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Abstract

We present results from two investigations: (i) a combined experimental and numerical
study of electrically induced concentration drops across un-biased electrodes in buffer-filled
microchannels, and (ii) a purely numerical comparison of a full nonlinear model, a linear
slip-velocity model, and a nonlinear slip-velocity model.

First, we have made a parametric study of concentration drops in fluorescent dyes
across un-biased, metal electrodes in microchannels. Then, we make a numerical 2D
model of our system and find in agreement with the experimental observations: (i) a
concentration drop in the dye across the un-biased electrode, (ii) the drop increases with
increasing applied voltage, (iii) the drop is affected by the concentration of buffer and dye,
and (iv) high concentration enrichment of dye on the un-biased electrode. Furthermore,
we use our numerical results to give insight into the dynamics of the concentration drop
phenomenon.

Secondly, we do a purely numerical investigation of three different electrokinetic mod-
els. These models are widely used and rely on different degrees of approximation; a sur-
prisingly large deviation between the most simple and more comprehensive model is found.
The model system is a planar, un-biased electrode in a microchamber filled with a binary,
symmetric electrolyte, subjected to an external and homogeneous electric field. This field
gives rise to a symmetric induced-charge electro-osmotic (ICEO) flow on the electrode
which is quantified in the three models by its kinetic energy. The characterization is done
for different strengths of the applied electric field ranging from linear to nonlinear regimes.
Additionally, we vary the Debye-length-to-electrode-width ratio going from a very thick
to a very thin double layer. Even for parameters where the approximation of the simple
model is generally thought of to be good (λD/a = 0.01 and aE < kBT/(Ze)) it overesti-
mates the ICEO flow energy by around 25%. This discrepancy has so far been unnoticed
and the discovery might help explain some of the large differences when comparing other
experimentally observed electrokinetic phenomena to the simple model.
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Resumé

Vi præsenterer resultater fra to undersøgelser: (i) en kombination af eksperimentelt arbe-
jde og numeriske beregninger p̊a elektrisk inducerede fald i koncentrationer henover metal
objekter i buffer-fyldte mikrokanaler og (ii) en ren numerisk sammenligning en komplet
ikke-lineær model, af en lineær slip-hastigheds model og en ikke-lineær slip-hastigheds
model.

Første pointe er, at vi har lavet en undersøgelse for flere parametre af faldet i kon-
centration af fluorescens-aktive farvestoffer henover et metal objekt i en mikrokanal. Vi
laver herefter en numerisk 2D model af vores system og finder i overensstemmelse med
de eksperimentelle resultater: (i) et fald i koncentrationen af farvestof henover metal ob-
jektet, (ii) faldets størrelse stiger n̊ar den p̊atrykte spændingsforskel øges, (iii) faldet er
afhængig af koncentrationen af buffer og farvestof og (iv) stor forøgelse i koncentrationen
af farvestof p̊a metal objektet. Vi bruger herefter vores numeriske model til at undersøge
fænomenet.

Andet hovedresultat er en ren numerisk undersøgelse af tre forskellige elektrokinetiske
modeller. Disse modeller er velkendte og baseret p̊a forskellige antagelser. Vi viser, at der
er en overraskende stor forskel mellem den mest simple og den mere omfattende model.
Vores model system best̊ar af et plant stykke metal i et mikrokammer fyldt med en binær
og symmetrisk elektrolyt. Vi p̊atrykker et homogent elektrisk felt, som giver anledning til
et symmetrisk, induceret-ladning elektro-osmotisk (induced-charge electro-osmotic ICEO)
flow p̊a metallet. Vi sammenligner den kinetiske energi i de inducerede flows for de forskel-
lige modeller og for forskellige styrker af det p̊atrykte elektriske felt. Vi g̊ar fra det lineære
til det ikke-lineære regime, og for forskellige Debye-længde til metal-bredde forhold, g̊aende
fra et meget tykt til et meget tyndt Debye-lag. Selv for parametre hvor den simple model
forventes at give præcise resultater (λD/a = 0.01 and aE < kBT/(Ze)) overestimerer den
ICEO flowets energi med omkring 25%. Denne afvigelse har været up̊aagtet indtil nu og
opdagelsen kan m̊aske hjælpe med at forklare nogle af de store forskelle mellem andre
eksperimentelle observationer og den simple model.
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Chapter 1

Introduction

The title of the current thesis Theoretical aspects of nonlinear electrokinetic phenomena
in mircrofluidics contains several concepts which might be more or less familiar to the
reader. This chapter is meant to give an introduction to these concepts, in particular to
microfluidics and electrokinetic phenomena.

Microfluidics, i.e. the physical properties of liquids and solutions at the micrometer
scale, is a framework that enables a whole new range of scientific and technological possi-
bilities, especially in the development of microdevices for medical and biological use.

Secondly, electrokinetic phenomena is introduced and linked to microfluidics. The
sections on microfluidics and electrokinetic phenomena are mainly based on Stone et al.
[1].

1.1 Microfluidics

Microfluidics refers to devices and methods for controlling and manipulating fluid flows
with length scales less than a millimeter. Such studies are not new but have for a long
time been part of colloid science and plant biology.

However, within the last decade there has been a major increase in the research within
the area [2], see Figure 1.1, which among other things is due to (i) the general spread of
tools for fabricating microfluidic systems, (ii) a growing trend within biology and biotech-
nology where using small quantities and very small volumes gives advantages, (iii) a desire
to make cheap portable devices for fast point-of-care analysis, and (iv) using microfluidics
for fundamental studies of physical, chemical and biological processes.

Microfluidics utilizes many different components such as valves, pumps, sensors, mix-
ers, filters, separators, heaters etc. These are combined into lab-on-a-chip systems in which
one tries to do such things as chemical synthesis, analysis, and reactions only by using very
small fluid volumes. One of the advantages of microfluidics is then that a single channel
is easily replicated and large networks can be built.

Manipulation of microfluidic flows can be obtained by using different external fields
(pressure, electric, magnetic, capillary etc.). In general, when dimensions shrink, the rel-
ative importance of surface to volume forces increases. The manipulation can be achieved

1
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Figure 1.1: Semilogarithmic plot of the number of scientific papers per year from a search on the
keyword microfluidic in the citation database ISI Web of Knowledge [2]. It is clear from the trend
of the graph that microfluidic is an area of new and increasing interest.

by either applying the external field at inlets and outlets, or it can be applied locally in
the microchannel by integrated components.

Visualization of microflows can be accomplished by use of optical microscopes. One
technique is particle image velocimetry (PIV) which can yield a spatial resolution of the
flow approximately down to one micron. Another approach is fluorescence microscopy,
which we use in this work and which will be introduced in Chapter 2.

A typical microchannel is produced with planar lithographic techniques and has a
rectangular cross section, and the working fluid is most often water. Normally the Reynolds
number is very low (on the order of unity or smaller) which means that viscosity dominates
and the convective term of the Navier–Stokes equations are insignificant. This means that
microflows most often are laminar and consequently that the typical velocity profiles in
simple geometries are parabolic for pressure-driven flows and almost uniform for electro-
osmotic flows (EO-flows), and in the general situation a superposition of both. Another
consequence of the low value of the Reynolds number is that turbulence is very rare in
microflows, and hence it is difficult to achieve mixing.

As a result, the Stokes equation is often applicable for incompressible fluids and com-
bined with no-slip boundary conditions analytical solutions can be derived for simple
geometries. As an example, the volumetric flow rate Q through a rectangular channel
with width w and height h generated from a pressure drop ∆p over a distance L is to a
good approximation given by the expression Q ≈ wh3∆p(1 − 0.630h/w)/(12ηL), with η
being the dynamic viscosity of the fluid [3]. The factor of wh3 shows the significant impact
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of changes in the smallest dimensions.

1.2 Electrokinetic phenomena

Electrokinetics refers to the coupling between electric currents and mass flow in elec-
trolytes. This coupling is often due to the electric Debye screening layer that forms at
charged interfaces.

When the walls surrounding a liquid are charged, there is one electro-hydrodynamic
effect especially important for the current work; electro-osmosis which is the flow generated
from the application of an electric field in a liquid-filled channel. Another effect, not central
in the current work, is called streaming current, which is when a pressure driven flow drags
ions tangential to the surface and thereby generates an electric current. A similar coupling
is responsible for the third effect called electrophoresis where an electric field acts on the
charged interface between an immersed charged (colloidal) object and the fluid thereby
making the particle move. Yet another effect is called sedimentation potential which is
generated by charged particles moving relative to a stationary liquid.

In general, when an electrolyte is brought in contact with a surface, there will be a
charge transfer at the interface. This happens either by ionization of covalently bound
surface groups, or by ion adsorption. This means that there is a region close to the
interface which is not electroneutral (e.g. common glass SiOH in the presence of water,
ionizes to produce charged surface groups SiO−, and releases a proton).

The net charge at the interface in the electrolyte will be attracted to the surface
by electrostatic forces but this is opposed by thermal fluctuations whereby a charged
layer, called the Debye layer, of characteristic thickness λD is generated. In water λD ≈
1 − 100 nm and in most situations the electrolyte is charge-neutral a couple of Debye
lengths from the interface.

When an electric field Eext is applied along a channel, a conductive current and the
corresponding local field E are established throughout the liquid. Since the bulk electrolyte
is charge neutral it will not experience any body force. However, the non-zero charge
density in the Debye layer will experience a force from the local electric field E that
is tangent to the surface and thereby generate a body force on the fluid which induces a
shear. As a result, the fluid velocity will go from zero at the no-slip surface to a finite value
µeoE at the edge of the thin Debye layer, where µeo is a local mobility characteristic of the
surface. This mobility is dependent on the surface charge q and for small surface potentials
ζ the following relation is valid µeo = qλD/η = εrε0ζ/η where εr is the dielectric constant
of the electrolyte and ε0 is the vacuum permittivity. In common devices, the Debye layer is
much smaller than any of the macroscopic dimensions (channel widths or heights) and the
liquid therefore appears to have a slip velocity µeoE along the surface. This simplification
makes it possible to decouple the electrostatic problem from the hydrodynamic problem
by introducing the slip velocity as an effective slip boundary condition. But as we show
in this thesis, it is not without loss of accuracy to use this boundary condition.

The magnitude of the EO-flow is independent of channel dimensions (if larger than
λD) and is solely dependent on the effective slip velocity. Typical surface potentials have
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values around tens of millivolts which gives a mobility for aqueous solutions of µeo ≈
7× 10−9 m2 V−1 s−1 meaning that to get a velocity of a few millimeters per second requires
electric fields of the order 105 V m−1. Consequently, to create such an electric field between
the ends of a centimeter-long channel requires a drop in the electrostatic potential in the
kilovolt range which is rather impracticable for portable devices.

Electrokinetic phenomena can be important and useful in microfluidics due to some
important features which are (i) in a microchannel of width w and height h the electro-
osmotic volume flow scales with wh for a given potential drop, whereas the volume flow in a
pressure driven flow scales with wh3. (ii) The small cross-section of a microchannel makes
the ohmic resistance of the electrolyte-filled channel very high whereby high electric fields
can be applied using very low currents. In addition, ohmic heating is generally limited by
the efficient removal of thermal energy in narrow geometries. (iii) Usually the EO-flow is
a plug flow which means that sample analytes can be transported without broadening due
to hydrodynamic dispersion as in pressure-driven flows. (iv) The ability to integrate local
electric components in a microchannel allows for local manipulation of the EO-flow.

1.3 Outline of thesis

Chapter 2: Experimental motivation

We start by giving an experimental motivation for the current work. We introduce optical
epifluorescence microscopy as it is used to obtain the experimental data that forms the
basis and starting point for this thesis. Next, we give a description of the experimental
setup which leads to a short review of simple buffer theory. After presenting the specific
buffer and dye used in this report, we give some examples of experimental observations.
Finally, a general motivation for the study of nonlinear electrokinetic phenomena is given
based on unresolved problems from the literature.

Chapter 3: Electrokinetic theory

The governing equations are introduced in this chapter. From these we define three mod-
els: (i) the full nonlinear model, also known as the Poisson–Nernst–Planck model, (ii)
the linear slip-velocity model, and (iii) the nonlinear slip-velocity model. The main as-
sumption in the two slip-velocity models are the Helmholtz–Smoluchowski slip velocity,
which we derive for the parallel plates channel. Finally, we give a detailed derivation of
the charge conservation law that leads to an effective PDE boundary condition in the
nonlinear model.

Chapter 4: Numerical implementation and validation in COMSOL

We use the finite-element-software COMSOL for the numerical simulations and thus we
introduce it in this chapter. The special COMSOL syntax called weak form is presented
as we use it extensively in the current work. Finally, we benchmark our code against the
analytical solution for an EO-flow in a parallel plates channel.
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Chapter 5: Numerical analysis of analyte transport across un-biased electrodes
in microchannels

In this chapter we set up a numerical model for the experimental system. Then, we run
simulations for different parameters and compare the results against our experimental data.
We achieve the main goal; to reproduce the observed concentration drop. Additionally,
we get some qualitative reproduction between our numerical model and the experiments
when we vary the applied voltage and the concentrations of buffer and dye.

Chapter 6: Numerical analysis of finite Debye-length effects in induced-charge
electro-osmosis

We have discovered a large discrepancy in calculated flow kinetic energy between different
electrokinetic models. Thus, we nondimensionalize the governing equations and do a
parametric study of the induced flow kinetic energies using the three electrokinetic models.
Additionally, we show that the kinetic energy in the induced flow increases up to five times
if the finite height of an electrode is included. Our results may help explain the difference
in experimentally observed ICEO flow velocities and those from numerical simulations
using the linear slip-velocity model.

Chapter 7: Conclusion and outlook

We present concluding remarks on our work on nonlinear electrokinetics.

1.4 Publications during the MSc studies

1. M.B. Andersen, M.M. Gregersen, T. Wolfcale, S. Pennathur, and H. Bruus, “Mi-
crochannel electrokinetics of charged analytes in buffered solutions near floating
electrodes”, GAMM 2009,The 80th annual meeting of the international association
of applied mathematics and mechanics, Gdansk, Poland, February 9th to 13th, 2009.

2. M.M. Gregersen, M.B. Andersen, G. Soni, C. Meinhart, and H. Bruus, “A numerical
analysis of finite Debye-length effects in induced-charge electro-osmosis”, (Phys. Rev.
E., submitted, 2009)
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Chapter 2

Experimental motivation

We start out by giving a short introduction to the field of nanofluidics. Secondly, we
move on to the point of departure for the current thesis; experimental observations of
electrokinetic phenomena around an un-biased electrode in a microfluidic channel. The
initial observations are credited to professor Sumita Pennathur from the UCSB–Nanolab.
This data is acquired using optical epifluorescence microscopy which is such a refined
technique that it needs an introduction and the second part of this chapter is therefore
devoted to a presentation hereof. The information in this part is mainly from [4].

Unfortunately, the initial experimental observations were made in a setup too complex
to allow for a simple theoretical analysis. Consequently, these observations play little role
in the current work and will therefore only be briefly covered despite that a considerable
work effort was put into an analysis of it. Instead, more emphasis will be put on the second
generation experiments carried out by the author during a visit to the UCSB–Nanolab.

Finally, the last part of this chapter presents some of the general experimental obser-
vations in microfluidic electrokinetics that are still not understood.

2.1 Nanofluidics

Nanofluidics is experiencing the same boom in research as microfluidics did in the be-
ginning of the 1990s. The surface-to-volume ratio is high in nanochannels, resulting in
surface-charged-governed transport, which allows ion separation and is described by a
comprehensive electrokinetic theory. The charge selectivity is most pronunced if the De-
bye screening length λD is comparable to the smallest dimension of the nanochannel cross
section [5]. In a KCl electrolyte with typical concentrations of 1 mM and 0.1 mM the Debye
screening length is λD ≈ 10 nm and λD ≈ 30 nm, respectively.

Fabrication of nanochannels is becoming increasingly accessible; Persson et al. [6]
demonstrate a planar fabrication technique for producing nanochannels with heights from
14 − 300 nm. Thamdrup et al. [7] investigated the filling speed in SiO2 nanoslites with
heights ranging from 33− 158 nm and found an increase in bubble formation in nanoslits
with heights below 100 nm that increases the fluidic resistance.

Pennathur et al. [8, 9] present several points; (i) a theoretical model demonstrating that

7
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the effective mobility governing electrophoretic transport of charged species in nanochan-
nels depends not only on electrolyte mobility values but also on the ζ-potential, ion valence,
and background electrolyte concentration. (ii) An experimental study of nanoscale elec-
trokinetic transport in custom-fabricated quartz nanochannels using quantitative epifluo-
rescence imaging and current monitoring techniques. Their results confirm the usefulness
of continuum theory in predicting electrokinetic transport and electrophoretic separations
in nanochannels and show that the effective mobility governing electrophoretic transport
of charged species in nanochannels depends not only on ion mobility values but also on
the shape of the electric double layer and analyte ion valence. Part of the current work
is a continuation of the research in nanochannel electrokinetic transport phenomena. The
next section describe the important concept of fluorescence microscopy.

2.2 Fluorescence microscopy

The experimental data is acquired optically using fluorescently marked electrolytes and
an inverted fluorescence microscope. Fluorescence is the process of absorption and re-
radiation of light. The emission of light in a fluorescence process is almost simultaneous
with the absorption of the excitation light since the delay between photon absorption and
emission is on the order of 10−9 –10−7 s [10]. If the emission persists longer after excitation
the process is called phosphorescence.

The technique of fluorescence microscopy is an essential tool in biology, biomedical
science and materials science, among other reasons because it is possible to detect single
molecules by use of fluorophores (also referred to as fluorochromes or dyes). Fluorophores
are stains that attach themselves to visible or sub-visible structures, are very specific in
their attachment targeting, and have a significant quantum yield (the ratio of photon
absorption to emission). It is hereby possible to identify targets with a high degree of
specificity among non-fluorescence materials.

The basic function of fluorescence microscopy is to irradiate a specimen with a desired
and specific band of wavelengths and then to separate out the much weaker emitted fluo-
rescence from the excitation light. In a properly configured setup, only the emission light
should reach the eye or detector so that the fluorescence signal is contrasted against a
very dark background. Typically, the detection limit is governed by the darkness of the
background, and the excitation light is usually from a hundred thousand to a million times
brighter than the emitted fluorescence.

The principle behind the change in wavelength between the excitation and emission
light is called Stokes law or Stokes shift, see Figure 2.1 (a). The physical explanation is that
vibrational energy is lost when electrons relax from the excited state back to the ground
state. It is due to this energy loss that the emission spectrum of an excited fluorophore
is shifted to longer wavelengths compared to the absorption spectrum. The greater the
Stokes shift, the easier it is to separate excitation from emission light by use of filters.
Consequently, the emission intensity peak value is usually larger in wavelength and lower
in magnitude than that of the excitation peak, and the emission spectral profile is often
close to a mirror-image of the excitation curve, but it is shifted to longer wavelengths,
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Figure 2.1: (a) Absorption (yellow) and emission (red) spectral profiles for a fluorescence dye [4].
(b) Example of transmission profiles for excitation filter (red), dichromatic mirror (yellow), and
emission filter (white) [4].

see Figure 2.1 (a). Therefore, in order to achieve maximum benefit from fluorescence
microscopy, the dye has to be excited at wavelengths near the peak of the excitation curve
and the widest possible range of emission wavelengths that include the emission peak are
selected for detection.

Light of a specific wavelength is produced by passing multispectral light from an arc-
discharge lamp through a wavelength selective excitation filter. The wavelengths that
passes through the excitation filter are reflected from the surface of a dichromatic mirror
(also called a beamsplitter) through the microscope objective to bath the specimen with
intense light . If the specimen fluoresces the emission light passes back through objective
and the dichromatic mirror and is filtered by an emission filter that blocks the unwanted
excitation wavelengths, see Figure 2.1 (b).

This technique, called epifluorescence illumination, is especially advantageous and is
used in the current work. It is important to note that in epifluorescence illumination the
excitation light is passed through the objective and onto the specimen and subsequently
the same objective is used to gather the emitted light. Hence, three main advantages
in this technique are (i) the microscope objective serves first as a well-corrected optical
condenser and secondly as the image-forming light gatherer. Because these two functions
are integrated into one unit, the condenser/gatherer is always in perfect alignment. (ii) A
majority of the excitation light reaching the specimen passes through it without interaction
and travels away from the objective, thereby not contributing with disturbing background
light. (iii) The illuminated area is restricted to that which is seen through the eyepieces,
which reduces the overall amount of fading (the reduction of fluorescence emission due to
”wear”). A point to note is that the emitted light radiates spherically in all directions,
regardless of the excitation light source.
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2.3 Experimental procedure

In the current work we use an inverted epifluorescence microscopy setup shown in Fig-
ure 2.2 (a). A mercury arc-discharge lamp functions as light source and shines light
horizontally into a filter cube as shown in Figure 2.2 (b). As the light enters the cube it
passes an excitation filter that only allows passage of a desired band of wavelengths, see
Figure 2.1 (b). The light then continues to the dichromatic beam splitting mirror which
effectively reflects shorter wavelength light and efficiently passes longer wavelength light,
see Figure 2.1 (b). The dichromatic beamsplitter is tilted 45◦ with respect to the incoming
excitation light and reflects this illumination at a 90◦ angle directly through the objective
and onto the microchip.

The microchip contains fluorophores and some of the re-emitted, longer wavelength
fluorescence light is guided by the objective down through the dichromatic beamsplitter,
where it passes without reflection. A final filtering is done by the emission filter to make
sure only emission light passes, see Figure 2.1 (b). The light is guided into a digital CCD
camera, where it is stored as digital images on a computer. The digital images, often in
tiff format, are post-processed in MATLAB where background signals are removed and
uneven lighting compensated.

The next sections describe in turn the microsystem, the buffers, the fluorescence dyes,
and finally the post-processing and the experimental observations in the current work.
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Figure 2.2: (a) Picture of the experimental setup in the UCSB-Nanolab. The main experimental
components are the microchip, the mercury lamp (Hg lamp), the filter cube, the CCD camera,
and the power supply. (b) Schematic of the epifluorescence experimental setup; a Hg lamp shines
multispectral light through an excitation filter that only allows a certain band to pass. The dichro-
matic mirror reflects the excitation light up through an objective where it hits the microchannel
and the fluorescence dye. Some of the emission light from the dye is gathered by the objective
and guided downwards where it passes through the dichromatic mirror and the emission filter that
filters away all light except the emission light. Finally, the emission light is directed through an
ocular and into a CCD camera or an eyepiece.
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Figure 2.3: (a) Picture of a microchip containing three parallel microchannels; the channel to
the right has been filled with a buffer containing fluorescence dye (green) and electrodes have been
submerged into the inlets. Also, the picture is a close up on the microchip-holder that sits right
above the microscope objective. (b) Sketch of the microchannel showing the distance between the
inlets L = 9 mm, the widths of the channel and metal W = w = 250 µm, respectively, the height of
the channel H = 0.5 µm, the height of the metal h = 0.1 µm, and the length of the metal l = 60 µm.

2.4 The microfluidic chip

The microchip is fabricated in pyrex, a transparent borosilicate glass, to allow passage
of light, see Figure 2.3 (a). It contains straight microchannels of length L ≈ 9 mm, with
rectangular cross sections of width W ≈ 250 µm and height H ≈ 0.5 µm, see Figure 2.3 (a)
and (b). Also, the microchannels have cylindrical inlets at both ends of the channel,
entering from the top side of the chip, and with a diameter around 1 mm; the inlets
represent reservoirs as they hold a relatively large volume of fluid. Inside the channel
at the midpoint between the inlets a small amount of metal (referred to as un-biased
electrode), either gold or platinum, is deposited in different planar geometries with heights
around 0.1 µm and a typical extent in the two other dimensions of around 100 µm, see
Figure 2.3 (b). The microchannels are filled with different types of aqueous buffer solutions
containing small concentrations of different fluorescence tracker dyes.

Electrodes of platinum wire are submerged into the inlets and during the course of
the experiment, typically 30 s, a voltage difference V0 from 50 V to 300 V is applied, see
Figure 2.3. The applied voltage produces an EO-flow throughout the channel, but at the
same time also ICEO in the vicinity of the metal structure. Thus, the fluorescence dyes
will interact with the hydrodynamic flow and electric field in the channel and around the
metal, thereby creating regions of high and low concentration which can be observed; it is
exactly this interaction that we try to explain. The next section describes the essentials
of buffer theory plus a more detailed description of the specific buffer used in the current
work.
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2.5 Buffers

During the experiments we used phosphate and borate buffers, but we only use results
relating to the phosphate buffer when we compare with numerical simulations. Hence, we
only present the phosphate buffer in this chapter and refer the reader to Appendix A for
information about the borate buffer. The phosphate buffer is in reality a weak acid; a
concept that is important to understand and thus is described below.

When a weak acid HA is mixed with water H2O a fraction of it dissociates into hydrogen
ions H+ and conjugate base ions A−. The dissociated hydrogen ions combine with water
molecules to create hydronium ions H3O+ and the overall reaction is

HA + H2O � H3O+ + A−, (2.1)

a process that reaches a dynamic equilibrium where the forward and backward rates of
conversion are equal. This dynamic equilibrium can be described by a thermodynamic
equilibrium constant K−◦ which may be defined in terms of the activities {Xi} of the four
species Xi, i = 1 . . . 4 given in Equation (2.1)

K−◦ = {H3O+}{A−}
{HA}{H2O} . (2.2)

The activity of a species Xi can be expressed as the product of its concentration [Xi] with
its activity coefficient γi and the expression for the thermodynamic equilibrium constant
becomes

K−◦ = [H3O+][A−]
[HA][H2O]

γH3O+γA−

γHAγH2O
. (2.3)

For simplicity the quotient of activities can be assumed to be constant, and likewise for
the concentration of water which in aqueous solutions is invariant at a value around
[H2O] = 55 M. Thus, if these two constant factors are incorporated into the thermo-
dynamic equilibrium constant the result is the acid dissociation constant Ka

Ka = [H3O+][A−]
[HA] , (2.4)

for which precaution has to be exercised since the concentrations in this expression usually
are given in units of mol L−1 [11]. However, the unit of Ka is left out when the cologarithm1

is applied to it, leading to another definition of the acid dissociation constant called pKa

pKa = − log10
(
Ka
)
, (2.5)

which is convenient to work with since Ka can vary many orders of magnitude. Addi-
tionally, pH is defined as the cologarithm of the concentration (in mol L−1) of hydronium
ions

pH = − log10
(
[H3O+]

)
. (2.6)

1The cologarithm to x is the negative of the logarithm to x; cologx = − log x
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For the numerical simulations it is important to know the amount of charged species.
Therefore, the concentrations of hydronium [H3O+] and conjugate base [A−] have to be
calculated. First, note that the concentrations of the two are equal and have a constant
value denoted by ∆c

∆c = [H3O+] = [A−]. (2.7)

The concentration of the weak acid before dissociation is denoted c0, and consequently
there will be an amount

[HA] = c0 −∆c (2.8)

at the dynamic equilibrium. The expressions for the concentrations of hydronium, conju-
gate base, and weak acid are inserted into Equation (2.4) and a quadratic equation in ∆c
appears

∆c2 −Kac0

(
1− ∆c

c0

)
= 0, (2.9)

Furthermore, if the degree of dissociation ∆c is small compared to the initial concentration
of the weak acid ∆c/c0 � 1 it follows from Equation (2.9) that

∆c ≈
√

Kac0. (2.10)

The phosphate buffer used in the current work is an aqueous solution of disodium
phosphate Na2HPO4 that forms four charged species when it dissociates in water; sodium
Na+, hydrogen phosphate HPO2−

4 , hydronium H3O+, and phosphate PO3−
4 , through the

two reaction steps

Na2HPO4 → 2Na+ + HPO2−
4 , (2.11a)

HPO2−
4 + H2O � H3O+ + PO3−

4 , pKa = 12.32 . (2.11b)

The first reaction step Equation (2.11a) is not a dynamic equilibrium since this corresponds
to the dissolution of a salt in water. The solubility of disodium phosphate in water is
around 500 mM [12], and hence it dissolves completely for the concentrations of 1 mM and
10 mM used here. The second reaction step Equation (2.11b) is a dynamic equilibrium
and the acid dissociation constant at 25 ◦C is listed to the right [13].

As already mentioned, numerical computations need as input parameters the concen-
trations of charged species. We therefore need to estimate the amount of charged species
in the buffer solution given by Equations (2.11). First, the concentrations of sodium [Na+]
and hydrogen phosphate [HPO2−

4 ] are related to the initial concentration of disodium
phosphate [Na2HPO4] by

[HPO2−
4 ] = [Na2HPO4], (2.12a)

[Na+] = 2[Na2HPO4]. (2.12b)

Thus, since the pKa of Equation (2.11b) is relatively large, Equation (2.10) is a good
approximation from which the concentrations of hydronium and phosphate are calculated.
For the experimentally used concentrations of disodium phosphate of 1 mM and 10 mM, all
concentrations of charged species are listed in Table 2.1. It is noted that in order to make
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Table 2.1: The concentrations of charged species ([Na+], [HPO2−
4 ], [H3O+], and [PO3−

4 ]) for
the two concentrations 1 mM (low) and 10 mM (high) of disodium phosphate ([Na2HPO4]) in the
phosphate buffers used in the experiments.

Symbol Low High Symbol Low High

[Na+] 2 mM 20 mM [H3O+] 21.88 nM 69.18 nM
[HPO2−

4 ] 1 mM 10 mM [PO3−
4 ] 21.88 nM 69.18 nM

Table 2.2: Concentrations of charged species ([Na+] and [B−]) for the two concentrations 1 µM
(low) and 10 µM (high) of BODIPY used in the experiments.

Symbol Low High

[Na+] 1 µM 10 µM
[B−] 1 µM 10 µM

the numerical computations simple, a reasonable approximation is to leave out hydronium
H3O+ and phosphate PO3−

4 , since these appear in very low concentrations relative to the
concentrations of sodium Na+ and hydrogen phosphate HPO2−

4 .

2.6 Fluorescence dye

We used both BODIPY and fluorescein dyes in the experiments, but we only include
results that relate to the BODIPY dye. Thus, only BODIPY is introduced in this section
and we refer the reader to Appendix A for information about fluorescein.

BODIPY, short for boron-dipyrromethane, is a class of fluorescence dyes which is
characterized by (i) a very small Stokes shift, (ii) high, pH-independent quantum yield
that is close to 100%, and (iii) sharp excitation and emission peaks, see Figure 2.4 (b)
[14]. The particular BODIPY fluorophore we use in the current work is the sodium salt
C20H14BF6N2NaO5S (denoted by BNa) which we assume to dissociate completely in an
aqueous buffer through the reaction

BNa→ B− + Na+, (2.13)

and thus the concentrations of charged BODIPY [B−] and sodium [Na+] are equal to the
initial concentrations of BODIPY [BNa]

[B−] = [Na+] = [BNa], (2.14)

in our case 1 µM and 10 µM, as listed in Table 2.2. The molecular structure of the BODIPY
molecule is shown in Figure 2.4 (a). The next section presents selected parts of the
experimental data.
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Figure 2.4: (a) BODIPY molecule with a negatively charged sulfur oxide group SO−3 and a
dissociated, positively charged sodium atom Na+ [15]. (b) Spectral profile of the BODIPY dye
used in the current work, showing the intensity I curves of absorption Abs and emission Em as
function of light wavelength λ, each normalized against its maximum value [16]. Note the sharp
absorption and emission peaks at 504 nm and 513 nm, respectively, which shows the small Stokes
shift.
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Figure 2.5: (a) Schematic of the microchip where the red, dashed box shows the microscopic
view (not to scale) that the CCD camera records. (b) Example of a raw data image showing
the position of the rectangular, un-biased spanning the microchannel from wall to wall. Also, the
electric field is indicated along with an EO-flow. The image is in gray-scale; each pixel has a value
that corresponds to the recorded light intensity.

2.7 Post-processing and experimental observations

The experimental data consists of digital image files which have to be post-processed
before any quantitative analysis and comparison to numerical simulations can be realized,
see Figure 2.5. The raw images Iraw = Iraw(x, y, t) are post-processed in MATLAB with
the main purpose to make corrected image data Icorr = Icorr(x, y, t). This is done by
subtracting a background image Ibackground = Ibackground(x, y) and by normalizing against
the difference between a flat field image Iflatfield = Iflatfield(x, y) and the background image
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[17]. Thus, each image is subjected to the following matrix operation

Icorr = Iraw − Ibackground

Iflatfield − Ibackground
. (2.15)

The background image is obtained by acquiring a frame of the microchannel without
fluorescence dye; when subtracting this from the raw data, any signal not stemming from
the dye, is removed. The flatfield image is a frame of the microchannel with a homogeneous
concentration of dye. Moreover, to remove any lack of uniformity in the illumination from
the arc-discharge lamp, the data is normalized against the flatfield; however, the flatfield
itself also has to be corrected for background faults. The non-uniformity stems from the
arc-discharge lamp and its arrangement within several reflecting mirrors.

Note, it is a tedious procedure to correct the raw images since the alignment between
Iraw, Ibackground, and Iflatfield might be more or less offset relative to each other. This offset
is due to the slight change in position of the microchip when it is un- and remounted
during the experiments This displacement has to be identified for each individual set of
data, a process that is difficult and hard to automatize.

The next two sections introduce two experimentally observed phenomena (i) a con-
centration drop across a rectangular metal shape, as seen in Figure 2.5 (b), and this is
a main focus of the current work. (ii) Diffusion of the fluorescence dye BODIPY and
determination of its diffusion constant in 2D. This is not a main focus of the current work.

2.7.1 Concentration drop across a rectangular un-biased electrode

By inspiration of similar work [18], we have observed a concentration drop across a rect-
angular un-biased electrode spanning the width of the microchannel when a DC voltage
is applied between the inlets, see Figure 2.6 (a).

In order to compare the experimental data to numerical simulations, the intensity
in the corrected images is averaged across the width of the channel w in the transverse
direction y to get an intensity Ix = Ix(x, t) that is a function of the axial coordinate x and
time t only

Ix(x, t) = 1
w

∫ w

0
Icorr(x, y, t)dy, (2.16)

of which an example is shown in Figure 2.6 (b). The geometry of the deposited metal
comes in many different shapes, but the rectangular shape gives the best possibility for
comparison to numerical simulations. This is because the numerical simulations are done
in the 2D cross-sectional xz-plane; the rectangular shapes have the highest degree of
translational invariance along the transverse direction y that is consistent with this 2D
description.

The concentration drop is investigated as a function of three parameters (i) applied
voltage difference, (ii) buffer concentration, and (iii) dye concentration. Figure 2.7 (a)
and (b) show combined spatial and temporal plots of Ix for two applied voltages V0 =
{50 V, 100 V}. The data contains the transients at the turn on and off of the applied
voltage at t ≈ 0 s and t ≈ 25 s, respectively. However, we focus on steady-state in the
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Figure 2.6: (a) Example of an image of the corrected intensity Icorr. The arrows indicate how
the average is taken in the transverse direction to produce Ix. Note, the section to the left of the
un-biased metal electrode is lighter due to a higher intensity compared to the section to the right.
(b) Example of a plot of Ix in a steady-state situation. The position of the un-biased electrode
is at x = 0. The peak in Ix shows a high intensity on the electrode which might be due to a
concentration enhancement of dye in the induced electrical double layer.
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Figure 2.7: Plots of spatial and temporal evolution of the averaged intensity Ix. The buffer is
phosphate, the fluorescence dye is BODIPY, and the applied potential difference is in (a) 50 V, and
in (b) 100 V. Note, in each plot there is a short transient immediately after the voltage difference
is applied t ≈ 0 s (barely visible in these graphs) where Ix goes from zero to a step-like function
across the un-biased electrode. The height of this step is greater for 100 V than for 50 V. Finally,
the voltage difference is turned off and another short transient (diffusive process) is just visible at
the final times t ≈ 25 s–30 s.

current work and use a particular frame as a representation. Typically, we assume steady-
state at t ≈ 20 s where the temporal change in the data is seen to be very small. In the
next section we determine the diffusion constant of BODIPY.
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Figure 2.8: Selected frames from the electrokinetic experiment showing a bottom view (the xy-
plane) of the microchannel of height 0.5 µm (z-direction) in the region around a metal cylinder
(circular object) with diameter of a = 60 µm and height 0.1 µm. The frames show the temporal
evolution of the corrected intensity Icorr , going from low (blue) to high (red), in a borate buffer
with a concentration of 1 mM containing BODIPY dye with a concentration of 100 µM. Contrary
to the rectangular shape, the metal cylinder sits on the bottom wall and blocks the view to the dye
above it, hence no signal is received from that area and the contour of the cylinder is dark blue. In
the first frame t < 0 the applied voltage is 800 V over the channel length of 9 mm (corresponding to
5.3 V across the cylinder); at t = 0+ the voltage is turned off and diffusion of a large concentration
of dye with a front at a distance xdiff from the metal cylinder is seen at subsequent times.

2.7.2 Diffusion of BODIPY

An example of a relatively simple phenomenon in this otherwise complex framework is
that of diffusion of the dye, see Figure 2.8. This is not a main focus of the current work
but is included, since it helps determining the diffusion constant of BODIPY, which is
otherwise difficult to find in the literature. The sequence of movie frames show when an
externally applied DC electric field between the microchannel inlets is turned off, a big
concentration of dye diffuses away from the metal object.

The movie is analyzed by following the front of the dye as a function of time; the
square of the distance from the front to the metal cylinder x2

diff is directly proportional to
time with the constant of proportionality being six times (in 3D) the diffusion constant D
[3]

x2
diff = 6Dt. (2.17)

The square of the diffusion length x2
diff is plotted against time t in Figure 2.9. The exper-

imental data is fitted to a straight line which gives the regression

x2
diff =

(
3.5× 10−9 m2s−1

)
t⇒ (2.18a)

D = 5.8× 10−10 m2s−1. (2.18b)

Sugar is comparable to BODIPY with regards to size and structure, and since our experi-
mentally determined diffusion constant is close to the diffusion constant of sugar in water
Dsugar ≈ 5× 10−10 m2s−1 [3], we conclude that it is reasonable. Additionally, the exper-
iment confirms that a large concentration of dye is contained in the Debye layer on the
metal electrode. This concludes the experimental observation on the diffusion of BODIPY
and also the general observation of the concentration drop. The next section introduces
two unexplained electrokinetic phenomena found in the literature.
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Figure 2.9: Plot of the square of the diffusion length x2
diff (in µm2) of the dye front in Fig-

ures 2.8 against time t. The experimental data (Exp) are fitted to a line (Fit) which has a slope
of 3.5× 10−9 m2s−1, and consequently the diffusion constant of BODIPY (in 2D) is found to be
5.8× 10−10 m2s−1.

2.8 Unexplained electrokinetic phenomena

To this day there are still fundamental aspects of electrokinetic theory that remain un-
explained. As a consequence, some experimental observations lack reasonable theoretical
explanations.

One of the applications of electrokinetics in microfluidics is as a pumping mechanism
where a class of devices are named AC electrokinetic micropumps. To achieve pumping in
AC electrokinetic micropumps an asymmetric array of interdigited electrodes are deposited
on the wall of a microchannel. The microchannel is filled with an electrolyte e.g. water
and KCl and a time varying AC field is applied to each pair of electrodes in the array.
Due to the asymmetry of the electrode array and the nature of the time varying electric
field a net DC flow is generated in the channel. The strength and direction of the DC
component of the flow is dependent on the strength and frequency of the applied AC
field and it is in this dependence that experiment and theory deviates. Among a lot of
experimental evidence, work done in the DTU–TMF group shows that for low applied
voltages Vrms < 1.5 V and low frequencies f < 20 kHz the pumping direction reverses [19].
The reversal of the pumping direction in the AC electrokinetic micropump is qualitatively
reproduced by a theoretical model [20], but with rather large quantitative discrepancies.
Also, the experimental observations clearly show a dependence on the concentration of the
electrolyte which is not present in the theoretical model.

Another example of an unexplained experimental observation is that of ICEO flow.
In the experiment a planar unbiased electrode is deposited on a wall in a microchamber.
The microchamber is filled with a KCl electrolyte and an external electric field is applied
tangential to the surface of the electrode producing ICEO flow in the electrolyte. Due to
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nonlinear effects the measured velocity of the ICEO is much smaller than those predicted by
linear theory. Even if nonlinear effects are taken into account theory still overestimates the
induced flow velocities [21]. These two examples of experimental and theoretical differences
demonstrate the need for continued research in the area of nonlinear electrokinetic effects.



Chapter 3

Electrokinetic theory

In this chapter we introduce three electrokinetic models; the full nonlinear, the linear slip-
velocity, and the nonlinear slip-velocity model. These models are the tools used in the
numerical simulations in this thesis and they each represent different levels of approxima-
tion and ease of numerical execution.

3.1 Basic physical picture

The main concern in the current thesis is the description of an electrolyte under an external
voltage bias and its interaction with a charged surface; the charged surface stems from an
intrinsic surface charge or from induced charge around a conducting surface.

An understanding of the microscopic picture is helpful in this context and to this pur-
pose Figure 3.1 shows the Gouy–Chapman-Stern model of a binary, symmetric electrolyte
at the interface of a charged surface. The figure is a snap shot of e.g. an aqueous solution
of potassium chloride (KCl) next to poly-methyl methacrylate (PMMA), both common
components in the world of electrokinetics.

One of the most significant effects of the charged surface is attraction of ions with
opposite sign of charge (counter-ions) and repulsion of ions with similar sign of charge
(co-ions). At zero absolute temperature the counter-ions would screen the surface charge
perfectly, but due to thermal fluctuations the screening is only partial.

A region close to the interface, where ions still have the ability to move around freely,
is called the diffuse layer and is illustrated in Figure 3.1 (a). Note how emphasis is put
on a pronounced majority of counter-ions in the diffuse layer. The different distributions
of counter- and co-ions give rise to a non-zero electric charge density and with this a
varying electric potential φ. As sketched in Figure 3.1 (b) the potential drop between the
interface and the bulk is called the ζ-potential (also denoted zeta-potential). For low ζ
(linear regime) the decay is exponential and characterized by a length scale (Debye–Hückel
screening length) λD, with typical values in the range 1− 100 nm.

It is important to note some of the challenges in describing the picture above. The
current thesis employs a smooth continuum description of the ionic species by introducing
concentration fields; this is in some cases an over-simplification. First, Figure 3.1 (a) shows

21
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Figure 3.1: Interface region between a solid with a surface charge and a binary, symmetric
electrolyte. (a) Microscopic view showing how the co-ions (same sign of charge as solid +) and
counter-ions (different sign of charge as solid −) are distributed in two regions; a thin, immobile
layer sitting directly on the solid, the Stern layer, and a broader region with a majority of mobile
counter-ions, the diffuse layer. (b) Sketch of the electric potential φ(z) (bottom graph), cation con-
centration field c(+)(z) and anion concentration field c(−)(z) (upper graphs). The electric potential
has a value at the interface ζ and for low values of ζ the variation in the potential is exponential
going from the interface into the bulk. This exponential decay has a characteristic length scale λD
with typical values in the range 1− 100 nm. In Debye–Hückel theory the exponential variation in
electric potential is reflected in the distribution of the ions in the electrolyte such that these also
decay exponentially toward an equilibrium bulk value c0.

a very weak presence of co-ions in the diffuse layer; the use of a continuum description of the
few co-ion molecules is questionable and simulations of individual molecules might be more
appropriate. Second, there is a physical upper limit to the concentration of counter-ions
in the diffuse layer; this limit is reached for high surface charge, also called the nonlinear
regime, where the distance between counter-ion molecules equals their diameter. In this
situation the molecules starts to pack in a condensed structure and the concentration
reaches a maximum [22]; the continuum description in its simplest form is unable to
capture this phenomenon.

In direct connection with the problem at large surface charge is the description of
immobile molecules in the region between the interface and the diffuse layer, called the
Stern layer. In the linear regime the Stern layer is only one (and at most a few) atomic
layers thick. A simple approximation is to model it as a slab of dielectric material but
for simplicity we omit it in the current work. In the next section we introduce the three
different electrokinetic models used in the current work.

3.2 Full nonlinear model

Different models are employed to describe electrokinetic phenomena. In the current work
focus is on three models (full nonlinear, linear slip-, and nonlinear slip-velocity) which
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utilizes different assumptions and thus are more or less complex. The models build on a
similar framework, which the full nonlinear model gives a good intuitive feeling of; hence,
this model is described first, where after the details of the remaining two are accounted
for.

3.2.1 Continuity equation

Conservation of mass is enforced by the continuity equation [3]

∂tρb +∇ · (ρbv) = 0, (3.1)

where ρb = ρb(r, t) is the mass density of the electrolyte buffer and v = v(r, t) is the
velocity field.

We assume incompressibility of the fluid since our systems are without shock waves
or fast pressure oscillations. Basically, this means that the speed of the fluid v has to be
much smaller than the speed of sound in the fluid ca

v � ca, (3.2)

or that any pressure oscillation with angular frequency ωa in the confined space of length
l fulfills the requirement

ωal� ca. (3.3)

Under these conditions Equation (3.1) reduces to

∇ · v = 0. (3.4)

3.2.2 Momentum conservation

Momentum flow is governed by Navier–Stokes equations [3]

ρb[∂tv + (v ·∇)v] = −∇pdyn + η∇2v − ρb∇Φ + βη∇(∇ · v) + ρelE− kBT∇c, (3.5)

where pdyn = pdyn(r, t) is the hydrodynamical pressure, η is the dynamic viscosity, Φ
is the gravitational potential, β is a dimensionless viscosity ratio, ρel = ρel(r, t) is the
electric charge density, E = E(r, t) is the electric field, kB is Boltzmann constant, T the
temperature, and

c = c(r, t) =
∑

i

[
c(i)(r, t)− c(i)

0

]
(3.6)

is the sum over the ionic concentration deviations from their equilibrium values c(i)
0 . We

define the hydrostatic phs and the osmotic pos pressures as

phs = ρbΦ, (3.7a)
pos = kBTc. (3.7b)

Furthermore, we define the total pressure p as the sum

p = pdyn + phs + pos. (3.8)
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Hence, we combine the hydrodynamic, the hydrostatic and osmotic pressures into the total
pressure. Note, even though the hydrostatic and osmotic pressures do not appear explicit
in Navier–Stokes equation when we use the total pressure formulation, their effects do not
disappear. The charged ionic species make up the electric charge density in terms of their
valences Z(i) and their concentration fields

ρel = e
∑

i

Z(i)c(i), (3.9)

where e is the elementary charge. The electric field is related to the magnetic field B =
B(r, t) through the Maxwell–Faraday equation

∇×E = −∂tB. (3.10)

Electric quasi-statics is assumed under the presumption that any electric oscillations with
angular frequency ωl and in the confined space of size l meet the demand

ωll� cl, (3.11)

where cl is the speed of light in the fluid. In this regime Equation (3.10) simplifies to

∇×E = 0, (3.12)

which implies that the electric vector field can be represented by the gradient of an electric
scalar potential φ = φ(r, t)

E = −∇φ. (3.13)

Utilizing the assumption of incompressibility, the total pressure, the expression of the
electric charge density, and the scalar formulation of the electric field, the Navier–Stokes
equations are

ρb[∂tv + (v ·∇)v] = −∇p+ η∇2v − e
(∑

i

Z(i)c(i)
)
∇φ. (3.14)

3.2.3 Electric interaction

Electric interactions are governed by Poisson’s equation

∇ ·D = ρel, (3.15)

where D is the electric displacement field, in general defined by

D = ε0E + P, (3.16)

where P is the electric polarization and ε0 is the permittivity of free space. The electrolyte
is assumed to be linear, isotropic and homogeneous with respect to its electric properties
whereby the electric polarization is directly proportional to the electric field

P = ε0χeE, (3.17)
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where χe is the constant electric susceptibility. This in turn makes the electric displacement
field directly proportional to the electric field

D = (1 + χe) ε0E = εrε0E = εE. (3.18)

With the above definitions and the expression of the charge density from Equation (3.9),
Poisson’s equation for an isotropic electrolyte simplifies to

∇2φ = −e
ε

∑

i

Z(i)c(i). (3.19)

3.2.4 Transport of species

The continuum assumption makes it possible to use conservation equations for the ionic
species of the form

∂tc
(i) +∇ · J(i) = 0, (3.20)

where J(i) are particle current densities with contributions from diffusion, electro-migration
and convection. Diffusion and electro-migration are caused by gradients in the electro-
chemical potential µ(i) = µ(i)(r, t); convection stems from an imbalance of forces on the
solution [20, 23]

J(i) = c(i)
(
−D(i)∇µ(i) + v

)
, (3.21)

where D(i) is the diffusivity for species c(i). For an ideal dilute system the interaction
between different species can be neglected and the electrochemical potential can be de-
composed into separate entropic and electric terms [20]

µ(i) = kBT ln c
(i)

c0
+ Z(i)eφ, (3.22)

where kB is Boltzmann’s constant, T the temperature and c0 a reference concentration.
With these assumptions Equations (3.21) reduce to the Nernst–Planck equations

J(i) = −D(i)
(
∇c(i) + Z(i)e

kBT
c(i)∇φ

)
+ c(i)v. (3.23)

Note, that in this framework the particle current can be written as a sum of a purely
diffusive term J(i)

diff, a purely electro-migrative term J(i)
em and a purely convective term

J(i)
conv

J(i) = J(i)
diff + J(i)

em + J(i)
conv, (3.24)

where the terms are given by

J(i)
diff = −D(i)∇c(i), (3.25a)

J(i)
eo = −D(i)Z

(i)e

kBT
c(i)∇φ, (3.25b)

J(i)
conv = c(i)v. (3.25c)
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3.2.5 Remark on the full nonlinear model

One of the main characteristics that sets the full nonlinear model apart from the two
others, is that it allows concentration gradients and hence a non-zero charge density. The
non-zero charge density occurs in the region of the electric double layer. In this region
many of the physical fields change rapidly over a typical distance of 10 nm which has to be
compared to the size of a typical microsystem, where dimensions range from µm to mm.
In numerical simulations of electrokinetic phenomena in microsystems the model requires
that this difference in length scales is accounted for. Unfortunately, this is troublesome
since it entails the use of many computational degrees of freedom (DOFs) in order to
ensure sufficient resolution of the thin double layer. For this reason, it is attractive to use
effective boundary conditions to model the physics of the thin Debye layer. The effective
slip-velocity boundary condition we use here is derived from the full nonlinear model and
this derivation is the subject of the next section.

3.2.6 The electric double layer at a charged surface

In this section we investigate the equilibrium of a binary, symmetric electrolyte at a charged
surface. The result is an effective slip-velocity boundary condition.

The electrolyte consists of positively charged c(+) = c(+)(r) and negatively charged
c(−) = c(−)(r) ionic species. The valence of the positive Z(+) and negative Z(−) ionic
species are related by

Z(+) = −Z(−) = Z. (3.26)

The electric potential at the surface ∂Ω is assumed to be

φ|r∈∂Ω = ζ, (3.27)

and goes to zero infinitely far away from the surface

lim
|r|→∞

φ = 0, (3.28)

while the only assumption on the ionic species is

lim
|r|→∞

c(±) = c0. (3.29)

Since the system is in equilibrium there is no net particle currents J(±) = 0 and the velocity
is zero and hence Equations (3.21) and (3.22) give

0 =∇
(
kBT ln c

(±)

c0
± Zeφ

)
, (3.30)

where it has been assumed c(±) 6= 0. Utilizing the above boundary conditions we integrate
Equation (3.30) and get

c(±) = c0 exp
(
∓ Ze

kBT
φ

)
. (3.31)
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Consequently, the charge density becomes

ρel = Ze
(
c(+) − c(−)

)
= −2Zec0 sinh

(
Ze

kBT
φ

)
. (3.32)

The resulting equation is called the Poisson–Boltzmann equation

∇2φ = 2Zec0
ε

sinh
(
Ze

kBT
φ

)
, (3.33)

which, as shown below, is analytically solvable for simple systems. First, consider the limit
where the electric energy Zeζ is low compared to the thermal energy kBT

Zeζ

kBT
� 1. (3.34)

This is the so-called Debye–Hückel limit, where the Debye–Hückel screening length λD is
given by

λD =
√

εkBT

2c0Z2e2 . (3.35)

Equation (3.33) simplifies to

∇2φ = 1
λ2
D

φ, (3.36)

where we have used that sinh(x) ≈ x for x � 1. At room temperature T ≈ 300 K the
thermal voltage is

kBT

e
≈ 25 mV. (3.37)

Typical experimentally measured values for the zeta-potential is in the range 10 mV to
100 mV [9], which demonstrates that the Debye–Hückel approximation has to be used
with precaution.

3.2.7 Infinite plane

We can solve Equation (3.33) analytically for the special case of an infinite planar wall.
Thus, consider the system depicted in Figure 3.1 on page 22 where an infinite large plane
with surface normal n̂ = ez at z = 0 carries a surface charge (hence has a potential of
ζ) and where the space z > 0 is occupied with a binary, symmetric electrolyte. The
system is translational invariant in the x- and y-direction such that the electric potential
only depends on the z-coordinate φ = φ(z). The solution to Equation (3.33) is called the
Gouy–Chapmann solution

φ(z) = 4kBT

Ze
arctanh

[
tanh

(
Zeζ

4kBT

)
exp

(
− z

λD

)]
, (3.38)

which is valid for arbitrarily high potentials. In the Debye–Hückel limit the solution to
Equation (3.36) is

φ(z) = ζ exp
(
− z

λD

)
. (3.39)
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Furthermore, in this limit we can obtain the concentrations by Taylor-expanding Equa-
tion (3.31)

c(±) = c0

[
1∓ Zeζ

kBT
exp

(
− z

λD

)]
. (3.40)

The concentrations decay exponentially from their surface value to c0 in the bulk, as
expected.

3.2.8 Parallel plates channel

Another special case we can solve analytically is that of parallel plates. This system is
attractive in the context of microfluidics because it is a good approxmation to straight,
narrow microchannels. The system is completely analogous to the above case, only now
there are two parallel, infinite plates at z = ±H/2. Given the boundary conditions

φ
(
±H

2

)
= ζ, (3.41)

the solution of Equation (3.36) is

φ(z) = ζ
cosh

(
z
λD

)

cosh
(

H
2λD

) , (3.42)

which we will use in the next section to derive the Helmholtz–Smoluchowski slip-velocity.

3.2.9 Application of external electric field to parallel plates channel

We will now use the results from the infinite plane and parallel plates to calculate the EO-
flow when an external tangential electric field is applied to a parallel plates microchannel.
We consider two cases; (i) only the lower wall carries a surface charge and produce one-
wall EO-flow, and (ii) both walls carry a surface charge and produce two-wall EO-flow,
see Figure 3.2. We assume that each physical quantity is a sum of an intrinsic and an
externally applied field. Thus, the externally applied pressure pext = pext(r, t), electric
potential φext = φext(r, t), and concentration field(s) cext = cext(r, t) can be added with
the intrinsic equilibrium pressure peq = peq(r, t), electric potential φeq = φeq(r, t), and
concentration field(s) ceq = ceq(r, t)

p = peq + pext, (3.43a)
φ = φeq + φext, (3.43b)
c = ceq + cext (3.43c)

Two driving electrodes delivers the applied DC electric field Eext

Eext = −∇φext. (3.44)

Furthermore, we assume that electrochemical processes take place at the driving electrodes
such that no double layers are formed here, which would otherwise screen the effect of the
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Figure 3.2: A parallel plates channel of height H for which (a) both walls carry a surface charge,
and (b) only the lower wall carries a surface charge. We apply an electric field E = −Eex whereby
the ions in bulk begins to electromigrate. However, due to electro-neutrality, no net force is
transferred to the electrolyte in the bulk. Contrary, in the Debye layer(s) the movement of the
prevailing amount of counter-ions creates a net force on the electrolyte, and through viscous drag
an EO-flow is generated. We look at this situation in steady-state.

external electric field. Also, we assume that the externally applied electric field does
not introduce any changes in the intrinsic charge density ρeq

el . Under these assumptions
Navier–Stokes equations are

ρb [∂tv + (v ·∇)v] = −∇pext + η∇2v + ρeq
el Eext. (3.45)

Additionally, it is assumed that (i) the zeta potential is constant along the wall(s), (ii) the
electric field is homogeneous, (iii) the flow is in steady-state, and (iv) the Debye length
is much smaller than the half-width H/2 of the channel, λD � H/2. The direction of
the externally applied electric field is in the negative x-direction and the external pressure
gradient is zero. Also, due to the translational invariance in the x- and y direction and
that the driving force is along the x-direction, the velocity is simplified, and thus the fields
are

Eext = −Eex, (3.46a)
∇pext = 0, (3.46b)

v = vx(z)ex, (3.46c)

whereby Navier–Stokes equations reduce to

0 = η∂2
zvx(z) +

[
ε∂2
zφeq(z)

]
E. (3.47)

In the situation where both walls carries a surface charge the z-axis origin is at the middle
of the channel and we assume no-slip boundary conditions at the walls

v=
x

(
±H

2

)
= 0, (3.48)
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where we have put two lines in superscript to distinguish between the one- and two-wall
EO-flow. Furthermore, in the picture where only the lower wall carries a surface charge
the z-axis origin is at the lower wall and the no-slip boundary conditions are

v−x (0) = v−x (H) = 0. (3.49)

We use the expression for the equilibrium potential from Equation (3.42) and get for the
two-wall EO-flow

v=
x (z) = veo


1−

cosh
(
z
λD

)

cosh
(

H
2λD

)


 . (3.50)

Likewise, we use the expression for the equilibrium potential from Equation (3.39) and get
for the one-wall EO-flow

v−x (z) = veo

{
1− exp

(
− z

λD

)
− z

H

[
1− exp

(
− H

λD

)]}
. (3.51)

In both solutions the so-called EO velocity veo is defined as

veo = εζ

η
E. (3.52)

We plot the velocity profiles of the one-wall and two-wall EO-flow in Figure 3.3 for the
three cases λD/(H/2) = {0.1, 0.01, 0.001}. Note, that for λD/(H/2) � 1 we almost
have a perfect Couette and plug flow for the one- and two-wall EO-flow, respectively.
Consequently, instead of resolving the thin Debye layer, an effective slip-velocity can be
used instead. This leads to the linear- and nonlinear slip-velocity models which are the
topic of the next section.

3.3 Slip-velocity models

We can use the Helmholtz–Smoluchowski velocity as an effective boundary condition if the
Debye length is much smaller than the half width of the channel λD/(H/2) � 1. In this
way we avoid the trouble of resolving the thin Debye layer and we have a unidirectional
coupling from the electrostatic problem to the hydrodynamic flow, or in other words we
decouple the problem. We exploit this feature in the linear- and nonlinear slip-velocity
models, where the basic assumption is an infinitely thin double layer.

3.3.1 Effective slip-velocity boundary condition for the linear and non-
linear slip-velocity models

The Helmholtz–Smoluchowski boundary condition is not restricted to the special case of
parallel plates, but can be used on arbitrary surfaces via

vhs = −εζ
η

Es, (3.53)
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Figure 3.3: One-wall (red) and two-wall (dashed,blue) EO-flow velocity profiles normalized with
veo in a parallel plates channel of height H filled with an electrolyte with intrinsic Debye screening
length λD. We have used three parameters of λD/(H/2) = {0.1, 0.01, 0.001}. Note, for λD/(H/2) ≤
0.01 the velocity profiles are close to perfect Couette and plug flows for the one- and two-wall EO-
flow, respectively. This indicates that we can use the Helmholtz–Smoluchowski velocity as an
effective boundary condition as long λD/(H/2)� 1.

where Es is the component of the electric field parallel to the surface given by

Es = E− n̂(n̂ ·E), (3.54)

where n̂ is the surface normal vector.

3.3.2 Bulk equations for the linear and nonlinear slip-velocity models

We have assumed that the electric double layer is infinitely thin and thereby complete
electro-neutrality

ρel = 0. (3.55)

Thus, the electric force density drops out of Navier–Stokes equations

ρb [∂tv + (v ·∇)v] = −∇p+ η∇2v, (3.56)

and Poisson’s equation turns into Laplace’s equation

∇2φ = 0. (3.57)
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We have now decoupled the hydrodynamic and electrostatic problems. With the linear and
nonlinear slip velocity models we solve a given electrokinetic problem by first solving for the
electrostatic potential. Having the electric potential, we can solve for the hydrodynamic
flow using Equation (3.53) as an effective boundary condition on the electro-osmotic active
boundaries. This is a significant simplification, both in terms of analytical and numerical
manageability.

The difference between the linear and nonlinear slip-velocity models are the surface
conduction in the Debye layer. This difference manifests itself in the boundary condition
for the electrostatic potential on the electro-osmotic active walls.

3.4 Linear slip velocity model

In the linear slip-velocity model we neglect all charge dynamics in the double layer and
assume complete electrical screening

n̂ ·∇φ = 0. (3.58)

Note, this is an oversimplification, especially in the case of a high applied electric field.
Nevertheless, this model is widely used and is for many purposes adequate for predicting
EO-flows qualitatively. Though, in quantitative comparisons with experiments this model
has shown to overestimate the slip velocity [21].

3.5 Nonlinear slip velocity model

The nonlinear slip velocity model is an extension of the linear slip velocity model in the
sense that it gives more accurate results for high zeta-potentials where the Debye–Hückel
approximation breaks down. However, it is purely a model for ICEO, and not for ordinary
EO-flow. We will explain more about ICEO shortly.

The nonlinear slip-velocity model is accredited to Gaurav Soni from UCSB [21]. It
realizes the electric double layer by solving a partial differential equation (PDE) on the
double-layer-inducing surface. In short, the PDE is derived by conserving ionic charge in
the double layer, where a normal ohmic current and a tangential surface conduction cur-
rent are both considered in the charge conservation. It also allows for a nonlinear surface
capacitance, which relates the surface charge density to the zeta-potential of the surface.
This is more advanced than the linear slip-velocity model (or the Debye-Hückel approx-
imation), which ignores the presence of surface conduction and uses a linearized surface
capacitance; these simplifications are not valid for situations where the zeta-potential is
much higher than the thermal voltage.

3.5.1 Induced-charge electro-osmosis

ICEO refers to a phenomenon where a DC or AC electric field induces charge on a po-
larizable surface (metal or dielectric), and produces an electroosmotic slip by applying a
body force on the electric double layer. Since the double layer is created and moved by
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Figure 3.4: (a) The ICEO situation in the vicinity of the planar, un-biased electrode of width
2a, immediately after t = 0 the external electric field E0 is applied. (b) The ICEO situation at
steady-state. (c) Flow lines of the symmetric ICEO flow.

the same electric field, this phenomenon gives rise to steady flows both in DC and AC
electric fields. Consider a flat un-biased electrode surface of width 2a in contact with
an electrolytic solution, see Figure 3.4. When it is subjected to an external electric field
E = Eex at t = 0, the electric field lines intersect the surface at right angles and a charge
density is induced on the surface because of charge separation. However, the field lines
start changing their configuration as an electric current Jel = σE drives positive ions to-
ward one half of the surface (x < 0) and negative ions to the other half (x > 0). This
process develops a double layer on the surface which grows as long as the normal electric
field drives ions into it. In steady state, assuming that there is no surface conduction or
faradaic reaction, the double layer insulates the surface completely and no electric field
lines can penetrate into it. In this state, all the electric field lines are tangential to the
surface and cause an electroosmotic slip directed from the edges toward the center giving
rise to two symmetric rolls above the surface. An AC field will drive an identical flow as
the change in direction of the field changes the polarity of the induced charge as well.

3.5.2 Surface conduction

Ions are brought into the double layer by the normal component of the electric field.
However, the ions can also move tangential to the electrode surface due to the tangential
component of the electric field and with the electroosmotic flow of the fluid i.e. by con-
vection. Movement of ions along the electrode surface is generally referred to as surface
conduction. When the applied potentials are high, the surface conduction is strong enough
to change the electric field close to the electrode surface. Surface conduction creates a large
tangential current which takes away the ions shielding the surface charge. In order to re-
plenish the charge into the double layer, a lot of electric field lines become normal to the
double layer. The normal current thus generated brings new ions into the double layer
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for replenishment. Excessive surface conduction causes a large reduction in the tangential
component of the electric field and thus deteriorates the slip velocity. In the presence of
excessive surface conduction almost all electric field lines can become normal and leave no
tangential field to drive the electroosmotic flow.

The electric surface current Js is dependent on the surface conductivity σs of the double
layer

Js = σsEs, (3.59)

where Es is the tangential electric field defined in Equation (3.54) The surface conductivity
σs of a binary, symmetric electrolyte with

Z(+) = −Z(−) = Z, (3.60a)

D(+) = D(−) = D, (3.60b)

is given by [21]

σs = 4λDσ(1 +m) sinh2
(
Zeζ

kBT

)
, (3.61)

where σ is the bulk conductivity and

m = 2 ε

ηD

(
kBT

Ze

)2
, (3.62)

is a dimensionless parameter indicating the relative contribution of electroosmosis to sur-
face conduction. For an aqueous solution of KCl at room temperature m ≈ 0.45. Usually,
the surface conduction is expressed in terms of a dimensionless parameter, the Dukhin
number Du

Du = σs

σa
, (3.63)

where a is a characteristic length scale.

3.5.3 Charge conservation in the double layer

If we assume an infinitely thin double layer λD/a � 1 and that double layer charging
does not cause any gradients in the bulk electrolyte concentration, it is possible to derive
a conservation law for the double layer surface charge density q. We consider a small
patch of thin double layer where the charge is brought into it by a normal ohmic flux,
see Figure 3.5 (a). This charge can accumulate or leak tangentially from the edges. A
conservation law is then simply

rate of accumulation = flux in − flux out,

which in mathematical form can be expressed as an integral over the surface S
∫

S
∂tq da = −

∫

S
n̂ · (σE)da−

∫

∂S
n̂s · (σsEs)ds, (3.64)
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Figure 3.5: (a) Conservation of surface charge by a tangential surface conduction flux and a
normal ohmic flux. (b) The surface conduction flux Js is zero at the edge of the electrode and
therefore electric field lines become perpendicular so that ions can be supplied into the double layer
to sustain the surface conduction flux away from the edge [21, 24]

where n̂ is the outward normal vector and n̂s is a vector tangential to the surface but
perpendicular to the boundary. The second term is converted into an area integral by
applying the divergence theorem

∫

S
∂tq da = −

∫

S
n̂ · (σE)da−

∫

S
∇s · (σsEs)da, (3.65)

where ∇s is the tangential gradient operator

∇s =∇− n̂ (n̂ ·∇) . (3.66)

Since Equation (3.65) holds true for any arbitrarily small surface, the integrals can be
removed

∂tq = −n̂ · (σE)−∇s · (σsEs), (3.67)

and by using

E = −∇φ, (3.68a)
Es = −∇sφ, (3.68b)

the resulting conservation equation is

∂tq = n̂ · (∇φ) +∇s · (σs∇sφ). (3.69)

This equation constitutes an effective boundary condition for the electrostatic potential
on the electrode surface. Note, in steady-state the PDE simply reads

0 = n̂ · (∇φ) +∇s · (σs∇sφ), (3.70)
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which we will use later. Furthermore, we need to apply boundary conditions to the sur-
face PDE in Equation (3.69). The edge of the electrode is visualized as a surface charge
discontinuity kept in an external field, see Figure 3.5 (b). On one side of the edge, there is
no surface charge and thus there is no double layer; hence no surface conduction flux can
enter from the edge. Consequently, on the edge, electric field lines terminate perpendic-
ularly to the electrode so that ions can be supplied into the double layer. In this picture
there is no tangential electric field on the edge. On other points in the vicinity of the edge,
the electric field has a tangential component which causes the ions to conduct away from
the edge. Hence, we assume that the surface conduction flux is zero at the edge of the
electrode

n̂s · (σs∇sφ) = 0. (3.71)

Where the double layer in the linear slip velocity model leaves the electric field unaffected,
it interacts with the electric field in the nonlinear slip-velocity model. The altered field
distribution in the vicinity of the double layer is what makes the difference between the
linear- and nonlinear slip-velocity models, as the fluid slip condition still is given by the
Helmholtz–Smoluchowski velocity Equation (3.53), but now with ζ and Es dependent on
the surface conduction in the double layer.

We now have a strong foundation for doing numerical simulations on electrokinetic
phenomena. We will use the full nonlinear and linear slip-velocity models in Chapter 5 to
simulate the observed concentration drop across an un-biased electrode in a microchannel.
In Chapter 6 we compare the linear- and nonlinear slip-velocity models against the full
nonlinear model and quantify the deviations in an ICEO-flow for different parameters.
In the next chapter we introduce the numerical implementation in COMSOL and do a
benchmark against the analytical EO plug flow.



Chapter 4

Numerical implementation and
validation in COMSOL

COMSOL is a powerful interactive environment for modeling and solving all kinds of sci-
entific and engineering problems based on partial differential equations [25]. The software
makes it possible to extend conventional models for one type of physics into multiphysics
models that solve coupled physics phenomena simultaneously. It does not require an in-
depth knowledge of mathematics or numerical analysis to use the software. The physics
problem is written in one of three special syntaxes; (i) coefficient form, (ii) general (or
strong) form, or (iii) weak form. In short, the coefficient form is for linear or almost linear
PDEs, the general form is for nonlinear PDEs, and the weak form offers the maximum
flexibility. Here we will employ the weak form because the problems we solve are very com-
plex and in particular because they include numerically non-trivial boundary conditions.
When the problem is described in one of the three syntaxes, COMSOL then internally
compiles a set of PDEs representing the entire model. The problems can be defined in a
graphical user interface or in MATLAB script language. COMSOL uses the finite element
method (FEM) and runs the finite element analysis together with adaptive meshing and
error control using a variety of numerical solvers. Consequently, we can easily define com-
plex geometries in COMSOL or solve problems where high precision is only required in
some parts of the domain. Finally, we note that we have used COMSOL version 3.4 for
the the current work, but even as this thesis is written we have started using COMSOL
version 3.5. Now follows a short description of the weak form.

4.1 Weak form implementation in COMSOL

The weak form is a particular way of specifying a model in COMSOL with a more gen-
eral syntax. First, weak does not mean that the approach is inferior; weak form is very
powerful and flexible. Weak form is a term borrowed from mathematics, but it has a
slightly different meaning in this context. The strong points of the weak form that are
relevant to this works is that it can (i) solve strongly nonlinear problems, (ii) add and
modify nonstandard constraints, and (iii) build models with PDEs on boundaries, edges

37
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and points. Additionally, adding weak constraints provides accurate fluxes and reaction
forces. Furthermore, the weak solution form gives the exact Jacobian necessary for fast
convergence of strongly nonlinear problems.

4.1.1 Short derivation of the weak form

First, consider a general PDE problem for a single variable u defined on the 2D domain
Ω with boundary ∂Ω in strong form

∂jΓij = Fi, i = x, y, in Ω, (4.1)

where we use the Einstein summation notation. Let u(t) be an arbitrary function on Ω
called the test-function (u(t) belongs to a suitable chosen, well-behaved class of functions).
Multiplying the PDE with this function and integrating yields

∫

Ω
u(t)∂jΓijda =

∫

Ω
u(t)Fida. (4.2)

We now use Green’s theorem to integrate by parts
∫

∂Ω
u(t) (n̂jΓij) ds−

∫

Ω

[
∂ju

(t)
]

Γijda =
∫

Ω
u(t)Fida. (4.3)

This is rearranged to fit COMSOL syntax

0 = −
∫

∂Ω
u(t) (n̂jΓij) ds+

∫

Ω

{[
∂ju

(t)
]

Γij + u(t)Fi
}

da. (4.4)

This is the weak reformulation of the original PDE. Note, we have reduced the bulk
divergence term ∂jΓij to a (Neumann) boundary condition n̂jΓij . We simpt substitute
n̂jΓij on the boundary where we want to implement a (Neumann) boundary condition.
Dirichlet boundary conditions are still specified in strong form syntax

Ri = 0. (4.5)

The weak formulation is a weaker condition on the solution than the strong form formula-
tion. For instance, in the case of discontinuities in material properties, it is possible to find
a solution in weak form while the strong form has no meaning. For this reason we use the
weak form in the numerical simulations. With the weak form comes the implementation
of weak constraints which is the subject of the next section.

4.1.2 Weak constraints

COMSOL implements weak constraints by using finite elements on the constrained do-
main for the Lagrange multipliers, and by solving for the Lagrange multipliers along with
the original problem. The advantages of weak constraints are (i) that they provide very
accurate flux computations, (ii) that they handle nonlinear constraints; weak constraints
can handle general nonlinearities because the Lagrange multipliers are updated as a part
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of the solution-vector and give correct contributions to the stiffness matrix. (iii) They
can implement constraints including derivatives — standard constraints only allows con-
straints on the tangential component of the derivative, whereas only weak constraints can
handle nontangential restraints. However, one of the draw-backs of weak constraints are
that the problem size increases, because extra unknowns are introduced for the Lagrange
multipliers.

Ideal and nonideal constraints

Using nonideal constraints modifies the way boundary conditions are interpreted. Switch-
ing to nonideal weak constraints therefore can modify the physics of the model.

The difference between ideal and nonideal constraints is the way the Lagrange multi-
pliers — which can be interpreted as generalized reaction forces — are applied. In an ideal
constraint, the Lagrange multipliers are applied symmetrically on all dependent variables
involved in the constraint, so as to keep symmetric problems symmetric. In a nonideal
constraint, the reaction forces are applied only on the corresponding dependent variable
at the boundary where the constraint is specified.

Imagine a model with two dependent variables u and v. Furthermore, imagine a
boundary ∂Ωi where we want to apply the boundary condition

u− v = 0, on ∂Ωi. (4.6)

The corresponding ideal weak constraint is
∫

∂Ωi
µ(t) (u− v) ds+

∫

∂Ωi
µ
[
u(t) − v(t)

]
ds, (4.7)

where µ and µ(t) are the Lagrange multiplier and corresponding test function, and u(t) and
v(t) are the test functions corresponding to u and v, respectively. Since µ multiplies both
test functions in the second integral, both u and v are affected by the constraint, which
therefore is bidirectional. The corresponding nonideal weak constraint is

∫

∂Ωi
µ(t) (u− v) ds+

∫

∂Ωi
µu(t)ds. (4.8)

Here, the Lagrange multiplier µ only multiplies the test function u(t). All reaction forces
therefore apply only to u, while v is left unaffected by the constraint. This makes the
nonideal constraint unidirectional. We will make use of this feature when we apply the
Helmholtz–Smoluchowski slip velocity as a boundary condition; there we need to couple
unidirectional from the electric field to the hydrodynamic velocity fields and would not be
able to do this without nonideal constraints.

4.2 Validation

As validation of the numerical framework we compute an EO-flow in a parallel plates
channel and compared with the analytical soultion. This model utilizes the nonideal
constraints discussed above.
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Figure 4.1: The rectangular computational domain Ω of length L and height H for the EO-flow
validation problem.

4.2.1 Model

Consider the rectangular computational domain of length L and height H in Figure 4.1.
The governing equation for the electrolyte are the Navier–Stokes equations given in the
linear slip-velocity model in Equation (3.56). We assume steady-state and low Reynolds
numbers, whereby the Stokes equations arise

0 = ∂jσij , i = x, y, (4.9)

where the viscous stress tensor is given by

σij = −pδij + ∂ivj + ∂jvi. (4.10)

In weak form notation the equation is

0 =
∫

∂Ω
v

(t)
i (n̂jσij) ds−

∫

Ω

(
∂jv

(t)
i

)
σij da, (4.11)

where v(t)
i are the matching hydrodynamic test functions. Correspondingly, the governing

equation for the electric potential is given by Equation (3.57)

∇2φ = 0. (4.12)

In weak form notation this equation is

0 =
∫

∂Ω
φ(t) (n̂j∂jφ) ds−

∫

Ω

(
∂jφ

(t)
)

(∂jφ) da, (4.13)

where φ(t) is the test function to the electric potential.
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4.2.2 Boundary conditions

For the hydrodynamic problem we assume stress-free flow at the in- and outlet

n̂jσij = 0, at in- and outlet. (4.14)

At the EOF walls we apply the Helmholtz–Smoluchowski velocity from Equation (3.53)
but in order to do this we need to introduce the reaction force f (Lagrange multipliers) on
the EOF walls ∂ΩEOF given by

fi = n̂jσij , on ∂ΩEOF. (4.15)

Furthermore, the part of the boundary integral that is on the EOF walls in Equation (4.11)
needs to be rewritten

∫

∂ΩEOF

v
(t)
i (n̂jσij) ds =

∫

∂ΩEOF

v
(t)
i fids+

∫

∂ΩEOF

(vhs,i − vi) f (t)
i ds, (4.16)

where f (t)
i is the test functions corresponding to the reaction force and the Helmholtz–

Smoluchowski velocity is

vhs = −εζ
η

(−∇sφ) . (4.17)

For the electrostatic potential we assume a constant potential ±V0/2 at the in- and outlets,
respectively

φ = ±V0
2 , at in- and outlet. (4.18)

Additionally, we assume no-charge on the EOF walls

n̂j∂jφ = 0, at EOF walls. (4.19)

Finally, we assume a pressure free flow

p = 0, at in- and outlet. (4.20)

The COMSOL–MATLAB script for this problem is included in Appendix B.

4.2.3 Results

We use the parameters listed in Table 4.1 in our numerical simulation. Furthermore, we
calculate the analytical EO velocity to

veo = 0.691 mm s−1. (4.21)

As expected, our numerical results are in excellent agreement with the analytical electro-
osmotic plug flow solution. Figure 4.2 (a) shows a plot of the numerically calculated
EO-flow velocity field. Figure 4.2 (b) shows the relative difference between the numerical
velocity profile and the analytical EO (vx(z) − veo)/veo. The relative deviation is on the
order of 10−13, which shows that our numerical scheme is working properly.
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Table 4.1: Parameters used in the calculation for the parallel plates EO-flow.

Symbol Value Symbol Value

H 100 µm V0 10 V
L 1 mm εr 78
ζ −100 mV η 1 mPa s

(a)
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z
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Figure 4.2: (a) Velocity plot of the numerically calculated EO-flow. Note that all the velocity
arrows are parallel to the EOF walls. (b) Plot of the relative difference between the numerical
and analytical EO-flow velocity. The relative difference is on the order of 10−13, which is a strong
indication that our numerical implementation is valid.



Chapter 5

Numerical analysis of analyte
transport across un-biased
electrodes in microchannels

The original motivation for the current work is based on observations of charged species
transport in microchannels containing un-biased electrodes. The observations were done by
professor Sumita Pennathur, now at UCSB, but at the time of the initial observations also
at the University of Twente in the Netherlands. Here she fabricated straight microchannels
containing small metal geometries of different shapes so that the phenomenon could be
systematically studied.

During the course of the current project the author visited the UCSB–Nanolab where
the starting point was to utilize the microchannels for a more detailed investigation. This
was done in close collaboration with students of professor Sumita Pennathur, in particular
Jared Frey and Trevor Wolfcale. The work iterated toward the final setup which is the
focus of this chapter; investigation of electrokinetic phenomena induced by the application
of a potential difference to a buffer filled microchannel containing a simple rectangular
metal structure and a fluorescence dye. We acquired data with optical epifluorescence
microscopy and here we compare these observations to numerical simulations. In the
numerical simulations we combine the full nonlinear model and linear slip-velocity models

5.1 Model system

The physical system is described in Chapter 2. For the numerical simulations we use
a number of approximations of which the most important are: (i) the microchannel is
modelled in the 2D xz-plane, see Figure 5.1. This is justified by the width-to-height ratio
of 500 : 1 and necessary in terms of computational power. (ii) The electrode is modelled
with zero height. In Chapter 6 we show that the finite height of an un-biased electrode
can have a large impact on the flow solution if the height-to-width ratio of the electrode
is more than 10%. For the current problem the height-to-width ratio is below one percent
and we can safely ignore the finite height of the un-biased electrode. We define four types
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Numerical analysis of analyte transport across un-biased electrodes in

microchannels
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Figure 5.1: (a) The full 3D microchip. (b) The 2D cross-section with the un-biased electrode
at the top wall. (c) The 2D computational domain Ω with four boundary types; (i) inlet (dashed
line), (ii) EOF walls (full, normal lines), (iii) un-biased electrode (full, thick line), and (iv) outlet
(dashed line). We place our coordinate system in such a way that the un-biased electrode is at
z = 0 and −l/2 < x < l/2, and so ez points in the same direction as the surface normal n̂ into the
channel.

of different boundaries: inlet, EOF wall, un-biased electrode, and outlet, see Figure 5.1.
The idea is to reduce the size of the problem by applying the linear slip-velocity model
on the EOF walls, which constitute the major part of boundary in the domain. Then, we
apply the full nonlinear model on the un-biased electrode in order to resolve the induced
Debye layer. In our study we vary three parameters: (i) applied potential difference V0,
(ii) initial concentrations of positive c(+)

0 and negative c(−)
0 buffer ions, and (iii) initial

concentration of dye c(d)
0 . Table 5.1 shows the specific values we use. It has for numerical

reasons not been possible to use the concentrations mentioned in the experimental part
in Chapter 2. As the concentrations get higher, the Debye–Hückel screening length gets

Table 5.1: Values used for the variable parameters.

Symbol Values

c
(±)
0 10 µM 100 µM - - - -

c
(d)
0 1 µM 10 µM - - - -

V0 5 V 10 V 15 V 20 V 25 V 30 V



5.2 Boundary conditions 45

Table 5.2: Values of the constant parameters.

Symbol Value Symbol Value

D(±) 2× 10−9 m2 s−1 Z(±) ±1
D(d) 8.8× 10−10 m2 s−1 Z(d) −1
L 9 mm η 1 mPa s
H 0.5 µm ρb 103 kg m3

l 60 µm εr 78
ζ −100 mV T 293.15 K

smaller

λD =
√√√√ εkBT

e2∑
i

[
Z(i)]2 c(i)

0
. (5.1)

Hence, since we resolve the double layer on the un-biased electrode, we get numerical
convergence problems for too high concentrations. The same issue is true for high applied
potential differences which explains why the values in Table 5.1 are lower than mentioned
in Chapter 2. Furthermore, the valences of the different ionic species we model are for
the positive and negative buffer ions |Z(±)| = 1. Instead of introducing two additional
species for the fluorescence dye we simple model the fluorescent active component and
assign it a valence Z(d) = −1. In practice, we achieve electro-neutrality in our system by
specifying the initial concentrations of the negative buffer ion c(−)

0 and of the dye c(d)
0 and

then calculate the initial concentration of the positive buffer ion by

c
(+)
0 = c

(−)
0 + c

(d)
0 , (5.2)

which means the positive buffer ion concentration c
(+)
0 listed in Table 5.1 has to be cor-

rected by this calibration for the positive buffer ion. We also assign values for the buffer
diffusivities D(±), the dye diffusivity D(d), the length of the un-biased electrode l, the
length L and height H of the microchannel, the zeta potential ζ, the dynamic viscosity
η, the buffer mass-density ρb, the relative permittivity εr, and the temperature T . The
constant parameters are listed in Table 5.2 We implement the governing equations from
the full nonlinear model in Chapter 3 in the computational domain Ω.

5.2 Boundary conditions

At the inlet we assume the normal derivative of the x-component of the velocity vx, the
z-component of the velocity vz, and the pressure to be zero. Also, we assume a constant
electric potential, and constant concentrations

∂xvx = 0, vz = 0, p = 0, φ = V0
2 , c(±) = c

(±)
0 , c(d) = c

(d)
0 , at inlet. (5.3)
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At the outlet we have identical boundary conditions except for the electric potential

∂xvx = 0, vz = 0, p = 0, φ = −V0
2 , c(±) = c

(±)
0 , c(d) = c

(d)
0 , at outlet. (5.4)

At the EOF walls we assume the x-component of the velocity to be given by the Helmholtz–
Smoluchowski velocity, the z-component of the velocity to be zero, no-charge density, and
no particle current

vx = −εζ
η

(−∂xφ) , vz = 0, ∂zφ = 0, J (±)
z = 0, J (d)

z = 0, at EOF walls. (5.5)

Finally, at the un-biased electrode we assume no-slip, constant electric potential, and no
particle current

vx = 0, vz = 0, φ = const., J (±)
z = 0, J (d)

z = 0, at un-biased electrode. (5.6)

5.3 Initial conditions

For numerical reasons, we start the simulation at the time t0 = −10−10 s where we specify
a zero velocity field, zero pressure, zero electric potential, and initial concentrations of the
ionic species as given in Table 5.1

vx = 0, vz = 0, p = 0, φ = 0, c(±) = c
(±)
0 , c(d) = c

(d)
0 , in Ω at t = t0. (5.7)

It is not until t = 0 we apply the potential difference V0 across the channel, which means
the boundary conditions for the electric potential in Equations (5.3) and (5.4) are modified
to

φ = 0, at in- and outlet for t0 < t < 0. (5.8)

We use some of COMSOLs numerical techniques to implement the problem as described
in the next section.

5.4 Numerics in COMSOL

5.4.1 Constant potential on the un-biased electrode

We implement the constant potential on the un-biased electrode using COMSOLs so-called
coupling variable. Essentially, we define a point at (x, z) = (0, 0) where COMSOL probes
the electric potential and makes this value available in the calculation. We then apply this
value as a Dirichlet condition on the potential on the entire un-biased electrode

φ(x, 0) = φ(0, 0), on the un-biased electrode. (5.9)

The advantage of this procedure is a higher degree of numerical stability than if we impose
the boundary condition through a zero tangential derivative ∂xφ = 0 on the un-biased
electrode.
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5.4.2 Logarithmic concentration fields

Another issue is the extreme values of the concentration fields that can occur in the
simulation. For high externally applied voltages there is a large degree of charge separation
on the un-biased electrode making the concentrations of the charged species go to zero or
to very high values. This gap in concentration values can be somewhat close by making a
logarithmic transformation of the concentration fields

c(i)(x, z) = c(i)
n exp

[
c̆(i)(x, z)

]
, i = +,−,d, (5.10)

where c̆(i) = c̆(i)(x, z) is the transformed field and c(i)
n is a normalization constant ([c(i)

n ] =
m−3). This procedure makes the solution more smooth at the expense of more nonlinearity
in the governing equations. The governing equations for the transformed fields are

∂tc̆
(i) +∇c̆(i) · J̆(i) +∇ · J̆(i) + v ·∇c̆(i) = 0, (5.11)

where the pseudo-particle-current-density is

J̆(i) = −D(i)
[
∇c̆(i) + Z(i)e

kBT
∇φ

]
. (5.12)

Correspondingly, the charge density changes to

ρel = e
∑

i

Z(i)c
(i)
0 exp

[
c̆(i)
]
, (5.13)

but otherwise the governing equations are unchanged. The Dirichlet boundary- and the
initial-conditions c(i) = c

(i)
0 for the logarithmically transformed fields are

c̆(i) = ln
(
c

(i)
0

c
(i)
n

)
, at in- and outlet, (5.14a)

c̆(i) = ln
(
c

(i)
0

c
(i)
n

)
, at t = t0. (5.14b)

Note, that convergence problems can occur if c(i)
n = c

(i)
0 , despite that this choice seems like

the most natural one. Hence, we use c(i)
n = 1 m−3. The Neumann boundary conditions

are expressed as before, in terms of the pseudo-particle-current-density (essentially due to
the no-slip boundary conditions)

n̂ · J̆(i) = 0, at EOF walls and un-biased electrode. (5.15)

At the end of our simulations we apply the inverse of the transformation in Equation (5.10)
to get back to the physical concentration fields.
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5.5 Results

We solve the model transiently from the equilibrium situation at time t0 = −10−10 s just
before the external voltage is applied at t = 0 to the time t = 104 s to be absolutely sure
steady-state has set in (which we verify by looking at combined temporal and spatial plots
for the fields in the simulation). We then plot the normalized concentration of the dye
c(d)(x, z)/c(d)

0 along the bottom wall i.e. along the line (x, 0). However, the microscope
only sees a limited part of the microchannel, and for this reason we can only compare
with the experimental results in a relatively small region around the un-biased electrode
i.e. −400 µm < x < 400 µm. The results are grouped according to the available experimen-
tal data into four categories (i) low buffer and low dye concentration Figure 5.2 (a) and (b),
(ii) low buffer and high dye concentration Figure 5.2 (c) and (d), (iii) high buffer and low
dye concentration Figure 5.3 (a) and (b), and (iv) high buffer and high dye concentration
Figure 5.3 (c) and (d). Furthermore, we plot the corresponding experimental results next
to the numerical results for comparison. However, the experimentally observed upstream
x < 0 intensity levels vary with applied voltage. Hence, for the sake of comparing intensity
drops in between data series, we normalize the intensity Ix(x) (defined in Equation (2.16)
on page 16) for each applied voltage with its upstream intensity level, in order to get an
intensity I∗x(x) with a common upstream reference level of unity

I∗x(x) = Ix(x)
Ix(x0) , x0 < −

l

2 , (5.16)

as seen in the figures.
We observe a number of characteristic features in our numerical results that are in

accordance with the experimental observations: (i) a concentration drop in the dye across
the un-biased electrode, (ii) the drop increases with increasing applied voltage, (iii) the
drop is affected by the concentration of buffer and dye, and (iv) high concentration en-
richment of dye on the un-biased electrode. In the next section we discuss the possible
mechanisms behind the phenomena.



5.6 Discussion 49

−400 −200 0 200 4000

0.5

1

1.5

2

2.5
Buf low
Dye low

Un-biased
electrode

Flow
5V,10V,15V,
20V,25V,30V

x [µm]

c(
d)

(x
,0

)/
c(

d) 0

(a)

−400 −200 0 200 4000

0.5

1

1.5

2

2.5
Buf low
Dye low

Un-biased
electrode

Flow
50V,75V,
80V,90V

x [µm]
I
∗ x(
x

)

(b)

−400 −200 0 200 4000

0.5

1

1.5

2

2.5
Buf low
Dye high

Un-biased
electrode

Flow
5V,10V,15V,
20V,25V,30V

x [µm]

c(
d)

(x
,0

)/
c(

d) 0

(c)

−400 −200 0 200 4000

0.5

1

1.5

2

2.5
Buf low
Dye high

Un-biased
electrode

Flow
50V,75V,

80V,90V,100V

x [µm]

I
∗ x(
x

)

(d)

Figure 5.2: Concentration drop across the un-biased electrode in steady-state for several applied
voltages for the low buffer concentrations. (a) and (c): Numerical simulations; plot of c(d)(x, 0)
for six applied voltages in the range V0 = 5 V–30 V with negative buffer ion concentration c

(−)
0 =

10 µM. The positive buffer ion c
(+)
0 and dye c(d)

0 concentrations are in (a) 11 µM and 1 µM, and
in (c) 20 µM and 10 µM. (b) and (d): Experimental observations; plot of the normalized
and averaged intensity I∗x(x) for four and five applied voltages in the range V0 = 50 V–100 V with
phosphate buffer concentration [Na2HPO4] = 1 mM. The concentration of BODIPY dye [BNa] is
in (b) 1 µM, and in (d) 10 µM.

5.6 Discussion

We imagine that the induced concentration drop in essence can be explained by the asym-
metry in the problem caused by the left-to-right-going EO-flow. To explain this hypothesis,
first note the electric potential in Figure 5.4. At t = 0.01 s immediately after the voltage
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Figure 5.3: Concentration drop across the un-biased electrode in steady-state for several applied
voltages for the high buffer concentrations. (a) and (c): Numerical simulations; plot of
c(d)(x, 0) for six applied voltages in the range V0 = 5 V–30 V with negative buffer ion concentration
c

(−)
0 = 100 µM. The positive buffer ion c

(+)
0 and dye c(d)

0 concentrations are in (a) 101 µM and
1 µM, and in (c) 110 µM and 10 µM. (b) and (d): Experimental observations; plot of the
normalized and averaged intensity I∗x(x) for five and four applied voltages in the range V0 = 50 V–
100 V with phosphate buffer concentration [Na2HPO4] = 10 mM. The concentration of BODIPY
dye [BNa] is in (b) 1 µM, and in (d) 10 µM.

difference V0 has been applied φ is antisymmetric around x = 0. However, in steady-state
t = 10 000 s we see an increase in the potential and the antisymmetry is broken. Essen-
tially, the potential still varies linearly within the up- and downstream segments of the
channel, but it has a kink at the un-biased electrode, see Figure 5.4 (a). It follows, that
the Helmholtz–Smoluchowski slip velocity Equation (3.53) is larger in magnitude in the
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downstream segment than in the upstream segment. Consequently, due to the continu-
ity of the fluid a negative counterpressure is build up inside the channel which creates a
pressure driven flow that exactly cancels the imbalance between the up- and downstream
EO-flow rates, see Figure 5.4 (b), (c), (d) and (e). Also, we plot the electric charge
density ρel(x, z) on the electrode surface and see a symmetry-break in steady-state, see
Figure 5.5 (a). Due to vertical confinement the Debye layer spans a considerable amount
of the microchannel cross-section, and hence the charge density is subjected to a relatively
big convective force. We believe this convection distorts the charge density whereby a
highly complex and coupled interaction between flow, electrode and charge density oc-
curs, see Figure 5.5 (b). Consequently, for the parameters in this study, the result is a
concentration drop in charged species across the un-biased electrode.

We explain the quantitative differences between the experimental and numerical ob-
served concentration drops in terms of two main complications: (i) the difference in applied
voltages between numerical simulations and experiments, and (ii) fluorescence effects.

First, we are not able to apply similarly high voltages in the numerical simulations
as in the experiments. The potential drop across the un-biased electrode ranges from
300 mV–600 mV in our experiments which is high above the thermal voltage of 25 mV.
Consequently, our experiments are conducted in a highly nonlinear regime where we can
imagine a number of effects that our continuum model is unable to capture. However, in
our simulations the potential drop across the un-biased electrode is 30 mV–200 mV, which
confirm that our numerical implementation is able to successfully solve highly nonlinear
electrokinetic problems.

Secondly, there is no guarantee that the experimentally observed fluorescence intensity
is directly proportional to the concentration of dye. The intensity is not only a function
of concentration, also fading and chemical interactions play a role. Fading is a process in
which the fluorescence intensity decreases as a function of illumination time. Though, it
is difficult to estimate if this process has a large influence on the observations. Further-
more, we imagine that the BODIPY dye might be affected by the large concentrations
and the high potential drop in the vicinity of the un-biased electrode. Some of the BOD-
IPY molecules might form complexes that do not fluoresce, thus making the apparent
concentration drop seem larger. Regardless, the results are so systematic that we are con-
fident that our numerical simulations are able to explain part of the mechanism behind
the observed concentration drop.

5.7 Conclusion

In conclusion, we are able to qualitatively reproduce the experimental observations with
our numerical model. Furthermore, from our results we are able to give some insight
into the dynamics of the phenomenon. Basically, the symmetry breaking, left-to-right-
going EO-flow from the microchannel-walls exerts a convective force on the finite charge-
distribution in the Debye-layer on the un-biased electrode. This in turn gives rise to further
coupled and complex interactions between the flow, the charge density, and the un-biased
electrode. The result is the observed concentration drop. Future and more detailed studies
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might reveal in more detail the physical processes leading to the concentration drop.
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Figure 5.4: Sequence of figures based on numerical simulations for c(−)
0 = 10 µM, c(+)

0 = 11 µM,
and c

(d)
0 = 1 µM at V0 = 30 V. (a) Plot of the electric potential along the bottom wall φ(x, 0) for

three times t = {0 s, 0.01 s, 10 000 s}. Note, at t = 10 000 s the potential on the un-biased electrode
is increased to φ(0, 0) ≈ 5 V. Consequently, the electric field has a larger magnitude for x > 0
and thus the EO-flow will be larger here than the EO-flow for x < 0. (b) Plot of the pressure
for t = 10 000 s. This pressure creates a flow that balances out the flow rate difference in the
up- and downstream EO-flows. (c) and (d) Velocity profiles at up- and downstream positions
vx(±2 mm, z). The dashed line indicates a division of the profiles into a contributions purely from
EO- and pressure-flow, respectively. In the upstream segment (c) x < 0 both the EO- and pressure-
flow is to the right, whereas in the downstream segment (d) x > 0 the EO- and pressure flows are
to the right and left, respectively. (e) Sketch showing how the EO-flow rate Qeo is increased for
x < 0 and decreased for x > 0 by a pressure driven flow rate Qp, so as to make the total flow rate
Q constant in the channel.
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Figure 5.5: (a) Plot of the charge density on the electrode ρel(x, 0) for the same parameters as
in Figure 5.4. Note, the distribution of the charge density across the electrode goes from almost
anti-symmetric t = 0.01 s to distorted t = 10 000 s due to the influence of convection form the
left-to-right going EO-flow. (b). Sketch of the charge on the electrode at steady-state t = 10 000 s.
The Debye-length is significant compared to the channel height, and hence a large part of the
charge in the double layer feels the convection from the left-to-right going EO-flow. Consequently,
the charge distribution is distorted in a non-trivial was and this ultimately causes the shift from
zero to positive potential on the electrode as seen in Figure 5.4 (a).



Chapter 6

Numerical analysis of finite
Debye-length effects in
induced-charge electro-osmosis

In this chapter a microchamber filled with a binary electrolyte and containing a flat un-
biased center electrode at one wall, is subjected to the three numerical models to study the
strength of the resulting ICEO flow rolls: (i) the full nonlinear continuum model resolving
the double layer, (ii) the linear slip-velocity model not resolving the double layer and
without tangential charge transport inside this layer, and (iii) the nonlinear slip-velocity
model extending the linear model by including the tangential charge transport inside the
double layer. The latter two models are only strictly valid for infinitely thin double layers,
and it is show to which extent they reproduce the results of the full nonlinear model.

We shown that compared to the full model, the slip-velocity models significantly overes-
timate the ICEO flow. This provides a partial explanation of the quantitative discrepancy
between observed and calculated ICEO velocities reported in the literature. The discrep-
ancy increases significantly for increasing Debye length relative to the electrode size, i.e.
for nanofluidic systems. However, even for electrode dimensions in the micrometer range,
the discrepancies due to the finite Debye length can be more than 10% for an electrode of
zero height and more than 100% for electrode heights comparable to the Debye length.

6.1 Introduction

In spite of the growing interest in the literature not all aspects of the EO-flow-generating
mechanisms have been explained so far. While qualitative agreement is seen between
theory and experiment, quantitative agreement is often lacking as reported by Gregersen
et al. [19], Harnett et al. [26], and Soni et al. [21]. The present chapter seeks to illuminate
some of the possible reasons underlying these observed discrepancies.

Squires et al. [27] have presented an analytical solution to the ICEO flow problem
around a metallic cylinder using a linear slip-velocity model in the two dimensional plane
perpendicular to the cylinder axis. The discrepancy between this analytical result and a

55
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Figure 6.1: A sketch of the square 2L × 2L electrolytic microchamber in the xz-plane. The
external voltage is applied to the two electrodes (thick black lines) at x = ±L. It induces two
counter-rotating flow rolls (curved black arrows) by electro-osmosis over the un-biased metallic
center electrode of length 2a and height h placed at the bottom wall around (x, z) = (0, 0). The
spatial extent of the flow rolls is represented by the streamline plot (thin black curves) drawn as
equidistant contours of the flow rate. The inset is a zoom-in on the right half, 0 < x < a, of the
un-biased center electrode and the nearby streamlines.

numerical solution of the full equation system, where the double layer is fully resolved,
has become the primary motivation for the study presented in this chapter.

6.2 Model system

To keep the analysis simple, a single un-biased metallic electrode in a uniform, external
electric field is considered. The electrode of width 2a and height h is placed at the bottom
center, −a < x < a and z = 0, of a square 2L × 2L domain in the xz-plane filled with
an electrolyte, see Figure 6.1. The system is unbounded and translational invariant in the
perpendicular y-direction. The uniform electric field, parallel to the surface of the center
electrode, is provided by biasing the driving electrodes placed at the edges x = ±L with
the DC voltages ∓V0, respectively. This anti-symmetry in the bias voltage ensures that
the constant potential of the center electrode is zero. A double layer, or a Debye screening
layer, is induced above the center electrode, and an ICEO flow is generated consisting of
two counter-rotating flow rolls. Electric insulating walls at z = 0 (for |x| > a) and at
z = 2L confine the domain in the z-direction. The symmetry of the system around x = 0
is exploited in the numerical calculations.
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6.3 Full nonlinear model (FN)

6.3.1 Dimensionless form

To simplify the numerical implementation, we rewrite the governing equations from Sec-
tion 3.2 in dimensionless form, using the characteristic parameters of the system: The
geometric half-length a of the electrode, the ionic concentration c0 of the bulk electrolyte,
and the thermal voltage φ0 = kBT/(Ze). The characteristic zeta-potential ζ of the center
electrode, i.e. its induced voltage, is given as the voltage drop along half of the elec-
trode, ζ = (a/L)V0, and the dimensionless zeta-potential α is introduce as ζ ≡ αφ0, or
α = (aV0)/(Lφ0). The characteristic velocity v0 is chosen as the Helmholtz–Smoluchowski
slip velocity induced by the local electric field E = ζ/a, and finally the pressure scale is
set by the characteristic microfluidic pressure scale p0 = ηv0/a. In summary,

φ0 = kBT

Ze
, v0 = εζ

η

ζ

a
= εφ2

0
ηa

α2, p0 = ηv0
a
. (6.1)

The new dimensionless variables (denoted by a tilde) thus become

r̃ = r
a
, c̃(i) = c(i)

c0
, φ̃ = φ

φ0
, ṽ = v

v0
, p̃ = p

p0
. (6.2)

To exploit the symmetry of the system, the governing equations are reformulated in
terms of the average ion concentration c ≡ (c(+) + c(−))/2 and half the charge density
ρ ≡ (c(+)−c(−))/2. Correspondingly, the average ion current density J(c) = (J(+)+J(−))/2
and half the charge current density J(ρ) = (J(+) − J(−))/2 are introduced. Thus, the
resulting full system of coupled nonlinear equations takes the following form for the ionic
fields

∇̃ · J̃(c) = ∇̃ · J̃(ρ) = 0, (6.3a)

J̃(c) = −ρ̃∇̃φ̃− ∇̃c̃+ Pé c̃ṽ, (6.3b)

J̃(ρ) = −c̃∇̃φ̃− ∇̃ρ̃+ Pé ρ̃ṽ, (6.3c)

Pé = v0a

D
, (6.3d)

while the electric potential obeys

∇̃2φ̃ = −1
ε
ρ̃, (6.4)

and finally the fluid fields satisfy

∇̃ · ṽ = 0, (6.5a)

Re
(
ṽ · ∇̃)ṽ = −∇̃p̃+ ∇̃2ṽ − ρ̃

ε2 α2 ∇̃φ̃, (6.5b)

Re = ρv0a

η
. (6.5c)
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x

z

0−L L
0

2L

Figure 6.2: The governing equations (without box) and boundary conditions (with boxes, arrows
points to specific boundaries) for the full continuum model in dimensionless form (the tilde is
omitted for clarity) for the entire quadratic 2L × 2L domain (not shown in correct aspect ratio)
bisected into two symmetric halves. Only the right half (x > 0) of the domain is included in the
simulations. The boundaries are; surface of the un-biased center electrode (black rectangle), solid
insulating walls (dark gray), external electrode (black, thick line), and symmetry line (dashed dark
gray).

Here the small dimensionless parameter ε = λD/a has been introduced

ε = λD
a

= 1
a

√
εkBT

2(Ze)2c0
. (6.6)

6.3.2 Boundary conditions

The symmetry around x = 0 is exploited by only considering the right half (0 < x < L)
of the domain, see Figure 6.2. The three models employed here have the same boundary
conditions, except on the un-biased electrode; hence, only on this boundary will there be
differences between the three models. As boundary conditions on the driving electrode
both ion concentrations are taken to be constant and equal to the bulk charge neutral con-
centration. Correspondingly, the charge density is set to zero. Consequently, all dynamics
taking place on the driving electrode is ignored and it is simply treated as an equipotential
surface with the value V0. A no-slip condition for the fluid velocity is assumed, and thus
at x = L

c̃ = 1, ρ̃ = 0, φ̃ = −V0
φ0

= −αL
a
, ṽ = 0. (6.7)

On the symmetry axis (x = 0) the potential and the charge density must be zero due to
the anti-symmetry of the applied potential. Moreover, there is neither a fluid flux nor a
net ion flux in the normal direction and the shear stresses vanish. Thus, at x = 0

φ̃ = 0, n̂ · J̃(c) = 0, ρ̃ = 0, (6.8a)

t̂ · σ̃ · n̂ = 0, n̂ · ṽ = 0, (6.8b)
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where t̂ is the tangential unit vector which in 2D, contrary to 3D, are uniquely defined.
On the solid, insulating walls there are no fluxes in the normal direction, the normal
component of the electric field vanishes and there are no-slip on the fluid velocity

n̂ · J̃(c) = 0, n̂ · J̃(ρ) = 0, n̂ · ∇̃φ̃ = 0, ṽ = 0. (6.9)

On the un-biased electrode the constant potential is zero due to symmetry and the fluid
velocity obeys a no-slip condition. Additionally, there are no fluxes in the normal direction

n̂ · J̃(c) = 0, n̂ · J̃(ρ) = 0, φ̃ = 0, ṽ = 0. (6.10)

A complete overview of the governing equations and boundary conditions (on the un-biased
electrode only for the full continuum model) is given in Figure 6.2.

6.3.3 The strongly nonlinear regime

As Chapter 5 we employ a logarithmic transformation of the concentration fields, c̆(±) =
ln(c(±)/c0). By inserting

c(±) = c0 exp
[
c̆(±)

]
(6.11)

in the governing equations a new, equivalent set of governing equations is derived. Again,
the symmetry is exploited by defining the symmetric c̆ = c̆(+) + c̆(−) and antisymmetric
ρ̆ = c̆(+) − c̆(−) combinations of the logarithmic fields and the corresponding formulation
of the governing equations is

∇̃2c̆ = P é ṽ · ∇̃c̆− (∇̃c̆)2+(∇̃ρ̆)2

2 − ∇̃φ̃ · ∇̃ρ̆, (6.12a)

∇̃2(ρ̆+ 2φ̃
)

= P é ṽ · ∇̃ρ̆− ∇̃c̆ · ∇̃ρ̆− ∇̃φ̃ · ∇̃ρ̆, (6.12b)

∇̃2φ̃ = − 1
ε2
ec̆/2 sinh

(
ρ̆

2

)
, (6.12c)

Re
(
ṽ · ∇̃)ṽ = −∇̃p̃+ ∇̃2ṽ − 1

ε2α2 e
c̆/2 sinh

(
ρ̆

2

)
∇̃φ̃, (6.12d)

while the continuity equation remains the same as in Equation (6.5a). The governing equa-
tions and boundary conditions for the logarithmic fields (breve-notation) is summarized
in Figure 6.3.

6.4 The linear slip-velocity model (LS)

The double-layer screening of the electrodes leaves the bulk electrolyte charge neutral, and
hence the governing equations only include the potential φ, the pressure field p and the
flow velocity field v.
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∂z c̆ = 0, vx = vz = 0
∂zρ̆ = 0, ∂zφ = 0

c̆ = 0, vx = vz = 0
ρ̆ = 0, φ = −αLa

∂z c̆ = 0, vx = vz = 0
∂zρ̆ = 0, φ = 0

∂z c̆ = 0, vx = vz = 0
∂zρ̆ = 0, ∂zφ = 0

vx = 0, ∂xvz = 0
φ = 0, ∂xc̆ = 0
ρ̆ = 0, ∂xρ̆+2∂xφ = 0

p = 0
∂jvj = 0

Re vj∂jvi = ∂jσij − 1
ε2α2 e

c̆/2 sinh( ρ̆2) ∂iφ

∂2
jφ = − 1

ε2
ec̆/2 sinh( ρ̆2)

−∂2
j c̆+ P é vj∂j c̆ = 1

2

[
(∂j c̆)2 + (∂j ρ̆)2

]
+ (∂jφ)(∂j ρ̆)

−∂2
j (ρ̆+ 2φ) = (∂j c̆)(∂j ρ̆) + (∂jφ)(∂j c̆)− P é vj∂j ρ̆

x

z

0−L L
0

2L

Figure 6.3: The governing equations (without box) and boundary conditions (with boxes) in
dimensionless form (the tilde is omitted) using the logarithmic concentrations (denoted by a breve)
for the full continuum model. Also, it has been necessary to distort the domain to fit the equations,
but otherwise the figure is identical to Figure 6.2.

6.4.1 Dimensionless form

In dimensionless form they become,

∇̃2φ̃ = 0, (6.13a)

Re
(
ṽ · ∇̃)ṽ = −∇̃p̃+ ∇̃2ṽ, (6.13b)

∇̃ · ṽ = 0. (6.13c)

The electrostatic problem is solved independently of the hydrodynamics, and the potential
is used to calculate the effective slip velocity applied to the fluid at the un-biased electrode
surface. The boundary conditions of the potential and fluid velocity are equivalent to the
conditions applied to the full nonlinear system, except at the surface of the un-biased
electrode. Here, the normal component of the electric field vanishes, and the effective
slip velocity of the fluid is calculated from the electrostatic potential using ζ = −φ and
Es = −[(t̂ · ∇̃)φ̃

]
t̂,

n̂ ·∇φ̃ = 0, (6.14a)

ṽhs = 1
α2 φ̃

[
(t̂ · ∇̃)φ̃

]
t̂. (6.14b)

This represents the simplest possible, so-called linear slip-velocity model; a model which is
widely applied as a starting point for numerical simulations of actual microfluidic systems
[3]. In this simple model all the dynamics of the double layer has been neglected, an
assumption known to be problematic when the voltage across the electrode exceeds the
thermal voltage.
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6.5 The nonlinear slip-velocity model (NLS)

6.5.1 Dimensionless form

Conservation of charge takes the dimensionless form

0 = n̂ · (∇̃φ̃) + ∇̃s ·
[
Du∇̃s · φ̃

]
, (6.15)

and at the edges of the electrode

Du(t̂ ·∇)φ
∣∣
x=±a = 0. (6.16)

In this context the Dukhin number Du is

Du = σs
aσ

= 4λD
a

(1 +m) sinh2
(
Zeζ

kBT

)
. (6.17)

6.6 Numerics in COMSOL

We use the same approach as in Chapter 4 to implement the Helmholtz–Smoluchowski
slip boundary condition for the linear and nonlinear slip-velocity models.

Furthermore, in the nonlinear slip-velocity model the Laplace equation is multiplied
with the electrostatic test function φ(t) and partially integrated to get a boundary term
and a bulk term

0 =
∫

∂Ω
φ(t) (∂iφ)nids−

∫

Ω

(
∂iφ

(t)
)

(∂iφ) da. (6.18)

Then, on the un-biased electrode the boundary integration term is simplified by substitu-
tion of Equation (6.15)

∫

∂Ωue

φ(t) (∂iφ)nids = −
∫

∂Ωue

φ(t)
[
t̂i∂i

(
Du t̂j∂jφ

)]
ds. (6.19)

Again, the resulting boundary integral is partially integrated, which gives us explicit access
to the surface conduction at end-points of the un-biased electrode. This is necessary for
applying the boundary conditions Equation (6.16) for the 1D PDE effective boundary
condition

∫

∂Ωue

φ(t)
[
t̂i∂i(Du t̂j∂jφ)

]
ds

=
[
φ(t)Du (t̂i∂iφ)

]x=+a

x=−a
−
∫

∂Ωue

(t̂i∂iφ(t))Du (t̂j∂jφ) ds. (6.20)

We re-stress, that in this formulation the zeta-potential is given by the potential just
outside the Debye layer ζ = −φ, and it is therefore not necessary to include the zeta-
potential as a separate variable.
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Figure 6.4: (a) Figure of a fully converged mesh from a computation with ε = 0.01 and α = 0.1.
The series of pictures show a zoom in on the edge of the un-biased electrode which is a singular point
due to the transition from metal (constant potential) to wall (linearly varying potential), thus a
kink arises with an infinite second order derivative and trough Poisson’s equation an infinite charge
density. Because the singularity is confined to a single point the general solution is unaffected, but
it requires high mesh resolution to get numerical convergence. (b) Example of a convergence run.
The kinetic energy (Ekin, here in arbitrary units) is evaluated on a initial mesh containing a low
number of DOFs. In the next step of the iteration the mesh is refined by COMSOL’s build in
adaptive routine and a new and more accurate solution is produced and a mesh with more DOFs.
The new solution is compared to the previous solution(s), and so on. When the standard deviation
relative to the mean value of five consecutive solutions is less than a given threshold value (typically
10−5), the iterative run is assumed to have converged and is terminated.

6.6.1 Convergence analysis

The accuracy and the mesh dependence of the simulation has been investigated as follows.
The comparison between the three models quantifies relative differences of orders down
to 10−3, and the convergence of the numerical results is ensured in the following way.
COMSOL has a build-in adaptive mesh generation technique that is able to refine a given
mesh so as to minimize the error in the solution. The adaptive mesh generator increases
the mesh density in the immediate region around the electrode to capture the dynamics of
the ICEO in the most optimal way under the constraint of a maximum number of DOFs,
see Figure 6.4 (a). For a given set of physical parameters, the problem is solved several
times, each time increasing the number of DOFs and comparing consecutive solutions. As
a convergence criterion it is demanded that the standard deviation of the kinetic energy
relative to the mean value should be less than a given threshold value typically chosen to
be around 10−5. All of the simulations ended with more than 106 DOFs, and the ICEO
flow is therefore sufficiently resolved even for the thinnest double layers in the study for
which ε = 10−4, see Figure 6.4 (b).
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6.7 Results

The comparison of the three numerical models is primarily focused on variations of the
three dimensionless parameters ε, α, and β relating to the Debye length λD, the applied
voltage V0, and the height h of the electrode, respectively,

ε = λD
a
, α = aV0

Lφ0
, β = h

a
. (6.21)

The strength of the generated ICEO flow could be measured as the mechanical power
input Pmech exerted on the electrolyte by the slip-velocity just outside the Debye layer or
equivalently by the kinetic energy dissipation Pkin in the bulk of the electrolyte. However,
both these methods suffers from numerical inaccuracies due to the dependence of both the
position of the integration path and of the less accurately determined velocity gradients
in the stress tensor σ. To obtain a numerically more stable and accurate measure, the
strength of the ICEO flow is characterized by the kinetic energy Ekin of the induced flow
field v,

Ekin = 1
2ρm

∫

Ω
v2 dx dz, (6.22)

which depends on the velocity field and not its gradients, and which furthermore is a bulk
integral of good numerical stability.

6.7.1 Zero height of the un-biased electrode

The height h of the un-biased electrode is assumed to be zero, i.e. β = 0, while varying
the Debye length and the applied voltage through the parameters ε and α. Note, that the
linear slip-velocity model Equations (6.13) and (6.14) is independent of the dimensionless
Debye length ε. It is therefore natural to use the kinetic energy ELS

kin of this model as a
normalization factor.

Figure 6.5 shows the kinetic energies in the full nonliner ENL
kin and nonlinear slip-velocity

ENLS
kin models, normalized by the energy ELS

kin as a function of the inverse Debye length 1/ε
for three different values of the applied voltage, α = 0.05, 0.5 and 5, ranging from the
linear to the strongly nonlinear voltage regime.

First note that in the limit of vanishing Debye length (to the right in the graph) all
models converge toward the same value for all values of the applied voltage α. For small
values of α the nonlinear slip-velocity model ENLS

kin is fairly close to the linear slip-velocity
model ELS

kin, but as α increases, it requires smaller and smaller values of ε to obtain the
same results in the two models. In the linear regime α = 0.05 a deviation less than 5% is
obtained already for ε < 1. In the nonlinear regime α = 0.5 the same deviation requires
ε < 10−2, while in the strongly nonlinear regime ε < 10−4 is needed to obtain a deviation
lower than 5%.

In contrast, it is noted how the more realistic full model ENL
kin deviates strongly from

ELS
kin for most of the displayed values of ε and α. To obtain a relative deviation less than

5% in the linear (α = 0.05) and nonlinear (α = 0.5) regimes, a minute Debye length of
ε < 10−3 is required, and in the strongly nonlinear regime the 5% level it not reached at
all.



64
Numerical analysis of finite Debye-length effects in induced-charge

electro-osmosis

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

α

1/ε

E
k
in

(ε
,α

)/
E

L
S

k
in

LS
FN α = 0.05
FN α = 0.5
FN α = 5
NLS α = 0.05
NLS α = 0.5
NLS α = 5

Figure 6.5: The total induced kinetic energy ENLS
kin (gray dashed) and ENL

kin (black) for the non-
linear slip-velocity model and the full model, respectively, relative to ELS

kin (horizontal black line)
of the linear slip-velocity model as a function of dimensionless inverse Debye length 1/ε. Each are
shown for three values of the dimensionless applied voltage α = 0.05, 0.5 and 5. The value of ε
decreases from 1 to 10−4 going from left to right.

The deviations are surprisingly large. The Debye length in typical electrokinetic ex-
periments is λD = 30 nm. For a value of ε = 0.01 this corresponds to an electrode of width
2× 3 µm = 6 µm, comparable to those used in Refs. [28, 29, 19]. In Figure 6.5 we see that
for α = 5, corresponding to a moderate voltage drop of 0.26 V across the electrode, the
linear slip-velocity model overestimates the ICEO strength by a factor 1/0.4 = 2.5. The
nonlinear slip-model does a better job. For the same parameters it only overestimates the
ICEO strength by a factor 0.5/0.4 = 1.2.

For more detailed comparisons between the three models, the relative overestimates
of the two slip-velocity models as a function of α and ε are plotted in Figure 6.6 as
(ELS

kin/E
NL
kin) − 1 and (ENLS

kin /ENL
kin) − 1, respectively. For any value of the applied voltage

α, both models overestimates by more than 100% for large Debye lengths ε = 10−1 and
by more than 10% for ε = 10−2. For the minute Debye length λD = 1.8 × 10−3 the
overestimates are about 3% in the linear and weakly nonlinear regime α < 1, however, as
we enter the strongly nonlinear regime with α = 5 the overestimation increases to a level
above 10%.

The same data is plotted in Figure 6.7, but here in a double-logarithmic plot as a
function of the inverse Debye length 1/ε for three different values of the applied voltage.
It is clearly seen how the relative deviation decreases proportional to ε as ε approaches
zero.
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Figure 6.6: The difference between the induced kinetic energies ELS
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kin of the linear and
nonlinear slip-velocity models, respectively, relative to the full model ENL
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66
Numerical analysis of finite Debye-length effects in induced-charge

electro-osmosis

100 101 102 103 104
0

1

2

3

4

5
β

1/ε

E
F
N

k
in

(ε
,β

)/
E

F
N

k
in

(ε
=

0,
β

=
0)

β = 0
β = 0.001
β = 0.01
β = 0.1

Figure 6.8: The difference between the induced kinetic energies ENL
kin(ε, β) of the full model at

finite Debye length and electrode height relative to the full model ENL
kin(0, 0) at zero Debye length

and zero electrode height as a function of the inverse Debye length 1/ε for four electrode heights
β = 0, 10−3, 10−2, 10−1.

6.7.2 Finite height of the un-biased electrode

Compared to the full numerical model, the slip-velocity models are convenient to use, but
even for small Debye lengths, say λD = 0.01a, they are prone to significant quantitative
errors as shown above. Similarly, it is of relevance to study how the height of the un-
biased electrode influences the strength of the ICEO flow rolls. In experiments the thinnest
electrodes are made by evaporation techniques. The resulting electrode heights are of the
order 50 nm − 200 nm, which relative to the typical electrode widths a ≈ 5 µm results in
dimensionless heights 10−3 < β < 10−1.

Figure 6.8 shows the results for the numerical calculation of the kinetic energy ENL
kin(ε, β)

using the full numerical model. The dependence on the kinetic energy of the dimensionless
Debye length ε = λD/a and the dimensionless electrode height β = h/a is measured relative
to the value ENL

kin(ε, β) of the infinitely small Debye length for an electrode of zero height.

For small values of the height no major deviations are seen. The curve for β = 0 and
β = 0.001 are close. As the height is increased to β = 10−2 we note that the strength of
the ICEO is increased by 20%−25% as β > ε. This tendency is even stronger pronounced
for the higher electrode β = 10−1. Here the ICEO strength is increased by approximately
400% for a large range of Debye lengths.
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6.8 Conclusion

We show that the ICEO velocities calculated using the simple zero-width models signif-
icantly overestimates those calculated in more realistic models taking the finite size of
the Debye screening length into account. This may provide a partial explanation of the
observed quantitative discrepancy between observed and calculated ICEO velocities. The
discrepancy increases substantially for increasing ε, i.e. in nanofluidic systems.

Even larger deviations of the ICEO strength is calculated in the full numerical model
when a small, but finite height of the un-biased electrode is taken into account.

Our study shows that for systems with a small, but non-zero Debye length of 0.001
to 0.01 times the size of the electrode, and even when the Debye-Hückel approximation
is valid, a poor quantitative agreement between experiments and model calculations must
be expected when applying the linear slip-velocity model based on a zero Debye-length. It
is advised to employ the full numerical model of ICEO, when comparing simulations with
experiments.
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Chapter 7

Conclusion and outlook

This report has two main results: (i) an experimental and numerical investigation of the
concentration drop across an un-biased electrode in a microchannel, and (ii) a study of
the effect of using effective slip-velocity boundary conditions in numerical simulations of
electrokinetic phenomena.

For the first part, we have conducted experiments using inverted, epifluorescence mi-
croscropy to visualize the flow in a microchannel filled with phosphate buffer and BODIPY
fluorescence dye. We apply an external voltage V0 =50 V–100 V between the channel-inlets
whereby two electrokinetic effects are induced in the system: (i) an EO-flow, and (ii) an
electric double-layer on the un-biased electrode. We observe a characteristic drop in con-
centration of dye on the downstream side of the electrode and for steady-state we capture
and post-process data as a function of applied voltage, and buffer- and dye concentra-
tions. Furthermore, in order to understand the concentration drop we have carried out
numerical simulations of the system. Our numerical model is characterized by: (i) a 2D
computational domain with the same height H = 0.5 µm and length L = 9 mm as the
microchannel, (ii) that the double layer of width λD ≈ 10 nm–50 nm is resolved on the
un-biased electrode, (iii) a Helmholtz–Smoluchowski slip-velocity on the channel walls.
We compare the numerical results to the experimental data and find a qualitatively agree-
ment for the concentration drop on two parameters: (i) it increases with increasing applied
voltage, and (ii) it depends on the absolute and relative concentrations of buffer and dye.
Additionally, from our numerical results we show that the symmetry of the system is bro-
ken by the left-to-right going EO-flow which by convection distorts the charge density in
the Debye-layer on the un-biased electrode. Consequently, a complicated situation arises
which results in a reduction and amplification of the up- and downstream electric field,
respectively. All together, the transport of charged species is affected by these coupled
phenomena and the result is a concentration drop on the downstream side of the un-biased
electrode. However, we only reproduce the concentration drop numerically and provide
some insight in the dynamics; a more detailed physical explanation could be a candidate
for future studies.

For the second part, we report a numerical study of the difference between a linear
slip-velocity model, a nonlinear slip-velocity model, and a full nonlinear model, used for
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calculations of an ICEO flow. Our model system is a microchamber filled with a bi-
nary electrolyte and containing a flat un-biased center electrode at one wall. The linear
slip-velocity model does not resolve the double layer and ignores tangential charge trans-
port inside double-layer. The nonlinear slip-velocity model extends the linear model as
it includes the tangential charge transport inside the double layer. The full nonlinear
continuum model resolves the double layer. We show that compared to the full model,
the slip-velocity models significantly overestimate the ICEO flow. This could provide a
partial explanation of the quantitative discrepancy between observed and calculated ICEO
velocities reported in the literature. The discrepancy increases significantly for increasing
Debye length relative to the electrode size, i.e. for nanofluidic systems. However, even for
electrode dimensions in the micrometer range, the discrepancies due to the finite Debye
length can be more than 10% for an electrode of zero height and more than 100% for elec-
trode heights comparable to the Debye length. Thus, future research should try to explain
the dynamics in the double layer of an ICEO flow such that more precise slip-velocity
models can be derived.



Appendix A

Borate buffer and fluorescein dye

A.1 Borate buffer

The borate buffer used in the current work is an aqueous solution of orthoboric acid
B(OH)3 that mainly forms two charged species when it is dissolved in water; hydronium
ions H3O+ and borate ions B(OH)−4 in the reaction

B(OH)3 + 2H2O � B(OH)−4 + H3O+, pKa = 9.27, (A.1)

where polynuclear boron species such as B3O3(OH)−4 , B4O5(OH)2−
4 , and B5O6(OH)−4 are

negligible at concentrations below 25 mM [30]. Additionally, the solubility of boric acid
powder in water is 0.94 M, higher than the maximum concentration of 10 mM used in the
experiment, and thus no powder remains in solid form but is completely dissolved [12].
The acid dissociation constant pKa is for a temperature of 20 ◦C [13].

As for the phosphate buffer, the pKa in Equation (A.1) is relatively high, such that
the expression in Equation (2.10) is a good approximation from which the concentrations
of borate [B(OH)−4 ] and hydronium [H3O+] are calculated and listed in Table A.1. It is
worth noting that the concentrations of charged species are relatively low in the borate
buffer.

Table A.1: The concentrations (all in units of mM) of charged species ([B(OH)−4 ] and [H3O+])
for the two concentrations (1 mM and 10 mM) of orthoboric acid ([B(OH)3]) in the borate buffers
used in the experiments of the current work. Additionally, the pH based on Equation (2.6) is listed
as this is an important parameter for the workings of the fluorescein dye.

[B(OH)3] [B(OH)−4 ] [H3O+] pH

1 732× 10−6 732× 10−6 6.1

10 2.32× 10−3 2.32× 10−3 5.6
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Figure A.1: (a) Fluorescein molecule with two negatively charged oxygen groups O− and two
dissociated, positively charged sodium atoms Na+ [31]. (b) Spectral profile of the fluorescein dye
used in the current work, but in a solution of known pH = 9. The figure shows the intensity
I curves of absorption Abs and emission Em as function of light wavelength λ, each normalized
against its maximum value [33].

A.2 Fluorescein dye

Fluorescein is a widely used fluorophore. The particular fluorescein used in the current
work is the disodium salt C20H10Na2O5 (denoted by FNa2) [31] and it is assumed to
dissociate completely in an aqueous buffer through the reaction

FNa2 → F2− + 2Na+, (A.2)

and hence the concentrations of charged fluorescein [F2−] and sodium [Na+] are related to
the initial concentration of fluorescein [FNa2] by

[F2−] = [FNa2], (A.3a)
[Na+] = 2[FNa2]. (A.3b)

The molecular structure of fluorescein is shown in Figure A.1 (a). Additionally, fluorescein
is dependent on pH and does not fluoresce for pH below 3, has a transition region for pH
from 3 to 9, and has a constant fluorescence for pH above 9 [32]. Compared to the
calculated pH values for the borate and phosphate buffers (Table 2.1 and A.1) this could
indicate that a degree of uncertainty in the fluorescence signal from fluorescein is to be
expected. Though, in a liquid of pH ∼ 9 the absorption and emission maxima are around
490 nm and 513 nm, see Figure A.1 (b).



Appendix B

COMSOL–MATLAB script for
EO-flow in parallel plates

Below we show the script for the computation of an EO-flow in the validation section.
Note, the script does not separate the electrostatic and hydrodynamic problems, even
though this is the strong point of the linear and nonliner slip velocity models. In this case
we only use the solution for validation and the size of the problem is so small that it is
not necessary to decouple the problems.

1 % EOF in p a r a l l e l p l a t e s channel
% Mathias Bækbo Andersen

3 % DTU Nanotech 2009

5 clear a l l
close a l l

7
% Parameters

9 H = 100e−6;
L = 10∗H;

11 epsr = 78 ;
eps0 = 8.854 e−12;

13 fem . const . ep = epsr ∗ eps0 ;
fem . const . ze ta = −100e−3;

15 fem . const . eta = 1e−3;
fem . const .V0 = 10 ;

17
% Geometry

19 fem . geom = rec t2 (−L/2 ,L/2,−H/2 ,H/2) ;

21 % Mesh
fem .mesh = meshin i t ( fem , ’ hauto ’ , 3 ) ;

23
% V a r i a b l e s

25 fem . sdim = { ’ x ’ ’ z ’ } ;
fem . dim = { ’ u ’ ’ v ’ ’p ’ ’ phi ’ ’ fx ’ } ;

27 fem . shape = [ 2 , 2 , 1 , 2 , 2 ] ;
fem . expr = { ’ sigmaXX ’ ’−p+2∗eta ∗ux ’ . . .

73



74 COMSOL–MATLAB script for EO-flow in parallel plates

29 ’ sigmaXZ ’ ’ eta ∗( vx+uz ) ’ . . .
’ sigmaZX ’ ’ eta ∗( uz+vx ) ’ . . .

31 ’ sigmaZZ ’ ’−p+2∗eta ∗vz ’ } ;

33 % Governing e q u a t i o n s
fem . form = ’weak ’ ;

35 fem . equ . shape = { [ 1 : 4 ] } ;
fem . equ . weak = {{ ’−ux t e s t ∗sigmaXX−uz t e s t ∗sigmaXZ ’ . . .

37 ’−v z t e s t ∗sigmaZZ−vx t e s t ∗sigmaZX ’ . . .
’ p t e s t ∗( ux+vz ) ’ . . .

39 ’−ph i x t e s t ∗phix−ph i z t e s t ∗phiz ’ }} ;
% Boundary c o n d i t i o n s

41 % group [ 1 ] i n l e t
% group [ 2 ] EOF w a l l s

43 % group [ 3 ] o u t l e t
fem . bnd . ind = { [ 4 ] [ 1 3 ] [ 2 ] } ;

45 fem . bnd . shape = { [ 1 : 4 ] [ 1 : 5 ] [ 1 : 4 ] } ;
fem . bnd . expr = { ’ veoX ’ {{} ’ ep∗ zeta ∗phiTx/ eta ’ {}}} ;

47 fem . bnd . weak = {{ ’ p h i t e s t ∗nx∗phix ’ } . . .
{ ’ u t e s t ∗ fx ’ ’ f x t e s t ∗(veoX−u) ’ ’ v t e s t ∗sigmaZZ ’ } . . .

49 { ’ p h i t e s t ∗nx∗phix ’ }} ;
fem . bnd . cons t r = {{ ’V0/2−phi ’ ’0−p ’ } . . .

51 { ’0−v ’ } . . .
{ ’−V0/2−phi ’ ’0−p ’ }} ;

53
% Point c o n d i t i o n s

55 fem . pnt . ind = { [ 1 2 3 4 ] } ;
fem . pnt . shape = { [ 5 ] } ;

57 fem . pnt . cons t r = { ’0− fx ’ } ;

59 % Extend mesh
fem . xmesh = meshextend ( fem ) ;

61
% Solve

63 fem . s o l = f ems ta t i c ( fem ) ;



Appendix C

COMSOL–MATLAB script for
concentration drop across
un-biased electrode in a
microchannel

We have employed the script below in the computations of the concentration drop across
an un-biased electrode in a microchannel. Due to sophisticated meshing it is possible to
use this script on an ordinary laptop computer despite that the model uses a real-sized
geometry and resolves the finite double layer on the un-biased electrode.

1 % Concentrat ion drop across un−b i a s e d e l e c t r o d e in a microchannel
% Mathias Bækbo Andersen

3 % DTU Nanotech 2008

5 close a l l
clear a l l

7
% USER INPUT

9 fem . const .V0 = 45 ; % a p p l i e d v o l t a g e [V]
fem . const .NA = 6.022 e23 ; % Avogadros number [1/ mol ]

11 fem . const .ZP = 1 ; % v a l e n c e o f p o s i t i v e b u f f e r ion
fem . const .ZN = −1; % v a l e n c e o f n e g a t i v e b u f f e r ion

13 fem . const .ZA = −1; % v a l e n c e o f a n a l y t e
fem . const . cN0 = 1e−2∗fem . const .NA; % n e g a t i v e b u f f e r ion e q u i l i b r i u m

c o n c e n t r a t i o n [1/mˆ3]
15 fem . const . cA0 = 1e−3∗fem . const .NA; % a n a l y t e e q u i l i b r i u m c o n c e n t r a t i o n

[1/mˆ3]
fem . const . cP0 = −(fem . const .ZN∗ fem . const . cN0+fem . const .ZA∗ fem . const . cA0)

/fem . const .ZP ; % p o s i t i v e b u f f e r ion e q u i l i b r i u m c o n c e n t r a t i o n [ mol/L ]
17 fem . const .DP = 2e−9; % d i f f u s i v i t y o f p o s i t i v e b u f f e r ion [mˆ2/ s ]

fem . const .DN = 2e−9; % d i f f u s i v i t y o f n e g a t i v e b u f f e r ion [mˆ2/ s ]
19 fem . const .DA = 8.8 e−10; % d i f f u s i v i t y o f a n a l y t e [mˆ2/ s ]

fem . const . a = 60e−6; % l e n g t h o f f l o a t i n g e l e c t r o d e [m]
21 fem . const . L = 9e−3; % l e n g t h o f channel [m]

75
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fem . const .H = 500e−9; % h e i g h t o f channel [m]
23 fem . const . ze ta = −0.1; % w a l l z e t a p o t e n t i a l [V]

fem . const . ton = 0 ; % time at which DC b i a s i s turned on [ s ]
25 fem . const . tend = 10000 ; % time from turn on to s i m u l a t i o n s t op [ s ]

Nlong = 100 ; % mesh r e l a t e d
27 Nelec = 200 ; % mesh r e l a t e d

timestamp = dat e s t r (now , ’ yyyy−mm−dd ’ ) ; % time o f e x e c u t i o n
29

% PHYSICAL CONSTANTS
31 fem . const . eta = 1e−3; % dynamic v i s c o s i t y [ Pa∗ s ]

fem . const . rho = 1e3 ; % d e n s i t y [ kg /mˆ3]
33 fem . const . epsr = 78 ; % r e l a t i v e p e r m i t t i v i t y

fem . const . eps0 = 8.854 e−12; % vacuum p e r m i t t i v i t y [F/m]
35 fem . const . e = 1.602 e−19; % e l e c t r o n charge [C]

fem . const . kB = 1.381 e−23; % Boltzmanns cons tant [ J/K]
37 fem . const .T = 293 . 15 ; % temperature [K]

39 % CALCULATED NUMBERS
fem . const . I = ( fem . const .ZPˆ2∗ fem . const . cP0+ . . .

41 fem . const .ZNˆ2∗ fem . const . cN0+ . . .
fem . const .ZAˆ2∗ fem . const . cA0) /2 ; % i o n i c s t r e n g t h

43 fem . const . lambdaD = sqrt ( fem . const . epsr ∗ fem . const . eps0 ∗ fem . const . kB∗ fem .
const .T/(2∗ fem . const . e ˆ2∗ fem . const . I ) ) ; % Debye l a y e r l e n g t h

45 % PRINT TO SCREEN
fpr intf (1 , ’ \nNumbers :\n ’ ) ;

47 fpr intf (1 , ’ lambda D = %11.2g m\n ’ , fem . const . lambdaD) ;

49 % GEOMETRY
s1 = re c t2 (−fem . const . L/2 , fem . const . L/2 ,0 , fem . const .H) ;

51 s2 = re c t2 (−fem . const . L/2+10e−6,fem . const . L/2−10e−6 ,0 , fem . const .H) ;
s3 = re c t2 (−100e−6 ,100e−6 ,0 , fem . const .H) ;

53 s4 = re c t2 (−fem . const . a/2−500e−9,fem . const . a/2+500e−9 ,0 , fem . const .H) ;
s5 = re c t2 (−fem . const . a/2−10e−9,−fem . const . a/2+10e−9 ,0 ,5 e−9) ;

55 s6 = re c t2 (−fem . const . a /2 , fem . const . a /2 ,0 , fem . const .H/2) ;
s7 = re c t2 (−fem . const . a /2 , fem . const . a /2 , fem . const .H/2 , fem . const .H) ;

57 s8 = re c t2 ( fem . const . a/2−10e−9,fem . const . a/2+10e−9 ,0 ,5 e−9) ;

59 c1 = l i n e 1 ([− fem . const . a/2+10e−9 ,0 , fem . const . a/2−10e−9 ] , [ 5 e−9 ,20e−9,5e−9]) ;
c2 = l i n e 1 ([− fem . const . a /2 ,0 , fem . const . a / 2 ] , [ 1 5 e−9 ,50e−9 ,15e−9]) ;

61 c3 = l i n e 1 ([− fem . const . a /2 ,0 , fem . const . a / 2 ] , [ 3 5 e−9 ,130e−9 ,35e−9]) ;

63 p1 = point2 (0 , 0 ) ;

65 % ANALYZED GEOMETRY
s . ob j s = { s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 } ;

67 c . ob j s = {c1 , c2 , c3 } ;
p . ob j s = {p1 } ;

69
fem . draw = s t r u c t ( ’ s ’ , s , ’ c ’ , c , ’ p ’ ,p ) ;

71 fem . geom = geomcsg ( fem ) ;
% f i g u r e , geomplot ( fem , ’ s u b l a b e l s ’ , ’ on ’ , ’ e d g e l a b e l s ’ , ’ on ’ , ’ p o i n t l a b e l s ’ , ’ on ’ )

73 % return
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75 % MESH
fem .mesh=meshin i t ( fem , . . .

77 ’ hmaxfact ’ , 5 , . . .
’ hcurve ’ ,1 , . . .

79 ’ hgrad ’ ,2 , . . .
’ h cu t o f f ’ , 0 . 0 5 , . . .

81 ’ hnarrow ’ , 0 . 0 1 , . . .
’ hmaxvtx ’ , [ 1 1 , 10 e−9 ,25 ,10 e−9] , . . .

83 ’hnumedg ’ ,{1 ,10 , . . .
5 , Nlong , . . .

85 6 ,Nlong , . . .
8 ,40 , . . .

87 9 ,40 , . . .
11 ,20 , . . .

89 14 ,10 , . . .
17 ,12 , . . .

91 19 ,12 , . . .
20 ,5 , . . .

93 21 , 0 . 9∗0 . 9∗ Nelec , . . .
22 ,10 , . . .

95 23 , 0 . 9∗0 . 9∗0 . 9∗ Nelec , . . .
24 ,5 , . . .

97 28 , Nelec , . . .
29 ,0 .9∗Nelec , . . .

99 30 , Nelec , . . .
31 ,0 .9∗Nelec , . . .

101 32 , 0 . 9∗0 . 9∗ Nelec , . . .
3 3 , 0 . 9∗0 . 9∗0 . 9∗ Nelec , . . .

103 35 ,12 , . . .
36 ,12 , . . .

105 38 ,10 , . . .
41 ,5 , . . .

107 42 ,10 , . . .
43 ,5 , . . .

109 46 ,20 , . . .
48 ,40 , . . .

111 49 ,40 , . . .
51 ,Nlong , . . .

113 52 ,Nlong , . . .
56 ,10}) ;

115
% f i g u r e , meshplot ( fem . mesh )

117 % return

119 % VARIABLES
fem . sdim = { ’ x ’ ’ z ’ } ;

121 fem . dim = { ’ u ’ ’ v ’ ’p ’ ’ phi ’ ’LcP ’ ’LcN ’ ’LcA ’ ’ lmu ’ } ;
fem . shape = [2 2 1 2 2 2 2 2 ] ;

123 fem . frame = { ’ r e f ’ } ;
fem . expr = { . . .

125 ’ ep ’ ’ epsr ∗ eps0 ’ . . . % p e r m i t t i v i t y
’ sigmaXX ’ ’−p+2∗eta ∗ux ’ . . . % s t r e s s t e n s o r component

127 ’ sigmaXZ ’ ’ eta ∗( vx+uz ) ’ . . . % s t r e s s t e n s o r component
’ sigmaZX ’ ’ eta ∗( uz+vx ) ’ . . . % s t r e s s t e n s o r component
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129 ’ sigmaZZ ’ ’−p+2∗eta ∗vz ’ . . . % s t r e s s t e n s o r component
’ rhoEL ’ ’ e ∗(ZP∗exp (LcP)+ZN∗exp (LcN)+ZA∗exp (LcA) ) ’ . . . % e l e c t r i c

body f o r c e
131 ’JLcPX ’ ’−DP∗LcPx−DP∗ZP∗e∗phix /(kB∗T) ’ . . . % d i f f u s i v e and

e l e c t r i c p a r t i c l e curren t
’ JLcPZ ’ ’−DP∗LcPz−DP∗ZP∗e∗phiz /(kB∗T) ’ . . . % d i f f u s i v e and

e l e c t r i c p a r t i c l e curren t
133 ’JLcNX ’ ’−DN∗LcNx−DN∗ZN∗e∗phix /(kB∗T) ’ . . . % d i f f u s i v e and

e l e c t r i c p a r t i c l e curren t
’JLcNZ ’ ’−DN∗LcNz−DN∗ZN∗e∗phiz /(kB∗T) ’ . . . % d i f f u s i v e and

e l e c t r i c p a r t i c l e curren t
135 ’JLcAX ’ ’−DA∗LcAx−DA∗ZA∗e∗phix /(kB∗T) ’ . . . % d i f f u s i v e and

e l e c t r i c p a r t i c l e curren t
’JLcAZ ’ ’−DA∗LcAz−DA∗ZA∗e∗phiz /(kB∗T) ’ } ; % d i f f u s i v e and

e l e c t r i c p a r t i c l e curren t
137

% INTEGRAL DOMAIN CONTRIBUTIONS
139 fem . form = ’weak ’ ;

fem . equ . shape = { [ 1 : 7 ] } ;
141 fem . equ . dweak = {{ . . .

’ u t e s t ∗ rho∗ut ’ . . . % NS eq . , time dependent terms
143 ’ v t e s t ∗ rho∗vt ’ . . . % NS eq . , time dependent terms

’ 0 ’ . . .
145 ’ 0 ’ . . .

’ LcP test ∗LcPt ’ . . . % t r a n s p o r t eq . , t ime dependent terms
147 ’ LcN test ∗LcNt ’ . . . % t r a n s p o r t eq . , t ime dependent terms

’ LcA test ∗LcAt ’ }} ; % t r a n s p o r t eq . , t ime dependent terms
149 fem . equ . weak = {{ . . .

’−ux t e s t ∗sigmaXX−uz t e s t ∗sigmaXZ−u t e s t ∗rhoEL∗phix−u t e s t ∗
rho ∗(u∗ux+v∗uz ) ’ . . . % x−component NS eq .

151 ’−vx t e s t ∗sigmaZX−v z t e s t ∗sigmaZZ−v t e s t ∗rhoEL∗phiz−v t e s t ∗
rho ∗(u∗vx+v∗vz ) ’ . . . % y−component NS eq .

’ p t e s t ∗( ux+vz ) ’ . . . % p r e s s u r e eq .
153 ’−ph i x t e s t ∗ep∗phix−ph i z t e s t ∗ep∗phiz+ph i t e s t ∗rhoEL ’ . . . %

Poisson eq .
’ LcPx test ∗JLcPX+LcPz test ∗JLcPZ−LcP test ∗(LcPx∗JLcPX+LcPz∗

JLcPZ)−LcP test ∗(u∗LcPx+v∗LcPz ) ’ . . . % t r a n s p o r t eq .
155 ’ LcNx test ∗JLcNX+LcNz test ∗JLcNZ−LcN test ∗(LcNx∗JLcNX+LcNz∗

JLcNZ)−LcN test ∗(u∗LcNx+v∗LcNz) ’ . . . % t r a n s p o r t eq .
’ LcAx test ∗JLcAX+LcAz test ∗JLcAZ−LcA test ∗(LcAx∗JLcAX+LcAz∗

JLcAZ)−LcA test ∗(u∗LcAx+v∗LcAz) ’ }} ; % t r a n s p o r t eq .
157

% BOUNDARY CONDITIONS
159 % group [ 1 ] i n l e t

% group [ 2 ] bottom w a l l l e f t
161 % group [ 3 ] top w a l l

% group [ 4 ] f l o a t i n g e l e c t r o d e
163 % group [ 5 ] bottom w a l l r i g h t

% group [ 6 ] o u t l e t
165 fem . bnd . ind = { [ 1 ] [ 2 5 8 11 14 ] [ 3 6 9 12 26 44 49 52 55 ] [ 17 28 30 35 ] [ 38

46 48 51 54 ] [ 5 6 ] } ;
fem . bnd . shape = { [ 1 : 7 ] [ 1 : 8 ] [ 1 : 8 ] [ 1 : 8 ] [ 1 : 8 ] [ 1 : 7 ] } ;

167 fem . bnd . expr ={ ’ us ’ { ’ ’ ’−ep∗ zeta ∗(−phiTx ) / eta ’ ’−ep∗ zeta ∗(−phiTx ) / eta ’ ’ 0 ’
’−ep∗ zeta ∗(−phiTx ) / eta ’ ’ ’ }} ;
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169 % INTEGRAL BOUNDARY CONTRIBUTIONS
fem . bnd . weak = {{ ’ v t e s t ∗sigmaZX ’ ’ p h i t e s t ∗ep∗phix ’ ’−LcP test ∗JLcPX ’ ’−

LcN test ∗JLcNX ’ ’−LcA test ∗JLcAX ’ } . . .
171 { ’ u t e s t ∗lmu ’ ’ ( us−u) ∗ lmu tes t ’ ’ v t e s t ∗sigmaZZ ’ } . . .

{ ’ u t e s t ∗lmu ’ ’ ( us−u) ∗ lmu tes t ’ ’−v t e s t ∗sigmaZZ ’ } . . .
173 { ’ u t e s t ∗lmu ’ ’ ( us−u) ∗ lmu tes t ’ ’ v t e s t ∗sigmaZZ ’ ’ p h i t e s t ∗

ep∗phiz ’ } . . .
{ ’ u t e s t ∗lmu ’ ’ ( us−u) ∗ lmu tes t ’ ’ v t e s t ∗sigmaZZ ’ } . . .

175 { ’−v t e s t ∗sigmaZX ’ ’−ph i t e s t ∗ep∗phix ’ ’ LcP test ∗JLcPX ’ ’
LcN test ∗JLcNX ’ ’ LcA test ∗JLcAX ’ }} ;

177 % DIRICHLET CONSTRAINTS (IDEAL CONSTRAINTS)
fem . bnd . cons t r = {{ ’0−v ’ ’0−p ’ ’V0∗( t>ton )/2−phi ’ ’ l og ( cP0 )−LcP ’ ’ l og ( cN0)−

LcN ’ ’ l og ( cA0)−LcA ’ } . . .
179 { ’0−v ’ } . . .

{ ’0−v ’ } . . .
181 { ’0−v ’ ’ phic−phi ’ } . . .

{ ’0−v ’ } . . .
183 { ’0−v ’ ’0−p ’ ’−V0∗( t>ton )/2−phi ’ ’ l og ( cP0 )−LcP ’ ’ l og ( cN0)−

LcN ’ ’ l og ( cA0)−LcA ’ }} ;

185 % POINT CONDITIONS
fem . pnt . ind = { [ 1 2 11 25 39 4 0 ] } ;

187 fem . pnt . shape = { [ 8 ] } ;
fem . pnt . cons t r = {{ ’0−lmu ’ }} ;

189
clear e lemcpl

191 % INTEGRATION COUPLING VARIABLES
clear elem

193 elem . elem = ’ e l c p l s c a l a r ’ ;
elem . g = { ’ 1 ’ } ; % geometr ie s

195 s r c = c e l l ( 1 , 1 ) ;
clear pnt

197 pnt . expr = {{{} , ’ phi ’ }} ;
pnt . i p o i n t s = {{{} , ’ 1 ’ }} ;

199 pnt . frame = {{{} , ’ r e f ’ }} ;
pnt . ind = {{ ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ , ’ 8 ’ , ’ 9 ’ , ’ 10 ’ , ’ 11 ’ , ’ 12 ’ , ’ 13 ’ , . . .

201 ’ 14 ’ , ’ 15 ’ , ’ 16 ’ , ’ 17 ’ , ’ 18 ’ , ’ 20 ’ , ’ 21 ’ , ’ 22 ’ , ’ 23 ’ , ’ 24 ’ , ’ 25 ’ , . . .
’ 26 ’ , ’ 27 ’ , ’ 28 ’ , ’ 29 ’ , ’ 30 ’ , ’ 31 ’ , ’ 32 ’ , ’ 33 ’ , ’ 34 ’ , ’ 35 ’ , ’ 36 ’ , . . .

203 ’ 37 ’ , ’ 38 ’ , ’ 39 ’ , ’ 40 ’ } ,{ ’ 19 ’ }} ;
s r c {1} = {pnt ,{} ,{}} ;

205 elem . s r c = s r c ;
geomdim = c e l l ( 1 , 1 ) ;

207 geomdim{1} = {} ;
elem . geomdim = geomdim ;

209 elem . var = { ’ phic ’ } ; % v a r i a b l e names
elem . global = { ’ 1 ’ } ;

211 e lemcpl {1} = elem ;
fem . e lemcpl = elemcpl ;

213
% EXTEND MESH

215 fem . xmesh = meshextend ( fem ) ;
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217 % CREATE SOLUTION OBJECT
i n i t = as s emin i t ( fem , . . .

219 ’ outcomp ’ ,{ ’ u ’ ’ v ’ ’p ’ ’ phi ’ ’LcP ’ ’LcN ’ ’LcA ’ } , . . .
’ i n i t ’ ,{ ’ u ’ ’ 0 ’ . . .

221 ’ v ’ ’ 0 ’ . . .
’ p ’ ’ 0 ’ . . .

223 ’ phi ’ ’ 0 ’ . . .
’LcP ’ ’ l og ( cP0 ) ’ . . .

225 ’LcN ’ ’ l og ( cN0) ’ . . .
’LcA ’ ’ l og ( cA0) ’ }) ;

227
% SOLVE

229 t l i s t = [ fem . const . ton−1e−10 ( logspace (0 , 3 , 10 )−1)/(10ˆ3−1) 1+fem . const . ton+
fem . const . tend ∗( logspace (0 , 3 , 40 )−1)/(10ˆ3−1) ] ;

fem = femtime ( fem , . . .
231 ’ l i n s o l v e r ’ , ’ pard i so ’ , . . .

’ i n i t i a l s t e p ’ , 0 . 5 e−10, . . .
233 ’ s o l f i l e ’ , ’ on ’ , . . .

’ t l i s t ’ , t l i s t , . . .
235 ’ i n i t ’ , i n i t , . . .

’ solcomp ’ ,{ ’ u ’ ’ v ’ ’p ’ ’ phi ’ ’LcP ’ ’LcN ’ ’LcA ’ ’ lmu ’ } , . . .
237 ’ outcomp ’ ,{ ’ u ’ ’ v ’ ’p ’ ’ phi ’ ’LcP ’ ’LcN ’ ’LcA ’ ’ lmu ’ } , . . .

’ e s t r a t ’ , 1 , . . .
239 ’ tout ’ , ’ t l i s t ’ , . . .

’ t s t e p s ’ , ’ f r e e ’ , . . .
241 ’ out ’ , ’ fem ’ ) ;

243 % SAVE
save ( [ ’ Some name ’ timestamp ’ . mat ’ ] , ’ fem ’ )



Appendix D

COMSOL–MATLAB scripts for
finite Debye-length investigation

D.1 Grid Engine script for utilizing the high performance
computing facility at DTU

We have used the high performance computing facility (HPC) at DTU for the analysis of
the finite Debye-length effects in ICEO flow. This was necessary due to the large scale
of the problem. The following Grid Engine script calls the COMSOL–MATLAB script
and passes it on to the HPC computers where the 64-bit version of COMSOL is run on
4 processors and with a considerable large amount of RAM. The name of the script is
“GE.sh” and it is executed from a UNIX terminal using the command “qsub GE.sh”

#!/bin /sh
2 #

# Genral opt ions
4 #$ −N name of job

#$ −S /bin / sh
6 #$ −o n ame o f l o g f i l e . log

#$ −e n ame o f e r r o r f i l e . log
8 #

# Execute the job from the cur rent working d i r e c t o r y
10 #$ −cwd

#
12 # Request p a r a l l e l job

#
14 #$ − l c r e

#$ −pe HPC 4
16 #

# Program name and opt ions
18 comsol −64 −np 4 matlab path −ml −nodesktop −ml −nosplash −mlr

name of COMSOL MATLAB script

81
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D.2 Full nonlinear model

The following COMSOL–MATLAB script was used for the full nonlinear model calcula-
tions in the finite Debye-length investigation.

% S c r i p t f o r the f u l l non l inear model f o r the f i n i t e Debye−l e n g t h
i n v e s t i g a t i o n

2 % Mathias Bækbo Andersen
% DTU Nanotech 2008

4
close a l l

6 clear a l l

8 format shor t g
f l r e p o r t ( ’ o f f ’ )

10
for ep s i = 0.0001

12 % PARAMETERS
alph = 10 ; % a p p l i e d v o l t a g e parameter

14 H = 0 ; % h e i g h t o f e l e c t r o d e
sens = 5e−5; % s e n s i t i v i t y o f s t d . dev .

16
fem . const . L = 0 . 5 ;

18 fem . const .D = 2e−9; % d i f f u s i v i t y o f symmetric e l e c t r o l y t e ; [mˆ2/ s ]
fem . const . Z = 1 ; % v a l e n c e o f symmetric e l e c t r o l y t e

20 fem . const . eta = 1e−3; % dynamic v i s c o s i t y [ Pa∗ s ]
fem . const . rhob = 1e3 ; % d e n s i t y [ kg /mˆ3]

22 fem . const . nu = fem . const . eta /fem . const . rhob ; % kinemat ic v i s c o s i t y [mˆ2/
s ]

fem . const . epsr = 78 ; % r e l a t i v e p e r m i t t i v i t y
24 fem . const . eps0 = 8.854 e−12; % vacuum p e r m i t t i v i t y [F/m]

fem . const . e = 1.602 e−19; % e l e c t r o n charge [C]
26 fem . const . kB = 1.381 e−23; % Boltzmanns cons tant [ J/K]

fem . const .T = 293 . 1 5 ; % temperature [K]
28 fem . const . phi0 = fem . const . kB∗ fem . const .T/( fem . const . Z∗ fem . const . e ) ; %

c h a r a c t e r i s t i c p o t e n t i a l [V]
fem . const . alph = alph ;

30 fem . const . e p s i = ep s i ;
fem . const .H = H;

32
% GEOMETRY

34 g1 = rec t2 ( 0 , 7 . 5 , 0 , 1 5 ) ;
g2 = re c t2 ( 0 , 0 . 6 , 0 , 0 . 1 ) ;

36 g3 = curve2 ( [ 0 , 0 . 5 ] , [ 0 , 0 ] ) ;

38 % ANALYZED GEOMETRY
c . ob j s = {g3 } ;

40 s . ob j s = {g1 , g2 } ;

42 fem . draw = s t r u c t ( ’ c ’ , c , ’ s ’ , s ) ;
fem . geom = geomcsg ( fem ) ;

44 % f i g u r e , geomplot ( fem , ’ s u b l a b e l s ’ , ’ on ’ , ’ e d g e l a b e l s ’ , ’ on ’ , ’
p o i n t l a b e l s ’ ,

% ’ on ’ ) , re turn
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46
% MESH

48 fem .mesh = meshin i t ( fem , . . .
’ hmaxedg ’ , [ 2 , 0 . 0 0 0 1 ] , . . .

50 ’ hmaxvtx ’ , [ 4 , 0 . 0 0 0 0 1 ] , . . .
’ hauto ’ , 5 ) ;

52 % f i g u r e , meshplot ( fem . mesh ) , re turn

54 % VARIABLES
fem . sdim = { ’ x ’ ’ z ’ } ;

56 fem . dim = { ’ u ’ ’ v ’ ’p ’ ’ phi ’ ’ c ’ ’ rho ’ } ;
fem . shape = [2 2 1 2 2 2 ] ;

58 fem . expr = { ’Re ’ ’ epsr ∗ eps0 ∗( alph ∗phi0 ) ˆ2/(2∗nu∗ eta ) ’ . . .% Reynolds
number
’Pe ’ ’ epsr ∗ eps0 ∗( alph ∗phi0 ) ˆ2/(2∗ eta ∗D) ’ . . .% P é c l e t number

60 ’ sigmaxx ’ ’−p+2∗ux ’ . . . % s t r e s s t e n s o r component
’ sigmaxz ’ ’ vx+uz ’ . . . % s t r e s s t e n s o r component

62 ’ sigmazx ’ ’ uz+vx ’ . . . % s t r e s s t e n s o r component
’ s igmazz ’ ’−p+2∗vz ’ . . . % s t r e s s t e n s o r component

64 ’ charge ’ ’ exp ( c /2) ∗ s inh ( rho /2) / ep s i ˆ2 ’ . . .
’ c rhs ’ ’ ( cxˆ2+czˆ2+rhoxˆ2+rhoz ˆ2)/2+Z∗( phix∗ rhox+phiz ∗ rhoz )−Pe∗(u∗cx

+v∗ cz ) ’ . . .
66 ’ rhorhs ’ ’ ( cx∗ rhox+cz ∗ rhoz )+Z∗( phix∗cx+phiz ∗ cz )−Pe∗(u∗ rhox+v∗ rhoz ) ’

} ;

68 % GOVERNING EQUATIONS
fem . form = ’weak ’ ;

70 fem . equ . shape = { [ 1 : 6 ] } ;

72 % INTEGRAL DOMAIN CONTRIBUTIONS
fem . equ . weak = {{ ’−ux t e s t ∗ sigmaxx−uz t e s t ∗ sigmaxz−u t e s t ∗(Re∗(u∗ux+v∗uz

)+2∗Z∗phix∗ charge / alph ˆ2) ’ . . . % x−component NS eq .
74 ’−vx t e s t ∗ sigmazx−v z t e s t ∗ sigmazz−v t e s t ∗(Re∗(u∗vx+v∗vz )+2∗Z∗phiz ∗

charge / alph ˆ2) ’ . . . % y−component NS eq .
’ p t e s t ∗( ux+vz ) ’ . . . % p r e s s u r e eq .

76 ’−ph i x t e s t ∗Z∗phix−ph i z t e s t ∗Z∗phiz+ph i t e s t ∗ charge ’ . . . % Poisson
eq .

’−c x t e s t ∗cx−c z t e s t ∗ cz+c t e s t ∗ crhs ’ . . . % Nernst−Planck
78 ’−r hox t e s t ∗( rhox+2∗Z∗phix )−r h o z t e s t ∗( rhoz+2∗Z∗phiz )+rho t e s t ∗

rhorhs ’ }} ; % Nernst−Planck

80 % BOUNDARY CONDITIONS
% group [ 1 ] s o l i d w a l l s

82 % group [ 2 ] f l o a t i n g e l e c t r o d e
% group [ 3 ] e x t e r n a l e l e c t r o d e

84 % group [ 4 ] open boundary
% group [ 5 ] symmetry boundary

86 fem . bnd . ind = { [ 6 8 ] [ 2 ] [ 9 ] [ 5 ] [ 1 3 ] } ;

88 % INTEGRAL BOUNDARY CONTRIBUTIONS
fem . bnd . weak = {{ ’ u t e s t ∗ sigmaxz ’ ’ v t e s t ∗ sigmazz ’ } . . .

90 { ’ u t e s t ∗ sigmaxz ’ ’ v t e s t ∗ sigmazz ’ ’ p h i t e s t ∗Z∗phiz ’ } . . .
{ ’−u t e s t ∗ sigmaxx ’ ’−v t e s t ∗ sigmazx ’ ’−ph i t e s t ∗Z∗phix ’ ’−c t e s t ∗cx ’

’−r h o t e s t ∗( rhox+2∗Z∗phix ) ’ } . . .
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92 { ’−u t e s t ∗ sigmaxz ’ ’−v t e s t ∗ sigmazz ’ ’−c t e s t ∗ cz ’ ’−r h o t e s t ∗ rhoz ’ }
. . .

{ ’ u t e s t ∗ sigmaxx ’ ’ v t e s t ∗uz ’ ’ p h i t e s t ∗Z∗phix ’ }} ;
94

% DIRICHLET CONSTRAINTS (IDEAL CONSTRAINTS)
96 fem . bnd . cons t r = {{ ’0−u ’ ’0−v ’ } . . .

{ ’0−u ’ ’0−v ’ ’0−phi ’ } . . .
98 { ’0−u ’ ’0−v ’ ’−alph ∗15/(2∗Z)−phi ’ ’0−c ’ ’0−rho ’ } . . .

{ ’0−u ’ ’0−v ’ ’0−c ’ ’0−rho ’ } . . .
100 { ’0−u ’ ’0−phi ’ ’0−rho ’ }} ;

102 % POINT CONDITIONS
% Clamp p r e s s u r e at a s i n g l e p o i n t to f i x the p r e s s u r e l e v e l

104 fem . pnt . ind = { [ 8 ] } ;
fem . pnt . shape = { [ 3 ] } ;

106 fem . pnt . cons t r = { ’0−p ’ } ;

108 % EXTEND MESH
fem . xmesh = meshextend ( fem ) ;

110
Nnp0 = f l n gdo f ( fem ) ; % g e t DOFs

112
% SOLVE

114
t ic

116
[ fem ,Nnp ] = adaption ( fem , . . .

118 ’ s o l f i l e ’ , ’ on ’ , . . .
’ non l in ’ , ’ on ’ , . . .

120 ’ hn l in ’ , ’ o f f ’ , . . .
’ s o l v e r ’ , ’ s t a t i ona ry ’ , . . .

122 ’ l i n s o l v e r ’ , ’ pard i so ’ , . . .
’ maxiter ’ ,1000 , . . .

124 ’ ngen ’ ,1 , . . .
’maxt ’ ,100000 , . . .

126 ’ rmethod ’ , ’ mesh in i t ’ , . . .
’ tpfun ’ , ’ f l t p f t ’ , . . .

128 ’ tppar ’ , 0 . 9 , . . .
’ hauto ’ ,8 , . . .

130 ’ out ’ ,{ ’ fem ’ ’Nnp ’ }) ;

132 % SAVE
fem0 = fem ;

134
% POST PROCESS

136 time = toc ; % g e t time

138 time0 = time ; % save time

140 Nnp0 = [ Nnp0 Nnp ] ; % save DOFs

142 ind = [ ] ;

144 v2avg0 = pos t i n t ( fem , ’uˆ2+vˆ2 ’ ) . / po s t i n t ( fem , ’ 1 ’ ) ; % c a l c u l a t e d induced
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k i n e t i c energy

146 h = pos t eva l ( fem , ’h ’ , ’ edim ’ ,2 ) ; % f i n d minimum element s i z e

148 h0 = min(h . d) ;

150 save ( [ ’ e p s i=’ num2str( fem . const . eps i , ’%7.6 f ’ ) ’ conv ’ da t e s t r (now , ’ yyyy
−mm−dd ’ ) ’ . mat ’ ] , ’Nnp0 ’ , ’ v2avg0 ’ , ’ h0 ’ , ’ time0 ’ )

152 save ( [ ’ e p s i=’ num2str( fem . const . eps i , ’%7.6 f ’ ) ’ fem ’ da t e s t r (now , ’ yyyy−
mm−dd ’ ) ’ . mat ’ ] , ’ fem ’ )

154 fpr intf (1 , ’ \nalph :%3.1 f , e p s i :%7.6 f \n ’ , fem . const . alph , fem . const . e p s i ) ;
fpr intf (1 , ’DOFs:%8.0 f , time :%6.0 f , h . d :%3.2 e\n ’ ,Nnp , time ,min(h . d) ) ;

156
maxdof = 5000000; % stop c r i t e r i a f o r loop

158
ndev = 5 ; % st op c r i t e r i a f o r loop

160 stddev = 1 ; % st op c r i t e r i a f o r loop

162 while ( (max( stddev ) > sens ) | | (Nnp < 1e6 ) ) && (1 . 2∗Nnp < maxdof ) && Nnp
˜= Nnp0(end−1)

164 % CHECK MINIMUM ELEMENT SIZE
i f min(h . d) > 1 .75 e−6

166 s t r i n g 1 = ’ mesh in i t ’ ;
s t r i n g 2 = ’ f l t p f t ’ ;

168 s t r i n g 3 = 0 . 9 ;
else

170 s t r i n g 1 = ’ r e gu l a r ’ ;
s t r i n g 2 = ’ f l t p q t y ’ ;

172 s t r i n g 3 = 1 ;
end

174
%SOLVE

176 t ic

178 [ fem ,Nnp ] = adaption ( fem , . . .
’ i n i t ’ , fem0 . so l , . . .

180 ’u ’ , fem0 . so l , . . .
’ s o l f i l e ’ , ’ on ’ , . . .

182 ’ s o l v e r ’ , ’ s t a t i ona ry ’ , . . .
’ l i n s o l v e r ’ , ’ pard i so ’ , . . .

184 ’ non l in ’ , ’ on ’ , . . .
’ hn l in ’ , ’ o f f ’ , . . .

186 ’ maxiter ’ ,1000 , . . .
’ ngen ’ ,1 , . . .

188 ’ rmethod ’ , s t r ing1 , . . .
’ tpfun ’ , s t r ing2 , . . .

190 ’ tppar ’ , s t r ing3 , . . .
’ hauto ’ ,8 , . . .

192 ’ out ’ ,{ ’ fem ’ ’Nnp ’ }) ;

194 % SAVE
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fem0 = fem ;
196

% POST PROCESS
198 time = toc ;

200 time0 = [ time0 time ] ;

202 ind = [ ] ;

204 v2avg = po s t i n t ( fem , ’uˆ2+vˆ2 ’ ) . / po s t i n t ( fem , ’ 1 ’ ) ;

206 v2avg0 = [ v2avg0 ; v2avg ] ;

208 i f s ize ( v2avg0 , 1 ) >= ndev

210 stddev = sqrt (sum( ( v2avg0 (end−ndev+1:end)−mean( v2avg0 (end−ndev
+1:end) ) ) . ˆ 2 ) ) . /mean( v2avg0 (end−ndev+1:end) ) ;

212 end

214 Nnp0 = [ Nnp0 Nnp ] ;

216 h = pos t eva l ( fem , ’h ’ , ’ edim ’ ,2 ) ;

218 h0 = [ h0 min(h . d) ] ;

220 save ( [ ’ e p s i=’ num2str( fem . const . eps i , ’%7.6 f ’ ) ’ conv ’ da t e s t r (now , ’
yyyy−mm−dd ’ ) ’ . mat ’ ] , ’Nnp0 ’ , ’ v2avg0 ’ , ’ h0 ’ , ’ time0 ’ )

222 save ( [ ’ e p s i=’ num2str( fem . const . eps i , ’%7.6 f ’ ) ’ fem ’ da t e s t r (now , ’
yyyy−mm−dd ’ ) ’ . mat ’ ] , ’ fem ’ )

224 fpr intf (1 , ’DOFs:%8.0 f , time :%6.0 f , h . d :%3.2 e , std . dev . :%3 .2 e\n ’ ,Nnp ,
time ,min(h . d) , stddev ) ;

226 end
end

228 fpr intf (1 , ’ \nEnd o f s c r i p t \n\n ’ )

230 return

D.3 Linear slip model

The COMSOL–MATLAB script for the linear slip-velocity model deviates only slightly
from the full nonlinear model script. Thus, we only list the differences below.

% S c r i p t f o r the l i n e a r s l i p v e l o c i t y model f o r the f i n i t e Debye−l e n g t h
i n v e s t i g a t i o n

2 % Mathias Bækbo Andersen
% DTU Nanotech 2008

% VARIABLES
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44 fem . sdim = { ’ x ’ ’ y ’ } ;
fem . dim = { ’ u ’ ’ v ’ ’p ’ ’ phi ’ ’ fx ’ ’ fy ’ } ;

46 fem . shape = [2 2 1 2 2 2 ] ;
fem . expr = { ’ sigmaxx ’ ’−p+2∗ux ’ . . . % s t r e s s t e n s o r component

48 ’ sigmaxy ’ ’ vx+uy ’ . . . % s t r e s s t e n s o r component
’ sigmayx ’ ’ uy+vx ’ . . . % s t r e s s t e n s o r component

50 ’ sigmayy ’ ’−p+2∗vy ’ } ; % s t r e s s t e n s o r component

52 % GOVERNING EQUATIONS
fem . form = ’weak ’ ;

54 fem . equ . shape = { [ 1 : 4 ] } ;
fem . equ . weak = {{ ’−ux t e s t ∗ sigmaxx−uy t e s t ∗ sigmaxy−u t e s t ∗Re∗(u∗ux+v∗uy ) ’

. . .
56 ’−vx t e s t ∗ sigmayx−vy t e s t ∗ sigmayy−v t e s t ∗Re∗(u∗vx+v∗vy ) ’

. . .
’ p t e s t ∗( ux+vy ) ’ . . .

58 ’−ph i x t e s t ∗phix−ph i y t e s t ∗phiy ’ }} ;

60 % BOUNDARY CONDITIONS
% group [ 1 ] s o l i d w a l l s

62 % group [ 2 ] f l o a t i n g e l e c t r o d e
% group [ 3 ] e x t e r n a l e l e c t r o d e

64 % group [ 4 ] open boundary
% group [ 5 ] symmetry boundary

66 fem . bnd . ind = { [ 6 8 ] [ 2 ] [ 9 ] [ 5 ] [ 1 3 ] } ;
fem . bnd . shape = { [ 1 : 4 ] [ 1 : 6 ] [ 1 : 4 ] [ 1 : 4 ] [ 1 : 4 ] } ;

68 fem . bnd . expr ={ ’ us ’ ’−2∗phi ∗phiTx/alph ˆ2 ’ ’ vs ’ ’−2∗phi ∗phiTy/alph ˆ2 ’ } ;
fem . bnd . weak = {{ ’ u t e s t ∗ sigmaxy ’ ’ v t e s t ∗ sigmayy ’ } . . .

70 { ’ u t e s t ∗ fx ’ ’ v t e s t ∗ fy ’ ’ f x t e s t ∗( us−u) ’ ’ f y t e s t ∗( vs−v ) ’ }
. . .

{ ’−u t e s t ∗ sigmaxx ’ ’−v t e s t ∗ sigmayx ’ ’−ph i t e s t ∗phix ’ } . . .
72 { ’−u t e s t ∗ sigmaxy ’ ’−v t e s t ∗ sigmayy ’ } . . .

{ ’ u t e s t ∗ sigmaxx ’ ’ v t e s t ∗uy ’ ’ p h i t e s t ∗phix ’ }} ;
74 fem . bnd . cons t r = {{ ’0−u ’ ’0−v ’ } . . .

{} . . .
76 { ’0−u ’ ’0−v ’ ’−alph∗15/2−phi ’ } . . .

{ ’0−u ’ ’0−v ’ } . . .
78 { ’0−u ’ ’0−phi ’ }} ;

80 % POINT CONDITIONS
% Clamp p r e s s u r e at a s i n g l e p o i n t to f i x the p r e s s u r e l e v e l

82 fem . pnt . ind = { [ 8 ] [ 1 4 ] } ;
fem . pnt . shape = { [ 3 ] [ 5 6 ] } ;

84 fem . pnt . cons t r = { ’0−p ’ { ’0− fx ’ ’0− fy ’ }} ;

D.4 Nonlinear slip model

Again, we only include the differences to the full nonlinear model script here. Note, in
this script we solve the decoupled electrostatic problem first and then the hydrodynamic
problem.
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% S c r i p t f o r the non l inear s l i p v e l o c i t y model in the f i n i t e Debye l e n g t h
i n v e s t i g a t i o n

2 % Mathias Bækbo Andersen & Gaurav Soni
% DTU Nanotech 2008

% VARIABLES
62 fem . sdim = { ’ x ’ ’ z ’ } ;

fem . dim = { ’ u ’ ’ v ’ ’p ’ ’ phi ’ ’ f ’ } ;
64 fem . shape = [2 2 1 2 2 ] ;

fem . expr = { ’ sigmaxx ’ ’−p+2∗ux ’ . . . % s t r e s s t e n s o r component
66 ’ sigmaxz ’ ’ vx+uz ’ . . . % s t r e s s t e n s o r component

’ sigmazx ’ ’ uz+vx ’ . . . % s t r e s s t e n s o r component
68 ’ sigmazz ’ ’−p+2∗vz ’ } ; % s t r e s s t e n s o r component

70 % INTEGRAL DOMAIN CONTRIBUTIONS
fem . form = ’weak ’ ;

72 fem . equ . shape = { [ 1 : 4 ] } ;
fem . equ . weak = {{ ’−ux t e s t ∗ sigmaxx−uz t e s t ∗ sigmaxz−u t e s t ∗Re∗(u∗ux+v∗uz )

’ . . . % x−component NS eq .
74 ’−vx t e s t ∗ sigmazx−v z t e s t ∗ sigmazz−v t e s t ∗Re∗(u∗vx+v∗vz ) ’ . . . % y−

component NS eq .
’ p t e s t ∗( ux+vz ) ’ . . . % p r e s s u r e eq .

76 ’−ph i x t e s t ∗phix−ph i z t e s t ∗phiz ’ }} ; % Laplace eq .

78 % BOUNDARY CONDITIONS
% group [ 1 ] s o l i d w a l l s

80 % group [ 2 ] f l o a t i n g e l e c t r o d e
% group [ 3 ] e x t e r n a l e l e c t r o d e

82 % group [ 4 ] open boundary
% group [ 5 ] symmetry boundary

84 fem . bnd . ind = { [ 6 8 ] [ 2 ] [ 9 ] [ 5 ] [ 1 3 ] } ;
fem . bnd . shape = { [ 1 : 4 ] [ 1 : 5 ] [ 1 : 4 ] [ 1 : 4 ] [ 1 : 4 ] } ;

86 fem . bnd . expr ={ ’Du ’ { ’ ’ ’ 4∗ ep s i ∗(1+m) ∗ s inh(−phi /4) ˆ2 ’ ’ ’ ’ ’ ’ ’ } . . . %
Dukhin number on e l e c t r o d e
’ us ’ { ’ ’ ’−2∗phiTx∗phi / alph ˆ2 ’ ’ ’ ’ ’ ’ ’ }} ; % eo s l i p on e l e c t r o d e

88
% INTEGRAL BOUNDARY CONTRIBUTIONS

90 fem . bnd . weak = {{ ’ u t e s t ∗ sigmaxz ’ ’ v t e s t ∗ sigmazz ’ } . . .
{ ’ u t e s t ∗ f ’ ’ f t e s t ∗( us−u) ’ ’ v t e s t ∗ sigmazz ’ ’−phiTx tes t ∗Du∗phiTx ’ }

. . .
92 { ’−u t e s t ∗ sigmaxx ’ ’−v t e s t ∗ sigmazx ’ ’−ph i t e s t ∗phix ’ } . . .

{ ’−u t e s t ∗ sigmaxz ’ ’−v t e s t ∗ sigmazz ’ } . . .
94 { ’ u t e s t ∗ sigmaxx ’ ’ v t e s t ∗uz ’ ’ p h i t e s t ∗phix ’ }} ;

96 % DIRICHLET CONSTRAINTS (IDEAL CONSTRAINTS)
fem . bnd . cons t r = {{ ’0−u ’ ’0−v ’ } . . .

98 { ’0−v ’ } . . .
{ ’0−u ’ ’0−v ’ ’−alph∗15/2−phi ’ } . . .

100 { ’0−u ’ ’0−v ’ } . . .
{ ’0−u ’ ’0−phi ’ }} ;

102
% POINT CONDITIONS

104 % group [ 1 ] midpoint o f f l o a t i n g e l e c t r o d e
% group [ 2 ] r i g h t end p o i n t o f f l o a t i n g e l e c t r o d e
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106 % group [ 3 ] upper r i g h t hand corner o f domain
fem . pnt . ind = { [ 1 ] [ 4 ] [ 8 ] } ;

108 fem . pnt . shape = { [ 4 : 5 ] [ 4 : 5 ] [ 3 ] } ;
fem . pnt . expr = { ’Du ’ { ’ 4∗ ep s i ∗(1+m) ∗ s inh(−phi /4) ˆ2 ’ ’ ’ ’ ’ }} ;

110 fem . pnt . weak = {{ ’−ph i t e s t ∗Du∗phiTx ’ } . . .
{} . . .

112 {}} ;
fem . pnt . cons t r = {{ ’0−phi ’ ’0− f ’ } . . .

114 { ’0− f ’ } . . .
{ ’0−p ’ }} ;
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