056 microvalves, would not be
possible without correct control of these valves and the flow around them. Apart from the
few cases mentioned above, the field of time-dependent microfluidics is almost unexplored:
This author has found only three accounts of the exploitation of such time-dependent
effects, [5, 6, 7].

For a typical pressure driven microfluidic system consisting of elastic tubing, this elas-
ticity of the fluid confinement along with the inertia and resistance of the fluid itself means
that the system has several inherent characteristic time scales. These dynamic time scales
set the upper limit on the time scale that can be probed by the system since for times
faster than the slowest of these inherent time scales, the system has not reached equilib-
rium so the flow velocity will only reach a certain fraction of its maximum value. Thus,
the correct prediction of these time scales is closely linked to the understanding of the
transient behavior of the system.

A typical method for probing the dynamic time scale, in wide use in all branches of
physics, is to expose the system to pulsatile? external fields. Unfortunately, the only work
on pulsatile microfluidics into the inertially dominated region, i.e. the region where the
inherent time scales of the system become important, appears to be by Morris and Forster,
[8, 9], who considered a membrane pump and the flow it delivered. Reciprocating pumps
are a large research field in itself and many theoretical investigations of the pulsatile flow
delivered by such pumps in microsystems has been reported, e.g. [10, 11], but most are
inadequate in their description of the fluid physics, as will be shown in chapter 2. Hence,
even the basics of probing the time-dependence of microfluidics remains unexplored.

1.2 Systems-level modeling in microfluidics

A close mathematical similarity exists between electric circuits and low-order modeling
of microfluidics, extending so far that the modeling technique is known as “equivalent
circuit” (EC) modeling. In this lumped-parameter approach, the circuit elements repre-
sent viscous losses, inertial losses or compliance, which is sufficient to describe most flows.
Such low-order models make obsolete the time-consuming numerical solution of the gov-
erning equations of fluid flow and are thus very attractive when developing microfluidic
systems. Experimental and theoretical validation of the individual circuit elements is well-
described, as is systems level modeling of steady state systems, e.g. [12], and while no
such validation has been presented for dynamic systems, perfunctory use of the approach
for time-dependent systems abounds, e.g. [6, 9, 10, 11, 13, 14, 15].

If valid, exploitation of the conceptual analogy to electronic circuits can be used to de-
duce the dynamic properties of microfluidic components. Not only will the computational
time of a full numerical simulation be avoided in this case, but the parameters influencing
component dynamics will be apparent and hence allowing for application-tuning of mi-
crofluidic components. One simple case has been reported, [6], where the compliance of a

2The word pulsatile will be used as a synonym to harmonically oscillating throughout the thesis to
describe a temporal dependence of either cos (wt) or sin (wt).
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tube was deduced from the decay time of a pressure reading, but the analogy can be ex-
ploited much further by considering full systems and subsequently deducing the dynamic
properties of any system component.

1.3 Objective

The current thesis has grown from a project entitled “Development and experimental
verification of dynamic models of drug delivery systems”, with the goal of developing
an experimental setup for the characterization of the dynamic properties of microfluidic
components for Novo Nordisk A /S, while also devising simple yet accurate low-order mod-
els for the system. This setup would exploit the analogy to electronics to the fullest by
deducing the characteristics from a comparison of EC model and experimental results.

The setup must deliver pulsatile pressures into the low kilohertz range to resolve the
inertial time scale of about 1 ms previously alluded to. Given the lack of previous work in
the field of pulsatile microfluidics, performance verification of the setup and thorough the-
oretical treatment of the fundamental physics are required, before turning the attention to
the characterization of component dynamics. However, to get to this point, experimental
verification of systems level EC modeling is necessary and will be provided.

The method will be applied to an elastomeric valve for illustration, but can be applied
to any time-dependent component. No current method is able to predict the dynamic
characteristics of a component from simple steady state variables, and the properties
specified by the manufacturer are often insufficient for deriving these characteristics. It
is hoped that the proposed method will be applied across the field in conjecture with
systems-level EC modeling.

1.4 Notational convention

A consistent use of notation throughout the thesis has been attempted. Italics are used
for scalar variables, such as the coordinate direction x, and bold face types for vectors,
such as the velocity vector v; vector components are denoted by a coordinate subscript
so that v, is the velocity component in the z-direction. Exceptions are explicitly defined
functions and operators, which are typeset in upright Roman type, e.g. the maximum
operator max. The shorthand notation dg is used for derivatives with respect to some
variable S of any function ¢(.5)

For partial derivatives this becomes Js.

The author has adopted the convention of including radian in the unit for angular
frequency and wave number, so that these have units [k]=rad m~! and [w]=rad s
Finally, relative error is denoted by e.
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1.5 Outline

The work presented in the following is a selection of the work carried out during the project.
The topics left out include various mathematical derivations, experimental verification of
equipment and dynamics characterization of two Novo Nordisk components. In addition
to this thesis, excerpts of chapter 2 have been presented at the Annual Meeting of the
Danish Physical Society in June 2008.

The content of the following chapters is summarized in the following:

Chapter 2 presents the theoretical background on which the thesis is built. The
appropriate equations of fluid flow are introduced along with the basic solutions from
which all thesis work is derived. Equivalent circuit modeling of microfluidic systems
is derived and explained, and an EC description of pulsatile flow is presented. Most
content of this chapter will be well-known to readers familiar with microfluidics.

Chapter 3 is dedicated to the derivation of circuit elements specific to this work,
namely the compliance of air bubbles and elastic walls. Pressure driven flow (both
steady and pulsatile) in elastic tubes is discussed in the EC framework.

The experimental verification of the Hagen—Poiseuille law is presented in chapter 4
along with the experimental investigation into the validity of an EC model of tran-
sient flow in an elastic tube. For this experiment, a Poiseuille flow is abruptly
started in a water-filled thin-walled silicone rubber tube, and the pressure measured
downstream of the pressure source. The model reproduces the experimental results,
although there is not complete coincidence.

Chapter 5 presents a pressure source developed for delivering pulsatile pressures
into the low kilohertz range. The design and properties of the source are presented
along with a low-order circuit model coupling the pressure source to the EC equa-
tions. Critical parameters for the model are determined from simple experiments.

The motion of an air bubble exposed to pulsatile pressures is studied in chapter 6
as a test of the pressure source performance. The observed motion of the air-water
interfaces are compared to the predictions of an EC model and good accordance is
found.

The analogy between microfluidics and electronic circuits is exploited to the fullest in
chapter 7, which details a method for the characterization of dynamics of microflu-
idic components based on pulsatile flow, much akin to the methods of component
testing of electronics.

The thesis is rounded off with conclusions and outlook in chapter 8.



Chapter 2

Basics of microfluidics and
equivalent circuit theory

2.1 Fluid compressibility in kilohertz actuation

When applying pressure fluctuations in the low kilohertz range the effects of acoustics must
be considered. As argued by Landau and Lifshitz [16] the assumption of incompressibility
is justified when the characteristic fluid velocity v is much smaller than the speed of sound
¢, and if the characteristic dynamic length scale £q is much smaller than the distance
traveled by the sound waves during each oscillation cycle, i.e. the wavelength .

v K Cy, (2.1a)
by < A (2.1b)

Since the speed of sound can be rewritten as ¢, = Af where f is the frequency, eq. (2.1b)
can be reformulated as c
lg < = (2.2)
f
The speed of sound in water at atmospheric pressure and 20 °C is ¢, = 1483 m s™!, so the
first criterion is inherently satisfied for all microfluidic systems with v < 1 m s~!. For a
frequency of 1kHz, the wavelength of the sound waves is A ~ 1.5 m while the characteristic
length scale is ¢4 = O (1 x 1073 m), so the second criterion is also inherently satisfied. The
assumption of incompressibility of water in kilohertz actuation is therefore valid.

2.2 Governing equations for fluid flow

Assuming the volume of fluid under consideration to have a characteristic length scale
above £ = 10 nm, one can consider the fluid to be a continuum rather than consisting of a
large but finite number of particles. Neglecting thermal effects, conservation of mass and
momentum are sufficient to describe the fluid motion.

As argued in the previous section, the water of a microfluidic system in low kilohertz
actuation may still be considered incompressible. Thus, conservation of mass is imposed
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by the incompressible version of the so-called continuity equation, [1]:
V.v=0, (2.3)

where v is the fluid velocity.
The conservation of momentum for an incompressible and Newtonian fluid in a har-
monically driven microfluidic system is given by the time-dependent Stokes equation, [1]

pOv = —Vp +nViv, (2.4)
so long as the Reynolds number
¢
Re = pn—”, (2.5)

satisfies the condition Re < 1; p denotes the density, v a characteristic scalar velocity,
p the pressure and 7 the dynamic viscosity in these equations. The Reynolds number
is a non-dimensional measure of inertial forces to viscous forces. Viscosity dominates at
Re < 1, meaning that any perturbation to the velocity field quickly will be damped and
the resulting flow is fully laminar. As the Reynolds number increases past 1 (but stays
below 2000) inertial effects are no longer damped at the same rate so bends, kinks or
other geometric changes to the confinement will introduce perturbations to the velocity
field that are not immediately damped by the fluid viscosity. Overall the flow is still
laminar, but inertial effects are not negligible. For Re 2 2300 the fluid flow enters the
turbulent regime where any perturbation in the velocity field may grow uncontrollably
without immediate viscous damping, resulting in chaotic flow.

Gravity has been omitted from eq. (2.4) since the hydrostatic pressures on the millime-
ter and sub-millimeter scales are negligible compared to the externally applied pressure
differences.

2.3 Pressure driven fluid flow

2.3.1 Fluid flow driven by constant pressure gradient

The analytical solution to the fluid flow driven by a constant pressure gradient is known as
“Poiseuille” or “Hagen—Poiseuille” flow, and its derivation is thoroughly described in the
literature, [1, 17, 18]. In a cylindrical reference frame away from tube inlet and outlet, the
velocity field takes the form v(r, ¢, x,t) — v,(r,t)e, under the assumption of azimuthal
symmetry. The velocity in the start-up of such a fluid flow in a channel of circular cross-
section of radius a and axial dimension ¢, where a pressure difference Ap is applied at
x = 0 is given by, [1]

Apa? & 8 r Y2y
’UI(T,t) = 477€ 1-— ﬁ - Z ’)/BT(’Y)JO (’)/na) exp <— o2 t s (26)
n=1 "M "

where J; is the Bessel function of the first kind of order s, «,, are the roots to Jy, of which
the first three are v; = 2.4048, v = 5.5201 and 3 = 8.6537 and v = n/p is the kinematic




2.3 Pressure driven fluid flow 7

viscosity. The steady state solution is obtained as time tends to infinity:

Apa?® r?
vy (ryt) = o, <1 - ¥> . (2.7)

The volume flowrate! is defined as Q = / 4V - n dA, where A is the cross-sectional area
of the flow confinement and n is an outward pointing normal vector. The flowrate in

Poiseuille flow is ]

Rhyd

Q= Ap, (2.8)

where Ryyq is termed the hydraulic resistance, which for a tube of circular cross-section is
given by, [1]

8nl
mat’

Rhyd = (2.9)

Inertial time scale in Poiseuille flow

The analytical solution to the start-up of a Poiseuille flow, eq. (2.6), has an eigenfunction
expansion which decays exponentially in time. The time constant for the n'" term in the
expansion is

a2

(2.10)

Tn = @7
Since vy, the roots of Jy, appear in the denominator and v,4+1 > 7, for all n, the first
term of the expansion (that of n = 1) last the longest. Thus, for a water-filled microfluidic
system with a ~ 0.1 mm and v ~ 1075, the flow reaches steady state on a time scale of

T~ 1.7ms. (2.11)

2.3.2 Pulsatile flow solution

The solution to flow in a straight tube of constant cross section exposed to a harmonically
oscillating pressure gradient is usually credited to J. R. Womersley [19], although the
problem also has been solved independently by S. Uchida [20], P. Lambossy [21] and T.
Sexl [22].

The general setup differs from the regular Poiseuille problem only by the harmonically
oscillating pressure difference, Ap — Ape“!, where the complex notation is used for
convenience and w = 27 f is the angular frequency of the pressure oscillations. The actual,
physical solution is found by taking the real part of the complex solution to the problem.
The setup is sketched in fig. 2.1. The physics is described in a cylindrical reference frame
(ry¢,x) with = coinciding with the tube axis. Assuming no azimuthal dependence due to
symmetry and fully developed flow so that v(r, ¢, z,t) — v, (r,t)e,, the governing equation
for the problem is

1
POz (1, t) = —Ogp(z,t) + 1 {63 + ;&l vy (1, t). (2.12)

!The word ‘flowrate’ will be used throughout the thesis in the meaning volume flowrate.
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P =Do

I y
k 1

p(t) = Ape™ + po

Figure 2.1: Schematic representation of pulsatile flow. The tube has inner radius a and axial dimension
L.

The boundary conditions for the problem are the same as for the Poiseuille problem, only
now with the harmonic oscillations of the applied pressure difference

p(0,t) = Ap " + py, (2.13a)
p(¢,t) = po, (2.13Db)
vg(a,t) =0, (2.13c)
d,v2(0,) = 0. (2.13d)

Guessing of a harmonically oscillating solution void of start-up effects, v, (r,t) =
w(r) e“! and inserting, one obtains a Bessel ODE for w(r). Imposing the boundary
conditions, the solution is found as:

Ap Jo (yai%)

S ) | I WA 2.14
o A 240

v (1, t) =

where the non-dimensional radial coordinate y = r/a has been introduced along with the
Womersley number « given by
a?w

a=\/—- (2.15)

Examples of the velocity profiles at different values of the Womersley number is given in
figs. 2.2 and 2.3, and the associated flowrate is found to

7TApCL2 2 Ji (Oéi%)
piwﬂ i%a Jo (ai

Q(t) =2m /Oa vg(r,t) rdr = et (2.16)

W
N———
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Figure 2.2: Snapshots of the velocity profiles for flow driven by a pulsatile pressure gradient at four
values of the critical Womersley number a. = a/7v1, discussed in sec. 2.3.3. The snapshots are taken at the
same time in the oscillation cycle, and the pressure differences are applied from left to right as shown for
ac = 1/5, but are not drawn to scale. The full lines are the velocity profiles while the dashed lines mark
the axial positions along which the velocities are obtained. The profiles oscillate harmonically in time, as
shown in fig. 2.3 for ac = 5/2. a. strongly influences the profile shape.

2.3.3 Notes on the Womersley number and its relation to the flow

The Womersley number is a non-dimensional measure of the diffusion of momentum across
the tube. The kinematic viscosity v is the diffusivity of momentum diffusion in Poiseuille
flow, [1], while aw is the diffusivity required for the momentum to diffuse across the tube
radius between pressure peaks. Thus, for & < 1 momentum has ample time to diffuse
completely across the channel as in regular Poiseuille flow, while for & > 1 momentum
does not have time to diffuse across the tube between pressure oscillations. Therefore,
for a < 1 the velocity profile will be the regular Poiseuille parabola, while for o > 1 the
profile will change since the no-slip boundary condition forces the velocity at the wall to
be zero, while momentum does not have time to diffuse across the tube between pressure
oscillations.

By considering the solution to the start-up of the Poiseuille problem, eq. (2.6), a crit-
ical Womersley number . may be derived to determine the deviation from the Poiseuille
parabola. Eq. (2.6) describes the time it takes the fluid to react to changes in pres-
sure, given by the characteristic relaxation time for the fluid to reach a steady state
T =a?/ ('y%y), as previously discussed. Thus, by defining the critical Womersley number
as

a (&%
0 = (|| 5w =—, 2.17
‘ v gt ( )

this is a measure of the fluid relaxation time versus the time scale of the pressure oscilla-
tions w. ae = 1 marks the point where the fluid no longer has time to reach a steady state
before the pressure varies, and the velocity profile begins to deviate from the Poiseuille
parabola as shown in fig. 2.2. For a. > 1 the flow never reaches a steady state before the
pressure changes, so when the pressure gradient is reversed, the flow still has inertia acting
in the opposite direction, and it will therefore take some time before the pressure gradi-
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Figure 2.3: 3D snapshots of the velocity profile for Womersley flow for a. = 5/2 taken at four different
times over the oscillation period 7 (plotted to scale). The pulsatile pressure gradient is applied from left
to right in all snapshots; the profiles are only shown for half of the tube for clarity. The dotted black grid
lines outline the tube wall and the full red lines the coordinate system; the velocity profiles of fig. 2.2 are
obtained along the dashed red line. (a) t = 0 (same as fig. 2.2). (b) t=T7/5. (¢c) t =27 /5. (d) t =37 /5.

ent can counteract and subsequently change the direction of the inertia. This introduces
a phase-shift between the fluid and the pressure gradient. However, at the confinement
walls, the no-slip boundary condition forces very low velocities with correspondingly low
inertia, so fluid close to the walls have a smaller phase-shift than fluid in the center of the
confinement, and at a. = 5 a full 7/2 phase-shift is observed between the flow close the
the walls and that at the center. These effects are observed in fig. 2.2: for a. < 1 the
normal Poiseuille parabola is retrieved, for o, > 1 the profile deviates noticeably while at
the critical value, the profile is almost parabolic.

As the critical Womersley number surpasses unity maximum velocity decreases, due
to the constantly changing pressure gradient and the fact that there is a characteristic
time needed to accelerate a fluid. The flowrate amplitude decreases accordingly so that
less and less fluid is moved, until finally at high a. the fluid is completely dominated by
inertia of constantly changing direction resulting in no fluid motion.
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Table 2.1: Summary of equivalent circuit elements for microfluidic and electric circuits.

Fluidic circuits Electric circuits
Pressure drop Ap Pa Voltage drop AU V
Volume 1% m3 Charge g C
Flowrate Q m?3 s~! Current 1 Cs!
Resistance Ryyq Pas m~3 | Resistance Rqg VAL
Compliance Chyd m3 Pa~! Capacitance Cy C V!
Inertia Lyyq Pa s2 m™3 | Inductance Lg VsAl

2.4 Equivalent circuit theory

Most branches of physics are governed by field equations, such as the Stokes equation,
eq. (2.4), for fluid pressure and velocity in a microfluidic system, or Maxwell’s equations
for the electromagnetic fields. The recent advent of high-performance computing finally
allows scientists to solve these field equations for (almost) arbitrary systems in reason-
able time, but going back just two decades, such luxury was rarely allow mere mortals.
Instead, several approximation techniques were developed yielding various degrees of ac-
curacy. Among these is lumped-parameter modeling known from electric circuits, where
the governing electromagnetic equations are supplanted by networks of idealized electric
components, each exhibiting only one property, e.g. resistance or inductance. These low
order models proved very effective in describing the observed effects and in addition have
very attractive mathematical properties and highly intuitive applicability. Apart from
electronics the lumped-parameter approach has also been successfully applied to thermal
transport, optics, solid state mechanics, electron transport and acoustics.

Equivalent circuit theory in the context of microfluidics is such a lumped-parameter
modeling approach. It derives its name from the 1:1 mathematical similarity between
microfluidic components and the equivalent electronic component. The basic assumption
of EC theory is that the flow is incompressible and pressure driven with Re < 1.

Eq. (2.8) forms the backbone of EC modeling of microfluidic systems. It predicts a
linear relationship between an applied constant pressure difference Ap and the resultant
flowrate @ as Ap = Rhde. Comparing to Ohm’s law which describes the drop in electrical
potential, AU, across a resistor with resistance R in which a current [ is running, [23]

AU = Ry, (2.18)

the analogy is obvious. However, the analogy extends further and also includes inertia
and compliant effects of the fluid or its surroundings. The basic microfluidic components
will be derived in the following, with a summary given in table 2.1.

2.4.1 Inertia

The hydraulic resistance is caused by the internal fluid friction known as viscosity, and is
ultimately a result of the conversion of mechanical (kinetic) energy into heat, [1], just as
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the Ohmic resistance in electric circuits is caused by the conversion of electrical energy
into heat. As only steady state considerations led to the concept of hydraulic resistance,
it does not account for inertial effects.

Consider a volume of fluid V of density p confined in some geometry of constant cross-
section of area A, where V = £ A. Assuming the only force acting on the fluid is a pressure
difference Ap along the axis of £ — and thus neglecting viscosity, which has already been
accounted for in the hydraulic resistance — Newton’s second law reads F = m d;v, where
v is the average velocity. With the pressure force and m = p.A¢ this becomes

ApA = p Al dw, (2.19)
and since A7 = @, one finds
Ap = Lhyddth (2'20)
where the proportionality constant
pl
Lyyqa = T (2.21)

is termed the “hydraulic inductance”, since the following holds for an inductor with in-
ductance L in an electrical circuit, [23]

AU = Le dyl. (2.22)

As expected, inertia in EC theory is found to be a time-dependent phenomena giving
rise to a pressure drop.

2.4.2 Compliance

The term compliance is used to describe any deviation from incompressibility in the fluidic
system, i.e. compressibility of the liquid, any trapped air bubbles or the yielding of the
confinement caused by a pressure increase. Following [1], any compliance in the fluidic
system is defined as the negative change in volume with a change in pressure:

dv

= (2.23)

Chyd = —
Again, an exact electric equivalent exists namely the capacitor, which stores charge in the

circuit. It is characterized by its capacitance Cg, which is a measure of the capacitor’s
ability to store charge and is defined by, [23]

_ dQel

Cel = au’

(2.24)

where ¢ is the electric charge. Hydraulic compliance can be thought of as a storage of
volume in the hydraulic circuit since change in pressure will cause a change in volume
according to eq. (2.23), just as capacitance is a storage of electric charge.
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2.4.3 Coupling of several equivalent circuit components and applicabil-
ity of the method

Due to the assumption of Re < 1, the governing equation — the Stokes equation — is linear
and superposition is valid. Hence, if the fluid in a system experiences e.g. both resistance
and inertia, the two elements (resistor and inductor) are simply superposed to describe the
physics. In the EC framework this is a series coupling. Moreover, if fluid flow branches off
(e.g. in a T-junction) the total flowrate leaving and entering the junction must be identical
because of the assumption of incompressible flow. These simple arguments illustrate the
EC framework: understanding a microfluidic system as a network of parameters. The two
arguments for series and parallel coupling are identical to Kirchhoff’s laws from electric
circuits, so Kirchhoffian network analysis is applied to EC models of microfluidics, and it
is customary to represent the system using a diagram of the EC network.

For Re £ 1, perturbations to the flow are not readily damped out so the assumption
of fully axial flow underlining the idealized Poiseuille and Womersley solutions of sec. 2.3
are violated and losses not included in the models will be inflicted on the fluidic system.
Consequently, the method is only applicable for microfluidics or the fluid flow of very low
velocity usually referred to as “creeping flow”, [18].

2.5 Equivalent circuit description of Womersley flow

In addition to viscous drag, Womersley flow also has a ever-present inertial contribution
because of the pulsatile pressure gradient, and the simplest EC model of this low would
therefore consist of a linear combination of resistance and inductance. Using complex
notation and assuming all fields oscillate harmonically one finds the following relation for
the amplitudes

Ap = (Rhyd + iWLhyd) Q, (2.25)

or, introducing the notion of hydraulic impedance, Ap = Zyyq@, where Zyyq = Ruya +
iwLyyq. Noting the proportionality between the pressure gradient amplitude and flowrate
in Womersley’s solution, a correct impedance for pulsatile flow certain to include all inertial
and resistive effects is found directly from eq. (2.16) as

3 —1
2.J, (aii)
pwl
Dwom = i |1 = 7745 | (2.26)

izalJdy (ai%)

where the subscript ‘Wom’ is introduced to distinguish from a “regular” fluidic impedance,
such as Zyyq = Ruyq +iwLyyq above. Upon the introduction of this impedance, this author
later found that Morris and Forster already has introduced it, [9].

The simple impedance of pulsatile flow Zyyq = Rpyq + iwLpyq and Zwoem both predict
dominating inertia with increasing frequency (and thus increasing Womersley number
«). This is obvious for the simple case, and becomes apparent for Zwon, by using the
asymptotic expansion for J,, for large arguments and in turn the first two terms of a series
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expansion of cosine for both Jy and J; in eq. (2.26), see appendix A. The fraction in the
square bracket of eq. (2.26) then becomes to second order accuracy

2.7y (aif) 5
- N 3 (2.27)
iz a Jy (a 15> Q12

Noting that the prefactor to eq. (2.26) is in fact iwLyyq for a tube of circular cross section,
the full equation for Zywom, may now be rewritten as

. 1
ZWOm = lehydﬁ. (228)

.3
@12

The fraction tends to unity as w — oo since o o /w. Hence, both the simple and
the Womersley impedances become increasingly dominated by inertia as the frequency is
increased, which should come as no surprise, given sec. 2.3.3. However, it is noteworthy
that the simple expression for inertia in Poiseuille flow also appears in the EC description
of Womersley flow.

2.5.1 Resistance in Womersley flow

Following the arguments in [1], the time rate of change of the dissipation of mechanical
energy into heat (which is the fluidic power consumption due to viscosity, i.e. the amount
of kinetic energy converted to heat) for a fluidic system consisting of tubes of circular cross
section of radius a and total length /¢ is given by

P = 0;Wyisc = 27ln /O ’ [0, ve(r, )] dr = Q(t) Ap(t). (2.29)

For Poiseuille flow, the relation between power consumption and resistance is found by
rearranging and inserting eq. (2.8) to obtain

Ap?
~ pPois’
Rhyd

p (2.30)

where the superscript ‘Pois’ is included to remind the reader of the temporal behavior of
the pressure.

Because of its pulsatile behavior, the time-averaged resistance over an oscillation period
for Womersley flow is the proper measure of resistance; this in turn, is calculated from the
time-averaged hydraulic power consumption. To compute the time-average over one period
of the product of two harmonically oscillating quantities f(t) and g(t), where f(t) = f et
and g(t) = ge“! and f and § are the complex amplitudes, one relies on the following
classical theorem from complex analysis:

(F(g(0) = 5Re [57] (231)
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where the asterisk indicates the complex conjugate and the brackets () the time-average
over one period. Hence, the time-averaged fluidic power consumption in Womersley flow
is

(P) = %Re Gap]. (2.32)

where Q is the complex amplitude of the pulsatile flowrate, Qt) = Qe and Ap is the
(real) amplitude of the applied oscillatory pressure?, Ap(t) = Apel“!. Since in general

Q= Ap/Zhyd7 eq. (2.32) may be rewritten as

1 1
P) = —Re Ap?. 2.33
(P) = 3t | | (2.33)
The difference from a regular equivalent circuit resistance derived from Poiseuille flow is
found by inserting the same pressure difference in the two expressions. Thus, inserting the
root mean square pressure amplitude® Ap,.s = Ap/ V/2 into the expression for the power
consumption in Poiseuille flow, eq. (2.30), one finds

_1Ap2

~— 9 pPois”
2 Rhyd

(2.34)

Comparing egs. (2.33) and (2.34), the hydraulic resistance for Womersley flow may be
obtained as 1
R = ————. (2.35)
Re [ > L ]
Wom

Unlike the hydraulic resistance of Poiseuille flow, Rhwy((’im is frequency dependent since Zwom

has this property. This result has been presented by Zielke in his dissertation*, [24], and
hinted at by Uchida, [20], although he only focused on the excess work of pulsatile flow.
The time-averaged Womersley resistance normalized by the Poiseuille resistance is shown
in fig. 2.4(a) as a function of the critical Womersley number. The Poiseuille and Wom-
ersley resistances agree until . =~ 1/v; (equivalent to o = 1), whereafter the Womersley
resistance increases because of the increasing velocity profile gradients as already shown
in fig. 2.2. At a. > 1, i.e. from the point where the velocity profile begins to deviate no-
ticeably from the Poiseuille parabola, the resistance is proportional to a2; a mathematical
derivation of this dependence is given in appendix A.

The velocity profile gradient and thus the hydraulic resistance increases with the Wom-
ersley number®, while the profile itself is confined to an increasingly more narrow band
band close to the confinement walls. Again is a similar effect observed in AC electric
circuits where the effective resistance increases with frequency caused by a decrease of the
electric current density away from the surface of the conductor. Even though the effects
are caused by different physical phenomena, it is remarkable that the hydraulic analogies
extend as far as a increasing resistance in AC flow caused by a “hydraulic skin effect”.

2The pressure amplitude may, of course, be complex as a consequence of a phase-shift, however, when
considering a single tube, any phase-shift is removed so that the pressure amplitude is a real number.

3By the mathematical similarity to voltage the root mean square of p(t) = Ape'“’ is Apyms = Ap/v/2.

4His results are expressed in a somewhat different form.

5And thus the critical Womersley number.
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Figure 2.4: (a) Hydraulic resistance in Womersley flow normalized by the regular Poiseuille resistance.
For a. < 1/71 the Poiseuille and Womersley resistances are identical, but for a. > 1/71 the Womersley
resistance increases due to the change in velocity profile gradient. The circle marks the point of @ = 1

where the resistance begins to deviate from the hydraulic resistance of Poiseuille flow. a. = 1 is observed

to mark the onset of the regime regime of Rhwy?jm o a2. (b) Inertial contribution to Zwom divided by the

resistive contribution as a function of a.. As expected, the two are identical for a« = 1. The decrease in
slope above ac =1 is caused by the frequency dependence of the resistive contribution shown in (a).

Resistance to inertia measured by a.

It was argued in sec. (2.3.3) that a, = 1 marked the point where the fluid no longer has
time to reach a steady state before the pressure varies, and the velocity profile begins
to deviate from the Poiseuille parabola, that is, when inertial effects begin to be on the
same order as the resistive effects. With the EC formalism in place, it is evident from the
simple hydraulic resistance for Womersley flow, Zyyq = Rpyq + iwLpyq, that the resistive
losses inflicted by the flow at any point in time are found as the real part of the impedance
and the inertial losses are the imaginary part of the impedance. These resistive effects
should not be confused with the time-averaged resistance derived above, which compares
the effective resistive loss over one oscillation period to the loss the system would have
experienced, had the pressure gradient been constant in time.

Fig. 2.4(b) shows the imaginary part of Zywom, normalized by its real part, as a measure
of the ratio of inertial to resistive effects in the flow. The resistive effects dominate for
o < 1 while inertia dominates for o, > 1 and the two effects are identical for o, = 1.
This is further proof that a., and not Womersley’s «, is the proper measure for describing
the behavior of the flow. The decrease in slope for their ratio above unity is caused by the
frequency dependence of the resistance.



Chapter 3

Compliances and flow in elastic
tubes

The results of sec. 2.3 are only valid for flow in infinitely stiff tubes which is unfortunately
a case rarely encountered. Most tubing has some compliance stemming from the elasticity
of the tube wall, which not only will cause the flow to deviate from the idealized solutions,
but also will introduce new time scales to the physics. These effects must be accounted
for if one is to deduce the dynamic response of a component inserted into the system.

The first part of this chapter is devoted to the derivation of appropriate circuit ele-
ments, to be used in EC analysis in the following work, while two new equations along
with modeling techniques for elastic tubes will be presented in the second part. Additional
work in this field not relevant for the thesis is included in appendix B for the benefit of
future students.

3.1 Coupling compliance to flowrate and pressure

Consider a compliant medium in a liquid-filled microfluidic system. Assuming the volume
of the medium obeys a thermodynamical equation of state as

Vmed = Vmed (pmed) ; (31)

which is the case for e.g. air and linearly elastic solids, the medium will expand when a
pressure difference is applied across it. This change in medium volume will be filled with
a flow of incoming liquid, so the negative time-rate of change of volume of the medium
equals a positive liquid flowrate

deed
§ = — , 3.2
Qua = —— (32)
since Q1iq = d¢Viiq- The chain-rule of differentiation yields
Qliq = _apvmed atpmeda (33)

where the factor —0,Vmed is recognized as the definition of compliance, so eq. (3.1) may
be reformulated as

Qliq = Chyd 6tpmed- (34)
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3.2 Air bubble compliance

If present in the microfluidic system, air bubbles are often the most compliant parts, and as
any experimentalist working in the field of microfluidics can attest to, air bubbles seem to
always find ways to get stuck inside the system. Furthermore, the laminar flow conditions
makes air bubble removal a daunting task.

Assuming the isothermal ideal gas law applies to the air bubbles, the product of the
bubble volume and pressure is constant, pV = pgly, where the subscript ‘0’ indicates a
reference state. The compliance of the air bubble is then

_appoVo _ poVo

» o (3.5)

C1hyd =

Expanding the bubble pressure in a Taylor series about pg one finds to lowest order

Y
Chyd ~ —. (3.6)
2

Changes to the bubble volume removes it from thermal equilibrium and the isothermal
version of the ideal gas law only applies to systems, in which the heat generated by the
bubble volume change is transported away from the system on time scales significantly
faster than the time scale of the volume changes. The temperature difference between
the bubble and the surrounding liquid reaches equilibrium as a decaying exponential with
time constant

S p Cin fgh

(3.7)
Kth

according to [25]. Here, p is the density of the surrounding liquid and ¢, the characteristic
length of the conduction path, while Cyy is the specific heat and kyy, the thermal conduc-
tivity. Typical values for air in water at room temperature in a microfluidic system are
p=998 kg m™3, Cyp, =4.2x 1072 J kg™ !, y, = 0.5 x 107 m and kg, = 56.1 x 1072 W
m~' K~! leading to a characteristic time of 7 ~ 2 x 1078 s. Thus, the volume changes
to a small bubble in a microfluidic system can be considered isothermal for a pulsating
pressure even in the low kilohertz range.

At the other extreme, where the time scale of the volume change is significantly faster
than the time scale of the heat transfer, the adiabatic version of the ideal gas law applies

with pV7 = pyV] where v = ¢,/cy is the ratio of specific heats, so Chyq ~ %.

3.3 Compliance of elastic vessels

Consider one half of a linearly elastic tube of Young’s Modulus F, circular cross section
of inner radius a, thickness h, and axial length ¢, see fig. 3.1. Inside the tube, an added
pressure p works to expand it while the wall stress counteracts the tube radial expansion.
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Figure 3.1: Sketch of the upper half of a segment of elastic tube of axial length ¢, inner radius a before
pressure is applied and wall thickness h. The pressure p from the liquid acts on the tube walls which have
Young’s Modulus F.

7

3.3.1 Effects of wall inertia

Assuming only radial wall displacements, the displacement field becomes u(r, ¢, z,t) =
u,(r,t) e, in a cylindrical reference frame and the elastodynamic equation governing u for
an arbitrary wall thickness h is, [26]

pwOPu = 2y + Ay) V2u, (3.8)

where py, is the wall density and uyw and Ay, are the Lamé coefficients, which in terms of
Young’s Modulus and Poisson’s ratio vy, are given by
E
2(14vy)’
FEuvy,
(14 vy) (1 —20y)

P = (3.9a)

Aw =

(3.9b)

Eq. (3.8) is recognized as the regular wave equation with wave speed ¢ = v/ (2w + Aw) /Pw,
and the wave will traverse the tube radius in the time ¢ = h/c. With the parameters
listed in table 3.1 and a wall thickness of A ~ 5 x 10~*m, the time for the motion of
the wave across the wall thickness ranges from ¢t ~ 2.86 x 107%s for silicone rubber to
t ~ 2.10 x 107" s for PEEK'. Pressure oscillations in the low kilohertz regime will thus
be several orders of magnitude slower than the time it takes for the wall to reach its
equilibrium position as a result of the change in fluid pressure and consequently, the
inertia of the wall may be neglected.

3.3.2 Wall compliance

Since wall inertia can be neglected, only the solution to the associated equilibrium equation
to eq. (3.8) is needed to derive a wall compliance. Under the assumption u = w,.(r)e, with
the pressure p inside the tube, the solution to this equilibrium equation is given by Lautrup,
[29]

a? D

(a+h)? P
(a+h)?—a2E"

2

ur(r) = (14 vy) | (1 — 1) + (3.10)

r

'PEEK (Polyetheretherketone) is a very hard polymer material in wide use in experimental microflu-
idics.
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Table 3.1: Properties for selected tube materials as listed by [27] for the polymer materials and [28] for
stainless steel.

Material E [MPa] vy, pylkgm™3] ¢ [ms!]
Silicone rubber 2.05 0.49 1.15 x 103 174.7
Teflon 5.00 x 102 0.45 2.14 x 10? 941.4
PEEK 3.60 x 103 040 1.31 x 103 2375.6
Stainless steel 2.10 x 10° 0.30  7.75 x 103 6039.6

and the volume increase associated with the wall displacement is

YV =2mau.(a)l. (3.11)
As for the air bubbles, the time-rate of change of the volumetric expansion is the flowrate
2ra’l  a h  h?
= 1 2(1— 2— 4+ —| 0 3.12
@ Eh h—|—2a( ) (2(1 =) + a+a2 P, (3.12)
from which the wall compliance may be read off immediately as
2ral
= ) 1
Chyd Eh ﬁ (3 3)
The factor 3 is comprised of geometric and material variables and is given by
a h  h?
= 1 2(1— 2—+ —|. 3.14
8 h+2a( Fow) |20 =) + a+a2 (3:.14)

In the limit of very thin walls h < a this factor becomes 3 ~ 1 — v2. The term of v2
is negligible since 0 < v, < 0.5, which yields a well-known result for thin walls, [30]:

2ral
Eh
used in many instances to model the compliance of the arterial wall, e.g. [31, 32, 33, 34, 35].

In the other limit of A > a which is usually found in experimental microfluidics, eq. (3.13)
tends to

Chyd &~ for h < a, (3.15)

2mwa’l

Chyd ~ (14 vy) for h > a, (3.16)

where all dependence on h vanishes. Both these limits are found in fig. 3.2 which shows
the compliance for a silicone rubber tube (E = 2.05 x 10 Pa) and three different values
of vy as a function of h/a.

Limitations

It is an underlying assumption of the elastodynamic equation, eq. (3.8), that the displace-
ment fields are small, while the solutions to said equation used in deriving the expressions
for Ciyq assume no axial deformation of the tube. Deviations from these assumptions
would obviously make the derived expressions invalid.
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Figure 3.2: Wall compliance for varied Poisson ratio as a function of h/a. The dashed line is the limit
of h/a < 1. Squares (O): vw = 0.00. Circles (0): vy = 0.25. Triangles (A): v = 0.50. The remaining
parameters are E = 2.05 x 10° Pa, a = 0.125 x 1073 m and ¢ = 5.0 cm.

3.4 Flow in elastic tubes

Viscous flow in elastic tubes is a coupled fluid-solid interaction problem which is very
difficult to solve analytically. In the pulsatile case its solution would yield great insight
into the physics of arterial blood flow, prompting the interest of scores of workers, while
the transient case is of great interest in systems where a predescribed volume of fluid is
to be delivered in a specified time.

3.4.1 Simple EC model

The fluid flow in an elastic tube experiences resistance and inertia along with the compli-
ance caused by the elastic wall. In the simplest EC model, these three circuit elements each
act in a point, so the positioning of the three relative to each other may become important,
depending on their relative magnitude. Three approaches are illustrated in fig. 3.3, where
in each case the flowrate enters at penter and exits at peyit with a total pressure drop of
AP = Penter — Pexit- The compliances are relative to atmospheric pressure (i.e. ground in
the EC diagram), since the tube over-pressure relative to atmospheric pressure determines
the displacement of the elastic tube wall. When the flowrate meets a compliance, some of
it inflates the tube while the rest continues downstream, so the compliance branches the
flowrate into an inflating flowrate and a flowrate exiting the tube.

In (a), the compliance is placed upstream of the resistance and inertia, so that all
incoming flowrate experiences both resistive and inertial losses before some of it is used to
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Figure 3.3: Three simple approaches for EC modeling of flow in elastic tubes. The flow enters at penter
and leaves at pexit, in all three cases, which only differ in the positioning of the wall compliance Chyq.
(a) The compliance is placed downstream of the resistance and inertia, meaning that all incoming flow
experiences drag and inertial losses. (b) The compliance is placed upstream of Rpyq and Lpyd, so some
of the incoming flowrate is branched off into the compliance without experiencing losses. (c¢) The original
tube of axial length ¢ is modeled as two segments of length ¢/2, with the compliance placed in between.
The circuit elements of these tube segments have half the numerical value of the original elements due to
the linear dependence of all circuit elements on axial length £.

inflate the wall. The situation is reversed in (b), where the inflation takes place before the
flowrate experiences any losses, so only some of the incoming flowrate experiences losses.
In the case of a very hard wall, only a very small volume will be used to inflate the wall,
and these two approaches will yield almost the same result, but in the other extreme of a
very soft wall, the two models will strongly disagree. The first model will over-predict the
losses since it assumes all incoming flowrate is exposed to the resistance and inertia, while
the second model will under-predict the losses as the inflationary flowrate is branched off
before any losses are applied to the it.

Compliance, resistance, and inertial losses are continuously distributed at every axial
position in the actual tube, so the further downstream one goes, the more of the flowrate
is stored in the inflating tube walls and less continues downstream to be inflicted resistive
and inertial losses. To lowest order, this is captured by splitting the original tube of axial
length ¢ into two segments of length ¢/2, and then place the compliance of the original
tube in between the resistances and inductances of the new tube segments, as shown in (c).
Since all circuit elements depend linearly on axial length ¢ (see egs. (2.9), (2.21), (3.6) and
(3.13)), the elements of the new tube segments have half the numerical value of the original
tube circuit elements. In this case, the incoming flowrate experiences both inertial and
resistive losses, before some is used to inflate the tube while the rest continues downstream
towards the tube exit while being exposed to the resistive and inertial losses of the second
tube segment. This last modeling approach has been used in the present work as a low-
order model of flow in elastic tubes unless otherwise stated, since a similar approach for
heat transfer has been shown to be in very good accordance with the analytical solution,
[1]. It may easily be extended to pulsatile flow by exchanging the resistance and inertia
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Figure 3.4: Improved EC model of flow in elastic tube. The tube has been divided into Ngc segments,
each of axial length Az = ¢/Ngc. All circuit elements listed are for these new segments, so that e.g. the
resistance Ruyq is given in terms of Az and not the length of the entire tube, £.

with a Womersley-type impedance Zwom -

3.4.2 Continuum model

The physiological interest in understanding the physics governing arterial blood flow has
been the driving factor behind most of the theoretical work in the field of inertially dom-
inated flow in elastic tubes. Many models have been presented to various degree of accu-
racy, but few have proved well against experimental data, arguably due to the tapering
and branching of the arterial network. Of special note is the extensions of the theory for
pulsatile flow in a rigid confinement by Womersley summarized in [31], the work of Morgan
and various co-workers, [32, 33], and the solution of the full wall equations coupled with
the fluid equations by Cox, [36], who in addition required the wall to be incompressible
and viscoelastic. A good overview of existing blood flow models may be found in [37, 38].
The general problem of pressure driven flow in elastic tubing has drawn comparatively lit-
tle attention. Work of note is Iberall’s derivation of a Laplacian for pressure, [39], and the
work by Olsen and Shapiro, [40], who considered large-amplitude oscillations theoretically
and experimentally. Unfortunately, none of the presented models are appropriate for the
present work due to their assumptions of either thin or viscoelastic walls, neither of which
are good approximations in experimental microfluidics: a tube of inner diameter a =~ 0.25
mm usually has a wall thickness of A &~ 0.60 mm corresponding to h/a ~ 2 which cannot
be considered thin, and the tube walls show no signs of pronounced viscoelastic behavior.

The accuracy of the model introduced in the section above for flow in elastic tubes
may be improved by dividing the tube into more than two segments. Fig. 3.4 shows the
tube split into Ngc segments each of axial length Az = £/Ngc. Considering one mask of
this model, the incoming flowrate Q(x) splits into an inflationary flowrate Q¥an (x) and
a flowrate continuing downstream, Q(z + Ax), i.e.

Qz) = QUM (z) + Q(z + Ax). (3.17)
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wall
comp

Cyan O¢p(z). Meanwhile, the pressure drop along one tube segment is given by

() is given in terms of the pressure at z in the usual manner as Q‘C’Voarﬂp(x) =

p(z) — p(x + Az) = RyyaQ(z + Az) + Liya 9,Q(x + Ax). (3.18)

The circuit elements Ryyq, Lnyd and Cyan all depend linearly on the axial dimension of
the element, in this case Ax for each tube segment. Collecting and rearranging eqgs. (3.17)
and (3.18) yields

Q(z) — Q(z + Ax)

A = C’wall atp(x)v (3193)
— A R "
p(x) Z(i +Az) RuyaQ(x + Az) + Linya 8Q(z + Az), (3.19b)

where the hat is used to indicate an element per axial length, i.e. Rhyd Ax = Rypyq.
The resolution of the model increases as Ngc — oo corresponding to Az — 0. In this
continuum limit the equations become

A~

_azQ(x’ t) = Cwall 815])(56), (3203)
—0,p(7,1) = RiyaQ(2) + Liya 9:Q(). (3.20Db)

Combining these two equations, one arrives at the following damped wave PDE for the
pressure

1 1
Op(w,t) = 7 Ol t) + = Op(x,t), (3.21)

where the constants are

1 aFEh

D = = = =
Rhyd Cwall 1 677ﬂ

and ¢ (3.22)

1 [En
=———=4/5 5
\/ Lnyd Cwan pafs

D has units of a diffusion constant (m? s=!) while ¢ is the speed of the pressure waves.
The energy losses associated with the resistance causes the damping of the wave motion
which is intuitively correct, as one always finds a pressure wave traveling in an elastic tube
to die out at some point downstream of the source.

3.4.3 Continuum model in the pulsatile case

The arguments leading to eq. (3.20) may be repeated for the case of pulsatile flow, where
a Womersley impedance is used instead of a resistor and inductor in series. Eq. (3.20b)
then becomes

—0up(x,1) = ZnyaQ(x), (3.23)

and the governing equation for the pressure is

aip(xv t) = ZWOméwaH atp(x7 t)7 (324)
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while the flowrate is the found from eq. (3.23). At first glance this looks like a diffusion
equation, but since Zyom is a complex number, this is also a damped wave equation. One
solution to this equation is a pair of traveling waves

p(x’ t) — wl ei(kxfwt) + w2 e*i(kﬁ?“rwt) +p07 (325)

where the constants ¥; and 9 are determined by the boundary conditions, and pg is a
reference pressure. The wave number £ is found by plugging eq. (3.25) into the governing
equation:

k = +1/iw Zwom Cuwall (3.26a)
_1
o [ 27 (ai) ’
=4 7 1| (3.26D)

.3 .3
¢ laizJy <a12>

which is recognized as the regular dispersion relation k& = w/c multiplied by ta factor
comprising effects pertaining to the change in velocity profile for pulsatile flow. The
associated flowrate is

Qz,t) = Al [?,/)1 pilkz—wt) e e—l(kz-i-wt)] ) (3.27)
ZVVom

Considering the case of pulsatile flow entering the tube at x = 0 and leaving the tube
at x = £ with the boundary conditions

p(O, t) = Apentere_iw’f + po, (328&)
p(£,t) = Apexice ™" + po, (3.28b)

the traveling wave solution satisfies these conditions if the constants are given by

eik:é Ap it
=A nter 1-— . . = ; 2
h Pente < 2isin (M)) 2isin (k() (3-29)
A enter ikt A exi
Wy = Penter © Pexit (3.29b)

2isin (k) ’

where use has been made of the complex sine function. The flowrate at x = 0 and x = ¢
of this system is given by

k Apexit —iwt
= —— — ApDenter Wt .
Q(0,1) - [sin 00 Denter COt (ké)} e (3.30a)
QU t) = Y| Ape cot, (kf) — APenter | ot (3.30Db)
) 2 . Dexit Sin (k‘f) . .

The attractive mathematical property of proportionality between flowrate and pressure
difference so far encountered has been lost in this continuum limit, and speaking of a linear
impedance relating pressure to flowrate is no longer meaningful. A 1:1 mathematical
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relation still exists, although the algebraic operations required to arrive at the expressions
are more cumbersome than for the idealized case of single circuit elements. However, these
new expressions do relate flowrate and pressure difference at every single axial position,
and knowing one of the variables, the other can be computed directly. Various other
transmission line models for the pressure in elastic tubes has been presented, [41, 42, 43,
44], but none have included the exact Womersley impedance of eq. (2.26).

3.5 Summary

Appropriate compliances for the work of the thesis have been derived from quasi-equilibrium
expressions, and the validity of these compliances have been justified. Low order modeling
of flow in elastic tubes has been discussed, and continuum equations governing damped
wave motion have been derived for the over-pressure for both regular and pulsatile flow.



Chapter 4

Experimental flow in elastic tubes

As a first step towards full systems-level modeling, the simpler case of tube flow is studied.
Two separate experiments have been conducted: verification of the Hagen—Poiseuille law,
eq. (2.8) for a very stiff tube, and the transient pressure build-up towards a steady state
in an elastic tube exposed to an abruptly applied pressure gradient.

The hydraulic resistance of a hollow fiberglass tube is determined in the first case.
Fiberglass has very high Young’s Modulus! with small variation in wall thickness and
inner radius when pulled into hollow fibers, and meanwhile, the hydraulic resistance is
the easiest circuit element to determine experimentally, so this experiment will set the
upper limit for the attainable accuracy between theory and experiment for the thesis. All
steps will be detailed for this simplest of experiments to illustrate the care taken in all
experimental work presented in the thesis.

The second experiment will be used to investigate a transient phenomenon and from
this, determine the agreement between EC model and experiment for said dynamic system.
In addition to insight into the characteristic dynamic time scales of microflow in elastic
tubing, this also serves as a first step towards experimental treatment of pulsatile flow.

4.1 Measuring the hydraulic resistance of a tube

Of the three basic circuit elements of inductance, resistance and compliance, Ryyq is the
only which is independent of time, so the hydraulic resistance of a component is by far the
easiest circuit element to determine experimentally. This is usually done by simultaneously
measuring flowrate through and pressure difference across the component once the flowrate
is constant and hence void of transient effects; its resistance is found as the ratio of the two.
The experimentally determined resistance may be compared to the theoretically derived
expression of eq. (2.9). A hollow glass-fiber was used as the component due to the high
accuracy of its inner radius as well as its very low compliance.

Although simple in theory, much care must be taken when conducting this experiment.
The theoretical expression for Ryyq is a function of viscosity which in turn depends heav-

'E = 6.03 x 10" Pa, according to [28].
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ily on temperature? thus necessitating accurate temperature measurements. Moreover,
flowrates are rarely measured directly, rather, the mass of fluid exiting the component is
continuously measured and divided by the sample time. In microfluidic systems where
only small volumes of liquid exit the component, evaporation at the mass measurement
station must be prevented or quantified for this method to work.

All experiments in this thesis have been conducted under controlled thermodynamic
conditions of T' = 20.00 + 1.00 °C and 45.0 + 5.0 % relative humidity.

4.1.1 Method

Prior to experimentation, the water for the measurements (approximately 100 mL) was left
undisturbed in a glass in the laboratory for approximately 30 minutes to ensure laboratory
and water temperatures were identical. The viscosity was measured with a falling ball
viscometer in which a spherical object of known size and density is dropped into a tube of
well-known length and diameter, filled with the fluid of consideration. Only gravity and
viscous drag are acting on the ball, so the steady state velocity of the ball can be related
to the viscosity of the fluid, from the time it takes the ball to drop between two sets of
markings on the viscometer tube.

A reference liquid of known viscosity is required for the viscometer. Using DI water
as the reference fluid for the viscosity measurements since tabulated values for this are
readily available in the literature, e.g. the CRC Handbook of Chemistry and Physics [45],
the viscosity of the tap water for the experiments was measured a number of times before
the Ap — Q measurements for Ryyq, and again after the conclusion of these. In both
cases, the temperature was taken before and after each individual viscosity measurement.
Recording the exact drop time of the viscometer ball was very difficult leading to small
errors.

A syringe pump mounted with a 10 cm? plastic syringe filled with tap water was used
to generate flowrates. The pressure was measured at the tip of the syringe, right before
the fiberglass tube, which was press fitted to the fluidic system using a small piece of thick-
walled silicone rubber tubing. The free end of the fiber was directed into a laboratory cup
on a precision scale, without the fiber glass tube touching the cup walls. Finally, a piece
of aluminum foil was placed on the cup as a lid to prevent evaporation, leaving only a
small hole for the glass fiber to enter.

To conduct a measurement series, a flowrate was set on the pump and the mass detected
by the scale was read out every second. Once the pressure sensor reached a constant level,
the average pressure was recorded over a period of about 20 s. The laboratory temperature
was measured before and after each experiment.

4.1.2 Instrumentation

Pressure sensor: Comark C9551 Pressure Meter (silicon sealed) (Comark Instruments,
Beaverton, Oregon, USA), differential pressure meter. Pressure range: 0 — 14 kPa with

2The viscosity of water varies roughly 2 % per degree celsius, [45].
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Table 4.1: Relative deviations of the measured viscometer constants from the mean, Kyisc = 5.4547 X
1078 m* s2, without correcting for temperature variations. Obtained using DI water.

Exp. # | 1 2 3 4 5 6 7 8
ex [%] 1099 032 0.83 0.82 0.86 0.16 0.30 0.30

resolution of 10 Pa.

Viscosity measurements: Gilmont Instruments GV-2200 Falling Ball Viscometer, us-
ing size 2 ball. Fall times measured using a Bonett stop watch with 0.01 s resolution.

Syringe pump: Cole-Parmer (Vernon Hills, Illinois, USA), catalog # 789200C.

Scale: Mettler-Toledo (Mettler-Toledo, New York, USA) Ax105 DeltaRange, readability
0.01 mg.

Syringe and tubing: A BD 10 mL syringe (14.48 mm inner diameter) with Luer-Lok fit-
ting system. Hollow fiber glass tubing (fused silica, { = 84.7 cm, a = 0.53 mm by Supelco,
Pennsylvania, USA), fitted to the syringe via a press fit in a small piece of thick-walled
silicone rubber tubing.

Data acquisition and handling: IBM T41 ThinkPad for acquisition using BalanceLink
software by Mettler-Toledo and Dell Inspiron 6400 with MATLAB 7.0.1 (The MathWorks
Inc., Natick, Massachusetts, USA) for handling.

4.1.3 Results
Viscosity experiment

Using DI water as the reference fluid, 8 measurements of the viscometer constant was
completed. The temperature variations for each measurement was at most 0.1 °C, so
the temperatures recorded before and after was averaged for each measurement. The
viscometer constant was computed for each measurement using the interpolated values
of the rheological constants from [45] at this average temperature; the average of these
viscometer constants for all eight measurements was Kyjsc = 5.4547 x 1078 m* s72. Devi-
ations of less than 1 % from the mean value of the viscometer constant K. was found
for the results of the individual measurements, see table 4.1, even without corrections for
temperature variations, so Kyise is used for all viscosity computations in the following.
The viscosity of tap water was determined from K, and the results are given in
fig. 4.1. As before, only variations of up to 0.1 °C were observed during each measurement,
so the mean temperature is used in the figure. The data is distributed evenly about the
data for DI water, which has been obtained by interpolation using a fifth order polynomial
curvefit to the data from CRC Handbook of Chemistry and Physics, [45]. The measured
viscosities of tap water deviate around 1 % from the interpolated data for DI water when
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Figure 4.1: Measured viscosities, computed using the average viscometer constant Kyisc. “Before” and
“After” in the legend indicates when each measurement was made in reference to the A P—() measurements,
and the reference is obtained by interpolation using a fifth order polynomial curvefit to the data for DI
water from CRC Handbook of Chemistry and Physics, [45]. The errorbars are a result of the previously
mentioned timing difficulties when measuring the drop time of the viscometer ball.

taking temperature into account, but due to the even distribution about the data for DI
water, the viscosity variation between DI and tap water is neglected and the interpolated
data for DI water is used for all computations in the following.

Ap — () experiments

Using different flowrates, the recorded relation between specified flow rate and measured
pressure drop is given in fig. 4.2. Without correcting for temperature variations, a linear
relation passing through the origin is observed and the slope of a linear curve fit to the data
is }_%fyej ® =419.08 x 10° Pa s m ™3 , where the superscript ‘meas’ is included to distinguish
between theoretically calculated and measured hydraulic resistance. The relative error
between Ehmyef and the individual measurements conducted at different temperatures is
low as shown in table 4.2, validating the use of the linear approximation. The theoretical
values of the hydraulic resistance at all measurement temperatures have been computed

using the interpolated data for DI water for the viscosity, also given in table 4.2, and the
mean value, RE;ZO = 435.61x10° Pasm™3, has been used in fig. 4.2. The relative variations

from the mean of less than 0.1 % for RE;ZO can be attributed to the low temperature
variations resulting in small variations of the viscosity.

The results indicate good agreement between theory and experiment even without
the negligible temperature variations initially thought to introduce deviations, but the
data is not completely coinciding; rather, the same overshooting of the theoretical values
exceeding the errors on the viscosity measurements is observed throughout. The relative
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Table 4.2: Variations of the individual measurements and theoretical calculations of Rynyq with tempera-
ture. All entries of Ryyq has the unit GPa s m~3. €Rpneas is the relative variation between the slope of the

—smeas

linear curvefit in fig. 4.2 given by Ry,y,q = 419.08 x 10° Pa s m™®, and each measurement. No corrections
for temperature have been made. For the theoretically determined values, € Riheo is the relative deviation
y

from the mean E;&,ZD =435.61 x 10° Pa s m >, of which the latter also is given in fig. 4.2.

T [°C] 20.30  20.20 20.10 20.20 20.15 20.40 20.30  20.25

hmyec?s 432.30 400.19 405.13 419.95 419.95 407.60 416.99 419.95
€ Ryess (%] 3.15 4.51 3.33 0.21 0.21 2.74 0.50 0.21

Rfl}}‘,‘ff 434.95 436.01 437.08 436.01 436.55 433.89 434.95 43548
€ Riheo (%] 0.15 0.09 0.34 0.09 0.21 0.40 0.15 0.03
\A

error between Rhmyef ® and RE;ZO is 3.80 %, which is more than what can be attributed to the
errors introduced by the simplifications above, and the repetitiveness of the error suggests
a wrong numerical value has been used in the theoretical calculations. Having eliminated
viscosity as the source of error, eq. (2.9) suggests a variation of the tube inner radius to be
the source: such a variation of 1.40 % on the tube radius, which is equivalent to 3.6 um,
would be sufficient to account for the deviation. The manufacturer has specified the tube
inner diameter to 0.53 mm, so the above variation is below the given tolerances and the
experiment cannot be conducted to higher precision with the available equipment.

4.1.4 Validation of result

The Reynolds number depends on the selected flowrate; for the above experiments the
Reynolds number based on the diameter lies in the range 4-80, meaning that inertial
effects dominate viscous effects and that the flow of tap water does not fully satisfy the
Stokes flow assumption. However, the flow is still in the lower end of the laminar regime
and the tube has no kinks, bends etc., so the Hagen—Poiseuille law is valid.

The flow is fully developed at a distance fq, downstream of the inlet according to
Shah and London, [46]

0.6

o N ———2 1+ 0.056 Rey d, 41
ent ¥ 10035 Reg cd (4.1)

where Reg is the Reynolds number based on the tube inner diameter d. For the present
Ap — @ experiments using the largest value of Rey above, this distance is no more than
lent &~ 2.46 mm, and since the fiber glass pipe has a total length of 84.7 cm, only small
errors are introduced by assuming fully developed flow throughout the tube. The observed
variation between theory and experiment in fig. 4.2 is likely caused by variations in the
tube radius.
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Figure 4.2: Measurements (dashed) and theoretically determined (solid) flowrate and pressure drop.
The errorbars are a result of the viscosity error. A small, but constant, overshooting of the theoretically
determined Riyq exceeding the errorbars is observed.

4.2 Transient build-up of pressure in an elastic tube

The fairly complex physics of transient viscous fluid flow in an elastic tube contains all
three basic EC elements: fluid resistance, fluid inertia and compliance of the elastic wall.
The simple case of only a tube is used to gauge the validity of EC modeling of dynamic
flow, and allows for estimating the characteristic relaxation® time when wall elasticity is
introduced.

4.2.1 Pressure generation considerations

Ideally, the pressure increase driving the flow should be applied instantly to ensure that
only the effects of transient flow in an elastic tube are observed, but due to the inher-
ent time-lag in any pressure generating device this is not physically achievable. However,
applying the pressure difference on a time-scale significantly faster than the temporal res-
olution of the pressure sensor (which is 1 ms), the pressure will appear to have been added
abruptly to the sensor. This, too, is unfortunately also not possible with conventional elec-
tromagnetic, piezoelectric, or servo valves which all have a temporal resolution of about
2ms, [47, 48, 49].

A simple way of generating a pressure difference on time scales faster than 1 ms is to
drop a weight on the outside of the tube. As soon as the falling weight hits the elastic tube,
a pressure increase propagates through the tube wall, but the water contained in the tube
will not experience the pressure increase before it has traveled across the tube. Relying
on the usual assumption of incompressibility for the water, the only elastic part of the

3Recall that the characteristic relaxation time is circa 1 ms for rigid walls as discussed in sec. 2.3.1.
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Figure 4.3: Setup for the transient Poiseuille experiment. (a) The constituent parts. (b) The setup ready
for experimentation. The pressure difference is generated by swiftly yanking the wedge in the direction of
the arrow. Legend (1): Pressure sensors, (2): Tube, (3): 9 V battery, (4): Weight, (5): Wedge, (6): Data
acquisition connector unit.

system is the silicone rubber tube?. Solely the elastic p-waves are of interest since these
transfer the pressure increase to the contained water, so the wave speed may be taken
directly from table® 3.1. Since the wall thickness is A = 0.3 mm, the pressure increase is
deposited in the water in t = h/c ~ 2 x 107%s after the weight is dropped, much faster
than the 1 ms temporal resolution of the pressure sensor.

4.2.2 Experimental setup and procedure

For these experiments, a primed pressure sensor was connected to each end of a water-filled
silicone rubber tube segment, and an over-pressure was suddenly generated by dropping
a 5 kg weight on the tube. Prior to generating the over-pressure, the weight was leaned
onto a common door stopper wedge keeping the bottom of the weight just above the tube.
By swiftly pulling the wedge out it drops onto the tube and compresses it, thus generating
an over-pressure. The experimental setup is shown in fig. 4.3.

The pressure sensors were connected to common 9 V batteries for voltage supply in
an effort to minimize readout noise. Data was sampled for 5 s from both pressure sensors
at a rate of 100 kHz, to ensure the capture of all time scales, and the weight was dropped
roughly 1 s after the commencement of data logging.

4.2.3 Instrumentation

Pressure sensors: Sensortechnics (Puchheim, Germany) 26PC02K0D6A differential
pressure sensors with a range of 0-2 bar and a manufacturer specified temporal resolu-
tion of 1 ms. The sensors are fitted with Upchurch Scientific (Oak Harbor, Washington,

4This is of course an approximation, but since the bulk modulus of water is K = 2.2 x 10° Pa while
Young’s Modulus of silicone rubber is E = 2.05 x 10° Pa the approximation is justified.

5Strictly speaking, the simplifications leading to eq. (3.8), on which the table is based, are not valid
since all wave motion along the axis of the tube has been ignored. Including this motion yields a slightly
different p-wave speed given by ¢ = \/(Aw + fw) /pw, but for estimates, this is not of importance.
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Table 4.3: Values of EC elements for the simple model of tube flow of eq. (4.2).

Element | Value

Rhiya 1.97 x 10° Pa s m~3
Liya 8.82 x 107 Pas2 m™3
Cyall 2.99 x 10713 m? Pa~!

USA) NanoPort fittings, which are glued on using Loctite (part of Henkel Corporation,
Disseldorf, Germany) 495 glue. One end of each sensor is left in ambient conditions so
the sensors measure relative to atmospheric pressure.

Batteries: Regular 9 V batteries by Memorex (Imation Electronic Products, Weston,
Florida, USA).

Tubing: Silicone rubber tubing (¢ = 20 cm, a = 0.6 mm, h = 0.3 mm).

Data acquisition and handling: National Instruments (National Instruments Inc.,
Austin, Texas, USA) DAQCard-6062E with 500.000 samples/s connected to pressure sen-
sors by a National Instruments SCB-68 Connection Unit. Data acquisition on an IMB
T43 laptop using a simple program developed in National Instruments LABVIEW 8.5.1.
based on ExpressVIs and handling using MATLAB 7.0.1 on a Dell Inspiron 6400 laptop.

4.2.4 Equivalent circuit model of the system

The (almost) abruptly generated pressure difference starts a Poiseuille flow of the water
towards the pressure sensors. The flow cannot enter the pressure sensors as these are
already liquid filled and have no open ends, so the flowrate at the pressure sensors is zero.
The EC model for this system has already been presented in sec. 3.4.1, and since the
weight was placed at the middle of the tube, the two sensors experience the same pressure
build-up, and consequently, behave according to the same model. The model of fig. 3.3(b)
has been used instead of the more correct model of fig. 3.3(c) because the condition of
no flow to the sensor would require no flow through the elements downstream of the wall
compliance in the latter case, resulting in the model of fig. 3.3(b). The following relation
is readily found from the normal relations

Apsens (t) + Rhydcwall atApsens(t) + Lhydcwall atQApsens (t) = Apa (42)

where Apsens(t) and Ap are the sensor and applied over-pressures respectively. This second
order ODE governs a damped oscillatory motion. The values of the circuit elements are
listed in table 4.3. As for an RC L-circuit in electronics, this system has three inherent
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time-scales

T = RpyqCyan = 3.33 x 1074 S, (4.3a)
7 = /LhydCyan = 3.86 x 107° s, (4.3b)
L
7= _ 448 %1072, (4.3¢)
Rhyd

of which only the latter two can be resolved by the sensors. The RC-time is related to the
oscillation period as 7 = 27/ LyyqCyan =~ 24 ms, while the LR-time relates to the decay
of the pressure amplitude for each oscillation. However, for a system of no compliance,
the LR-time corresponds to the characteristic relaxation time and is thus the EC version
of the characteristic inertial relaxation time 7 = a®/(7?v) of sec. 2.3.1. This latter is
7 = 62.0 ms for the present case, so the EC result is close.

As already discussed, this model may be improved by dividing the tube into more than
two segments, or using the continuum limit of infinitely many segments. In this limit, the
governing equation is exactly that given in eq. (3.21), with the boundary conditions of
Apgens(0,t) = Ap and 0, Apgens(¢,t) = 0, where this latter follows from setting Q(¢,t) =0
in eq. (3.20b).

4.2.5 Statistical analysis

Noise from the pressure sensor output signals are removed by filtering. Although batteries
are used to supply the pressure sensor input voltage, noticeable noise is still present in
the output signals. A frequency analysis of the pressure sensor output revealed several
noise peaks at frequencies around 3kHz and one large peak at f ~ 8.1kHz, see fig. 4.4,
corresponding to time scales of approximately 5.9 x 10™*s and 1.2 x 10™%s, respectively.
These frequencies are faster than the specified sensor resolution and have been removed
by filtering.

A lowpass Butterworth filter has been chosen as it, contrary to most filters, has no
ripples in the passband, but still rolls off fairly steeply in the stopband®. Butterworth
filters are characterized by their order o and the cutoff-frequency w. (the angular frequency
above which no output is desired). The higher the order, the steeper the roll-off at the
cutoff-frequency, but unfortunately higher order filters are more time-consuming to employ
as more computation is needed. An undesirable property of filters is their propensity of
introducing a phase-shift to the filtered signal, although this may be minimized by first
filtering the signal in the direction of its acquisition, i.e. from time ty to time t¢nq, and
subsequently filtering the just filtered signal in reverse, i.e. from time tq,q to time tg. For
an in-depth discussion of signal filters the reader is referred to [50].

For all results in this chapter a Butterworth filter of order o = 7 with a cutoff-frequency
of we = 2 x 103 rad s~! has been employed, and filtering has been carried out “in both
directions” to minimize phase-shifts.

5The “passband” is the frequencies allowed to pass and the “stopband” is the blocked frequencies.
For a lowpass filter this constitutes the frequencies above the cutoff-frequency, the first of the unwanted
frequencies.
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Figure 4.4: Measurement noise spectrum obtained by performing a fast Fourier transform on a reference
measurements of the primed system sans the over pressure.

4.2.6 Results

The measured pressures from each sensor as a function of time is shown in fig. 4.5.
Following a curve somewhat resembling the characteristic curve of damped oscillations,
the pressure reaches a constant value of Ap = 7.3 x 10* Pa roughly 0.4 s after the weight is
dropped. Only half of the mass of the weight will go to the fluid pressure increase since one
end of the weight continuously rests on the table, and assuming the contact area between
the weight and the tubetobe A~ 1 x 107'mx2 x 1073 m ~ 2 x 104 m?, the maximally
attainable fluid pressure is Ap =~ 1.2 bar. Since some of this pressure is used to compress
the wall and given the level of uncertainty in the estimated value of the area, the found
pressure increase of 7.3 x 10* Pa is probable. The input signal was cutoff above 4.25 bar
due to limitations on maximum input voltage on the data acquisition card, causing the
abrupt cutoff of the first pressure peak in fig. 4.5(a).

The results of the EC model using either one or four terms are also shown in the
figure along with a numerical solution to the continuum equation. The low-order models
have been solved using MATLAB’s ode45 ODE solver. The PDE governing the continuum
model is easily solved analytically for a traveling pressure pulse, but the startup problem
considered here is more demanding and has therefore been solved numerically with the
generic finite element solver of CoMSOL MULTIPHYSICS using a first order BDF method
in time and second order Lagrange elements in space.

All three models agree with the experimentally observed behavior of a damped har-
monic oscillatory pressure reaching a steady state ~ 0.4 s after the weight was dropped.
The oscillation period from the one-term EC model is roughly 24 ms, while the higher-
order EC models have oscillation periods of about 20 ms; both of these compare favorably
to the oscillation period of about 27 ms found in the experimental data.
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— Sensor 1, measured

-- Sensor 2, measured

--- EC model with one term
— EC model with four terms

— Continuum model

Figure 4.5: Transient Poiseuille flow results. Pressure builds very quickly after the weight is dropped,
and goes to a constant value of Ap = 7.3 x 10* Pa in a manner somewhat resembling a damped harmonic
oscillator. Also included are the results of the simple EC model of eq. (4.2) (solid blue), a slightly more
elaborate EC model in which the original tube is divided into four segments with compliances positioned in
between them (blue dash-dot), and the continuum limit of infinitely many such tube segments (solid red).
The four-term EC model and continuum model only have slight disagreements. (a) The full measurement of
sensor pressure shows a rapid increase at first followed by a relaxation to a constant value in approximately
0.4 s. The pressure sensor input was cut off at 4.25 bar, so the prediction of the continuum model of 5.45
bar pressure at the initial peak cannot be verified. (b) Zoom on the pressure oscillations following the
initial peak. Although none of the three models reproduce the measurements exactly, they all capture the
essential behavior, the total relaxation time and the frequency of the damped oscillations. In addition, the
continuum model also captures the amplitude peaks of the subsequent waves.
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The fluid can only flow when the compliant wall yields due to the blockage at each
end, and it is found that only the time scales where inertia enters are found in the model
results; the RC-time is not dominant while the LR and LC' times are. Comparing to the
simple cases of sec. 2.3 where the walls were assumed infinitely stiff, the inclusion of elastic
walls has introduced a second time-scale to the physics, which all the models account for.
The shortcomings of the EC model are many, with the most glaring being disregard of
wall inertia, so the fact that the model fairly well captures the measured physics using a
maximum of four terms, indicates that the dominating physical phenomena are accounted
for.

4.3 Summary

The simplest microfluidic experiment was conducted by experimentally determining the
hydraulic resistance of a hollow glass fiber tube. Much care was taken to account for
temperature variations when conducting the experiments, as it was expected the strong
dependence of viscosity on temperature would yield noticeable deviations. Theory and
experimental data was found to be in good agreement, even without correcting for the
small temperature variations during experimentation, but the theoretical and experimental
results did not completely coincide. It was argued that deviation of the tube inner radius
below the specified tolerance would explain this discrepancy, so the attainable resolution
of the lumped-parameter EC models is set by the manufacturer-specified tolerance of the
inner radius of the tube used.

A transient experiment of abruptly started pressure driven flow in an elastic tube was
conducted. A simple EC model was used to model the system, and was found to be in
fair agreement with the experimental data. A difference in characteristic time for the fluid
pressure to reach a steady state was found to increase by roughly one order of magnitude
by inclusion of the elastic walls, and a second time scale was observed as the pressure
approached a constant value. It was discovered that the continuum model, thought to
exceed the simple low-order models in accuracy, was only slightly better in capturing this
transient phenomenon.



Chapter 5

The constructed pressure source

An experimental setup capable of probing the low kilohertz range is required for the
characterization of component dynamics that is the ultimate goal of the thesis. This
chapter presents a driving mechanism constructed for said purpose.

5.1 Initial considerations

A microfluidic driving mechanism delivers either a specified volume (flowrate) or a specified
pressure. However, one cannot arbitrarily select both pressure and flowrate for a given
system since the Stokes equation governing microfluidic flow, eq. (2.4), must be satisfied,
and flowrate is a manifestation of fluid velocity. Rather, pressure or flowrate may be
specified while the other is determined by the system. Independently of the choice of
specified physical quantity in the setup, properties such as frequency and amplitude ranges
are critical and should be maximized. The driving mechanism will be used to expose
compliant media to pulsatile pressure and flowrate, so although the inertial time scale
is believed to be about 1ms from theoretical considerations, the transient experiment of
chapter 4 suggests that the relaxation time scale of the system might be closer to 10 ms.
Microfluidic tubing has an inner radius of approximately 0.2 mm, so in order to observe
the pulsatility, displacements of minimum 2 mm in the tubing is desirable. This, in turn,
requires that the setup delivers stroke volumes of about 0.1 mm?.

A thorough survey of micropumps and flow generators, both commercially available
and documented in scientific literature, [51, 52|, show that while few can operate in the
low kilohertz range, none have been developed for this purpose. Those capable are all
pressure generators displaying an interdependence between amplitude and frequency while
generating very small flowrates, so a new driving mechanism has been developed to better
probe the desired frequency range.

5.2 Choice of actuator

Actuators deliver either a torque or a force. The first category of actuators include,
but is not limited to, rotating electro motors known from a wide variety of commercial
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applications e.g. automatic car windows, kitchen blenders, radio-controlled toy cars. Due
to their construction, the controlling parameter is the angular velocity rather than the
torque; this latter simply adjusts itself to deliver the specified angular velocity, as long as
the required torque is below the maximum torque capability of the motor. Thus, electro
motors are well-suited as the driving mechanism in a flow generator, since they will adjust
the torque (which will determine the pressure in the fluidic system) to the system on which
they operate while delivering a specified number of rotations per unit time. This latter
can be related to a specified stroke volume of fluid per unit time, i.e. a flowrate. However,
no electro motors with an angular velocity above 10 x 103 rpm ~ 160 Hz are available, so
the required frequency range is not attainable with these devices.

Two types of force-delivering actuators are appropriate for oscillations in the low kilo-
hertz range: linear electromagnetic actuators and piezoelectric! actuators. Piezoelectric
actuators are most appropriate as pressure generators due to the proportionality between
voltage and stress, however, very high voltages are required for even minute deflections
(20 Vy, usually causes deflections of O (1 nm)), which in turn yields high temporal resolu-
tion. It is thus a trivial task to produce oscillations of about 5 MHz, but the very limited
amplitude of the oscillations means that very low volumes of fluid can be displaced. This
problem may be overcome by stacking the piezoelectric material in layers and hence am-
plifying the deflection, since the total deflection of the stack is the sum of the deflection of
all layers. Even still, a very large stack (about 1m thickness) is required for a deflection
of 1 mm, and such a stack should not be operated above 160 Hz, [53], so piezoelectric
actuation is also not a viable option for the present work.

Of the linear electromagnetic actuators, a simple type is the “voice coil actuator”
which is the traditional actuator used in loud speakers. It consist of a permanent magnet
fixed behind a coil of electrically conducting wire, which moves, when an electrical current
is sent through the wire. To concentrate the energy of the magnetic field, a soft iron
core attached to the permanent magnet fills the middle of the coil, without impeding its
movement. The force generated is proportional to the current in the coil, and frequencies
up to about 20kHz are known to be achieved by some commercial loud speakers. Thus,
having a voice coil actuator deliver a well-known force F' on specified area of fluid A, a
known pressure p = F/A is generated, well into the low kilohertz range. Additionally,
by varying the current in the coil, the force and hence the pressure amplitude is varied
independently of the frequency. This type of actuator has been chosen for the driving
mechanism, which then acts as a pressure source.

5.2.1 Actuator

The actuator used in the source is a LA08-10-000A voice coil actuator (BEI Kimco Mag-
netics, San Marcos, California, USA). The permanent magnet and the coil assembly are
not held together but are two separate pieces, as shown in fig. 5.1. The actuator delivers
Kr = 1.1 N A~! and has a characteristic electrical time of 7 = 160 s, corresponding

IThe piezoelectric effect exhibited by certain materials (notably crystals and certain ceramics) is the
ability to generate and electric potential in response to an applied stress. The effect is reversible since the
materials experience a stress when a voltage drop is applied.
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Figure 5.1: BEI Kimco LA08-10-000A voice coil actuator next to an American quarter dollar coin. The
grid lines intersect every 5 mm. (a) The two parts constituting the actuator: The coil (with the wires
exiting) and the permanent magnet. (b) The assembled actuator, mounted with the plunger and membrane
(see sec. 5.3.2 for details on the plunger).

to a characteristic frequency of f = 0.99kHz. The peak force of this actuator is 6.7 N,
the “continuous stall force” (the maximum continuous force the actuator is capable of
delivering for a sustained period of time) is 1.97 N and the stroke length is maximally 2.03
mm. Since the force depends linearly on the current, F' = KglI, the following holds for the
generated pressure

p= A
With an area of circa 40 mm?, the actuator will be able to deliver a volume per stroke
up to 80 mm?, while the pressure can be varied independently through the current. The
actuator data sheet is included in appendix C.

(5.1)

5.3 Pressure source design

The basic pressure source design is shown in fig. 5.2. A liquid-filled chamber is separated
from the actuator by a thin silicone rubber membrane. The actuator delivers its force on

F eiwt

Holder

Membrane

Liquid Q—= _— Chamber

/

Figure 5.2: Working principle of the constructed pressure source. A silicone rubber membrane separates
the liquid-filled chamber from the actuator, and the actuator acts on the membrane. A holder fixates the
actuator in the setup.
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Figure 5.3: Constructed pressure source. (a) CAD drawing showing the parts of the pressure source.
(b) The fabricated parts prior to assembly. An American quarter is placed to the right of the device for
scale and the grid lines intersect every 5 mm. The actuator (3) has been mounted with the plunger and
membrane. (c) The assembled pressure source with two of the three exits blocked. Legend (1): Actuator
holder, (2): actuator guide, (3): actuator, (4): plunger, (5): membrane, (6): O-ring and (7): chamber.

said membrane, and is held in place by a rigid holder. The membrane is clamped between
the holder and chamber, which are held together by screws. The pressure source was
designed in close collaboration with workshop director Henrik Ljunggren of Novo Nordisk
A/S, Hillergd, who also fabricated the device. CAD drawings and photos of the source
are given in fig. 5.3.

5.3.1 Holder and actuator guide

The holder consists of two parts. One part holds the permanent magnet of the actuator,
while the other is used to guide the motion of the actuator. Both parts are made of
aluminum.

The permanent magnet and iron core of the actuator have an outer casing of circular
cross section (diameter 19.05 mm). The holder, made from a slab of aluminum of height
3 cm, width 6 cm and length 6 cm, has a throughhole in the center of the slab of diameter
19.50 mm, slightly larger than the actuator magnet. A cut of roughly 2 mm thickness for
the height of the slab is made from the throughhole to one of the corners, and a screw
is inserted normal to the cut. The actuator magnet is placed in this holder and fastened
using this screw. The permanent magnet holder is labeled ‘1’ in fig. 5.3(a)-(b), and the
cut is visible in (b).

The actuator guide is mounted underneath the magnet holder. Also made from alu-
minum of same length and width but of height 1 cm, the guide has a throughhole of
circular cross section and radius 4 mm along the same axis as the holder throughhole.
Another hole of diameter 19.50 mm and of depth 2.5 mm, is made in the top of the guide
along the same axis to allow the coil to move back and forth during operation. The coil
should then move only in the axis of the holes and not move sideways. A grove is milled
to lead out the electric wires to the coil, and the guide and holder are held together by
screws.
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(a) Cavity  O-ring (b)

Figure 5.4: The pressure source chamber has three fluid exits and a number of threaded holes (threads
not shown) for fastening to the actuator guide. The O-ring is positioned in a groove around the chamber
cavity edge and the unit for all measures in (b) and (c) is mm. (a) 3-D CAD drawing of the chamber and
O-ring. (b) Top view of the chamber. (¢) Cut through the middle of the chamber.

5.3.2 Plunger

The actuator coil and membrane are connected via a steel plunger, which is lead through
the guide throughhole. The plunger is fastened into the a threaded hole in the top of the
actuator coil assembly as shown in fig. 5.1(b). A hole is made in the membrane through
which the plunger is drawn. Two cylindrical titanium spacers (outer diameter 7.05 mm)
clamp the membrane when the plunger is fastened into the actuator coil.

5.3.3 Chamber

The chamber, shown in fig. (5.4), is made of a transparent acrylic polymer with a 6.5
mm deep cavity of circular cross section of radius 4.5 mm. A small indentation of 0.4 mm
depth and 8.5 mm radius is made at the top of the chamber around the cavity, to make
room for the membrane, which itself is 0.2 mm thick and roughly 8 mm radius. A rubber
O-ring (9.0 mm inner diameter) is used to seal the membrane against the holder. It is
placed in a groove around the edge of the cavity.

The chamber has three exitholes to connect it to fluid systems. These have been made
to comply with fittings by Upchurch Scientific of thread 10-32, to be used with tubing of
1/16” outer diameter.

5.4 Instrumentation used for driving the pressure source

A short description of the instrumentation used in connection with the pressure source in
the following chapters is given below.

5.4.1 Electronics

Two voltage generators have been used: Agilent E3632A DC generator (Agilent Technolo-
gies, Santa Barbara, California, USA) and an Agilent 33250A AC generator in connection
with a LPAO1 power amplifier (Newtons4th Ltd., Mountsorrel, Loughborough, UK).
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Figure 5.5: LABVIEW program used for data acquisition. (a) Front panel. (b) Block diagram.

The pressure source can operate in both DC and AC mode, depending on the current.
The DC generator allows the user to set an upper limit on both current and voltage.
Whichever of the two is reached first dictates the generator performance; even though
the coil current dictates the applied force, the current itself depends on the voltage. The
AC generator does not have this property. One may specify an output voltage on the
instrument, but the output current depends on the system and the internal electrical
impedance of the instrument. A power amplifier was used to drive the pressure source at
the desired current.

A small electrical resistance of Ry = 1.1512 2 was connected in series to the actuator
coil, and the voltage drop AU across said resistance was measured. The resultant current
in the system during operation was then found from Ohm’s law, eq. (2.18), as [ = AU/Ry.

5.4.2 Data acquisition and handling

Data acquisition from pressure sensors and the electrical resistance mentioned above was
realized using the same equipment as in the previous chapter (DAQCard-6062E data
acquisition card along an SCB-68 Connector Unit). A simple LABVIEW program based
on ExpressVIs was developed for the acquisition. The front panel and block diagram of
this program is shown in fig. 5.5. All data handling has been carried out in MATLAB on
a Dell Inspiron 6400 laptop.

5.4.3 Pressure detection

Pressure was measured using Honeywell 40PC series pressure sensors (Honeywell Inter-
national Inc., Morristown, New Jersey, USA). These sensors measure change in electric
resistance of a silicon membrane as it deflects due to pressure changes, and relates this
change in resistance to the pressure difference. Sensors of limit 15 psi (40PC015G) and of
+ 50 mmHg (40PC001B) were used. Using a DC input voltage of 5 V, the sensors have a
built-in amplifier so the output voltage from both sensors is in the range 0.5-4.5 V. The
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Table 5.1: Results from simple experiment to determine pressure sensor compliance. The pressure
difference was in all cases Ap ~ 1bar and the tube radius a = 0.254 mm. The mean compliance for each
sensor was determined to Cj° ¥ = 1.67 x 107'° m® Pa™"! and C’lﬁ,io meHE — 566 x 1071 m® Pa~l.

15 psi 4+ 50 mmHg
Meas. # 1 2 3 1 2 3
Az [mm] 05 1.0 10 | 30 30 25
Chya  [107 m? Pa~!] | .00 2.00 2.00 | 6.00 6.00 4.99

pressure sensors were coupled to the fluidic tubing using a silicone rubber sleeve mounted
over both tubing and sensor inlet. The silicone rubber sleeve has an undeformed inner
diameter of d = 1 mm and a wall thickness of h = 1 mm.

Pressure sensor compliance

Pressure sensor compliance stems from both the silicon membrane and the sleeve men-
tioned above. This compliance has been estimated by the following experiment: A water-
filled syringe is coupled to the primed sensor, which has been vacated of air, via transparent
teflon tubing of dimensions £ = 10 cm, a = 0.254 mm and A = 0.540 mm, with a millimeter
scale placed right next to the tubing. An air-bubble of about 10 mm length is placed in
the tube, and pressure is applied manually with the syringe. Noting the initial position of
the bubble front as well as the bubble length, the bubble front position is noted again once
the bubble axial length has halved. Assuming negligible effects of curvature at the bub-
ble fronts, the bubble volume is estimated from the bubble length using the known tube
radius, and since a halving of volume is associated with a doubling of pressure according
to the ideal gas law, the bubble pressure is then twice atmospheric pressure.

Any motion of the bubble (as indicated by a difference in position of the bubble front
prior to and after the pressure difference has been applied) will be the consequence of
a compliant medium expanding to accommodate the pressure increase. The increase in
volume is then AV = ma?Az, where Az is the change in position of the bubble front.
From the coupling of compliance to flowrate, eq. (3.4), one finds 9;V = Clyq O;p, so the

following holds

AV
Chyd = Ay (5:2)

This has been used for the estimates. The experiment was redone three times and the
mean value of the compliance taken as a good estimate. Table 5.1 lists the result of the
individual experiments; the mean values of the compliances are Cﬁ;’f ' =1.67 x 1071° m3

Pa~! and C}jfyzommHg = 5.66 x 10715 m3 Pa~1.

Air bubble trapping in the sensors

Priming the sensors without trapping small air bubbles is very difficult. Not only are the
sensors not transparent, but the internal volume of the sensors appears to expand away
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Figure 5.6: Schematic illustration of the physical quantities in the pressure source circuit model. A
voltage drop is applied to the coil (red wires) giving rise to an electrical current. This current generates
a force on the coil, which in turn moves in the direction x. The displacement of the coil inflates the free
part of the membrane with water of volume Vient since it is easier to expand the membrane than leave
the chamber, but a flowrate Q. exits the source nonetheless, all the while the pressure difference Ap is
generated in the pressure source chamber.

from the inlet towards the membrane, so once an air bubble is trapped inside, it is almost
impossible to remove it.

The sensors have been primed using a syringe with a small-diameter needle inserted into
the sensor inlet as far down as possible without breaking the delicate silicon membrane,
and although much care has been taken, it cannot be ruled out that small bubbles have
been present inside the sensors during experimentation. An upper limit to the size of these
bubbles is the total internal volume of the sensors, which has been estimated by noting
the volume of water needed to fill each of them. The total internal volume of both sensors
is estimated to 1.0 x 10~7 m3.

5.5 Pressure source circuit model

To fully understand the performance of the pressure source, one must consider the electric
circuit of the actuator and the mechanics of the coil motion in addition to the microfluidics
of the system. A circuit model of the entire pressure source is presented in the following
as a low-order model coupling it to the EC equations, and a schematic drawing is given
in fig. 5.6.

5.5.1 Coil mechanics

The motion of the coil is governed by Newton’s second law, where the external forces are
the electromagnetic force on the actuator F,., the spring force of the membrane F,, and
the force arising when a pressure difference exists across the membrane F},. Denoting the
mass of the coil, plunger and membrane M and letting x be the coordinate of displacement
for the coil (positive when a positive pressure difference is generated in the chamber, i.e.
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when liquid is pushed out), the three forces are given by

Faet(t) = KrI(t), (5.3a)
Fu(t) = —Ka(t), (5.3b)
Fy(t) = — A Ap(2), (5.3¢)

where the membrane is assumed to act as a linear spring with constant IC, Ap(t) is the
pressure difference across the membrane, i.e. the pressure difference relative to atmospheric
pressure, and Aqg is the effective plunger area. The plunger motion is then given by

Ma2z(t) = Kpl(t) — Kz(t) — Aeg Ap(t), (5.4)

and the coil velocity is found as v(t) = dyx(t).

5.5.2 Colil electric circuit

The coil electric circuit obeys the equation
AU(t) = Ral(t) + LadhI() + (1), (5.5)

where the resistance is the sum of the coil resistance Rgf’ﬂ and the outer resistance of RO™ =
1.1512 Q, and &£(¢) is the back-EMF arising from the moving coil, which is approximately
given by £(t) = Kemsv(t). The resistance and inductance of the coil are R%! = 1.28 Q
and L¢ = 2.05 x 104 H according to the data sheet, appendix C, which also lists o =
1.1 Vsm™t

5.5.3 Chamber fluidics

During operation, the volume of the chamber V. depends on the position of the plunger
and the expansion of the membrane due to the generated over-pressure in the chamber,
but when the system is at rest, the volume of the chamber is V. = Vi, see fig. 5.6.
The plunger diameter is d = 7.05 mm while the chamber diameter is d = 9.00 mm, so a
s