
Master Thesis, c971820

Computational Fluid Dynamics
in Microfluidic Systems

Laurits Højgaard Olesen

Supervisor: Henrik Bruus

Mikroelektronik Centret (MIC)
Technical University of Denmark

31 July 2003

ii

Abstract

Computer simulations are an indispensable tool in microfluidics because of
the lack of analytical solutions. We have developed a simulation tool in
Matlab based on the finite element method (FEM). At the present stage,
the tool can be employed to handle general second order partial differential
equations in two dimensions.

The tool has been applied to model incompressible laminar flow, and it
has been tested on the classical problem of flow over a backward-facing step.

Also the tool has been employed to model non-Newtonian blood flow in
a microchannel, in relation to an experiment performed by Lennart Bitsch,
using micro particle-image velocimetry (µPIV) measurements to map out
the velocity profile of blood flowing in a thin glass capillary. The joint work
has resulted in two conference proceedings [1, 2] and a paper submitted to
Experiments in Fluids [3].

Finally we have considered the problem of electroosmotic flow in a pore
system on the submicron scale where the Debye layer overlap is non-neglible.
At the time of writing the results are still preliminary, yet they demonstrate
that our FEM tool is general enough to accomodate for more complex prob-
lems occuring in the field of microfluidics.

iv ABSTRACT

Copyright by Laurits Højgaard Olesen
All rights reserved

Published by:
Mikroelektronik Centret

Technical University of Denmark
DK-2800 Lyngby

ISBN: 87-89935-70-5

Resumé

Computer simuleringer er et uundværligt værktøj i mikrofluidik p̊a grund
af manglen p̊a analytiske løsninger. Vi har udviklet et simuleringsværktøj
i Matlab baseret p̊a finite element metoden (FEM). P̊a dets nuværende
stade kan værktøjet benyttes til at behandle generelle anden ordens partielle
differentialligninger i to dimensioner.

Værktøjet er anvendt til at modellere inkompressibel laminar strømning,
og dette er testet p̊a det klassiske problem med strømning over et nedadg̊aende
trin.

Værktøjet er ogs̊a anvendt til at modellere ikke-Newtonsk strømning af
blod i en mikrokanal, i forbindelse med et eksperiment udført af Lennart
Bitsch, hvor micro particle-image velocimetry (µPIV) målinger er benyttet
til at bestemme hastighedsprofilen for blod strømmende i en tynd glaskap-
illar. Arbejdet har resulteret i to konference proceedings [1, 2] og en artikel
indsendt til Experiments in Fluids [3].

Endelig har vi betragtet elektroosmotisk strømning i et poresystem p̊a
submikron skala, hvor man ikke kan se bort fra overlap af Debye lagene. I
skrivende stund er resultaterne stadig usikre, men viser dog at vores FEM
værktøj er generelt nok til at kunne beskrive mere komplekse problemer, der
optræder indenfor mikrofluidikken.

vi RESUME

Preface

The present master thesis is submitted in candidacy to the cand. polyt.
title at the Technical University of Denmark. The work has been carried out
at Mikroelektronik Centret, MIC in the microfluidic theory and simulation
group (MIFTS) under supervision of Henrik Bruus from September 2002 to
July 2003.

I would like to thank Henrik Bruus for dedicated effort as supervisor.
Also I would like to thank Jess Michelsen for his advice and discussions dur-
ing the project, and Lennart Bitsch for a good collaboration.

Laurits Højgaard Olesen
Mikroelektronik Centret (MIC)

Technical University of Denmark
31 July 2003

viii PREFACE

Contents

List of figures xiv

List of tables xv

List of symbols xvii

1 Introduction 1
1.1 µPIV paper submitted to Experiments in Fluids 2

2 Basic hydrodynamics 5
2.1 Physics of fluids . 5

2.1.1 The continuity equation 5
2.1.2 The momentum equation 6
2.1.3 The energy equation 8

2.2 Poiseuille flow . 8
2.2.1 Flow in a circular capillary 9
2.2.2 Flow in rectangular channel 10
2.2.3 Flow in triangular and Gaussian shaped channels . . . 14

3 The finite element method 17
3.1 Discretization . 17
3.2 Weak solutions . 19

3.2.1 The Galerkin method 21
3.2.2 The Lax-Milgram theorem 22

3.3 Finite elements . 23
3.3.1 Lagrange elements . 24
3.3.2 Convergence properties 25

3.4 Quadrature . 29
3.4.1 Analytical expressions 32
3.4.2 Gauss-Legendre quadrature 35

3.5 Implementation . 39
3.5.1 Mesh data structure 40
3.5.2 Basis functions . 41
3.5.3 Quadrature revisited 41

x CONTENTS

3.5.4 Solution of linear system of equations 42
3.5.5 Solution of nonlinear system of equations 45

4 Application of FEM to hydrodynamics 47
4.1 Discretization of the Navier-Stokes equation 47

4.1.1 Boundary conditions 49
4.2 The Babuška-Brezzi inf-sup condition 52
4.3 The pressure gradient projection method (PGP) 54

5 Flow over backward-facing step 59
5.1 Regular mesh refinement . 60
5.2 Adaptive mesh refinement . 61
5.3 Bifurcation . 64

6 Non-Newtonian flow 67
6.1 Non-Newtonian liquids . 67

6.1.1 Blood . 68
6.2 Blood flow in straight channel 70
6.3 The µPIV experiment . 71
6.4 Summary . 75

7 Electroosmotic flow 77
7.1 The Debye layer . 78
7.2 EOF in porous structure . 80

7.2.1 Pore geometry . 82

8 Conclusion 87

A Computation of curvature 89

B Computation of streamlines 93

C Matlab function headers 97
C.1 gaussgeom . 97
C.2 elm2sd . 97
C.3 halfmesh . 98
C.4 prolong . 98
C.5 lagrange . 99
C.6 mglin . 99
C.7 gquad . 100
C.8 gjmp . 102
C.9 geval . 102
C.10 newt . 103
C.11 flow2dpgp . 104
C.12 gcontour . 104

CONTENTS xi

C.13 strmfunc . 105

D Paper submitted to Experiments in Fluids 107

xii CONTENTS

List of Figures

2.1 Velocity profile in a 3×1 rectangular channel. 11
2.2 Maximal velocity vs. aspect ratio for various channel geometries. 13
2.3 Average velocity vs. aspect ratio for various channel geomeries. 13
2.4 Cross-section of microchannel produced in PMMA using the laser abla-

tion technique. 14
2.5 Finite element mesh and contour plot of velocity profile in Gaussian

shaped channel. 16

3.1 Computational grid for the finite difference method. 18
3.2 Computational mesh for the finite element method. 18
3.3 Lagrange element basis functions for triangular elements. 26
3.4 Lagrange element basis functions for quadrangular elements. 27
3.5 Mapping from the xy-plane to the integration coordinate ξη-plane. . . . 30

4.1 Geometry of channel with a bend. 51
4.2 Flow in channel with a 90◦ bend using same basis functions for both

velocity and pressure. 51
4.3 One-dimensional analogy to unstable pressure mode. 52
4.4 Flow in channel with a 90◦ bend using quadratic velocity and linear

pressure basis functions. 53
4.5 Flow in channel with a 90◦ bend using the PGP method. 56
4.6 Convergence in the H1 norm. 57

5.1 Channel with backward-facing step. 60
5.2 Solution for Re = 100 after three regular mesh refinements. 61
5.3 Solution for Re = 100 after two adaptive mesh refinements. 63
5.4 Solution for Re = 100 after six adaptive mesh refinements. 63
5.5 Solution for Re = 500 after ten adaptive mesh refinements. 65
5.6 Simulated results for location of detachment and reattachment point as

function of Reynolds number. 66
5.7 Experimental results for location of detachment and reattachment point

as function of Reynolds number. Reproduced from [19] 66

6.1 Measurement of the apparent viscosity of blood as function of shear rate. 70

xiv LIST OF FIGURES

6.2 Velocity profiles obtained with power law viscosity model and with fit to

experimental data for blood viscosity. 72
6.3 Cross section of glass capillary used in µPIV experiment. 73

7.1 Pore geometry. 83
7.2 Solution at zero applied potential. 84
7.3 Solution with applied potential of 5.3 mV. 85

List of Tables

3.1 Terms in bivariate polynomial. 24
3.2 Gaussian quadrature rules. 37

5.1 Convergence for Re = 100 with regular mesh refinement. 62
5.2 Convergence for Re = 100 with adaptive mesh refinement. 64

xvi LIST OF TABLES

List of symbols

Symbol Description Unit
ci Molar concentration mol m−3

– or number density m−3

Dmass,i Mass diffusion coefficient m2 s−1

e Elementary charge 1.602× 10−19 C
f Body force density N m−3

G Pressure gradient Pa m−1

g Gravity N kg−1

J i Molar flux vector mol s−1 m−2

kB Boltzmann constant 1.381× 10−23 J K−1

n Surface outward normal
p Pressure N m−2

Q Volume flow rate m3 s−1

T Temperature K
v Velocity vector m s−1

x Position vector m
zi Number of charges
ε Dielectric constant C V−1 m−1

ε0 Permittivity of vacuum 8.854×10−12 C V−1 m−1

γ̇ Shear rate s−1

γ̇ Magnitude of shear rate s−1

λD Debye length m
µ Dynamic viscosity kg m−1 s−1

µeo Electroosmotic mobility m2 V−1 s−1

µi Mobility m2 V−1 s−1

φ Electrostatic potential V
ρ Mass density kg m−3

σ Cauchy stress tensor N m−2

τ Deviatoric stress tensor N m−2

ζ Zeta potential V

xviii LIST OF SYMBOLS

Symbol Description
L Differential operator
u Solution
f Source term
Ω Computational domain
∂Ω Domain boundary
H Function space
Hh Finite dimensional function space
h Mesh size
v, w Members of function space
ϕk kth basis function
p Accuracy
〈·, ·〉 Inner product

Chapter 1

Introduction

Microfluidics and the concept of micro total analysis systems (µTAS) is
a new and promising technology expected to revolutionize chemical and
medical analysis systems.

It is envisaged to miniaturize all components involved in a chemical
analysis and integrate them on a single microchip to form a so-called lab-
on-a-chip system. There are many advantages to such a system, including
very low sample consumption, high degree of portability, and possibility of
cheap mass production by use of standard microtechnology batch processing.

At MIC several groups are working on different aspects of the lab-on-
a-chip realization. The microfluidic theory and simulation group (MIFTS),
within which the present work has been carried out, has its focus on com-
bining theory and simulation efforts to obtain a thorough understanding of
the basic physical principles involved in microfluidic systems.

The main goals of the present project were first the development of an
in-house general simulation tool for modelling of different problems arising
in microfluidics. Next the tool was to be applied to simulate blood flow in
microchannels as discussed below, and more generally it was to be applied
to electroosmotic flow problems investigating e.g. electrochemical effects at
the electrodes.

Now, one may indeed ask why we would want to develop our own soft-
ware for simulation when powerful commercial software such as CFD-ACE+
and Coventor exist and is already in use within MIFTS. However the com-
mercial programs do have limitations as to what they can handle, and it is
typically rather difficult if not impossible to work around such limitations.1

With in-house software it should be possible to modify the program to ac-
comodate any specific requirements.

The tool that I have developed is based on the finite element method

1E.g. in Coventor it has been found that internal solid walls specified in a geometry
do act as barries for convection but not for diffusion of a dissolved species – thus effectively
making it impossible to model electrodes isolated from the flow. [4]

2 Introduction

(FEM) which is a powerful technique, in particular for problems involving
complex geometries. Actually the FEM was new to me, and it took some
time to get into all aspects of the method. For the implementation of the
tool I initially worked with the C programming language; however I found
it cumbersome and little flexible, in particular since the outline of the tool
was not well defined at this early stage. Therefore it was chosen to translate
the code into Matlab since debugging and testing is typically much faster
in this environment. Also it allowed to rely on Matlab’s built-in linear
solvers and on its many graphical routines for postprocessing of the solution.
Furthermore because of the more compact and simple syntax I believe it will
be easier for future users to modify and extend the Matlab program than
an equivalent one written in C.

While the initial approach was coded specifically for flow problems, dur-
ing the project I have continuously been extending the capabilities and tried
to abstract the tool to be able to handle general partial differential equation
problems. In that sense it is heading towards a form that is similiar to that
of Femlab, which is a commercial generic FEM program that runs on top
of Matlab.

1.1 µPIV paper submitted to Exp. Fluids

During the project I have been applying the FEM tool to model blood flow
in a thin glass capillary in connection to a series of experiments performed
by Lennart Bitsch. The experiments were so-called micro particle-image ve-
locimetry (µPIV) measurements, monitoring the motion of individual blood
cells in order to observe the velocity profile in the capillary. Also I have been
involved with parts of the data analysis and in calculations on the optics
in the experimental setup. This joint work has resulted in two conference
proceedings [1, 2] and a paper submitted to Experiments in Fluids [3]. The
experiment is described in some detail in Chap. 6 and further I have included
the paper in Appendix D.

The structure of the thesis is as follows:

• In Chap. 2 on basic hydrodynamics the governing equations of fluid
dynamics are stated and we discuss flow in a long straight channel.

• In Chap. 3 we give an overview of the finite element method with
particular focus on some aspects central to our implementation of the
method.

• In Chap. 4 the FEM is applied to the incompressible flow problem; the
most straightforward approach turns out to yield a solution with a spu-
rious pressure oscillation, and two ways of dealing with this problem
are discussed.

1.1 µPIV paper submitted to Experiments in Fluids 3

• In Chap. 5 we test our implementation on a classical problem of flow
over a backwards facing step.

• Then in Chap. 6 we discuss non-Newtonian flow and blood flow in
particular in relation to the µPIV experiment.

• In Chap. 7 the basic concepts regarding electroosmotic flow are in-
troduced and our first results applying the FEM tool to this problem
presented.

4 Introduction

Chapter 2

Basic hydrodynamics

In this chapter we state the governing equations for fluid motion which are
the continuity equation, the Navier-Stokes equation, and the energy equa-
tion. Especially the Navier-Stokes equation and the Cauchy stress tensor
are discussed in some detail. While the same derivation is found in any con-
tinuum physics textbook, we include it here because we in Chap. 6 are going
to discuss non-Newtonian liquids, blood in particular, in relation to which
a proper definition of the stress tensor and the shear rate is important.

The second part of the chapter is devoted to analysis of Poiseuille flow,
that is, flow in long straight channels of various cross sections. The Poiseuille
flow is treated, in part because experimental colleagues at MIC were inter-
ested in details on the flow resistance in their microchannels; and in part
it is treated to have a background for discussing the experiments on blood
flow in microchannels that we present in Chap. 6.

2.1 Physics of fluids

A fluid ultimately consist of molecules but we describe the system in terms
of continuous fields such as the mass density ρ(x) and the velocity field
v(x). We also speak of material particles which should be thought of as
small volumes of fluid that travel along with the flow, always containing the
same fluid molecules, that is, neglecting diffusion.

2.1.1 The continuity equation

We consider a material particle of position x(t) and of volume V(t) riding
along with the flow. The mass m of the particle can then be expressed as
the local density of the fluid times the particle volume m = ρ(x, t)V(t). The
rate of change of this quantity is determined from

d

dt

(
ρ[x(t), t] V(t)

)
=

∂ρ

∂t
V + ∇ρ · dx

dt
V + ρ

dV
dt

=
[∂ρ

∂t
+ ∇ · (ρv)

]
V, (2.1)

6 Basic hydrodynamics

where the second equality follows from the definition of the velocity field
dx/dt = v and the change in particle volume is expressed by the divergence
of the velocity field lines dV/dt = (∇ · v)V. Now since the mass of the
particle is conserved we thus arrive at the equation of continuity

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.2)

For constant density this reduces to the incompressibility constraint

∇ · v = 0. (2.3)

Notice however that the opposite is not true – with a divergence free velocity
field and a density constant in time the continuity equation only implies that
the density is constant along streamlines.

2.1.2 The momentum equation

Again we consider a material particle riding along with the flow. The particle
momentum is then p = mv, with rate of change

dp

dt
= m

d

dt

(
v[x(t), t]

)
= m

(∂v

∂t
+ v ·∇v

)
. (2.4)

According to Newtons second law this is equal to the sum of the external
forces. For a particular particle those are the contact force from the sur-
rounding fluid ∇ · σV, where σ is the Cauchy stress tensor, together with
the external body forces acting on the particle fV where f is the body force
density, e.g. gravity ρg. Thus we arrive at Cauchy’s equation of motion

ρ
[∂v

∂t
+ (v ·∇)v

]
= f + ∇ · σ. (2.5)

The stress tensor σ is defined such that the contact force F that the
material on one side of a small surface patch of area A and outward normal
n feels from the material on the other side of the patch is

F = σ · nA, (2.6)

and it can be shown that σ is symmetric, that is σij = σji. Conventionally
the stress tensor is split according to

σij = −p δij + τij , (2.7)

where δij is the Kronecker delta and p is the hydrodynamic pressure while
τij is the so-called deviatoric stress tensor. By definition the hydrodynamic
pressure is given in terms of the trace of the stress tensor as

p = −1
3

∑

k

σkk = −1
3
Trσ, (2.8)

2.1 Physics of fluids 7

and for a fluid at hydrostatic equilibrium this coincides with the hydrostatic
pressure since fluids at rest cannot sustain shear stress. Hence the deviatoric
stress tensor

τij = σij + δijp (2.9)

is said to be pressure free since by construction Trτ = 0. With these defini-
tions the Cauchy equation of motion reads

ρ
[∂v

∂t
+ (v ·∇)v

]
= −∇p + ∇ · τ + f . (2.10)

Newtonian fluids

As mentioned a fluid at rest cannot sustain shear stress, and generally we
associate the shear forces with friction between different regions of the fluid
flowing at different speed, that is, the deviatoric stress tensor should depend
on the velocity gradients in the flow. As a measure of the velocity gradients
in the flow we define the shear rate tensor γ̇

γ̇ij =
1
2

(∂vi

∂xj
+

∂vj

∂xi

)
− δij

1
3

∑

k

∂vk

∂xk
. (2.11)

In a Newtonian fluid the deviatoric stress tensor τ is simply proportional to
the shear rate, with

τ = 2µγ̇, (2.12)

where µ is called the dynamic viscosity. The viscous force in Eq. (2.10) is
then obtained as the divergence of this

∇ · τ = µ
[∇2v +

1
3
∇(∇ · v)

]
, (2.13)

and assuming incompressible flow ∇ · v = 0, we obtain the Navier-Stokes
equation in its perhaps most familiar form

ρ
[∂v

∂t
+ (v ·∇)v

]
= −∇p + µ∇2v + f . (2.14)

Non-Newtonian fluids

While simple liquids such as water and ethanol behave as Newtonian liquids,
more complex ones such as blood, toothpaste and polymer solutions do not.
There are several ways that a fluid can deviate from Newtonian behaviour
and we shall discuss this in detail in Chap. 6. The most simple case is the so-
called generalized Newtonian liquids for which the viscosity is not a simple
constant but depends on the magnitude of the velocity gradients present in
the flow. Thus defining the magnitude of the shear rate as

γ̇ =

√
1
2

3∑

i=1

3∑

j=1

γ̇ij γ̇ji , (2.15)

8 Basic hydrodynamics

a generalized Newtonian liquid follows a constitutve equation of the form
τ = 2µ(γ̇)γ̇.

2.1.3 The energy equation

We define the field U(x, t) as the local total energy per unit mass. Then the
energy of a material particle can be written as E = ρUV. The particle energy
increases from work done by the external forces dW = (f + ∇ · σ)V · vdt
and from heat sources qV acting inside the particle while it decreases from
the heat flux q out of the particle surface. Thus

d

dt

(
ρUV

)
= (f + ∇ · σ)V · v + qV −

∫

S
dS n · q. (2.16)

By Fouriers law the heat flux is q = −k∇T where T is the temperature and
k is the thermal conductivity. Then applying Gauss’ theorem to the surface
integral and cancelling out V we arrive at

∂(ρU)
∂t

+ ∇ · (ρUv) = (f + ∇ · σ) · v + q + ∇ · (k∇T). (2.17)

For an incompressible Newtonian fluid with constant density and isotropic
thermal conductivity this reduces to

ρ
(∂U

∂t
+ v ·∇U

)
= f · v +

1
2
µ∇2(v · v) + q + k∇2T. (2.18)

Finally the internal energy per unit mass u is obtained by subtracting the
kinetic energy per unit mass, thus u = U − 1

2v2.

2.2 Poiseuille flow

Flow in a circular capillary or pipe is a simple example where the analytical
solution for the velocity field can be obtained. The relation between applied
pressure and flow rate in a cylindrical pipe is know as Hagen-Poiseuille’s law
and is of great importance because of the common industial use of cylindrical
pipelines.

In silicon based microfluidic systems channels are rather of rectangular
cross section, and on microchips fabricated in polymers by the laser ablation
technique the channels tend to have a cross section that can be described as
a triangular or Gaussian shaped trench.

Experimental colleagues at MIC were in particular interested in knowing
the hydraulic resistance of such channels. This problem provided a neat
startup problem for the FEM tools developed during the present project
work.

We consider generally a steady laminar incompressible flow in a long
straight channel extending in the z-direction and of some arbitrary cross

2.2 Poiseuille flow 9

section in the xy-plane. For symmetry reasons the velocity field must be of
the form v = vz(x, y)ez and further assuming no external body forces the
pressure must be p(z) = p0 − Gz where p0 and G are constants. Inserting
this into the Navier-Stokes equation Eq. (2.14) we obtain

G + µ∇2vz(x, y) = 0, (2.19)

that is, a Poisson problem in two dimensions for vz with constant source
term −G/µ. The boundary condition that vz should satisfy at the channel
wall is the no-slip condition flow where the velocity at the walls is required
to be zero1.

2.2.1 Flow in a circular capillary

In the case of a channel of cylindrical cross section a description in cylindrical
coordinates (r, φ, z) is adequate. Since the problem is axisymmetric the
velocity field cannot depend on angle; thus v = vz(r)ẑ and the Navier-
Stokes equation reduces to

G + µ∇2vz = G + µ
[1
r

∂

∂r

(
r

∂

∂r

)]
vz(r) = 0, (2.20)

which has the general solution vz = − G
4µr2 + A ln r + B. Infinite velocity at

the channel center at r = 0 is unphysical so A = 0, and the no-slip condition
at the channel wall at r = R yields B = GR2/4µ, so

vz(r) =
G

4µ
(R2 − r2). (2.21)

That is, the velocity profile is a paraboloid with a maximal velocity propor-
tional to the pressure gradient G, the inverse of the viscosity and the square
of the channel radius.

The total volume flow rate Q is obtained by integrating the velocity field
across the channel yielding

Q =
∫ R

0
dr r

∫ 2π

0
dφ vz(r) =

πGR4

8µ
. (2.22)

Over a channel of length L the pressure drop is ∆p = GL, so

Q =
πR4

8µL
∆p (2.23)

which is the famous Hagen-Poiseuille’s law. Also the hydraulic resistance is
defined as Rhyd = ∆p/Q = 8µL/πR4 and we observe the drastic decrease in
resistance with channel radius.

1The no-slip condition applies to viscous flow and derives from the assumption that
because of surface roughness or friction the fluid particles immediately next to the wall
will have their momentum relaxed effectively towards that of the wall; thus in the case
of moving walls no-slip implies zero fluid velocity relative to the wall. In extremely small
channels or rarefied gas flows where channel dimensions become comparable to the particle
mean free path, corrections to the no-slip condition are needed.

10 Basic hydrodynamics

2.2.2 Flow in rectangular channel

We now consider flow in a channel of rectangular cross section of width
W and depth H. We shall discuss how the velocity profile in the channel
depends on the aspect ratio α = H/W , and we first consider the limiting
case of an infinitely wide channel, that is, of zero aspect ratio.

The problem is translationally invariant in the x-direction and as for
the circular capillary the problem reduces to a simple ordinary differential
equation

G + µ∇2v∞z = G + µ
∂2

∂y2
v∞z (y) = 0. (2.24)

Imposing the no-slip condition at the channel lid at y = H and at the bottom
at y = 0 yields the solution

v∞z (y) =
G

2µ
y(H − y). (2.25)

The velocity profile is a parabola, with a maximal velocity at y = H/2 of
GH2/8µ, that is, twice as large as the maximal velocity in a circular capillary
of diameter H. Qualitatively this is easily understood since in the cylindrical
geometry there are walls all around the channel slowing down/braking up
the flow, whereas between the infinite plates there are only walls on two
sides.

Finally the volume flow rate per unit width of the channel is

Q

W
=

∫ H

0
dy vz(y) =

GH3

12µ
. (2.26)

Fourier sine-series solution

In a channel of finite width no simple analytical solution can be obtained.
However the geometry is simple enough that we can obtain a semi-analytical
result in terms of a Fourier sine series from which e.g. the dependence on
aspect ratio can be extracted.

x

y

W

H

∇2v
z
 = −G/µ

We define the computational domain as (x, y) = [0,W]×[0,H] for which
an appropriate trial solution for the velocity, satisfying the no-slip boundary
condition, is a Fourier sine-series of the form

vz(x, y) =
∞∑

n=1

∞∑

m=1

anm sin
(nπx

W

)
sin

(mπy

H

)
(2.27)

Inserting this into the Poisson equation Eq. (2.19) we obtain

∞∑
n,m

anmπ2
(n2

W 2
+

m2

H2

)
sin

(nπx

W

)
sin

(mπy

H

)
=

G

µ
, (2.28)

2.2 Poiseuille flow 11

0
0.5

1
1.5

2
2.5

3

0
0.5

1
0

0.05

0.1

x

y

v z(x
,y

)
[G

/µ
]

Figure 2.1: Velocity profile in a 3×1 rectangular channel in units of G/µ. In the central
part of the channel the profile is rather flat in the x-direction and almost parabolic in
the y-direction. The maximal velocity is vz,max = 0.1227G/µ which is only 2% below the
G/8µ of the unit depth infinitely wide channel.

from which the expansion coefficients anm can be determined by multiplying
on both sides with sin(pπx/W) sin(qπy/H) for some integer p and q and
integrating over the channel. Then, since the sine’s are orthogonal

apq =
16G
µπ4

×
{ [

pq
(p2

W 2 + q2

H2

)]−1
for both p and q odd,

0 otherwise.
(2.29)

Thus

vz(x, y) =
16G

µπ4

∞∑

odd n,m

[
nm

(n2

W 2
+

m2

H2

)]−1
sin

(nπx

W

)
sin

(mπy

H

)
(2.30)

Again the total volume flow rate is obtained by integrating vz across the
channel yielding

Q =
64G

µπ6
WH

∞∑

odd n,m

[
n2m2

(n2

W 2
+

m2

H2

)]−1
. (2.31)

Fig. 2.1 shows the velocity profile in a channel of width W = 3 and depth
H = 1 as calculated by Eq. (2.30) truncated at n = m = 100. It is noticed
that the velocity in the central part of the channel resembles the parabolic
profile of an infinitely wide channel very much, the maximal velocity being
only 2% below the GH2/8µ of the fully parabolic one, Eq. (2.25). Thus
the central part of a rectangular channel is ’far’ from the sides even at this
relatively modest aspect ratio.

Generally it is the smaller of the channel dimensions W and H that
determines the maximal velocity. Assuming H < W and introducing α =

12 Basic hydrodynamics

H/W in Eq. (2.30) we obtain

vz,max =
16G

µπ4
H2

∞∑

odd n,m

1
nm(n2α2 + m2)

. (2.32)

Fig. 2.2 shows the dependence of the maximal velocity on aspect ratio for
the rectangular channel. Also results for a number of other geometries to be
handled in the following sections are shown for comparision. The velocity
is given in units of GL2/µ where L is the smaller of the channel width and
depth. We notice that the graph is symmetric around α = H/W = 1 which
is obvious since interchanging W and H yields the same rectangular channel
only rotated by 90◦.

Again Fig. 2.2 demonstrates how the velocity profile at the central part
of the channel as represented by the maximal velocity is dominated by the
nearest walls. Beyond α = 3 the far sides are largely not ’felt’ at the center
where only the top and bottom walls determine the flow.

Fig. 2.3 shows the aspect ratio dependence of the total volume flow rate
in the channel. The results shown are normalized with the channel area and
thus actually define the average velocity v̄z in the channel

Q

A
=

1∫
@Adxdy

∫

@A
dxdy vz(x, y) ≡ v̄z (2.33)

When comparing with the result for the channel maximal velocity, we see
that the average velocity tends rather slowly towards the average velocity
in an infinitely wide channel v̄∞z . To understand this phenomenon, observe
that roughly a wide channel can be divided into a central region of width
W −2H where the profile is almost as in an infinitely wide channel, and two
side regions each of width H where the average velocity is only half v̄∞z , see
Fig. 2.1. Then the total average expected is

v̄z ≈ 1
W

[
v̄∞z (W − 2H) +

1
2
v̄∞z 2H

]
= v̄∞z (1− α). (2.34)

Thus the convergence is only linear for α → 0 which corresponds to an
exponential approach to v̄∞z in the logarithmic plot of Fig. 2.3. This would
be revealed as a straight line with slope one in a double logarithmic plot of
v̄∞z − v̄z vs. α and actually is though we do not present the plot here.

In conclusion the velocity profile in the central part of the channel is a
local property of the flow which is well approximated by the profile of an
infinitely wide channel even at moderate aspect ratio. On the other hand
the average velocity is an integrated global property for which the influence
of the side regions drops out only as the proportion of the area of the side
regions to the total area.

2.2 Poiseuille flow 13

10
−2

10
−1

10
0

10
1

10
2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Aspect ratio α

v z,
m

ax
 [

G
 L

2 /µ
]

rectangular channel
triangular channel
gaussian channel
cylindric channel
infinite planes

Figure 2.2: Maximal velocity vz,max vs. aspect ratio α = H/W for various channel
geometries. The velocity is given in units of GL2/µ where G is the pressure gradient in
the channel, µ is the dynamic viscosity, and L is the smaller of the channel width W and
depth H. All curves tend towards the level of the maximal velocity in an infinitely wide
rectangular channel at very small or large aspect ratio. However in both the triangular
and Gaussian shaped cases the convergence towards v∞z,max for α → 0 is faster than that
for α →∞.

10
−2

10
−1

10
0

10
1

10
2

0

0.02

0.04

0.06

0.08

0.1

Aspect ratio α

Q
/A

 [
G

 L
2 /µ

]

rectangular channel
triangular channel
gaussian channel
cylindric channel
infinite planes

Figure 2.3: Volume flow rate per unit area Q/A, or equivalently channel average velocity
v̄z, vs. aspect ratio α. For the triangular channels the average velocity tends towards half
that of the infinitely wide rectangular channel both for high and low aspect ratio, though
it tends faster for low aspect ratio.

14 Basic hydrodynamics

Figure 2.4: Cross-section of microchannel produced in PMMA using the laser ablation
technique.

2.2.3 Flow in triangular and Gaussian shaped channels

In a microfluidic channel network fabricated in polymer by the laser ablation
technique the channels tend to have a cross section that can be described as
a triangular or Gaussian shaped trench, see Fig. 2.4

The geometry of the triangular and Gaussian shaped channels renders
the solution of Eq. (2.19) in terms of Fourier expansion rather difficult.
Instead we employ the finite element method (FEM) which is described in
detail in Chap. 3. Actually the velocity profile in a Gaussian shaped channel
was the first real problem handled with the FEM tool that was developed
during the present project. While initially the tool was geared only for
the simplest case of triangle elements with linear interpolation, the results
presented in Figs. 2.2 and 2.3 for triangular and Gaussian shaped channels
were obtained with quadratic interpolation. This is so because it yields
more accurate result, in particular for the average velocity. With quadratic
interpolation the analytical parabolic solution in an infinitely wide channel
is obtained using just two triangle elements!

We consider first a triangular channel of width W and depth H. In
the limiting cases of very small or large aspect ratio α = H/W we can
describe the flow locally as the flow between two infinite planes separated
by a distance that varies along the channel.x

y

−W/2 W/2

H

In the case of small aspect ratio the local channel depth is described by
h(x) = H(1−2|x|/W). Thus from Eq. (2.25) we expect the velocity profile to
follow approximately as vz(x, y) ' Gy

[
h(x)− y

]
/2µ. The maximal velocity

would be found where the channel is deepest with vz,max → GH2/8µ for

2.2 Poiseuille flow 15

α → 0 and the total volume flow rate determined as

Q =
∫

4
dxdy vz(x, y)

→ G

2µ
2

∫ W/2

0
dx

∫ h(x)

0
dy y

(
h(x)− y

)
=

GWH3

48µ
, (2.35)

from which v̄z = Q/A → GH2/24µ. Thus the average velocity in the wide
triangular channel is half that of the wide rectangular one as is observed in
Fig. 2.2 for small α. That is, while the velocity in the narrow regions of the
channel decrease like h2, the area of those regions decrease linearly in h and
the average remains one half of that of the constant depth case.

The same analysis carries through for large aspect ratio channels using
w(y) = W (1− y/H) and yields the same asymptotic results as for the small
aspect ratio channel. However we notice from Figs. 2.2 and 2.3 that the
results for α → 0 converge faster to the asymptotic value than for α → ∞;
this is intuitively correct since the central largest velocity part of the wide
channel resembles better a set of infinite planes than does the top largest
velocity part of the deep channel where a wall is nearby present.

The Gaussian shape

What is actually meant by ’Gaussian’ is that the channel has some kind
of bell shape, and the first such shape that comes to mind is the Gaussian,
which is described solely in terms of a width σ and a depth H, i.e. He−x2/2σ2

.
However the true Gaussian has tails that, though small, continue infinitely.
And that is not what is produced experimentally. Therefore a cut-off is
introduced, chosen, arbitrarily, at a distance of 2σ and thus the channel has
a total width of 4σ. The bell is further renormalized to a depth of H, that
is

x

y

H

2σ

W = 4σ

h(x) = H
e−x2/2σ2 − e−2

1− e−2
. (2.36)

and the channel interior is described by −2σ < x < 2σ and 0 < y <
h(x). Fig. 2.5 shows an example of a finite element computational mesh
automatically generated in Matlab together with a contour plot of the
solution for the velocity profile in the channel.

When the data for Fig. 2.2 and 2.3 were generated computational meshes
of equivalent finesse were used, that is, the elements were approximately
even-length sided and the element size was chosen small enough that the
meshes had at least 8 elements across the smaller of the channel depth and
half width. The maximal number of elements required was 8092.

16 Basic hydrodynamics

−0.1 0 0.1 0.2 0.3 0.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

a)

0

0.005

0.01

0.015

0.02

0.025

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

b)

Figure 2.5: a) Finite element mesh in Gaussian shaped channel of width W = 1.0
and depth H = 0.8. Because of mirror symmetry only half of the channel is included in
the computation. The computation employs quadratic interpolation, that is, within each
triangle element the solution is described as a quadratic polynomial in x and y, see Chap. 3.
b) Contour plot of the velocity profile. The maximal velocity is vz,max = 2.78× 10−2G/µ
and the spacing of the contour lines ∆vz = 2× 10−3G/µ.

Chapter 3

The finite element method

In this chapter we introduce the finite element method (FEM) for solving
partial differential equations. The method is a popular tool for simulation
of problems in many branches of physics and engineering, in particular in
structural mechanics and stress analysis, for which it was originally devel-
oped. Indeed many textbooks introduce FEM entirely within the framework
of structural mechanics and discuss in detail such concepts as element stiff-
ness and deformability properties. We rather consider the method as a
generic device for handling partial differential equations, though we touch
only briefly on the error estimates and convergence analysis. Also we discuss
the actual implementation of the method in Matlab.

3.1 Discretization

We consider a problem described in terms of a partial differential equation
of the form

Lu(x) = f(x), x ∈ Ω, (3.1)

where L is a differential operator describing the physical behaviour of the
system, f is the source or forcing term, while Ω is the computational domain
on which we are seeking the solution u. Further a set of boundary conditions
is provided for u on the boundary ∂Ω in order to describe how the system
interacts with the environment in which it is embedded; or in mathematical
terms to ensure that the problem is well-posed.

The finite element method as we present it in this chapter can be applied
for problems with differential operators of any order. However what we have
in mind is typically a second order differential equation since those are the
ones encountered most often in physics and engineering. Indeed our favourite
model problem is the Poisson equation

−∇2u = f(x), x ∈ Ω (3.2)

18 The finite element method

which is supplemented by either Dirichlet boundary conditions where the
solution is prescribed on the boundary u = a(x) for x ∈ ∂Ω or Neumann
boundary conditions where the outward normal derivative of u is specified
(n·∇) u = b(x) for x ∈ ∂Ω or a combination of the two.

The problem as stated involves an infinite number of points x ∈ Ω which
makes it somewhat impractical to handle on a digital computer. Thus we
need to discretize it, and perhaps the most obvious way to do this is to
discretize space. That is, we could for example introduce a grid of points
xi,j as shown in Fig. 3.1 and represent the solution by its values at the grid
points ui,j . Also the differential equation could be discretized using so-called
finite difference schemes, e.g. for the Laplace operator ∇2 on a square grid,

[∇2u
]
i,j
' 1

h2

(
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

)
, (3.3)

where h is the grid point spacing. Thus we would obtain a set of algebraic
equations to solve for the unknowns ui,j .

 i

i+1

i−1

 j
j+1

j−1

φ
j

Figure 3.1: The finite difference method.
A computational grid showing a grid point
xi,j (•) and neighbors (◦).

Figure 3.2: The finite element method.
Division of the domain Ω into a mesh of
finite elements; showing a piecewise linear
function ϕj(x) with compact support.

In the finite element method the discretization takes a different route
in that one represents the solution as a linear combination of some basis
functions ϕ` defined on the whole domain Ω

u(x) =
∑

`

u` ϕ`(x). (3.4)

The discretization is then introduced by choosing only a finite set of basis
functions ϕ`, rather than a complete and therefore infinite set.

The question is now what kind of functions to choose for the basis. A well
known choice is Fourier expansion using plane waves with the characteristics
that they are infinitely smooth and mutually orthogonal, and that they
extend across the entire domain.

The particular choice of the finite element method is somewhat opposite
as one chooses basis functions ϕ` that are local, in the sense that each ϕ` have

3.2 Weak solutions 19

a rather small support. Moreover one typically chooses basis functions that
are only as smooth as what is required as minimum for u to be considered
as a candidate solution to the problem.

As an example, Fig. 3.2 shows the partitioning of a domain into a mesh
of small triangular elements together with a pyramid-like function with the
following properties: 1) it is continuous, 2) it is linear inside each element,
and 3) it has value 1 at the mesh node xj while it is zero at all other
mesh nodes. By construction this hat-like chapeau function has a very small
support since it is nonzero only within the elements immediately surrounding
the j’th node. Similiarly one can construct functions centered on the other
nodes of the mesh.

These localized functions can be thought of as smeared out delta func-
tions and we observe that they actually constitute a basis for the space of
continuous functions that are linear within each element. Also in Eq. (3.4)
the expansion coefficients u` are nothing but the value of u at x`, that is, the
expansion with the chapeau functions corresponds to an elementwise linear
interpolation of the function values u`.

3.2 Weak solutions

Considering the problem of Eq. (3.1) the classical way of defining a solution
is to require that it satisfies the equality Lu(x) = f(x) for all x ∈ Ω and
further that it fulfills the boundary conditions. However, whereas for initial
value problems for ordinary differential equations the existence of a unique
classical solution is ensured if only the problem satisfies the so-called Lip-
schitz condition, no such condition exist for boundary value problems for
partial differential equations [5]. But, depending on the operator L it is
actually possible to prove the existence and uniqueness of a so-called weak
solution to the problem, a concept that we shall now introduce.

Suppose H is an infinite-dimensional function space that is rich enough
to include in its closure all functions that may be of interest as candidates
for the solution u. For all v ∈ H we define the defect d(v) = Lv − f . Then
we say that w is a weak solution to the problem Eq. (3.1) provided that the
defect d(w) is orthogonal to the entire function space, that is, if

〈v, d(w)〉 = 0 for every v ∈ H. (3.5)

Here 〈·, ·〉 denotes the Euclidian inner product in H defined as 〈f, g〉 =∫
Ω dx f(x)g(x) for functions f, g ∈ H. Also the inner product naturally

induces the norm ‖f‖ =
√
〈f, f〉.

Obviously if u is a solution to the problem in the classical sense then the
defect is the zero function and thus u is also a weak solution. However the
converse is not necessarily true! The objects in a function space H are not
really functions but rather so-called equivalence classes of functions. If the

20 The finite element method

norm of the difference between two functions ‖v1− v2‖ is zero then they are
said to belong to the same equivalence class and therefore correspond to the
same object in H. E.g. the functions

v1(x) = 0 and v2(x) =
{ 1 for x = 0,

0 else
(3.6)

differ only at a single point which is not enough to make a difference on
integral in the norm ‖ · ‖. The point here is that we should not fuss about
the equation not being exactly satisfied at a few points in Ω.

Now we turn to the question of what functions to include in the space
H, that is, which kind of functions to consider as candidates for the solution
u. In the case of a second order differential equation then for u to be a
classical solution it should at least be a C1 function, that is, it should at
least have a continuous slope since otherwise the second derivatives would
become infinite at the slope discontinuities. However the definition of a weak
solution w for e.g. the Poisson problem Eq. (3.2) as 〈v,−∇2w−f〉 = 0 makes
perfect sense even if v and w are only C0 functions that are continuous and
piecewise differentiable since any delta function emerging from the second
derivative at a slope discontinuity is immediately caught by the integral
in the inner product 〈·, ·〉. Formally we express this in terms of a partial
integration as

∫

Ω
dx v∇2w =

∫

∂Ω
ds v (n·∇) w −

∫

Ω
dx∇v ·∇w . (3.7)

Introducing the notation 〈f ; g〉 =
∫
Ω dxf · g we write the last term as

〈∇v; ∇w〉 and in order for this area integral to exist the functions v and w
need only be continuous and piecewise differentiable. Thus if we express w
as a linear combination of chapeau basis functions as that shown in Fig. 3.2
then the slope of w is ill-defined on all the triangle sides in the mesh – but
this does not trouble the area integral since the offending triangle sides do
not add up to a region of finite area. It does trouble the boundary integral
in Eq. (3.7) though since the entire boundary is made up from triangle sides
meaning that the integrand (n·∇)w is ill-defined on all ∂Ω.

The way to handle the boundary integral is to invoke the boundary
conditions. In the Neumann case we wish the solution to have a specific
outward normal derivative (n ·∇)u = b(x) whereas the value of u on the
boundary is left to be determined. Thus we naturally substitute b in place
of (n·∇)w in the boundary integral over the Neumann part of the boundary
to enforce the Neumann condition. In the Dirichlet case we rather wish to
specify the solution as u = a(x) on the boundary. This is enforced either by
setting u` = u(x`) = a(x`) where x` is a mesh node on the boundary and u`

is the expansion coefficient for the basis function centered on x` assuming we
choose a basis such as the chapeau functions that interpolates nodal values.

3.2 Weak solutions 21

Or we may define a subproblem on the Dirichlet boundary similiar to that
defined on the interior of Ω

∫

∂Ωa

ds v [u− a(x)] = 0 (3.8)

where ∂Ωa is the Dirichlet part of the boundary and v belongs to a set of
one-dimensional basis functions defined on ∂Ωa. In any case we neglect to
solve the problem of Eq. (3.1) on the Dirichlet boundary which is done by
excluding from H all functions v that are non-zero on ∂Ωa.

We are not sure which of the two strategies for enforing the Dirichlet
boundary conditions is better. We feel though that the second is more con-
sistent with the FEM approach to the main problem Eq. (3.1), in particular
for systems of coupled equations where we may wish to specify both Dirich-
let and Neumann boundary conditions on the same part of the boundary for
some combination of the solution components. In the commercial software
package Femlab the first strategy is applied as default, but the second is
also available.

Generally when faced with an n’th order differential operator it is pos-
sible to reduce the smoothness requirements for the function space H to
roughly half n by repeated partial integration. E.g. for problems involving
the biharmonic operator ∇4 the members must be at least C1 functions
rather than C0 in order for the expression 〈v, ∇4w〉 in the definition of a
weak solution to make sense for v, w ∈ H.

3.2.1 The Galerkin method

The Galerkin method is a method of discretization starting from the defini-
tion of weak solutions. We start out choosing a subspace Hh⊂H spanned by
n linearly independent functions from H.1 Then we determine the expansion
coefficients u` in the discrete solution uh =

∑n
`=1 u`ϕ` where ϕ` ∈ Hh such

that the defect Luh − f is orthogonal to Hh

〈
ϕk,Luh − f

〉
= 0, k = 1, 2, . . . , n. (3.9)

Thus the problem has been reduced to a system of n equations to solve for
the n unknowns u`. Provided the operator L is linear then so is the system
of equations

n∑

`=1

〈ϕk,Lϕ`〉u` = 〈ϕk, f〉, k = 1, 2, . . . , n, (3.10)

or in matrix notation simply
Ku = f (3.11)

1The label h on the space Hh and the discrete solution uh ∈ Hh is meant to refer to
the typical size of the elements in the mesh used to construct the basis functions.

22 The finite element method

with the matrix elements Kk` = 〈ϕk,Lϕ`〉 and right hand side fk = 〈ϕk, f〉.
Often K is termed the stiffness matrix.

In order to obtain an accurate solution it is often necessary to choose a
rather large basis set, that is large n. This means that the stiffness matrix
being n×n becomes huge! However, it is also sparse as the individual matrix
element Kk` is computed as an integral across Ω of the overlap between ϕk

and Lϕ`. Since ϕk is zero outside the elements immediately surrounding the
node xk and similiarly for ϕ` we deduce that unless the k’th and `’th node
are actually immediate neighbors then the overlap is zero. In a triangulated
mesh a typical node has about six neighbors which means that in the k’th
row of K only about seven matrix elements including Kkk are nonzero.

When implementing the finite element method it is important to exploit
sparsity. First, the memory required to store the full matrix including all
the zero entries might easily exceed the physical memory of an ordinary
workstation even for moderate accuracy in a complex system. Second there
are special solution techniques available for sparse matrices that reduce the
number of arithmetic operations required to solve the linear system from
O(n3) for straight-forward Gaussian elimination to something much lower.
These include both direct methods where the variables and equations are
reordered before the Gaussian elimination to reduce the bandwidth of the
matrix, and iterative methods such as the conjugate gradients method and
the multigrid method of which the latter is unique in that it can find the
solution to the system in O(n) operations. We shall return to this subject
in Sec. 3.5.4.

Finally we note that the Galerkin method is not special to the finite
element method but is also used e.g. in spectral methods.

3.2.2 The Lax-Milgram theorem

The Lax-Milgram theorem is important in FEM since it states the existence
and uniqueness of a solution for a large class of problems of interest.

Before we can state the theorem we need to introduce a new norm ‖·‖Hm

in our function space H, in addition to the L2 norm ‖ · ‖ that we already
discussed. The new norm is called a Sobolev norm and it measures both the
function and its derivatives up to some order m

‖v‖Hm =
(m∑

k=0

∥∥∥ ∂kv

∂xk

∥∥∥
2
)1/2

. (3.12)

In the case of a second order differential operator which is our primary
interest this reduces to

‖v‖H1 =
(
‖v‖2 + ‖∇v‖2

)1/2
=

(
〈v, v〉+ 〈∇v; ∇v〉

)1/2
. (3.13)

3.3 Finite elements 23

With this definition we can be more explicit about what functions we want
to include in the function space H. If we are solving a problem with a
differential operator L that involves differentiation up to order 2m, then for
all v ∈ H we must require ‖v‖Hm < ∞ in order for the definition of a weak
solution in Eq. (3.5) to make sense.

The Lax-Milgram theorem requires the operator L to be linear and also
bounded |〈Lv, w〉| ≤ β‖v‖H‖w‖H and coercive 〈Lv, v〉 ≥ κ‖v‖2

H for some
constants β and κ.2 It then states that the problem

〈v,Lw − f〉 = 0, for all v ∈ H (3.14)

has got a unique solution in H. Further the Céa lemma states that the
solution uh that is obtained by applying the Galerkin method Eq. (3.9) with
some subspace Hh ⊂ H satisfies

‖u− uh‖H ≤ β

κ
min
v∈Hh

‖u− v‖H , (3.15)

that is, the distance from the true solution u to the discrete solution uh is
no more than a factor of β/κ from the best approximation to u that can
be made in Hh. This is a strong result since it reduces the question of
error analysis to a simple question of approximability. In Sec. 3.3 we extend
on the idea of the chapeau functions to construct basis functions that are
well suited for approximation and in Sec. 3.3.2 we discuss on the basis of
Eq. (3.15) the convergence properties of the resulting numerical schemes.

3.3 Finite elements

The device for constructing a basis set in the finite element method is the
partitioning of the domain Ω into a set of smaller domains called elements,
as indicated in Fig. 3.2. In two dimensions the most obvious choices are
either triangular or quadrangular elements. The basis functions are chosen
to be polynomial within each element and are then matched at element
boundaries to ensure continuity and possibly also higher order smoothness.

The basis is said to be of accuracy p if within each element the basis
functions span the space Pp of polynomials of degree ≤ p on that element.
Also the basis is said to be of smoothness q if the basis functions globally
belong to the Cq−1(Ω) class of functions, that is, if they are q − 1 times
smoothly differentiable over the entire domain Ω. Thus the chapeau func-
tions discussed in Sec. 3.1 that were observed to span the space of continuous
piecewise linears are of accuracy p = 1 since within each element any linear
function can be interpolated while their first derivatives jump at element
boundaries such that they are only C0 functions on Ω and q = 1.

2It is not always straightforward to prove coercivity and boundedness. Still our
favourite operator −∇2 is bounded and coercive for most domains of interest [5].

24 The finite element method

Terms in bivariate polynomial dimP2
p

1 1
x y 3

x2 xy y2 6
x3 x2y xy2 y3 10

x4 x3y x2y2 xy3 y4 15

Table 3.1: Terms in bivariate polynomials of total degree p zero through four. In general
dimP2

p is related to p as dimP2
p = 1

2
(p + 1)(p + 2).

3.3.1 Lagrange elements

We wish to generalize the construct of the chapeau functions to basis func-
tions of higher accuracy p, but stay with smoothness q = 1 only since C0

bases are well suited for solving second order differential equations. We shall
proceed by defining in a coordinate-free way a basis set that spans Pp inside
the individual elements. Further the element basis is constructed in such a
way that when the elements are subsequently patched together the element
basis functions naturally combine to form C0 functions on the entire domain
Ω.

Triangular elements

First we focus on triangular elements for which we choose the element basis
to be simply the Lagrange interpolation polynomials for a set of equispaced
interpolation points or nodes in the element.

We recall the concept of Lagrange interpolation in one dimension: given
a set of p + 1 distinct points x0, x1 . . . , xp on the x-axis, the Lagrange inter-
polation polynomials ϕk ∈ P1

p are defined as

φk(x) =
∏

j 6=k

x− xj

xk − xj
, k = 0, 1 . . . , p, (3.16)

where φk(xk) = 1 while φk(xj) = 0 for all j 6= k. Then for a set of function
values f0, f1 . . . , fp there exist a unique polynomial f̃(x) of degree p that
interpolates the values fj , that is, such that

f̃(xj) = fj for j = 0, 1 . . . , p, (3.17)

and this polynomial can be written explicitly as f̃(x) =
∑

j φj(x)fj . It is
obvious that all p + 1 Lagrange polynomials are linearly independent and
thus that they provide a basis for the space P1

p of all polynomials of degree
≤ p in one variable since dimP1

p = p + 1.
In two dimensions we find that the maximal number of terms in a general

polynomial of degree p in x and y grows to dimP2
p = 1

2(p + 1)(p + 2); this is

3.3 Finite elements 25

indicated in Tab. 3.1 showing the various terms in bivariate polynomials of
increasing degree. We obtain an element basis for P2

p simply by introducing
dimP2

p nodes in the element and require that each basis function be zero at
all element nodes except one.

Fig. 3.3 shows the standard interpolation patterns employed for linear,
quadratic, and cubic interpolation, that is, accuracy p = 1, 2, and 3 re-
spectively. Notice that we place p + 1 nodes on each element edge with a
distribution that is symmetric about the edge midpoint. This ensures that
when the elements are patched together, neighboring elements always agree
on the position of the p + 1 nodes on their common edge. The edge being
a straight line segment the basis functions there behave as univariate poly-
nomials of order p, and thus the interpolation of p + 1 points is unique and
continuity is ensured of the global basis functions obtained by combining
element basis functions associated with the various nodes.

Quadrangular elements

Turning to quadrangular elements we find that it is not possible to define
basis functions that are globally continuous and e.g. linear within each
element. However it is possible to construct a basis set with basis functions
that are uniquely determined by being linear on all four element edges and
zero at all element corner nodes except one where they take on value 1.
This is called bilinear interpolation and an example is shown in the top
row of Fig. 3.4. Similiarly biquadratic and bicubic element basis functions
can be defined. Generally the quadrangle Lagrange element basis with p’th
degree interpolation contains (p + 1)2 basis functions whereas we saw that
dimP2

p = 1
2(p + 1)(p + 2). Thus the basis functions span a space of higher

dimension than P2
p. This does not necessarily mean that the basis spans P2

p

– but it actually does.

3.3.2 Convergence properties

We now return to the Céa lemma Eq. (3.15) which states that the error of
the FEM solution is bounded in terms of the best approximation that can
be made to the true solution from Hh. If we consider for the moment only a
single element Ωα with Lagrange element basis functions of accuracy order
p, then a good approximation to u could be obtained as a p’th degree Taylor
polynomial utaylor,p. Then by Taylors remainder formula, for all points inside
the element the error would be bounded by

|u− utaylor,p| ≤ 1
(p + 1)!

|u(p+1)|hp+1 (3.18)

where u(p+1) is the p+1’th derivative of u for some point inside the element
and h is the diameter of the smallest circumscribed circle. Now, we cannot

26 The finite element method

Interpolation
pattern

Vertex type Edge type Interior type

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 3.3: Interpolation patterns on the triangle and examples of different types of
Lagrange element basis functions. First row corresponds to linear interpolation, second
row to quadratic, and third row to cubic, with accuracy p = 1, 2, and 3 respectively.
First column shows the positions of the element nodes. The element basis functions are
determined such that they are zero at all element nodes except one where they take
on the value 1. Column two to four shows examples of element basis functions that are
associated with an element corner node (vertex), egde node, and interior node respectively.
When the individual element is pathced together with its neighbors to form global basis
functions in Ω, element basis functions associated with shared nodes are combined to
ensure C0 smoothness. Thus interior node type basis functions remain supported only
within a single element, whereas edge node type basis functions are supported in the two
elements that share the common edge, and vertex node type basis functions are supported
in all elements that share the common vertex. Notice that while the resulting global basis
is continuous the basis functions will generally have jumps in the derivative normal to
element boundaries.

3.3 Finite elements 27

Interpolation
pattern

Vertex type Edge type Interior type

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 3.4: Bilinear (first row), biquadratic (second row) and bicubic (third row) inter-
polation patterns on the quadrangle and examples of different types of Lagrange element
basis functions. The corresponding accuracies are p = 1, 2, and 3, respectively.

28 The finite element method

actually choose the approximation that freely since it has to be continuous
across element boundaries. However a similiar result holds for a p’th degree
interpolation polynomial uinterp,p over a given set of points. Then for each
element

‖u− uinterp,p‖Hi ≤ Chp+1−i‖u(p+1)‖ (3.19)

for 0 ≤ i ≤ p+1, where C is some constant [6]. For a second order operator
we measure the error in the H1 norm and then the interpolation polynomial
approximates u at least as good as Chp‖u(p+1)‖. According to the Céa
lemma the error of the FEM solution is no more than a factor of β/κ times
this value. Moreover it is typically found that if the error is measured in the
L2 norm instead, another power of h is gained reaching ‖u− uh‖ ∝ hp+1.

Equipped with this result we can discuss two distinct routes towards an
accurate FEM solution – namely the h-method and the p-method. In the h-
method one succesively refines the elements to obtain smaller h and a more
accurate solution. Refining the mesh by dividing every element into four
smaller element and thereby halfing h is called regular mesh refinement.

Notice however that it would be good policy to refine the mesh more
where u(p+1) is large; estimation of where this occurs and subsequent refine-
ment at these locations is termed adaptive mesh refinement. There exist
several techniques for estimating the error – and some simpler ones that do
not estimate the error but only indicate in which elements it seems to be
larger than in the others. We have implemented adaptive mesh refinement
using a particularly simple such error indicator proposed in [7] for the Pois-
son equation −∇2u = f . A set of element error indicators eα are computed
as

eα =
(|Ωα| ‖∇2uh + f‖2

Ωα
+

∑

Γ∈∂Ωα

|Γ| ‖b∂nuhc‖2
Γ

)1/2 (3.20)

where Γ denotes the sides of the element Ωα, |Γ| is the side length, |Ωα|
is the element area, and the symbol b∂nuhc indicates the jump in normal
derivative for the FEM solution uh from this element to its neighbours. The
idea is simple: if either the solution does not satisfy the governing equation
in the interior of the element or if it has jumps in the slope from one element
to another, then the local resolution is not sufficient and the mesh is refined.

In the p-method the mesh is refined not by decreasing the mesh size h
but by increasing the order of accuracy p. Notice that the number of nodes
in the final mesh is the same after decreasing the mesh size from h to h/a
as after increasing the accuracy from p to p + a, c.f. Fig. 3.3. However in
the h-method the error would drop a factor of a−p whereas in the p-method
it would drop a factor of h−a, that is, exponentially fast! There is a prize
to be payed though – in the h-method only few basis functions overlap as
they have small support thus the system matrices are sparse, whereas in the
p-method all the basis functions for the nodes inside a particular element
overlap leading to rather dense matrices which makes the solution more

3.4 Quadrature 29

expensive. Further the p-method fails if the solution has a singularity in one
of its higher derivatives, since then the error bound becomes infinite. This
being said, there exist methods for shielding of singularities by surrounding
it with one or a few layers of small elements, with the effect that the bulk of
the solution remains accurate [7]. We have not investigated these matters
further, though.

3.4 Quadrature

In order to solve the discretized problem Eq. (3.9) obtained with the Galerkin
method we need to evaluate the inner products

〈
ϕk,Lu− f

〉
=

∫

Ω
dxϕk(x)[Lu(x)− f(x)]. (3.21)

Since the basis functions are defined to be piecewise linear or generally
piecewise polynomial within each element it is natural to divide the integral
into the sum of the contributions from the individual elements Ωα∫

Ω
dxϕk[Lu− f] =

∑
α

∫

Ωα

dxϕk[Lu− f]. (3.22)

Here the α sum needs only range over the elements in the support of ϕk

since it is zero elsewhere.
The evaluation of the integrals is further simplified by mapping the ar-

bitrary triangular or quadrangular integration domains in the xy-plane to
a simple reference right-angled triangle or square element in the integration
coordinate ξη-plane, see Fig. 3.4. Given a coordinate transform x = x(ξ)
with ξ = (ξ, η) that maps the reference domain A onto Ωα, then integrals
over Ωα transform simply as

∫

Ωα

dx g(x) =
∫

A
dξ g

(
x(ξ)

) ∣∣J(ξ)
∣∣, (3.23)

where |J | is the determinant of the Jacobian matrix J =
[

∂x
∂ξ

]
for the

coordinate transform x(ξ).
The triangular reference element is chosen as the right-angled triangle

domain
A =

{
ξ

∣∣ 0 < ξ < 1, 0 < η < 1− ξ
}

. (3.24)

The simplest coordinate transform that maps A onto an arbitrary triangle
is obtained using the reference element linear basis functions that are simply

χ1(ξ, η) = 1− ξ − η (3.25a)
χ2(ξ, η) = ξ (3.25b)
χ3(ξ, η) = η. (3.25c)

30 The finite element method

1 2

3

ξ

η
2

31

x

y

1 2

34

ξ

η
2

3

41

x

y

Figure 3.5: Mapping of arbitrary triangular and quadrangular elements to the reference
elements A in the integration coordinate ξη-plane. We always do the numbering [1, 2, 3
and 4] of the element corner nodes in counterclockwise order.

With this definition we can take

x(ξ) =
3∑

i=1

xi χi, (3.26)

where xi = (xi, yi) is the i’th corner node in Ωα. Since the transform is
linear, it maps the reference element edges to straight lines in the xy-plane
connecting the points x1, x2 and x3, and it is easily verified that Ωα = x(A).

The quadrangular reference element is chosen as the square domain

A =
{

ξ
∣∣− 1 < ξ < 1, −1 < η < 1

}
. (3.27)

Introducing the bilinear element basis functions on the reference element

χ1(ξ, η) = (1− ξ)(1− η)/4 (3.28a)
χ2(ξ, η) = (1 + ξ)(1− η)/4 (3.28b)
χ3(ξ, η) = (1 + ξ)(1 + η)/4 (3.28c)
χ4(ξ, η) = (1− ξ)(1 + η)/4, (3.28d)

the coordinate transform is taken as

x(ξ) =
4∑

i=1

xi χi. (3.29)

Since the transform is linear along vertical and horizontal lines in the ξη-
plane we find again that the reference element edges are mapped to straight
lines in the xy-plane connecting the element corners x1, x2, x3 and x4,
and further that Ωα = x(A) provided the corner nodes xi are numbered in
counterclockwise order.

Notice that the coordinate transforms introduced map the nodes of an
equispaced interpolation pattern in A to the correct corresponding pattern
in Ωα. Therefore if ϕk(x) is the Lagrange element basis function associated
with xk in Ωα, and φk(ξ) is that associated with ξk in A and xk = x(ξk),
then

ϕk

(
x(ξ)

)
= φk(ξ). (3.30)

3.4 Quadrature 31

Or, employing the inverse transform ξ(x)

ϕk(x) = φk

(
ξ(x)

)
. (3.31)

These are important relations: in order to evaluate ϕk(x) with x ∈ Ωα

we need not know the polynomial coefficients for ϕk on Ωα – rather we can
simply map from Ωα toA and employ an expression for φk that is common to
all elements. Moreover it is in fact ϕk

(
x(ξ)

)
= φk(ξ) that enters Eq. (3.23);

this is nice in particular for quadrangular elements since for those x(ξ) is
non-linear and the construction of the inverse transform ξ(x) is not simply
straightforward.

The integrand in Eq. (3.23) often depends on the gradient of ϕk, which
is not directly available but needs to be computed from

∂ϕk(x)
∂x

=
∂φk

∂ξ

∂ξ

∂x
+

∂φk

∂η

∂η

∂x
, (3.32)

and similiarly for ∂ϕk/∂y. The terms ∂ξ/∂x and ∂η/∂x are recognized as
elements in the inverse of the Jacobian matrix introduced above

J−1 =

[∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

]
=

1
|J |

[∂y
∂η −∂x

∂η

−∂y
∂ξ

∂x
∂ξ

]
, (3.33)

from which we obtain the gradient
[

∂ϕ
∂x

∂ϕ
∂y

]
=

1
|J |

[∂y
∂η −∂y

∂ξ

−∂x
∂η

∂x
∂ξ

][∂φ
∂ξ

∂φ
∂η

]
. (3.34)

For second order differential operators we generally apply partial integration
to the second order terms to reduce the smoothness requirements on the
basis, in which case the integrand in Eq. (3.21) does not depend on the
curvature ∇2ϕk of the basis functions. However the element local error
indicators introduced in Sec. 3.3.2 for adaptive mesh refinement do depend
on curvature. The formulas required to compute ∇2ϕk are somewhat more
complex than Eq. (3.34) and they are presented in Appendix A.

Finally we mention that if a set of higher order reference element basis
functions are applied for the coordinate transform than the linear or bilinear
ones discussed above then we can map the reference element A onto a trian-
gle or quadrangle element with curved sides. E.g. for a triangle element we
could employ quadratic basis functions for the coordinate transform – then
in addition to the triangle corner nodes we should decide on the position
of some point on each of the triangles sides. The quadratic transform then
maps the regular straightsided reference domain A onto a triangular domain
in the xy-plane whose sides are quadratic curves that interpolate both the
side endpoints and the extra point along the side.

32 The finite element method

This feature is important in particular for problems where the bound-
ary of the domain Ω is curved. If high order basis functions are used to
represent the solution while the boundary of the computational domain is
approximated as being piecewise linear then the solution accuracy may de-
grade close to the boundary. Better results are generally obtained using the
same basis functions for both the coordinate transform and the represen-
tation of the solution, in which case on speaks of isoparametric elements.
However, in most of the problems that we have been considering we have
found that it was sufficient to use the simple coordinate transforms.

3.4.1 Analytical expressions

In this section we include some simple formulas for element integrals that can
be performed analytically. The formulas are instructive and also straight-
forward to implement in a computer code as we demonstrate in a short
example. Thus if the theory and the concepts introduced so far seems com-
plicated and difficult to apply in practice, we wish to show that it is actually
not!

We consider the simple case of triangular elements with straight sides
so that we can employ the linear coordinate transform in Eqs. (3.25). Then
the Jacobian matrix is constant such that the determinant |J | can be moved
outside the integral in Eq. (3.23). Additionally we assume that the integrand
g
(
x(ξ)

)
does not depend explicitly on x and y – this is the case when it

depends only on the basis functions as stated in Eq. (3.30). Finally we
choose the basis functions ϕk to be piecewise linear since in this case the
results are particularly simple.

By differentiation of Eq. (3.25) with respect to ξ and η we obtain the
Jacobian

J =
[
∆x12 ∆x13

∆y12 ∆y13

]
(3.35)

where ∆xij = xj − xi and similiarly for y. We compute the area of an
element Ωα by setting g = 1 in Eq. (3.23) and obtain

Aα =
∫

Ωα

dx =
∫

A
dξ |J | = 1

2
[
∆x12∆y13 −∆x13∆y12

]
. (3.36)

The volume below a basis function is found to be
∫

Ωα

dx ϕk(x) =
1
3
Aα (3.37)

which should be well-known from solid geometry. Since we have chosen basis
functions that are piecewise linear, their gradient is constant within the
element, and we compute it using Eq. (3.34). Then the contribution to the

3.4 Quadrature 33

stiffness matrix Kk` = 〈∇ϕk; ∇ϕ`〉 that we obtain for the negative Laplace
operator −∇2 after integration by parts is from the particular element Ωα

[
Kk`

]
Ωα

=
∫

Ωα

dx ∇ϕk ·∇ϕ` = Aα ∇ϕk ·∇ϕ` . (3.38)

Another operator encountered frequently is the unit operator 1 . Projection
onto ϕk yields

〈ϕk, 1u〉 = 〈ϕk, u〉 =
∑

`

〈ϕk, ϕ`〉u` (3.39)

for u =
∑

` u`ϕ`. The matrix with elements 〈ϕk, ϕ`〉 is often termed the
mass matrix M and for piecewise linear basis functions the elemenwise con-
tributions are

[
Mk`

]
Ωα

=
∫

Ωα

dx ϕk ϕ` =
1
12

(
1 + δk`

)
Aα. (3.40)

where δk` is the Kronecker delta. Considering more generally the opera-
tion of multiplication by a scalar function a(x) we can approximate it by
replacing a with a piecewise linear approximation a =

∑
m amϕm. Then the

elementwise contributions to the matrix representing this operator turn into
∫

Ωα

dx ϕk a(x)ϕ` '
∫

Ωα

dx ϕk

[∑
mamϕm

]
ϕ`

=
[
ak + a` +

∑
mam + δk`

(
2a` +

∑
mam

)]
Aα/60 . (3.41)

This expression was obtained using the following general result for integrals
on the reference element

∫ 1

0
dξ

∫ 1−ξ

0
dη

[
ξαηβ(1− ξ − η)γ

]
=

Γ(α + 1)Γ(β + 1)Γ(γ + 1)
Γ(α + β + γ + 3)

(3.42)

where α, β and γ are arbitrary powers greater than −1 and Γ(x) is the
Gamma function; notice that Γ(n + 1) = n! for integer n.

We now proceed to show how the above formulas for the element integrals
can be almost directly translated into a program in Matlab or any other
programming language. In order to do this we consider a model problem

−∇2u + a(x)u = f(x), x ∈ Ω (3.43)

where we shall approximate a and f as being piecewise linear. Discretizing
with the Galerkin method and performing partial integration for the Laplace
operator we obtain a system of linear equations

Ku + Mau = f + b.t. (3.44)

34 The finite element method

Example 3.1

% Assemble matrices K and Ma and right hand side F for the problem

% -nabla^2 u + a(x) u = f(x)

% using piecewise linear basis functions. Finite element mesh points

% and triangles are given as the variables p and t. Expansion

% coefficients for a(x) and f(x) are given as variables a and f.

K = sparse(length(p),length(p));

Ma = sparse(length(p),length(p));

F = zeros(length(p),1);

% loop elements in mesh

for m = 1:length(t)

% global indices of element corners

n = t(1:3,m);

% Jacobian matrix

J = [p(1,n(2))-p(1,n(1)) p(1,n(3))-p(1,n(1))

p(2,n(2))-p(2,n(1)) p(2,n(3))-p(2,n(1))];

detJ = J(1,1)*J(2,2) - J(1,2)*J(2,1);

% element area

A = detJ/2;

% derivatives of basis functions

phix = [J(2,1)-J(2,2); J(2,2); -J(2,1)]/detJ;

phiy = [J(1,2)-J(1,1); -J(1,2); J(1,1)]/detJ;

% loop nodes in element

for i = 1:3

for j = 1:3

K(n(i),n(j)) = K(n(i),n(j)) + A*(phix(i)*phix(j) + phiy(i)*phiy(j));

Ma(n(i),n(j)) = Ma(n(i),n(j)) + A*(a(n(i)) + a(n(j)) + sum(a(n)))/60;

end

Ma(n(i),n(i)) = Ma(n(i),n(i)) + A*(2*a(n(i)) + sum(a(n)))/60;

F(n(i)) = F(n(i)) + A*(f(n(i)) + sum(f(n)))/12;

end

end

where the boundary term b.t. arises from the partial integration. In the
Example 3.1 it is assumed that we have already obtained a finite element
mesh covering Ω. The data structure that we use for the mesh is described
in detail in Sec. 3.5.1; in short we make use of a 2 by np table of mesh
vertices or points p such that the x and y coordinates of the k’th point xk

are stored in p(1,k) and p(2,k) respectively. Also we use a 3 by nt table
of mesh triangles t such that t(1,n) contains the index of the point at first
corner of the n’th triangle, and t(2,n) and t(3,n) the indices of the points
in the second and third corners. Finally in the example it is assumed that
the values of the functions a(x) and f(x) at the mesh points xk are given

3.4 Quadrature 35

as two np by 1 tables a and f.
For every element the example first computes the Jacobian matrix and

its determinant using Eq. (3.35). Next the element area is given by Eq. (3.36)
and the derivatives of the element basis functions are obtained from Eq. (3.34)
using φ1 = 1− ξ − η, φ2 = ξ and φ3 = η. The elementwise contributions to
K and Ma are implemented directly from Eqs. (3.38) and (3.41).

The example demonstrates an important feature – in stead of looping
over the basis functions ϕk, each corresponding to a row in K, and summing
over contributions from elements Ωα in the support of each particular ϕk as
indicated originally in Eq. (3.22) – we might as well loop over the elements
and add for each particular Ωα the contributions to all ϕk that contain this
Ωα in their support; but these are exactly those basis functions associated
with the corner nodes of Ωα.

Finally we note that before the problem can actually be solved we need
to modify the equations to account for boundary conditions. For points xk

on the Neumann part of the boundary there is an extra contribution to fk
from the boundary integral. For points on the Dirichlet boundary we replace
the kth row in K and Ma by zeros, put a one at the diagonal entry Kkk

and replace fk by the value of the Dirichlet condition at xk.
Then the system is ready for solution e.g. using Matlab’s built-in linear

solver as u = (K+Ma)\F. The algorithm that hides behind the backslash
operator is actually quite efficient in solving problems involving large and
sparse matrices as we shall discuss in Sec. 3.5.4.

3.4.2 Gauss-Legendre quadrature

While the explicit formulas for the element integrals discussed in the pre-
vious section are simple and easy to implement, in some cases it turns out
to be preferable to perform the element integrals numerically rather than
analytically. Indeed we only treated the case of linear basis functions as for
quadratic or higher order basis functions the expressions become increas-
ingly complicated. Also it may not be appropriate to replace the coefficient
and source terms like a and f in Example 3.1 with their piecewise lin-
ear aproximations for doing the integrals. And for quadrangle elements or
triangle elements with curved sides the coordinate transform from the ref-
erence element to the actual elements in the xy-plane is non-linear so that
the Jacobi-determinant cannot be moved outside the integral which was a
premise for the simple results.

However the finite element method readily lends itself to numerical in-
tegration as the computational domain Ω, unwieldy as it may be, is already
divided into regular elements. Also we discussed how to map those elements
onto a completely regular reference element in the integration coordinate
space.

Numerical integration or quadrature generally amount to approximating

36 The finite element method

the definite integral of some function f(x) over an interval [a, b] by evaluating
the integrand at a number N of points xi in [a, b] and adding up f(xi) with
some specific weights Wi

∫ b

a
dx f(x) '

N∑

i=1

Wi f(xi) . (3.45)

A familiar example is the midpoint quadrature rule where f is evaluated at
N equispaced points xi in the interval and the same weight W = b−a

N is used
for all points. The error on the result obtained is of the order of |b−a|3/N2.

It turns out that there are more efficient ways of choosing the quadrature
points and weights – and the choice that is obtained by optimizing the
ability of the formula to integrate polynomial integrands is called a Gaussian
quadrature rule. As there are N degrees of freedom associated with the
choice of xi and other N with the choice of Wi and since the Eq. (3.45)
is linear in the integrand we hope to be able to determine correctly the
integral of all of 1, x, x2, . . . x2N−1 and generally any polynomial of degree
≤ 2N − 1. The proof by Gauss that this is indeed possible employs the
theory of orthogonal polynomials to show that the N quadrature points
should be chosen as the roots in the Nth degree Legendre polynomial PN (ξ)
with corresponding weights Wi = 2(1− ξ2

i)/[(N + 1)PN+1(ξi)]2 – where we
assume now that the arbitrary interval x ∈ [a, b] has been mapped onto the
reference interval ξ ∈ [−1, 1].

In Tab. 3.2 the positions and weights for the first few N are listed.
Similiar results are tabulated in [8] up to N = 512 with 30 digits of accuracy.
In order to perform element integrals on the quadrangle reference element
that we introduced with (ξ, η) ∈ [−1, 1]× [−1, 1] we simply apply the line
integral rule to both ξ and η.

For the triangle reference element matters are somewhat more compli-
cated. Applying the line integral rule directly to the integral in the form∫ 1
0 dξ

∫ 1−ξ
0 dηf(ξ, η) clusters a waste amount of points close to the corner

(ξ, η) = (1, 0) and because of asymmetry the numerical results obtained
using such a formula depend on the numbering of the corner nodes, c.f.
Fig. 3.4. A direct approach to optimization of the ability to integrate poly-
nomials up some power by adjusting the quadrature point positions ξi, ηi

and weights Wi is difficult as the problem is highly nonlinear in ξi and ηi.
Yet this is the approach taken in [9] where symmetric rules are computed
with degree of precision up to 20.

Notice that since we have defined the basis functions to be polynomials
within each element the numerical integration employing Gaussian quadra-
ture rules is particularly appropriate. When the integrand depends only on
the basis functions, e.g. as for the mass matrix Mk` = 〈ϕk, ϕ`〉, we are
able to choose the number of integration points as the minimum required
to yield the exact result. However even for integrands that are not polyno-

3.4 Quadrature 37

Gaussian quadrature rules for line integrals over interval ξ ∈ [−1, 1].

#points Positions Weights Precision

N ξi Wi

1 {0} {2} 1

2 {± 1√
3
} {1} 3

3 {0,±
√

3√
5
} {8

9 , 5
9} 5

Gaussian quadrature rules for integrals over triangle with 0 < ξ < 1 and 0 < η < 1− ξ.

#points Positions Weights Precision

ξi ηi Wi

1 {1
3} {1

3} {1
2} 1

3 {2
3 , 1

6 , 1
6} {1

6 , 2
3 , 1

6} {1
3 , 1

3 , 1
3} 2

4 {1
3 , 3

5 , 1
5 , 1

5} {1
3 , 1

5 , 3
5 , 1

5} {−27
48 , 25

48 , 25
48 , 25

48} 3

Table 3.2: Gaussian quadrature rules for line integrals and area integrals on triangular
domain. The precision denotes the highest order polynomial for which the rule yields the
exact result [8, 9].

mial Gaussian quadrature generally yields very good results which can be
attributed to the fact that most functions can be well approximated on a
finite interval by some polynomial.3 And even integrands that are singular
or undefined at the integration interval endpoints can be handled since the
Gaussian quadrature points always lie in the interior of the interval.4

We have implemented a routine gquad for elementwise Gaussian quadra-
ture. We describe it in detail in Sec. 3.5 but the basic syntax is as follows

I = gquad(f,#ng,element,p,t,flag)

The first argument f describes the integrand and should be a character string
that can be evaluated to a function of x and y, e.g. ’sin(2*pi*x)+y’. The
second #ng is a number specifying which rule to use; there is a slight incon-
sistency in that for line and quadrangle elements #ng specifies the number
of quadrature points N which yields a precision of 2N − 1 as discussed
above – whereas for triangle elements #ng specifies simply the degree of
precision. The third argument element should be one of the strings ’line’,
’triangle’ or ’quadrangle’ specifying the element type and the fourth
and fifth arguments p and t tables containing the mesh points and elements

3E.g. when the coordinate transform is non-linear then the derivatives of the basis func-
tions as obtained from Eq. (3.34) are rational functions rather than simple polynomials;
thus they are not integrated exactly by Gaussian quadrature.

4This is not true for all of the rules given in [9] where some quadrature points are
located slightly outside the triangular reference element.

38 The finite element method

Example 3.1a

% Assemble matrices K and Ma and right hand side F for the problem

% -nabla^2 u + a(x) u = f(x)

% using piecewise linear basis functions. Finite element mesh points

% and triangles are given as the variables p and t.

% strings defining the coefficient and source term

a = ’sin(x).*sin(y)’;

f = ’1 + exp(-y.^2)’;

i = [1 2 3 1 2 3 1 2 3]; % matrix row indices in t

j = [1 1 1 2 2 2 3 3 3]; % matrix column indices in t

K = gquad(’’,1,’triangle’,p,t,’dphi.dphi’); % elementwise quadrature

K = sparse(t(i,:),t(j,:),K,length(p),length(p)); % assemble matrix

Ma = gquad(a,5,’triangle’,p,t,’phi.phi’);

Ma = sparse(t(i,:),t(j,:),Ma,length(p),length(p));

i = [1 2 3]; % vector row indices in t

F = gquad(f,4,’triangle’,p,t,’phi’);

F = sparse(t(i,:),1,F,length(p),1);

Condensed version of Example 3.1 using the gquad routine. For the stiffness and mass
matrices gquad returns a table with nine rows and as many columns as there are triangles
in the triangle table t. The nine rows correspond to all combinations of the three corners
of the triangle, and the variables i and j shows the order followed by gquad e.g. for the
integral

∫
Ωα

dx ∇ϕi ·∇ϕj . That is, first three rows in the result correspond to i = {1, 2, 3}
and j = 1 and rows four to six to i = {1, 2, 3} and j = 2 and so forth.
Since we use the default piecewise linear basis functions the gradients are constant within
each element so a single quadrature point #ng = 1 is sufficient when computing K.
The element integrals for Ma involve the product of two linear basis functions which
requires degree of precision #ng = 2; thus choosing #ng = 5 we effectively approximate
a(x) = sin(x) cos(x) with a polynomial of degree three within each triangle. Similiarly for
f(x) in computing f .
Example 3.1a executes approximately an order of magnitude faster than the loop version.

as described in detail in Sec. 3.5. Finally the optional flag should be one
of the strings ’’, ’phi’, ’phi.phi’ or ’dphi.dphi’ specifying whether the
routine should simply perform an element integral

∫
Ωα

dx f(x) or rather a
projection onto the basis functions as

∫
Ωα

dx f(x) ϕk, or compute contribu-
tions to a mass or stiffness matrix as

∫
Ωα

dx f(x)ϕkϕ` or
∫
Ωα

dx f(x)∇ϕk·∇ϕ`.
Depending on the flag specified, the result produced by gquad is either

a single number for the simple integral, a list of the projections onto each
basis function ϕk in the element, or a list of projections onto each pair of
ϕk and ϕ` for the mass or stiffness matrix integrals.

A key feature in gquad is that it allows vectorized operation meaning
that it allows element integrals of the same type to be performed for several
elements at once. This is an important concept when working with Matlab

3.5 Implementation 39

since performance generally proves to be rather poor for loop structures but
quite efficient for vector and matrix operations. Thus we could think of
dropping the outer for loop in Example 3.1 and do the arithmetic operations
not on single numbers for a particular element but on lists of numbers for
the corresponding quantities in all elements in the triangle table t.

Using the gquad routine the operations performed in Example 3.1 are
condensed to the form in Example 3.1a. The example assumes the particular
form a(x) = sin(x) sin(y) and f(x) = 1 + exp(−y2) for the coefficient and
the source term respectively.

3.5 Implementation

In this section we discuss some specific aspects of our implementation of the
finite element method in Matlab. Particular features of our implementa-
tion include support for Lagrange element basis functions in one and two
dimensions of any order of accuracy, and simple computation of element in-
tegrals using the gquad routine described in Sec. 3.4.2. The gquad routine is
also useful for postprocessing of data, e.g. computation of total flow through
a part of the boundary or total charge in a section of the domain.

Adaptive solution is supported with the routine gjmp that computes the
jump in normal derivative across element boundaries, which is required by
the error indicator discussed in Sec. 3.3.2. Whereas this task is almost trivial
in the case of triangular elements with linear basis functions since the slope
of the solution is then constant over each element, it is more involved for
higher order basis functions. The error in the interior of each element is
computed with gquad.

We have implemented the multigrid method, which is a fast iterative
solution strategy for problems with very fine meshes that would be almost
impossible to solve within finite time using direct methods. This feature is
not used in any of the applications that we treat in the subsequent chapters,
but still the implementation of the method has required quite an effort.
However, while the method works fine for the Poisson equation, we have
had problems using it for flow problems.

Finally, for nonlinear problems we provide a routine newt for solving
it with Newtons method. In order to use this routine we require the user
to implement a function that computes the residual and Jacobian for the
problem. In particular for the problem of electroosmotic flow discussed in
Chap. 7 we must admit that the implementation of such a function was
cumbersome, even if rather straightforward, as the solution contains six
components counting the fluid velocity vx and vy, pressure p, electrostatic
potential φ and the concentration of two charged species in the liquid.

We proceed by first explaining the details of the mesh data structure that
we have chosen. Next we introduce the syntax for the Lagrange element basis

40 The finite element method

functions and show how this is used with the Gaussian quadrature routine
gquad. Then we discuss different strategies for solving the system of linear
equations for the discretized problem – either direct methods relying on
Gaussian elimination, or iterative methods including the conjugate gradients
method and the multigrid method. Finally we explain how to solve a system
of non-linear equations by use of Newtons method.

In Appendix C we have listed the headers of all the routines mentioned
in this section. Header comments are displayed as help message when e.g.
the command help gquad is executed in the Matlab command prompt;
thus they are intended to give a quick overview of what the routine does.

3.5.1 Mesh data structure

We have chosen to adopt the mesh data structure of the Matlab PDE tool-
box [10], which is a module for handling elliptic partial differential equations
in two dimensions. The toolbox relies solely on triangular elements and lin-
ear basis functions, and further it is not well suited for fluid dynamics since
the convective term does not fit with the generic elliptic model used in the
toolbox. However it provides easy meshing facilities where the geometry is
described as a combination of solid objects such as rectangles and circles,
or in terms of a user-defined geometry subfunction. Thus we have chosen to
rely on this meshing facility.

The data structure consist of a mesh point matrix p, a triangle matrix
t and a boundary matrix e. The point matrix is 2 × np, where np is the
total number of points, and p(1:2,n) contains the x and y coordinate of
the nth point respectively. The triangle matrix is 4 × nt, where nt is the
total number of triangles in the mesh, and t(1:3,n) contains the indices
of the three mesh points spanning the nth triangle. The fourth component
t(4,n) contains a number, the so-called subdomain label, which is used to
group elements together – e.g. the inside and the outside of a channel as
used in Chap. 7. The boundary table is 7 × ne, where e(1:2,n) contains
the indices of the two points spanning the nth line element of the boundary.
Further e(5,n) is the boundary segment label, and the rest of the entries
in e are used to define the parametrization of the boundary.

The PDE toolbox only allows the use of triangle elements; however we
spoke to several experienced FEM practitioners that preferred using quad-
rangular elements, since they yield more accurate results. Therefore we
decided to add also quadrangular elements to our implementation. Thus we
define a quadrangle matrix q being 5× nq and containing the indices of the
four corner points in counterclockwise order and a subdomain label.

Further, in order to allow the use of higher order basis functions it is
necessary to have knowledge also about the unique lines in the mesh, con-
necting the mesh points, in order to be able to place edge type nodes on
these lines, c.f. Fig. 3.3. Therefore we also define a side matrix s, con-

3.5 Implementation 41

taining the unique element sides in the mesh. The side matrix is 2 × ns

with s(1:2,n) containing the indices of the two mesh points connected
by the nth side. We have implemented a small routine elm2sd, such that
s=elm2sd(e,t,q) determines the unique sides in the mesh provided the
boundary, triangle and quadrangle matrices. Further a call of the form
[s,es,ts,qs]=elm2sd(e,t,q) returns three matrices, each 1 × ne, 3 × nt

and 4× nq, relating the elements to their unique sides.
The PDE toolbox provides a mesh refiner refinemesh that implements

both regular and longest-edge mesh refinement, where regular mesh refine-
ment corresponds dividing every element in the mesh into four smaller ele-
ments. Also this routine allows that only a specific subset of the triangles
be refined. This is important in order to be able to do adaptive solution.

However, in order to accomodate also quadrangular elements, we have
implemented a routine halfmesh that allows mixed triangle and quadrangle
meshes to be refined. It only supports regular refinement and we wrote it
specifically to allow easy computation of the prolongation operators used in
the multigrid method.

3.5.2 Basis functions

In order to do numerical integration it is necessary to evaluate the element
basis functions on a number of quadrature points ξi, ηi inside each element.
For the Lagrange element basis, this is accomplished by a function lagrange
with the calling syntax, e.g. phi=lagrange(3,’quadrangle’,xi,eta) for
cubic basis functions on the quadrangular reference element.

If the element basis function, apart from the vertex nodes, contain also
ms nodes on each side and mt or mq on the triangle or quadrangle element
interiors, then the global solution will contain np+ms×ns+mt×nt+mq×nq

data items, which are collected in into a long column vector. Enhanced
element tables containing the indices in the large solution vector for all nodes
in the element are obtained as [ee,tt,qq]=lagrange(3,’table’,e,t,q),
again for the case of cubic basis functions.

3.5.3 Quadrature revisited

In Sec. 3.4.2 we explained how to use the gquad routine to perform element-
wise integrals for an integrand depending on the position x and y. However
gquad also allows the integrand to depend on the value of the solution as
well as its gradient and curvature. The most general case handled by gquad
is an integral of the form

∫

Ωα

dxdy f(x, y, u, v, w) ϕk ψ` (3.46)

where the quantities u, v and w are expansions of the form u =
∑

i uiχi,
v =

∑
j vjϕj and w =

∑
k wkψk, and χ is the basis functions used for the

42 The finite element method

coordinate transform. The syntax is then
I = gquad(f,#ng,element,p,{t,u},proj,{phi,tt,v},{psi,ttt,w})

where f is a string expression of the integrand, e.g. ’sin(u)+x.*w’. #ng
defines the precision of the quadrature rule to be applied, element is a
string defining the element type, p is the point matrix and t is the element
matrix – either e, t or q. proj is a string defining the projection to be
performed – either an empty string ’’ for the simple integral, ’phi’ or
’dphi’ for projection onto ϕk or ∇ϕk, or phi.phi, phi.dphi or dphi.dphi
for projection onto ϕkψ`, ϕk∇ψ` or ∇ϕk∇ψ` respectively. Finally phi
and psi are integers defining the Lagrange element order, tt and ttt are
enhanced element tables as returned by lagrange and u, v and w are column
vectors containing the expansion coefficients of the solution components.

Further gquad exploits symmetry in the case where ϕ and ψ are identical
since then

∫
dx fϕkϕ` =

∫
dx fϕ`ϕk.

3.5.4 Solution of linear system of equations

The most straightforward approach to solving the systems of linear equa-
tions obtained after discretizing the problem is to apply a direct solver. In
Matlab one calls upon the built-in solver by using the backslash operator,
as e.g. x = A\b, which invokes a method based on Gaussian elimination for
solving the system. Whereas Gaussian elimination for an m by m matrix
problem is generally an O(m3) operation, for a sparse matrix this can often
be reduced a great deal. E.g. for matrices that are banded, that is, for
which all elements outside the dth diagonal are zero, the cost is reduced to
O(d2m). The bandwidth of a matrix depends strongly on the ordering of
the points in the mesh; however the algorithm behind the Matlab back-
slash operator performs a row and column permutation before initiating the
solution process in order to make the solution as fast and memory efficient
as possible, and thus the ordering chosen is not important, which is very
convenient.

For small to medium sized problems the solution via the direct method
is preferred over the iterative methods since it is simple and fast. Only
for larger problems are the iterative methods more efficient, but then the
question of convergence of the iterative scheme is introduced as an extra
concern to the problem.

Conjugate gradients method

The conjugate gradients method is an iterative solution method that applies
to symmetric and positive definite matrices. The method solves a problem
Ax = b by minimizing the function F (x) = 1

2x
TAx−bTx as this has unique

minimum when Ax = b. The method only requires the computation of the
gradient ∂F

∂x , which is equal to the residual Ax− b, which is inexpensive

3.5 Implementation 43

to compute for sparse matrices. We shall not go into detail with the way
the method works, but only mention that it is in a sense an extension to
the steepest decent method, in which every step consist of minimizing the
function F along the steepest decent direction, i.e. the gradient [5, 11].
This is also how the first step in the conjugate gradients method is done,
but in the second step the algorithm takes into account both the old and the
new steepest decent direction to obtain a better search direction. It can be
shown that in every iteration the conjugate gradients method eliminates the
error in the initial guess for x along one of the eigenvectors, and thus that if
no round-off errors are present it terminates within a number of iterations
equal to the dimension of A. This is not particularly fast – however it turns
out that by preconditioning the set of equations one can obtain convergence
much faster. The preconditioning operation amounts to solving, rather than
Ax = b, a system of the form M−1Ax = M−1b where M should be a good
approximation to A, but easier to invert! Indeed using M = A the method
converges in one step, but of course if A−1 is available, the problem is already
solved. The simplest choise of preconditioner is to use the diagonal of A for
M, but this is not very efficient either. Another method that is often cited
to yield good convergence is the use of an incomplete LU -factorisation of A.
Matlab provides a function to compute such an incomplete factorization,
as well as an implementation of the conjugate gradients method and several
other iterative methods of the same class. However, we have generally only
had little succes with the use of those methods, but prefer either the direct
method discussed above or multigrid.

The multigrid method

The multigrid method is based on solving the system of equations on several
levels of coarseness simultaneously. The basic idea is to accelerate the con-
vergence of other iterative methods by applying them on several levels. As
many iterative methods work by solving the equations locally rather than
globally, they tend to converge slowly for very fine meshes since they miss
the global view. But applying the same iterative method on a coarser mesh,
its view becomes larger and it is now able to reduce also the long wavelength
components of the error.

The classical method used in conjunction with the multigrid method is
the Gauss-Seidel iterative scheme, that proceeds by solving the kth equation
〈ϕk,Lu− f〉 for the kth solution component uk assuming all other variables
are fixed. However, the kth equation then had better depend on uk and
not too much on the rest of the variables, which is equivalent to requiring
that the system matrix should be diagonally dominant. In the case of the
Navier-Stokes equations for incompressible flow, this is not the case with the
incompressibility constraint ∇ ·v = 0, which is independent of the pressure.
Other iterative methods that do not require the system to be diagonally

44 The finite element method

dominant can be applied, but we don’t know of any methods that are quite
as effective as the Gauss-Seidel method. One of the key features of the
Gauss-Seidel method in relation to multigrid is that it is a smoother, that is,
is can be shown to be very efficient in reducing short wavelength components
of the error.

We now sketch the basic working principle of the multigrid method, fol-
lowing [11]. We consider first two mesh levels, a coarse one of typical element
size H, and a fine one typical element size h = H/2 obtained by regular mesh
refinement of the coarse mesh. Because the fine mesh is constructed from
the coarse one, any function on the coarse mesh can be represented also
on the fine mesh, that is, HH ⊂ Hh. In particular, the coarse mesh basis
functions can be expressed as a linear combination of the fine mesh basis
functions, ϕH

` (x) =
∑

k Pk`ϕ
h
k(x). The matrix with elements Pk` is called

the prolongation operator, and it relates the expansion coefficients for any
function expressed on the coarse mesh to the expansion coefficients on the
fine mesh, since

uH(x) =
∑

`

uH
` ϕH

` (x) =
∑

`

uH
`

∑

k

Pk`ϕ
h
k(x) =

∑

k

uh
kϕh

k(x), (3.47)

where uh
k =

∑
` Pk`u

H
` , or in matrix notation uh = PuH . For Lagrange

element basis functions it is easy to construct the prolongation operator,
simply using Pk` = ϕH

` (xk) where xk is the node associated with the fine
mesh basis function ϕh

k .
We wish to solve the problem Lu = f on the fine mesh, and we define

uh as the true solution to the discretized equations 〈ϕk,Luh − f〉 = 0. Also
we have some initial guess ûh for the solution, and we apply the iterative
method, e.g. Gauss-Seidel, to improve on this guess. However, after a
number of iteration, the residual rh defined by

rh
k = 〈ϕh

k ,Lûh − f〉 (3.48)

and the error δûh = uh − ûh have become so smooth that the iterative
method cannot appreciably reduce the error any more. Notice that provided
the operator is linear, we can write an equation for the error δûh as

〈ϕh
k ,Lδûh〉 = 〈ϕh

k , f − Lûh〉 = −rh
k . (3.49)

Now we transfer this equation to the coarse mesh, since there δûh and rh

are not quite as smooth, so that the iterative method should perform better.
Thus we attempt to find a coarse approximation to the error δûH by applying
the iterative method to the problem

〈ϕH
` ,LδûH〉 = −rH

` = 〈ϕH
` ,Lûh − f〉 = −

∑

k

Pk`r
h
k . (3.50)

3.5 Implementation 45

After a number of iterations we transfer the result δûH back to the fine mesh
to obtain a better guess ûh,new = uh,old + PδûH for the solution.

The multigrid method simply consist of extending this simple idea to a
whole sequence of meshes obtained by refinement of an initial coarse one.
We have implemented a routine prolong that determines an explicit matrix
representation of the prolongation operator P relating a coarse mesh to a fine
mesh obtained by regular refinement of the coarse one, when the refinement
is done with halfmesh. Further we have implemented a routine mglin that
applies the linear multigrid method described above to a problem when
provided a set of prolongation operators and the system matrix and right
hand side on the finest mesh. The routine applies the Gauss-Seidel method
as default. We have tried using other iterative methods as well, such as
conjugate gradients method, but none of them matched the Gauss-Seidel;
further we are not sure to what extent those methods tried out are actually
smoothers.

3.5.5 Solution of nonlinear system of equations

Above we elaborated on the solution of a linear problem; when faced with a
non-linear operator L, one way to proceed is to linearize it and use Newtons
method to solve the problem. We define u∗ as the true solution to the
discretized problem 〈ϕk,L(u∗) − f〉 = 0 and assume further that we have
an initial guess ui for the solution. Also we define the residual as rk(ui) =
〈ϕk,L(ui)− f〉. Assuming ui is close to u∗ we may linearize r to obtain, in
matrix form

0 = r(u∗) ' ri + Ji (u∗ − ui), (3.51)

where Ji =
[

∂r
∂u

]
u=ui

is the Jacobian matrix. Thus we obtain our next guess
for the solution ui+1 by solving the problem

Ji∆ui = −ri (3.52)

for ∆ui and setting
ui+1 = ui + ∆ui. (3.53)

This way the solution of the non-linear problem is reduced to that of solving
a sequence of linear problems. Once the trial solution ui is close enough
to u∗ and provided J is not singular at u∗, Newtons method is known to
have quadratic convergence speed. That is, if the error of ith trial solution
is εi = |ui − u∗| then εi+1 = |ui+1 − u∗| ' Cε2i for some constant C. This is
fast, and once within this asymptotic regime, typically only a few iterations
are needed to reach the desired accuracy.

However, outside the asymptotic region one may spend a lot of time,
and Newtons method is prone to diverence if a bad initial guess is supplied.
One way to ensure convergence is to modify the step as ui+1 = ui + α∆ui

46 The finite element method

where α is some parameter in the interval [0, 1] to be picked by performing a
so-called line search for α. However, the residual r(ui + α∆ui) is expensive
to evaluate, and therefore one should not spend too much time searching
for an optimal value of α. A particularly simple approach is the so-called
Armijo-Goldstein in-exact line search, where α is picked as the first number
in the sequence [1, 1

2 , 1
4 , . . . , 1

2n] for which the residual new residual ri+1 is
decreased from the old ri by at least a factor of (1− α

2).
Notice that the elements of the Jacobian matrix Jk` can be computed

from element integrals of the form

Jk` =
〈
ϕk,

[∂[L(u)− f]
∂u

]
ϕ`

〉
+

〈
ϕk,

[∂[L(u)− f]
∂∇u

]
·∇ϕ`

〉
. (3.54)

Thus we can move the differentiation from the discretized to the analytical
equations, which is convenient.

We provide Newtons method as the routine newt, which requires the user
implement a subfunction computing the Jacobian matrix and the residual
for the problem.

Chapter 4

Application of FEM to
hydrodynamics

In this chapter we apply the finite element method to the Navier-Stokes
equation for laminar incompressible flow.

It turns out that the numerical scheme obtained from the most straight-
forward application of the FEM fails, as one can show that the pressure
solution is ill-determined when the same basis functions are used to approx-
imate both the velocity field v and the pressure p. The classical way of
dealing with this problem is to choose the order of accuracy for the velocity
approximation one order higher than for the pressure.

However, alternative methods for stabilizing the pressure is subject to
active research [12, 13, 14, 15]. Some are focused on stabilizing the simplest
possible approximation pair with piecewise linear velocity and piecewise con-
stant pressure. Other formulations allow equal order approximations to be
used for all variables, which is a major convenience in relation to the im-
plementation. In Sec. 4.3 we shall discuss the so-called pressure gradient
projection method (PGP), which is of this latter type. We have chosen to
work with this scheme because it is conceptually simple and rather easy to
implement; at the present stage, though, both the classical method and the
PGP can be handled easily with our FEM tool.

As our FEM tool is geared only towards two-dimensional problems so
far, we shall only consider two-dimensional flows in this chapter. However,
the quasi three-dimensional case of axisymmetric flow can also be handled
since it is effectively only a two dimensional problem.

4.1 Discretization of the Navier-Stokes equation

The Navier-Stokes equation for incompressible flow is, c.f. Eq. (2.14)

ρ
[∂v

∂t
+ (v · ∇)v

]
= −∇p + µ∇2v + f , (4.1)

48 Application of FEM to hydrodynamics

which is supplemented by the incompressibility constraint ∇ · v = 0. We
choose some basis spaces Vh and Qh for the approximation of v and p, and
apply the Galerkin method as discussed in Sec. 3.2.1

ρ
[
〈ϕk,

∂v

∂t
〉+ 〈ϕk, (v ·∇)v〉

]
+ µ〈∇ϕk;∇v〉 − 〈∇ϕk, p〉

= 〈ϕk, f〉 −
∫

∂Ω
dsϕk[np− µ(n ·∇)v], for all ϕk ∈ Vh (4.2)

and
〈ψm, ∇ · v〉 = 0, for all ψm ∈ Qh. (4.3)

This is written compactly in matrix notation as

ρ
[
Mv̇x + Cvx

]
+ µKvx −QT

x p = fx (4.4a)

ρ
[
Mv̇y + Cvy

]
+ µKvy −QT

y p = fy (4.4b)

Qxvx + Qyvy = 0 (4.4c)

where the column vectors vx, vy and p hold the expansion coefficients vx,`

etc. The matrices appearing are the mass matrix

Mk` = 〈ϕk, ϕ`〉 (4.5)

and the stiffness matrix

Kk` = 〈∇ϕk; ∇ϕ`〉. (4.6)

Further the matrix C represents the action of the convective operator, and
is given by

Ck` =
〈
ϕk;

[∑
mϕmvx,m

]∂ϕ`

∂x
+

[∑
mϕmvy,m

]∂ϕ`

∂y

〉
(4.7)

whereas the matrices Q represent the divergence action

Qx,k` = 〈ψk,
∂ϕ`

∂x
〉 (4.8)

and
Qy,k` = 〈ψk,

∂ϕ`

∂y
〉. (4.9)

Finally the right hand sides fx and fy include both the body force term and
the boundary integral

fx,k = 〈ϕk, fx〉 −
∫

∂Ω
dsϕk[nx p− µ(n ·∇)vx], (4.10)

and similiarly for fy,k. Notice that the discretized equations do not con-
tain derivatives of the pressure basis functions; therefore they need not be
continuous but might well be chosen e.g. piecewise constant.

4.1 Discretization of the Navier-Stokes equation 49

We shall only be concerned with stationary flow for which v̇x = v̇y =
0. We collect all the solution components in a single column vector u =
[vT

x vT
y pT]T and define the residual r(u) with

rx = ρCvx + µKvx −QT
x p− fx (4.11a)

ry = ρCvy + µKvy −QT
y p− fy (4.11b)

r0 = Qxvx + Qyvy. (4.11c)

Thus stationary flow is equivalent to solving for r(u) = 0. We apply Newtons
method which requires the Jacobian matrix J =

[
∂r
∂u

]
to be computed. Only

the convective term is non-linear so

J =

ρC + µK + ρ
[

∂C
∂vx

vx

]
ρ
[

∂C
∂vy

vx

] −QT
x

ρ
[

∂C
∂vx

vy

]
ρC + µK + ρ

[
∂C
∂vy

vy

] −QT
y

Qx Qy O

 (4.12)

where O is all zeros and
[

∂C
∂vx

vx

]
k`

=
〈
ϕk, ϕ`

[∑
m

∂ϕm

∂x
vx,m

]〉
(4.13)

[
∂C
∂vy

vx

]
k`

=
〈
ϕk, ϕ`

[∑
m

∂ϕm

∂y
vx,m

]〉
(4.14)

[
∂C
∂vx

vy

]
k`

=
〈
ϕk, ϕ`

[∑
m

∂ϕm

∂x
vy,m

]〉
(4.15)

[
∂C
∂vy

vy

]
k`

=
〈
ϕk, ϕ`

[∑
m

∂ϕm

∂y
vy,m

]〉
. (4.16)

4.1.1 Boundary conditions

In a typical microfluidic problem the boundary of the computational domain
is defined by a set of channel walls. Further the domain is connected to the
environment by two or more fluidic leads through which the liquid enters
and leaves the system; these are typically assumed to be long and straight
so that sufficiently far upstream or downstream in the leads, we can assume
that the velocity profile is fully developed and parabolic.

On the channel walls we impose the no-slip condition v = 0, whereas the
pressure is generally unknown and therefore left unspecified. On the lead
boundaries we typically know either the flow rate or the pressure, which
corresponds to Dirichlet and Neumann boundary conditions respectively. Of
course, if the flowrate is specified in all leads then it had better be chosen
such that the net flow into the domain is zero, since otherwise liquid will be
accumulating and the incompressibility constraint cannot be satisfied. Even
if a consistent choice has been made, numerical errors can challenge this and
create wiggles in the solution; thus generally it is better to have at least one
boundary on which the pressure level is defined while the flow rate is left to
be determined.

50 Application of FEM to hydrodynamics

Considering the boundary integral in Eq. (4.10) then on the channel walls
we never need to compute it since we replace the Navier-Stokes equation with
the no-slip Dirichlet condition for all ϕk on the wall. This is also the case
on those lead boundaries where the flow rate is specified, only we impose a
parabolic profile rather than no-slip.

On the lead boundaries on which the pressure is known, this is used
as input for the boundary integral, while we assume that the flow is fully
developed at the lead boundary such that (n ·∇)v = 0.1 Notice however
that this procedure does not actually ensure that the pressure at the lead
boundary is equal to that specified – generally it is not! Only if the section
of the lead channel that we include in the computational domain is very
long will the actual solution be fully developed with (n ·∇)v = 0. As we are
interested in keeping the computational cost low, we tend to choose the lead
section as small as possible – thus in a sense we now have a way of checking
whether the lead section included is sufficiently large, simply by checking if
the pressure is far from or close to the specified value.2

Finally, on boundaries corresponding to symmetry lines, the velocity
component normal to the symmetry line is zero which is imposed as a ho-
mogeneous Dirichlet condition v⊥ = 0. The velocity component parallel to
the symmetry line is generally unknown, while the normal derivative should
be zero (n ·∇)v‖ = 0 which is used as input for the boundary integral.
Also the pressure is unknown, which fits well the fact that it drops out of
the boundary integral for v‖, as the component of the boundary outward
normal n is of course zero in the direction parallel to the boundary. If
furthermore the symmetry axis is chosen to be parallel with one of the co-
ordinate axes, then one avoids having to form linear combinations of vx and
vy in order to satisfy the mixed Dirichlet and Neumann conditions.

Example 4.1

We now proceed with a small numerical example using the simple piecewise
linear basis functions to approximate both the pressure and the velocity.
As mentioned above such a straightforward approach should fail, and the
example shows that indeed it does.

We consider a channel with a bend as shown in Fig. 4.1, where a wide
rectangular channel of width W and depth d goes through a 90◦ bend. We
assume that the channel width is much larger than its depth such that

1This assumes that the boundary is perpendicular to the lead axis, though.
2As long as the basis functions used for the pressure approximation are continuous it

is not strictly necessary to do partial integration on the pressure term. If this is left out,
only the (n·∇)v term is present in the boundary integral. The pressure is then specified
as a Dirichlet condition, thereby neglecting the incompressibility constraint at the lead
boundary. Thus in this case it is possible to specify (n·∇)v = 0 and p = p0 separately –
but if the lead section is too short such a condition is unphysical.

4.1 Discretization of the Navier-Stokes equation 51

x

z

→→

y

→

2d

d

d
↓outflow

↓

W

→→
inflow

Figure 4.1: Channel with a bend. A rectangular channel of width W and depth d bends
down. It is assumed that the aspect ratio α = d/W is very small such that the flow in the
central part of the channel is effectively independent of z.

in the central part of the channel the flow is essentially two-dimensional
v = vx(x, y)ex + vy(x, y)ey.

We impose Neumann type boundary conditions on the inflow and outflow
boundaries with np − µ(n · ∇)v = np0 at the inflow boundary and np −
µ(n ·∇)v = 0 at the outflow, corresponding to a pressure drop of ∆p = p0

across the channel.

a) b)

pr
es

su
re

0

p
0

Figure 4.2: Flow in channel with a 90◦ bend; straightforward FEM approach using the
same (linear) basis functions for both velocity and pressure. a) Streamlines for the flow
with the finite element mesh used for the computation shown below. b) Surface plot of
pressure distribution in the channel. The general trend of the solution is a linear pressure
drop from p0 at the inflow to zero at the outflow which is what we would expect; however
there is also a rapid and unphysical oscillation in the solution. The Reynolds number
computed from the maximal velocity of the solution is Re = vmaxdρ/µ = 1.95.

The results are shown in Fig. 4.2 showing the streamlines for the flow
and the pressure variation in the channel. The streamlines appear as we
would expect, and indeed the velocity solution is rather well behaved. For

52 Application of FEM to hydrodynamics

q(x)

x

φ
k

x
∂φ

k

∂x
−q ⋅

x

Figure 4.3: One-dimensional analogy to pressure instability. Top row shows the dodgy
mode q whereas second row shows a representative one dimensional chapeau function φk.
Third row shows the value of the product q · ∂ϕk

∂x
and it is evident that

∫
Ω

dx q · ∂ϕk
∂x

=

〈 ∂ϕk
∂x

, q〉 = 0 for all interior nodes xk. The mode q is not orthogonal to the basis functions
at the boundary nodes ◦ – but on all wall boundaries the Navier-Stokes equation is not
solved but replaced by the Dirichlet boundary condition.

the pressure solution the general trend is a linear pressure drop from p0 at
the inflow to zero at the outflow which is also as we would expect. However
there seems to be some kind of noise in the solution as it oscillates rapidly,
jumping up and down from one mesh node to the next, which is obviously
unphysical. Still the solution seems to get the overall trend right, and we
might think of just filtering out the noisy oscillatory part. However, the
relatively good behaviour turns out to be caused by the rather irregular
mesh used, which tends to dampen the oscillations. If a more regular mesh
is used, then the oscillations grow several orders of magnitude larger than
p0 and the influence on the velocity field is not neglible.

4.2 The Babuška-Brezzi inf-sup condition

The cause of the instability observed in Example 4.1 turns out to be that
there exist a rapidly oscillatory pressure mode which is orthogonal to ∇ϕk

for all ϕk, that is, there exist q ∈ Qh such that 〈∇ϕk, q〉 = 0 for all ϕk ∈ Vh.
Then if p is the physical solution to the equations Eqs. (4.11), so is p + q,
and the pressure solution is therefore ill-determined.

This feature is easily understood from a simple one-dimensional analogy
as shown in Fig. 4.3. The figure shows that it is possible for a mode q to
obey homogeneous Dirichlet boundary conditions and be orthogonal to the
basis functions at all interior nodes. The mode q is not orthogonal to the
basis functions at the boundary – but the projection of the Navier-Stokes
equation onto the basis functions at all Dirichlet type boundary nodes is
neglected and replaced by the Dirichlet boundary condition.

The problem turns out to be general when the same basis space is used
for both the velocity and pressure approximation. The pathology can be

4.2 The Babuška-Brezzi inf-sup condition 53

formulated as the fact that the quantity

β ≡ inf
q∈Qh

sup
v∈Vh

|〈∇ · v, q〉|
‖v‖ ‖q‖ (4.17)

is zero. To avoid the spurious pressure oscillations it is necessary that β be
positive – known as the Babuška-Brezzi (BB) inf-sup condition [6].

The cure for the problem and the way to satisfy the BB condition is to
make the space Vh richer than Qh – the idea is quite obvious as we wish
to avoid the existence of q such that 〈∇φk, q〉 = 0; we try to obtain this
by adding more φk to Vh so as to make it more difficult for q. In order
to stabilize the pressure solution when Qh is the space of piecewise linear
functions it is sufficient choose Vh as the space of piecewise quadratics.

Another candidate Vh/Qh pair that we might think of could be piecewise
linear velocity and piecewise constant pressure; however this combination
does not satisfy the BB condition. Yet for quadrangular elements the use of
bilinear velocity and piecewise constant pressure is found to yield acceptable
results [16]. With quadratic velocity and piecewise constant pressure the BB
condition is satisfied – but the convergence is only asO(h) whereas we obtain
O(h2) with quadratic velocity and linear pressure.

Example 4.2

We now repeat the Example 4.1 using piecewise quadratic basis functions
for the velocity and piecewise linear pressure; otherwise the geometry and
boundary conditions are identical to Example 4.1. The results are shown
in Fig. 4.4. Comparing with Example 4.1 we find that the rapid pressure

a) b)

pr
es

su
re

0

p
0

Figure 4.4: Flow in channel with a 90◦ bend; pressure instability cured by using
quadratic velocity and linear pressure basis functions which satisfies the BB condition
Eq. (4.17). a) Streamlines with finite element mesh shown below. b) Surface plot of pres-
sure distribution in the channel. The spurious pressure oscillations observed in Example
4.1 are now absent. The Reynolds number is Re = vmaxdρ/µ = 1.96.

oscillation is now absent. The velocity solutions of Examples 4.1 and 4.2

54 Application of FEM to hydrodynamics

differ by less than 1% indicating that the accuracy was not severely degraded
by spurious pressure field.

4.3 The pressure gradient projection method (PGP)

The pressure gradient projection method (PGP) is an alternative method
proposed recently by Cordina et al. [12, 17] to stabilize the pressure insta-
bility discussed above. The method allows the same basis functions to be
used for all variables.

The key point is the observation that the unstable pressure modes with
〈∇ϕk, q〉 for all ϕk ∈ V are highly oscillatory. Notice also that this means
that the pressure gradient has large jumps between adjacent elements. The
idea of the PGP method is to add a term to the equations that will act like
a sort of artificial diffusion, so as to smear out the pressure. Of course as
pressure diffusion is not present in the physical system such an approach will
introduce error in the solution. Therefore the additional term is multiplied
by a small factor to ensure that the error introduced is of the order of the
truncation error of the FEM solution in order not to upset accuracy. Further
we shall see that the additional term vanishes whenever the gradient of the
pressure solution can be expressed as a continuous function within the basis
space; only when the pressure gradient is discontinuous does the additional
term show up.

We introduce a new discrete variable ξh =
∑

` ξ`ϕ` that should be a
continuous approximation to the gradient of the pressure p. This is obtained
by requiring 〈ϕk, ξ〉 = 〈ϕk, ∇p〉 for all ϕk ∈ Hh, or in matrix form

Mξx = Qxp and Mξy = Qyp, (4.18)

where the matrices M and Q were introduced in Sec. 4.1. Then we subtract
the divergence of the difference τ [∇p − ξ] from the incompressibility con-
straint, where τ is some small algorithmic parameter to be defined below.
After partial integration of the term 〈φk, ∇·τ [∇p−ξ]〉 we obtain a modified
incompressibility constraint

〈ϕk,∇ · v〉+ 〈∇ϕk, τ [∇p− ξ]〉 = 0, for all ϕk ∈ Hh. (4.19)

In matrix notation the full system of equations reads, c.f. Eqs. (4.4)

ρCvx + µKvx −QT
x p = fx (4.20a)

ρCvy + µKvy −QT
y p = fy (4.20b)

Qxvx + Qyvy + Kτp−QT
x,τξx −QT

y,τξy = 0 (4.20c)

Mξx −Qxp = 0 (4.20d)
Mξy −Qyp = 0 (4.20e)

4.3 The pressure gradient projection method (PGP) 55

where Kτ,k` = 〈∇ϕk; τ∇ϕ`〉 and similiarly for Qx,τ and Qy,τ . The param-
eter τ is defined within each element Ωα as the following constant

τα =
[
c1

µ

h2
+ c2

ρvα

h

]−1
, (4.21)

where vα is the maximal value of the velocity field within Ωα and h is a
measure of the size of the element which we define as the length of the
longest side. Finally the two constants c1 and c2 are taken as either c1 = 2
and c2 = 4 when linear basis functions are used or c1 = 4 and c2 = 16 for
quadratic basis functions [17].

While in practice we always solve the equations in the form of Eqs. (4.20),
it is instructive to eliminate the variable ξ from the system by formally
inverting the mass matrix M. Thus we take ξx = M−1Qxp and similiarly
for ξy to obtain a system of the form

ρCvx + µKvx −QT
x p = fx (4.22)

ρCvy + µKvy −QT
y p = fy (4.23)

Qxvx + Qyvy +
[
Kτ − K̃τ

]
p = 0 (4.24)

where K̃τ = QT
x,τM

−1Qx + QT
y,τM

−1Qy. The matrix [Kτ − K̃τ] is positive
semi-definite, meaning that qT

[
Kτ − K̃τ

]
q ≥ 0 for all q. This is easily

verified by considering

0 ≤ 〈ξ −∇p; ξ −∇p〉 = pT
[
Kτ − K̃τ

]
p , (4.25)

where we use that ξx = M−1Qxp. The notion semi -definite corresponds to
the fact that qT

[
Kτ − K̃τ

]
q = 0 does not imply q = 0; indeed for all p that

have a continuous gradient such that the equality ξ = ∇p holds, we obtain
pT

[
Kτ − K̃τ

]
p = 0. In a sense the additional term introduced adds to the

coercivity of the system, c.f. Sec. 3.2.2.

Example 4.3

We now consider once again the flow in a channel with a 90◦ bend from
Example 4.1, and apply the pressure gradient projection method to the
problem using piecewise linear basis functions for all variables. The result
is shown in Fig. 4.5. Comparing with Example 4.1 we find that the rapid
pressure oscillation is again absent. Comparing with the results obtained
with mixed interpolation in Example 4.2 we find that both the velocity and
pressure solutions agree to within 0.5%. Using instead piecewise quadratic
basis functions for all variables, we find that the PGP method and the mixed
method agree to within 5× 10−4.

As a final remark we compare the convergence of the PGP method with
the classical mixed interpolation formulation. In [12] it is proven that for

56 Application of FEM to hydrodynamics

a) b)

pr
es

su
re

0

p
0

Figure 4.5: Flow in channel with a 90◦ bend; pressure instability cured by the pressure
gradient projection method. a) Streamlines with finite element mesh shown below. b)
Surface plot of pressure distribution in the channel. The spurious pressure oscillations
observed in Example 4.1 are again absent. The Reynolds number is Re = vmaxdρ/µ = 1.95.

small Reynolds numbers and provided the true solution is smooth enough,
the solution obtained with the PGP method should converge as

µ‖∇v −∇vh‖2 + τ‖∇p−∇ph‖2 ≤ Ch2k (4.26)

where the constant C is independent of the mesh but possibly dependent on
µ, and k is the accuracy of the basis functions.3

In order to check the convergence numerically we focus on a problem for
which the analytic solution is known. It is easily verified that the velocity
and pressure fields

vx(x, y) = 1− eλx cos(2πy) (4.27)

vy(x, y) =
λ

2π
eλx sin(2πy) (4.28)

p(x, y) = −1
2
e2λx (4.29)

satisfies both the Navier-Stokes equation and the incompressibility con-
straint when ρ = 1 and µ = 1/Re provided the parameter λ is chosen as
λ = Re/2 − (Re2/4 + 4π2)1/2. This problem was introduced by Kovasznay
[18], modelling laminar flow behind a two-dimensional grid. We chose Re =
10 and solved the problem on the rectangular domain (x, y) ∈ [0, 1]× [0, 2],
imposing Dirichlet boundary conditions on all the boundary with the value
of the analytical solution. We solved the problem with the PGP method
for both piecewise linear and piecewise quadratic basis functions and with
the classical mixed method using quadratic basis for the velocity and linear
basis for the pressure.

3In Chap. 3 we used the symbol p for accuracy which is the standard FEM terminology;
here however we prefer to reserve p for the pressure.

4.3 The pressure gradient projection method (PGP) 57

−2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

log
10

 h

lo
g 10

 ||
 ∇

(v
x −

 v
xh)

||

−2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

log
10

 h

lo
g 10

 ||
 ∇

(v
y −

 v
yh)

||

−2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

log
10

 h

lo
g 10

 ||
 ∇

(p
 −

 p
h)

||

Figure 4.6: Convergence in the H1 norm of PGP method and mixed method for Ko-
vasznay flow as function of mesh size h. ◦: PGP method with linear basis functions. 4:
PGP method with quadratic basis functions. ¤: Mixed method with quadratic velocity
and linear pressure basis functions.

In Fig. 4.6 the results are shown as the mesh size h is varied between 1/2
and 1/32. It is seen that for the PGP method with linear basis functions the
error in the H1 norm decays as O(h1) for both velocity and pressure, while
with quadratic basis functions the error decays as O(h2) for the velocity
and as O(h1.5) for the pressure. For the mixed method the error decays as
O(h2) for the velocity and O(h1) for the pressure. Notice that in Eq. (4.26)
the parameter τ enters, which is dependent on h. Therefore the convergence
of the pressure in the PGP method is not assured to be as fast as for the
velocity, and this is what we observe for quadratic interpolation.

58 Application of FEM to hydrodynamics

Chapter 5

Flow over backward-facing
step

In this chapter we analyse the flow over a backward-facing step using the
finite element tools that we developed during this project. The backstep
problem is a classical one and is often used as test bench for computational
fluid dynamics (CFD) programs; this is part of our motivation for consider-
ing this geometry.

In Chap. 6 we shall discuss an experiment where the detailed velocity
profile of blood flowing in a thin glass capillary has been measured using
micro particle-image velocimetry (µPIV). It was also planned to perform
such measurements on blood flow in more complicated geometries such as
a channel with a backstep, since it is known that in such geometries cer-
tain non-Newtonian liquids display remarkable flow patterns with vortices
appearing that would not be expected in a Newtonian flow. It was the
idea to investigate if blood would display such features in flows on the mi-
croscale. Thus our second motivation for considering the backstep geometry
was to be able to compare the experimental results with simulations of the
flow. However it turned out to be not exactly straightforward to do the
µPIV experiments and we never made it to the more complex geometries
experimentally.

The geometry that we consider is that of a long straight rectangular
channel of width W and depth h that expands suddenly to a depth of H = 2h
as shown in Fig. 5.1. The channel is assumed to have a very small aspect
ratio α = H/W ¿ 1, such that the flow in the central part can be considered
effectively a two dimensional problem with no variation in the direction along
the step.

We shall compare our simulation results with an experiment performed
by Armaly et al. [19]. They investigated gas flow over a backward-facing step
for Reynolds numbers in the range 70 < Re < 8000, defining the Reynolds
number as Re = 2hv̄0/ν where v̄0 is the average velocity at the inflow

60 Flow over backward-facing step

x

outflow

z

→→
y

→

→
→

H

W

L

l

→

h

→
inflow

Figure 5.1: The backstep geometry. A rectangular channel of width W and depth h
suddenly expands to a depth H = 2h. The channel is assumed to have a very small aspect
ratio α = H/W ¿ 1 such that the flow in the central part of the channel is effectively
independent of z.

boundary and ν = µ/ρ is the kinematic viscosity. This range covers both
the laminar (Re < 1200), transitional (1200 < Re < 6600) and turbulent
(Re > 6600) regimes of the flow. However, even though the aspect ratio of
the channel in the experiment was α = 1/36, the authors report that the
flow lost its two dimensional nature already for Re > 400.

We have applied the PGP method discussed in Sec. 4.3 for this problem
using piecewise quadratic basis functions for all variables. We initially focus
on the case Re = 100, choosing channel dimensions H = 2h, l = 4h and
L = 12h, c.f. Fig. 5.1.

5.1 Regular mesh refinement

We first solved the problem on a regular and very coarse mesh as shown
in Fig. 5.2 using an all zero initial guess – this is quite far from the true
solution and the Newton method required 19 iterations to converge. Only
the last four iterations were taken within the asymptotic regime of quadratic
convergence of the Newton method. The relative error tolerance was chosen
as εr = 10−8 and the absolute tolerance εa = 10−10; thus the solution was
accepted only when the last Newton step ∆u satisfied ‖∆u‖ ≤ εr‖u‖+ εa.

Subsequently the mesh was refined with regular mesh refinement dividing
each element in the mesh into four smaller elements. The solution from the
coarse mesh was then used as initial guess on the fine mesh and the solution
met the tolerance after only 6 Newton iterations. This process was repeated
three times such that in the final mesh every element in the coarse mesh
was divided into 43 = 64 smaller elements and the total number of elements
was 5312.

On the finest mesh the solution time was dominated by the time required
to solve the linear system in each Newton step which took up 60 seconds
on our computer,1 however only 5 iterations were needed to converge. This
should be compared with the total time of 30 seconds required to do all 19

1IBM 933 Mz Pentium 4 with 500 MB RAM.

5.2 Adaptive mesh refinement 61

a)

b)

c)

Figure 5.2: Solution for Re = 100 after three regular mesh refinements.
a): Streamlines. Notice the recirculating region behind the step; the velocity in the recir-
culation region is much smaller than in the main flow, therefore the streamlines there are
drawn almost 10 times as dense as in the main flow. The triangle marks the reattachment
point where the streamline leaving the sharp corner of the step reattaches to the channel
wall. b): Pressure isobars. The pressure has a local minimum just before the reattachment
point. c): Initial coarse mesh. The final solution was computed on a fine mesh obtained
after dividing each of these elements into 64 smaller elements.

iterations at the coarsest mesh; thus it pays to have a good initial guess
when the finest mesh is reached.

The solution on the finest mesh is shown in Fig. 5.2 showing streamlines,
pressure isobars and the initial coarse mesh for the solution. Notice the
recirculating region behind the step. The interface between the recirculation
region and the main flow is defined by a streamline leaving from the sharp
corner of the step and reattaching to the channel wall at a certain point,
marked with a triangle in the figure. The location of this reattachment point
was determined by evaluating the derivative ∂vx

∂y for a dense number of points
on the channel wall and detecting a sign change in this quantity. The point
is located a distance of x1 = 2.93× h from the step.

The accuracy of the final solution can be estimated by inspecting the
maximal change in the solution upon each refinement as shown in Tab. 5.1.
It is seen that the maximal relative change upon the third mesh refinement
is of the order of 4%, indicating that the final solution is still not particularly
accurate.

5.2 Adaptive mesh refinement

As was discussed above the final refinement level reached in the regular mesh
refinement sequence is not sufficiently fine to resolve the solution accurately.

62 Flow over backward-facing step

|∆vx|max |∆vy|max |∆p|max x1/h #refinements CPU time [s]

2.95 0 33.47
0.064 0.203 0.135 2.98 1 14.66
0.028 0.067 0.041 2.96 2 51.67
0.007 0.037 0.039 2.93 3 360.03

Table 5.1: Convergence upon regular mesh refinement at Re = 100: maximal relative
change in the numerical solution upon successive mesh refinements. Also the location of
the reattachment points is indicated.

However an additional regular mesh refinement would increase the number
of mesh points to the limit of what can be handled using the Matlab direct
linear solver that we have employed.

Instead we shall now focus on the use of adaptive mesh refinement to ob-
tain an accurate solution with much fewer elements. We use an elementwise
error indicator of the form

eα =
[
C1 |Ωα|

∥∥ρ(v ·∇)v + µ∇2v −∇p
∥∥2

Ωα

+C2

∑

Γ∈∂Ωα

|Γ|
∥∥∥
⌊∂v

∂n

⌋∥∥∥
2

Γ
+ C3 ‖∇ · v‖Ωα

]1/2

(5.1)

which is a simple generalization of the error indicator discussed in Sec. 3.3.2
[7]. The constants C1, C2 and C3 are scaling factors, all of which were set
to one in the present problem. We use the error indicator to refine elements
where either the solution does not satisfy the Navier-Stokes equation or the
incompressibility constraint2 or it has jumps in the normal derivative of
the velocity across the element boundaries. We select those elements for
refinement where the error is larger than 25% of the maximal error found in
the mesh.

Fig. 5.3 shows the solution after two successive adaptive mesh refine-
ments. It is seen that even at this rather coarse mesh level, the solution
agrees well with the result obtained using regular mesh refinement.

Fig. 5.4 shows the result after six sucessive mesh refinements. Evidently
the solution is rather difficult to resolve close to the sharp corner of the step.
The accuracy of the final solution can be estimated from Tab. 5.2 showing
the maximal relative change upon successive adaptive mesh refinements.
The same accuracy as for regular mesh refinement is obtained with much
smaller computational cost.

Now one may ask how relevant it is to resolve the solution at the sharp
corner in such fine detail. Inspecting the solution one finds that the pressure
appears to have singularity at the sharp corner, which will be impossible to

2In the strong, not weak, sense, that is.

5.2 Adaptive mesh refinement 63

a)

b)

c)

Figure 5.3: Solution for Re = 100 after two adaptive refinements.
a): Streamlines. b): Pressure isobars. c): Adapted mesh.
Notice that the streamlines and pressure contours are not particularly smooth – this is
because of the rather coarse mesh used. Still the solution agrees rather well with the final
solution obtained using regular mesh refinement.

a)

b)

c)

Figure 5.4: Solution for Re = 100 after six adaptive refinements.
a): Streamlines. b): Pressure isobars. c): Adapted mesh.
The solution is almost indistinguishable from the one obtained with regular mesh re-
finement. Close to the corner we detect a second sign change in the y-derivative of the
x-velocity; we believe this is an artefact.

64 Flow over backward-facing step

|∆vx|max |∆vy|max |∆p|max x1/h #refinements CPU time [s]

2.99 0 36.76
0.021 0.096 0.154 2.99 1 8.11
0.049 0.097 0.025 2.99 2 6.37
0.021 0.062 0.016 2.99 3 10.58
0.012 0.040 0.025 2.97 4 16.90
0.010 0.049 0.024 2.97 5 36.41
0.008 0.027 0.018 2.97 6 73.02

Table 5.2: Convergence upon adaptive mesh refinement at Re = 100: maximal relative
change in the numerical solution upon successive mesh refinements. Also the location of
the reattachment points is indicated.

resolve at the singular point nomatter how fine the mesh is made. Of course,
experimentally the corner will always be rounded rather than perfectly sharp
below a certain length scale. This could be modelled by ’cutting off’ a small
snippet of the corner, which would effectively remove the singularity.

Still, physically we would not expect the very fine details of the geometry
at the corner to influence the solution at some distance out into the main
flow. Thus it is not necessary to resolve the singularity in order to obtain
good overall accuracy of the solution, and we could choose a lower hard limit
for the element sizes without compromising the overall accuracy.

5.3 Bifurcation

Now we consider the case Re = 500 and increase the channel dimensions to
H = 2h, l = 8h and L = 40h, c.f. Fig. 5.1. Fig. 5.5 shows the solution after
ten adaptive mesh refinements; only part of the rather long computational
domain is shown. Notice the emergence of a second recirculation region in
the flow.

Fig. 5.6 shows a scan over Reynolds numbers up to Re = 1250 showing
the locations of the detachment and reattachment points. The data were
produced using an older version of the code employing piecewise linear ele-
ments and a regular mesh. The figure should be compared to the low Re part
of Fig. 5.7 showing the experimental results from Armaly et al. [19]. The
qualitative agreement is good, in particular for the first reconnection point
on the lower channel wall. The second recirculation region of the numerical
results seems to be consistently located to far from the step. It should be
kept in mind, though, that for Re > 400 the experimental system was no
longer truely two-dimensional.

5.3 Bifurcation 65

a)

b)

c)

Figure 5.5: Solution for Re = 500 after ten adaptive refinements.
a): Streamlines. b): Pressure isobars. c): Adapted mesh.
Notice the emergence of a second recirculation region. The pressure has a deep local
minimum just outside the step.

66 Flow over backward-facing step

0 500 1000 1500
0

5

10

15

20

25

30

35

Re

x
/ h

Figure 5.6: Simulated results for location of detachment
and reattachment of the flow as a function of Reynolds
number. •: Reattachment point on lower channel wall x1.
M and N: Detachment and reattachment points on upper
channel wall x4 and x5, c.f. Fig. 5.7.
The qualitative agreement is good, though x4 and x5 seems
to be consistently too large; further x5 fails to bend over
at about Re = 800.

Figure 5.7: Experimental results for location of detachment and reattachment of the
flow as a function of Reynolds number.
From: B. F. Armaly, F. Durst, J. C. F. Pereira, B. Schönung, Experimental and theoretical
investigation of backward-facing step flow, J. Fluid Mech. 127, 473-496 (1983) [19]

Chapter 6

Non-Newtonian flow

The concept of non-Newtonian liquids is a broad one covering all cases where
the deviatoric stress tensor τ is not simply proportional to the shear rate
γ̇. An important example of a non-Newtonian liquid is blood; moreover in
flows on the microscale, blood reveals its inherent granular structure as a
suspension of blood cells in a plasma. Both from a fundamental physiolog-
ical point of view, but certainly also in relation to medico applications for
blood analysis in lab-on-a-chip systems, it is important to gain a thorough
understanding of how blood behaves on the microscale.

The blood flow in microchannels was the research topic for Lennart
Bitsch during his Master thesis [20] and his subsequent work at MIC, where
he has performed micro particle-image velocimetry (µPIV) measurements
on blood flow in thin glass capillaries.

In relation to this work I have been involved with simulations so as to
predict accurately the flow patterns to expect from a description of blood
as a continuous medium but with a shear rate dependent viscosity to model
the non-Newtonian character of the blood. Further I have been involved in
parts of the data analysis and in calculations concerning the optics in the
experimental setup. The work has resulted in two conference proceedings
[1, 2] and a paper submitted to Experiments in Fluids [3]. I have included
the paper in the present thesis in Appendix D and discuss the experimental
results in Sec. 6.3

6.1 Non-Newtonian liquids

Simple liquids composed from small simple molecules are typically New-
tonian and examples include e.g. water, oil, and syrup. Non-Newtonian
behaviour is typically observed for more complicated liquids such as poly-
meric solutions and suspensions of particles, e.g. paint, blood, ketchup, and
cough medicine.

There are several ways in which liquids can deviate from Newtonian

68 Non-Newtonian flow

behaviour. The most simple case is that of a liquid for which the viscosity
is not constant but depends on the instantaneous shear rate. Such a liquid
is termed a generalized Newtonian liquid and it obeys a deviatoric stress vs.
shear rate relation of the form

τ = 2µ(γ̇)γ̇, (6.1)

where γ̇ is the magnitude of the shear rate as defined in Eq. (2.15). Fur-
ther, the liquids are classified as either shear thinning or shear thickening
depending on whether µ(γ̇) decreases or increases with γ̇.

In other cases it is found that below a certain yield stress τyield the sub-
stance ceases to flow and behaves as a solid rather than a liquid. This makes
it more difficult to model the flow of such a liquid since there is not a one-to-
one correspondance between τ and γ̇. Notice that in a direct measurement
of the viscosity dependence on shear rate, the apparent viscosity defined as
µ(γ̇) ≡ τ/2γ̇ will diverge for γ̇ → 0 as τ remains finite in this limit.

Finally, so-called viscoelastic liquids exhibit both elastic and plastic
properties at the same time. Such behaviour is typically observed for poly-
meric solutions in which the long and branched molecules tend to be entan-
gled. When a fluid element is suddenly deformed, the entangled molecules
interact strongly and exert a restoring force against the deformation; only
in time as the stretched molecules deentangle and relax the restoring force
disappears. This behaviour introduces a time dependence or a memory of
deformation history to the liquid which makes it complex to model. Vis-
coelastic liquids can display rather extraordinary flow patterns, e.g. for flow
through a narrow neck or into a sudden contraction of a channel. Whereas
the streamlines of a Newtonian liquid tend to go straight into the contrac-
tion, the viscoelastic liquid can develop a vortex outside the contraction
[21].

6.1.1 Blood

The properties of blood in shear flow are discussed in the textbook by
Y. C. Fung [22]. Often blood can be adequately described as a generalized
Newtonian liquid, although some models operate also with a yield stress
for blood. Also it is known that blood can develop a thin lubrication layer
next to solid walls that is free of the red blood cells otherwise present in the
blood.

Red blood cells are disc-like but very flexible objects with a diameter of
about 7 µm. The volume fraction of red blood cells to the total volume of
liquid is reported as the hematocrit value, and for humans it is typically in
the range of 35% to 50% depending on sex, age, and physical condition. The
remaining part of the blood is the blood plasma which consist of water with
some proteins and salts dissolved in it. The blood used in the µPIV experi-

6.1 Non-Newtonian liquids 69

ments was human blood obtained from the blood bank at Rigshospitalet; it
was used undiluted having a hematocrit of approximately 60%.

At low shear rates the red blood cells tend to aggregate or stack. These
large agglomerates of blood cells cause disturbances and long range inter-
actions in the laminar flow profile of the plasma and therefore friction. At
higher shear rates the agglomerates are torn apart, and the individual cells
do not disturb the flow to the same extent as did the larger chunks, hence
friction is lowered. At even higher shear rates the blood cells are observed
to align parallel with the flow which decreases the viscosity further – this
behaviour is particular of the blood cells and is not observed for e.g. rigid
discs. To that end we also mention that a suspension of rigid spheres or discs
is typically observed to stop flowing when the volume fraction of the sus-
pended objects exceeds about 50%, whereas blood can maintain flow until
hematocrits of 98%.

There is a range of models available for the viscosity of blood, but they
are generally only valid within a limited range of shear rates and hematocrit
values. Moreover they do not all agree particularly well. Often the models
do not have a direct physical background but contain several fitting param-
eters; they are used clinically to make a diagnosis for a patient based on an
examination of the patients blood.

Several models operate with a yield stress and of these the simple Casson
model

√
τ =

√
τyield +

√
2µγ̇ (6.2)

is often found to agree rather well with experiments at low shear rates; here
µ is the apparent viscosity at high shear rates and τyield is the yield stress
which is typically found to be of the order of a few mPa. Measurements
of blood viscosity at low shear rates is a complicated matter due to the
small corresponding streses. Furthermore blood has a tendency to form a
sticky skin when exposed to air which may disturb measurements, and there
is some disagreement of what happens in this range. At high shear rates
beyond γ̇ '150 s−1 it is generally found that the viscosity does not drop any
further and thus that blood behaves Newtonian from this point.

For the blood used in the µPIV experiments the apparent viscosity has
been measured and the results are reproduced in Fig. 6.1. The measurements
were performed with a concentric cylinders rheometer where the blood is
confined between two concentric cylinders. A constant torque is applied
to the inner cylinder and the angular velocity is measured. The velocity
profile between the two cylinder surfaces is known as a Couette flow and if
the gap between the cylinders is small compared to their radii the profile is
approximately linear corresponding to constant shear rate.

In the range 0.95 s−1 < γ̇ < 140 s−1 where data are most dense and well
behaved it has been found that the deviatoric stress vs. shear rate relation

70 Non-Newtonian flow

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Shear rate γ [s−1]

V
is

co
si

ty
 µ

 [P

a⋅
s]

 low > < intermediate > < high

Data set #1
Data set #2
Spline approximation

Figure 6.1: Direct measurement of the apparent viscosity of blood as a function of
shear rate [20]. The solid line corresponds to a least squares spline approximation within
the data range; open circles are spline nodes. Outside the data range the viscosity is
approximated as being constant. At high shear rates this is justified since the viscosity of
blood is generally observed to stay constant beyond a shear rate of γ̇ & 150 s−1. At low
shear rates it is rather a matter of convenience since the fit is used as viscosity model in
our finite element computations; infinite viscosity at zero shear rate would tend to confuse
the numerical solution.

is well described by a power law model of the form

τ = 2mγ̇n. (6.3)

with prefactor 2m = 0.057 and exponent n = 0.623 [20].
At low shear rates the data are more sparse. Still the measurements from

data set #1 appears to fall on a straight line with a slope corresponding to
a power law with exponent n = 0.25.

6.2 Blood flow in straight channel

The µPIV experiment was performed on blood flow in a long and straight
glass capillary. Thus the flow is described as a Poiseuille flow as discussed
Sec. 2.2; the channel is chosen to be aligned with the z-axis so that the
velocity takes the form v = vz(x, y)ez. Then the Navier-Stokes equation
reduces to a force balance between the viscous force and a constant pressure
gradient in the channel from p = p0−Gz. Because the viscosity µ(γ̇) is not
constant it cannot be taken outside the divergence of the deviatoric stress
tensor as in Eq. (2.13) and the equivalent of Eq. (2.19) becomes

G +
[∇ · τ]

z
= G +

[∇ · (2µ(γ̇)γ̇
)]

z
= 0. (6.4)

6.3 The µPIV experiment 71

The only non-zero components of the shear rate tensor are γ̇xz = γ̇zx = 1
2

∂vz
∂x

and γ̇yz = γ̇zy = 1
2

∂vz
∂y and the magnitude is γ̇ = 1

2

[(
∂vz
∂x

)2 +
(

∂vz
∂y

)2]1/2 by
Eqs. (2.11) and (2.15).

The problem is simplified further by considering that the glass capillaries
used in the experiment were approximately of rectangular shape and of
small aspect ratio α = H/W ' 1/10. As was found in Sec. 2.2.2 the flow
in the central part of the channel is then essentially one dimensional with
v = vz(y)ez.

If we assume that a single power law model µ(γ̇) = mγ̇n−1 is valid for the
blood viscosity at all shear rates then it is easily verified that the solution
for the velocity profile also takes the form of a power law

vz(y) = v0

[
1−

(2y

H

)1+ 1
n
]

(6.5)

with v0 = Hn
n+1

(
HG
4m

)1/n. In the Newtonian case for n = 1 we can confirm
that this reduces to the parabolic form of Eq. (2.25). This solution is plotted
in Fig. 6.2 for the cases n = 0.25 and n = 0.623, corresponding to the low
and intermediate shear rate regimes of Fig. 6.1, as well as for the Newtonian
case n = 1 which is reached in the high shear rate regime. The figure
shows that for n = 0.623 the velocity profile does not deviate much from a
parabolic one. However for n = 0.25 corresponding to the low shear rate
regime the profile is rather flat or blunted and it should certainly be possible
to distinguish this one from a parabolic profile experimentally.

Fig. 6.2 also shows four profiles that are numerical solutions obtained
with the FEM using the fit to the measured viscosity data as viscosity model.
The pressure gradient was adjusted in the four cases so as to obtain solu-
tions of maximal shear rates γ̇max of 1000 s−1, 100 s−1, 10 s−1 and 1 s−1

respectively. In particular we notice that the profile for γ̇max = 1000 s−1

is almost parabolic; only in a narrow range close to the center is it more
flat than the parabolic one, which corresponds to the range where the shear
rate drops into the non-Newtonian regime. Also we notice that the cutoff
introduced in the viscosity fit at very low shear rates does not influence any
of the solutions shown significantly; only for γ̇max . 0.05 s−1 does the cutoff
show up.

6.3 The µPIV experiment

In short, the particle-image velocimetry technique (PIV) amounts to deriv-
ing the instantaneous velocity of small particles or beads suspended in the
fluid by comparing two images of the flow recorded shortly after each other;
see our paper in Appendix D for more experimental details. The actual
image analysis is performed with dedicated statistical software to determine

72 Non-Newtonian flow

0
−H/2

0

H/2

v
0v(y)

y

n = 1.0

n = 0.623

n = 0.25

Figure 6.2: Theoretical velocity profiles for blood flow in a flat capillary of thickness H.
Solid lines: Velocity profiles from Eq. (6.5) for power law exponents n = {1.0, 0.623, 0.25}
corresponding to high, intermediate and low shear rate regimes in Fig. 6.1. All profiles
are normalized to the same maximal velocity to allow for comparision of the shape of the
profiles. Dotted lines: FEM solutions for the velocity profile using the spline fit to the
meaured blood viscosity shown in Fig. 6.1. In four cases the pressure has been adjusted
such that the maximal shear rates γ̇max in the solutions are 1000 s−1, 100 s−1, 10 s−1 and
1 s−1 with the corresponding profiles ranging from an almost parabolic one to a rather
flat or blunted shape.

peaks in the spatial cross-correlation function between the two images for
the pixel gray value.

There was a significant level of noise in the measurements; however for
steady flow it was found that by averaging the cross-correlation function for
a number of image pairs, it was possible to obtain a good resolution for the
velocity field in the focal plane.

In µPIV the observations are made through a microscope connected to
a CCD camera; thus the resolution in the direction normal to focal plane is
defined by the focal depth of the microscope lens system. Ideally the setup
should record only those particles exactly in the focal plane such that by
moving the microscope stage up and down it would be possible to obtain a
complete three dimensional map of the velcity field. However because the
microscope has a finite depth of focus, also particles slightly out of focus
will show up in the images recorded.

The first set of µPIV measurements were performed on a suspension of
latex beads in water and this experiment was meant to serve as a Newto-
nian reference with which to compare the results of the blood experiment.
Fig. 6.3 shows a sketch of the cross section of the glass capillary used in the
experiments. The images were recorded in a top view of the central part of

6.3 The µPIV experiment 73

−200 −150 −100 −50 0 50 100 150 200

−50

−25

0

25

50

x [µm]

y
 [µ

m
]

Figure 6.3: Sketch of cross section of glass capillary used in the µPIV experiments. The
channel width is approximately 360 µm and the depth varies from 28 µm in the central
part of the channel to 32.5 µm at the sides. Further, the cross sectional area is 1.09×10−8

m2, the perimeter 7.6× 10−4 m and the thickness of the glass wall approximately 25 µm.

the channel and the velocity profile vz(y) was determined by scanning the
focal plane along the y-axis. Because of the small aspect ratio we would
expect the flow to be essentially a parabolic profile of the form Eq. (2.25).
However it was found that the focal depth of the microscope was rather
large compared to the thickness of the channel. Thus at any position of the
focal plane yfocal inside the channel, particles from the entire depth of the
channel showed up in the images, and the result obtained was effectively a
channel average and therefore independent of y. Even up to 30 µm outside
the channel, particles were still visible though considerably blurred.

The problem was in a sense that the imaging software was performing
too well in recognizing the motion of the blurred out-of-focus particles. This
has been delt with by a filtering strategy where all gray values in the images
below a certain base-clip or cutoff are deleted, leaving only the darkest
and sharpest particles in the images. The profile thus obtained agrees well
with the theoretical profile, as seen in Fig. 5 of the paper in Appendix D.
The theoretical profile was obtained by matching a FEM solution for the
Poiseuille flow in a channel of geometry as that in Fig. 6.3 with a flow rate
of Q = 50 × 10−12 m3/s which was fixed in the experiment using a syringe
pump.

The second set of µPIV measurements were performed on blood, imaging
the motion of the individual blood cells. The profiles obtained turn out to
be almost completely flat with a constant level of v0 = 17 mm/s, as shown
in Fig. 6 of the paper in Appendix D.

The experiments were carried out at a flow rate of Q = 167×10−12 m3/s
which corresponds to an average velocity in the channel of v̄z = 15.3 mm/s;
for a Newtonian liquid the maximal shear rate near the walls would reach
1500 s−1 at this flow rate. This means that the experiment is far into the
high shear rate regime and we cannot attribute the flat profile observed to
the bulk non-Newtonian character of blood with its shear rate dependent
viscosity, c.f. Sec. 6.2.

We suggest that the observations rather indicate the formation of a lu-

74 Non-Newtonian flow

brication layer next to the channel walls. By the cell-free nature of the
lubrication layer we cannot expect to observe it directly in µPIV using the
blood cells as seeding. As a simplified model we assume that the flow can be
described as an almost solid plug of blood cells surrounded by a low viscos-
ity cell-free lubrication layer. Thus we assume that the velocity is constant
within the plug at the level v0, while in the lubrication layer the velocity
drops linearly from v0 at the plug interface to zero at the walls.

Within this simple model we can estimate the thickness d of the cell-free
layer from the nominal flow rate Q and the measured value for the velocity
of the plug v0. The cross-sectional area of the channel was measured to be
A = 1.09 × 10−8 m2 and the length of the perimeter ` = 7.57 × 10−4 m
so that the area of the lubrication layer is approximately ` × d. Since the
average velocity in the lubrication layer is simply v0/2, we can calculate the
total volume flow rate in the capillary as Q = v0(A− `d) + v0`d/2. Solving
this for the lubrication layer thickness we find

d =
2
`

(
A− Q

v0

)
(6.6)

from which we calculate d = 3 µm.
A simple way to validate the result Eq. (6.6) of the simplified two-phase

model could be obtained with the following energy consideration. The power
P fed into the capillary is given simply in terms of the pressure drop ∆p
across the capillary times the flow rate as P = ∆p × Q; this energy is lost
to friction in the liquid. In the simple model we assume that the shear rate
and therefore also the friction is zero inside the plug. All the power is lost to
the lubrication layer and we can calculate this power loss from the following
formula

Pfriction =
∫

Ω
dx 2µ|γ̇|2 = 2µL`d×

(v0

2d

)2
(6.7)

where L is the full length of the capillary and we used that inside the lu-
brication layer γ̇ = v0/2d. Also µ is the viscosity in the lubrication layer
which we can take to be equal to that of water, since this is what the blood
plasma mainly consist of. Notice that even if the plug is not assumed to be
entirely solid but only much more viscous than the lubrication layer, then
by analogy with a small and a high resistance in parallel we would still find
that most of the power is lost to the lubrication layer. Thus we infer that

∆p×Q = 2µL`d×
(v0

2d

)2
=

µL`v2
0

2d
(6.8)

which provides a means to validate the result for d. While there was ac-
tually a pressure sensor installed in the experimental setup, it turned out
to be unreliable and showed considerable drift in otherwise steady state ex-
perimental circumstances. Therefore we have not been able to verify our
two-phase model using the above expression.

6.4 Summary 75

Finally we would like to mention that an obvious way to deal with the
problem of the finite depth of focus would be to take a side view rather than
a top view of the capillary of Fig. 6.3. Then provided the capillary could be
aligned accurately with the optical axis, the large depth of focus would pose
no problem since the profile does not vary along the x-axis in the central
part of the capillary.

This strategy was tried out, but the measurements turned out to con-
tain considerably more noise than for the top view setup. Further we found
it difficult to figure out how to treat the data such as to compensate for
the refraction in the glass walls of the channel. Taking a simple ray op-
tics approach we were not even able to conclude that a sharp image would
actually be formed in the microscope with this setup. The standard way
to deal with the problem of refractions is the use of an oil immersion lens,
where the space between the lens and the object is filled with an oil with
a refractive index close to that of the glass capillary and lens. However we
did not pursue this strategy any further in the present experiment.

6.4 Summary

We have reviewed a few basic concepts in the theory of non-Newtonian liq-
uids with particular focus on the properties of blood. In fairness I would
like to stress that the actual experimental work that has been discussed in
this chapter was carried out solely by Lennart Bitsch, while my contribution
has been limited to simulations of the blood flow in one and two dimensions
to be compared with the experimental results. Further I have been involved
in numerous discussions with Lennart concerning the interpretation of the
experimental data and have contributed to the data analysis by doing cal-
culations on the optical properties of the experimental setup; in particular
in calculating the profile that we would expect to observe experimentally
given that the results are obtained using an optical system with finite focal
depth.

The main conclusion that can be drawn from the experimental results
is that blood flow in the microchannel cannot be adequately described as a
continuous liquid. Rather a two-phase model should be employed describing
the formation of a lubrication layer next to the channel walls, and we believe
that a truely succesful model will have to take into account in some way the
actual granular structure of the liquid at the length scales involved in the
problem.

76 Non-Newtonian flow

Chapter 7

Electroosmotic flow

In this chapter we discuss electroosmotic flow (EOF) in micro- and nanochan-
nels. The basis for EOF is the formation of an electric double layer, the
so-called Debye layer, at the channel walls. Chemical reactions at the wall-
liquid interface result in a transfer of charge from the liquid to the wall.
The surface becomes charged leaving a surplus of ions in the liquid of op-
posite charge. These ions, however, tend to collect near the surface in a
thin charged layer that screens the surface charge and leaves the bulk of
the liquid charge neutral. If an external electrical field is applied along the
channel, it will pull the charged screening layer ahead. The motion of the
screening layer will induce a drag; this is the basic electroosmotic pumping,
and the motion of the bulk fluid is called electroosmotic flow (EOF) [23].

The thickness of the screening layer is given by the Debye length λD that
we shall define below, and typically it is of the order of 1-10 nm. If the depth
of the channel is much larger than the Debye length, then the description
of the flow in thin Debye layer can effectively be decoupled from the flow in
the bulk of the channel. It is found that the EOF velocity of the bulk fluid
is proportional to the magnitude of the electric field applied parallel to the
wall with the constant of proportionality termed the electroosmotic mobility
µeo. Thus the flow in the bulk of the channel can be modelled by replacing
the standard no-slip boundary condition at the walls with a slip condition,
where the velocity parallel to the walls is given as the electric field times
the mobility v‖ = µeoE‖. This is the standard way in which electroosmotic
flow is handled in e.g. Coventor and CFD-ACE+. In our FEM tool
we could as well enforce such a condition by using the components nx and
ny of boundary outward normal vector available when doing the boundary
integrals with gquad – the velocity normal to the surface should vanish,
n · v = 0, whereas parallel to the surface we should have t · v = µeot · E,
defining a unit vector parallel to the boundary as t = [−ny, nx].

However, our focus in this chapter is rather on the case where the chan-
nel depth is comparable to the Debye length. Thus this has relevance to

78 Electroosmotic flow

electroosmosis in porous structures with pore sizes below 100 nm. Such
pore sizes are found in so-called frits which are used presently at MIC in
electroosmotic pump design [24].1

We have chosen to focus on the small scale problem because we find it
challenging and also because we would like to demonstrate that or finite
element tool is general enough to accommodate relatively easy for more
complex problems appearing in microfluidics.

However the application of the tool turned out to be not as straightfor-
ward as we had hoped. In particular we encountered problems when trying
to enforce some of the boundary conditions that we wished to impose on the
problem considered. Whether this present shortcomings in the way that we
have implemented the tool or rather correspond to inappropriate choises of
boundary conditions is not quite clear to us. In any case, the results that
we present, and which we must characterize as preliminary, represents just
how far we got with EOF at the time of writing.

7.1 The Debye layer

We consider now a charged species dissolved in a liquid with concentration
ci and wish to determine the variation of ci when moving from the bulk of
the liquid to the channel walls. In thermodynamic equilibrium the chemical
potential µchem,i for the species must be constant throughout the system.
For a dilute electrolyte the chemical potential is given as [25]

µchem,i = µ0
chem,i + kBT ln

ci(x)
c0
i

+ zieφ(x), (7.1)

where µ0
chem,i is the reference chemical potential and c0

i is the reference
concentration of the species; for convenience we choose the reference point
to be somewhere out in the bulk of the liquid. Further zi is the valence
number of the ions and φ(x) is the electrostatic potential which we assume
is zero at the reference point. Now in order for µchem,i to be constant we
must have

ci = c0
i exp

[
− zieφ

kBT

]
, (7.2)

1The reason for considering porous materials in electroosmotic pumping is that they
allow large pressures to be produced. For a given pressure drop across the pump, there
will be a flow back through the pumping section. If we think of the porous structure as
a bundle of circular capillaries then the volume flow rate through each capillary scales
as R4 as given in Eq. (2.23) whereas the number of capillaries grows as R−2 for a given
pump cross section area and such that the total volume flow rate is proportional to R2.
Thus if pumping section is filled with a porous material of small pore size, the backflow
will be small. On the other hand, the electroosmotic mobility and thus the velocity at the
capillary walls is independent of the pore size and therefore the electroosmotic flow rate
depends only on the total cross-sectional area of the capillaries. This assumes, though,
that the cross-section area taken up by the Debye layer in the individual capillaries is
neglible.

7.1 The Debye layer 79

that is, the reference concentration times a Boltzmann factor. The elec-
trostatic potential is coupled to the total charge density via the Poisson
equation

∇2φ = −1
ε
ρe = −e

ε

∑

i

zici, (7.3)

where ε is the dielectric constant that we assume constant throughout the
liquid for simplicity. Eqs. (7.2) and (7.3) result in a nonlinear differential
equation for the potential φ. For now we assume that the electrostatic
energy of the ions is much smaller than the thermal energy scale, that is
eziφ
kBT ¿ 1, which is known as the Debye-Hückel approximation. Then we can
take exp(− eziφ

kBT) ' 1− eziφ
kBT and Eq. (7.3) reduces to

∇2φ = −e

ε

∑
zic

0
i

(
1− eziφ

kBT

)
=

[e2

εkBT

∑
c0
i z

2
i

]
φ =

1
λ2

D

φ , (7.4)

where the second equality follows since we assume that the bulk liquid is
charge neutral

∑
c0
i zi = 0 while the last equality identifies the characteristic

length scale for variation of φ which we define as the Debye length

λD =

√
εkBT

e2
∑

c0
i z

2
i

. (7.5)

We notice that the Debye length increases with temperature as the diffusion
of the ions increases and the screening becomes less efficient, whereas it
decreases with the bulk charge carrier concentration. If we consider a specific
example of a 0.001 mol/L solution of a simple salt with zi = ±1 in water with
ε = 78.3ε0 at room temperature, we obtain λD = 9.61 nm. For comparision
we mention that the average distance between like ions in a 0.001 mol/L
solution is approximately 12 nm; thus it appears that the continuum model
that we employ for the description of the Debye layer is not particularly well
justified.

The potential difference from the bulk liquid to the wall is called the
zeta potential, ζ, and is typically of the order of 1− 200 mV. It is strongly
dependent on the pH-value in the solution. Considering the common case of
a siliconoxide (glass) channel in contact with an aqueous solution, the silanol
SiOH groups on the surface react with the water to form either SiOH+

2 or
SiO− according to

SiOH + H3O+ → SiOH+
2 + H2O (acid solution) (7.6)

SiOH + OH− → SiO− + H2O (basic solution). (7.7)

Thus in an acid solution the surface is negatively charge and the Debye layer
positive yielding a positive ζ potential – and vice versa in a basic solution.

80 Electroosmotic flow

7.2 EOF in porous structure

We now consider the out-of-equlibrium case. The motion of the ions in the
liquid has contributions from electromigration, where the ions migrate due
to the imposed electrical field, diffusion and convection. The ion flux J i is
expressed in the Nernst-Planck equation [25]

J i = µiziciE −Dmass,i∇ci + civ, (7.8)

where E is the electric field, µi is the mobility of species i, Dmass,i is the mass
diffusion coefficient and v is the velocity of the liquid. The mobility can
be expressed as µi = Dmass,ie/kBT , known as the Einstein-Smoluchowski
relation. The flux enters the continuity equation for the i’th species

∂ci

∂t
+ ∇ · J i = 0, (7.9)

and in steady state we have simply ∇ · J i = 0. Further, the electrical force
on the ions present in the liquid enters the Navier-Stokes equations as a
body force term ρeE. We shall consider for simplicity the case of a salt
with only two ions of concentrations c+ and c− and valence z+ = −z− = 1.
Further we shall assume that the diffusion coefficients for the two species
are equal Dmass,+ = Dmass,− = D. The full system of governing equations
that we wish to solve are the Navier-Stokes equation with the incompress-
ibility constraint, the Poisson equation for the electrostatic potential and
the continuity equations for the two species

ρ(v ·∇)v + ∇p− µ∇2v + e[c+ − c−]∇φ = 0 (7.10)
∇ · v = 0 (7.11)

−ε∇2φ− e[c+ − c−] = 0 (7.12)

− De

kBT
∇ · (c+∇φ)−D∇2c+ + (v ·∇)c+ = 0 (7.13)

De

kBT
∇ · (c−∇φ)−D∇2c− + (v ·∇)c− = 0 (7.14)

where we used E = −∇φ and ρe = e[c+−c−] and further eliminated ∇ ·v in
the convective term in the last two equations. The equations are discretized
using the Galerkin method of Sec. 3.2.1 to obtain

ρCvx −QT
x p + µKvx + eQc,xφ =

∫

∂Ω
dsϕ[nxp− µ(n ·∇)vx] (7.15a)

ρCvy −QT
y p + µKvy + eQc,yφ =

∫

∂Ω
dsϕ[nyp− µ(n ·∇)vy] (7.15b)

Qxvx + Qyvy = 0 (7.15c)

7.2 EOF in porous structure 81

εKφ− eMc+ + eMc− =
∫

∂Ω
dsϕ(n ·∇)φ (7.15d)

− De

kBT
K+φ−DKc+ + Cc+ =

∫

∂Ω
dsϕn · [De

kBT
c+∇φ + D∇c+] (7.15e)

De

kBT
K−φ−DKc− + Cc− =

∫

∂Ω
dsϕn · [− De

kBT
c−∇φ + D∇c−], (7.15f)

where the column vector ϕ in the boundary integrals contains all the basis
functions ϕk. Most of the matrices appearing are the same as in Chap. 4,
but a few more have been introduced. They are

[Qc,x]k` = 〈ϕk, [c+ − c−]
∂ϕ`

∂x
〉 (7.16)

and similiarly for Qc,y, whereas

[K+]k` = 〈∇ϕk; c+∇ϕ`〉 (7.17)

and similiarly for K−. In order to solve the nonlinear problem we employ
Newtons method, which requires computation of the Jacobian matrix for
the system, in which several other submatrices appear. The procedure is
straightforward, though, and we shall not discuss it here.

The boundary conditions for the Navier-Stokes equations were discussed
is Chap. 4. For the electrostatic potential we may either impose Dirichlet
conditions, fixing the potential at electrodes, or Neumann boundary con-
ditions fixing the gradient of φ, that is, the electric field, normal to the
boundary. Often the potential on the channel walls is defined in terms of
a fixed ζ potential, which is assumed to be obtainable experimentally by
adjusting the pH-value of the solution. We shall rather choose to fix the
surface charge on the walls and leave the potential to be defined. A realistic
model should describe the interaction between the solution and the ions on
the surface and thus let the surface charge as a function of the local chem-
ical potential. However, we choose the surface charge to be constant for
simplicity.

For the concentrations ci there are several possible boundary conditions
to be considered. On solid walls the normal flux n · J i should vasish, and
since the fluid velocity is zero on the walls we find that the boundary integral
in Eqs. (7.15e) and (7.15f) vanishes. On boundaries far into the bulk liquid
we may choose a Dirichlet condition fixing the concentrations at the reference
values.

On high symmetry boundaries the normal derivatives of both φ and ci

will typically vanish. In other cases we may wish the concentration gradi-
ents to vanish, but still impose a finite electrical field, which should also
be possible. However one should be careful when specifying Neumann con-
ditions on all boundaries. For the potential such a condition corresponds
fixing the electric field, and in particular by choosing the field such that all

82 Electroosmotic flow

field lines that go in, also must come out, it is possible to enforce global
charge neutrality in the system. Of course, then the level of the potential is
left undetermined, but this should not influence the physical properties of
the system since the potential only enters the equations by its gradient and
curvature. Still, it will pose a problem for the accuracy of the solution if
the numerical solution ends up with an offset of 1024 or so, and to help this
it may be wise to include a Dirichlet boundary condition for at least just a
single point on the wall.

For the concentrations the problems with all Neumann conditions are
more complicated since the solution does depend on the absolute level of
the concentration. Also, if all Neumann conditions are specified for a do-
main deep inside a long pore, the system becomes effectively decoupled from
the bulk fluid. One way to help this would be to use the thermodynamic
equilibrium value of Eq. (7.2) on some points or parts of the boundary. How-
ever we believe that the most healthy way to define the problem that we
have in mind, regarding the electroosmotic flow in a porous structure, is to
couple it rigorously to the bulk liquid outside the pore.

7.2.1 Pore geometry

The geometry that we have chosen is shown Fig. 7.1; we assume a large
array of parallel pores which by symmetry allows us to model only the small
cell defined by the thick lines in Fig. 7.1. The pores are chosen not as
circular channels but rectangular, extending far out of the paper, which
makes the problem two-dimensional.2 The dimensions of the channel are
defined relative to the Debye length λD so that the thickness of the pore is
h = 3λ and the length w = 6λD, whereas the repeat distance of adjacent
pores is H = 7λD and the distance from the pore to the point where we
define the bulk liquid is L = 8λD.

We consider an aqueous solution of concentration 0.001 mol/L at room
temperature, yielding a Debye length of λD = 9.61 nm. The surface charge
density at the walls is taken as σe = 0.01εwater/λD = 7.22 × 10−4 C/m2,
which corresponds to the surface charge density of an infinite planar liquid
glass interface with ζ potential ζ0 = 10 mV in the Debye-Hückel approxi-
mation.3 Finally the diffusion constant D is chosen as D = 5.3× 10−9 m2/s
corresponding to the value for OH− in water.

The boundary conditions on the symmetry lines are homogeneous Neu-
mann conditions for all variables except the y-velocity component which is

2Another obvious choise would be to consider parallel circular pores in a close-packed
array. The symmetry is rather high, but the problem remains three dimensional unless
one approximates it as being axisymmetric.

3The thermal energy scale kBT = 25.7 meV is larger than ζ0 = 10 mV so we should ex-
pect the Debye-H2̈ uckel approximation to hold approximately. Solving the full nonlinear
differential equation for the potential one obtains a potential difference of ζ0 = 10.063 mV
from the bulk solution to the glass wall at an infinite planar liquid glass interface.

7.2 EOF in porous structure 83

h
H

w L

Figure 7.1: Geometry of the porous structure considered. The white area is open and
filled with liquid whereas the gray area is the glass defining the channel. We assume a
large array of parallel pores and model only the domain mared with thick lines. The grid
corresponds units of the length scale λD = 9.61 nm. In the liquid domain all variables are
defined whereas inside the glass we only compute the electrostatic potential.

zero there. On the glass-liquid interface we impose no-slip for the velocity
and homogeneous Neumann for the concentrations, whereas the potential
normal gradient is given a jump determined by the fixed surface charge as

n · (εwater∇φwater − εglass∇φglass) = σe (7.18)

where the normal vector n points from the liquid into the glass, and the
dielectric constant of glass is taken as εglass = 1.5ε0. On the bulk liquid
boundary we fix the pressure at zero and the concentrations at the refer-
ence value 0.001 mol/L. Also we shall fix the potential at the bulk liquid
boundary.

Fig. 7.2 shows the solution at zero applied potential. The maximum value
of the potential is 10.5 mV, which is obtained on the wall at the channel
center. Notice that this is 0.5 mV higher than the value ζ0 used to define
the surface charge σe. The charge concentration, defined as ce = c+ − c−,
follows the potential closely – as it should according to Eq. (7.2).

Fig. 7.3 shows the solution when a potential of 5.3 mV is applied on the
left bulk fluid boundary while the right is kept at 0 mV, corresponding to
an average electric field of E0 = 2.5× 104 V/m. The potential is distorted,
whereas the change in the charge distribution is hardly visible when com-
paring with Fig. 7.2 – the maximal charge displacement is of the order of
0.5%. The potential displacement δφ denotes the change in potential from
equilibrium and Fig. 7.3 shows that the applied potential drop is somewhat
concentrated onto the pore. Yet, when considering that the cross-sectional
area of the conducting electrolyte inside the pore is approximately half that
outside the pore, it should be no surprise that the field is twice as strong
inside the pore.

84 Electroosmotic flow

electrostatic potential φ contour level spacing ∆φ = 0.5 mV

charge concentration c
e
 contour level spacing ∆c

e
 = 5 × 10−5 mol/L

finite element mesh

Figure 7.2: Solution at zero applied potential. The maximum electrostatic potential of
10.5 mV is obtained on the wall at the channel center. Also there the charge concentration
is minimal with −8.4× 10−4 mol/L whereas in goes rapidly to zero in the bulk liquid.

The maximal velocity is 0.157 mm/s which is 80% of the electroosmotic
velocity defined as veo = µeoE0 = 0.195 mm/s where µeo = εwaterζ0/µ is the
electroosmotic mobility [25].

7.2 EOF in porous structure 85

electrostatic potential φ contour level spacing ∆φ = 0.5 mV

charge concentration c
e
 contour level spacing ∆c

e
 = 5 × 10−5 mol/L

potential displacement δφ contour level spacing ∆δφ = 0.1 mV

charge displacement δc
e
 contour level spacing ∆δc

e
 = 2 × 10−7 mol/L

streamlines

Figure 7.3: Solution with potential drop across system of 5.3 mV corresponding to
2.5×104 V/m. The potential- and charge displacements δφ and δce displays the difference
change from the equilibrium value. The charge displacement is negative to the left of the
pore (close to the positive electrode) and positive to the right (close to ground) with a
maximum of δce = 1.4× 10−6 mol/L.

86 Electroosmotic flow

Chapter 8

Conclusion

Computational fluid dynamics is an important tool in microfluidics, provid-
ing detailed information when theoretical models and experimental results
are unavaiblable or difficult to obtain. We have developed a simulation tool
in Matlab based on the finite element method (FEM) allowing complex
problems in microfluidics to be approached.

We have analysed elementary flow in channels of different cross sections,
comparing the flow rate in a rectangular channel to that in channels of tri-
angular and Gaussian shaped cross section. Such channel geometries appear
typically in microfluidic networks fabricated in polymer substrates using the
laser ablation technique.

The FEM is a powerful and popular simulation method in many branches
of physics and engineering. We have given a short overview of important
concepts in the FEM with special focus on aspects central to our imple-
mentation. Also we have discussed specific features available with our tool,
including support of basis functions of arbitrary order in one and two di-
mensions, adaptive solution strategy to resolve well the difficult parts of a
problem, and fast iterative solution using the multigrid method. However
we have had problems applying the multigrid method to fluid dynamics.

Two different schemes for the problem of incompressble flow have been
considered, representing different ways of dealing with the spurious oscilla-
tory pressure mode that occurs in the most straightforward aplication of the
FEM. The implementation has been tested on the classical problem of flow
over a backward-facing step, and the qualitative agreement with experimen-
tal results from the litterature was found to be good.

The concept of non-Newtonian liquids has been introduced, and in par-
ticular we have discussed bloow flow in a capillary, modelling blood as a
generalized Newtonian liquid with shear rate dependent viscosity. The the-
oretical predictions for the velocity profile turned out not to agree with
experimental results for blood flow in a thin glass capillary, which could
be attributed to the granular nature of blood at the microscopic level. In

88 Conclusion

relation to the experimental work I have also been involved in parts of the
data analysis, in articular in predicting the profiles to observe expermen-
tally given that the observations were made with a microscope of finite focal
depth. This work has resulted in two conference proceedings [1, 2] and a
paper submitted to Experiments in fluids [3].

Finally electroosmotic flow in a porous structure has been considered.
While there are many interesting details to study in such a system, we
did not have the time to get very far with this problem. Still we have
demonstrated that our FEM tool can accomodate rather complex problems
appearing microfluidics.

Laurits Højgaard Olesen, c971820

Appendix A

Computation of curvature

In order to evaluate the plane integrals arising when the Galerkin method
is used to discretize a FEM problem we split the integrals into elementwise
contributions and subsequently map the individual elements from the xy-
plane to a simple reference element in the integration coordinate ξη-plane,
as discussed in detail in Sec. 3.4.

We refer to the coordinate transform ξ(x) mapping from a particular
element Ωα in the xy-plane to the reference element in the ξη-plane as
the inverse transform since it is actually the transform x(ξ) that we know
explicitly. The element basis function ϕk(x) on Ωα is related to φk(ξ) on
the reference element as

ϕk(x) = φk

(
ξ(x)

)
. (A.1)

In Sec. 3.4 we found the gradient

[
∂ϕ
∂x

∂ϕ
∂y

]
=

[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

][∂φ
∂ξ

∂φ
∂η

]
=

1
|J |

[∂y
∂η −∂y

∂ξ

−∂x
∂η

∂x
∂ξ

][∂φ
∂ξ

∂φ
∂η

]
, (A.2)

where |J | is the determinant of the Jacobian matrix for the coordinate trans-
form J =

[
∂x
∂ξ

]
.

We now wish to express also the curvature of the element basis function
∇2ϕk(x) in terms of the reference element basis function and coordinate

90 Computation of curvature

transform. Application of the chain rule is straight-forward leading to

∂2ϕk

∂x2
=

∂2φk

∂ξ2

(
∂ξ

∂x

)2

+
∂2φk

∂η2

(
∂η

∂x

)2

+ 2
∂2φk

∂ξ∂η

∂ξ

∂x

∂η

∂x

+
∂φk

∂ξ

∂2ξ

∂x2
+

∂φk

∂η

∂2η

∂x2
(A.3a)

∂2ϕk

∂y2
=

∂2φk

∂ξ2

(
∂ξ

∂y

)2

+
∂2φk

∂η2

(
∂η

∂y

)2

+ 2
∂2φk

∂ξ∂η

∂ξ

∂y

∂η

∂y

+
∂φk

∂ξ

∂2ξ

∂y2
+

∂φk

∂η

∂2η

∂y2
(A.3b)

∂2ϕk

∂x∂y
=

∂2φk

∂ξ2

∂ξ

∂x

∂ξ

∂y
+

∂2φk

∂η2

∂η

∂x

∂η

∂y
+

∂2φk

∂ξ∂η

(
∂ξ

∂x

∂η

∂y
+

∂ξ

∂y

∂η

∂x

)

+
∂φk

∂ξ

∂2ξ

∂x∂y
+

∂φk

∂η

∂2η

∂x∂y
. (A.3c)

In these expression most of the terms are readily available – the second
derivatives of φk with respect to ξ and η can be computed since the polyno-
mial coefficients for φk are known explicitly. Also the first derivatives of the
inverse transform

[∂ξ
∂x

]
can be computed from Jacobian

[
∂x
∂ξ

]
as in Eq. (A.2).

However the second derivatives of the inverse transform remains a problem.

In case of triangular elements with a linear coordinate transform the
second derivatives simply vanish – otherwise we obtain for the last two
terms in each of the above expressions

∂φk

∂ξ

∂2ξ

∂x2
+

∂φk

∂η

∂2η

∂x2

=
1
|J |

{
∂φk

∂ξ

[
∂

∂x

(
∂y

∂η

)]
− ∂φk

∂η

[
∂

∂x

(
∂y

∂ξ

)]
− ∂ϕk

∂x

∂|J |
∂x

}
(A.4a)

∂φk

∂ξ

∂2ξ

∂y2
+

∂φk

∂η

∂2η

∂y2

=
1
|J |

{
∂φk

∂η

[
∂

∂y

(
∂x

∂ξ

)]
− ∂φk

∂ξ

[
∂

∂y

(
∂x

∂η

)]
− ∂ϕk

∂y

∂|J |
∂y

}
(A.4b)

∂φk

∂ξ

∂2ξ

∂x∂y
+

∂φk

∂η

∂2η

∂x∂y

=
1
|J |

{
∂φk

∂η

[
∂

∂x

(
∂x

∂ξ

)]
− ∂φk

∂ξ

[
∂

∂x

(
∂x

∂η

)]
− ∂ϕk

∂y

∂|J |
∂x

}
, (A.4c)

91

where the following expressions are needed

∂

∂x

(
∂x

∂ξ

)
=

∂ξ

∂x

∂2x

∂ξ2
+

∂η

∂x

∂2x

∂ξ∂η
(A.5a)

∂

∂x

(
∂x

∂η

)
=

∂ξ

∂x

∂2x

∂ξ∂η
+

∂η

∂x

∂2x

∂η2
(A.5b)

∂

∂x

(
∂y

∂ξ

)
=

∂ξ

∂x

∂2y

∂ξ2
+

∂η

∂x

∂2y

∂ξ∂η
(A.5c)

∂

∂x

(
∂y

∂η

)
=

∂ξ

∂x

∂2y

∂ξ∂η
+

∂η

∂x

∂2y

∂η2
(A.5d)

∂

∂y

(
∂x

∂ξ

)
=

∂η

∂y

∂2x

∂ξ∂η
+

∂ξ

∂y

∂2x

∂ξ2
(A.5e)

∂

∂y

(
∂x

∂η

)
=

∂η

∂y

∂2x

∂η2
+

∂ξ

∂y

∂2x

∂ξ∂η
(A.5f)

∂

∂y

(
∂y

∂ξ

)
=

∂η

∂y

∂2y

∂ξ∂η
+

∂ξ

∂y

∂2y

∂ξ2
(A.5g)

∂

∂y

(
∂y

∂η

)
=

∂η

∂y

∂2y

∂η2
+

∂ξ

∂y

∂2y

∂ξ∂η
(A.5h)

and finally

∂|J |
∂x

=
[

∂

∂x

(
∂x

∂ξ

)]
∂y

∂η
+

∂x

∂ξ

[
∂

∂x

(
∂y

∂η

)]

−
[

∂

∂x

(
∂x

∂η

)]
∂y

∂ξ
− ∂x

∂η

[
∂

∂x

(
∂y

∂ξ

)]
(A.6a)

∂|J |
∂y

=
[

∂

∂y

(
∂x

∂ξ

)]
∂y

∂η
+

∂x

∂ξ

[
∂

∂y

(
∂y

∂η

)]

−
[

∂

∂y

(
∂x

∂η

)]
∂y

∂ξ
− ∂x

∂η

[
∂

∂y

(
∂y

∂ξ

)]
. (A.6b)

Notice that x and y appears asymmetric in Eq. (A.4c). Of course the result
should be independent of the order in which we choose to differentiate with
respect to x and y. However we do not see an obvious way of making
the expression in Eq. (A.4c) symmetric without doubling the number of
terms and thus we rely on the result to evaluate correctly even if it is not
aestetically pleasing.

92 Computation of curvature

Appendix B

Computation of streamlines

In this appendix we discuss the visualization of a flow pattern with stream-
lines and explain how to compute streamlines for two-dimensional flows using
the stream function.

A streamline is defined as a curve that is everywhere tangent to the
velocity field and it can be thought of as the path that a small fluid particle
follows as it rides along with the flow[26]. This makes a plot of streamlines
usefull to identify separation regions in the flow as done in Chap. 5, or e.g.
to understand diffusion when two chemical solutions are streaming together.

For unsteady flows one distinguishes between streamlines, streaklines and
particle orbits. A particle orbit displays the actual path in space traversed
by a particular particle, whereas a streakline is the trace observed when
smoke or dye is injected through a small tube into the flow in e.g. a wind
tunnel. A streamline is neither of these but rather depict the velocity field
at a single instant of time. For steady flows though they are all equivalent.

The streamline is parametrized as x(s) where in steady flow the param-
eter s is equivalent to time spent by the fluid particle. Being defined as
everywhere tangent to the velocity field the streamline obeys

dx(s)
ds

= v
(
x(s), t

)
(B.1)

where v is the velocity field and t is the instant of time being depicted. This
is an ordinary differential equation and picking some point as x0 = x(s0)
it is readily solved as an initial value problem. Matlab provides several
functions for computing a set of streamlines given a velocity field and a set
of streamline starting points; however they all require the velocity solution
to be given on a square or rectangular type grid. Thus the FEM solution has
to be evaluated on a such a grid before the Matlab functions can be used
– this is inconvenient since the solution will be degraded unless a grid that
is finer than the finite element mesh is employed, in particular if adaptive
mesh refinement has been employed to resolve critical regions of the solution
better.

94 Computation of streamlines

Moreover for flow over a backwards facing step we found that in the
recirculation region behind the step the streamlines produced by Matlab
were slowly spiralling rather that forming closed curves, indicating that a
velocity sink was present inside the region. We believe that this artefact
was caused by numerical errors in the algorithm due to the fact that the
FEM velocity solution is not strictly divergence free and from numerical
noise introduced when transfering the solution from the finite element mesh
to the square grid.

Streamlines from the stream function

Streamlines never cross, and never begin nor end except at inflow and out-
flow boundaries and stagnation points. These properties would be ensured
in a streamline plot if we could draw the streamlines as the contours of some
function. This function turns out to be the stream function ψ and it exists
only for divergence free flows.

For a given two-dimensional velocity field we define ψ(x, t) by

∂ψ

∂x
= −vy, and

∂ψ

∂y
= vx. (B.2)

By construction the gradient of ψ is everywhere normal to the velocity field
v ·∇ψ = 0, such that a curve of constant ψ corresponds exactly to a stream-
line. Further the local density of the streamlines when drawn at equispaced
levels of ψ is proportional to the magnitude of the velocity since |∇ψ| = |v|.

Since Eq. (B.2) only defines ψ up to an additive constant we must pick
some reference point x0 and choose ψ(x0) = ψ0. Then ψ may be determined
for any x by a line integral

ψ(x) = ψ0 +
∫ x

x0

d` ·∇ψ = ψ0 +
∫ x

x0

d` · v̂, (B.3)

where v̂ = [−vy, vx]. Now in order for ψ to be single-valued the integral
along any closed loop must vanish. This is satisfied only if v is divergence
free

0 =
∮

d` · v̂ =
∫

S
dS∇× v̂ =

∫

S
dS∇ · v, (B.4)

where S is the area enclosed by the integration path, and the second equality
is Stokes theorem while the third follows from the two-dimensionality of the
flow.

Our first approach to the computation of the stream function was based
on Eq. (B.3). Once a solution for the velocity field was available, the stream
function was computed by line integrals along element edges starting from
some reference node and recursively propagating ψ to the entire mesh. How-
ever the FEM velocity field solution is not strictly divergence free; it is only
the projection onto the basis functions 〈ϕk, ∇ · v〉 that is zero. Thus the

95

integral around the edges of a single element is not necessarily zero, which
means that the stream function as determined by line integration along the
element edges depends on which integration path is taken.

The results obtained with the line integration routine were actually not
that bad, reflecting the fact that the FEM velocity field if not strictly di-
vergence free is still close to be so. However, following [16] we have taken
another approach, determining the stream function by solving a FEM Pois-
son equation. We take the divergence of Eq. (B.2) and obtain

∇2ψ =
∂vx

∂y
− ∂vy

∂x
. (B.5)

which is a Poisson equation for ψ; and it is easily verified that the solution
to Eq. (B.5) obeys ∇ψ = v̂ provided such a ψ exist.

The choices for boundary conditions is between Dirichlet and Neumann
types. From Eq. (B.3) we deduce that ψ is constant along solid walls since
v = 0 there; thus a constant Dirichlet condition can be applied to solid
walls. The wall levels can be connected since across an inflow or outflow
boundary Γq, where the velocity profile is specified such that the volumetric
discharge Q =

∫
Γq

dsn·v is known, the jump in ψ between the two walls on
either side of Γq is simply ∆ψ = Q.

However we have obtained the best results applying Neumann conditions
to the entire boundary of the type

(n ·∇)ψ = n · v̂ = nyvx − nxvy (B.6)

computed explicitly from the known solution for v and the boundary out-
ward normal. All Neumann boundary conditions only determine the value
of ψ up to an additive constant which leaves the linear system obtained by
discretizing Eqs. (B.5) and (B.6) weakly singular. To resolve this, either the
equation stemming from the projection of Eq. B.5 onto ϕ0 can be deleted
and replaced with ψ(x0) = ψ0 before solving the system; or the problem can
simply be ignored in which case the solution for ψ comes out with an arbi-
trary off-set. The off-set can subsequently be removed, fixing ψ(x0) = ψ0 at
the reference point. The former choise has the inconvenience that in a sense
the correctness of the solution is sacrified at the reference point; with the
latter choise there is the risk that the linear solver settles on a very large
off-set so that the number of significant digits in the solution is reduced.

We have implemented the stream function computation as a simple rou-
tine strmfunc, see Appendix C, that determines a piecewise linear approx-
imation to the stream function for given a velocity field. Streamlines are
then drawn as a contour plot of ψ with gcontour.

96 Computation of streamlines

Appendix C

Matlab function headers

In this appendix we include the headers for the Matlab routines discussed
in the thesis. The header comment is displayed as help message when e.g.
the command help elm2sd is executed in the Matlab command prompt –
thus the headers are intended to give a quick overview of what the routine
does. We hope they will be instructive to read.

We have not included all files though, and some of the headers therefore
refer to routines not present in this appendix.

C.1 gaussgeom

GAUSSGEOM geometry M-file for half gaussian profile

The half gaussian profile is defined as the region

(x,y) | 0 < x < 2*w & 0 < y < h*[exp(-x^2/(2*w^2))-exp(-2)]/[1-exp(-2)]

where w and h is the halfwidth and height of the gaussian.

Segment no.

(1) [x(s),y(s)] = [w*s,0]

(2) [x(s),y(s)] = [w*(1-s),h*[exp(-w*(1-s)^2 ...]]

(3) [x(s),y(s)] = [0,h*(1-s)]

w and h are are set persistently [for the session] by a four argument

call to gaussgeom([],[],w,h); e.g. gaussgeom([],[],2.0,4.0)

See also PDEGEOM for required syntax of geometry M-files

C.2 elm2sd

ELM2SD lookup of unique sides between elements

[s,es,ts,qs] = ELM2SD(e,t,q) where e is the edge table and t and q are

the triangle and quadrangle tables of the mesh, returns the unique line

segments connechting the mesh nodes together with their locations on

the edge and as element sides.

98 Matlab function headers

That is qs is a table of the indices in s of the four line segments

making up q. Further qs is negative where the ordering of the line

segment in s is reversed with respect to counterclockwise ordering

in q whereas it is positive when the line segment is aligned.

See also INITMESH

C.3 halfmesh

HALFMESH Regular refinement of a mesh

[p1,e1,t1,q1] = HALFMESH(geom,p,e,t,q) refines the mesh in [p,e,t,q] by

cutting every side in two. Edge points follow the boundary described by

the Geometry M-file geom.

[p1,e1,t1,q1] = HALFMESH(geom,s,p,e,es,t,ts,q,qs) uses an existing set of

unique sides in stead of generating a new with ELM2SD.

[s1,p1,e1,es1,t1,ts1,q1,qs1] = HALFMESH(geom,s,p,e,es,t,ts,q,qs) returns

also a set of refined level unique sides although NOT those that are

obtainable with ELM2SD(e1,t1,q1).

See also REFINEMESH, ELM2SD, PROLONG

C.4 prolong

PROLONG prolongation and restriction operators

[P,R] = PROLONG(’linear’,s,p,t,q,p1,t1,q1) builds the prolongation and

restriction operators for transfer in linear interpolation between the

coarse mesh [p,e,t,q] and the fine mesh [p1,e1,t1,q1] when this is

obtained from the coarse using HALFMESH.

[P,R] = PROLONG(’constant’,s,p,t,q) builds operators for elementwise

constant interpolation.

[P,R] = PROLONG(’quadratic’,s,p,{t,tt},{q,qq},p1,{t1,tt1},{q1,qq1}) builds

operators for quadratic interpolation where tt and qq are the quadratic

element tables, see QUADRATIC.

Notice that one is typically adviced to choose the restriction operator

such that the inner products (v,R*w1) = (P*v,w1) for all v and w1 on the

coarse and fine meshes respectively.

This is equivalent to the matrix equation M*R = P’*M1 where M and M1 are

the coarse and fine mesh mass matrices. However while P is a sparse matrix

R = M \ P’*M1 is generally dense. To cure this, lumped mass matrices are

introduced which are simply the diagonal parts of the full matrices, and

thus the sparsity pattern of P is recovered in R.

A different approach is to use simply unit mass matrices. This works. More

on that topic later.

See also HALFMESH

C.5 lagrange 99

C.5 lagrange

LAGRANGE element interpolation

phi = LAGRANGE(n,’line’,xi) evaluates the n’th order Lagrange element

interpolation function and its slope on the interval [-1,1] for the

specified values of xi.

phi = LAGRANGE(n,’triangle’,xi,eta) evaluates the n’th order Lagrangle

element interpolation function and its slope on the interval

[0 < xi < 1 & 0 < eta < 1-xi].

phi = LAGRANGE(n,’quadrangle’,xi,eta) evaluates the n’th order Lagrange

element interpolation function and its slope on the interval

[-1,1]x[-1,1].

[ee,tt,qq] = LAGRANGE(n,’table’,e,t,q) builds the n’th order edge and

element tables from the linear ones.

[ee,tt,qq] = LAGRANGE(’table’,e,t,q,s,es,ts,qs) does the same provided

a set of unique element sides in stead of generating one with ELM2SD.

See also ELEMENTS, ELM2SD

C.6 mglin

MGLIN linear multigrid

MGLIN(P,K,f,A,a) applies full linear multigrid to find the solution u of

a linear(ized) FEM problem discretized with the Galerkin method to form

a set of linear equations

K*u = f

where K is the stiffness matrix and f is the load vector.

Neumann boundary conditions should be included in K and f, whereas

Dirichlet boundary conditions should be projected onto the basis to

form a Dirichlet boundary mass matrix A and constraint vector a

A*u = a

The Dirichlet b.c. is enforced by replacing all rows in K and f where

the diagonal element in A is non-zero with the corresponding rows in A

and a.

Finally a cell array of prolongation operators P connecting finest mesh,

on which K, f, A and a are discretized, with a sequence of coarser meshes

should be provided. E.g. use PROLONG to obtain the prolongation operator

connecting a refined mesh from HALFMESH with the original one.

MGLIN(P,K,f,A,a,u) uses an initial guess u for the solution on the finest

mesh in stead of employing full multigrid to ramp up a starting guess

based on the exact solution on the coarsest mesh.

See also PROLONG, HALFMESH

100 Matlab function headers

C.7 gquad

GQUAD elementwise Gauss quadrature

I = GQUAD(f,n,element,p,t) performs n’th order Gauss quadrature over the

elements of type element, defined by the node table p and element table

t, of the function f where f is a vectorized string expression of

coordinate(s) - e.g. on 2D elements it should depend on ’x’ and ’y’.

Elements supported are:

’line’ p:[1xN] t:[3xM] coordinate: ’s’

’triangle’ p:[2xN] t:[4xM] coordinates: ’x’ and ’y’

’quadrangle’ p:[2xN] t:[5xM] coordinates: ’x’ and ’y’

The last row in the element tables is the subdomain label which is not

actually used by GQUAD but must be present. See INITMESH.

For boundary integrals in two dimensions the element ’boundary’ is

available. Then the node table p should contain the x and y coordinates

of the boundary nodes and the element table t should be replaced by the

boundary table e, see INITMESH. The integrand f is allowed to depend on

the boundary parametrization ’s’ as well as ’x’ and ’y’ and also the

components ’nx’ and ’ny’ of the boundary unit outward normal.

With n’th order quadrature the error is of

O[h^(n+1)] for triangular elements

O[h^(2n)] for line and quadrangular elements

I = GQUAD(f,n,element,p,{t,u}) and

I = GQUAD(f,n,element,p,{t,u1,u2,..}) evaluates the fields u1 and u2 and

their slopes u1x, u1y, u2x and, u2y on the quadrature points using the

linear or bilinear element basis function in GEVAL. Thus f is now allowed

to depend on those fields.

I = GQUAD(f,n,element,p,t,proj) employs GPROJ to performs projection onto

the element basis functions where proj may be [] or any of the strings

’phi’ int[f*phi(i)]dx

’dphi’ int[f*nabla(phi(i))]dx

with i ranging over element nodes - e.g. for triangular elements the

result is [3xM] or two [3xM] arrays for ’dphi’.

More projetions:

’phi.phi’ int[f*phi(i)*phi(j)]dx [mass matrix]

’dphi.dphi’ int[f*nabla(phi(i)).nabla(phi(j))]dx [stiffness matrix]

’phi.dphi’ int[f*phi(i)*nabla(phi(j))]dx

with first i and then j ranging over element nodes - e.g. for triangular

elements i = [1 2 3 1 2 3 1 2 3] and j = [1 1 1 2 2 2 3 3 3].

I = GQUAD(f,n,element,p,t,proj,phi) projects onto the basis function phi

in stead of the default linear or bilinear. See ELEMENTS.

I = GQUAD(f,n,element,p,t,proj,{phi,tphi,v1,v2,..}) evaluates the fields

v1 and v2 on the integration points using phi in GEVAL.

C.7 gquad 101

I = GQUAD(f,n,element,p,t,proj,phi,psi) allows for hybrid interpolation.

That is the projections are changed to

’phi.phi’ int[f*phi(i)*psi(j)]dx

’phi.dphi’ int[f*phi(i)*nabla(psi(j))]dx

’dphi.dphi’ int[f*nabla(phi(i)).nabla(psi(j))]dx

I = GQUAD(f,n,element,p,{t,u},proj,{phi,tphi,v},{psi,tpsi,w}) evaluates

all of the fields u, v, and w with the various basis functions.

I = GQUAD(f,n,element,p,t,proj,phi,psi,{gamma,tgamma,g}) evaluates the

field(s) g and both its slope and curvature gx, gy, gxx, gxy, and gyy in

GEVAL. While generally the curvature should not enter the integrand it

does so when the local error estimate is computed.

Examples:

Triangle element areas

A = gquad(’’,1,’triangle’,p,t)

Volume below x^2+y^2 across the mesh [using 2nd order quadrature]

V = gquad(’x.^2+y.^2’,2,’quadrangle’,p,q)

Volume below sin(y) across the mesh [using 5th order quadrature]

V = gquad(’sin(y)’,5,’triangle’,p,t)

Projection of sin(x+y) onto element functions

f = gquad(’sin(x+y)’,5,’triangle’,p,t,’phi’)

Next step is to assemble the contributions from different nodes using

F = full(sparse(t,ones(size(t)),f,length(p),1))

Projection of sin(u) onto element basis functions

f = gquad(’sin(u)’,5,’triangle’,p,{t,u},’phi’)

where u is a column vector of expansion coefficients of the field u on

the default linear basis.

Continuity matrices int[phi(i)*nabla(phi(j))]dxdy

[Qx,Qy] = gquad(’’,1,’triangle’,p,t,’phi.dphi’)

Convection matrix int[phi(i)*[a*d/dx + b*d/dy]*phi(j)]dxdy

where a and b are expansion coefficients of velocity field data

[Cx,Cy] = gquad(’{u1,u2}’,3,’quadrangle’,p,{q,a,b},’phi.dphi’)

C = Cx+Cy

Stiffness matrix int[nabla(phi(i)).nabla(phi(j))]dxdy with quadratic

basis functions

K = gquad(’’,2,’triangle’,p,t,’dphi.dphi’,’quadratic’);

See also INITMESH, ELEMENTS, GPROJ, GEVAL

102 Matlab function headers

C.8 gjmp

GJMP square of jump in normal derivative across element boundaries

GJMP(n,element,p,t,u) integrates the square of the jump in normal

derivative of u across element boundaries using n’th order quadrature

[where n=1 is sufficient for the default linear or bilinear element

interpolation]. The result is multiplied by the length of the element

boundary segment as required for use with error estimation.

GJMP(n,element,p,t,{phi,tphi,u}) uses phi for the interpolation of u in

stead of the default linear or bilinear one, see ELEMENTS.

[d2u,ds] = GJMP(n,element,p,t,u) is a split representation where the

integrated square jump d2u and the length of the sides ds are returned

separately.

This could be used for element refinement that adapts the new element

flexibility to the direction where the solution varies most rapidly?

See also GQUAD, GEVAL, ELEMENTS

C.9 geval

GEVAL evaluate field on quadrature points

GEVAL(u,element,t,phi) evaluates u on the elements of type element in the

table t using the interpolation phi which should already be evaluated on

the desired points in (xi,eta) space - see ELEMENTS.

[u,ux,uy] = GEVAL(u,element,t,phi,j) also evaluates the gradient of u

using the coordinate transform jacobian - see GJAC.

[u,ux,uy,uxx,uxy,uyy] = GEVAL(u,element,t,phi,j,chi,p,tchi) also evaluates

the curvature of u where the element coordinate transform chi and mesh

nodes p are required only when chi is not linear and j thus not constant.

See also ELEMENTS

C.10 newt 103

C.10 newt

NEWT solve non-linear system of equations by Newton iteration

[u,r] = NEWT(func,u0) looks for a solution u to the problem r(u) = 0 using

u0 as initial guess when func is the name of a function that computes the

residual vector r(u) and Jacobian matrix J = d(r)/du. Thus NEWT calls

[r,J] = feval(func,u)

to evaluate r and J.

Newtons method is based on linearization of r(u) close to u0

r(u0+du) = r(u0) + J(u0)*du + ...

where we solve r(u0+du) = 0 for du

du = - J(u0) \ r(u0).

Provided u0 is close enough to the solution the iteration of this scheme

converges fast towards u. However if the solution is not close to u the

iterations often diverge. Therefore the scheme is modified to read

du = -J\r

u(new) = u(old) + alpha*du

and a step length 0 < alpha < 1 is searched out to minimize the square

residual F(u) = |r(u)|^2. This procedure is called a line search with

du as the search direction.

An exact line search to track up a true minimum of F is quite expensive

and not worth the effort. In stead NEWT implements an Armijo-Goldstein

in-exact line search where alpha is chosen as the first number in the

sequence [1 1/2 1/4 1/8 ...] with F(u+alpha*du) <= (1-alpha/2)*F(u).

For large problems the solution of the linear system du = -J\r may

become quite expensive. Iterative solution of the system using MGLIN is

done by calling NEWT with a function func that returns a the Dirichlet

b.c. problem separately as required by MGLIN such that

[r,J,rd,Jd] = feval(func,u)

where r(u) represents the problem in the interior of the domain and

rd(u) the Dirichlet b.c. problem with J = d(r)/du and Jd / d(rd)/du.

A number of options can be set as parameter/value pairs:

Name Description Default

’#newton’ maximal number of Newton iterations 8

’#alpha’ maximal number of line search steps 8

’reltol’ relative error tolerance for du 0

’abstol’ absolute error tolerance for du 0

’restol’ absolute error tolerance for norm(r) 0

’parameters’ cell array of parameters passed to func {}

’multigrid’ cell array of prolongation operators {}

’verbose’ flag to signal convergence info ’off’

Examples:

Solve r(u) = 0 when r and J are defined by the function myfunc(u,a,b,c).

The solution is accepted when sum(r.^2) < 1e-10 allowing 20 iterations

to search for it and printing convergence info during iteration

[u,r] = newt(’myfunc’,u0,’verbose’,’on’,’parameters’,{a,b,c}, ...

’#newton’,20,’restol’,1e-10)

104 Matlab function headers

C.11 flow2dpgp

FLOW2DPGP incompressible 2D [planar] flow

equal order interpolation for all variables; stabilized with PGP

[R,J] = FLOW2DPGP(u,dirichlet,neumann,rho,mu,p,e,t,q,phi,ee,tt,qq)

returns the residual R and the Jacobian J = dR/du where

R(u) = [rho*(v.nabla)v + nabla(p) - mu*(nabla.nabla)v

nabla.v + tau*((nabla.nabla)p - nabla.pgp)

nabla(p) - pgp]

The trial solution u is stored in a 5 column table u = [vx vy p pgpx pgpy]

where p is the pressure [not to be confused with node table p..]

Dirichlet and Neumann type boundary conditions are specified with cell

arrays of strings that evaluate to functions of the coordinates (x,y)

and the boundary parametrization s.

Example:

dirichlet = {[1:2 5],’0’,’0’,’’ % zero vx and vy on boundaries 1:3 and 5

[4], ’’ ,’0’,’’ % zero vy on boundary 4

[6],’s.*(2-s)’,’0’,’’}; % parabolic vx on boundary 6

neumann = {[3],’0*nx’,’0*ny’,’’}; % zero pressure on boundary 3

[R,J,Rd,Jd] = FLOW2DPGP(u,dirichlet,neumann,rho,mu,p,e,t,q,phi,ee,tt,qq)

does not eliminate the Dirichlet boundary conditions but returns separate

Dirichlet boundary mass matrix and residual as required by MGLIN.

Stabilization with pressure gradient projection from

Int. J. Numer. Meth. Fluids 37, 419 (2001)

See also ELEMENTS, NEWT

C.12 gcontour

GCONTOUR Contour plot of function on element mesh

GCONTOUR(u,p,t,q) is a contour plot of the function u defined on the

element mesh [p,t,q].

GCONTOUR(u,p,t,q,n) when n is an integer specifies the number of contours

and when n is a vector the level of the contours.

Contours are colored from the current colormap; thus black contours are

obtained with a precall to colormap(white-1). Otherwise the contours may

be postprocessed with the graphics handle:

h = GCONTOUR(...) returns a vector of handles to the plotted contours.

[h,c] = GCONTOUR(...) returns also a contour matrix for use with CLABEL.

Not yet though...

See also GPLOT, CONTOUR, CLABEL, COLORMAP, COLORBAR

C.13 strmfunc 105

C.13 strmfunc

STRMFUNC stream function for two dimensional incompressible velocity field

psi = STRMFUNC(u,p,e,t,q) computes the stream function psi from a two

dimensional velocity field u = [vx vy] so that

nabla(psi) = [-vy vx]

Thus the gradient of psi is always orthogonal to u. This implies that

contour lines of psi are the streamlines of the velocity field.

Notice that the stream function is only well defined when the velocity

field is divergence free, nabla.u = 0. Otherwise some streamlines should

or at least could end somewhere in the middle of the flow whereas a

contour line certainly cannot.

STRMFUNC actually determines psi by solving a Poisson problem

(nabla.nabla)psi = d(vx)/dy - d(vy)/dx

with Neumann boundary conditions n.nabla(psi) = ny*vx-nx*vy on all

boundaries. If the velocity field is truly divergence free the solution

can be shown to satisfy nabla(psi) = [-vy vx].

All homogeneous Neumann boundary conditions can be obtained by providing

an empty edge table e.

[K,f] = STRMFUNC(u,p,e,t,q) returns the stiffness matrix K and source

term f for the poisson problem such that psi can be computed as

psi = K \ f

Notice that because we impose Neumann b.c. on all boundaries, psi is

only well defined up to an additive constant. This may render K weakly

singular, a problem that may be resolved by clamping first element in

psi to zero

psi = zeros(length(p),1);

psi(2:end) = K(2:end,2:end) \ f(2:end);

psi = STRMFUNC({u,e2,t2,q2},p,e,t,q) computes psi using (bi)quadratic

interpolation for the velocity field.

See also GCONTOUR

106 Matlab function headers

Appendix D

Paper submitted to
Experiments in Fluids

Title
Micro particle-image velocimetry of bead suspensions and blood flows

Authors
Lennart Bitsch, Laurits H. Olesen, Carsten H. Westergaard, Henrik Bruus,
Henning Klank, and Jörg P. Kutter

Abstract
We present and discuss velocity profiles of microflows obtained by micro
particle-image velocimetry (µPIV) in a transmission setup. We measured
on suspensions of beads in water and on human blood, using the red blood
cells as a natural particle seeding. We analyze the limitations imposed by
our optical system on the spatial resolution normal to the focal plane, the
so-called focal depth. The first direct observations of the influence of the
focal depth on the observed velocity profiles are presented. Good agreement
is obtained between observations and calculated profiles modified by the
finite focal depth through a visibility function.

Submitted
Submitted to Experiments in Fluids on 8 July 2003

108 Paper submitted to Experiments in Fluids

Experiments in Fluids manuscript No.
(will be inserted by the editor)

Micro particle-image velocimetry of bead suspensions and blood flows

L. Bitsch1, L. H. Olesen1, C. H. Westergaard2, H. Bruus1, H. Klank1, and J. P. Kutter1 ?

1 Mikroelektronik Centret (MIC), Technical University of Denmark (DTU), DK-2800 Kongens Lyngby, Denmark
2 Dantec Dynamics A/S, Tonsbakken 16-18, DK-2740 Skovlunde, Denmark

Submitted 8 July 2003

Abstract We present and discuss velocity profiles of
microflows obtained by micro particle-image velocime-
try (µPIV) in a transmission setup. We measured on
suspensions of beads in water and on human blood, us-
ing the red blood cells as a natural particle seeding. We
analyze the limitations imposed by our optical system
on the spatial resolution normal to the focal plane, the
so-called focal depth. The first direct observations of the
influence of the focal depth on the observed velocity pro-
files are presented. Good agreement is obtained between
observations and calculated profiles modified by the fi-
nite focal depth through a visibility function.

1 Introduction

The efforts to develop lab-on-a-chip devices have increased
substantially during the past few years[1]. Along with
this development the techniques to characterize the per-
formance of microfluidic systems are being improved dras-
tically. Volume illuminated micro particle-image velocime-
try (µPIV) has shown to be a promising technique for
characterizing detailed velocity profiles in these struc-
tures.

An important sub-field in microfluidics concerns the
behavior of blood flowing in microchannels, and it has
therefore become of high interest to obtain detailed in-
formation about the properties of such flows. In partic-
ular the non-linear flow properties of blood are interest-
ing. To date, the studies of blood flow in microsystems
presented in the literature often focus on measurements
and models of the relation between flow rates and pres-
sure drops[2], without utilizing the support of PIV. One

? The authors thank Detlef Snakenborg from MIC for pro-
viding the electronic circuitry to help in controlling the LED,
and the Polymer Center at DTU for making it possible to per-
form the viscosity measurements. This work was supported
by the Danish Technical Research Council, µTAS Frame Pro-
gram Grant No. 26-00-0220.

exception is Sugii et al. who presented an in vivo PIV
experiment of blood flow [3]. However, they did not in-
vestigate the influence of velocity gradients normal to
the focal plane, and such an investigation is generally
needed. Furthermore, the measurements were not com-
pared to theoretical profiles.

In this work, using µPIV in a transmission setup, we
measure velocity profiles of bead suspensions and blood
flows in a flat glass capillary with a roughly rectangu-
lar cross-section of size 28 µm by 360 µm. Restricted
to observations in a given focal plane µPIV has previ-
ously proven successful in both transmission and epi-
fluorescent mode[4,5]. We extend these results by taking
into account the finite spatial resolution normal to the
focal plane, the so-called focal depth, imposed by our
optical system, and we present the first direct observa-
tion of the influence of the focal depth on the obtained
experimental velocity profiles. Our analysis is based on
the theoretical expression for the visibility of particles
slightly out-of-focus that has recently been derived by
Olsen and Adrian[6]. For fluids with a high density of
particles, such as blood, it can be difficult to determine
the position of boundaries parallel to the focal plane.
We show that these boundaries are related to a steep in-
crease in the size of the errorbars of the measurements.
The measurements on blood strongly indicate that blood
in these dimensions flows as a plug flow and that it
should be modelled as a two-phase flow. Moreover, we
find indications of the presence of a 3 µm wide cell free
boundary layer.

The paper is organized as follows. In Sec. II we de-
scribe the bead suspensions and blood samples used in
our experiments, with special attention to the non-linear
flow properties of the latter. In Sec. III we present the
details of our µPIV setup. The central concept of focal
depth is explained in Sec. IV. Sec. V contains a descrip-
tion of the µPIV data analysis. In Sec. VI, based on the
finite focal depth, we derive the theoretical expression
for the convolved velocity field. Our results are presented
and discussed in Sec. VII.

2 L. Bitsch, L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter

10−4 10−2 100 102

10−3

10−1

101

γ̇
−0.75

Shear rate γ̇/(s−1)

γ̇
−0.2

V
is

co
si

ty
η
/(

P
a

s)

Fig. 1 The viscosity of blood as a function of shear rate
obtained in a concentric cylinder geometry. With its shear
rate dependent viscosity, blood is clearly a non-Newtonian
fluid. The straight lines indicate the different power laws at
high and low shear rates.

2 Preparation of Samples

For the measurements we used human blood delivered
from the hospital blood bank at Rigshospitalet, Copen-
hagen[7]. More precisely, the blood was a suspension of
red blood cells in an aqueous solution of adenine, man-
nitol, sodium chloride, and glucose. The role of the sus-
pending medium is to serve as an energy source for the
biochemical processes in the red blood cells and to pre-
vent coagulation and hemolysis. However, since in this
work we are mostly interested in the non-linear flow
properties of blood, and since a major cause to this non-
linearity is the deformation and flow alignment of the red
blood cells[8], we expect a good resemblance between our
blood samples and anticoagulated whole human blood
on this matter. The blood was stored at 4◦C before use,
but all experiments were conducted at room tempera-
ture, 20◦C.

The non-linear flow properties of blood are clearly
seen in its viscosity. It is more pronounced at high con-
centrations of red blood cells, and for that reason we
chose to work with the undiluted suspension with a hema-
tocrit at about 60%, where a normal human hematocrit
is about 50% depending on gender and physical condi-
tion. In Fig. 1 the viscosity η of a blood sample is shown
as a function of the shear rate γ̇. The viscosity measure-
ments were conducted with a rotational rheometer from
TA instruments (AR 2000 Advanced Rheometer). The
viscosity shows a strong dependency on the shear rate
in agreement with other studies of blood[8]. Instead of
a constant η characteristic for a Newtonian liquid, we
see that blood for low shear rates follows a power law
η ∝ γ̇−0.75, which then tapers off at higher shear rates,
η ∝ γ̇−0.2.

As the blood sample had a tendency to develop a
sticky skin when exposed to air, we chose to use a concen-
tric cylinder geometry, where a relatively large sample
volume minimizes the influence of a skin. The distance
between the two cylinders was 1 mm, and the measured
viscosity is therefore a bulk property. The viscosity will
vary between individual blood donors. However, since
we use the measured blood viscosity for a qualitative es-
timate of the suitability of a bulk property model, we
are not concerned with such variations, but instead only
focus on the qualitative behavior.

As a reference fluid to blood we chose to work with
a suspension of spherical beads in pure water. The bead
seeding was about 1% by volume, and each bead had
a diameter of 1.02 µm. The measured viscosity of the
bead suspension was 10% larger than the viscosity of
pure water, and no shear rate dependency was observed.

3 The measurement setup for µPIV

The measurement setup for µPIV is sketched in Fig. 2(a).
It is centered around an optical microscope (DMLB, Le-
ica) using a CCD camera to record images of the flow
of blood or bead suspensions through the capillary. The
capillary is placed horizontally in the microscope and il-
luminated from below by a high intensity light-emitting
diode (LED) with a maximum intensity at a wavelength
of 450 nm. The transmitted light is focused onto a CCD-
camera by a dry infinity-corrected Pl fluotar objective
lens with a magnification of 63 and a numerical aper-
ture of 0.7. Camera and LED were synchronized and
controlled by a FlowMap(TM) System Hub from Dantec
Dynamics.

The CCD-camera is a PCO SensiCam with a 12 bit
cooled imaging system containing a matrix of 1280×1024
pixels. By calibration in air this matrix was found to
correspond to a field of view of 129×103 µm2.

A cross section of the capillary is seen in Fig. 2(b).
During experiments it was filled with the fluid from a
syringe pump through approximately 20 cm long PVC
tubes. After passing the capillary, the fluid ended up in
a waste beaker at atmospheric pressure. The flow rates
were 50 nL s−1 for the bead suspension and 167 nL s−1

for blood.
An experiment consisted of a series of PIV measure-

ments, where the horizontal focal plane was moved verti-
cally down through the channel, as sketched in Fig. 2(b).
In that way the velocity gradient could be resolved in the
direction normal to the focal plane.

A PIV measurement consisted of 25 pairs of images
recorded with intervals of 1 s. The time lapse between
the two images in a pair was 500 µs, and the exposure
time for each single image was given by the 100 µs LED
pulses. The exposure time and time between pulses were
chosen in such a way that a reasonable signal to noise
ratio was obtained on the measured velocities. To min-

Micro particle-image velocimetry of bead suspensions and blood flows 3

Direction
of flow

Interrogation volume LED

CCD

z

x
Waste

Capillary

Microscope

(a)

H

Capillary
cross-section

Adjustable
focal plane

h H

−w/2 w/2

y
zmin

zmax

z

(b)

Fig. 2 (a) A sketch of the experimental setup containing the microfluidic system, the interrogation volume, the LED, the
optical system, and the CCD camera. (b) The actual channel cross section in the yz plane obtained by optical inspection.
The dimensions are H = 32.5 µm, h = 28 µm and w = 360 µm. The z-axis is normal to the focal plane. The velocity profiles
were scanned by moving the focal plane (dotted line) between zmin and zmax, 35 µm above and 25 µm below the channel,
respectively.

imize the uncertainty on the travelled distance, the ra-
tio between the exposure time and time between pulses
should be as small as possible. We have not optimized
this procedure in a systematic way, but rather used a
rough guideline that requires a movement of 10 pixels
between subsequent exposures and a ratio of time be-
tween pulses and exposure time of 5.

From each pulse pair an instantaneous velocity field
of the particle images could be calculated. As an example
the velocity field for a blood flow measurement is seen
in Fig 3. Since we were studying steady state flow the
velocity field was constant, and 25 sets of images were
recorded and used to present an averaged result with
improved statistics.

4 Focal depth and focal plane

The spatial resolution normal to the focal plane, the so-
called focal depth Df , was estimated experimentally to
be 4 µm. Here Df is defined as the full-width at half-
maximum in a plot of the recorded intensities of a given
bead at the bottom of a water-filled channel as a func-
tion of the vertical position of the horizontal focal plane,
as shown in Fig. 4. The intensity signal is seen to be su-
perimposed on a flat background without any refraction
patterns. This background is indicated by the lower dot-
ted line.

To minimize effects from out of focus particles we use
a so-called base-clipping technique. A specific threshold
intensity level is chosen (the upper dotted line in Fig. 4)
and intensities below this level are discarded. In the case
of a particle inside the channel, base-clipping discards all

patterns with an intensity corresponding to a distance
further than 2 µm away from the focal plane. For parti-
cles on a glass slide in air the focal depth was estimated
to be at least 20 µm, which indicates a dependency on
the illumination, i.e., the focal depth is not the same
when the focal plane is inside and outside the channel.

92 µm

8
8

µ
m

Fig. 3 An example of a velocity field obtained for a flow
measurement on blood. The map is 92 µm wide and 88 µm
high. The blood cells are observed as dark rings, and the av-
erage velocity of some interrogation areas are indicated with
an arrow.

4 L. Bitsch, L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter

-8 -4 0 4 8
0

100

200

300

400

z/(µm)

Df

Base-clip

Background

Fig. 4 The recorded intensity (open circles) in arb. units of
a given bead in a water-filled capillary as a function of the
vertical distance z from the horizontal focal plane. The full
line is a fit to a Lorentzian intensity profile. The full-width at
half-maximum is 4 µm, which defines the focal depth Df . The
upper and lower dotted horizontal lines are the base-clipping
level and background level, respectively.

The optical effects of changing the position of the
focal plane need special attention. The change ∆zfp in
vertical position of the focal plane relative to the capil-
lary is obtained by moving the objective table with the
capillary a distance ∆zcap in steps of 1 µm using the
built-in scale on the microscope. In air we simply have
∆zfp = ∆zcap, but in the fluid the light rays are bent
away from the vertical direction by refraction. Using the
theory of paraxial rays we find the linear scaling

∆zcap =
nwater

nair
∆zfp, (1)

where nwater = 1.33 and nair = 1 are the refractive in-
dices of water and air, respectively.

5 µPIV data analysis

Data were analyzed using standard PIV-analysis[9]. Typ-
ically in PIV an illuminated volume is projected onto a
plane, i.e, a particle image is produced on a CCD-chip.
In order to obtain a velocity field the image is divided
into smaller areas called interrogation areas. The density
of particles or, more precisely, the density of refraction
patterns determines the minimum resolution within the
image plane. The resolution normal to the plane is de-
pendent on the focal depth Df after base-clipping. The
interrogation area together with Df defines the interro-
gation volume.

A rule of thumb requires approximately 10 parti-
cles per interrogation volume to enable so-called ordi-
nary cross-correlation analysis. A particle suspension of

1% by volume, and an interrogation volume given by
6.4 × 6.4 × 2 µm3 corresponds roughly to 1.2 spherical
particles. Hence, our particle seeding was a little too low,
but we can compensate for this problem by making an
average correlation, as explained further down. In order
to improve the spatial resolution we used a 25% overlap
between the interrogation areas.

The recorded light intensity I in a given interroga-
tion area can, without going into details, be written as a
function of the pixel position vector s as I1(s) and I2(s)
for the two light pulses at time t1 and t2, respectively.
The cross-correlation function R(∆x) is defined as the
average over all pixel coordinates in the interrogation
area i as

Ri(∆x) ≡ 〈I1(s)I2(s + ∆x)〉i (2)

The value ∆xi of ∆x that maximizes Ri(∆x) is a sta-
tistical measure of the overall displacement of the fluid
represented by the interrogation area. Thus the average
flow velocity of that region is given by

vi =
∆xi

t2 − t1
. (3)

From each set of particle images we can determine
the velocity field. However, in the case of a low seed-
ing it is advantageous to make an average over all 25
image sets in a measurement series, and then make a
cross-correlation. This procedure is called average cross-
correlation.

6 Theoretical velocity fields

The measured velocity fields from the µPIV analysis
need to be compared with theoretical velocity fields.
These are found by solving the Navier-Stokes equation
with a constant negative pressure gradient along the flow
direction and with the no-slip boundary conditions for
the velocity at the channel walls.

For the bead suspension, being a Newtonian liquid,
the calculated Navier-Stokes velocity field vNS can be
thought of as the well-known paraboloid Poiseuille pro-
file being distorted at the boundary to fit the dumbbell
shape depicted in Fig. 2b rather than a circular shape.

The non-Newtonian character of blood, as seen in
Fig. 1, leads to a further distortion of the Poiseuille flow
in the form of a more blunt velocity profile close to the
center of the capillary. Due to the small dimension of the
channel compared to the size of the red blood cells, an-
other option is to model the fluid as a two-phase system.

However, in our µPIV experiments we expect to ob-
serve neither of these two simple Navier-Stokes velocity
fields. Even though, we have performed a truncation in
intensity levels, the remaining optical depth of our sys-
tem will cause a pick-up of out-of-focus signals. Recently,
Olsen and Adrian derived a theoretical expression for the

Micro particle-image velocimetry of bead suspensions and blood flows 5

−30 −20 −10 0 10 20 30
0

2

4

6

8

vPIV

vNS

z/(µm)

V
el

o
ci

ty
/(

m
m

s−
1
)

(a)

−40 −20 0 20 40
0

2

4

6
vPIV

vconv

vNS

z/(µm)
V
el

o
ci

ty
/(

m
m

s−
1
)

(b)

Fig. 5 The velocity of the bead suspension versus z. (a) The z-axis has been centered around the middle of the channel.
Legends: (−◦) first experiment vPIV, (−∗) second experiment vPIV, and (−) Navier-Stokes theory vNS(z). Experimental un-
certainties are indicated with error bars. (b) The weighted theoretical profile vconv(z) obtained from a convolution of the
Navier Stokes profile vNS(z) with the Lorentzian visibility function I(z) of Eq. (4) and Fig. 4. Legends: (−) theory vconv(z),
(−·) theory vNS(z), and (−◦) first experiment vPIV. Theoretical uncertainties are indicated with error bars. A fair qualitative
agreement is achieved between experiment and theory.

(a)

z/(µm)

Boundaries

V
el

o
ci

ty
/
(m

m
s−

1
)

U
n
certa

in
ty

/
(m

m
s
−

1)

-40 -20 0 20
0

4

8

12

16

0

0.1

0.2

0.3

V
el

o
ci

ty
/
(m

m
s−

1
)

z/(µm)

Boundaries

Plug

Cell free layer

(b)

-40 -20 0 20
0

4

8

12

16

Fig. 6 Measurements on blood flows. (a) The velocity (upper curves) and the uncertainty (lower curves) as a function of
z. The z-axis has been centered around the middle of the channel. The channel boundaries (top and bottom) are indicated
by vertical lines at z = ±14 µm. Legends: (−◦) first experiment, (−∗) second experiment. The uncertainty increases strongly
outside the boundaries. (b) A comparison between the suggested two-phase model and the experimental results. Legends: (−)
two-phase model, (−◦) first experiment, (−∗) second experiment.

visibility of particles slightly out-of-focus [6]. A particu-
larly simple limiting case of their result is a Lorentzian
visibility function I(z) given by

I(z) =
(

1 +
4z2

D2
f

)−1

, (4)

where I is the intensity, Df is the focal depth, and z is
the vertical distance from the focal plane.

Using the simplified visibility function I(z) we can
model the distorted velocity field vconv(z) as a convo-
lution integral of the simple theoretical velocity field
vNS(z) with the visibility function:

vconv(z) =

∫ h/2

−h/2
vNS(z′) I(z′ − z) dz′

∫ h/2

−h/2
I(z′ − z) dz′

, (5)

where h is the height of the channel.

6 L. Bitsch, L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter

A theoretical estimate of the error bars σv(z) can be
obtained as being inversely proportional to the square
root of the amount of statistical data,

σv(z) ∝
[∫ h/2

−h/2

I(z′ − z) dz′
]−1/2

. (6)

It is important to notice that we cannot expect total
agreement between vconv(z) and the measured velocity
vPIV(z). vconv(z) is the weighted average of a theoret-
ical profile, where the weighting function I(z) is given
by Eq. 4, and no base-clipping is considered. vPIV is
based on measured data after base-clipping, which re-
duces the signal from out-of-focus particles. Despite the
base-clipping there still is some influence from the finite
optical resolution, and we estimate it qualitatively by
means of a convolution.

7 Results and discussion

As a first result, Fig. 5(a) contains a comparison of two
experimental velocity profiles vPIV(z) with the simple
theoretical profile vNS(z) for the suspension of beads in
water. The zero values of the theoretical profile indicate
the channel boundaries. There is a fine agreement at the
center, but some discrepancy when the boundaries are
approached. Beyond the boundaries, an out-of-focus sig-
nal is picked up, a feature which is not captured at all by
the simple theoretical profile. However, the effect is real:
it is nicely reproduced in the two different experiments.

Using instead the convolved theoretical profile vconv(z)
from Eq. (5) we obtain Fig. 5(b), where it is seen that
the convolution with the visibility function yields a qual-
itatively correct description of the non-zero values at the
channel boundaries. It furthermore explains both the in-
crease in the observed velocities outside the channel, and
the rapid increase in uncertainty.

Our measurements on the beads demonstrate that it
is possible to resolve velocities normal to the focal plane
with a focal depth of 4 µm using volume illuminated
µPIV, averaged cross-correlation and base-clipping.

We have seen that moving the focal plane outside the
channel leads to an increase in observed velocities and
to a steep increase in the associated uncertainties. This
can be explained qualitatively as follows. When the focal
plane and hence the maximum of the visibility function
lies outside the channel, the observed average velocity
increases because the high-velocity particles in the center
of the channel are seen with the same (low) intensity as
the low-velocity particles at the boundaries. Moreover,
only very few particles are observed at all thus resulting
in large 1/

√
N -fluctuations and increased uncertainties.

For the blood measurements, the velocity profile is
seen in Fig. 6(a) with the corresponding uncertainties.
The uncertainty of a velocity measurement depends on

the density of the moving refraction patterns (the image
density) in the interrogation volume. For positions of the
focal plane inside the blood-filled channel, the particle
seeding is relatively high, and the uncertainties become
correspondingly small. Even outside the channel the un-
certainties are surprisingly small, but as in the case of
the bead suspension they increase significantly as the fo-
cal plane is moved outside the channel. The first channel
wall was positioned where the steepest increase in uncer-
tainty was observed (bottom), and the second wall (top)
was determined by the channel height.

Blood is known to develop cell free layers next to solid
boundaries to lubricate the transport of a semi-solid plug
consisting of cells[8], i.e., a two-phase system. The nearly
flat velocity profile in Fig. 6(a) strongly suggests that
such a two-phase model indeed is a good description of
the system, whereas a single-phase model employing the
viscosity data from Fig. 1 does not fit the data. A two-
phase model is seen in Fig. 6(b), where the velocity of the
plug is 17 mms−1, and the cell free layer is a Newtonian
liquid approximated with the viscosity of water. We can
obtain an estimate of the width d of the cell-free layer
by matching the nominal flow rate Q with the model.
We find

d = 2
(

A− Q

v0

)
1
l
, (7)

where A = 1.09 × 10−8m2 is the area of the channel,
v0 = 17×10−3 m s−1 is the plug velocity, and l = 7.57×
10−4 m is the perimeter of the channel. The cell free
layer was calculated to be d = 3 µm, which is 21% of
the channel. In the literature it is reported that cell free
layers in microtubes for diluted blood samples took up
to about 10% of the volume[8]. Considering the increase
in uncertainties and the fine agreement with the two-
phase model, it is reasonable to assume that we have
been able to resolve the velocities along the z-axis, and
that we have observed a plug flow.

We have successfully measured steady state velocity
profiles on suspensions of beads and human blood in a
microchannel. The microflows were imaged through an
optical system using stroboscopic back illumination. Due
to the focal depth, the optical system limits the resolu-
tion vertical to the focal plane, which results in an aver-
aging of velocities in adjacent planes. In the bead suspen-
sion, we have qualitatively estimated the influence of the
focal depth by means of a Lorentzian intensity function
Eq. (4). Using this intensity function, we show that the
optical system has a focal depth of 4 µm. Furthermore,
the intensity function illustrates why the measured ve-
locity seems to increase, when the focal plane is moved
outside the fluidic channel. Additionally, it provides a
prediction of the trend in uncertainties, which can be a
help in determining the position of walls parallel to the
focal plane.

In the blood suspension, we measured a velocity pro-
file, which together with a two-phase model gives a strong

Micro particle-image velocimetry of bead suspensions and blood flows 7

indication of a plug flow. The fitting of a two-phase
model resulted in a cell free layer of 3 µm.

References

1. Sanders GHW; Manz A (2000) Chip-based microsys-
tems for genomic and proteomic analysis. Trends Anal.
Chem 19, 364-378

2. Trebotich D; Chang W; Liepmann D (2001) Model-
ing of blood flow in simple microchannels. Proc. Modeling
and Simulation of Microsystems 2001, 218-222

3. Sugii Y; Nishio S; Okamoto K (2002) In vivo PIV
measurements of red blood cell velocity field in microves-
sels considering mesentery motion. Physiol. Meas. 23: 403-
416

4. Koutsiaris AG; Mathioulakis KS; Tsangaris S
(1999) Microsope PIV for velocity-field measurement of
particle suspensions flowing inside glass capillaries. Meas.
Sci. Technol. 10: 1037-1046

5. Meinhart CD; Wereley ST; Santiago JG (1999) PIV
measurements of a microchannel flow. Exp. Fluids 27:
414-419

6. Olsen MG; Adrian RJ (2000) Out-of-focus effects on
particle image visibility and correlation in microsopic par-
ticle image velocimetry. Exp. Fluids [Suppl.], S166-s174

7. Rigshospitalet, H:S Blodbank (2003) Blegdamsvej 9,
DK-2100 Copenhagen, Denmark

8. Fung YC, Biomechanics (2nd ed., Springer-Verlag 1993)
9. FlowManager. For the PIV data-analysis we used

the commercial software package FlowManager version
3.70.06, which is developed by Dantec Dynamics A/S

116 Paper submitted to Experiments in Fluids

Bibliography

[1] Lennart Bitsch, Laurits H. Olesen, Carsten H. Westergaard, Henrik
Bruus, Henning Klank, and Jörg P. Kutter, Transmission micro PIV
resolving velocities normal to the focal plane Accepted for microTAS
2003, Lake Taho, USA, October 2003

[2] Lennart Bitsch, Laurits H. Olesen, Carsten H. Westergaard, Henrik
Bruus, Henning Klank, and Jörg P. Kutter, Micro PIV on blood flow in
a microchannel, Accepted for microTAS 2003, Lake Taho, USA, October
2003

[3] Lennart Bitsch, Laurits H. Olesen, Carsten H. Westergaard, Henrik
Bruus, Henning Klank, and Jörg P. Kutter, Micro particle-image ve-
locimetry of bead suspensions and blood flows Exp. Fluids, (submitted
10 July 2003)

[4] Flemming Rytter Hansen, Dispersion in electrokinetically and pressure
driven microflows, Master thesis, Mikroelektronik Centret, DTU (2002)

[5] Arieh Iserles, A first course in the numerical analysis of differential
equations, Cambridge University Press (1996)

[6] Susanne C. Brenner, L. Ridgway Scott, The mathematical theory of
finite element methods, Springer-Verlag New York, Inc. (1994)

[7] C. A. Brebbia, M. H. Aliabadi, [editors], Adaptive finite and boundary
element methods, Computational Mechanics Publications Southampton
Boston (1993) [Elsevier Science Publishers Ltd London New York]

[8] A. H. Stroud, Don Secrest, Gaussian quadrature formulas, Prentice Hall
(1966)

[9] D. A. Dunavant, High degree efficient symmetrical Gaussian quadrature
rules for the triangle, Int. J. Numer. Meth. Eng. 21, 1129-1148 (1985)

[10] Matlab – www.mathworks.com

118 BIBLIOGRAPHY

[11] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P.
Flannery, Numerical recipes in C, the art of scientific computing, second
edition, Cambridge University Press (1992)

[12] Ramon Codina, Jordi Blasco, A finite element formulation for Stokes
problem allowing equal velocity-pressure interpolation, Comput. Meth-
ods Appl. Mech. Engrg. 143, 373-391 (1997)

[13] O. C. Zienkiewicz, P. Nithirasu, R. Codina, M. Vazquez, P. Ortiz, The
Characteristic-Based Split procedure: an efficient and accurate algo-
rithm for fluid problems, Int. J. Numer. Meht. Fluids 31, 359-392
(1999)

[14] L. Franca, T. J. R. Hughes, A. F. D. Loula, and I. Miranda, A new
family of stable elements for nearly incompressible elasticity based on
a mixed Petrov-Galerkin finite element formulation, Numerische Math-
ematik 53, 123-141 (1988)

[15] Mark A. Christon, Dealing with pressure: FEM solution strategies for
the pressure in the time-dependent Navier-Stokes equations, Int. J.
Numer. Meth. Fluids 38, 1177-1198 (2002)

[16] O. C. Zienkiewicz, R. L. Taylor, The finite element method, fifth edition,
volume 3: fluid dynamics, Butterworth-Heinemann (2000)

[17] R. Codina, J. Blasco, G. C. Buscaglia, A. Huerta, Implementation of
a finite element formulation for the incompressible Navier-Stokes equa-
tions based on a pressure gradient projection, Int. J. Numer. Meth.
Fluids 37, 419-444 (2001)

[18] I. G. Kovasznay, Laminar flow behind a two-dimensional grid, Proceed-
ings of the Cambridge Philosophical Society 44, 58-63 (1948)

[19] B. F. Armaly, F. Durst, J. C. F. Pereira, B. Schönung, Experimen-
tal and theoretical investigation of backwars-facing step flow, J. Fluid
Mech. 127, 473-496 (1983)

[20] Lennart Bitsch, Blood flow in microchannels, Master thesis, Mikroelek-
tronik Centret, DTU (2002)

[21] P. Szabo, J. M. Rallison, E. J. Hinch, Start-up flow of a FENE-fluid
through a 4:1:4 constriction in a tube, J. Non-Newtonian Fluid Mech.
72, 73-86 (1997)

[22] Y. C. Fung, Biomechanics, mechanical properties of living tissues,
Springer Verlag (1984)

[23] Anders Brask, Principles of electroosmotic pumps, Master thesis,
Mikroelektronik Centret, DTU (2002)

BIBLIOGRAPHY 119

[24] Anders Brask, Henrik Bruus, and Jörg P. Kutter, Electroosmotic pump
with ion exchange membranes and a current feedback for flow control,
Accepted for microTAS 2003, Lake Taho, USA, October 2003

[25] R. F. Probstein, Physicochemical hydrodynamics, an introduction, sec-
ond edition, John Wiley and Sons, Massachusetts Institute of Technol-
ogy (1994)

[26] Benny Lautrup, Physics of continuous matter; exotic and everyday phe-
nomena in the macroscopic world, draft 7.2, Niels Bohr Institute (2001)

