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Abstract

Due to the advances in microfluidics and its applications in lab-on-a-chip systems the de-
mand for numerical predictions of the behavior of flows on the microscale is growing. The
aim of many existing microfluidic systems is handling and analyzing of various types of
particles. The study of the dynamics of particles in microsystems is challenging because
particles in microsystems often are of a size comparable to the dimensions of the containing
microchannels.

Several methods for studying the behavior of particles in fluidic systems numerically ex-
ist. However, most of these methods rely on the particles being small so the can be regarded
as point particles. Some models take the finite size of the particles into consideration by
adding corrections to the flow in a region near the point particle. Some models exist that
models particles of finite size, but these models rely on the particles being spherical [19].

In this thesis we develop a numerical code for simulation of the dynamics of finite-sized
rigid particles of arbitrary shape. The model takes interactions between the particles and
solid walls into account.

We test the implementation by simulating the convection of particles of different sizes
and shapes by a viscous fluid through a microfluidic system consisting of an array of obsta-
cles.

Accurate computation of the forces affecting the particles and precise resolution of the
flow near the particle is crucial for the precise determination of the path of micrometer
sized particles in microchannels. The simulation results presented in this thesis compare
favorably with the observed behavior of particles in physical bumper arrays.
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Resumé

Grundet udviklingen inden for mikrofluidik og dets anvendelse i “lab-on-a-chip”-systemer
er der et stigende behov for numeriske forudsigelser af strømninger i mikroskalastørrelse.
Formålet med mange eksisterende mikrofluide systemer er håndtering og analyse af forskel-
lige partikler. Studiet af partiklers dynamik i mikrosystemer er vanskelig, fordi partikler
ofte har en størrelse, der er sammenlignelig med dimensionerne af de mikrokanaler, hvori
partiklerne transporteres.

Der findes flere metoder til numerisk undersøgelse af partiklers opførsel i væskesystemer.
De fleste af disse metoder bygger på en antagelse om, at partiklerne kan betragtes som
punktpartikler. Enkelte modeller tager partikler af en endelig størrelse i betragtning ved
at tilføje korrektioner til væskestrømningen i et område i nærheden af partiklerne. Der
findes modeller, som simulaere partikler af finitte dimensioner, men disse er baseret på, at
partiklerne er kugleformede [19].

I denne afhandlingsopgave udvikler vi en computerkode til at simulere dynamikken for
hårde partikler af vilkårlig facon. Modellen tager interaktioner mellem partiklerne og kana-
lernes massive vægge med i betragtning.

Implementationen testes ved at simulere transporten af partikler med forskellig størrelse
og form. Partiklerne transporteres af en viskøs væske gennem et mikrosystem med en serie
af forhindringer.

Præcis beregning af de kræfter, som påvirker partiklerne, samt nøjagtig gengivelse af
strømningen i nærheden af partiklerne er helt afgørende for den præcise bestemmelse af
banerne for mikrometer store partikler i mikrokanaler. Resultaterne fra simuleringerne i
denne afhandling er sammenlignelige med den observerede opførsel af partikler i fysiske
“bumper arrays”.
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Chapter 1

Introduction

1.1 Microtechnology

“There’s Plenty of Room at the Bottom”. These were the words of Richard P. Feynman in
his famous speech from 1959 [11]. This speech inspired scientists to investigate the physics
and chemistry of systems with characteristic length scales ranging from a few nanometers
to 100µm. The first branch of technology that benefitted from the miniaturization of the
physical systems was the electronics industry.

Using the many powerful fabrication techniques originally developed for the use in mi-
croelectronics new microsystems are being engineered. The diversity is large ranging from
small mechanical systems, optical devices and magnetic elements to systems for handling
of fluids. In recent years the fabrication techniques have been improved to a stage where
fabrication of complex microsystems with several integrated components of various types
has become possible [21]. Among this type of systems are systems known as lab-on-a-chip
systems or micro total analysis systems (µtas).

The medical and biological industries show growing interest for microsystems for point
of care investigation of biological samples. This has given rise to an increasing need for the
investigation of the physics of systems capable of handling this type of tasks.

Many biological applications involve analysis of aqueous solutions. Many of the fluids
that are interesting in a biological context have very complex behavior. Blood for example
is a non-Newtonian fluid changing its viscosity as a function of applied shear. Other fluids
in the biological field contain salts or particles (cells) that cause nontrivial phenomena to
occur.

In this thesis we will look closer into the behavior of fluidic microsystems for handling
of fluids containing particles of finite size. Here finite size means that the typical length
scale of a particle is comparable with the size of the microchannels containing it.

1.2 Microfluidics

When miniaturizing a fluidic system the relative strength (importance) of the involved
forces change. In macroscopic systems the inertial forces dominate over viscous forces, and
volume effects dominate over surface effects. In microsystems it is the other way round. Here
viscosity is the dominating force, and hence most flows are laminar. This allows transport
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2 Introduction

of different fluids side by side in the same channels without mixing. The dominance of
surface forces over volume forces makes capillary effects important and the small size of the
systems makes diffusion important.

Microfluidics is about taking advantage of these characteristic dominating forces and
effects. One area where microfluidic systems have proven to be especially useful is the area of
particulate flows. In this field handling and investigation of cells and other biomolecules have
been given special interest. Microfluidic systems have been developed for many different
tasks, but in this thesis we will focus on devices for sorting micrometer sized particles in
microsystems.

1.3 Sorting devices

Several methods for sorting of particles are possible. Of course, the method of choice for a
given application depends on the specific nature of the problem. In the following sections
we will consider methods for sorting of particles based on their size. We will briefly mention
some of the conventional sorting methods and introduce the concept of bumper arrays, which
is a new class of sorting devices for fast deterministic separation of particles in microfluidic
systems. We will only consider passive devices, i.e., devices with no moving parts and no
sensing equipment.

Diffusion based separation

Diffusion-based separation techniques rely on the statistics of diffusion distances. The av-
erage length Ldiff covered by a molecule during the time t is given by

Ldiff =
√
Dt, (1.1)

whereD is the diffusion constant. The diffusion constant is related to the size of the particle,
and smaller particles normally have larger diffusion constants. Hence, during a certain time
interval small particles will on average travel a longer distance than large particles. This is
the basic principle of diffusion based separation [25].

In figure 1.1 we sketch a simple device for separating small particles from a sample
containing particles of various sizes. Real devices can of course be more sophisticated,
but they all rely on the laminar flows in the micro regime and on the size dependence of
diffusion.

The improvement of diffusion based sorting devices often involves some kind of symmetry
breaking. The source of the symmetry breaking can be manyfold, e.g. electrical fields or
perturbations of the channel geometry. A famous example is the rachet type of diffusion
based separation devices [8,9,13,15]. Here the diffusion is made anisotropic by introducing
obstacles in the geometry. The obstacles affect small and larger particles differently thus
improving separation.

Deterministic separation

One of the major drawbacks of diffusion based separation is that diffusion is a process
stemming from the random thermodynamic movement of free particles (Brownian motion).
This means that the separation is not exact, but rather one obtains a distribution of particle
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Inlet 2

Inlet 1

Outlet 2

Outlet 1

�����*

Small particles diffuse
into stream 2

Figure 1.1: The basic principle of diffusion-based separation devices rely on the laminar flows
of fluids in microsystems and on the size dependence of the diffusion constant. This simple device
has two inlets. In Inlet 1 a fluid containing particles of different sizes enters and meets the fluid
coming from Inlet 2 in a laminar nonmixing stream indicated by the dotted line. The smaller
particles from stream 1 can diffuse across this separation line as indicated by the shaded area.

sizes corresponding to the probability of a particle of a given size to diffuse into the collecting
stream. A more attractive separation scheme would be a deterministic process that was not
limited by diffusion.

Such a device was suggested by Huang et al. [14]. They presented a microfluidic device,
the bumper array, that made fast deterministic separation of particles possible at the mi-
croscale. A bumper array consists of a periodic array of posts situated a distance λ apart.
Each row of posts is displaced a small amount ∆λ with respect to the previous row, see
figure 1.2(a).

Because of the laminar flow in the microregime, the flow will be divided into a number
of lanes corresponding to the periodicity of the array, see figure 1.2(b). If the particles are
sufficiently small they will simply follow the flow in a zig-zag path through the bumper
device. If, however, the particles are larger than a certain critical size they will be displaced
from one lane into the neighboring one because they “bump” into the obstacles. This is called
the displacement path and is sketched in figure 1.2(c). The critical size of the particles is
determined by the geometry of the array as we will return to in chapter 4.

Bumper arrays do not to the same extend as conventional separation devices suffer from
broadening due to diffusion. This is due to the fact that particles in a bumper array are
only allowed to travel a short distance before their path is ‘reset’ due to contact with an
obstacle. Small particles need to diffuse more than the width of one of the flow lanes in
order to change migration mode. Thus in a bumper array the quality of the separation
improves with the flow rate allowing fast separation.

Because of these desirable properties of the bumper arrays, it is worthwhile to exam-
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ine what determines the critical size of the particles. This could lead to improved devices
or easier integration into existing lab-on-a-chip systems. Another interesting motivation
for the study of bumper arrays is the desire to separate particles of approximately equal
hydrodynamic size deterministically based on other properties than their size. One pos-
sible separation parameter could be the morphology of the particles, and in chapter 6 we
present what to our knowledge is the first analysis of this separation method. Morphologi-
cal separation devices could have important medical applications. Many biomolecules, e.g.

vira, are of similar size which makes it difficult to separate them in existing microsystems.
However, the shapes of biomolecules are often quite well defined and distinct which makes
morphological separation valuable.

In this thesis we will examine the dynamics of finite-sized particles in microchannels and
develop a numerical code for future studies of the dynamics of arbitrarily shaped particles
in microfluidic systems.

(a) (b) (c)

Figure 1.2: (a) A bumper array consists of a periodic array of obstacles. Each row is displaced
a small amount ∆λ with respect to the previous row. (b) Because of the laminar flow in the
microfluidic regime and the periodicity of the array, the flow in a bumper array consists of N lanes
each carrying 1/N of the flow. (c) Small particles will just be passively convected by the flow while
particles above a certain critical size will be displaced due to collisions with the obstacles. This
causes particles of different size to migrate along different paths through the bumper array. The
figure is reproduced from Ref. [14].
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1.4 The structure of the project

The work carried out during this master project has fallen within several phases. The first
phase of the project was devoted to learning the tools and methods necessary for working
with computational fluidics. This involved in particular learning to use Matlab, which
the author had no priori experiences with, as well as getting acquainted with the scripting
interface of Femlab. This involved reproducing a lot of known solutions to fluidic problems
as well as a lot of experimentation with different equation solvers and setups.

When some familiarity with the use of Matlab and Femlab was gained we started
developing code for simulation of systems containing finite-sized particles. However, the
computation times for finding the path of particles in even simple channel systems were
huge.

The next part of the project was therefore devoted to finding alternative methods for
simulating the systems of interest. We experimented with several methods, especially the
Arbitrary Lagrange-Euler (ale) method and the level set method. The level set method
became the method of choice because it allowed us to simulate particle transport without
the need to remesh during the computations. Furthermore, the level set method takes the
interaction between the channel walls and the particles into account implicitly. We spent
some time studying the method and finding an implementation in Femlab (see chapter 7).
This part of the project was concluded with the submission of a paper to Physical Review E
(see Appendix A) and the work was presented at the 6th Liquid Matter Conference (see
Appendix B).

Due to limitations of the level set method the final part of the project was spent rework-
ing some of the initial attempts of simulating particle transport. The experience gained
from the work on the level set implementation allowed us to make a much more efficient
implementation that enabled us to simulate particle transport in more complex systems
with interactions between particles and channel walls.

This thesis documents the work carried out on simulating flows in two and three di-
mensions using Femlab and Matlab as well as results obtained using both the level set
method and direct simulation of the particle movement using new meshes each time step.

1.5 Notation and conventions

In this thesis we mainly use notation that follows ISO 31-11 [12]. That is, we use italic
types for variables, such as the spacial dimensions x and y, for parameters, such as ρ or η,
and for functions, such as g(x). Vectors and tensors are denoted by bold face types, such as
the the velocity vector u and the stress tensor σ. Explicitly defined functions and operators
are typeset in upright Roman type, e.g., the trigonometric function cos or the differential
operator d.

One important exception is the index notation which we occasionally use for brevity. In
this notation, ui is the i’th component of the vector u. The index notation is also used for
shorthand notation of partial derivatives where�tφ(r, t) ≡ �φ(r, t)�t (1.2)

is the partial derivative of the function φ(r, t) with respect to t. We also use the Einstein con-
vention for summation over indexes. Following this convention the scalar product between
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two vectors u and v can be written as uivi where the repeated index means summation
over that index.

Physical quantities consist of a numeral times a unit. These are typeset following the
recommendations of ISO 1000: The units (and their prefixes) as well as the numbers are
printed in upright Roman type. We use the SI base units as well as the SI derived units.
Multiplication between numbers in the numerical value of a physical quantity is indicated by
a ‘×’ while multiplication between units is indicated by a half-hight dot ‘·’. The numerical
value and the unit of a physical quantity are separated by a thin space, e.g., a typical speed
u of a flow in a microsystem is u = 100 × 10−6 m·s−1 = 100µm·s−1.



Chapter 2

Basic fluidics

It is not within the scope of this thesis to go through all aspects relevant for fluidics in
microsystems in detail. In this chapter we will simply introduce basic concepts relevant
for the problems under study in this thesis and state important equations governing the
physics in fluidic systems. We will not cover every detail of the derivations but concentrate
on the parts relevant for the implementation of the equations in numerical solvers. For a
more thorough introduction to fluidics the reader is referred to [4, 5, 16–18].

2.1 Properties of fluids

Matter is usually classified as solids and fluids. Solids have a definite shape, and the atoms of
the solid have fixed positions relative to one another. A solid will deform if a small external
force is applied to it, but it will return to its initial configuration if the force disappears.
If the applied force is larger than a certain threshold, the solid will deform plastically and
obtain a new fixed configuration.

Fluids have no preferred configuration. Each element of a fluid can be moved freely
around without affecting the macroscopic properties of the fluid. Two main groups of fluids
exist: liquids and gasses. In a gas the intermolecular (or interatomic) distance is large, and
the only interaction between the gas molecules is random collisions. The large interatomic
distance makes a gas compressible.

On the other hand liquids are – like solids – ordered on the molecular scale and have
an average intermolecular distance of the same order of magnitude as solids. However the
atoms are not fixed on a lattice but can move freely. Because of the small intermolecular
distance liquids can in most circumstances be regarded as incompressible. This is especially
true when we consider liquids in microsystems, because the typical velocity of the liquid
is orders of magnitude smaller than the velocity of sound. In this thesis we will therefore
always assume the liquid to be incompressible.

This work will not be concerned with the properties of fluids on the atomic scale. Rather
we are interested in the behavior of fluidic microsystems, i.e., systems with characteristic
length scales ranging from 1µm up to a few millimeters. On such length scales the fluid can
be seen as a continuum instead of a system consisting of individual atoms. This is called the
continuum hypothesis. In other words, if we look at a small volume of liquid the physical

7
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quantities such as mass and momentum can be described as being uniformly distributed in
this volume and are not properties of discrete points in space.

The validity of the continuum hypothesis can be verified by a small comparison between
the characteristic length scales for the atomic scales of a fluid and the typical scales of the
systems under consideration. The average interatomic spacing λ in a substance with molar
mass M and density ρ is

λ =

(

M

ρN

)
1

3

, (2.1)

where N is Avogadro’s number. For water we find

λH
2
O =

18 × 10−3 kg·mol−1

1 × 103 kg·m−3 × 6.022× 1023 mol−1 ≈ 0.31 nm. (2.2)

Since the characteristic length scale for the microsystems under study is L0 ≥ 1µm, the
assumption L0 ≫ λ holds true.

Thus we can describe the state of a liquid via continuous fields. In a given point in
space r at a given moment in time t we can describe the fluid by the velocity u(r, t), the
pressure p(r, t), the density ρ(r, t) and the viscosity η(r, t). In many cases the density and
the viscosity are constant in both time and space.

2.2 Governing equations

In the following we will derive the governing equations for a system consisting of a fluid
flowing in a system consisting of channels with solid walls. The flow of the fluid governs the
dynamics of solid finite-sized particles suspended in the fluid. Such a system is sketched in
figure 2.1.
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u

x

y

R

v

Solid particle of
arbitrary shape

Solid obstacle

Figure 2.1: Sketch of a typical microfluidic system with finite-sized particles. The figure shows a
microfluidic system for handling of finite-sized particles of arbitrary shape. The size of the particles
is comparable to the size of the channels, and the particles can therefore not be described as point
particles.

The fluid

If we consider a small volume of fluid dV , the mass of the fluid contained in this volume
is

∫

dV ρ. The flux of mass through an area element da of the test volume is naturally
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ρu · da. Therefore the total mass leaving the unit volume in unit time is the closed surface
integral over the entire surface ∂Ω of the test volume Ω

∮

∂Ω

ρu · da. (2.3)

The amount of mass leaving the volume must obviously equal the decrease in mass inside
the volume per unit time

− ��t ∫

Ω

dV ρ. (2.4)

Thus in order to conserve the total mass of the system we must have the equality

− ��t ∫

Ω

dV ρ =

∮

∂Ω

ρu · da. (2.5)

The right hand side of this equation can be rewritten using Gauss’ theorem

− ��t ∫

Ω

dV ρ =

∫

Ω

dV ∇ · (ρu). (2.6)

Collecting all terms in a common integral yields

∫

Ω

dV

[�ρ�t + ∇ · (ρu)

]

= 0, (2.7)

which must hold true for any volume in the fluid, and we can thus conclude that�ρ�t + ∇ · (ρu) = 0. (2.8)

If the fluid is incompressible, the density of the fluid is constant, and the above equation
simplifies to

∇ · u = 0, (2.9)

which is the continuity equation for incompressible fluids.
Now we need an equation that describes the evolution of the velocity field. We would like

an equation that gives us the velocity of the fluid at a given point in space as a function of
time, i.e., in an Eulerian reference frame. Applying Newton’s second law on an infinitesimal
volume of the fluid gives

ρDt u =
∑

i

fi, (2.10)

where Dt is the substantial differential operator and fi is the volume forces working on
the unit volume of the fluid. Expanding the left hand side of the equation to ordinary
differential operators we find

ρ
(�tu + (u · ∇)u

)

=
∑

i

fi. (2.11)

The forces on the right hand side of the equation can be any external force working on
the fluid, e.g. the gravitational force, electrical forces or magnetic forces. However, in this
thesis we will only consider pressure forces and viscous forces.
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The forces due to a pressure p working on a small volume of fluid dV are equal to the
surface integral of the inward pointing normal vector −n times the pressure

Fpressure =

∫

da (−np). (2.12)

Using Gauss’ theorem we can convert this surface integral to a volume integral

Fpressure = −
∫

dV (∇p). (2.13)

from which it is apparent that a pressure force

fpressure = −∇p (2.14)

works on any unit volume dV of the fluid.
The viscous forces in fluids are due to internal friction. It is therefore apparent that

the viscous momentum transfer in the fluid can only occur if the different parts of the fluid
move with relative velocities with respect to one another. Or in other words: the viscous
stress must depend on the spacial derivatives of the velocity.

In microfluidic systems the flow is typically laminar, and the gradients in the velocities
are small. We can therefore assume that the viscous stress is only depending on the first
order derivatives �ui/�rk of the velocity. In particular we know that no terms can be
independent of �ui/�rk since the viscous stress must vanish if the velocity of the fluid is
constant.

Also, there can be no viscous stress in the fluid if it is in uniform rotation, i.e., if the
velocity equals

u = Ω× r, (2.15)

where Ω is the angular velocity of the fluid. The above assumptions are satisfied by the
tensor

σ′

ik = η

(�ui�rk +
�uk�ri − 2

3
δik

�uj�rj )

+ ζδik
�uj�rj , (2.16)

where η and ζ are the first and second viscosity coefficients, respectively. Since we are only
considering incompressible fluids in this thesis, we can use the incompressibility condition
derived above to simplify the viscous stress tensor

σ′

ik = η

(�ui�rk +
�uk�ri )

. (2.17)

The viscous stress tensor gives us the i’th component of the friction force per unit area
acting on the surface element da with surface normal parallel to the k’th unit vector. Thus
we can write the viscous surface force on a unit volume of the fluid as

dFi = σ′

iknk da. (2.18)

The total viscous force on a unit element of the fluid can therefore be obtained by integrating
over the surface of the element

(

Fviscous

)

i
=

∫

∂Ω

da σ′

iknk =

∫

Ω

dr �kσ
′

ik, (2.19)
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where the last equality is obtained using Gauss’ theorem. From the above equation we
realize that the viscous force per unit volume is simply the gradient of the viscous stress
tensor. As was shown in Eq. (2.14), the pressure force is also a gradient. It is therefore
natural to combine the pressure force and the viscous force into a single tensor, the stress
tensor, defined by

σik = −pδik + σ′

ik. (2.20)

Using this tensor the total force per unit volume due to pressure and viscosity can be written
as

(

fpressure + fviscous

)

= �kσik. (2.21)

Since the pressure force and the viscous force are the only two forces acting on the fluidic
systems under considerarion in this thesis, the sum of forces in Eq. (2.11) consists only of
this term. Substituting the force term into Eq. (2.11) yields

ρ
(�tu + (u · ∇)u

)

= ∇ · σ, (2.22)

or if we carry out the multiplication on the right hand side

ρ
(�tu + (u · ∇)u

)

= −∇p+ η∇2u. (2.23)

This equation is the Navier-Stokes equation which governs the motion of incompressible
fluids in microfluidic systems. For time-independent systems, the time derivative of the
velocity field is zero and the equation reduces to

ρ(u · ∇)u = −∇p+ η∇2u. (2.24)

The systems under study in this thesis consist of closed channels with solid walls and
solid obstacles. It is an experimentally established fact that the fluid velocity at a solid
interface ∂Ω equals the velocity of the interface. This is known as the no-slip boundary

condition. In most cases we will use the containing channels as the reference frame. In that
case the no-slip condition reads

u = 0, r ∈ ∂Ω. (2.25)

In general it is not possible to solve the derived equations analytically, and one has to
rely on numerical methods. However, it is useful to test the validity of the numerical results
by comparing numerical results with the analytical solution to some of the few analytically
solvable configurations.

Suspended particles

Particles in a fluid move according to Newton’s laws. In general, if we consider a rigid
particle P , it translates with a velocity v given by

v =
dr

dt
(2.26)

mpart

d2
rpart

dt2
=

∑

i

Fi, (2.27)
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where rpart is the position of the center of mass for the particle and ρpart is the density
of the particle. The body forces Fi working on the particles can of course originate from
a variety of sources depending on the particle properties. Many microfluidic systems for
particle handling utilize the possibility of manipulating particles with external forces such
as magnetic forces, (di)electrophoretic forces etc. In the systems under investigation in this
thesis, however, two force terms are of interest: The hydrodynamic forces Ffluid exerted by
the fluid and contact forces Fcontact between solid obstacles and the particles.

The hydrodynamic forces can be calculated explicitly by integrating the viscous stress
tensor σ over the surface ∂P of the particle

Ffluid =

∫

∂P

daσ · n, (2.28)

where n is a unit normal vector to the surface of the particle and da is a unit area element.
The contact forces on the contrary can not be calculated explicitly. They are discrete

forces working only when collisions occur. The physics of the collision forces depends on the
properties of the colliding surfaces. Many different types of contact are observed: particles
sticking to surfaces, particles sliding along the walls of the channels, repulsion or the particles
could just be subjected to a normal force ensuring that the particles do not move into the
walls.

In the models in this thesis we will model the contact force as a repulsive force working
on the surface of the particles. The repulsion is always orthogonal to the walls and is
smeared out over a short distance away from the wall. We will return to the model of the
contact force when we describe the implementation of the equations in chapter 6.

If the suspending flow is not completely uniform the particle will rotate about an axis
through its center of mass with the angular velocity ω because of the torque τ given by

τ = −
∫

∂P

daR × (σ · n). (2.29)

Above R is a vector pointing from the center of mass of the particle to the points on the
particle perimeter. The angular velocity is found from the equation

I
dω

dt
= τ + R × Fcontact, (2.30)

where I is the moment of inertia for the particle. In the general three dimensional case the
moment of inertia is a tensor. However, we consider only two dimensional particle transport
in which case, the moment of inertia reduces to I =

∫

P
dV ρpart|R|2, where R is a vector in

the plane of the motion and the axis of rotation is perpendicular to this plane.
The motion of the particle is coupled to the fluid flow by a no-slip condition on the

surface of the particle
u(r) = v + ω × R , r ∈ ∂P . (2.31)

2.3 Forces on particles

In the following we will consider some results relating to particles/obstacles in a flow. Later
we will use these results to validate the numerical code. Furthermore, some analytical
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results for particles in a flow will be derived in order to get an understanding of the general
principles underlying particle motion in a flow.

As mentioned, it is not possible to solve Navier-Stokes equation and the continuity
equation in general, but analytical results can be obtained in simple geometries or in regimes
where some terms in the governing equations can be ignored. A famous result regarding
particles in a fluid was obtained by Stokes. He derived an expression for the drag force
Fdrag working on a spherical particle submersed in an infinite fluid. The result can be found
in practically any text book on fluidics and reads

Fdrag = 6�ηaU0, (2.32)

where η is the viscosity of the fluid, a is the radius of the sphere and U0 is the velocity of the
fluid far away from the sphere. The result is only valid in the Stokes regime (low Reynolds
number) and if the flow field is homogeneous far away from the spherical particle.

This result has often been used to model the dynamics of particles in a flow. Either
one can solve the flow problem first and then use Eq. (2.32) to find the path of the particle
afterwards. This is known as a one-way coupling because the motion of the particle is not
affecting the flow of the fluid. Another possibility is a two-way coupling where Eq. (2.32) is
added as a point source in Navier-Stokes equation, and the motion of the particle and the
flow field of the fluid are solved for simultaneously.

Neither of these two methods are applicable for the type of problems sketched in fig-
ure 2.1 because they neglect to take the finite size of the particles into account and the
Stokes drag formula is only valid in uniform flows which is not the case when the particles
are of finite size. Furthermore the orientation of the particles are not accounted for. To
account for these effects, as well as the nonlinear effects arising from the discrete collision
forces, the finite size of the particles must contribute to the solution of the flow problem. In
the following chapters we will look closer into a numerical solution to this problem. First,
however, we will consider some qualitative results relating to finite-sized particles in shear
flows and in the vicinity of solid walls in order to know what is to be expected from the
simulations.

Particle in a shear flow

If a finite-sized particle is convected by a nonhomogene flow, there will be a relative difference
between the flow velocity u and the translation velocity v of the particle because of the
finite size of the particle (see figure 2.2). This shear induced relative difference in velocity
will cause the particle to rotate. Furthermore, if the relative difference in velocities is larger
on one side of the particle than on the other, this will induce an uneven pressure distribution
leading to a velocity component perpendicular to the translation direction. This is known
as the Saffman effect.

The details of the shear induced rotation and translation are naturally depending on
the shape of the particle. Because of the working principle of the bumper arrays, our model
needs to take these effects into account, especially if we want to consider the paths of
particles of arbitrary shape. Therefore we can not use the simple approach outlined above
but we need to explicitly determine the forces on the particles to take the finite size of
the containing geometries into account. In chapter 3 we will describe how we implement a
direct and accurate calculation of the forces exerted on the particles.
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Figure 2.2: A particle of finite size convected with the translation velocity v by a flow with a
nonuniform velocity profile u will experience a flow relative to the particle. This relative flow can
induce rotation and a transverse velocity component due to an uneven pressure distribution on the
surface of the particle.

Particle near a solid wall

In the vicinity of solid walls the flow is not uniform. This causes perturbations in the
force experienced by the particles. In microsystems it is often the case that the size of
the particles is comparable to the size of the channels in which the particles are contained.
Therefore particles in microsystems seldom experience uniform flow fields.

We will consider the flow between a solid wall and a particle translating with velocity
−U relative to the wall in close vicinity of this wall (see figure 2.3).

If αρdU
η

≪ 1, where ρ is the density of the fluid, d is the gap height and η is the viscosity
of the fluid, then we are in the lubrication limit. Here the velocity profile in the gap between
the particle and the solid wall can be described as the superposition of a Poiseuille flow and
a Couette flow [4]

u = − 1

2η

dp

dx
y(d− y) + U

(

d− y

d

)

. (2.33)

Thus the flow rate Q per unit width of the fluid layer can be found by integration of u from
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Figure 2.3: Sketch of an elliptical particle moving with a velocity −U near a solid wall. The
coordinate system is fixed with respect to the particle, giving rise to the slip velocity condition at
the wall.
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0 to d(x)

Q =

∫ d(x)

0

dy u(x, y) = − 1

12η

dp

dx
d3 +

1

2
Ud (2.34)

Isolating the pressure gradient from this expression yields

dp

dx
= 6η

(

U

d2
− 2Q

d3

)

. (2.35)

If we choose the pressure to be zero at x = −a cosα we can solve for the pressure p(x)

p(x) = 6ηU

∫ x

−a cos α

dx
1

d2(x)
− 12Qη

∫ x

−a cos α

dx
1

d3(x)
(2.36)

= 6ηUg1(x) − 12Qηg2(x), (2.37)

where

g1(x) =

∫ x

−a cos α

dx
1

d2(x)
and g2(x) =

∫ x

−a cos α

dx
1

d3(x)
(2.38)

are only depending on the geometry of the particle. Denoting the pressure difference from
x = −a cosα to x = a cosα by ∆p we find

∆p = p(a cosα) − p(−a cosα) = 6ηU∆g1 − 12Qη∆g2, (2.39)

where ∆pi = pi(−a cosα)− pi(−a cosα), for i = 1, 2. From this equation we can determine
the flow rate in the gap between the particle and the solid wall

Q =
U

2

∆g1
∆g2

− 1

12η

∆p

∆g2
. (2.40)

Inserting this expression back into the pressure function from Eq. (2.37) yields

p(x) = 6ηU

(

g1(x) − g2(x)
∆g1
∆g2

)

+
∆p

∆g2
g2(x). (2.41)

From this expression we find that the pressure distribution on the particle near a solid wall
originates from two sources: one local term proportional to the translation velocity of the
particle and one term due to the global flow around the particle. We will use the result
for the pressure distribution on particles near a solid wall to verify that the numerical code
developed in chapter 3 gives the expected results.



Chapter 3

Finite element method

The finite element method is a technique for solving differential equations numerically.
The method was originally developed for problems in structural mechanics, but due to the
generality of the method, it is applicable for many types of problems. In this thesis we
use the finite element method to solve hydrodynamic problems. We will not go into details
with every aspect of the theory of the finite element method, but just state the background
necessary to understand the implementation of the problems solved in this work.

The idea behind the finite element method is that a solution to a partial differential
equation (PDE) problem can be approximated by a discretized solution with only a finite
number of unknown parameters. The discretization is done on a mesh. In this thesis we use
triangular mesh elements for two dimensional problems and tetrahedric elements for three
dimensional problems.

The solution u to a PDE problem is then approximated as a linear combination

u(r) =
∑

i

Uiνi(r), (3.1)

where Ui is the value of u at the i’th node point, and νi(r) is the i’th basis function. The
basis functions are localized functions that take the value 1 in node i and 0 in every other
node. The basis functions used in this thesis are of a type known as Lagrange elements,
i.e., they are piecewise polynomials of degree k. We use only linear elements k = 1 and
quadratic elements k = 2.

To exemplify how the finite element method is applied to hydrodynamic problems, we
consider the timeindependent Navier-Stokes equation (2.24) derived in the previous chapter.

ρ(u · ∇)u = ∇ · σ. (3.2)

This form of the equation is known as the strong form. It is only possible to satisfy this
equation if we dispose over infinitely many basis functions. In practice this is not the
case. Instead we multiply the equation with the basis function and integrate over the entire
computational domain

∫

Ω

dr νiρ(u · ∇)u =

∫

Ω

dr νi∇ · σ. (3.3)

This is known as the weak form of the equation because we solve the original problem only
“on average”. If we perform partial integration on the right hand side of the above equation

16
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we obtain
∫

Ω

dr νiρ(u · ∇)u =

∫

Ω

dr ∇νi · σ −
∫

∂Ω

da νin · σ, (3.4)

where we recognize the boundary integral as a Neumann type boundary condition. If the
boundary condition is a Dirichlet constraint, this integral should just have the value required
to fulfill this constraint. This can be achieved by introducing a generalized Neumann
constraint defined as

− n · σ = G+
�Ri�ui

µi. (3.5)

Substitution of the generalized Neumann condition into the weak equation yields

∫

Ω

dr νiρ(u · ∇)u =

∫

Ω

dr ∇νi · σ +

∫

∂Ω

da νi

(

G+
�Ri�ui

µi

)

, (3.6)

where 0 = Ri is the Dirichlet condition and µi is a Lagrange multiplier. Exactly the same
approach can be used to transform the continuity equation to the weak form.

3.1 Femlab

We have chosen to use the finite element solver Femlab for the numerical simulations done
in this thesis [2]. The program has been chosen for several reasons. First of all it is the tool
that is available at MIC. Secondly, Femlab is a general partial differential equation solver,
and it is therefore possible to solve coupled problems involving many different physical
fields. The latter will be important if we want to use our code to simulate the flow in
real microfluidic devices. Such microchips may include electroosmotic pumps, magnetic
elements, thermal components etc., all of which it is possible to implement in Femlab.

Another feature about Femlab is that it relies on the Matlab scripting language. It is
therefore possible to extend the built-in macros and functions from Femlab using Matlab.
Most of the scripts used in this work have been done in Matlab.

3.2 Setting up the system in Femlab

Femlab solves all PDE problems as if they were weak problems, but we can give the
equations in both strong and weak form depending on what suits our needs. It is beyond
the scope of this thesis to describe in general how to set up a problem in Femlab. In
the following section we will go through the steps we have taken to model a microfluidic
system containing moving particles of arbitrary finite size and shape. The particle motion
necessitates modeling of a system with a changing geometry and arcuate integration over
particle boundaries in order to determine the forces correctly. Furthermore the geometry
of the systems under study is periodic. This allowed us to reduce the size of the computa-
tional domain by implementing periodic boundary conditions instead of modeling the entire
physical devices.

The changing geometry of the systems under study is in conflict with one of the limita-
tions of Femlab: The computational domain in Femlab must be fixed. To cope with this
problem, we implemented the timestepping via Matlab using the following algorithm:
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• First we define the geometry of the microsystem and solve the time-independent
Navier-Stokes equation under the incompressibility condition for a given position and
velocity of the particle.

• From this solution we calculate the forces and torque on the particle.

• Using the calculated forces and the torque we calculate the new position, velocity,
orientation and rotation of the particle using Eqs. (2.26) and (2.30).

• We then update the position of the particle and construct a new mesh.

• Finally, we solve the equation system in the updated geometry using an interpolation
of the old solution to the new mesh as the initial condition for the flow problem. The
computed velocity and rotation of the particle is used as the boundary condition on
the surface of the particle.

In the following sections we will go through the implementation of the fluidic problem
in Femlab as well as the boundary conditions needed in our models. First we will describe
how the governing equations are set up using the Femlab general form. Next we will go
through the formulation of the boundary conditions. This involves defining weak expressions
at the particle boundary.

Defining the equation system using the general form

In the general PDE form, Femlab accepts equations in strong divergence form

dai

�ui�t + ∇ · Γi = Fi in Ω, (3.7a)

−n · Γi = Gi +
�Rj�ui

µj on ∂Ω, (3.7b)

0 = Ri on ∂Ω, (3.7c)

where the first equation is fulfilled in the computational domain Ω, and the latter two are
the generalized Neumann and Dirichlet boundary conditions, respectively [3]. In the above
equations U = ui is the solution vector and t is the time. The coefficient dai

determines
if the equations are time-dependent. Femlab satisfies the Dirichlet condition Ri = 0 in
Eq. (3.7c) by choosing the necessary Lagrange multiplier µi. The coefficient Gi is the
Neumann type boundary condition. All coefficients, including the flux vector Γi and the
force term Fi, can be functions of the solution U , its gradient ∇U or space. If the problem
is time-dependent, the coefficients can be functions of time or derivatives of the solution
vector with respect to time as well. n is a normal vector.

For the flow problem we first need to put Navier-Stokes equation on a form suitable to
enter into Femlab. As mentioned, we solve the problem as a stationary problem, i.e., we
can set �tu = 0 in Eq. (2.23). This reduces the equation to

ρ(u · ∇)u = −∇p+ η∇2u. (3.8)

It turns out that it is a good idea to nondimensionalize the terms in the equation using
characteristic scales for the system. Denoting the nondimensionalized variables with a tilde
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and the characteristic scales with the subscript 0 we have

u0ũ = u, L0r̃ = r, ρ0ρ̃ = ρ, η0η̃ = η, (3.9)

where u0, L0, ρ0 and η0 are the characteristic scales for the velocity, length, density and vis-
cosity, respectively. Using these characteristic scales, we can define a characteristic pressure
scale as

p0 =
η0u0

L0
. (3.10)

If we substitute the physical parameters by their dimensionless counterparts multiplied by
the characteristic scale, we obtain the Navier-Stokes equation in dimensionless form

Reρ̃(ũ · ∇̃)ũ =
(

−∇̃p̃+ η̃∇̃2ũ
)

. (3.11)

Here Re is the Reynolds number defined as

Re =
ρ0u0L0

η0
. (3.12)

To enter Eq. (3.11) into Femlab we have two opportunities. Either we put the pressure
into Γ, or we put the pressure gradient into F . The first case is called the full stress tensor
formulation while the latter is called the viscous stress tensor formulation. Femlab can
solve the problem in either formulation, but the choice of formulation affects the boundary
conditions as they depend on Γ. We have chosen the full stress tensor formulation.

Rearranging the terms in the above equation and introducing the dimensionless stress
tensor σ̃ = −p̃I + η̃∇̃2ũ, where I is a unit diagonal matrix, gives us the equation

∇̃ · σ̃ = Reρ̃(ũ · ∇̃)ũ (3.13)

which is on the desired form with Γ = σ̃ and F = Reρ̃(ũ · ∇̃)ũ. Because the problem is
time-independent da is zero.

The dimensionless form of the continuity equation is obviously

0 = ∇̃ · ũ. (3.14)

Again we have two possibilities for putting it on a form suitable for Femlab. We choose
to put the divergence of the velocity into the F term. In code example 1 is shown how the
equations are implemented in a Matlab script.

Boundary conditions

The boundary conditions are of course depending on the physics of the system we are
modeling. In the following description we will formulate the boundary conditions needed
for the model of the bumper arrays described in chapter 4. We need the following types

• No-slip velocity conditions at the channel walls and the obstacles.

• A pressure drop from the inlet to the outlet. Because of the periodicity of the bumper
arrays, the velocity at the inlet must equal the velocity at the outlet.
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% DIMENSIONS AND VARIABLES
fem . sdim = { ’ x ’ ’ y ’ } ;
fem . dim = { ’ u ’ ’ v ’ ’p ’ ’ lm1 ’ ’ lm2 ’ } ;
fem . shape = {shlag (2 , ’u ’ ) , shlag (2 , ’ v ’ ) , shlag (1 , ’ p ’ ) , shlag (2 , ’ lm1 ’ ) , shlag (2 , ’ lm2 ’ ) } ;

% EQUATIONS
fem . equ . shape = { [ 1 : 3 ] } ; % only use ve loc i t y and pressure in bulk
fem . form = ’ g e n e r a l ’ ;
fem . equ . f = {{ ’ Re *( u * ux + v * uy ) ’ ; ’ Re *( u * vx + v * vy ) ’ ; ’ ux + vy ’ ; ’0 ’ ; ’0 ’ }} ;
fem . equ . ga = {{{ ’ -p +2* eta * ux ’ ; ’ eta *( uy + vx ) ’ } ; { ’ eta *( uy + vx ) ’ ; ’ -p +2* eta * vy ’ } ; . . .

{ ’ 0 ’ ; ’ 0 ’ } ; { ’0 ’ ; ’0 ’ } ; { ’0 ’ ; ’0 ’ }}};

Femlab code 1: Navier-Stokes equation and the continuity equation in Femlab notation in
two spacial dimensions, x and y. Re is the Reynolds number, eta and rho are the viscosity and
the density, respectively. u is the x-component of the velocity field, and v is the y-component of
the velocity field. We use quadratic Lagrange elements for the velocity and linear elements for the
pressure to avoid numerical instabilities in the pressure solution.

• At the surface of the particle we need to set the velocity of the fluid equal to the
translation and rotation of the particle. At the same time we need to calculate the
forces affecting the particle accurately.

In the following we will go through the implementation of each of these three boundary
conditions. Although the derivation is for a two dimensional system, it is easily extendable
to three dimensions. In the derivation we will use the velocity-pressure-force solution vector
given by U = [u1, u2, p, λ1, λ2], where u1 and u2 are the x- and y-components of the velocity
field, respectively. The pressure is given by p, and λ1 and λ2 are the x- and y-components
of the forces on the particle surface. All variables are given in dimensionless coordinates.

With this notation the quantities Γi and Fi derived in the previous section become

Γ1 =

[

σ11

σ21

]

, Γ2 =

[

σ12

σ22

]

, Γ3 = Γ4 = Γ5 = 0, (3.15a)

and

F1 = Re

(

u · ∇
)

u1, F2 = Re

(

u · ∇
)

u2, F3 = ∇ · u, F4 = F5 = 0. (3.15b)

The no-slip velocity condition

The no-slip velocity condition is a Dirichlet boundary condition, so we need to use Eq. (3.7c).
The coordinate system is fixed with respect to the solid walls, so the velocity of the walls
is zero. The boundary condition therefore reads

R =
[

u1, u2, 0, 0, 0
]

, on solid walls. (3.16)

If we choose G = 0, we can insert the above choice of R into the generalized Neumann
condition (3.7b) and obtain the equations

− n · Γi = µi, on solid walls. (3.17)

This does not impose any restrictions on the solution since Femlab is allowed to choose
the Lagrange multipliers freely. Thus the velocity is constrained to zero at the solid walls
as desired, and we have imposed no restriction on the pressure.
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Inlet and outlet conditions

We want the velocity field to be periodic from the outlet to the inlet and a fixed pressure
drop ∆p between the two boundaries. The velocity is made periodic using the extrusion
coupling variables and a linear mapping of the values of the velocity at the outlet boundary
to the inlet boundary. To obtain this, we set no restrictions on the velocities at the outlet,
i.e., R = 0. This gives us the Neumann condition

− n · Γi = Gi. (3.18)

Setting G3 = G4 = G5 = 0 trivially fulfills this equation and imposes no constrictions on
the pressure or the two force components. For the velocity components we have

− n ·
[

σ11

σ21

]

= G1 and − n ·
[

σ12

σ22

]

= G2. (3.19)

Since we have chosen the full stress tensor formulation, the stress tensor components are
functions of the pressure, and we have

− n ·
[

−p+ 2η̃ �xu1

η̃(�xu2 + �yu1)

]

= G1 and − n ·
[

η̃(�xu2 + �yu1)
−p+ η̃ �yu2

]

= G2. (3.20)

If we set Gi = n · pI, for i = 1, 2, this leaves us with a boundary condition that does not
constrain the pressure and sets the viscous forces to zero at the inlet allowing for a periodic
velocity gradient.

At the inlet we simply set the velocity equal to the velocity at the outlet by choosing the
Dirichlet condition R =

[

uout
1 − u1, u

out
2 − u2, (p

out + ∆p) − p, 0, 0
]

. The pressure drop is
ensured by using the extrusion coupling variables denoted by the superscript “out” setting
the pressure at the inlet equal to the pressure at the outlet plus the pressure difference.
The Neumann coefficient is the same for the inlet as the one for the outlet because we do
not want any viscous forces here either. This formulation ensures a pressure drop from
the inlet to the outlet, but it does not fix the magnitude of the pressure. This is done by
constraining the pressure to a fixed value (zero) at a point on the outlet boundary. If we
want the pressure to be periodic as well, ∆p is simply set to 0.

Boundary conditions at the surface of the particle

At the surface of the particle we must fulfill the no-slip condition (2.31). However, we
need to determine the viscous forces at the particle boundary accurately. The viscous
force is proportional to the gradient of the velocity field. Since we are using second order
elements for the velocity, the gradients are only first order polynomials. Thus integrating
the gradients at the particle boundary will not give us accurate results. We therefore use a
weak constraint to set the boundary condition at the surface of the particle using the force
terms λ1 and λ2 as Lagrange multipliers to enforce the no-slip condition. We then solve
explicitly for λ1 and λ2 using second order basis functions in the expansion.

In Femlab a weak constraint on a boundary is given by the equation

0 =

∫

∂Ω

da ν̃i

�Rj�ui

µj (3.21)
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with the Dirichlet condition 0 = Ri on ∂Ω. Here νi is the test functions corresponding to
the solution components ui. This formulation is used to set the no-slip condition at the
surface of the particle since it enables us to enter the Lagrange multipliers ourselves.

The no-slip requirement at the particle surface is a Dirichlet type boundary condition,
so we choose R =

[

λ̃1(V1 − u1), λ̃2(V2 − u2), 0, ũ1λ1, ũ2λ2

]

, where the test functions are
denoted by tildes, and V1 and V2 are the x- and y-components of the total particle velocity
(rotation and translation). Now the two Lagrange multipliers are exactly the total force
needed to ensure the no-slip velocity at the surface of the particle, and Femlab allows us
to choose basis functions of second order.

Using the above definitions, the equations and boundary conditions can be implemented
in Femlab. In code example 2 we show how this is done.

% POINT CONSTRAINT TO FIX PRESSURE LEVEL
fem . pnt . shape = { [ 1 : 3 ] } ; % only use ve loc i t y and pressure in points
fem . pnt . ind = { [ 8 2 ] [ 1 : 8 1 ] } ; % in th i s example there are 82 points in the geometry
fem . pnt . con st r = { ’p ’ ’0 ’ } ; % f i x the pressure at node no 82 at the out l e t

% BOUNDARY CONDITIONS: Partic le , in le t , upper walls , lower walls , bumper , out l e t
fem . bnd . ind = { [ Part ] [ I n l e t ] [ LowerWalls ] [ UpperWalls ] [Bump] [ Out let ] } ;
% Bug in Femlab : f l form does not preserve the order of the boundary groups
% when converting to weak form !
fem . bnd . shape = { [ 1 : 3 ] [ 1 : 3 ] [ 1 : 3 ] [ 1 : 3 ] [ 1 : 3 ] [ 1 : 5 ] } ;
fem . bnd . g = {0 { ’p * nx ’ ’p * ny ’ 0 0 0} { ’ p * nx ’ ’ p * ny ’ 0 0 0} . . .

{ ’p * nx ’ ’p * ny ’ 0 0 0} 0 { ’ nx * p ’ ’ ny * p ’ 0 0 0}};
fem . bnd . r = {{ ’0 ’ , ’0 ’ , ’ 0 ’ , ’ 0 ’ , ’ 0 ’} { ’ u_cpl - u ’ , ’ v_cpl - v ’ , ’( p _ c p l + p0 ) - p ’ , ’0 ’ , ’0 ’} . . .

{ ’ u_cpl - u ’ , ’ v_cpl - v ’ , ’ p_cpl - p ’ , ’ 0 ’ , ’0 ’} { ’0 ’ , ’0 ’ , ’0 ’ , ’0 ’ , ’ 0 ’} . . .
{ ’ - u ’ , ’ - v ’ , ’ 0 ’ , ’ 0 ’ , ’ 0 ’} { ’ 0 ’ , ’ 0 ’ , ’0 ’ , ’0 ’ , ’0 ’ }} ;

fem . bnd . weak = {{ ’ l m 1 _ t e s t *( Velx - u ) ’ ’ l m 2 _ t e s t *( Vely - v ) ’ . . .
’0 ’ ’ u _ t e s t * lm1 ’ ’ v _ t e s t * lm2 ’} { ’0 ’} { ’0 ’} { ’0 ’} { ’0 ’} { ’ 0 ’ }} ;

Femlab code 2: Point constraint and boundary conditions in Femlab notation. The spacial
derivatives of the velocity components are given as the velocity component followed by the com-
ponent of the direction in which the derivative is taken. The shape functions were given when the
governing equations were defined.

3.3 Benchmarking the code

To check if the implementation described above is correct we will use it on some simple
configurations in order to benchmark the code. For simulation of particle transport in
bumper arrays the important parameters are the forces on the particle and the computation
of the flow when a particle is near a solid wall. We will use the derived result for the pressure
on a particle in the vicinity of a solid wall to check the reliability of the code when the
particles are near the walls of the system and we will use the benchmark results published
by Schäfer and Turek [24] to validate the computation of the forces on the particles.

Numerical computation of the pressure distribution on a particle near a

solid wall

Because of the approximations done in the derivation, we can only expect qualitative agree-
ment between the derived expression and the numerical result.
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Figure 3.1: Plot of the pressure distribution on an elliptical particle near a solid wall. Com-
parison of numerical simulation (black line) with the analytical analysis (blue line).

In figure 3.1 we plot the pressure from a numerical simulation of a particle near a solid
wall as well as the analytically derived result from section 2.3. We use the implementation
described above with a slip velocity at the channel walls and a Poiseuille flow profile at
the inlet. At the surface of the particle the velocity is zero which is achieved by setting V1

and V2 equal to 0. The pressure is normalized with p0 = η0U0

L0
, where η0 = 10−3 Pa·s is

the viscosity of water and U0 = 10µm·s−1 is the translation velocity of the particle. The
length scale used is the minimum gap width L0 which is approximately 0.045 times the
major halfaxis a of the particle.

The qualitative agreement is very good, but the magnitude is a factor two off for the
negative part of the pressure.

Drag and lift forces on a cylinder

The evaluation of the forces on the particle is very important. Schäfer and Turek [24] have
published benchmark results for the drag and lift on a circular cylinder in a two dimensional
geometry. This is a system very similar the one we wish to solve, and they consider laminar
flow. Thus we trust that our code gives valid results if it compares favorable with the
published benchmarks.

The geometry for the benchmark test case is as follows: The length of the channel is 2.2m
and the channel height is 0.41m. A circular cylinder with diameter L0 = 0.1m is placed
slightly off center 0.2m from the inlet and 0.2m from the bottom wall of the channel. The
flow is assumed to be a Poiseuille flow with maximum velocity umax = 0.3m·s−1 in the center
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of the channel. The fluid has the density ρ0 = 1.0 kg·m−3 and viscosity η0 = 10−3 Pa·s.
These parameter values gives a Reynolds number of Re = ρ0umaxL0

η0
= 30.

We nondimensionalize the equations using these values as the typical scales of the system
and obtain the geometry shown in figure 3.2. The boundary conditions are no-slip velocity
at the walls of the channel and at the surface of the particle. At the inlet we prescribe
the Poiseuille velocity profile and at the outlet we fix the pressure to zero. The benchmark
results we want to obtain is the drag coefficient defined as

Cdrag =
2Fx

ρ0u2
meanL0

(3.22)

and the lift coefficient

Clift =
2Fy

ρ0u2
meanL0

, (3.23)

where Fx and Fy are the forces in the x- and y-direction, respectively, and umean = 2
3umax

is the average velocity of the undisturbed Poiseuille flow.
We use the weak constraint and the Lagrange multipliers to evaluate the forces as de-

scribed above. Because we have nondimensionalized the system we have the nondimensional
quantities ρ̃ = η̃ = ũmax = 1 and the expressions for the drag coefficient and the lift co-

efficient becomes Cdrag = 9F̃x

2Re
and Clift =

9F̃y

2Re
, where the nondimensional forces are the

integrals of the Lagrange multipliers λ1 and λ2 over the surface of the cylinder, respec-
tively.

With our setup we get the coefficients Cdrag = 5.5791 and Clift = 0.0108. The article
requires the drag coefficient to be in the interval [5.5700, 5.5900] and the lift coefficient to
be in the interval [0.0104, 0.0110]. Thus both the drag and the lift lies in the centers of
the benchmark intervals. These results makes us trust that our implementation gives the
correct results in the geometries under study.

Table 3.1: Drag and lift coefficients obtained using the code developed in this thesis and
corresponding intervals of accepted values from benchmark studies [24].

Cdrag Clift

Benchmark [5.5700, 5.5900] [0.0104, 0.0110]
This work 5.5791 0.0108
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Figure 3.2: The upper figure shows the mesh used in the benchmark calculation and the lower
figure shows the velocity field. The maximum mesh size is equal to the radius of the cylinder far
away from the cylinder and ten times smaller at the surface of the cylinder.



Chapter 4

Flow in 2D bumper arrays

Bumper arrays are a new class of microfluidic separation devices [14]. Bumper arrays utilize
the properties of the laminar flow found in the micro regime to yield deterministic separation
of particles based on their size, as already mentioned in Fig. 1.2 on page 4.

Conventional separation devices rely on diffusion based separation. This type of sepa-
ration relies on the correlation between average diffusion length and particle size. However
the resolution of the separation in such devices is limited by the fact that diffusion is a
random process. Moreover, the speed at which particles can be separated is limited by the
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Figure 4.1: The deterministic separation in bumper arrays relies on small particles following
the flow of the fluid. Particles with a radius larger than the critical radius rc gets displaced due to
interaction with the bumpers. Experiments as well as simulations show that small particles can get
stuck in “dead zones” in the flow. This is regions with very low flow velocities, here marked with
a skull and bones sign A. The number of flow lanes N depend on the periodicity of the bumper
array. We number the flow lanes in the gap between two posts from 1 to N starting with the lane
closest to a post on the left.
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characteristic diffusion time.

In order to effectively use a bumper array it is of course necessary to know which
particles that follow the zig-zag path and which that follow a displacement path. This is
determined by the size of the particles. If the particles have a radius that is larger than
the width of lane 1 then the particles will be pushed out into the next lane. This is called
the displacement path. If the particles are sufficiently small, they are not displaced by the
obstacles. Small particles are therefore passively convected by the flow. Because of the
periodicity of the bumper array this is called the zig-zag path.

Since the path followed by a particle is determined by the size of the particle, there must
exist a critical radius rc defined such that particles with a radius smaller that rc will follow
the zig-zag path and particles with a radius larger than rc will follow the displacement path.
In the following we will make an estimate of the critical radius in a two dimensional bumper
array.

4.1 Critical radius in two dimensions

We will derive an analytical expression for the critical radius in a two dimensional bumper
array under the assumption that the flow between the bumpers can be described as a
Poiseuille flow in an infinitely wide channel of the height d. This critical radius we will
compare to the critical radius found through numerical simulation of a two dimensional
bumper array.

In the analytical models we will use the definition of the critical radius proposed by
Huang et al. [14]. They define the critical radius as the width of the lane nearest to the
bumpers. Because we are considering flows on the micro scale, the flow is laminar. This
means that each lane of the flow must carry the same amount of fluid. Therefore the flowrate
Q in each lane is the same. Thus, the critical radius is found by solving

1

N
=
Q(rc)

Qtotal
(4.1)

for rc.

If we neglect the effect of friction on the walls the critical radius is of course just dN−1.
However, if we take the friction into account, the critical radius becomes larger and we must
expect a correction α to the above relation

rc
d

= α
1

N
. (4.2)

The velocity of a pressure driven flow has only nonzero components in the x-direction
and is described by the well known parabolic Poiseuille profile

u(2D)
x =

∆p

2ηL
(d− z)z, (4.3)

where ∆p is the pressure difference that drives the flow, η is the viscosity of the fluid, L is
the length of the channel and d is the height of the channel.
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The flow rate Q(2D) in a section of the flow with width w and height r from the lower
wall can be found by integration

Q(2D) =

∫ w

0

dy

∫ r

0

dz u(2D)
x (z)

=
w∆p

2ηL

(

1
2dr

2 − 1
3r

3
)

. (4.4)

The fraction of the flow from 0 to r is therefore

Q(2D)(r)

Q(2D)(d)
= 3

(r

d

)2

− 2
( r

d

)3

. (4.5)

If the bumper array is N periodic, each lane must carry N−1 of the flow. Thus the critical
radius can be found from

Q(2D)(rc)

Q(2D)(d)
= 3

(rc
d

)2

− 2
(rc
d

)3

=
1

N
. (4.6)

This equation can not be solved explicitly, but we might consider the solution in the limit
of large N . In this limit the critical radius is much smaller than the width of the channel.
Thus we can apply the approximation

3
(rc
d

)2

=
1

N
, for rc ≪ d. (4.7)

Solving this equation for rc yields

rc =

√

N

3

d

N
=

1√
3

d√
N

. (4.8)

Using the approximation (4.2) we find that the correction factor is

α =

√

N

3
(4.9)

in the limit of large N .
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Figure 4.2: Plot of the critical radius (full line) and the approximation for large N (dashed
line).

4.2 Numerical investigation of the critical radius

The analytical derivation of the critical radius builds on two assumptions

• The flow between the posts can be approximated as a Poiseuille flow in an infinitely
long channel.

• The critical radius of the particles is equal to the width of the lane nearest to the first
post.

Using numerical simulations of the flow in a bumper array we may verify the assumptions.
We will take a bumper array produced by Jason Beech at Lund University as the basis for
the geometry used in the simulations. This geometry consists of a regular array of posts
with a circular cross section. The posts have a center-to-center distance λ = 34µm. The
radius of the posts is Rpost = 8.5µm. The array is tilted an angle α = atan(1/10) with
respect to the direction of the channel. The width of the channel is W = 10λ/ cos(α) and
the length of the channel is L = 50W . We assume the fluid to be water with the density
ρ = 1 × 103 kg·m−3 and viscosity η = 1 × 10−3 Pa·s, and we choose a typical velocity for
the fluid to be u0 = 100µm·s−1.

Using these values we find that the Reynolds number is approximately

Re =
1 × 103 kg·m−3 × 100µm·s−1 × 17µm

1 × 10−3 Pa·s = 1.7 × 10−3 , (4.10)

where we have used the width d = 17µm of the gap between two neighboring posts as the
typical distance for the system. This means, that we can be sure that the flow is laminar,
which is required for the bumper array to work.



30 Flow in 2D bumper arrays

Because of the periodicity in the length direction, we can reduce the computational
domain to a quadratic cell with side length W . The boundary conditions are no-slip at
the posts and at the top and bottom wall of the geometry. The velocity is periodic from
outlet to inlet and the flow is driven by a pressure difference ∆p from inlet to outlet. We
implement these settings as described in section 3.2 in the previous chapter.

We solve the system as a stationary problem. The solution is plotted in figure 4.4(a).
We determine the critical radius using two different approaches:

1. Using streamlines, we find two streamlines ending at the top and bottom of the same
post. The streamlines are initiated at the line connecting the center points of the
posts on either side of the previous gap.

2. We calculate the fraction of the flow that passes the gap by integrating the velocity
field along the line mentioned in item 1. The critical radius is assumed to be the
distance along the line through which 1

10 of the flow passes.

Using method 1, we find the critical radius to be between 0.172 and 0.175 times the gap
width. The two values are due to the fact that streamlines starting between these two values
end in a dead zone in front of the next post. Method 2 gives us a critical radius of 0.184
times the gap width.

Experimental values for the critical radius is rc

d
∈ [0.25, 0.28]. This is considerably larger

than the value of rc

d
= 0.196 predicted by the analytical model as well as the values found

by numerical simulation. This suggests that a two dimensional model does not predict the
size of the critical radius correctly and we need to take other effects into account, such as
the nearby presence of solid walls at the top and bottom of the channel. In chapter 5 we
will derive a three dimensional extension of the analytical model presented in this chapter
and carry out numerical simulations of the flow in a unit cell of a bumper array with the
same dimensions as the physical device produced at Lund University.
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Figure 4.3: A unit section of the bumper array produced by Jason Beech at Lund University.
The diameter of the posts are 17µm. The posts are arranged on a regular quadratic grid with
a center-to-center distance of 34 µm between the posts. The array of posts are tilted an angle
α = atan(1/10) with respect to the direction of the channel.
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Figure 4.4: (a) Surface plot of the velocity relative to the characteristic velocity u0. The red
lines are streamlines ending at the top and bottom of a post. The critical radius is equal to the
distance from the previous post to the streamlines. (b) The blue curve is the normalized velocity
along the line indicated by the black line in figure (a). The black curve is the Poiseuille velocity
profile with the same maximal velocity.
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4.3 Dead zones

During experiments it has been observed that small particles tend to get stuck in regions,
denoted dead zones, near the bumpers (see also Fig. 4.1). We may get an idea of the shape
of the dead zones by studying a 2D simulation of the flow in a bumper array with the
geometry shown in figure 5.5. We use periodic boundary conditions from right to left and
no-slip velocity conditions on all other walls. The shape of the dead zone is determined
by inspection of stream lines stopping on the top and bottom of a post. All stream lines
starting in the area enclosed by these two stream lines will end at the post in stead of
continuing through the hole device.

(a) (b)

Figure 4.5: (a) The velocity field in a unit of the bumper device. The boundary conditions
are periodic from left to right and no-slip velocity conditions on all other walls. (b) A closeup of
two bumpers is shown together with two streamlines stopping on the top and bottom of the right
bumper. The area enclosed by the two streamlines indicates the dead zone.

(a) (b)

Figure 4.6: (a) The velocity field in a unit of the bumper device with elliptical posts. The
boundary conditions are periodic from left to right and no-slip velocity conditions on all other
walls. (b) A closeup of two bumpers is shown together with two streamlines stopping on the top
and bottom of the right bumper. The area enclosed by the two streamlines indicates the dead zone.
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Changing the shape of the bumpers changes, not surprisingly, the shape of the dead
zones. This was verified by inspecting the dead zones formed in front of circular as well as
elliptical posts. In figure 4.6 the velocity field and the dead zone are shown for a bumper ar-
ray similar to the one shown in figure 4.5(a) but with elliptical posts. The dead zones formed
in front of the elliptical posts were in this experiment much larger than the corresponding
dead zones formed in front of the circular posts.

In many cases it would be desirable to optimize the devise by minimizing the dead zones
in order to avoid clogging. This were the direct reason for the simulations shown here. We
have not carried out further investigations of the dead zones but the approach sketched here
is a capable of quickly providing design guidelines for physical devices.

One might speculate that future bumper devices could rely, in one way or an other, on
the shape of the dead zones. Smaller particles tend to get stuck in the dead zones more
easily than larger particles. This introduces a delay-effect that might be of interest for some
applications.



Chapter 5

Flow in 3D bumper arrays

In this chapter we will expand the derived two dimensional expression for the critical radius
to three dimensions and compare the result to the experimental results obtained by Jason
Beech at Lund University.

5.1 Critical radius in three dimensions

In three dimensions the flow velocity is constrained to zero at the top and bottom of the
channel wall as well as at the surface of the obstacles. The geometry of the narrow region
between two posts is as sketched in figure 5.1
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Figure 5.1: (a) The flow profile in the region between two posts is approximately the same as
the flow profile of a Poiseuille flow in an infinitely long channel. (b) The coordinate systems used
in the calculation of the critical radius in a three dimensional bumper array. The flow is in the
x-direction out of the paper.

Again we will use the approximation that the flow between two posts can be approxi-
mated by a Poiseuille flow in an infinitely long channel. We also use the assumption that
the critical radius is the width of the section of the flow nearest to a post that carries a
fraction of the flow corresponding to the number of lanes.

In a channel with a rectangular cross section with width d and height h, the x-component

34
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of the velocity field is given by the infinite sum
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2 and 0 < z < h. In case h > d we obtain a similar result by rotation
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where −h
2 < z < h

2 and 0 < y < d. The total flow rate Q(3D)(d) is given by the the integral
of the x-component of the velocity over the entire gap width

Q(3D)(d) =

∫

gap

da ux(y, z), (5.3)

where the velocity component ux(y, z) is given by Eq. (5.1) or Eq. (5.2) depending on the
geometry of the gap.

First we will consider the case where the distance d between the posts is larger than the
height h of the posts. In this case we can find the amount of liquid streaming in the section
of the flow nearest to the post by integration of Eq. (5.1)
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Thus the flow rate in this section Q(3D)(r) of the flow relative to the total flow rate Q(3D)(d)
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In case the distance between the posts is smaller than the height of the posts, the relative
flow rate is found from the integral

Q(3D)(r) = 2

∫ r

0

dy

∫ h
2

0

dz u(3D)
x (y, z). (5.6)

The relative flow rate is therefore
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Figure 5.2 shows a series of plots of 1
N

as a function of r
d

for channels with different height
to width ratios. The maximum particle size is always limited by the shortest dimension of
the gap. Thus for h > d the curves are very close together, and the maximum particle
radius is half the gap width. For h < d the height of the gap limits the maximum size of
particles that can pass through the bumper array.
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Figure 5.2: The flow rate Q(3D)(r) relative to the total flow rate Q(3D)(d) as a function of
the position r between the posts relative to the minimum of the gap width d or the height h as a
function of the periodicity N of the bumper array. The graphs represent the relative flow rate in
bumper geometries with height to width ratios ranging from 1

2
to 2.

5.2 Simulation of the flow in a three dimensional bumper array

In order to simulate the flow in a three dimensional bumper array the computational do-
main must be reduced even more than the domain used in the two dimensional simulation
described in chapter 4. We will neglect the no-slip conditions at the outer walls of the
channel and reduce the computational domain to a unit cell in the middle of the channel.
Assuming that the flow in this cell is identical to the flow in the neighboring cells we can use
periodic boundary conditions. We can reduce the size of the unit cell even more by realizing
that the flow must be symmetric around the center plan of the channel (see figure 5.3).

We use boundary conditions as described in section 3.2 for the periodic and the no-slip
boundaries. At the symmetry plane the viscous stress is zero and the velocity component
perpendicular to the symmetry plane is zero. The flow is driven by a pressure difference
from the inlet to the outlet. With this setup, we obtain the solution shown in figure 5.4.

Using the definition of the critical radius as suggested by Huang et al. [14] we find by
carrying out the integration

∫ rc

0
dau · n

∫

inlet
dau · n =

1

N
(5.8)

that the critical radius is rc/d = 0.180. This result can be controlled by realizing that the
flow through the bottom boundary must stem from the fluid contained in the section of the
inlet flow that is within a distance of the critical radius from the bottom post. Indeed the
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(a) (b)

Figure 5.3: The geometry of the three dimensional bumper array is assumed to be periodic and
symmetric about the center plan of the array. Thus a periodic geometry as shown in figure (a) can
be reduced to the unit cell shown in (b) where the periodicity of the total array is modeled using
periodic inlet and outlet conditions and a symmetry condition at the center plan of the geometry.

same result is obtained if we solve the equation

∫ rc

0 dau · n
∫

bottom
dau · n = 1, (5.9)

where n is a normal vector to the surfaces.
Similarly to the approach used in the two dimensional investigation we can use stream-

lines to find the critical radius. Using this method we find that the critical radius is a
function of the position in the bumper array. In table 5.1 the critical radius at different
positions in the bumper array is tabulated.
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Figure 5.4: The velocity field in half a unit cell of the bumper array used by Jason Beech. The
boundary conditions are periodic from inlet to outlet and from top to bottom. No-slip velocity
conditions are applied on the posts and on the walls of the channel. At the center plan of the unit
cell a symmetry boundary condition is applied.

Table 5.1: Corresponding values of position in the bumper array and critical radius determined
using streamlines. The relative position 2z

h
is given with respect to the center of the channel.

2z

h
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rc

d
0.1431 0.1442 0.1448 0.1460 0.1485 0.1512 0.1561 0.1626 0.1719 0.1838

5.3 Experimental results

At Lund University, under supervision of Jonas Tegenfeldt, Jason Beech has carried out
experiments with bumper arrays fabricated in the polymer PDMS. The geometry of the
bumper array was as shown in figure 5.5. The dimensions are as mentioned in the caption
of the figure. The total length of the channel containing posts is 50 unit cells and the total
width is one unit cell. Experimentally the value of the critical radius relative to the gap
width is found to be within the interval [0.25, 0.28].

Huang et al. [14] reports results from a bumper array with gap width dHuang = 1.6µm.
The periodicity of the array is NHuang = 10 similarly to the array used by Beech. The
observed critical diameter in Huang’s device is approximately 0.8µm. This means that the
critical radius relative to the gap width is 0.8µm

2×1.6µm = 0.25.

In table 5.2 we summarize the results for the critical radius obtained from the numerical
investigations as well as the experimentally observed values. The agreement between the
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Figure 5.5: Unit cell of a bumper array. The height of the channel is h = 20µm, the distance
between the posts is d = 17 µm and the center to center distance between the posts is 34 µm. The
bumper array is periodic with period N = 10.

Table 5.2: Comparison of the observed critical radius with the simulated values.

Tool rc

d
Method

3D

Observed 0.25–0.28 Experiments at Lund University
Observed 0.25 Experiments by Huang et al.

Simulation 0.143–0.184 Investigation of streamlines
Simulation 0.180 Flow rate calculation
Theory 0.190 Assuming Poiseuille flow

2D
Simulation 0.172–0.175 Investigation of streamlines
Simulation 0.184 Flow rate calculation
Theory 0.196 Assuming Poiseuille flow

experimental values are good. However the numerically obtained values are approximately
25% lower than the experimental data. This implies that the assumption that the critical
radius is simply the width of the first lane is not correct. At the same time it underlines
the fact that the finite size of the particles must be taken into account if we wish to study
the working principles of bumper devices numerically.

It seems counterintuitive that the experimentally observed critical radii are larger than
the ones predicted by the simple flow analysis. This suggests some kind of “opposite lift-
effect”implying that the actual geometry of the narrow region between the posts, and the
flow pattern in the region between two consecutive rows of posts, are more important than
accounted for in the laminar flow model with equal splitting of the flow between the lanes
in the bumper array.

In chapter 6 we will investigate the motion of finite-sized particles in bumper arrays
through numerical simulations of the motion of particles based on the implementation de-
scribed in chapter 3.



Chapter 6

Particles in a bumper array

This chapter will be devoted to direct numerical simulations of finite-sized particles in
bumper arrays. We will present simulations done on circular as well as elliptical particles in
a bumper array with circular posts. Pori to the simulations presented here, the numerical
code were used on several test cases in order to verify the output from the simulations.
We will not present these test cases here. In stead we will focus on the simulations of
bumper arrays, as this has been the major point of interest for the project. However the
test studies gave us some insight in the behavior of particles in different channels geometries
and based on this knowledge we have made qualified guesses on the initial orientations of
the non-spherical particles as we will discuss later.

6.1 Time stepping and mesh generation

As mentioned in chapter 3 we have implemented the time-stepping as a Matlab loop
of solutions to the time-independent Navier-Stokes equation for each new position of the
particle. We have implemented two time stepping algorithms; a forward Euler time step
and a Runge-Kutta time step.

Euler times step

The output from each solution to the flow problem in a given geometry is the state of the
liquid given by the velocity u and the pressure p and the forces on the particle. Using these
we can solve Eq. (2.26) and Eq. (2.30). For the Euler time step ∆ti, we simply use the
discretizations

vi+1 = vi +
1

m
Fi∆ti (6.1)

and

ri+1 = ri + vi∆ti +
1

2m
Fi∆t

2
i (6.2)

for the position ri and velocity vi of the particle in the i’th time step, wherem =
∫

P
d V ρP is

the mass of the particle. Fi is the total force working on the particle, and the discretization

ωi+1 = ωi +
1

I
τi∆ti (6.3)

40
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and

θi+1 = θi + ω∆ti +
1

2I
τi∆t

2
i (6.4)

is used for the orientation θ and angular velocity ω of the particle. I is the moment of
inertia and τ is the torque about the axis of rotation through the center of mass of the
particle.

Runge-Kutta time step

The Runge-Kutta time step were implemented as the classical fourth order Runge-Kutta
time step where

ri+1 = ri +
∆t

6

(

k1 + 2k2 + 2k3 + k4

)

, ti+1 = ti + ∆t, (6.5)

where the coefficients kj , j = 1, 2, 3, 4 are given as

k1 = v
(

ri, t
)

, R1 = ri + 1
2∆tk1, (6.6a)

k2 = v
(

R1, t+ 1
2∆t

)

, R2 = ri + 1
2∆tk2, (6.6b)

k3 = v
(

R2, t+ 1
2∆t

)

, R3 = ri + ∆tk3, (6.6c)

k4 = v
(

R3, t+ ∆t
)

. (6.6d)

Rj is a temporary position. The orientation were calculated using an equivalent approach.
We did only use the Runge-Kutta time step on some of the test cases since it requires four
solutions per time step. The improved accuracy of the Runge-Kutta time step did not allow
us to make much larger time steps because we need to interpolate the solution from the
previous time step to the mesh in the geometry of the current geometry in order to use it as
initial condition. If the particle moves more than one mesh cell, this introduces numerical
errors. For the same reason we used an adaptive time step based on the translation velocity
of the particle

∆ti+1 =
min(hmesh)|∂P

|vi|
, (6.7)

where hmesh is the lengths of the meshelements at the surface of the particle.

Generation of mesh

As was demonstrated in the benchmark calculation in section 3.3, we obtain accurate results
for the forces on the surface of a round particle if we resolve the surface with a mesh with
elements one tenth of the radius of the particle. We use this length as the maximum mesh
size at the particle surface. If the particle is near the bumpers we need to resolve the flow
in this region. To do so we generate at least three mesh elements in narrow regions of the
geometry.

The channel geometry stays the same throughout all simulations, but the geometry of
the computational domain changes because the particle is represented by a boundary of the
computational domain. Therefore it is necessary to generate a new mesh every time step.
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6.2 Modeling of the particle-wall contact force

In order to take the interaction between the solid particles and the walls of the microsystems
into account we need to model the contact force Fcoll(r) = F0F̃ (r)eF (r) between the wall
and the particle. F0 is the physical characteristic scale of the force. As mentioned we have
chosen to model the force as an extra force per area acting on the surface of the particle.
The direction eF of the force is perpendicular to the surface of the bumpers and works in
a small region of width ǫ from the bumper surface.

The magnitude F̃ of the force is a function of the distance dB from the bumper surface
∂B. The distance is simply given by

dB(r) = min(|r − rB|) (6.8)

where rB = {r|r ∈ ∂B} is a given point on the surface of the posts. The direction eF of
the force is

eF ≡ ∇dB

|∇dB|
. (6.9)

We tried several functions as the model of the magnitude of the force. Several polynomial
functions were tried as well as different exponential functions. If the magnitude were too
small, the particles were not sufficiently repelled by the bumpers and penetrated into the
walls. This breaks the numerical code. If, on the other hand, the magnitude of the force
were too large, the particles felt a strong repulsion. This resulted in particles getting shoot
away from the posts. After many numerical experiments we found that the function defined
as

F̃coll ≡







1 − tanh

(

dB

ǫ

)

, dB < ǫ

0, otherwise
(6.10)

worked well. A surface plot of the magnitude of the force is shown in figure 6.1(a).
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(a)

bump
dB

F̃coll

(b)

Figure 6.1: (a) Surface plot of the magnitude of the contact force from the bumpers. (b) Plot
of F̃coll.

6.3 Circular particles

In this section we present simulations done on the dynamics of finite-sized circular particles
in a bumper array. Due to numerical limitations it is not possible to simulate the flow
and motion of particles in full devices. As discussed earlier, direct modeling of finite-sized
particles contained in a system of comparable dimensions rely on accurate computation of
the forces exerted by the fluid. To obtain this, we need to resolve the surface of the particle
using a fine grid.

The critical radius is approximately the gap width divided by the periodicity of the
bumper array. Thus we need to use mesh elements much smaller than the gap width, in the
neighborhood of the particle if we use arrays with a large periodicity. On the other hand
in bumper arrays with a small period, the critical size of particles is very close to the the
gap size which also imposes problems.

As a compromise we have chosen to model a bumper array with N = 4 in our proof-of-
concept simulations. Based on our analytical model, the critical radius in such a device is
rc ≈ 0.33d. The finite size of the particles affects the flow. Therefore we can not reduce the
size of the computational domain to the smallest unit cell as we did in the simulation of
the flow in the three dimensional bumper array. Instead we will use a unit cell containing
a full period of the bumper array and use periodic boundary conditions as we did in the
flow simulations in chapter 4. However, we will use periodic boundary conditions in all
directions thus modeling a section of the flow in the middle of an infinitely large array.

We will use the geometry shown in figure 6.2. We use the same geometry for all simula-
tions, varying only the size and shape of the particles. The submersing fluid is assumed to
be water. We use the gap width d to nondimensionalize lengths and we will use a velocity
of 100µm·s−1 as the typical velocity of the system.
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Figure 6.2: The geometry of the bumper array used in the simulations of the motion of finite-
sized particles.

The typical scales used to nondimensionalize the equations as well as the geometrical
properties of the bumper array are tabulated in table 6.1.

The particle is assumed to be rigid and to have the same density ρP = ρ0 as the liquid.
Many biological particles have approximately the same density as water and we are not
interested in studying buoyancy effects in this simulation. Thus this is a natural choice for
the density of the particle.

All particles are started with their center of mass at the same initial position. The initial
velocity is set to the velocity of the flow in a bumper array with no particles at the position
of the center of mass of the particle.

We initiate the particles such that we expect them to be carried by the flow and hit
a bumper in the third row in the bumper array. In this way, the particles are allowed
to be convected by the flow a sufficiently long way for the effects of the initial flow not

Table 6.1: The parameter values used in the simulations of the particle motion in the bumper
arrays.

Density of liquid ρ0 1 × 103 kg·m−3

Viscosity of liquid η0 1 × 10−3 Pa·s
Typical velocity u0 100µm·s−1

Gap width (Length scale) d 17µm
Bumper-bumper distance λ 2.0d
Distance between rows ∆ 2.5d
Bumpers per period N 4
Collision force scale F0

η0u0

d

Range of force ǫ 0.1
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being perfectly no-slip at the particle surface. A particle is then considered “bumped” if it
continues above the following post in the next row. If it passes under the following post in
the next row it is following the zig-zag path.

The displacement path

Large particles bumping into the posts follow the displacement path as discussed in the
introductional chapter of the thesis. These particles are expected to follow the same path
relative to the bumpers they are in contact with after the first bump. To verify this, we
examine the path of a bumped particle in the vicinity of the two last encounters with posts.
These paths are plotted in figure 6.3.

The paths relative to the bumpers are very similar. This also tells us that diffusion
effects can indeed be neglected because the particle paths get “reset” at post-particle con-
tacts. Thus, the maximum time interval a large particle can diffuse is the time it takes for
convection to transport the particle from one post to the next (approximate distance ∆). In
this bumper array the possible diffusion time interval is therefore ∆/u0 = 2.5d/u0 = 0.425 s.
The diffusion constant for a particle is of the order of D = 10−11 m2·s−1 giving a diffusion
distance of approximately 10% of the gap width. However, since the path of the particle gets
reset at encounters with the posts this will be the maximum diffused distance independent
of the total length of the bumper array.

The zig-zag path

When small particles are in free flow between the posts they are expected to follow the
streamlines of the undisturbed flow, approximately. To check if this is the case, we plotted
the path of a small particle as well as a flow line of an undisturbed flow starting in the same
point as the particle, see figure 6.4. As is evident the particle path follows streamline of the
undisturbed flow nicely. When the particle comes in the vicinity of the post in the third row
of the bumper array it diverges from the streamline, as expected. The above observations
makes us trust that the computed particle paths are correct.

The critical radius

We ran a series of simulations with particles of varying radii. The radii relative to the gap
width were 0.2, 0.25, 0.27, 0.29, 0.30, 0.31, 0.33, 0.35, 36.5, 39.5 and 0.40. With these
radii, all particles with a radius less than or equal to 0.365 followed the zig-zag path. Only
the particles with radii 0.395 and 0.40 got displaced, see figure 6.5. This means that the
critical radius determined from this simulations is in the interval rc/d ∈ [0.365, 0.395]. This
is between 10% and 20% more than what were predicted from the analysis of flow rates
and streamlines presented in chapter 4.

From the simulations it is seen, that the collision forces repells the particles from the
posts as intended. There is a small space between the particles and the bumpers. The width
of this space is approximately 0.05d, which must be considered satisfactory since particles
and bumpers are not allowed to overlap in the implementation used in this thesis. With
the length scales used here, this distance is less than one micrometer. Thus, the gap could
be considered as an effect caused by surface properties such as roughness, which will always
be present in real physical devices.
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Figure 6.3: The path for a particle with radius RP = 0.4d. The two last sections of the path
enclosed in rectangles are plotted on top of each other in the inset. The black curve is the path from
the first rectangle and the blue curve is the part of the path enclosed in the second rectangle. The
two paths fit nicely on top of each other. This indicates that when a large particle gets displaced,
it will do so throughout the rest of the bumper array.

Figure 6.4: The path of a small particle with radius RP = 0.25d (black curve) compared with
a streamline of the undisturbed flow in the bumper array starting in the same point as the particle
(red curve). The path of the particle and the streamline is nearly undistinguishable until the
particle comes in to the vicinity of a post.



6.4. Elliptical particles 47

Figure 6.5: Separation of circular particles in a bumper array. The figure shows the particles
with radii RP/d = 0.35 and RP/d = 0.40 at different times while they are convected through the
bumper array. When the fourth row of posts are reached, the larger particle gets displaced while
the smaller follows the zig-zag path.

The observed value of the critical radius in a bumper array with N = 10 is 33% larger
than the critical radius found from investigation of flow lines or flow-calculations as discussed
in chapter 5. This makes us conclude that the critical radius can not be found from simple
investigations of the flow because the finite size and the precise geometry of the bumper
array plays an important role for the size of the critical radius in a specific device.

6.4 Elliptical particles

In the previous sections we verified that the developed code gives results which is in agree-
ment with what should be expected. One of the goals for this project was to develop an
implementation that could handle finite-sized particles of an arbitrary shape. To verify, that
our implementation can handle noncircular particles we have made a series of simulations
with elliptical particles with different eccentricities.

Handling of arbitrarily shaped particles is important if we wish to investigate the pos-
sibility of separation based on the morphology of the particles in stead of their size. In
the simulations we have used particles with the same masses as the particles used in the
simulations of the circular particles but we have varied the eccentricity e defined as

e =

√

1 − b2

a2 , (6.11)

where a and b are the semi axis of the ellipses. We have done simulations with particles
with the following eccentricities: 0.1, 0.3, 0.5, 0.7 and 0.9. The size of the particles were as
mentioned determined by the mass of the particles.

The initial position and velocity of the particles were the same as the initial position
and velocity of the circular particles. The initial orientation were chosen to be with the
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major semi axis in horizontal direction. This was chosen because initial test studies showed
us that elliptical particles tend to align themselves with the flow.

With this initial configuration we obtained particle paths as depicted in figure 6.6. In-
terestingly, the separation pattern were the same as for the circular particles: Particles with
masses corresponding to circular particles with radii smaller than RP/d ≤ 0.365 followed
the displacement path while particles with masses corresponding to circular particles with
radii larger than RP/d ≥ 0.395 got displaced. This were independent of the eccentricity of
the particles.

Figure 6.6: Separation of elliptical particles in a bumper array. The figure shows the particles
with eccentricity e = 0.9 and mass similar to particles of radii RP/d = 0.35 and RP/d = 0.40 at
different times while they are convected through the bumper array. When the forth row of posts
are reached, the larger particle gets displaced while the smaller follows the zig-zag path. The red
and blue curve are the centers of mass for the large and the small particle, respectively.

6.5 Summary of bumper results

We have carried out simulations of particle transport in bumper arrays. We focused on
one particular bumper geometry with four rows per period and circular bumpers. We also
carried out simulations of particle transport in other array geometries but the time did
not allow us to do a systematic examination of the effect of these geometry differences. In
figure 6.7 we show an example of an elliptical particle in a bumper array with rectangular
posts.

The separation works independent of the geometry of the device but in some geometries
the particles got stuck in the dead zones more often than in other geometries. This was
especially the case when rectangular posts were used, especially if the row-to-row distance
was small. Here the dead zones in front of the bumpers are much larger than in the case of
circular posts.

Even in the fixed geometry chosen for our studies the parameter space is huge. We
limited ourselves to studying the path of non-buoyant particles with one initial position
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and orientation. We carried out simulations for a series of eleven particle radii and five
different eccentricities for elliptical particles with masses similar to the masses of the circular
particles. The chosen radii were chosen based on the estimates for the critical radius made
from investigations of the flow in bumper arrays. It turned out that the critical radius for
particles of finite size was much larger than what was predicted by the initial flow studies.
The critical radius fell in the top region of our interval of chosen radii where we did not have
many values. The critical radius were found to be between rc/d = 0.365 and rc/d = 0.395
for the circular particles. Elliptical particles were separated similar to circular particles of
the same mass. This was independent of the eccentricities of the particles for the parameter
values used in our studies.

Our simulations were limited by long computation times (approximately two days per
run). However, a more severe limitation was a memory leak in Femlab that made the
computation stop with a “Out of memory” warning. Closing and opening of the program
cleaned out the memory and the computations could continue form the last saved solution.
Another problem we had during the development of our code was a bug in the way Femlab

converts boundary expressions to weak form: The order of the boundary expressions and
the corresponding shape functions is not preserved. We worked around this problem by
rearranging the terms ourselves but it took us some time to locate the origin of the strange
results produced from code not taking this into account.

Figure 6.7: The path of elliptical particle in a bumper array with rectangular posts.



Chapter 7

The level set method

The direct simulation approach described in the previous chapters works and gives trust-
worthy results. However, the computational time is large and the geometry changes and
interpolation of solutions from one mesh to a new mesh in the next time step is error-prone.
It would be desirable to have a fixed geometry and mesh, and to move the particle relative
to this mesh without the need to generate new meshes every time step.

In this chapter we introduce the level set method as a method for achieving this goal.
We sketch the basic ideas and advantages of the level set method and derive a level set
formulation of an incompressible two fluid system. We use this formulation to model the
particle transport in a microsystem by representing the particle as a highly viscous liquid
droplet.

7.1 The idea

The idea behind the level set method is to represent an interface by the zero level set

Γ = {r|φ(r) = 0} (7.1)

of some smooth function φ(r). By evolving the level set function in time we can capture
the front implicitly as the zero contour of the level set function rather than following it
explicitly. The time-evolution of the front is determined by the physics of the modeled
problem. This formulation has a number of advantages such as

• It is completely general and thus extendable to higher dimensions and is usable for a
vast range of problems concerning moving interfaces.

• Topological changes of the front (such as merging of bubbles) or collisions with hard
walls are handled automatically.

• The level set function can be discretized on the same grid as the governing physical
equations. Thus the same numerical tools can be used to solve for the evolution of
the level set function and for the physical system.

We which to model the transport of finite-sized particles in confined geometries. In the
level set formulation introduced here this is achieved by having a fixed channel geometry
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Figure 7.1: A domain Ω consisting of two subdomains Ω1 and Ω2. The boundary Γ between
the two subdomains is the zero level set.

and a fluid with a varying viscosity. The particles are then represented by a high viscous
part of the fluid and the submersing fluid is represented by the part of the fluid with low
viscosity. The high viscous particle is separated from the liquid with low viscosity by the
zero contour of the level set function (the zero level set).

In many biological applications, the particles are not completely rigid. Many cells, for
example, consist of a flexible lipid membrane containing a soft interior. Particles represented
as viscous droplets might be a useful model for cell handling in microfluidic systems.

7.2 Governing equations

In the following we derive the level set formulation for an incompressible two liquid flow in
a microfluidic system. We follow the approach used by Chang et al. [6].

Consider a domain Ω consisting of two subdomains Ω1 and Ω2. The common boundary
between Ω1 and Ω2 is the interface Γ which we want to evolve.

The rate of change �p�t
of the momentum of the fluid is given by�p�t =

∫

Ω

dr ρ
Du

Dt
(7.2)

where Du

Dt
is the substantial time derivative. According to Newton’s second law the change

in momentum must be balanced by the forces acting on the volume of fluid. In a microfluidic
system we can neglect gravity, and the only force Fσ acting on a volume of fluid stems from
the stresses σ exerted by the surrounding liquid

Fσ =

∫

∂Ω

σ · da, (7.3)

where σ is the stress tensor defined by

σij = −pδij + η (�jui + �iuj) . (7.4)

Newton’s second law therefore takes the form
∫

Ω

ρ
Du

Dt
dr =

∫

∂Ω

σ · da. (7.5)

The right hand side of this equation can be split up in three integrals: two parts for each
of the boundaries of the two subdomains and one along the common interface

∫

Ω

ρ
Du

Dt
dr =

∫

∂Ω1

σ · da +

∫

∂Ω2

σ · da +

∫

Γ

[σ · da], (7.6)
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where [σ · a] = [σ · n] is the pressure drop across the interface Γ. The first two integrals
can be rewritten using Gauss’ theorem yielding

∫

∂Ω1

σ · da =

∫

Ω1

∇ · σ dr and

∫

∂Ω2

σ · da =

∫

Ω2

∇ · σ dr, (7.7)

respectively. The last integral can be rewritten using the Young-Laplace theorem
∫

Γ

[σ · da] =

∫

Γ

γκ da, (7.8)

where γ is the surface tension and κ is the average curvature of the interface [5].
It is desirable to rewrite the surface integral (7.8) as a volume integral like the rest of the

terms. This can be achieved by introducing a level set function φ(r, t) as we will show in
the following. The proof will only be given in two dimensions but can easily be generalized
to higher dimensions.

We introduce a level set function φ(r, t) with the properties










φ(r, t) > 0 r ∈ Ω1,

φ(r, t) = 0 r ∈ Γ,

φ(r, t) < 0 r ∈ Ω2.

(7.9)

This function uniquely defines the interface as Γ = {r|φ(r, t) = 0} and lets us distinguish
each subdomain by determining the sign of φ. We also introduce a transverse level set
function ψ(r, t) such that

∇φ · ∇ψ = 0, |∇ψ| 6= 0. (7.10)

We will show later that it is possible to construct such level set functions. Even though
the method is generally applicable to systems of higher dimensions we will in the following
consider a two dimensional system with the spacial dimensions x and y. We can construct
a global orientation-preserving diffeomorphism that maps Ω 7→ Ω′ through the variable
change

x′ = ψ(x, y) (7.11)

y′ = φ(x, y). (7.12)

This change of variables is area preserving because the Jacobian is non-zero,
∣

∣

∣

∣

�(ψ, φ)�(x, y)

∣

∣

∣

∣

= (φy ,−φx) · (ψx, ψy) = |∇φ||∇ψ| 6= 0, (7.13)

where we assume that ψ is constructed such that ∇ψ is parallel to the tangent direction
and therefore −∇̂φ||∇ψ.

Furthermore we introduce a parameterization
(

x(s), y(s)
)

of Γ, where s is an arc-length
variable. Using this parameterization an infinitesimal change in x′ along Γ is given by

dx′|φ=0 = dψ(x(s), y(s))

= (ψxxs + (ψyys) ds

=
(

(ψx, ψy) · (xs, ys)
)

ds

= |∇ψ| ds,

(7.14)
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where we have utilized the above assumption that the gradient of ψ is parallel to the tangent
direction. With the above definitions we can rewrite Eq. (7.8) as

∫

Γ

γκ da =

∫

φ=0

γκnds

=

∫

φ=0

γκ
1

|∇ψ|ndx′

=

∫

φ=0

γκ
1

|∇ψ|
∇φ

|∇φ| dx′

=

∫

Ω′

γκδ(y′)
1

|∇ψ|
∇φ

|∇φ| dx′ dy′,

(7.15)

where we have used that the normal n to the interface can be written as ∇/|∇|. Using
Eq. (7.13) for changing variables, Eq. (7.15) becomes

∫

Γ

γκ da =

∫

Ω

γκδ(φ)∇φdxdy. (7.16)

Inserting Eqs. (7.7) and (7.16) into Eq. (7.6) yields
∫

Ω

ρ
Du

Dt
dr =

∫

Ω1

∇ · σ dr +

∫

Ω2

∇ · σ dr +

∫

Ω

γκδ(φ)∇φdr

=

∫

Ω

∇ · σ + γκδ(φ)∇φdr.

(7.17)

This must hold true for any volume Ω. Hence

ρ
[ �tu + (u · ∇)u

]

= ∇ · σ + γκδ(φ)∇φ. (7.18)

This is the level set formulation of the Navier-Stokes equation. We now need to show that
we can construct the transverse level set function ψ with the required properties.

We start by defining a coordinate transformation by

d

dτ

(

x(s, τ), y(s, τ)
)

= ∇φ
(

x(s, τ), y(s, τ)
)

, (7.19)

where
(

x(s, 0), y(s, 0)
)

=
(

x(s), y(s)
)

. (7.20)

Because of the δ function in Eq. (7.18), ψ only needs to fulfill the requirements in a small
region |τ | < ǫ around Γ. In this small region we can define ψ as

ψ
(

x(s, τ), y(s, τ)
)

= ψ0(s), (7.21)

where ψ0(s) is a smooth increasing function if and only if the mapping of (x, y) to (s, τ) is
one-to-one. Using the change of variables theorem we have to show that

∣

∣

∣

∣

�(x, y)�(s, τ)

∣

∣

∣

∣

6= 0. (7.22)
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Taylor expanding Eq. (7.19) around τ = 0 yields

(xτ , yτ ) = ∇φ
(

x(s), y(s)
)

+ O(τ). (7.23)

Differentiation of Eq. (7.19) with respect to s and integration with respect to τ yields
∫ τ

0

d

ds

d

dτ ′

(

x(s, τ ′), y(s, τ ′)
)

dτ ′ =

∫ τ

0

d

ds
∇φ

(

x(s, τ ′), y(s, τ ′)
)

dτ ′. (7.24)

Consequently,

(

xs(s, τ), y(s, τ)
)

−
(

xs(s, 0), ys(s, 0)
)

=

∫ τ

0

d

ds
∇φ

(

x(s, τ ′), y(s, τ ′)
)

dτ ′, (7.25)

and thus
(

xs(s, τ), y(s, τ)
)

=
(

xs(s), ys(s)
)

+

∫ τ

0

d

ds
∇φ

(

x(s, τ ′), y(s, τ ′)
)

dτ ′

= T(s) + O(τ). (7.26)

Here T is a unit tangent vector to the interface. We can now calculate the determinant (7.22)
∣

∣

∣

∣

�(x, y)�(s, τ)

∣

∣

∣

∣

= (xτ , yτ ) · (−ys, xτ )

= ∇φ(xs, ys) · T̂
= |∇φ||T| + O(τ)

= |∇φ|φ=0 + O(τ) 6= 0. (7.27)

This means that ψ is well defined in a small region around Γ. Now all we need to prove is
that ∇φ and ∇ψ are orthogonal and that |∇ψ| 6= 0. The orthogonality can be proved by
differentiating ψ with respect to τ

d

dτ
ψ

(

x(s, τ), y(s, τ)
)

= ψxxτ + ψyyτ

= ∇ψ · ∇φ =
dψ0(s)

dτ
= 0, (7.28)

which means that φ and ψ are orthogonal if and only if |∇ψ| 6= 0. This follows immediately
from differentiating ψ with respect to s

d

ds
ψ

(

x(s, τ), y(s, τ)
)

= ψxxs + ψyys

= ∇ψ · (xs, ys)

= ∇ψ ·T
= |∇ψ| = ψ′

0(s) > 0, (7.29)

because ψ0(s) was chosen to be an increasing function. Thereby we have established the
level set formulation of the Navier-Stokes equation for a two liquid flow of incompressible
fluids.
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Because we are working in the microregime where the velocity of the flow is much
smaller than the velocity of the sound (propagation of pressure), we can regard the fluid as
being incompressible. This is, as described in chapter 2, formulated in the incompressibility
condition

∇ · u = 0. (7.30)

Now all we need in order to have the system completely described by dynamical equations
is an equation describing the evolution of the zero level set. We only need to consider the
movement of the zero level set because this is the only part of the level set function with a
physical interpretation. Evolving the equation φ(r, t) = 0 in time defines the movement of
the front. Differentiating with respect to time yields

d

dt
φ(r, t) = 0 ⇐⇒�tφ(r, t) + V · ∇φ(r, t) = 0, (7.31)

where V = dr

dt

∣

∣

∣

r∈Γ
is the velocity of the zero level set.

The velocity field must be continious at the particle surface. This is obtained by setting
the convection velocity equal to the velocity of the fluid, V = u. The evolution equation
for φ therefore becomes

φt + u · ∇φ = 0. (7.32)

7.3 Smearing out the interface

In a system consisting of two immiscible viscid fluids (or a particle in a fluid) the density and
viscosity are constant on each side of the interface. We can therefore define the dimensionless
density and viscosity as

ρ̃ = 1 +H(φ)

(

ρ1

ρ2
− 1

)

(7.33)

and

η̃ = 1 +H(φ)

(

η1
η2

− 1

)

, (7.34)

where H(φ) is a Heaviside function defined as

H(φ) =

{

1, φ ∈ Ω1

0, φ ∈ Ω2.
(7.35)

Setting ρ0 = ρ2 ensures that the density of the fluid is ρ1 and ρ2 in Ω1 and Ω2, respectively.
Similarly setting η0 = η2 makes the viscosity of the fluid η1 and η2 in Ω1 and Ω2, respectively.

When solving the system numerically the abrupt change in density and viscosity across
the interface causes numerical instabilities to occur. In order to avoid this we need to smear
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out the Heaviside function, delta function and sign function across the interface. We do
this by substituting H(φ), δ(φ) and sign(φ) with the smeared out versions Hǫ(φ), δǫ(φ) and
signǫ(φ) defined as

Hǫ(φ) ≡ 1

2
+

1

2
tanh

(

φ

ǫ

)

, (7.36a)

δǫ(φ) ≡ H ′

ǫ(φ) =
1

2ǫ
− 1

2ǫ
tanh2

(

φ

ǫ

)

and (7.36b)

signǫ(φ) ≡ tanh

(

φ

ǫ

)

(7.36c)

respectively. This implies that the interface has a finite thickness Γǫ of approximately

Γǫ =
2ǫ

|∇φ| . (7.37)

It is necessary to maintain a uniform thickness of the interface throughout the calculations.
This requires that the gradient of the level set function is constant within a region around
the interface |φ| < ǫ. This is not automatically fulfilled. The time evolution of any level
set φ(r, t) = C is given by the level set equation (7.32). This means that the height of the
level set function will remain constant, but it does not ensure that the gradient does not
change. Thus in order to keep a fixed interface thickness we need to reinitialize the level
set function without changing the zero level set. As long as the reinitialization procedure
does not change the zero level set the physics of the problem is unaffected.

7.4 Signed distance functions

Until now we have not considered which function to use as the level set function. The only
requirement is that it is smooth and that it uniquely identifies the front which we want to
evolve as its zero level set. Moreover each side of the front should be identified by the sign
of the level set function. In principle we can use any function that fulfills (7.9) since only
the zero level set has a physical interpretation. But requiring the interface thickness to be
fixed constrains the gradient of φ to be fixed in a region around the interface. A choice of
φ(r, t) that fulfills this requirement is the signed distance function, where the distance is
the shortest distance d(r) from a point to the interface

d(r) = ±min(|r − rΓ|), (7.38)

where rΓ is the points on the interface. The minus sign applies if r ∈ Ω1 and the plus sign
if r ∈ Ω2.

This choice of level set function has a number of special properties [20, 22]. Amongst
those, the length of the gradient

|∇φ| = 1, (7.39)

the unit normal vector to the interface

n =
∇φ

|∇φ| , (7.40)
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and the curvature of the zero level set

κ = ∇ · n = ∇ ·
(

∇φ

|∇φ|

)

. (7.41)

These properties must be invariant under the reinitialization procedure.

7.5 Reinitialization

Several approaches have been suggested in order to maintain the level set function as a
signed distance function. Common for all methods is that the time evolution of the physical
problem is stopped and the level set function is straightened out. The position of the zero
level set must be conserved during the reinitialization procedure in order to conserve the
physics of the problem. When the level set function has been reinitialized, the time-evolution
of the physical problem is resumed using the reinitialized level set function.

Simple approach

The simplest way to reinitialize the level set function as a signed distance function is simply
to stop the computation when the level set function is too distorted and compute the
shortest distance from every point in the computational domain to the interface.

This method has been used by Chopp [7], but it is not very attractive because it is
computationally very expensive.

Reinitialization equation

Another more sophisticated approach was suggested by Sussman, Smereka and Osher [23].
They reinitialized the level set function using the the partial differential equation�τψ(r, τ) = sign(φ)(1 − |∇ψ(r, τ)|). (7.42)

The equation is solved to steady state with the initial condition ψ(r, 0) = φ. τ is a pseudo-
time used only during the reinitialization. The sign function changes sign across the interface
and is zero at the interface. Thus, the interface are fixed at the same position because
sign(φ) = 0 at the interface making �τψ = 0 at the interface. Away from the interface
ψ will change until the length of the gradient equals 1, which as stated above is a signed
distance function.

Because numerical oscillations can occur if the sign of φ changes abruptly at the interface,
it is necessary to use the smeared out sign function given in Eq. (7.36c).

Using this method mass loss can still occur due to numerical diffusion. Sussmann and
Fatemi [23] therefore proposed a correction to the above reinitialization equation�τψ(r, τ) = sign(φ)(1 − |∇ψ(r, τ)|) + λf(ψ), (7.43)

where f(ψ) = δ(ψ)|∇ψ|.
We want the volume of the particle to be constant. Hence we demand that�t

∫

Ω

H(ψ) da = 0. (7.44)
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Moving the differentiation under the integral sign yields
∫

Ω

δ(ψ)ψt da = 0 (7.45)

Inserting the modified partial differential equation for φ gives us the requirement that must
be fulfilled

∫

Ω

δ(ψ)
(

sign(φ)(1 − |∇ψ(r, τ)|) + λf(ψ)
)

da = 0. (7.46)

We have chosen to use this reinitialization procedure for the simulations in this thesis. In
section 3.2 we describe how we have implemented the system of governing equations and
the reinitialization procedure in Femlab. The volume conserving constraint is implemented
using a weak constraint via the field fem.equ.constr.

Tracer particles

A third way of reinitializing the level set function is described by Enright et al. [10]. En-
right et al. passively advect tracer particles with the fluid. The tracer particles must always
stay on the same side of the zero level set. If a marker particle crosses the front, it means
that the level set function has been distorted and must be rebuild. The level set function is
then reconstructed such that the marker particles are again on the correct side of the front.

Promising results has been obtained using this method, but it is not straight forward
to implement in Femlab. A possible route for implementation could build on the tools
developed by Wu Zhilei in his doctoral thesis “Numerical Study of Dispersed Two-phase
Flows” (Lund Institute of Technology, Sweden, 2000)1.

Extension velocities

Equation (7.31) is the general equation describing the time evolution of the level set function.
In fluidic problems, we use the velocity field of the fluid as the convection velocity field in
order to fulfill the no-slip condition on the surface of the particle. However, only the velocity
of the zero level set V (φ = 0) is relevant for the physical problem. In some physical problems
this can be exploited so that reinitialization becomes unnecessary. If the velocity of the front
is orthogonal to the front itself then V (φ = 0)‖∇φ and Eq. (7.31) reduces to

φt + V |∇φ| = 0 (7.47)

in the region near the evolving front. Instead of setting V equal to the physical velocity
field u, Adalsteinsson and Sethian [1] define a so called extension velocity Vext that fulfills
the requirement of the physical problem Vext(φ = 0) = u and the equation

∇Vext · ∇φ = 0. (7.48)

If the level set function is initialized as a signed distance function with |∇φ(r, 0)| = 1 then
it will remain so at all times because

d|∇φ|2
dt

=
d

dt
(∇φ · ∇φ) = 2∇φ · d

dt
∇φ

= −2∇φ · ∇Vext|∇φ| − 2∇φ · ∇|∇φ|Vext.

(7.49)

1http://www.comsol.dk/showroom/gallery/314.php

http://www.comsol.dk/showroom/gallery/314.php
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The first term on the right hand side of the above equation is zero because of Eq. (7.48),
and the second term is zero because |∇φ(r, 0)| = 1 which reduces the second term on the
right hand side to −2∇φ · ∇Vext = 0, and the length of ∇φ is therefore 1 at all times.

Though this method elegantly preserves the level set function as a signed distance func-
tion, it is not implementable in Femlab because we need to solve Eq. (7.48) under the
constraint that the velocity on the zero level set equals the velocity of the fluid. This is not
possible because Femlab offers no way of formulating a constraint implicitly.

Furthermore, the method is not applicable in the present problem because the velocity
of the front is not orthogonal to the front itself.

7.6 Implementation

One of the great advantages of the level set formulation is that we do not track an interface
explicitly but rather capture it implicitly. This makes several numerical tools applicable for
solving the dynamical system. In this chapter we describe how we have implemented the
method in Femlab.

7.7 Nondimensionalizing the equations

Again we introduce characteristic scales for the physical quantities in the problem. We
define the characteristic length scale L0, velocity scale U0, density ρ0, viscosity η0 and
surface tension γ0. Expressing the physical quantities as a dimensionless number times the
characteristic scale we find

r = L0r̃, u = U0ũ, ρ = ρ0ρ̃, η = η0η̃ and γ = γ0γ̃, (7.50)

where the dimensionless quantities are denoted by a tilde. Similarly we can define the char-
acteristic pressure and timescale as relations between the chosen characteristic parameters

p =
η0U0

L0
p̃ and t =

L0

U0
t̃. (7.51)

Substituting (7.50) and (7.51) into Navier-Stokes equation (7.18) yields

Reρ̃

(�ũ�t̃ + (ũ · ∇̃)ũ

)

= (∇̃ · σ̃) +
1

Ca
γ̃κ̃δ(φ)∇̃φ (7.52)

where the Reynolds number Re = ρ0U0L0/η0 is the ratio between inertial forces and viscous
forces and the Capillary number Ca = η0U0/γ0 is the ratio between viscous forces and the
surface tension forces.

The dimensionless form of the continuity equation and the level set equation is

∇̃ · ũ = 0 (7.53)

and

φt + ũ · ∇̃φ = 0 (7.54)
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respectively. We note that because of the continuity condition the convection equation for
the level set function can be rewritten as

φt + ∇̃(φũ) = 0 (7.55)

which is a more useful form when implementing the equation into Femlab.

7.8 Implementation in Femlab

In the following we will go through the steps taken to implement the level set formulation
of a microfluidic system with a finite-sized particle passively convected by the flow. The
solution process consists of a series of steps as illustrated in figure 7.2

1. Set up Geometry
& equation system

2. Initiate level
set function

3. Solve flow prob-
lem one time step

4. Reinitialize
level set function

5. Final solution

Figure 7.2: Block diagram of the steps in the level set solution process. 1. The channel
geometry and the equation system is initiated. 2. The level set function is initiated as a signed
distance function. 3. The flow problem and the convection of the level set function is solved for
one time step. The reinitialized level set function (or the initially defined signed distance function)
is used as initial condition for the level set function. 4. The level set function is reinitialized. Step
no. 3. and 4. is repetend until 5. The final solution is obtained.

Setting up the equations

We use the general equation form described in chapter 3 to set up the equations. In the level
set formulation, we solve the system as a time-dependent system directly in Femlab. The
quantity dai

is therefore nonzero. To put equations (7.52), (7.54) and (7.55) into Femlab

we use

da1
= Reρ̃, da2

= Reρ̃, da3
= 0, da4

= 1, (7.56a)

Γ1 =

[

−σ̃11

−σ̃21

]

, Γ2 =

[

−σ̃12

−σ̃22

]

, Γ3 = 0, Γ4 = 0, (7.56b)

F1 = −Reρ̃(ũ · ∇̃)ũ1 +
1

Ca
γ̃κ̃δ(φ)̃�xφ, F3 = ∇̃ · ũ,

F2 = −Reρ̃(ũ · ∇̃)ũ2 +
1

Ca
γ̃κ̃δ(φ)̃�yφ, F4 = −ũ · ∇̃φ,

(7.56c)

where the solution vector is U = [ũ1, ũ2, p̃, φ]. The dimensionless velocity components are
denoted by ũ1 and ũ2, respectively, and the dimensionless pressure is denoted by p̃. The
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level set function φ is initialized as the dimensionless signed distance to the particle-liquid
interface.

The stress tensor components σ̃ij and the curvature of the surface κ̃ are defined as
subdomain expressions

σ̃11 = 2η̃�̃xũ1 − p̃, σ̃12 = η̃(̃�xũ2 + �̃yũ1), (7.57)

σ̃21 = σ̃12, σ̃22 = 2η̃�̃yũ2 − p̃ (7.58)

and

κ̃ =
�̃xxφ(̃�yφ)2 − 2�̃xφ�̃yφ�̃xyφ+ �̃yyφ(̃�xφ)2

(

(̃�xφ)2 + (̃�yφ)2
)

3

2

(7.59)

The above defines the dynamical problem. The reinitialization procedure is implemented
in a similar fashion

da = 1, (7.60a)

Γ =

[

0
0

]

, (7.60b)

F = signǫ(φ0)

(

1 −
√

(̃�xψ)2 + (̃�yψ)2
)

, (7.60c)

where φ0 is the level set function from the last time step of the dynamical problem. The
volume constraint is implemented as

0 = V0 − V (ψ), (7.61)

where V0 =
∫

Ωdr
(

1 − Hǫ

(

φ(t = 0)
)

)

is the initial volume of the particle and V (ψ) =
∫

Ωdr
(

1 − Hǫ

(

ψ(τ)
)

)

is the current volume of the particle. The integrals are computed

using the integrino coupling variables provided by Femlab.

7.9 An example

In the following section we will use the derived level set formulation. As a case study we
examine the path of a two dimensional particle when it is convected by a fluid past an
obstacle.
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η1 ρ1
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Figure 7.3: For the test study we use the geometry consisting of a section of a channel with a
single obstacle. The shape of the obstacle was changed from simulation to simulation by changing
the radius of curvature a for the corner of the obstacle. A series of simulations were run changing
the shape of the obstacle from round (a = l/2) to square (a = 0). The height of the channel is
H = (20/3)l and the width of the channel section is W = (13/3)l. The starting position x0 and the
final position xfinal of the particle were recorded. For each geometry configuration a mesh similar
to the one shown on the right was generated and kept fixed throughout the simulation.
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Geometry and mesh

The geometry used for this test study is simply a channel with an obstacle as shown in
figure 7.3. We ran a series of simulations with the shape of the obstacle changing from
circular to quadratic. For each simulation we constructed a geometry and generated a
mesh. The mesh and geometry were fixed throughout the entire simulation.

The parameters used in the simulation are as tabulated in Tab. 7.1.
The flow in the channel is driven by a pressure drop ∆p from top to bottom of the

channel. The boundary conditions used in the simulations are no-slip at the solid obstacle,
no-stress conditions at the sides of the computational domain and at the bottom wall
the pressure is fixed to zero. The boundary conditions are implemented as discussed in
section 3.2.

The particle is represented by the negative part of the level set function and the fluid
resides in the part of the computational domain where the level set function is positive. We
study nonbuoyant particles, so the density of the particle is the same as the density of the
submersing fluid. The viscosity of the particle is 100 times higher than the viscosity of the
fluid. The particle is initiated as a circular particle vertically situated at y0 = H − l. For
each geometry, we used four different initial horizontal positions x0. When the center of a
convected particle passes the horizontal line positioned at y = l the final horizontal position
xfinal is detected. In this formulation the level set function is initiated as the signed distance
function given by

φ(x, y, t = 0) =
√

(x− x0)2 + (y − y0)2 −RP. (7.62)

The algorithm for solving the equation system described above is

• Initiate the level set function as a signed distance function based on the shape of the
particle.

• Evolve the level set function one time step according to the level set equation (7.55)
using the velocity field and pressure computed from Navier-Stokes equation (7.52) and
the continuity equation (7.54).

• Reinitialize the level set function without changing the position of the zero level set.
We use the reinitialization equation (7.46) where we constrain the volume to be con-
stant using a weak constraint.

Table 7.1: The parameter values used in the test case.

Reynolds number Re = 1× 10−3

Capillary number Ca = 1× 106

Density ρ0 = 1× 103 kg·m−3

Viscosity η0 = 1× 10−1 Pa·s
Obstacle size l = 6× 10−6 m
Particle radius RP = 3× 10−6 m
Pressure drop ∆p = 1.2×10−3 Pa
Time step ∆t = 5× 10−2 s
Mesh element size hmesh=1.1×10−6 m
Thickness parameter ǫ = 0.5×hmesh
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• Use the reinitialized level set function and evolve the system one more time-step.

We have included code snippets in Appendix C to show how each step is implemented.

Some results

We carried out simulations for four different initial positions of the particle. The normalized
initial horizontal positions 2x0/W were 1.015, 1.077, 1.308 and 1.539, respectively. The
center of the channel is x = W/2. For each of these initial positions, we ran a series of
simulations with five different shapes of the obstacle. The radii for the rounded corner of
the obstacle were 2a/l = i/10, with i = 1, 3, 5, 7, 10.

For each combination of initial position and obstacle shape we solved the system and
obtained the particle paths. Snapshots of the particles positions are shown in Figs. 7.5
and 7.6 for the round and square obstacle, respectively.

The difference in the horizontal position ∆x as a function of obstacle shape is plotted
in figure 7.4. As is evident, the results are not as systematically accurate as we would have
liked. However some of the expected behaviors can be observed:

• Particles started near the center line of the channel have a larger displacement than
particles started further away from the center line.

• The round obstacle tend not to drag as much in the particles as square obstacles
yielding a larger displacement from start to finish.

• Particles started near the center line of the channel have a greater probability of
getting stuck in the dead zone in front of the obstacle. Only one of the particles

2a/l

2
∆

x
/W

2x0/W = 1.015

2x0/W = 1.077

2x0/W = 1.308

2x0/W = 1.539

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15

0.2

Figure 7.4: For particles passing obstacles of different shapes normalized difference 2∆x/W in
horizontal position from start to finish is plotted versus starting position 2a/l. The missing data
points for the simulations with the initial positions of the particles nearest to the center of the
channel is due to the particles getting being stuck at the obstacle and hence not reaching the final
position.
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started closest to the center line of the channel got past the obstacle. This was the
one passing the round obstacle.

Thus, it was possible to implement the level set method in Femlab, and the obtained
results showed qualitative agreement with the expected outcome. However, the results did
not provide the accuracy needed to do simulations of particle transport in microsystems for
precise determination of geometrical properties of the particles.

This is partly due to the reinitialization procedure. The constraint used when reinitializ-
ing the level set function is a constraint over the entire computational domain. This allows
the zero level set to move. A better approach would be a local constraint on the mesh cells
intercepted by the front. Unfortunately, such local constraints are not possible in Femlab.
Further more, the constraints containing integrals causes the time stepper to take extremely
small steps. Consequently, the solution times become very long and the solution process is
very memory consuming. We were not able to run the simulations on an ordinary PC with
2 Gb RAM but had to use the GridEngine batch system available on the High Performance
Computer (HPC) systems at DTU.

For investigation of the dependance of the morphology of finite-sized particles in mi-
crofluidic systems there is another inconvenience with this level set implementation. This
is the preservation of shape. As long as we use spherical particles, the viscosity and surface
tension will ensure that the particles do not lose shape. But this will not be the case for other
shapes. They will gradually become spherical. To maintain the shape of a non-spherical
particle, other reinitialization procedures must be used. One possibility is the particle level
set method discussed earlier.

Nevertheless, the level set method in the implementation described in this thesis might
prove useful for the simulation of cells and other biomolecules that are not completely rigid
in microsystems. The level set method might also be valuable for simulating two phase
flows – especially if the difference between the viscosity of the two fluids is not so large.
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Figure 7.5: Results from the case study with round obstacle.

Figure 7.6: Results from the case study with almost square obstacle.



Chapter 8

Conclusion and outlook

In the present thesis we have presented what to our knowledge is the first numerical code for
simulating the convection of finite-sized, arbitrarily shaped particles in microsystems. Our
implementation enables simulation of arbitrarily shaped particles convected by a fluidic flow
in narrow channel systems. The interaction forces between the particles and the solid walls
of the containing channels are modeled as an added force per surface area of the particle if
the particle is in the vicinity of the walls.

The model yields results that is in qualitative agreement with the expected outcome.
The complexity and the size of the systems that can be modeled using out implementation
is limited by the available computer power, but we have modeled quite complex geometries
by utilizing the symmetries and periodic properties of the modeled devices. The imple-
mentation has been done in Femlab using the possibility to add features via the Matlab

scripting interface. This implementation ensures that systems with other governing physics
can be easily modeled.

In an attempt to overcome some of the computer power demanding shortcomings of
the presented implementation we investigated the level set method as a means of modeling
particle transport without the need to rediscretize the computational domain every time
step. The method proved to be a valuable method for simulating two phase flows. Solid
particle transport can be viewed as a special case of two phase flows where the viscosity
ratio between the two phases are large. With this model we were able to use the level
set method to simulate the convection of a circular particle past a solid obstacle. We
provided an implementation of a volume preserving constraint for circular particles, but our
implementation were not able to conserve the shape of arbitrarily shaped solid particles.
More work is needed in this area, but the current implementation might be useful for
simulating soft particles, bubbles or biological cells in microsystems.

The future holds numerous promising possibilities for microsystems. The recent rapid
development in the polymer sciences provides many exciting new areas of application and
many new functionalities for microsystems. Especially in the field of lab-on-a-chip systems
interesting new systems have been engineered in the last decade. Many of these systems are
developed for medical or biological analysis. More often than not the samples of interest
involves fluids and in many cases the investigation of submersed particles is the target. Here
microfluidic chips are indispensable.

To develop new and more advanced systems in the future and innovate existing systems,

67
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an understanding of the dynamics of particles in microsystems is inevitable. The analysis
and tools described in this thesis provides the basis for future studies of microsystems for
handling of finite sizes particles.

The Femlab provided implementation makes the developed code applicable to systems
where the particles are under influence of other forces than the contact forces from the
channel walls and the hydrodynamic forces included in the models in this thesis. This
could for example be externally applied magnetic or electrical forces but polymer based
microchannels with active sites incorporated in the channelwalls are active areas of research
and detailed numerical studies are required in order to design microchips that fully utilize
the possibilities of such advanced systems.

Martin Heller
MIC – Department of Micro and Nanotechnology

Technical University of Denmark
July 31, 2005
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Parti
le motion in mi
ro�uidi
s simulated using aFemlab implementation of the level set methodMartin Heller and Henrik BruusMIC � Department of Mi
ro and Nanote
hnology, DTU bldg. 345 eastTe
hni
al University of Denmark, DK-2800 Kongens Lyngby, Denmark(Dated: June 28, 2005)We implement the level set method for numeri
al simulation of the motion of a suspended parti
le
onve
ted by the �uid �ow in a mi
ro
hannel. The method automati
ally 
ope with the intera
tionsbetween the parti
le and the 
hannel walls. We apply the method in a study of parti
les moving ina 
hannel with obsta
les of di�erent shapes. The generality of the method also makes it appli
ablefor simulations of motion of parti
les under in�uen
e of external for
es.I. INTRODUCTIONIn re
ent years numeral lab-on-a-
hip systems havebeen developed to analyze biologi
al samples. Many ofthese systems rely on handling of parti
les and 
ells 
om-parable in size to the dimensions of the 
hannels 
ontain-ing them. Examples of su
h mi
rosystems are bumper-arrays or DEP-systems [1, 2, 3, 4℄It is a major 
hallenge in theoreti
al mi
ro�uidi
s tostudy the dynami
s of parti
les of �nite size when theyare 
onve
ted by a �uid �ow. Espe
ially problemati
 isthe for
es appearing during 
ollisions of the parti
les withthe walls of the 
hannel.The level set method [5℄ is well suited to 
ope withthese problems. By introdu
ing a hypersurfa
e �(r; t),the parti
le interfa
e is represented as the zero level set�(r; t) = 0. The major advantage of the method is thatthis zero level set 
an be 
al
ulated impli
itly instead ofexpli
it tra
king of the points on the interfa
e.The manus
ript is organized as follows: In Se
. II westate the equations governing the dynami
s of the systemand in Se
. III we derive the level set formulation for thetra
ked interfa
e. The implementation of the method inthe numeri
al simulation tool Femlab is des
ribed inSe
. IV and we present results of a test study in Se
. VI.Finally, we evaluate the method in Se
. VII and givesuggestions to future areas of usage.II. GOVERNING EQUATIONSWe 
onsider mi
ro�uidi
 systems. Hen
e the 
hara
-teristi
 length s
ales of 
hannels are of the order of 10 �mwhi
h is well beyond the intermole
ular distan
es 
har-a
teristi
 of the �uids involved. Thus the 
ontinuum hy-pothesis applies. Moreover, in these systems the �owvelo
ities are mu
h smaller than the propagation of pres-sure (the speed of sound). We 
an therefore 
onsider the�uids to be in
ompressible and the 
ontinuity 
onditionr � u = 0 (1)holds true for the velo
ity �eld u of the �uid.Consider a domain 
 
onsisting of two subdomains 
1and 
2 with surfa
es �
1 and �
2, respe
tively. The


ommon boundary between 
1 and 
2 is the interfa
e �whi
h we want to evolve.The rate of 
hange of the momentum of the �uid isgiven by R
�DuDt dr involving the substantial time deriva-tive of u. The 
hange in momentumarises from the for
esa
ting on the volume of �uid. In a mi
ro�uidi
 systemwe 
an negle
t gravity and the only for
e F� a
ting on avolume of �uid 
 stems from the stresses � exerted bythe surrounding liquid on the surfa
e �
,F� = Z�
� � da, (2)where � is the stress tensor modelled by�ij = �pÆij + � (�jui + �iuj) . (3)Newton's se
ond law therefore takes the formZ
�DuDt dr = Z�
� � da. (4)The right hand side of this equation 
an be split up inthree integrals; two parts for ea
h of the boundaries ofthe two subdomains and one along the 
ommon interfa
eZ
�DuDt dr = Z�
1� � da+ Z�
2� � da + Z�[� � da℄= Z
1r � � dr+ Z
2r � � dr+ Z�
� da,(5)In the se
ond equality we have used Gauss' theorem aswell as the Young�Lapla
e law relating the pressure drop[� �da℄ a
ross the interfa
e � to the surfa
e tension 
 andaverage 
urvature �.To fa
ilitate numeri
al 
omputation it is desirable torewrite the last integral in Eq. (5) as a volume integrallike the rest of the terms. This 
an be a
hieved by intro-du
ing a level set fun
tion �(r; t) as we will show in thefollowing.



72 Submitted article2III. THE LEVEL SET METHODFollowing Ref. [6℄ we introdu
e a level set fun
tion�(r; t) with the properties8><>:�(r; t) > 0, r 2 
1,�(r; t) = 0, r 2 �,�(r; t) < 0, r 2 
2. (6)This fun
tion uniquely de�nes the interfa
e as �(t) =frj�(r; t) = 0g and permits us to distinguish ea
h sub-domain by the sign of �. We also introdu
e a transverselevel set fun
tion  (r; t) su
h thatr� �r = 0; jr j 6= 0. (7)We show in Appendix A that it is possible to 
onstru
tsu
h level set fun
tions. In the following we 
onsider atwo dimensional system, but the method is appli
ablein higher dimensions also. We 
an 
onstru
t a globalorientation-preserving di�eomorphism that maps
 7! 
0through the variable 
hangex0 =  (x; y) (8a)y0 = �(x; y). (8b)We denote partial derivatives with indi
es, e.g.,  x ��x . The 
hange of variables Eqs. (8) is area preservingbe
ause the Ja
obian is non-zero,�����( ; �)�(x; y) ���� = (�y;��x) � ( x;  y) = jr�jjr j 6= 0, (9)where we assume that  is 
onstru
ted su
h that r isparallel to the tangent dire
tion and therefore �r̂�jjr .Furthermore we introdu
e a parameterization�x(s); y(s)� of �, where s is an ar
-length variable.Using this parameterization an in�nitesimal 
hange inx0 along � is given bydx0j�=0 = jr j ds, (10)where we have utilized the above assumption that thegradient of  is parallel to the tangent dire
tion. Withthe above de�nitions we 
an rewrite the surfa
e integralin Eq. (5) asZ�
� da = Z�=0
�n ds= Z�=0
� r�jr�j 1jr j dx0= Z
0
�Æ(y0) r�jr�j 1jr j dx0 dy0, (11)where we have used that the normal n to the interfa
e
an be written as r�=jr�j. Using Eq. (9) for 
hangingvariables, Eq. (11) be
omesZ�
� da = Z

�Æ(�)r� dx dy. (12)

Inserting Eq. (12) into Eq. (5) yieldsZ
�DuDt dr = Z
[r � � + 
�Æ(�)r�℄ dr. (13)This must hold true for any volume 
. Hen
e� [�tu+ (u �r)u℄ =r � � + 
�Æ(�)r�, (14)whi
h is the level set formulation of the Navier�Stokesequation.In order to have the system 
ompletely des
ribed bydynami
al equations we �nally need an equation des
rib-ing the evolution of the zero level set. We only need to
onsider the movement of the zero level set be
ause thisis the only part of the level set fun
tion with a physi
alinterpretation. Evolving the equation �(r; t) = 0 in timede�nes the movement of the front. Di�erentiating withrespe
t to time yields ddt�(r; t) = 0 whi
h is written as�t�(r; t) +V �r�(r; t) = 0, (15)where V = drdt ���r2� is the velo
ity of the zero level set.Requiring the velo
ity �eld to be 
ontinuous leads toV = u, and the evolution equation for � be
omes�t + u �r� = 0. (16)IV. FEMLAB IMPLEMENTATIONOne of the great advantages of the level set formula-tion is that it does not tra
k the interfa
e expli
itly butrather 
apture it impli
itly. Thereby we avoid to intro-du
e expli
it for
es from the walls during 
ollisions asthey enter impli
itly through the stress tensor � and theno-slip boundary 
ondition on the velo
ity �eld u. Fur-thermore, several numeri
al tools are available for solvingthe dynami
al system. In this se
tion we des
ribe howwe have implemented the level set method in the �niteelement software pa
kage Femlab [7℄. We have used theFemlab s
ripting language trough a Matlab interfa
ein the general PDE mode. Here the PDEs are given byda dUdt +r � � = F in 
 (17a)in terms of the variable ve
tor U, the 
urrent tensor �and the generalized sour
e ter�eld F. The boundary 
on-ditions take the form�nj�lj = Gl + �Rm�Ul �m on �
 (17b)0 = Rm on �
, (17
)where the index l is the variable 
ounter, m is the 
on-straint number (the number of boundaries) and j is thenumber spa
e dimension number. The Lagrange multi-pliers �m are 
hosen by Femlab in order to ful�ll the
onstraints, while the s
alars Fl, Gl and Rm are given bythe physi
s of the problem.



Submitted article 733A. Navier�Stokes equation in FemlabIntrodu
ing the 
hara
teristi
 length s
ale L0, velo
itys
ale U0, density �0, vis
osity �0 and surfa
e tension 
0we 
an express the physi
al quantities as a dimension-less number times the 
hara
teristi
 s
ale. Denoting thenondimensional quantities by a tilde we simply haver = L0~r, u = U0~u, � = �0~�,� = �0~�, 
 = 
0~
. (18)Similarly we 
an de�ne the 
hara
teristi
 pressure andtimes
ale as relations between the 
hosen 
hara
teristi
parameters p = �0U0L0 ~p, t = L0U0 ~t. (19)Substituting Eqs. (18) and (19) into the Navier�Stokesequation (14) yieldsRe ~� h�~t~u+ (~u � ~r)~ui = ~r � ~� + 1Ca ~
~�Æ(�) ~r�. (20)Here the Reynolds number Re = �0U0L0=�0 is the ratiobetween inertial for
es and vis
ous for
es and the Capil-lary number Ca = �0U0=
0 is the ratio between vis
ousfor
es and the surfa
e tension for
es.Rearranging the terms in Eq. (20) we �ndRe ~��~t~u� ~r � ~� = 1Ca ~
~�Æ(�) ~r�� Re ~�(~u � ~r)~u, (21)whi
h is seen to be on the Femlab general form ifda = Re ~�, (22a)� = �~�, (22b)F = �Re ~�(~u � ~r)~u+ 1Ca ~
~�Æ(�) ~r�, (22
)Uu = ~u. (22d)The density ~�, vis
osity ~� and the 
urvature of the front ~�are de�ned as auxiliary fun
tions of the level set fun
tion�. In a system with two immis
ible in
ompressible �uids(or a parti
le in a �uid) the density and vis
osity are
onstant on ea
h side of the interfa
e. We 
an thereforede�ne the dimensionless density and vis
osity as~� = 1 +H(�)��1�2 � 1� (23)and ~� = 1 +H(�)��1�2 � 1� , (24)where H(�) is a Heaviside fun
tion de�ned asH(�) = (1, � 2 
1,0, � 2 
2. (25)

Setting �0 = �2 ensures that the density of the �uid is�1 and �2 in 
1 and 
2, respe
tively. Similarly setting�0 = �2 makes the vis
osity of the �uid �1 and �2 in 
1and 
2, respe
tively.The 
urvature of the zero level set is given by�(�) =r � n =r �� r�jr�j� , (26)where n = r�=jr�j is a unit normal ve
tor to the in-terfa
e [5, 8℄.When solving the system numeri
ally the abrupt
hange in density and vis
osity a
ross the interfa
e 
ausesnumeri
al instabilities to o

ur. In order to avoid this wesubstitute H(�), Æ(�) and sign(�) with the smeared outversions H�(�), Æ�(�) and sign�(�) de�ned asH�(�) = 12 + 12 tanh���� , (27a)Æ�(�) = H 0�(�) = 12� � 12� tanh2���� , (27b)sign�(�) = tanh���� . (27
)This implies that the interfa
e has a �nite thi
kness ��approximately given by�� = 2�jr�j . (28)B. The 
ontinuity equation in FemlabThe dimensionless form of the 
ontinuity equation is0 = ~r � ~u, (29)whi
h is entered into Femlab by 
hoosing F = ~r � ~u,� = 0, da = 0 and Up = ~p.C. The level set equation in FemlabThe nondimensionalized form of the 
onve
tion equa-tion for the zero level set is�~t + ~u � ~r� = 0, (30)whi
h 
an be rearranged to�~t = �~u � ~r� (31)and implemented in Femlab by setting F = �~u � ~r�,� = 0, da = 1 and U� = ~�.



74 Submitted article4TABLE I: The parameter values used in the simulation of thetest 
ase.Reynolds number Re = 1� 10�3Capillary number Ca = 1� 106Density �0 = 1� 103 kg m�3Vis
osity �0 = 1� 10�1 Pa sObsta
le size l = 6� 10�6 mParti
le radius rp = 3� 10�6 mPressure drop �p = 1:2� 10�3 PaTime step �t = 5� 10�2 sMesh element size hmesh= 1:1� 10�6 mThi
kness parameter � = 0:5� hmeshD. Reinitialization of the level set fun
tionIt is ne
essary to maintain a uniform thi
kness of theinterfa
e throughout the 
al
ulations. This requires thatthe gradient of the level set fun
tion is 
onstant withina region around the interfa
e j�j < �. This is not au-tomati
ally ful�lled. The time evolution of any level set�(r; t) = C is given by the level set Eq. (16). This meansthat the height of the level set fun
tion will remain 
on-stant, but it does not ensure that the gradient does not
hange. Thus in order to keep a �xed interfa
e thi
k-ness we need to reinitialize the level set fun
tion without
hanging the zero level set.In prin
iple we 
an use any fun
tion that ful�llsEq. (6), sin
e only the zero level set has a physi
al in-terpretation. But requiring the interfa
e thi
kness to be�xed 
onstrains the gradient of � to be �xed in a regionaround the interfa
e. A 
hoi
e of �(r; t) that ful�lls theserequirements is the signed distan
e fun
tion, where thedistan
e is the shortest distan
e d(r) from a point to theinterfa
e d(r) = �min(jr� r�j); (32)r� being the points on the interfa
e. The plus sign appliesif r 2 
1 and the minus sign if r 2 
2. The length of thegradient for this parti
ular 
hoi
e of level set fun
tion isjr�j = 1. (33)We have implemented two di�erent reinitilization pro-
edures. One simple reinitialization pro
edure where were
al
ulate the level set fun
tion at every time step andone using the reinitialization equation suggested by Suss-mann, Smereka and Osher [9℄�� (r; � ) = sign(�)�1� jr (r; � )j�, (34)with the initial 
ondition  (r; 0) = � and � being a pseu-dotime. The steady state solution to this equation is thereinitialized level set fun
tion. Be
ause numeri
al os
il-lations 
an o

ur if the sign of � 
hanges abruptly atthe interfa
e it is ne
essary to use the smeared out signfun
tion given in Eq. (27
).
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FIG. 1: For the test study we use the geometry and meshshown in the �gure. The general shape of the obsta
le is asshown in the lower inset on the right. The radius a of therounded 
orner was 
hanged from one simulation to the next.The aspe
t size of the obsta
le is l. The height of the 
hannelis H = (20=3)l and the width of the 
hannel is W = (13=3)l.The upper inset on the right shows the general idea of thetest study: The parti
les start in the initial position x0 andthe �nal position x�nal is re
orded.The reinitialization equation is already on a form suit-able for implementation in Femlab. Simply letting Fequal the right hand side of the equation and settingda = 1 and � = 0 with U =  does the tri
k.To avoid mass loss during the reinitialisation pro
edurewe have put a 
onstraint on the solution: the volume ofthe parti
le must be 
onstant at all time. This is donein Femlab via the �eld fem.equ.
onstr where we 
on-strain the di�eren
e between the integrals of the smearedout Heaviside fun
tion H�( ) at time � and the smearedout Heaviside fun
tion H�(�) at time t = 0 to be zero.The integrals are 
omputed by using the integration 
ou-pling variables in Femlab.V. MODEL SYSTEM AND SETUPTo test the implementation of the level set method inFemlab we have done a test study of a parti
le (a dropof high vis
osity and surfa
e tension) whi
h is passively
onve
ted in a two dimensional �uid �ow. The vis
osity�2 of the parti
le was 100 times larger than the vis
osity�1 of the �uid. The density �1 of the �uid was equalto the density �2 of the parti
le. The 
omplete list ofparameters is given in Table I.The physi
al domain is an in�nitely wide and in�nitelylong 
hannel with an obsta
le in the 
enter as shown inFig. 1. The boundary 
onditions on the �uid are no-stresson the sides of the 
omputational domain and no-slip atthe obsta
le. The �uid velo
ity �eld is periodi
 from
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FIG. 2: For parti
les passing obsta
les of di�erent shapes nor-malized di�eren
e 2�x=W in horizontal position from startto �nish is plotted versus starting position 2a=l. The missingdata points for the simulations with the initial positions ofthe parti
les nearest to the 
enter of the 
hannel is due to theparti
les getting stu
k at the obsta
le and hen
e not rea
hingthe �nal position.top to bottom of the domain and is driven by a pressuredi�eren
e �p.We ran a series of simulations with the shape of theobsta
le 
hanging from 
ir
ular to quadrati
 by 
hangingthe radius of the rounded obsta
le 
orner a. Ea
h sim-ulation 
onsisted of a series of runs with di�erent initialhorizontal position x0 of the parti
les and the initial ver-ti
al position of the parti
les was y0 = H� l from the topof the 
hannel. When the 
enter of a 
onve
ted parti
leis l from the bottom of the 
hannel the �nal horizontalposition x�nal is dete
ted (Fig. 1).We represent the parti
le by the negative part of a levelset fun
tion and the surrounding �uid is identi�ed by thepositive part of the level set fun
tion. The initial levelset fun
tion is given by�(x; y; t = 0) =p(x� x0)2 + (y � y0)2 � rp, (35)where (x0; y0) is the initial position of the parti
le andrp is the radius of the parti
le. Using these parame-ters we solve the problem by �rst evolving the dynami
alequations in a small time step �t and then reinitializethe level set fun
tion using the reinitialization pro
eduresdes
ribed above. With the reinitialized level set fun
tionas initial 
ondition for � we evolve the dynami
al systemone more time step. This sequen
e is 
ontinued until theparti
le has moved all the way through the system.

xfinal

x0

FIG. 3: The paths of parti
les passing obsta
les of di�erentshapes when the starting point is 2x0=W = 0:308 right of the
enterline of the 
hannel.
FIG. 4: The path of the parti
le started at 2x0=W = 0:015when the radius of the rounded obsta
le 
orner is a = l=2.The parti
le (bla
k dot) is shown when it `intera
ts' with theobsta
le. The small gap between the parti
le and the obsta
lewall is 
aused by the smearing of the parti
le interfa
e.VI. RESULTSWe 
arried out simulations for four di�erent initialpositions of the parti
le. The initial horizontal posi-tions 2x0=W were 0:015, 0:077, 0:308 and 0:539, re-spe
tively. For ea
h of these initial positions we used�ve di�erent radii of the rounded 
orner of the obsta
le:2a=l = i=10; with i = 1; 3; 5; 7; 10.For ea
h 
ombination of initial position and obsta
leshape we solved the system and obtained the parti
lepaths. Examples are shown in Figs. 3 and 4. It is seenthat the paths of parti
les with the same initial position
hanges as fun
tion of the shape of the obsta
le (Fig. 3).In Fig. 2 we have plotted the di�eren
e in the horizontalposition �x from start to �nish.The di�eren
e in horizontal position is almost zero forthe parti
les started in at the greatest distan
e from the
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enter of the 
hannel, independent of the shape of the ob-sta
le. As the initial position gets 
loser to the 
enter ofthe 
hannel the di�eren
e in horizontal position be
omeslarger and the round obsta
les tend not to drag as mu
hin the parti
les as the square obsta
les yielding a largerdi�eren
e in the horizontal position.Fig. 4 shows that our implementation of the level setmethod is 
apable of 
oping with the intera
tion for
esbetween the stable obsta
les and the moving parti
lesautomati
ally.VII. DISCUSSION AND CONCLUSIONSWe have shown that the level set method is easily im-plementable in Femlab and that it is a suitable methodfor 
oping with the intera
tion for
es between parti
lesand hard walls automati
ally. Parti
les 
an be modelledas very vis
ous liquid drops and the shape preservation
an be taken 
are of trough an appropriate reinitializa-tion pro
edure.We have used a simple shape preserving reinitializa-tion method. Further work is needed in order to 
on-ve
t parti
les of an arbitrary �xed shape. One promisingreinitialisation s
heme is the parti
le level set methodsuggested by Enright et al. [10℄.The level set method might prove useful when simu-lating mi
ro�uidi
 systems for parti
le handling. In thispaper we have only 
onsidered the for
es exerted on theparti
les by the 
onve
ting �uid and thereby indire
tlythe for
es from the solid walls. However also other for
essu
h as DEP for
es or magneti
 for
es 
ould be taken intoa

ount making the method appli
able for simulations ofmany lab-on-a-
hip systems fabri
ated today.APPENDIX AWe demonstrate how to 
onstru
t the transverse levelset fun
tion  with the required properties. We start byde�ning a 
oordinate transformation bydd� �x(s; � ); y(s; � )� =r��x(s; � ); y(s; � )�, (A1a)where �x(s; 0); y(s; 0)� = �x(s); y(s)�. (A1b)Be
ause of the Æ fun
tion in Eq. (14)  only needs toful�ll the requirements in a small region j� j < � around�. In this small region we 
an de�ne  as �x(s; � ); y(s; � )� =  0(s), (A2)where  0(s) is a smooth in
reasing fun
tion if and onlyif the mapping of (x; y) to (s; � ) is one-to-one. Using the


hange of variables theorem we have to show that�����(x; y)�(s; � ) ���� 6= 0. (A3)Taylor expanding Eq. (A1a) around � = 0 yields(x� ; y� ) =r��x(s); y(s)� +O(� ). (A4)Di�erentiation of Eq. (A1a) with respe
t to s and inte-gration with respe
t to � yieldsZ �0 dds dd� 0�x(s; � 0); y(s; � 0)� d� 0 =Z �0 ddsr��x(s; � 0); y(s; � 0)� d� 0 (A5)From whi
h follows�xs(s; � ); y(s; � )�� �xs(s; 0); ys(s; 0)� =Z �0 ddsr��x(s; � 0); y(s; � 0)� d� 0, (A6)and thus�xs(s; � ); y(s; � )�= �xs(s); ys(s)� + Z �0 ddsr��x(s; � 0); y(s; � 0)� d� 0= T(s) +O(� ). (A7)Here T is a unit tangent ve
tor to the interfa
e. We 
annow 
al
ulate the determinant (A3)�����(x; y)�(s; � ) ���� = (x� ; y� ) � (�ys; x� )=r�(xs; ys) � T̂= jr�jjTj+O(� )= jr�j�=0 +O(� ) 6= 0. (A8)This means that  is well de�ned in a small region around�. Now all we need to prove is that r� and r areorthogonal and that jr j 6= 0. The orthogonality 
an beproved by di�erentiating  with respe
t to � ,dd�  �x(s; � ); y(s; � )� =  xx� +  yy�=r �r� = d 0(s)d� = 0, (A9)whi
h means that � and  are orthogonal if and only ifjr j 6= 0. This follows immediately from di�erentiating with respe
t to s,dds  �x(s; � ); y(s; � )� =  xxs +  yys=r � (xs; ys)=r �T= jr j =  00(s) > 0, (A10)
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Abstract

A major challenge in theoretical microfluidics is the study of dynamics and evolution of
interfaces. One example is the interaction between a suspended particle and the walls of
the microchannel containing it; another example is the topology changes in connection with
the merge of two bubbles. The level set method is well suited to cope with these problems.
By introducing a hypersurface φ(r, t), the particle/bubble interface is represented as the
zero level set φ(r, t) = 0. The major advantage of the method is that this zero level set can
be calculated implicitly instead of explicit tracking of the points on the interface.
The level set function is initialized as the distance to the interface and evolves according to

φt = −u · ∇φ.

This coupled with the incompressibility condition and the Navier-Stokes equations

∇ · u = 0 and ρut + ρ(u · ∇)u = ∇ · σ + f ,

describes the problem completely. Here u is the velocity field of the fluid, ρ is the density,
σ is the Cauchy stress tensor and f is the forces acting on the interface.

We have implemented the level set method in the numerical simulation tool Femlab

along with a re-initialization procedure for the level set function as well as a volume con-
serving constraint.

As a test case we have studied the motion of a non-spherical microparticle convected
by a viscous liquid in a nontrivial channel geometry. In particular we have studied the
translation and rotation of the particle as well as its interaction with the walls, all induced
by the stress field of the fluid. Our implementation is useful when modeling particle and
cell-handling in lab-on-a-chip systems.
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Motivat ion
In recent years many new microfluidic devices have been developed for separation and sorting of particles and DNA in aqueous solutions. A special class of 
separation devices are the bumper arrays. Here mechanical interaction between the convected particles and rigid obstacles in the microfluidic channels makes 
fast deterministic separation possible on the microscale. Using a Femlab implementation of the level set method, we have studied the motion of finite sized 
particles in microfluidic channels with obstacles. The method implicitly copes with the interaction forces between the suspended particles and the walls of the 
microchannel.  As a test case we have studied the motion of a spherical microparticle convected by a viscous liquid in a nontrivial channel geometry.

The level set  method for

interface dynamics in microfluidics
Martin Heller and Henrik Bruus

MIC – Department of Micro and Nanotechnology, DTU bldg. 345 east
Technical University of Denmark 
DK–2800 Kgs. Lyngby, Denmark

More info: www.mic.dtu.dk/MIFTS

Concept of  the level set method

Numerical results from test run

Par ticle motion around an obstacle

The algorithm of  the level set method
The level set function           is initialized as a signed distance function

The level set function is evolved one time step according to the equation

The level set function is reinitialized

The Navier–Stokes equation is solved

using no-slip boundary conditions and the incompressibility condition

Notation: 
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One inhomogeneous liquid with varying density         and viscosity
The particle is represented by the high viscosity region (see left figure). 
The geometry of this region is defined by the level set function     
This enables computation of the time dependent solution using a fixed mesh.  

Conclusions and outlook
We have demonstrated that the level set method can be used to simulate motion 
of finite sized particles in microchnnels with obstacles.
 

The advantage of the method is that interaction forces between the particle and 
the rigid walls are taken into account implicitly through the surface tension and 
the no-slip velocity condition on the obstacles. 
 

The drawback of the method is the long computation time caused by the volume 
conserving constraint imposed on the solution. Future work therefore involves 
finding a more efficient reinitialization procedure. 

Velocity field (arrows) and the convected particle (red circle).
The volume of the particle is fixed by a constraint on the solution, 
while the shape is preserved by the surface tension.
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The normalized horizontal displacement plotted versus obstacle shape 
for particles starting at different positions.
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Appendix C

Code examples

C.1 Geometry and equation system

% 1. Geometry de f ini t i on
G = rect2 (0 ,W,0 ,H) ;
r = rect2 (1 e−5 ,1.6e−5 ,1.2e−5 ,1.8e−5) ;
b1 = f i l l e t ( r , ’ r ad i i ’ , 0 . 29 e−5∗ j /10) ;
[ geom , ctx , ptx ] = geomcsg({G b1 } ,{} , ’ ns ’ ,{ ’a ’ ’b ’} , ’ sf ’ , ’a - b ’ , ’ out ’ ,{ ’g ’ , ’ ctx ’ , ’ ptx ’ }) ;
fem . geom = geom ;

fem .mesh = meshinit( fem , ’ h a ut o ’ , 6 , ’ hmax ’ , hmesh , ’ h c u r v e ’ , 4 , ’ r e p o r t ’ , ’ off ’ ) ;
fem . xmesh = meshextend( fem ) ;

% Defining the equation system
% Space coordinates
fem . sdim = { ’x ’ ’y ’ } ;

% Variables
fem . dim = { ’ u ’ ’ v ’ ’ p ’ , ’ phi ’ , ’ psi ’ } ;
fem . shape = { shlag (2 , ’u ’ ) , shlag (2 , ’v ’ ) , shlag (1 , ’ p ’ ) , shlag (2 , ’ phi ’ ) , shlag (2 , ’ psi ’ ) } ;
V0 = real ( postint ( fem , ’ 1 - ( 0 . 5 + 0 . 5 * tanh (( min ( min ( sqrt (( x - xp ) ^2+( y - yp ) ^2) - rp , sqrt (( x - xp ) ^2+(

y -( yp + H ) ) ^2) - rp ) , sqrt (( x - xp ) ^2+( y -( yp - H ) ) ^2) - rp ) /( a l ph a * h m e sh ) ) ) ) ’ ) ) ;

% Constants and expressions
fem . const = [ fem . const , { ’ V0 ’ ,V0 } ] ;
fem . expr = { ’ e p s i l o n ’ , ’ a l ph a * h m e sh ’ , . . .

’ s i g m a x x ’ , ’ 2* eta * ux - p ’ , . . .
’ s i g m a x y ’ , ’ eta *( vx + uy ) ’ , . . .
’ s i g m a y x ’ , ’ s i g m a x y ’ , . . .
’ s i g m a y y ’ , ’ 2* eta * vy - p ’ , . . .
’ ka p p a ’ , ’( p h i x x * phiy ^2 -2* phix * phiy * p h i x y + p h i y y * phix ^2) /( phix ^2+ phiy ^2) ^1.5 ’

, . . .
’ rho ’ , ’ rho0 ’ , . . .
’ eta ’ , ’ eta0 *(1 -(1 - et ) *(1 -(1+ tanh ( phi / e p s i l o n ) ) /2) ) ’ , . . .
’U ’ , ’ sqrt ( u ^2+ v ^2) ’ , . . .
’ g r a d _ p h i ’ , ’ sqrt ( phix ^2+ phiy ^2) ’ , . . .
’ g r a d _ p s i ’ , ’ sqrt ( psix ^2+ psiy ^2) ’ , . . .
’ p h i _ i n i t ’ , ’ sqrt (( x - xp ) ^2+( y - yp ) ^2) - rp ’ } ;

% Governing equations
fem . equ . ind = [ 1 ] ;
fem . equ . shape = { [ 1 : 5 ] } ;
fem . form = ’ g e n e r a l ’ ;
fem . equ . da = {{ ’ Re * ro ’ , ’ 0 ’ , ’0 ’ , ’0 ’ , ’0 ’ ; . . .

’ 0 ’ , ’ Re * ro ’ , ’0 ’ , ’0 ’ , ’0 ’ ; . . .
’ 0 ’ , ’ 0 ’ , ’ 0 ’ , ’0 ’ , ’0 ’ ; . . .
’ 0 ’ , ’ 0 ’ , ’ 0 ’ , ’1 ’ , ’0 ’ ; . . .
’ 0 ’ , ’ 0 ’ , ’ 0 ’ , ’0 ’ , ’1 ’ }} ;

fem . equ . f = {{ ’ - Re * ro *( u * ux + v * uy ) +1/( Ca ) * g am m a * k a pp a *(1 - tanh ( phi / e p s i l o n ) ^2) /(2* e p s i l o n ) *

phix ’ ; . . .
’ - Re * ro *( u * vx + v * vy ) +1/( Ca ) * g am m a * k a pp a *(1 - tanh ( phi / e p s i l o n ) ^2) /(2* e p s i l o n ) *

phiy ’ ; . . .
’ ux + vy ’ ; . . .

80



C.2. Initialization of the level set function 81

’ -u * phix ’ ; ’ - v * phiy ’ ; . . .
’ tanh ( phi / e p s i l o n ) *(1 - g r a d _ p s i ) ’ }} ;

fem . equ . ga = {{{ ’ - s i g m a x x ’ ; ’ - s i g m a y x ’ } ; . . .
{ ’ - s i g m a x y ’ ; ’ - s i g m a y y ’ } ; . . .
{ ’0 ’ ; ’0 ’ } ; . . .
{ ’0 ’ ; ’0 ’ } ; . . .
{ ’0 ’ ; ’0 ’ }}};

fem . equ . con st r = {{0 0 0 ’ V_phi - V0 ’ ’ V_psi - V0 ’ }} ;

Femlab code 3: Code for setting up geometry and equation system in

C.2 Initialization of the level set function

i n i t = asseminit ( fem , ’ init ’ ,{ ’u ’ ’u ’ ’v ’ ’v ’ ’p ’ ’p ’ ’ phi ’ ’ psi ’ ’ psi ’ ’ psi ’} , ’ u ’ , fem0 . sol
, ’ s o l n u m ’ , [ n ] ) ;

Femlab code 4: Initial value for the level set function is the reinitialized level set function.

C.3 Solution of the physical problem

fem . s o l = femtime ( fem , . . .
’ init ’ , i n i t , . . .
’ n u l l f u n ’ , ’ f l s p n u l l ’ , . . .
’ s o l c o m p ’ ,{ ’u ’ ’v ’ ’p ’ ’ phi ’ } , . . .
’ o u t c o m p ’ ,{ ’u ’ ’v ’ ’p ’ ’ phi ’ } , . . .
’ t li s t ’ , [ 0 : 0 . 0 1 : 0 . 0 5 ] , . . .
’ l i n s o l v e r ’ , ’ g m r es ’ , . . .
’ tout ’ , ’ t l i s t ’ , . . .
’ r e p o r t ’ , ’ off ’ ) ;

fem0 = fem ;

Femlab code 5: Solver command for the convection equation.

C.4 Reinitialization

i n i t = asseminit ( fem , ’ init ’ ,{ ’u ’ ’u ’ ’v ’ ’v ’ ’p ’ ’p ’ ’ phi ’ ’ phi ’ ’ psi ’ ’ phi ’} , ’ u ’ , fem0 . sol
, ’ s o l n u m ’ , [ n ] ) ;

fem . s o l=femtime ( fem , . . .
’ n u l l f u n ’ , ’ f l s p n u l l ’ , . . .
’ init ’ , i n i t , . . .
’ s o l c o m p ’ ,{ ’ psi ’} , . . .
’ o u t c o m p ’ ,{ ’ psi ’ , ’ phi ’ , ’u ’ , ’p ’ , ’v ’} , . . .
’ t li s t ’ , [ 0 : 0 . 0 1 : 0 . 3 ] , . . .
’ tout ’ , ’ t l i s t ’ ) ;

Femlab code 6: Solver command for the reinitialization equation. The initial during reinitial-
ization is the level set function. We only solve for the reinitialized level set function but save the
solution values of the physical problem.
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