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Abstract

Modelling of blood flow on the micrometer scale is a challenging task due
to its non-Newtonian behavior, and because of the small dimensions which
makes the continuum assumption problematic. The problem can be ap-
proached by the theory of generalized Newtonian fluids, where the apparent
viscosity is described as a function of the scalar invariants of the shear rate
tensor.

The present report contains a review on flow and rheological properties of
blood. In this work the nonlinear character of the constitutive equation has
been measured using a rotational rheometer. The measurements have been
fitted to a simple power law model, and used as a constitutive equation
for CFD-simulations in simple microtubes. By means of a parallel plate
geometry, it was the intention to investigate how the viscosity depends on
the gap size between the shearing plates. However, due to the instrument it
was difficult to obtain reliable results at small gap sizes.






Resumé

Modellering af blodstrgmme i mikrometerskala er en udfordrende opgave pa
grund af dens ikke newtonske opfersel, og de sma dimensioner der kan ggre
kontinuums antagelsen problematisk. Problemet kan tilnsermes vha. den
generaliserede newtonske model, hvor den tilsyneladende viskositet er givet
som en funktion af forskydningshastigheds tensorens invariante.

Denne rapport indeholder en oversigt over strgmnings of reologiske egen-
skaber af blod. I dette arbejde er den ikke newtonske karakter af den kon-
stitutive ligning bestemt vha. et rotations reometer. Malingerne er fitted til
en simpel potens lov model, og er blevet brugt som en konstitutiv ligning til
CFD-simuleringer i simple mikrorgr. Vha. en parallel pladegeometri var det
hensigten at undersgge viscositetens afhaengighed af afstanden mellem den
stationsere og bevaegelige plade. Eksperimentet var dog mindre succesfuldt.
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Preface

This thesis is the product of eight months of study on blood; its morphology,
its rheological properties and how it behaves in microchannels. My back-
ground for this project is five years of study at the Technical University of
Denmark (DTU) and the University of Liverpool with a profile in chemistry
and mathematical modelling.

The project was carried out at Mikroelektronik Centret (MIC) in collab-
oration with Dansk Polymer Center, both situated at DTU. Mikroelektronik
Centret is a multidisciplinary research center based on a variety of differ-
ent teams all working in the field of nano- and microtechnology. The two
teams related to this project is the Micro Total Analysis System (uTAS),
and Science & Education (S&E).

The uTAS group at MIC was founded in 1999, but in general uTAS refer
to a concept of miniaturizing chemical analysis systems. However, as also
will become evident from this thesis, miniaturizing is not just to scale down
the system. In these small dimensions some physical concepts known from
the macroscopic world cease to be valid.

In literature related to this subject, there are different traditions for han-
dling the term micro as a prefix or a separate word. When we speak about,
e.g., microchannels, microreactors and micromixers, we really mean compo-
nents with length scales in the submillimeter range. However, as pointed out
by Klavs Jensen [13], micro as a prefix does in general designate systems that
originally were developed in the electronics industry. These techniques has
later expanded to other fields like chemistry and biology. This integration
has yielded a variety of advances that was not possible with the conventional
techniques in the macroscopic domain. In accordance with many other au-
thors, and to emphasize that we are describing systems related to this still
expanding area of science, I will in this report use micro as a prefix, and
write the words closed up. From this point of view, the Mikroelektronik
Center was also designed to fabricate microelectronic devices, but the focus
has merely changed to flow chips, analysis systems, and bio-arrays.

In the 4 TAS group a lot of ideas and designs have already emerged, on
the basis of knowledge from scientists with various backgrounds, but until
now a fundamental, theoretical understanding of microfluidic systems has
been lacking. Hence, the S&E-team was involved to change the state of af-



fairs. A fundamental understanding of the system is necessary to circumvent
some of the problems that emerge, when we scale down a system. For exam-
ple, high shear rates can be damaging for living cells. How do we estimate
this property, and are some designs more appropriate than others?

As a master student, it has been an exciting challenge to be on the
forefront in this new field. Being a pioneer requires an ability to work
independently, and it have sometimes been necessary to make decisions,
where the knowledge on the outcome and consequences have been limited.
Therefore, as I started this study, there were no well-defined problem, and
this report reflects to a high extent how I worked through the project, and
defined problems as I came along.

This project is a primer on blood studies at MIC and the polymer center,
which means that nobody had any theoretical knowledge on blood rheology,
or practical experience on how to handle blood in a laboratory. Accurate
experiments requires a certain amount of experience. How do we measure
hematocrit, how do we avoid that the cells are sticking to the pipette wall,
and how do we prevent hemolysis?

To get advice on how to perform experiments with blood, I have taken
contact to Poul Bennekou and Lars Ole Simonsen from the August Krogh
Institute at the University of Copenhagen, as they handle blood routinely in
their laboratories. Even though my experimental work has been relatively
simple, and has ignored some of the problems mentioned, the discussion has
been very supporting through the entire process. The collaboration has been
extended to more than the practical issue of blood in the laboratory, and I
am very thankful for the support, ideas and inspiration they have provided.

In general, this collaboration is a good example of cross-disciplinarity,
which is an important factor for the success in developing microfluidic sys-
tems. Engineers have the knowledge on how to design and fabricate devices.
Pharmacologist and physiologists have an insight into the living organism,
and the experience to locate what is actually valuable information.

MIC is now about to establish a theory group on micro- and nanofluidics.
Led by my supervisors, Henrik Bruus and Goran Goranvié¢, Modelling of
Blood Flow in Microchannels is one of four in the first batch of master theses
in the simulation group. I started up along with three other students, Mads
Jakob Jensen, Anders Brask, and Flemming Rytter Hansen, each with their
own defined projects. Their topics were Bubbles in Microchannels, Principles
of Electroosmotic Pumps, and Dispersion in Electrokinetically and Pressure
Driven Microflows, respectively. All together these four topics are concerned
with a very central part of simulations on microfluidics, and should form a
solid basis for future work at MIC. Their support and sharing of knowledge
have been a great advantage for the thesis, and invaluable for keeping up the
spirit during the project. I would like to address a special thanks to Goran
Goranovié¢ who persuaded us to write these theses at MIC, and who set up
the initial frame for this project. Also a thanks to Peter Szabo and Dansk
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Polymercenter/Institut for Kemiteknik who provided the facilities for the
rheological study.

Again, I wish to thank my supervisors at MIC and the Polymer Center
for their patience, and willingness to discuss my problems, occasionally on
unappropriate times.
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Notations and Symbols

Vectors are denoted by boldface roman as for example the velocity vector,
v. For computational purposes a vector can be represented as a sum,

3
v = Zviki, (1)
i=1

where lA<Z is the unit vector in the ith direction. Second order tensors are
distinguished by boldface greek. The dyadic product between two vectors is
also a tensor for example,

3 3
= Z Z lA{Z‘lA{jUi?}j. (2)

l;ilA{j is the unit dyad, and should not be confused with the dot product

ki -k; = d;;.

A: Hamaker constant. The Hamaker constant has a typical value between
10712 and 10720 J [18].

D: diffusion constant

F: force vector

G relaxation modulus in oscillatory flow

k: Boltzmann constant 1.38066 x 10723 J/K
Ri: unit vector in the i-direction

l;il;j: the unit dyad

M: Young’s modulus

N4: the Avogadro constant 6.02 x 1023 mol ™!
Q: volume flow rate.

S: vector for volume forces

v: velocity vector

T absolute temperature
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7T :torque

x;: coordinate on the ith axis

0i;: The Kronecker delta

¢: (-potential

n: non-Newtonian viscosity

n*: complex viscosity in oscillatory flow
A: parameter for relaxation time in oscillatory flow, and viscosity parameter
in the Power Law(Blood) model.

u: Newtonian viscosity

¢: phase factor in oscillatory flow

p: density

w: angular velocity

Q: frequency in oscillatory flow
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Chapter 1

Introduction

The concept of a micro total analysis system (¢ TAS) is not just to miniatur-
ize conventional chemical systems, but also to take advantage of new features
that emerge when we go to the microrange, or even smaller dimensions. A
uTAS is assembled of units with different operations such as micropumps,
micromixers, microreactors, and detecting units.

The key idea of a microfluidic system analyzing blood is: A blood sample
comes in, gets analyzed, and a result comes out. In order to develop these
systems, it will be necessary to establish mathematical models describing
the transport of blood, and this thesis is a primer at MIC on this topic.

Microfluidics is a multidisciplinary field of research, and as a consequence
this project is overlapping with two different areas. Firstly, the project
involves experimental work with blood in a laboratory, which requires some
knowledge on blood’s physiological properties. Secondly, we have blood’s
rheology, and numerical simulations on flow in simple channels.

1.1 The structure of the thesis

According to the British Society of Rheology, rheology can be defined as the
science of deformation and flow of matter, where fluids exhibiting Hookean
and Newtonian behavior are excluded. In the study of blood flow the lit-
erature can be divided into two main classes; one is concerned with the
rheological properties of blood in microchannels and capillaries, and the
other is focused on how blood constitutive parameters can be related to the
physical condition of a patient.

In Biomechanics Fung [10] outlines how a given biomechanical problem,
such as the one at hand, could be studied. As mentioned, this study is
concerned with the flow of blood not in a biological system, but in small
channels and gaps of a material, which is not a natural environment for
blood. However, even though our problem is not purely biological, Fung’s
approach is very general, and will therefore serve as a rough guideline in this
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study. The following list is a modification or refinement of the tasks, that
should be considered in a biomechanical study.

1. Study the morphology of the chosen geometries. What kind of material
is it, and what are the dimensions?

2. Find or determine the mechanical properties of blood. Do they depend
on shear rate, composition, time, and the surrounding material.

3. Based on the fundamental laws, establish the set of governing equa-
tions.

4. Set realistic boundary and initial conditions. Even if the problem
is steady, appropriate initial conditions can be crucial in obtaining a
converged solution.

5. Test the result with real experiments.
6. If necessary, refine theory or experiments.

7. If theory and experimental work is in agreement, consider consequences
and applications.

In this chapter we will take a look on the phenomenology of non-Newtonian
liquids to get a qualitative understanding of what kind of flows we might
expect. In Chapter 2 we will introduce the underlying physics of fluids
and how we in general can analyze and express a system in a mathematical
model.

After two preliminary Chapters we will follow Fung’s model more di-
rectly. In Chapter 3 we study the morphology and rheology of blood, in
relation to flow in geometries in the submillimeter range. With background
in this study we will in Chapter 4 investigate the flow properties further,
as we perform our own measurements with a rotational rheometer. Our
approach to the problem is the continuum assumption, where blood is re-
garded as a homogeneous fluid, and in microtubes this assumption can be a
problem.

In very small tubes, blood can be modelled by considering individual
cells, but in tubes with 100 pm in diameter and a large number of cells this
approach would not be appropriate. Therefore, one of the objectives of the
work was to investigate down to what size the continuum assumption would
be a good approximation, i.e., in how small channels can we model the flow
by means of a constitutive equation?

Unfortunately, these experiments turned out to be more difficult than
expected. Measurements of rheological parameters at small dimensions re-
quires an instrument with a very high precision. During the experiments it
was discovered that the rotational plate was slightly skewed. Therefore, this
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method was not appropriate to investigate gap size dependence, but we did
obtain a macroscopic constitutive equation. When the measurement tech-
nique is not appropriate, it is necessary to search for alternative methods.
A possible way of obtaining more reliable measurements, is also presented
in Chapter 4.

In Chapter 5 we use the obtained constitutive equation to model a blood
flow in a simple tube. Furthermore, our model is compared with results from
other studies on blood flow in micro channels.

Even though the experimental part was not quite successful, I will round
off this report by looking at some of the opportunities in microfluidic systems
analyzing blood. Systems where a thorough understanding of fluid dynamics
and mass transport in microsystems will be a helpful tool in the realization
process.

1.2 Phenomenology of non-Newtonian liquids

Blood is known to be a non-Newtonian fluid. The distinction between New-
tonian and non-Newtonian fluids is based on Newtons law of viscosity

=1, (L1)

where p is the Newtonian viscosity, 7 is the shear stress, and + is the shear
rate. The properties are measured in Pas, Pa, and s™!, respectively. If a
fluid obeys Eq. (1.1) it is Newtonian. A central concept in rheology is the
shear rate tensor. The shear rate is a measure for the deformation of a fluid,
and in technical terms it is the gradient of the flow field

4 = % (VV + (Vv)T) , (1.2)

where v is the velocity vector and superscript 7' denotes the transposed.
The term fluid has a different meaning in different fields of science, but in
continuum mechanics we mean matter that is able to flow. According to
Probstein [18] the non-Newtonian liquids can be categorized as follows:

1. Time-independent fluids in which the shear stress is a nonlinear one-
to-one function of the shear rate.

2. Time dependent fluids in which the shear stress is not a one-to-one
function of the shear rate, but depends on the shear stress history of
the fluid.

3. Viscoelastic fluids that have both viscous and elastic properties in
which the shear stress depends upon both the shear rate and strain.
The elastic character introduces a time-dependent behavior or ” mem-
ory” to such fluids.
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Figure 1.1: The figure shows the viscosity for fluids known from everyday life.
For syrup, a Newtonian fluid, it is obvious that if the shear rate is swept up
and down the viscosity function will fall on the same line, hence, the constant
viscosity is time-independent and a one-to-one function. For ketchup and
cough medicine, non-Newtonian fluids, the viscosity is not constant, but if
the reverse sweep gives the same curve, then it is also a time-independent,
one-to-one function. The curves are only intended to show characteristics,
and the figure is just a redraw from Responses’ homepage [19].

The first group concerns the so-called generalized Newtonian fluids for
which the material properties are independent of time. By a one-to-one
function is meant a function which assigns only one function value to each
value of the independent variable. For the generalized Newtonian fluid, the
viscosity is a one-to-one function of the shear rate. In the case of linearity
between the shear rate and shear stress, the fluid is Newtonian.

Figure 1.1 shows trends of viscosities for different materials known from
the everyday. Ketchup and cough medicine are both dependent on the shear
rate, but the plot does not show anything about time or history dependence.
To get this kind of information we would need to perform consecutive mea-
surements. If the curves are not coinciding, the shear stress is dependent on
time or shear rate history.

Syrup is a Newtonian liquid, and, therefore, the viscosity remains con-
stant as the shear rate is changed. Evidently, syrups viscosity is a time-
independent, one-to-one function. To get a better feeling for the conse-
quences of non-Newtonian behavior it can be instructive to think about
ketchup. When we dip a chip in ketchup the applied stress is high and the
viscosity of the fluid is low. As the chip is moving from the ketchup towards
the mouth the shear stresses are low, and the viscosity high. Therefore, the
ketchup does hopefully not drip on the shirt.
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Figure 1.2: Tllustration of different non-Newtonian properties. Panel (a) shows
three fluids: (I) a shear thickening , and (II) a shear thinning liquid. Curve (III)
is for a Bingham fluid, where 7, is the yield stress [18]. Panel (b) shows the
characteristic behavior of a rheopectic fluid. The shear stress is seen as a function
of the shear rate for different times ¢; < t5 < t3. The viscosity, the slope n = dr/d?,
is increasing with time.

To illustrate the nature of generalized Newtonian fluids, three distinct
cases are represented in Fig. 1.2(a). Depending on whether the viscosity
is increasing or decreasing, the fluid is said to be shear thickening (I) or
shear thinning (IT). The apparent viscosity is found as the slope of the shear
stress shear rate plots. The curve labelled (III) represents the Bingham fluid
model. This kind of material has properties of both a solid and a Newtonian
liquid. When the applied stress is below some critical value denoted the yield
stress Ty, the material obeys Hooke’s law, which in general applies to small
deformations in solids. Hooke’s law states that

T =M~, (1.3)

where ~ is the strain and M is Young’s modulus. If, however, the yield
stress is exceeded, we observe a fluid flow. The cases are to be thought
of as characteristics, and one fluid can easily exhibit more than one of the
mentioned behaviors.

The second group involves shear stress functions that are not single-
valued with respect to the shear rate. These are systems with a relatively
long relaxation time, which implies that two following measurements of the
shear rate yields different results. The viscosity is dependent on time and
shear history.

If the viscosity increases with time, the fluid is rheopectic. Conversely, if
it is a decreasing function of time, it is thixotropic. This same classification
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is used if the change in viscosity is due to the applied stress. The important
thing is that the viscosity remains changed for a measurable time, when
the stress is turned off. Figure 1.2(b) shows the typical characteristics for a
rheopectic fluid.

The last group is described as viscoelastic fluids. This property is often
observed for concentrated polymeric solutions. In synthetic polymer solu-
tions the long and branched molecules have very strong interactions, and
will therefore pull in each other when a large stress is applied; this is the
reason for the elastic behavior. For smaller shear rates, the molecules have
time to relax, and have in this way also a viscous behavior. A qualitative
difference between a Newtonian and a viscoelastic fluid can be observed in
the case of a sudden contraction. For the Newtonian liquid the streamlines
will go straight into the narrow channel, whereas a vortex develops in the
case of a viscoelastic fluid. The phenomenon was studied by Giesekus for an
aqueous polyacrylamide solution at a low Reynolds number. This particular
and other interesting features of non-Newtonian liquids is reviewed by Bird
et al.[3].

At the close of this section, we will take a look on two different classes
of non-Newtonian fluids, and briefly list some of the other properties that
influence the flow behavior. Polymer solutions and suspensions are both
categorized as non-Newtonian fluids, but there are some qualitative differ-
ences.

A polymer is often considered as a long synthetic chain assembled by
several identical monomers. However, biological molecules such as DNA
and proteins are also polymers even though the constituent monomers has
some variation. The difference between the two classes is therefore more
dependent on the medium than the primary structure or sequence of the
molecules.

When we talk about a solution, the medium and the molecule in consid-
eration are of the same phase, i.e., a polar solute dissolved in a polar solvent.
Qualitatively, this means that the molecules do not fold up and therefore
have a large surface to volume ratio. On the contrary, non-polar molecules
suspended in a polar, aqueous medium tend to decrease their surface to
volume ratio, which results in a spherical shape. In conclusion, the same
molecule can be suspended in one medium and dissolved in another.

More general, a suspension is a distribution of particles, droplets or
aerosols in a medium of a different phase. Blood, which is the main study
of this project, is roughly a suspension of cells in water. Probstein [18] has
listed some of the most important parameters for the two different systems.

e Polymer solutions are dependent on concentration, temperature, molec-
ular weight, and structure of the long chain molecule. The most im-
portant parameter is the length of the polymer chain. The polymer
and the solvent are in the same phase.
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e On the contrary, suspensions are dependent on solids loading, particle
shape and size distribution. The single most important parameter is
the volume fraction. The particle or macromolecule and the suspend-
ing medium are in different phases.






Chapter 2

Physics of Fluids

Biomechanics can be considered as an application or subfield of the more
general theory of continuum physics. Continuum physics relies on the funda-
mental equations of classical physics, and an additional set of assumptions.
As phrased by Y. C. Fung [11], The determination of the internal condi-
tion of a body in response to external forces is what continuum mechanics is
about. A body will, in this report, be considered only in flow problems and
is therefore a fluid.

In this section we will introduce the general theory, which is required
to model a fluid flow. We will also discuss the required assumptions, as
in particular the continuum assumption becomes tenuous at small length
scales.

Certain dimensionless numbers are used to characterize the state or be-
havior of a fluid in a specific geometry, i.e., the Reynolds number is used as
a measure for the possibility of turbulence in a flow. We will briefly present
a list of dimensionless numbers.

At the close of this section, we will consider some of the requirements
to model complex fluids in complex geometries. Compared to a Newtonian
fluid, the complexity is due to a different interaction between individual fluid
elements, and it can therefore be built into the constitutive equation. We
will therefore take a closer look on the possibilities of incorporating shear
rate dependence and normal forces. This is illustrated by the generalized
Newtonian fluid and the Criminale-Ericksen-Filbey (CEF) equation.

2.1 Continuum physics

The foundation for continuum physics is the equations of classical physics.
Furthermore, there are three extra axioms or assumptions, which have to be
fulfilled, in order to consider the system as a continuum. The formulation
of the axioms are highly inspired by Fung [11].

1. A body of finite size can be considered a continuum, if it satisfies
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the requirements of the continuum assumption: Under deformation
neighboring particles in the body remain neighbors.

2. The stress and shear rate field can be defined everywhere in the body.

3. At any point in the body the stress depends only on the immediate
strain or shear rate at the same point.

First, we shall define some of the newly introduced words. The real
number system is continuous. Between two numbers on a coordinate axis,
we can always pick a third number. If we consider a distribution of molecules
in a real system, we know the molecules will be assigned discrete values on
the real number axis. Therefore, a central idea in this theory is to take a
real discrete system into a continuous mathematical system. In this report
the mathematical system will be referred to as a continuum.

A material particle is the smallest part of a continuum, and it is in
general much larger than the molecules and particles within the system.
The minimum size of a material particle is related to the uncertainty on
the physical quantities of the real system. If we for example consider the
distribution of density in real matter, it will start to fluctuate when the
material particle becomes increasingly small.

Roughly a real matter can be expressed as a continuum if it satisfies
the requirements of the continuum assumption. The continuum assumption
states that any point in a real system can be assigned values of physical
properties with a relatively small error. In the case of density, we could
consider a set of decreasing subspaces 21, Qo, ... ,, where Q,,_1 enclose
Q,, and all enclose the point P, see Fig. 2.1(a). To each of the subspaces
we assign a mass M, and a volume V,,. The density of a subspace is then
defined as M,,/V,,. Furthermore, it is assumed that there is a limit V,, — V,

M,
- | <e, 2.1
PP Vn € ( )

where € is a small number. The quantity pp is the density at the point
P with the acceptable variability € in a limit V7. In this way all physical
quantities can be defined.

Axiom no 1 states that the material particles will be neighbors at all
times. For a fluid flow, the material particles will be stationary, if we dis-
regard rigid body motion, i.e, the geometry is not moving. However, the
properties of the particles will change in time.

Axiom no 2 states that stress and shear rate can be defined in a similar
way as we defined the density.

Axiom no 3 states that the stress is dependent on the shear rate at the
very same point, this axiom will be expressed in the constitutive equation.
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Figure 2.1: In panel (a) is seen a series of decreasing subset €2,,. They all enclose
the point P and €Q,,11 encloses €,,11. The figure is used to express the continuum
assumption in Eq. (2.14). Panel (b) shows a grid of material particle in a section
of a microchannel. The black balls represents suspended blood cells. One of the
material particles is shaded for reference in the text.

To illustrate the consequence of the continuum assumption in relation to
this work and microfluidics in general, we will consider blood in a microtube.
Down to what dimension can blood be expressed as a continuum?

Figure 2.1(b) shows a suspension of blood cells in a microtube. The
minimum size of a material particle is related to the relative error of the
density. If the material in consideration is in a gaseous phase, we observe a
large fluctuation for the density of a material particle if the dimensions of
the body approaches the inter-molecular distance.

The relative error for the number of blood cells (V;) in a material particle
is given by

AN;
r= 9y
(Ni)

where AN; is the fluctuation. The subscript ¢ is referring to a particular
material particle. For the purpose of calculating the relative error, we shall
consider a binomial distribution of IV identical and noninteracting cells in the
shaded box in Fig. 2.1(b). The shaded box designates a particular material
particle. The probability that a particle will be in the box is denoted P;. For
the binomial distribution we can write the mean (V) and standard deviation
g; as

(2.2)

and
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The probability P; depends on the position and the number of material
particles or discretization. If P; < 1 Eq. (2.2) yields
PN 1

¥R~ o (2.5)

If we consider water, the number of molecules in a fluid volume is in the
order of the Avogadro constant. The number can be calculated as

Niolecules = M N4 = 55molL ' x6x103 mol ™! = 3x10%° L~ = 3x10? m 3,

(2.6)
where M is the molarity of water and N4 the Avogadro constant. If we
choose a relative error 7 = 0.01, we can calculate the required volume of a
material particle Vi,

1 1
]Vmolecules'r2 3 x102m=30.012

Vinp = =3 %107 m? ~ (Tnm)3, (2.7)
i.e., a cube with side length ~ 7nm. This means that the continuum assump-
tion for condensed water is becoming critical, when we go to a dimension
ten times the size of a water molecule. The diameter of a water molecule is
about 0.3 nm.

If we consider blood, we would expect the material particles to be larger,
as the largest dimension of a red blood cell is 8 yum. The concentration of
blood cells in a fluid volume of blood is 5 x 106 uL=!. If we do the same
calculations for blood as for water, we obtain that the length of a material
particle is 130 pm.

In conclusion, we can say that the continuum assumption is dependent
on the relative size of three length scales

eReal particle < Emp < ESystem- (28)

When the size of a the system, i.e, the channel width, approaches the size
of a real particle, the assumption is starting to fall apart.

A rule of thumb says [23] that the size of a the system for a condensed
matter should be 10 times the size of the largest molecule. In blood the far
most abundant of the cells are the red blood cells. Therefore, at dimensions
below 70 um the assumption that the physical quantities are continuous
becomes questionable.

It is noticed that there is a slight disagreement between the two ways of
estimating the limit for the continuity assumption. However, both methods
indicate that we should be cautious in the micrometer range.

2.2 The governing equations

In the present work, we consider materials without gradients in temperature,
and the conserved quantities of interest are therefore mass and momentum.
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These two conserved quantities leads to the continuity equation and the
equation of motion. A third equation, the constitutive equation, relates
the shear rate with the shear stress, and we have a set of equations that
completely determines a shear flow.

The sign in the equation of motion can vary between the different text-
books because of a different notation in the definition of the stress tensor.
Of course, the dynamics of a system should be invariant to conventions, and
we shall therefore resume the basic assumptions stated by Fung [11].

X3

[hq (+0x)

(%)

X4 X1

(a) (b)

Figure 2.2: Panel (a): The force dF on a small surface element d.S, exerted by
the fluid on the positive side. Panel (b): A stress component is considered positive
if the outward normal vector and the stress vector both points in the positive or
negative direction.

Consider a material bounded by the surface B, as shown in Fig 2.2(a).
Define an arbitrary volume V within B, and let it be bounded by a surface
S. A small element on this surface dS is assigned a normal vector n, and dF
represents the force exerted by the surrounding fluid on the fluid inside the
surface. To distinguish outside and inside, the normal vector points always
outward, and the fluid on the outside shall be referred to as the positive
side.

In general, the magnitude of a surface force is dependent on the size
of the surface. The stress tensor is therefore defined as the force per unit
surface in the limit of an infinitesimal surface element,

_ dFj
= as;

Tij (2.9)
As the volume V is arbitrary the stress tensor is defined for any surface
in the fluid, down to the size of a material particle. A quick note on the
sign convention for the stress tensor, in Fig. 2.2(b) is sketched a volume
element in a Couette flow. In such a flow the velocity in the z; direction is
an increasing function of xo

U] = Y2122, vy =v3 =0, (2.10)
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where v; denotes the velocities in the xy direction, etc. A component in the
stress tensor, for a given plane, is considered positive if the corresponding
component of the outward normal vector is pointing in the same direction.
In the figure, both stress vectors are positive, but due to the increasing
velocity the stress is larger at xo + Axzs. Newton’s equation is therefore

expressed as
dUl

Md—l‘Q’
where p is the Newtonian viscosity. Bird [3] et al. consider the force exerted

by the negative side upon the fluid on the positive side, which results in a
negative 11 in Eq. (2.11).

o = (2.11)

2.3 The equation of continuity

The continuity equation is derived on the assumption of mass conservation.
Again, we consider the volume V' fixed in space, sketched in figure 2.2(a).
The rate of change of mass in V' should equal the flux through the surface,
and we can therefore write

2/ pdV:—/n-pvdS’. (2.12)

On the left hand side, the limits of V' are independent of time, and the
integral is therefore interchangeable with the differential operator. Using

Gauss’ theorem yields

op
i -V - (pv). (2.13)

A more convenient form can be obtained after differentiation of the right
hand side and rearranging;:
Dp 0p
L=l 4 v.Vp=—pV.v, 2.14
Dt o TYIVPEP (2.14)
where D /Dt is the material derivative. Using the material derivative implies
that we observe changes as we follow a fluid volume instead of considering
a volume fixed in the initial frame.
Fluids that are constant in time and homogenous along the streamlines
are said to be incompressible. For these fluids the continuity equation,
Eq. (2.14), reduces to V - v = 0.

2.4 The equation of motion

The equation of motion is derived in a similar manner, but one needs to in-
clude a few more terms. The conserved quantity is momentum, and we shall
set up the balance equation in terms of momentum per unit time. The basic
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idea is that the fluid volume V is exchanging momentum with its surround-
ings via surface and volume forces. In surface forces we include molecular
friction by the tensor 7, convection by the tensor vv and pressure as the
scalar P. Volume forces are, for example, gravity, electrical, and magnetic
forces. We shall denote them all by the vector S. Using the same arguments
as before, the volume is fixed and Gauss’ theorem gives the equation of
motion, here expressed in vector notation
dpv

W%—V-(pvv):V'T—VP—FS. (2.15)

For an incompressible fluid the expression can be simplified by noting that
V- (vw)=(v-V)v+v(V-v)=(v-V)v. (2.16)

Inserting Eq. (2.16) into Eq. (2.15) gives

p[g—Z—F(V'V)V}:V-T—VP—i-S. (2.17)

2.5 The Navier-Stokes equation for an incompress-
ible flow

A large number of important liquids have a Newtonian behavior, which
means the relation between shear stress and shear rate is constant. The shear
stress is a symmetric, isotropic, and second order tensor. It can therefore
be expressed by two invariants [11]

1. . . 1 . .
Tij = 5/\’}%/&51‘]‘ + py = 5)\(V “V)6ij + = w, (2.18)

where \ and p are scalars. The last equality is obtained when the flow
is incompressible. Substituting Eq. (2.18) into Eq. (2.17) we obtain the
dynamical equation for a Newtonian, isotropic, and incompressible flow

p [% + (v- V)v} = uV?v - VP +8S. (2.19)

This equation is The Navier-Stokes equation for an incompressible flow, with
u denoting the Newtonian viscosity.
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2.6 Flow at low Reynolds number

In traditional engineering problems, turbulent flow is the most common
flow type. In microfluidics, however, the small dimensions suppresses the
development of turbulence, and the flow is said to be laminar. In what
regime we find the system is dependent on the ratio between momentum
transported by convection and momentum transported by viscous diffusion
[18]. This balance is expressed in Reynolds number

_ pv?/d  vpd
s/
where d is a characteristic dimension of the geometry, i the Newtonian
viscosity and ¥ is the mean velocity. Small numbers are for example obtained
when the viscosity is high or the dimension is small. Under these conditions
the development of turbulence is suppressed, and we have a laminar flow.
According to Pedersen [16] low Reynolds numbers in a tube flow is below
580, and high numbers are above 750, when the characteristic dimension d
is the tube diameter.

To get a better feeling of the conditions in microfluidics, it is instruc-
tive to take a closer look on the significance of the viscosity and diameter
in a tube flow. A typical flow rate and dimension for a micro fabricated
device is Q = 10 uL s~ and d = 100 pum, which results in a mean velocity
7 = 1.3m s~!. For a system containing water the corresponding Reynolds
number is (1.3m s~ x 1003kg m~3 x 1074 m)/(8.55 x 10~* Pas) = 150,
clearly a laminar flow. Considering the same system with d = 1lcm in-
creases Reynolds number by two orders of magnitude. If the increasing
dimension should be balanced out solely by a change in viscosity, we would
have p = 85.5 x 1072 Pas: a fluid more viscous than syrup.

In general, dimensionless numbers appears from the governing equations
and can be used to determine the dominating forces in a system. We have
earlier divided the forces into surface and volume forces, but, when consid-
ering dimensionless numbers, it is more appropriate with a more detailed
categorization. Probstein [18] suggests that the governing forces in a sus-
pension can be divided into colloidal and viscous forces, when we consider
mass transport of particular species. Viscous forces are as usual related to
friction between neighboring molecules, whereas the second class includes
Brownian motion, surface forces and electrostatic repulsion forces.

As mentioned, at a low Reynolds number momentum transport is dom-
inated by viscous forces, and convection has only a little influence. In the
same way is the Peclet number indicating if forces related to Brownian mo-
tion are more important than viscous forces. A more detailed derivation of
the numbers can be found in a textbook of Probstein [18].

Re

(2.20)
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e The Peclet number: the ratio between dissipated and kinetic energy

_ wyd®

P .
T T

(2.21)

e The shear-repulsion number: the ratio between convective and elec-
trostatic repulsive force

Ngp ="' (2.22)

e The shear-attraction number: the ratio between viscous energy and
van der Waals attractive energy

Nga = . (2.23)

Here is u the viscosity of the suspending medium, « is the particle radius and
separation between the particles, £ Boltzmann’s constant, T the tempera-
ture, € the vacuum permeability, ¢ the zeta-potential and A is the Hamaker
constant. The regions at numbers low or high compared to unity are referred
to as the low and high shear limit.

The dimensionless numbers establish a framework, which is helpful in
order to analyze the governing forces in a flow problem. In the present work
we will be most concerned with the Reynolds number.
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2.7 Shear limit behavior

For rigid particle suspensions, the shear thinning effect is only observed
in the colloidal domain, i.e., particles with a diameter in the range from
1 — 1000 nm, see Evans[9]. This kind of suspensions start of in a Newtonian
region, whereafter it enters a shear thinning region, and then again reaches a
plateau. A suspension can be adjusted with an electrolyte in such a way that
surface forces can be neglected. In this case the system will be governed by
viscous forces and Brownian motion, and the Peclet number is the essential
parameter. In Fig. 2.3 is seen the relative viscosity as a function of the
reduced shear stress, which, similar to the Peclet number, is the relation
between viscous and Brownian forces. In the experiment different sizes of
colloidal particles, and different Newtonian fluids were used.

The results shows that at low shear rates, where the Brownian motion
is dominant, the viscosity is constant. As the Brownian forces becomes less
important compared to the shear stress, the viscosity drops, and reaches a
plateau when diffusion can be neglected. Coarse particles do not show this
behavior, as the viscous forces always will be dominant. Furthermore, the
concentration has to be rather high. Otherwise, the distance between the
molecules is large, and friction due to random motion has no influence.

Febitar

» [ — L X,
Qo 1% 1) uw 1D L] 1k
Reduced shear stress, t, = <a®/kT

Figure 2.3: The relative viscosity for different sized particles in different Newtonian
fluids. On the x-axis is seen the relative shear stress, where 7 is the measured stress.
This last parameter is essentially the Peclet number; the relation between viscous
and Brownian forces, see Probstein [18].
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2.8 Generalized Newtonian fluids and normal forces

As already discussed, some fluids have a shear rate dependent viscosity, but
some can also exhibit even more complex flow properties due to normal
forces. To see how some of these phenomena can be explained, we can

Y, Vi

X4

Figure 2.4: The flow field in a Couette flow is invariant to a 180° rotation around
the z3-axis. The arrows are symbolizing the velocity in the z; direction.

consider the simple Couette flow. In general, the stress tensor has nine
components, but, as it is symmetric, only six are independent. Furthermore,
as seen in Fig. 2.4 the velocity field is symmetric to a 180° rotation around
the xs-axis in a Couette flow. If the stress tensor only depends on the flow
field, i.e., the material is isotropic, it will also be symmetric to the same
rotation, and there is only four independent entries left,

i T2 0
T = |T12 T22 0 . (2.24)
0 0 733

Eq. (2.24) shows that we have to consider the magnitude of normal stresses,
when we are dealing with non-Newtonian fluids.

The Criminale-Ericksen-Filbey equation, (CEF), is a suitable constitu-
tive equation for a steady shear flow

(W1 +¢2)3* ny 0
T = my ¥ay® 0], (2.25)
0 0 0

where 4 is the shear rate, n is the apparent viscosity, ¥ and o are the
so-called first and second material function, respectively. Eq. 2.25 is for a
simple Couette flow, but a more general CEF-equation can be seen in the
textbook of Bird et al. [3], by the use of so-called convected derivatives.
The material functions are also referred to as the viscometric functions.
By means of the CEF-equation they can all be measured in a rheometer,
however, 1o are often so small that it is difficult to obtain a reliable result.
The first and second material functions relates the normal components
of the stress tensor to the shear rate. As mentioned in section 1.2 one of
the effects of the normal forces or elastic properties can be seen in the sec-
ondary flow in a geometry with a sudden contraction. However, as we at
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this point have very little knowledge on these properties, we will leave this
discussion by noting that there are other material functions than the vis-
cosity. Furthermore, as blood is a non-Newtonian liquid, its flow properties
can probably not be explained by viscosity alone in complex geometries.

For many engineering purposes normal forces are negligible and the CEF-
equation reduces to a generalized Newtonian fluid. This model is a simple
extension of the theory for Newtonian fluids, as the viscosity instead of
being a constant, is a scalar function of the scalar invariants of the shear
rate tensor

T =¥ ¥, (2.26)

where || is the magnitude of the shear rate tensor. The magnitude is
defined as

ERE
Iy = 522’%;‘%’- (2.27)

i=1 j=1

The generalized Newtonian fluid applies to an incompressible shear flow [3].
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Blood

3.1 Composition of blood

Blood is the fluid transporting oxygen, carbon dioxide, nutrients, salts, hor-
mones, metabolites and many other components that make it possible to
maintain life. From a rheological point of view, the most important con-
stituents are plasma and the red blood cells (RBCs). Meaning, RBCs take
up about half the volume of whole blood, and have a significant influence on
the flow. The term whole blood is used for blood that has not been modified
in any physical sense, e.g, defibrinated. In some experiments fibrinogen is
removed to prevent blood clotting.

Plasma consists of 90 %(w/w) water, 7%(w/w) is proteins, and it be-
haves like a Newtonian fluid with a constant viscosity on 1.2 x 1073 Pas
[10]. The specific gravity of plasma is 1.026, and 1.090 for RBCs. The cells
are as mentioned mainly RBCs, the parameter used for modelling purposes
is the hematocrit level, which is the volume fraction that RBCs occupy. The
average hematocrit is 40 — 52% for men, and 35 — 47% for women. When
blood is left undisturbed, the cells start to coagulate. The process is called
blood clotting, and is initiated by the plasma protein fibrinogen. Table 3.1
shows the contents of blood.

In many rheological experiments whole blood is treated with an antico-
agulant, heparin, EDTA or citrate. EDTA and citrate binds calcium ions,
blood clotting factor IV, in a complex. Heparin is a negatively charged
polysaccharide that enhances the activity of antitrombin III, which is a
plasma protein that inhibits thrombin, factor II. Blood used for transfusions
is often anticoagulated with sodium citrate, as it is a natural component in
the body, see Stryer [22]. However, EDTA is recommended for rheological
measurements, as it has the least effect on the viscosity. Citrate tends to
shrink the Red Cells by removal of water, see Lowe and Barbenel [15]. There
are all together 13 factors in the blood clotting cascade, and in principle the
clotting process could be stopped at any of these stages. As a note of warn-

21
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Table 3.1: The constituents of human whole blood.

Composition

Concentration

Plasma Water 90%(w/w)

Proteins 7%(w/w)")  Albumins

45— 5.7x 105 g uL 1@

Globulins 1.3 — 2.5 x 10~% g pL.—1?
Fibrinogen 1.3 -25x10"°g ML’l(Q)
Salts,
dissolved gases,
hormones,
glucose,
metabolites,
nutrients
Cellular Red blood cells 7 pm 3.6 — 5.4 x 108 yL =1
components White blood cells 8§ —20pum  5—10 x 103 puL~1
Platelets 1—2pum  1.5—4.0 x 105 uL 7!

Notes: () denotes data from Fung [10], (?) West and Todd [30]. All other data
are taken from Solomon et al. [21]. In literature there is some variation of the
listed values. For example, the mean value of the red blood cell may vary between
7 — 8 pum.

ing, the number of the factor does not refer to its number as participant in
the cascade of processes leading to clotting.

3.2 Macroscopic rheological properties of blood

The rheological properties of blood in a shear flow are outlined in a textbook
by Y.C. Fung [10]. In order to get an impression of the behavior of blood
in a shear flow, some of the key features are resumed here. The shear rate
is defined as a measure of the deformation of the liquid

1 1 (dv; dvj
Y= =g = = 1

where v; is the velocity in the x; direction. In some of the figures, the shear
rate 7, was calculated according to an old convention, and it is twice the
value used in literature today. It shall be noted in the relevant figures, where
the old convention is used. Whenever 4 appears in the main text in this
report, it shall refer to the new convention. As seen in Fig. 3.1, the viscosity
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Figure 3.1: The viscoelastic behavior of blood with a hematocrit at 31 and 2 Hz
measured in an oscillating flow. In the bottom of the picture is seen an illustration
of the arrangement of red blood cells. The figure was taken from the Vilastic
Scientific’s homepage [28]. However, a similar experiment can be studied in a
paper by Liepsch et al. [14].

of blood can be divided into three regions. At low shear rates, the viscosity is
constant, and then it drops until it again reaches a constant plateau. When
the viscosity of a liquid is a decreasing function of the shear rate, it is said
to be shear thinning. In the figure, it is also indicated that, on a microscopic
level, the shear thinning is caused by the break down of aggregates and a
cell layering of the RBCs. This internal organization of the cells reduces the
friction.

Figure 3.2(a) shows how the apparent viscosity, the relation between
shear stress and shear rate, increases with the hematocrit. It is seen that
human whole blood (HWB) has a higher viscosity than HWB without fib-
rinogen, a protein important for cell aggregation. HWB’s viscosity without
fibrinogen is higher than the one for washed cells in a Ringer solution. A
Ringer solution is a buffered isotonic salt solution, which means the cells are
suspended in a medium with near physiological conditions, 150 mM NaCl.
In the washing process the plasma is substituted with Ringers solution, and
the viscosity is therefore lowered.

At zero hematocrit all the fluids behaves Newtonian. At small shear rates
cell aggregation has a large influence on the viscosity. For a hematocrit at
45%, the difference between e, x, and o is more pronounced at small shear
rates, compared to hematocrits at zero and 90%. Meaning, the effect of cell
aggregation is largest at moderate hematocrits.

Figure 3.2(b) shows the importance of aggregation and deformation of
RBCs for a hematocrit at 45%. The hematocrit where the aggregation effect
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Figure 3.2: Panel (a): The viscosity shear rate relations in whole blood (e), defib-
rinated blood (z), and washed cells in a Ringer solution (o). H is the hematocrit,
the old shear rate convention was used. Panel (b): relation between relative appar-
ent viscosity and shear rate in three types of suspensions, where the hematocrit is
45%. NP is a normal RBC suspension, in NA fibrinogen is removed, and in HA the
cells are hardened, from Fung [10].

was seen to be large.

When HWB is compared to a suspension of hardened cells, a large dif-
ference in viscosity is seen at high shear rates. In other words, at high shear
rates the deformability is important for the shear thinning effect.

At low shear rates is another comparison with defibrinated blood. The
figure shows that cell aggregation has a large influence on the viscosity at
low shear rates. It may be noticed that a suspension of hardened cells has
a Newtonian behavior.

A fit of a constitutive equation to viscosity data is seen in Fig. 3.3(a).
For hematocrits below 39% blood can be described by Casson’s equation:

VT = Ty, (3.2)

where 7 is the shear stress, 7, the yield stress, n the apparent viscosity, and
< the shear rate. However, the validity of the equation is also limited to
small values of the shear rate.

The yield stress is increasing with hematocrit, Fig. 3.3(b), but the magni-
tude of the stresses are very small, about 0.05 dyne cm™2 or 5 x 10~3 Pa. For
comparison, the same pressure would be exerted by 50 ul. of water spread
out on a square centimeter. The figure is just to show the magnitude of the
yield stress, in this context it is less important that the data points fit a
straight line, if the yield stress is plotted to the power of 1/3.

At high shear rates blood behaves Newtonian. The Newtonian range
can be seen to the right of the dashed line in Fig. 3.4(a). Meaning, different
features of the constitutive equations are needed to model the blood flow
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Figure 3.4: All the shear rates in the figures are with respect to the old convention
Eq. 3.1. Panel (a): the part of the data to the right of the dashed line are in the
Newtonian region. The Newtonian region starts, for high hematocrits, at about
VAola = 245712 For hematocrits at 0 and 8.25% the actual data points are not
seen. Panel (b): The influence of temperature on the viscosity for human whole
blood. The effect increases when the shear rate decreases, from Fung [10].

over a large range of the shear rate. Compared to Fig. 3.3(a) this figure
shows the viscosity at higher shear rates, where the Casson model breaks
down. Figure 3.4(b) shows that the viscosity decreases with temperature,

like liquids in general. Compared to high shear rates the temperature effect
is larger at small shear rates.
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3.3 Deformability of red blood cells

As plasma is showing the Newtonian characteristics, it is evident that the
red blood cells are responsible for the non-Newtonian behavior. Red blood
cells are relatively big in the sense that their Brownian motion has little
effect on the flow. Blood is shear thinning, meaning the viscosity decreases
with increasing shear rate. This phenomenon can be explained by the blood
cells ability to align and deform in the flow.
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Figure 3.5: Relative viscosity of human blood at 25°C as a function of red cell
volume fraction, compared to that of suspensions of rigid latex spheres, rigid disks,
droplets, and sickled RBCs (rigid, from Fung [10].

In Fig. 3.5 can be seen a comparison of different kinds of particles; even
though liquid droplets of oil dispersed in water show higher viscosity than
normal blood, they are comparable. The flow of oil droplets in water is,
as for blood, maintained at very high volume fractions. Therefore, we may
conclude that droplets and RBCs have a similar elastic behavior. The de-
formability of the RBCs makes blood a remarkable fluid. It is seen, when
the volume fraction is more than 50%, most other fluids will stop to flow.
Blood, however, can maintain the flow until hematocrits of 98%. Still, a
suspension of oil droplets is more viscous than a suspension of red cells. It
is therefore believed that a RBC is more deformable than a droplet.

Blood cells are responsible for the shear thinning effect, and the physical
explanation for this phenomenon is the cells flexibility and tendency to align
with the flow. The red cells align in such a way that the largest dimension is
paralleled with the direction of the flow; the fraction of aligned cells increases
with the shear rate. Figure 3.6(a) shows the orientation of a single RBC in a
highly diluted suspension, where the particles do not interact. The fraction
of aligned cells are seen to increase with the shear rate, which is in contrast
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Figure 3.6: The pictures are obtained by a high powered microscope. Panel (a):
The figure shows that RBCs aligns better in a shear flow than hardened RBCs.
Panel (b): The tumbling of a single rouleaux in a shear flow. Tumbling of rouleaux
increase the viscosity. Panel (¢): Microscopic picture of rouleaux, the RBCs form
large chains resembling a stack of coins. It is also noticed that rouleaux are capable
of forming fairly large and complex patterns, from Fung [10].

to the findings of the hardened cells shown in the same figure.

Figure 3.6(b) shows the tumbling of two rouleaux in a diluted suspension,
hematocrit less than ten. Rouleaux are aggregates of blood that can be
broken down to single cells at high shear rates. The large viscosity at low
shear rates is a consequence of the tumbling. When the rouleaux is broken
down, the contribution to the viscosity is decreased. The smaller parts do
not disturb the flow to the same extent, as the larger aggregate.

In Fig. 3.6(c) is shown a microscopic picture of different forms of rouleaux.
The formation of these aggregates are dependent on the presence of fibrino-
gen and albumin. Rouleaux formation should not be confused with blood
clotting, the latter process is totally irreversible.
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Even though blood seems to have the same function in all mammals there
are apparently some differences. For example, in bovine blood the cells do
not form rouleaux. Therefore it will deviate less from a Newtonian liquid
than HWB. In order to analyze blood of other species in microsystems, it
would therefore be necessary to study the nature of these blood types in
more details.

3.4 Various constitutive equations

From a modelling point of view, it is necessary to know what constitutive
equation can describe the deformations in the fluid. By the constitutive
equation we establish a relation between specific fluid properties and the
dynamical equations. The figures 3.3(a) and 3.4(a) are indicating that the
Casson equation might be applicable at low shear rates, and hematocrits
smaller than 39. However, at shear rates above 551 it is starting to devi-
ate, and another model is required until the Newtonian region is reached.
In the literature, different kinds of constitutive equations have been sug-
gested. Zhang and Kuang [31] have made a study, where they fitted a large
variety of constitutive equations to measurements obtained in a concentric
cylinder. By means of a least squares fit they concluded that the Quemada,
Bi-exponent and L-K equations were the best applicable for human and
canine blood. Some of the equations can be seen in Table 3.2.

Many of these equations are established for clinical purposes, as a con-
stitutive equation contains information of the rigidity of a blood cell. For
example, the parameters in the Bi-exponent equation have subscripts A and
D. They are related to aggregation and deformability, and can be used to
make a patient diagnosis. Blood rheology in the macroscopic domain has
been used extensively for that purpose, see for example [15]. However, we
shall only be concerned with a few of these equations, and for more details
literature should be consulted.
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Table 3.2: The table contains different blood constitutive equations. The shear
rates  are all expressed by the new convention. All other variables are blood
constitutive parameters. The intention of this table is to give an impression of the
available constitutive equations. For a detailed description, the literature should
be consulted [31].

Equation Expression for 7 Parameters Valid
4-range (s71)
Quemada noo(%rg)%y 9= 6% 0.87-118
x=(%)"

Bi-exponent (ne + nDe_\/m +n,e tA".’)"y 0.87-118
K-L Ty + np(1y + a2v/7) 0.2-180
Casson Ty +Vny, for > 1, 0—5(1)

no flow, for 7 > 7, 0—50
Wang (817 + Ban/7)
Powerlaw m(y)"
Walburn crele C4T152MA)"y(1_C3H) 0.03-110
Weaver logn, + (0.03 — 0.0076logy) H 0.03-120
Newtonian  p7y from 144(?)

(M According to Zhang and Kuang [31] the shear rate should be 10s~!. However, in
Fung [10] this value is corresponding to the old notation of shear rate. In this report
it shall be attempted only to use shear rates defined according to the new notation,
Eq. (3.1). In the references they are not always careful in defining the shear rate,
which is a point of confusion. The Casson equation is valid for hematocrits less
than 40%, whereas the Walburn equation is applicable until at least 50%. (2) In
Fig. 3.4(a) it was seen that blood behaved Newtonian at high shear rates.

3.5 Constitutive equations in microtubes - depen-
dence on shear rate

As the shear flow, so far, can not be described by a single constitutive equa-
tion, it is necessary to have information on the magnitude of the shear rate
in the tubes. In microtubes, the flow is always laminar, and an approxi-
mation to the velocity profile for blood can be obtained by means of the
equation of motion and Newton’s constitutive equation.

Assuming the suspension is an incompressible fluid, the equation of mo-
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tion in cylindrical coordinates is found to be

1d dP
0 = —;% (T”T»pz - E) . (33)
The full solution for the differential equation is
c rdP
'y = — — ——— 4
7 r  2dz (3-4)

where ¢ must be zero to avoid nonphysical properties for r — 0. Combining
Newtons constitutive equation,

dv
Trz = M drz’ (3.5)
and Eq. (3.4) gives an expression for the shear rate
dv, r dP
=——. 3.6
dr 2 dz (36)

As the pressure gradient dP/dz is negative for a flow in the positive direction,
the shear rate is zero for r = 0, and negative for r > 0. The shear rate as a
function of the radius is shown in Fig. 3.7.

Figure 3.7: The figure shows the shear rate for a Newtonian fluid as a function
of r in the tube. Because a single constitutive equation might not be valid in the
entire range of the shear rate, there can be some complications in modelling the
blood flow.

Even though the analysis was obtained on the Newtonian assumption,
Eq. (3.6) shows that we can have a great span of shear rates in the tube,
therefore, it can be difficult to find a single constitutive equation, that can
be applied in the entire interval. At low shear rates the Casson equation is
valid, and at high shear rates blood is showing a Newtonian behavior.

3.6 Velocity profile and cell-distribution in narrow

tubes

It was noted in Fig. 3.5 that the normal RBCs showed large deviations from
hardened cells, and similarities with an oil in water emulsion, in particular
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Figure 3.8: Measurements of velocity profiles for blood flow in a tube with a
diameter of about 70 um. Measurements are indicated by points, solid lines are
best fit, and the dashed line is a calculated parabolic profile. Upper panel: velocity
profiles for a suspension of rigid spheres, and an oil in water emulsion. Lower panel:
velocity profiles for ghost cells at two different volume flow rates. A ghost cell is
a red blood cell where hemoglobin has been removed. It is seen that the profile is
blunted at low shear rates, i.e., when the flow rate is low, from Fung [10].

as the droplet fraction was increased. In Table 3.2 it was seen that differ-
ent regions of shear rate required different kinds of equations for the shear
stress. Another way of comparing the different systems could be a study
of the velocity profiles in a microtube, as they provide information of the
constitutive equation.

Figure 3.8 shows the velocity profile for rigid spheres, an emulsion of oil
droplets in water and ghost cells at two different flow rates. Ghost cells are
unpigmented RBCs that are traceable in a microscope. A ghost is a cell
where the hemoglobin has been removed.

The width of the tube is about 70 um. Unfortunately, the exact radius
of the tube is not available in the literature, but we can get an estimate as
we know the size of a cell. The relation between the diameter of a ghost
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cell and the tube diameter is deep/diupe = 0.105. If the size of a ghost cell
is assumed to be the same as a RBC, namely 7 pum, the tube diameter is
67 pm.

When the particle to tube ratio is above 0.04, and the volume concen-
tration is beyond 0.2, the velocity profile of the rigid spheres went from a
parabola shaped profile into a profile showing a plug flow, resembling the
movement of a solid plug in the middle of the tube. This means that the
fluid attains a solidlike behavior at low shear rates. Furthermore, for rigid
spheres the profile is independent of the flow rate.

An oil in water emulsion also shows deviation from the parabola shape,
Fig. 3.8. However, if the flow rate is increased the degree of blunting de-
creases and a parabolic shape is obtained.

In this aspect, ghost cells resemble an emulsion. The shear rate can
be controlled by the applied pressure, and at low shear rates the profile is
blunted, but the bluntedness vanishes at high shear rates.

Still, Fig. 3.5 showed that the viscosity of blood cells, at any concen-
tration, was lower than the viscosity of the emulsion. The only reasonable
explanation is that RBCs are more deformable than liquid drops. If a droplet
is left undisturbed, it assumes a spherical shape, as it reduces the surface to
volume ratio. When the droplet is inserted into a shear flow the surface area
is stretched, which requires energy. It is believed that the biconcave shape
of a red blood cell makes it possible to deform the cells without increasing
the surface area, meaning that RBCs do not disturb the flow to the same
degree as liquid droplets.



CHAPTER 3. BLOOD 33

20 —
o | /Ry = RN
" in fingers ul0)/Ry =255 in ringers-plnsmuu(mm“ 184
1
10
L—4—] H

¢ [

6 L _-L

35—

T 71 T - =TT

1 F“BCZUT'/. dextron V/0VRo=194 gggl.lgexrmn ulg)/Ry =224

kL p——r |-
T m— -
3

z.u_ﬁﬁﬁ_%

|
s IInae
L]
10
L
0 02 04 05 08 18 02 04 Bﬁ——l 08 n

Figure 3.9: The density distribution of cells in a shear flow. On the ordinate axis
is written the number of cells per em? n(R) divided by the syringe reservoir con-
centration ng. The abscissa axis shows the different intervals of 0.1 x Ry wherein
the cells were counted. The observation were made 1 cm downstream of the reser-
voir. The tube radius: Ry = 41.5pum. The mean tube shear rate u(0)/Ry were
approximately the same in each suspension. With the highest viscosity first, the
relative viscosity of the solutions are dextran 35%, dextran 20%, ringers-plasma
and ringers, from Fung [10].

Let us summarize some of the features of RBCs. At low shear rates they
form aggregates, and develop nonparabolic velocity profiles in a tube flow.
They are easily deformed at high shear rates, and are more flexible than
liquid drops. Another interesting feature is the cells tendency to migrate
away from solid surfaces. This phenomenon, referred to as the wall-effect,
is also due to the deformability of the cells. The wall-effect is observed for
liquid spheres, and at high shear rates it is also observed for rigid spheres.
Figure 3.9 shows the distribution of cells from the center to the wall in a
microtube of width 83 pm. The concentration of cells are increasing towards
the direction of the center. It is also seen that the effect is more pronounced
when the viscosity of the suspending liquid is increased. The viscosity of
the solutions decreases in the following order, 35%-dextran, 20%-dextran,
plasma-Ringers solution, and Ringers solution.

3.7 The Fahraeus-Lindquist effect

Fahraeus and Lindquist discovered in 1931 that the viscosity decreases when
blood is flowing into a tube with a diameter smaller than 500 ym, i.e, the
viscosity were lower in the viscometer tube than in the feed reservoir. This
effect is known as the Fahraeus-Lindquist effect. Fahraeus investigated the
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phenomenon further, and found that the lower viscosity was due to a decreas-
ing hematocrit. According to Fung [10], Barbee and Cokelet investigated
this problem more extensively with flow rates where Newtonian behavior
is expected. Using the geometry shown in Fig. 3.10, Barbee and Cokelet
showed that the Fahraeus effect could be measured for tubes with a radius
between 29 and 221 ym. This phenomenon can be connected with the theory
of a cell free layer close to the wall. The cell free layer becomes increasingly
important in small dimensions.

Barbee and Cokelet also found that the hematocrit in the viscometer
tube increased linearly with the hematocrit in the feeding reservoir. These
results can be seen in Fig. 3.11(a). The figure shows the relative hematocrit
as a function of the hematocrit in the feed reservoir for different sized micro
tubes. To investigate the resistance of blood in microchannels they also
measured the shear stress at the wall, as a function of the mean velocity
divided by the tube radius. The wall shear rate is given by

RAP
- = 3.7
Tw 9 I’ ( )
and as we are in the Newtonian regime the flow rate can be calculated by

the Hagen-Poiseuilles equation
Q=——" =o7rR?, (3.8)

where v is the mean velocity. If we combine the Eqgs. (3.7) and (3.8), we find
that the shear stress only depends on the mean velocity v, the viscosity pu,
and the radius R A

Tw = % =4uU. (3.9)

Figure 3.11(b) shows an agreement with what is predicted by Eq. (3.9). At
these high through puts the shear stress at the wall is only dependent on

Viscometer tube

Figure 3.10: The figure shows the geometry used by Barbee and Cokelet when
they studied the Fahraeus effect
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Figure 3.11: Tllustrating the Fahraeus effect. Panel (a): The tube relative hema-
tocrit as a function of the feed hematocrit. The relative hematocrit is the ratio
between the hematocrit in the tube and the feed reservoir. Panel (b): The shear
stress at the wall as a function of the mean velocity divided by the radius in a 29 ym
and a 811 ym diameter tube. The symbols are actual flow data for the smaller tube,
and the solid lines represents flow data obtained in the 811 ym tube, when the tube
hematocrit is the same. An 811 pym tube is considered as a macroscopic dimension.
As the shear stress is the same in the two tubes, when the hematocrit is the same,
there is no effect on the viscosity due to different tube diameter. The measurements
are performed at high shear rates, i.e., in the Newtonian range, from Fung [10].

the viscosity, and the mean velocity divided by the tube radius, U = v/R.
When blood is fed into the large tube, the hematocrit in the tube is the
same as in the feed reservoir. On the contrary, in the small tube hematocrit
is reduced from its feed value Hy till its tube value H;, and the viscosity
appears smaller. However, if the hematocrit is the same in the two different
sized tubes, the viscosity is also the same.

3.8 Hemolysis

When living cells are suspended in a medium with a lower osmotic con-
centration than the interior of the cell, it will swell and lyse due to the
osmotic effect. Lysis can also appear if the cells are exposed to large shear
stresses. According to [5] large shear stresses corresponds to shear rates in
the range 30 — 90 x 103s~!, but the damage also depends on the exposure
time. Different surfaces might also have an influence on hemolysis, but we
have, however, not addressed this problem. Hemolysis can experimentally
be monitored by measuring the concentration of hemoglobin released to the
extracellular medium.






Chapter 4

Experimental Work

The experimental part of this project involves measurements of blood’s vis-
cosity in a shear flow with a rotational rheometer. Since blood is a particu-
late fluid, it could be expected that the constitutive equation was dependent
on the gap between the shearing plates. For the investigation of gap depen-
dency we used a parallel plate geometry. The gap size was varied between 70
and 1000 um. However, analysis carried out after the measurements showed
that only measurements at 1000 um were valid. Before the actual measure-
ments are presented, we will briefly introduce the used instruments, and the
formulas that enable us to calculate the viscosity for a non-Newtonian fluid.

4.1 Preparation of blood samples

For the measurements we used a portion of outdated whole human blood,
delivered from the blood bank at Rigshospitalet [17]. Biological samples that
are potentially harmful should be handled in a class 3 laboratory [6], which
is a facility that MIC does not have yet. Outdated blood from a hospital is
screened for HIV, hepatitis C, and other diseases, and the potential risk of
handling the sample in a standard laboratory is therefore minimal.

To be able to reproduce data, it is necessary to know the hematocrit.
The hematocrit can be measured in a microhematocrit centrifuge. However,
at the present time MIC is not equipped with such an instrument. It was,
therefore, chosen only to make measurements on the non-diluted sample
from the hospital.

The blood had a hematocrit at about 60%, and was anticoagulated with
sodium citrate. After use the equipment was washed in water and disinfected
with ethanol. The blood was stored at 4°C. The rheometer has a built-
in thermoelement, Peltier element, on the stationary wall, which ensures a
constant temperature during the measurements. An elevation of the sample
temperature from 4 to 20 °C is obtained within a minute.

From a rheological point of view, blood is a complex fluid, and it was

37
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therefore chosen also to perform measurements with two non-particulate
Newtonian fluids. With this control we can trace effects due to the measuring
technique. The reference fluids was water and an engine oil, with a lower
and higher viscosity than blood, respectively.

Furthermore, during the project it was found that one of the geometries
was damaged. That is to say, the plate in the parallel plate geometry was
skewed in such a way that it made small wobbles from side to side under
operation. This is clearly a problem for the accuracy of the measurements.

4.2 Techniques for measuring viscosity

The rhoemetry was performed with an AR 2000 Advanced Rheometer from
TA-instruments, which can measure fluid properties in various geometries.

In the software it was possible to select different procedures, depending
on the properties to be measured. For these measurements we used the
creep and flow procedure. In the creep procedure a constant shear stress is
specified, and the duration for the experiment. When the stress is applied,
the flow field develops in time. This kind of measurements was used to
examine the time dependence of the viscosity.

For the flow procedure a stress interval, and a tolerance for viscosity
is specified. In this way we obtain the steady state shearing viscosities for
different shear rates. A steady state was chosen as a 5% tolerance in three
consecutive measurements of 10s.

The rheometer is torque controlled. However, it is also possible to specify
a shear rate, as the instrument is able to calculate the required torque for a
given shear rate. For fluids with small viscosities it is recommended to use
the stress controlled sweep.

The valid torque range for the rheometer is from 0.1 to 2 x 10° uNm.
To ensure that we are operating in a proper interval, it can be helpful to
show data of the torque next to the viscosity, when the results are analyzed.
Close to the limits the data will be more scattered and less reliable.

4.2.1 The concentric cylinders rheometer

Figure 4.1 shows the concentric cylinder geometry. In this geometry both
creep flow and flow experiments was performed, on blood only. The inner
cylinder is rotating, and the instrument registers the applied torque and
angular velocity.

The geometry requires a sample size of about 10 mL. The lid, not shown
on the figure, on top of the cup provides an atmosphere with a high humidity,
and no problems were observed with skin formation in the blood air interface,
which is a problem observed in the parallel disk geometry.

A rheometer can measure the normal forces, torque 7', and angular ve-
locity w. The torque is related to the shear stress, and the angular velocity
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Figure 4.1: Sketch of the recessed concentric aluminum cylinders

is related to the shear rate. Thus, we have all the necessary properties to
calculate the viscosity. The torque on the inner cylinder in a cylindrical
coordinate system is given by

2 rH H
T=R / / Tro dz df = 27w Ry / Ny dz. (4.1)
0 0 0

We shall not be concerned with normal forces, even though it might have
some influence in complex geometries such as a sudden contraction.

We shall derive an expression for the viscosity as a function of the torque
and angular velocity, when it is assumed that the gap ¢ between the inner
and outer radius is small

Rs — Ry =€, R| < ¢, (4.2)

where € is a small number. A consequence is that the velocity field can be
assumed to decrease linearly between the two plates, i.e., the shear rate is
constant.

The equation of motion for the circular annular flow is

0= T_ZJ(T 7'»,«9), (43)
with the solution c

where c¢ is a constant of integration. The stress expression for the generalized
Newtonian fluid in cylindrical coordinates is

Tro =1 ;77 (45)

where
d vy
r——
dr r

Y= (4.6)
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Combining the Eqs. (4.3) and (4.5) gives a nonlinear ordinary inhomoge-
neous first order differential equation

dvg _vg _ c1 (@.7)

with boundary conditions
U@(Rl) =why, 'U@(RQ) =0. (4.8)

Because of the small distance between the cylinders the velocity field is
decreasing linearly in the radial distance, which means the viscosity is con-
stant. This is true for a Newtonian liquid, but the assumption will probably
be more critical as the nonlinearity of the constitutive equation increases.
The assumption could be studied analytically. However, we shall assume it
as a good simplification, and Eq. (4.7) reduces to a linear problem with the

solution (R )2 2 p2
w 1419 T — Iy

= 4.9

i) =r (57 (o) ) )

where the shear rate is
. 2wRIR3 1

TTRE-RE
Remembering 4 is in cylindrical coordinates, the approximation in Eq. (4.2)
gives

(4.10)

le

y = ———— 4.11
Y=m_Rm (4.11)
and the relation for the apparent viscosity can be expressed as
T
V) = ———— 4.12

where H is the immersed height of the inner cylinder.

4.2.2 The parallel disk rheometer

In the parallel disk geometry, Fig. 4.2, there were performed flow experi-
ments for different gap sizes 1000, 500, 250, 100 and 70 pm, where 1000 pm
is expected to yield the same results as for the concentric cylinders. There-
fore, gap sizes above this value is considered as being in the macroscopic
range, which means that we measure a bulk property. As mentioned, the
geometry was damaged and two Newtonian fluids were used as a control.
In the manual for the rheometer [23], it is pointed out that the geometry
should be properly loaded as shown in Fig. 4.2. However, for blood it was
necessary with an extra spill to prevent sticking of the rotating plate. Oth-
erwise, a skin started to form in the air fluid interface. For low viscous fluids
the effect of an overfilled geometry is small. It is assumed that the incorrect
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Figure 4.2: Sketch of the parallel aluminum disk rheometer. The dotted line
is indicating the boundary, when the rheometer is filled correctly, i.e, the sample
is exactly covered by the rotating disk. In the experiments, the rheometer was
overfilled to prevent influence from skin formation.

Water Saturated air

/
| I S Solvent trap

Blood sample

Figure 4.3: Sketch of the solvent trap. For more details on the specific geometry,
see Fig. 4.2.

loading of the geometry had a negligible influence on the measurements.
The skin formation on the liquid-gas interface could probably be avoided,
if the surrounding air was saturated with water vapor. For this purpose
TA-instruments have developed a solvent trap as sketched in Fig. 4.3. How-
ever, the solvent trap was not available in the laboratory. It was chosen not
to request for a solvent trap, as the problem was solved by overfilling the
rheometer. It was also tried to shield the rheometer with aluminum foil to
reduce convection, but the effect seemed to be minimal.

The parallel disk is a somewhat more complex geometry than the con-
centric cylinders, as the flow field is variable in both the radial and axial
direction. We shall derive an expression for the relation between apparent
viscosity and torque assuming that the components of the velocity vector is
given by

vg(r,z) =rw(z), v, =v,=0 (4.13)

in a cylindrical coordinate system. A more detailed derivation can be seen
in Bird et al. [3]. As vy is linearly dependent on r, the 4,9 component
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disappears from the shear rate tensor

¥ o= Z[(Vv)+(Vv)T]

J— 1 _

T2
_0
0

1
2

do 0 -2 0

dr T

)

d
v 0 4 [ e
0

0
0 % g 0

0

0 (4.14)
d
0 g

As the only nonzero value of the stress tensor is the rz entry, the  component
of the dynamical equation is

_ dr _ dny
dz dz’

(4.15)

which states that the shear rate is independent of z. From Eq. (4.13) we

have
rW

L) 1.16
Y0 = 5 (4.16)

The shear rate varies in the radial direction. Let g be the shear rate at the
rim, r = R.

—=—. 4.17
TR (4.17)
The required torque to maintain a steady flow is given by
T rR R 3 )
onrR3 (IR
T = / / Tooridr = 271/ nyridr = 7_T3 / ny3d7. (4.18)
0o Jo 0 Tr Jo
Differentiating after 4 and isolating 7 leads to
1 dinT
YR) = ——=— — . 4.19
(k) = 5 e ( t R dn fyR) (4.19)

This is the basis for obtaining the non-Newtonian viscosity from the mea-
sured torque and shear rate in a parallel disk geometry.

4.3 Performed measurements

Let us start with a short overview of the experiments. Firstly, I performed
measurements in a creep flow to investigate time dependence of the viscosity.
In a creep flow we measure the viscosity at a constant applied shear stress.
Secondly, I investigated the gap size dependence of the viscosity in a parallel
disk geometry. However, measurements on Newtonian fluids showed that the
uncertainty on small gap sizes was to large. Still, a constitutive equation for
whole human blood was obtained in the macroscopic regime.
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Figure 4.4: Concentric cylinders geometry, creep flow. The maximum shear rate
is 2370571, The viscosity for a shear rate at 2370s~! is constant over 300s

4.3.1 Hemolysis monitored by viscosity in a creep flow

The red blood cells contributes significantly to bloods viscosity. As it is
known that cells can lyse or rupture due to shear stress, it is, as a first
approach, a good idea to test the blood in a creep experiment. If the viscosity
is constant over time there is probably only little hemolysis.

In Fig. 4.4 it is seen that the viscosity is constant for a 30 kPa applied
stress in 300s. The final shear rate is 2370s™!, and is obtained after 210s.
In conclusion, there is no detectable hemolysis due to the shear or contact
with the non-biological, aluminum surface.

4.3.2 Measurements of viscosity down to microrange

One of the objectives of this project, was to investigate if we could measure
any changes in the viscosity, when the system is taken from the macroscopic
to the microscopic range.

With an undamaged instrument there should not be any problems in ob-
taining the steady shear viscosity with a rotating disk. However, the actual
skewness was small and it was therefore not recognized from the beginning.
After the first set of measurements some unexpected characteristics was dis-
covered at high shear rates, and it was therefore decided to make additional
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Figure 4.5: The figure shows the viscosity of blood as a function of the shear
rate for different gaps between the shearing plates at 20 °C.The hematocrit is 60.
The figure indicates that there might be a systematic drop in the viscosity with
decreasing gap size. However, this effect was also observed for water, Fig. 4.6.

experiments on a Newtonian fluids to test the uncertainty of the rheome-
ter. From these measurements, it was found that this approach had to be
modified to study the gap size dependency. Figure 4.5 shows the viscosity
measurements for whole human blood at different gap sizes. It is noticed
that the viscosity is shear thinning as was expected. According to the figure
it is also seen that the viscosity is decreasing with the gap size even at high
shear rates. However, Barbee and Cokelet [10] showed that, at high shear
rates, the viscosity of blood in different sized microtubes only depends on
the hematocrit and mean velocity divided by the tube radius. This con-
tradiction suggests that there could be an artefact due to the measuring
method.

Figure 4.6 shows water’s viscosity as a function of the shear rate for
different gap sizes. The viscosity of water is 1073 Pas. For a gap size of
1000 pm there is a wobble at small shear rates, and at 200s~! the viscosity
increases due to inertial effects, i.e., a secondary flow is developing.

For H = 500 um and H = 250 um the inertial effects are suppressed,
but there is still unacceptable wobbles at low shear rates due to the skewed
instrument. For H = 100 um the viscosity is significantly lowered, which
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Figure 4.6: The figure shows the viscosity of water as a function of the shear
rate for different gap sizes. The temperature was 20°C. Water is a Newtonian
liquid and should be independent of the gap size. However, a small but systematic
wobble seems to appear in the data. The wobble travels to the right, as the gap
size decreases. As water molecules are very small compared to the gap size, it
is expected that we measure the bulk properties at any of the chosen gap sizes.
Therefore it is unexpected that there seems to be a systematic drop in the viscosity
with decreasing gap size. A skewed disk could be the reason. For a 1000 um gap
inertial effects are observed above 200s~!. The points are connected to guide the
eye.

means the data in this range are not reliable.

Figure 4.7 shows the viscosity measurements for a Newtonian engine
oil. It is somewhat easier to get more stable data for a fluid with a higher
viscosity. The viscosity of the oil is higher than for blood, and suppresses
the inertial effect even at a 1000 um gap size. However, Fig. 4.7 indicates
that the measurements for H = 250 ym is unreliable.

Taking the former measurements into account, the uncertainty of the
rheometer is to large, and we can not draw any conclusions about the gap
size dependency. This approach with the available geometries has shown
unappropriate to investigate gap size dependency.
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Figure 4.7: The figure shows the viscosity of an engine oil for different gaps between
the shearing plates at 20°C. The fluid is Newtonian and non-particulate, which
means the viscosity should be constant and independent of the gap size. In contrast
to the viscosity of water in Fig. 4.6, the viscosity of the oil does not drop with
decreasing gap size. Anyhow, there is still a systematic wobble on the graphs. The
two figures, Fig. 4.6 and 4.7, indicates that any apparent gap size dependence might
be due to the rheometer. Furthermore, the wobbles introduce an uncertainty that
have to be considered. The data points are connected to guide the eye.

4.3.3 Obtaining parameters for the constitutive equation

For a modelling purpose the constitutive equation is the link between ma-
terial properties and flow behavior. In the foregoing section, it was seen
that the uncertainty for the measurements increased, when the gap size
was decreased. Anyhow, we may still expect some validity for gap sizes
above 500 um. When we are measuring the macroscopic viscosity, the re-
sults should be independent of the chosen geometry. In Fig. 4.8 is seen
a comparison between measurements on blood in the concentric cylinders
and in the parallel disk geometry for H = 1000 yum. The results are in a
fine agreement, and we shall therefore derive a constitutive equation from
the concentric cylinder data. Fitting a power law model in the range of
0.95 — 1405~ ! gives

7 = 0.057 4062, (4.20)

To see if the magnitude and non-Newtonianness of our blood measure-



CHAPTER 4. EXPERIMENTAL WORK 47

10"
—+— Concentric cylinders
—— Parallel disk, gap 1000 u m
12}
S 1
Q10
2
@
o
[
2
>
107
1 1 1

10 10’ 10 10
Shear rate, s~

Figure 4.8: A comparison between measurements on blood from two different
geometries, concentric cylinders and parallel disk. The temperature was 20°C
and the hematocrit was 60. As the viscosity is independent of the geometry, we
interpret these curves as being the bulk viscosity for blood. The program TA Data
Analysis from TA instruments was used to make a least squares fit. In the range
0.95 — 1405~ ! it was found reasonable to fit the data to a power law.

ments is comparable with similar measurements in the literature, I have
collected a selection of constitutive equations in Fig. 4.9. The figure shows
that the results from the concentric cylinders are comparable, but somewhat
more non-Newtonian than measurements from the literature. The most sim-
ilar curve is Walburn and Schneck’s best two variable model (BTVM) with
a hematocrit at 70 %. The hematocrit is 10 % higher than our sample. How-
ever, the BTVM is derived for blood at 37°C instead of 20°C. It is noticed
that results from oscillating rheometers are less non-Newtonian compared
to measurements with a rotational geometry. We will take a closer look on
fluid properties in an oscillatory flow, in the following section.

4.4 Viscoelastic properties of blood

When a strategy or an approach turns out to be inappropriate, it is nec-
essary to refine theory or experiments. As seen in Fig. 4.9, some viscosity
measurements are obtained in an oscillating tube flow. If the viscosity can
be obtained by small amplitude oscillatory measurements in the parallel
disk geometry, it might be possible to avoid artifacts due to the skewness.
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Figure 4.9: Comparison of present results with the literature. The curves are
not supposed to be identical as they are measured on different samples. Own
measurements: Human blood, Hem = 60%, T = 20°C. Thurston [24]: Human
blood, Hem = 45 %, T = 22°C. Chang et al.[5]: Defibrinated Sheep blood, Hem =
41%, T = 23°C. BTVM, Walburn and Schneck [29]: Human blood, T' = 37°C,
Hem = 70%. B1VM, Walburn and Schneck [29]: Human blood, T = 37°C,
Hem = 35 — 50 %.

However, it was also noticed in the figure that viscosities measured in the
rotational flow were slightly more non-Newtonian. In this section, we shall
take a closer look on the differences between the viscoelastic shearing vis-
cosity ny and the shearing viscosity 7s.

Viscoelastic properties can be measured in an oscillatory flow and reveals
information about energy stored and dissipated in the system. Furthermore,
if the measurements can be combined with an appropriate model, it is pos-
sible to obtain a better understanding of relaxation times for the fluid in
consideration. In this section, we will briefly introduce the theory of small
amplitude oscillatory flow and apply a spring-dashpot model for blood. Ad-
ditionally we will discuss the relation between the shearing viscosity ns, low
shear rate frequency dependent viscoelasticity n*(€2), and the shear rate de-
pendent viscoelasticity n*(¥). This relation can according to Thurston [25]
be described by a degradation formula, which models the degradation of
aggregates, rouleaux.

As it became evident in the previous section, rotational viscometric mea-
surements ceased to be valid when the gap size between the rotating disk
and stationary plate became small. This was due to a skewness in the disk,
and the motivation for looking at small amplitude oscillatory flow was to
find a way to minimize this effect. In contrast to a rotating disk, a small
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Figure 4.10: The figure shows the velocity profile of a small amplitude oscillatory
flow between to parallel plates. When the amplitude is small the velocity profile is
instantaneous.

Figure 4.10 shows the instantaneous velocity profile in a small amplitude
oscillatory flow between two plates. If the fluid is Newtonian the shear rate
and shear stress will be in phase. However, for blood the shear stress is
shifted with the phase ¢,

¥ = 4%cos(Qt), (4.21)
T = A(Q)Y°cos(Qt — ¢), and (4.22)
cosT (129

where 40 is the shear rate amplitude, Q the frequency and A is a frequency
dependent function. The criterium for linearity is

QpH?
2n0

<1, (4.24)

where 7 is the viscosity at small frequencies [3]. For calculational purposes
the shear stress is expressed with complex notation

T =Re {A(Q)ﬁoei(m_‘z’)} = Re {T"emt} . (4.25)

A common feature for the linear viscoelastic model is that the shear stress
can be expressed by an integral of the relaxation modulus G and the shear
rate

T:/t G(t -ty dt'. (4.26)

We will later verify Eq. (4.26) by noting that it is satisfied for the generalized
Maxwell model, but it is, however, a general structure for the solution of a
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first order inhomogeneous differential equation. The complex viscosity n* is
obtained as the relation between the complex shear stress, and shear rate

n:~_*:‘_07 4.27
=T (4.27)

where superscript o indicates an amplitude. 7° is in general complex, 4° is
real, and the complex shear rate and shear stress are defined as

T = ot ,and A* = "yoemt/, (4.28)

respectively. We will now derive an expression for the complex viscosity by
means of the relaxation modulus G. Substituting with s = (¢t —t') Eq. (4.26)
can be rewritten as

0

T = —/ G(s)'y'ORe{eiQ(t_s)}ds

[e.9]

(o9}
= 9°Re {e’Qt}/ G(s)Re {e‘ms} ds. (4.29)
0
The complex shear stress is then
T = f'yoemt/ G(s)e " ds = 4*n*, (4.30)
0
where n* is identified as
oo .
n* = / G(s)e 8% s, (4.31)
0

4.4.1 A generalized Maxwell model for blood

A Maxwell body is a component in a mechanical system, which is composed
of a dashpot and a spring to resemble friction and conservation of energy,
respectively. A general Maxwell model is a series of Maxwell bodies con-
nected in parallel. The model we shall use for blood is shown by Thurston
[25] and is seen in Fig. 4.11. It is a generalized Maxwell model with the
addition of one extra dashpot, to represent the viscosity at infinite shear
rates. The velocity of a Maxwell body is given by

F F
T=Ir+T,=—+—, 4.32
k n L n ( )
where zj, and x,, is the velocity of the individual components. A standard so-
lution to this linear ordinary first order inhomogeneous differential equation
is

F=edut [/ kien” dt’ —i—K} = et [/ kaext dt’ —I—K] ; (4.33)
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Figure 4.11: The figure shows a generalized Maxwell model, where an extra dash-
pot has been added to model the shear limit behavior. N is the total number of
Maxwell bodies.

where X is a time relaxation parameter A = k/n. If we choose the limits
—o00 < t' <t,and FF = 0 at t = —oco then the integration constant must
vanish, K = 0. Changing the equation from terms of force to stress and
inserting the limits into Eq. (4.33) gives

t ’ t (e—t!
T:ei/ me&dt':/ ke~ > dt’. (4.34)

—00 — 00

Substituting s = t — ¢’ into Eq. (4.34) and changing to complex notation
yields

. © s - © s .
T = "Yoemt/ ke~ (3+%) g — "y*/ ke xe ™% (s. (4.35)
0 0

The complex viscosity can be calculated by identifying Gy (s), and evaluating
Eq. (4.31)

Gp(s) = 6’_%, and 7y = /0 Gp(s)e ™ ¥ds = 1—&-%’ (4.36)
p

where p indicates the pth Maxwell body. The total complex viscosity is
given by

[e.e]
M=o + > 1l (4.37)
p=0
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The dashpots are related to the dissipation of energy due to friction, which
suggests that the shearing viscosity is

Ns = Noo + Z Np- (4.38)
p=0

However, small amplitude oscillatory measurements only applies to small
values of the shear rate, and we, therefore, need a relation to extend the
parameters to higher shear rates.

For small shear rates, and small amplitudes the system is very close to
what we shall refer to as a static equilibrium state. Furthermore, when
Q — 0 ny and ns approaches the same limiting value. For the ground state
we assume that

Mo = glzlg}) %im ny = V.lsigl0 ns , and

—0

dim lim 7 = 0, (4.39)

where subscript o identifies the ground state, 7, and ng are defined by
n"=mnv —ine. (4.40)

V is related to viscous dissipation of energy, and E to elastic storage of
energy.

When the shear rate is increased, large aggregates of blood cells are
broken down which reduces the viscosity. It is believed that the relaxation
times A, of the aggregates are independent of the shear. It has been shown
that these features can be modelled by the degradation function F'

M = NopF (3Ny) 5 and k= kopF (7)), (4.41)

where ]
F(A\,) = ———. 4.42
(¥ p) 1+ (,-y)\p)Q ( )

By means of the degradation formula and ground state values for the rheo-
logical parameters, we can calculate the value of the rheological parameters
at states of dynamical equilibrium, i.e., we can estimate the steady state
shearing viscosity.

To resume the key ideas of small amplitude oscillatory measurements
in connection with a spring-dashpot model: Small amplitude measurements
yield the complex viscosity. The infinite shearing viscosity 7 can be mea-
sured in a shear flow, e.g., a rotational viscometer. By the use of Eqs. (4.36)
and (4.37), we can by curve fitting estimate the shear related viscosities for
the individual aggregates, 7,. The total shearing viscosity is then obtained
by Eq. (4.38)

One of the objectives of small amplitude oscillatory viscosity measure-
ments was to avoid the rotational viscometer. As we need the infinite shear-
ing viscosity to calculate the viscosity at lower shear rates, it seems like
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the effects from the skewed geometry cannot be avoided. However, it was
showed by Barbee and Cokelet Fig. 3.11(b) that the infinite viscosity did
not depend on the size of the used geometry. The infinite viscosity could
therefore be measured in any geometry.

To sum up the experiences from the experimental work, we saw that
there were no significant change in viscosity over time at shear rates below
237051, which is of the same order as the shear rates in the flow procedure.

If a rotating geometry is chosen to investigate the viscosity’s dependency
on gap size, there are high demands to the precision of the rotating disk.
However, we obtained a macroscopic constitutive equation.

It is possible that the experiment can be performed by small amplitude
oscillatory measurements. However, shearing viscosity and viscoelastic vis-
cosities are not the same. The viscoelastic shearing viscosity is the real
part of Eq. (4.37), and the shearing viscositiy is given by Eq. (4.38). From
Fig. 4.9 it was seen that viscoelastic measurements are less non-Newtonian.
However, I have mention that I assume Chang et al. [5] used 7y as it has
more similarities with Thurstons measurements than my own; this could
also be due to the lack of fibrinogen. In general 7y is smaller than 7ns. This
can be seen in the paper by Thurston [25], but it is also seen indirectly from
the relation .

* P
Ny = m, (4.43)
as ny is related to Re{ny }, and 15 to 7,. When the frequency is approaching
zero, the viscoelastic and shearing viscosity are converging. At high shear
rates they are coinciding as all the aggregates are broken down. This is the
feature of the degradation function, Eq.(4.41).

Thurston mentions [25] that the viscoelastic viscosity should be con-
sidered in a pulsatile flow, as it can be regarded as a superposition of an
oscillatory and a shear flow.






Chapter 5

Numerics and Simulations

Numerical calculations is a tool to get a better understanding of a physical
system, where analytical solutions can be difficult to obtain. Simulation is
a term for the iterative process of obtaining a solution, and this technique
has in particular proven successful for optimization and design of various
devices such as pumps and engines.

Simulations can also be used as a tool to speed up the designing process
of microfluidic systems. However, theory from modelling in macroscopic
systems are not necessarily valid as we scale down the system. In this
chapter, we shall investigate the applications of the measured constitutive
equation, Eq. (4.20).

In a paper by Chang et al. [5] the power law has been used as a con-
stitutive equation to obtain quantities of flow resistances in different micro-
fabricated geometries. They succeeded to show that the power law can be
used to predict the relation between applied pressure and volume flow rates
for simple geometries. However, their studies do not show any details about
velocity profiles and shear rates within the system.

Hemolysis can be induced by high shear rates, which for some purposes
is an unwanted process, as for example in quantifying potassium levels [5].
A better understanding, and quantification of the shear rates in the different
geometries, can be helpful in the design of microfluidic systems manipulating
blood.

A problem that has to be addressed before we interpret the numerical
results is validation of the CFD-code. Even if it has proven successful in
some problems, it might be invalid in other cases. The success of an an-
alytical solution is dependent on how well the real system is described by
the mathematical equations. If we approach the problem with a numeri-
cal method the solution will also be dependent on the discretization of the
governing equations. Even if the equations are properly discretized it can
be difficult to obtain a stable solution, i.e., the residuals in the iteration
procedure do not decrease. A way to ensure that the results obtained by

95
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means of CFD are correct, is to test against analytical solutions or experi-
mental work. Flow systems can be very complex, and it can be necessary to
make a number of assumptions to solve the problem analytically. If, for the
simplified case, there is an agreement between the two solutions, we have a
good foundation for taking a step toward a more realistic system, where we
have to rely on numerics. This shall be the approach to CFD-solutions in
this report.

5.1 Computational Fluid Dynamics in CFD-ACE+

In the project we shall solve the flow problems aided by a commercial soft-
ware package from CFD Research Corporation [8], CFD-ACE+ version 6.6
release 2002. The central programs of this package are CFD-GEOM, CFD-
GUI, and CFD-VIEW. In general, the solution of a CFD-Problem can be
divided into three elements: a pre-processor, a solver, and a post-processor.
The pre-processing is handled in CFD-GEOM and CFD-GUI. The first pro-
gram is for geometry and grid generation, and the latter is a graphical user
interface for specifying the required fluid properties, boundary and initial
conditions.

The solver is of the finite volume type. Solver options like relaxation
parameters, number of iterations and interpolation schemes are also set in
CFD-GUI.

During a simulation a number or a single file containing flow properties
is produced, and these data can be viewed and manipulated in CFD-VIEW,
the post-processor.

5.1.1 Discretization of the governing equations

The equation of motion and the continuity equation is in its most general
form a set of nonlinear PDEs. The first step in the solution procedure is
therefore to discretize in time and space. The transient term of Eq. (2.15)
is given by

p@_v _ (pv)irar — (pv) (5.1)

ot At ’ ’

where At is specified by the user. The spatial terms are discretized by
dividing the geometry into a number of cells as seen in Fig. 5.1. The fluid
properties are stored at each cell center. However, some properties like the
stress has to be evaluated at the interface of the cells. For that purpose
it is possible to choose different interpolation methods as for example the
central or the upwind differencing scheme. In the former a linear dependence
is assumed between the node values and in the latter the properties are
assigned according to the upwind scheme. If the flow goes west, the surface
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Figure 5.1: The figure shows the concept of dividing a geometry into volume
elements or cells in the two dimensional case. Fluid properties are stored in each
cell center. The letters N, S, E, and W refers to north, east, west, and south
relative to the point P.

w is assigned the properties of P. The diffusive term is discretized as

/Vv T dV = /AT ‘0 dA = (A7) — (AT)w, (5.2)

where e and w refers to east and west, see Fig. 5.1. A detailed description of
how the partial differential equation is turned into a finite difference equation
by discretizaton can be found in the CFD user manual [7].

5.1.2 Geometry and grid creation

CFD-GEOM is used for creation of geometries and grids. For many pre-
liminary investigations 2D-simulations can provide an idea of the result for
the more time consuming 3D-simulations. However, simple 3D-geometries
usually described in cylindrical coordinates, can be substituted by rotating
a 2D-geometry around the z-axis. To allow this kind of solutions in CFD-
ACE, it is necessary to choose the so-called swirl feature, which enables
velocity components out of the plane.

The resolution of the geometry required to obtain a meaningful solution
is dependent on the length scales of the system. If rapid changes are taking
place as for example close to a sudden contraction, a finer grid is necessary.
Therefore, it is an advantage to have an expectation of how the flow develops.

In GEOM, two types of grid are possible: structured and unstructured.
In 2D, a structured surface grid consists of a surface with 4 edges, and the
size of the cells can easily be varied.

5.1.3 Implemented models for blood flow

Rheology can be a very complex matter depending on the properties of the
fluid in consideration, and how much it deviate from Newtonian behavior.
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If we think about blood as a continuum, a generalized Newtonian model is
a relatively easy way to implement non-Newtonian behavior.

In CFD-ACE+ it is possible to construct any generalized model through
the so-called usersub routines, and as such there is no limit to the possibil-
ities. However, models accounting for nonlinear viscoelastic properties and
normal forces are not easily applied. Implementation of normal forces would
require additional terms to the equation of motion.

In the CFD-ACE+ package we investigated three different constitutive
equations Power Law (Blood), Walburn and Schneck, and Power Law. The
latter model was modified to recover the simple power law from the experi-
mental section, Eq. (4.20).

5.1.4 Modelling Parameters

In the preprocessing it is necessary to specify various parameters that de-
fine the problem, and parameters to obtain convergence. We shall briefly
introduce the used preprocessing conditions and relaxation parameters.

The no-slip boundary condition implies that the neighboring fluid parti-
cles have the same velocity as the boundary. If the boundary is a stationary
wall the velocity of the fluid is zero. No-slip is also an example of the so-
called Dirichlet boundary condition, since the boundary values are specified.

If the boundary values are unknown, we can apply a Neumann bound-
ary condition, as for example symmetry. For a symmetry condition all the
gradients of all variables normal to the boundary are zero.

A fixed pressure boundary is used to keep a constant pressure drop from
inlet to outlet. When a constant pressure is specified, the pressure is inde-
pendent of the mass flow.

For steady state simulations it can be difficult to obtain convergence if
the specified boundary values are resulting in large velocities. Therefore, it
can be necessary to start with an initial condition, which is expected to be
close to the final result.

The relaxation parameters of the dependent variables can also be helpful
in order to obtain convergence. If the relaxation parameter is small, the same
goes for the step length in the iteration procedure. Therefore, when we have
large variations in our variables, convergence can be obtained by specifying
a small relaxation parameter.

To calculate fluid properties at the cell interfaces, the solver can ap-
ply different interpolation schemes. This choice can also have an effect on
convergence, but in this project we have only used the upwind scheme. Com-
pared to a central difference scheme, upwind is more appropriate for flow
problems [27].
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5.2 Testing of CFD-ACE+

In this section we will test the validity of the CFD-code by comparison
with analytical obtained results. The chosen geometries are the concentric
cylinder and the parallel disk rheometer.

5.2.1 Flow between concentric cylinders

The space between two concentric cylinders is called the annular space. We
will now test the CFD-code by calculating the velocity and pressure profiles,
and comparing the solutions with the analytical expression. The flow field
is given by the equation of motion

vg dP

-0 - _= 5.3
P r dr (5:32)
0 = —ﬁ%(r 7'7»9) (53b)
dP
0 = —E, (53C)

where we assume that v, = v, = 0. Eq. (5.3c) states that the pressure
is constant in the z-direction. However, it would increase, if we consid-
ered gravity. If we assume that the liquid is Newtonian with the boundary
conditions vg(R1) = wRy, and vg(R2) = 0, the solution is

vo(r) =r [w}gglR}é); (QZ;;;?) +w} , (5.4)

where w is the angular velocity of the inner cylinder. R; and Ry are the
inner and outer radii, respectively. With the boundary condition P(R;) = 0,

the equation
R2w \’ /2R, B2
P= L - — 41 .
p<R1—R2> ( r 272 + n(r)) (5-5)

satisfies Eq. (5.3a). If we choose a relatively low value for the angular
velocity, the assumptions are expected to be valid, and the analytical result
should be comparable to the result produced by CFD-ACE+.

The chosen dimensions are By = 0.014m, Ry = 0.015m and w = 257,
A definition of the variables can be seen in Fig. 5.2. As we have a no slip
condition on the walls the velocity is vg(R;) = 257! x0.014m = 0.028 ms .
The outer wall is stationary implying that the velocity at Ry is zero.

Figure 5.3(a) shows a fine agreement between the velocity profiles for
the two methods. To obtain a 3D-solution we utilized axisymmetry around
the z-axis. In CFD-ACE+ it is possible to have a velocity component out
of the plane, when the Swirl feature is chosen.
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Figure 5.2: The figure shows two infinitely long concentric cylinders. The rect-
angular area surrounded by boundary conditions is the computational domain. A
3D-solution is obtained with axisymmetry around the z-axis.
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Figure 5.3: Panel (a): A comparison between the velocity profiles in the annular
space obtained by an analytical, and a numerical integration in CFD-ACE+. The
two results coincide. The used parameters: R; = 0.014m, Ry = 0.015m, w = 2571
The inner and outer wall have a no slip boundary condition. In the top and bottom
symmetry was implemented, to simulate infinitely long cylinders. The profile was
probed half way between the top and bottom. Furthermore, the variation in the
axial direction was smaller than 0.5% of the maximum velocity. Panel (b): The fine
grid size corresponds to the calculation shown in Fig. 5.3(a). The pressure profiles
are not in agreement. The numerical solution is displaced with 0.013 Pa down the
pressure axis, a significant fraction of the total analytical pressure. The shape of
the curves are in agreement, but close to the R;-boundary there is a nonphysical
pressure drop. It is noticed that the grid size has no influence. This figure illustrates
that it is necessary to be cautious, when dealing with CFD.

However, the pressure profile seen in Fig. 5.3(b), has a somewhat non-
physical drop at the R; boundary. It is seen that the solution is grid inde-
pendent. The corresponding residuals are seen in Fig. 5.4, and they clearly
show that all the variables, including the pressure, have converged. Accord-
ing to the user manual, residuals should drop five orders of magnitude for
convergence. CFD-ACE+ is in this case reliable with respect to the ve-
locity calculation, which it obtains from an integration of the equations of
motion. The pressure is derived from the velocity data through the SIM-
PLEC algorithm, see the CFD user manual [7], but we have at this point no
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Figure 5.4: In the figure is shown the residuals from the simulations on the concen-
tric cylinder geometry. All residuals have converged after 900 iterations. However,
according to the manual a drop of five orders of magnitude should be sufficient [7].

explanation of the nonphysical pressure drop. We shall not go into details
with the calculation of the pressure field, but the SIMPLEC algorithm is an
iterative procedure to estimate the pressure, where the continuity equation
links the equation of motion and the pressure field. The question of the
pressure drop has been raised to the support group of CFD Research, but
an answer has not appeared yet.

5.2.2 Flow in the parallel disk rheometer

We will now make a similar solution as we did in the former chapter. How-
ever, the parallel disk rheometer is a little more complex due to the depen-
dencies on both r and z. At high angular velocities, secondary flow can be
introduced and we shall therefore choose a low angular velocity w = 2s71.
We will use the analytical solution to verify the CFD-code. When we de-
rived a relation between the torque and the shear rate it was assumed that
vg increased linearly in the r direction. As a first guess, it could be imagined
that an overfilled rheometer would affect this dependency. We can also use
the analytical solution to investigate this issue.

The mathematical model for the rheometer is given by the -component
of the equation of motion,

0

0 /10 0%
= 5 (o tron)) + 520 (5:6)

and the boundary conditions sketched in Fig. 5.5. The flow is steady and
the velocities in the radial and axial directions are neglected.
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Parallel disk rheometer Between gp;ill
plates

Figure 5.5: The figure shows the parallel disk rheometer. The dashed rectangle is
the computational domain. A 3D-solution is obtained with axisymmetry around the
z-axis. Spill refers to the blood due to overloading of the rheometer, see Fig.4.2. For
z = H it is noticed that the boundary condition in the r direction is discontinuous
at Rl.

It is noticed that all the boundaries are homogenous, except the rotating
plate. This implies that we have an unrealistic, discontinuous velocity profile
at (Ry, H). However, the effect imposed by the boundary decreases with
the distance from the wall, and at some z-value we expect the profile to be
continuous at Rj.

We are going to solve a linear partial differential equation of second order
with respect to the space variables r and z. For calculational purposes the
problem is expressed in terms of the dimensionless variables

@:%, f:RLQ and z:%, (5.7)
where v is the maximum velocity, u = vg(R1, H). For notational conve-
nience, the tildes will be dropped. Eq. (5.6) and the four required boundary
conditions can now be written as

vy lvg v 5 0%y
P Ry

vg(0,2) = vg(1,2) = vp(r,0) = 0,

UG(T?]') = f(r)a

where L2 = R3H 2. The profile f can be expressed by means of the Heavi-
side unit step function

= 0, (5.8)

f(r)=wroed-r), (5.9)

where d is the fraction between R{ and Rs. The Heaviside step function
O is zero for negative arguments and 1 for positive arguments. At first
we obtain a partial solution by writing the velocity as a product function
vg = Rn(r)Zn(2)

1 &R, 1 dR, 1 5 1 d?Z,

= - =L = —k2 5.10
R, dr? + R,r dr r2 Z, dz? n’ ( )
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where k, is a separation constant. The subscript n is used, as it turns
out that we end up with an eigenvalue problem with an infinite number
of solutions. Eq. (5.10) has to be constant as the independent variables are
separated. We have two linear, second order, ordinary, differential equations

d’R dR
2 n n 2.2 _
T dr2 + T‘W + Rn(k‘nT — ].) = O, (511&)
d’Z, ko2
e <f) Z, = 0. (5.11b)

Eq. 5.11a is Bessel’s differential equation with index 1. The second equation,
Eq. (5.11b) has a solution of hyperbolic sines and cosines. However, the
homogenous boundary condition in z = 0 implies that that the solution has
to be a hyperbolic sine function, Z(z) = C'sinh(kyz).

As the operator in Eq. (5.11a) is self-adjoint, the eigenfunctions are
orthogonal and forms a complete set [1]. The eigenfunctions are R, (r) =
AJy(knr) 4+ BY1(kyr), and have to satisfy the boundary conditions for fixed
r-values. When 7 is approaching 0 the Y-function is unbounded, and it does
not satisfy the homogenous boundary condition. The homogenous condition
at r = 1 implies that k, are the zeroes of J;. Eq. (5.11b) is linear and we
can therefore write the solution as a superposition of the products of R,
and Z,

vg(r,z) = ZAan(T)Zn(Z)
n=1

— i Ay, sinh(k,2)J1 (knr), (5.12)

n=1

where A, is the expansion coefficients constant. This constant can be de-
termined by the last boundary condition. At z = 1 the solution has to be
f(r), and we can therefore expand this profile in a Bessel series,

f(r) =" ApJi(kmr)sinh (’%”) : (5.13)

m=1

Multiplying both sides with r.J;(k,7), and integrating over the entire range
gives

/01 f(r)rJi(kpr)dr = A, sinh (l%”) J2(ky), (5.14)

by use of the orthogonality of the Bessel function. Substituting Eq. (5.9)
into Eq. (5.14) and isolating the constant yields

B fod r2Jy (knr)dr
4.3 () sinth ()

(5.15)

n
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Figure 5.6: Analytical solution, Eq. (5.12), to the parallel disk rheometer in
Fig. 5.5. Parameters: z = 1, d = 0.75 and L = 40. Panel (a): The figure shows
how the solution converges as the number of terms n increases from 1 through 10
to 1000. For n = 1000 we obtain the profile given in Eq. (5.9). Panel (b): The
figure shows a contour plot for the velocities. It is noticed that the velocity is very
small for r» > 0.75, which is in the spill region.
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Figure 5.7: Analytical solution for the parallel disk rheometer seen in Fig. 5.5 for
z = 0.5. With this value of z we see the profile in the middle of the two plates. For
panel (a) and (b) weset L = Ry/H = 40 and d = Ry /Ry = 0.75. Panel (a): velocity
as a function of r. Technically, the drop length is defined as the distance between
the maximum velocity and the first coming velocity below 0.002. Panel (b): Data
points for the increasing drop length as a function of the height H. These data are
extracted from the figure in (a). For panel (c¢) and (d) the parameters L = 40 and
d = 0.25. Panel (c): the velocity as a function of r. Panel (d): drop length as a
function of H. The drop length is short even at small values of d, i.e. when the
distance to the end wall is increased. The data are extracted from figure (c).

Eq. (5.12) and (5.15) solves Eq. (5.8). Figure 5.6 and 5.7 are produced with
the matlab script file vel.m seen in Appendix B. Figure 5.6(a) shows the
convergence as the number of terms in the sum increases, Eq. (5.12). It is
noticed that n = 1000 is a very good approximation to the profile at z = 1.

To investigate the effect of an overfilled rheometer, we can look at the
velocity profile in the spill. Figure 5.7 shows how the drop length increases
with the height of the rheometer. As we were operating at gap sizes or
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Figure 5.8: A comparison of the analytical and numerical result for the parallel
disk rheometer seen in Fig. 5.5, L = Ro/H = 40 and d = R;/Rs = 0.75. The
curves are coinciding.

heights smaller than 1000 um, that is to say L > 40, the drop lengths are
smaller than 4 mm. So, depending on the viscosity it does have a small
effect on the required torque. It is noticed that if the gap size is small
the assumption that vy is linearly dependent on 7 is acceptable. In the
analytical solution we applied a no slip condition on the outer wall. However,
Fig. 5.7(b) and 5.7(d) show that the distance from the boundary only has a
minor effect on the drop length.

Figure 5.8 shows a comparison of the numerical and analytical solutions,
and the curves are seen to coincide. In conclusion, the CFD-code has proven
valid, and the assumption for vy seems acceptable. We could perform a more
rigorous investigation of how much the overfilling of the rheometer influences
the torque measurements. It would also be possible to increase the angular
velocity, and study when the secondary flow becomes a significant part of
the -directed velocity. On the other hand, it turned out that there were
other problems with the rheometer, and we shall therefore not go into further
details on this matter.

5.3 Investigating blood models

We shall now investigate the two default blood models in the CFD program
and compare them with simple power law models. We shall not use the
default models for an extensive number of simulations, but since many dif-
ferent constitutive equations have been suggested, we shall take a closer look
on their similarities and differences. The default Power Law(Blood)[12] is
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Table 5.1: Default parameters in CFD-ACE+ blood constitutive equations. Pa-
rameters in the Power Law(Blood) and Walburn and Schneck are entered in cgs
units, but the output from the CFD solver is in SI-units, see Appendix C.

Parameter Value Parameter Value
Power Law Blood in cgs units Walburn and Schneck in cgs units
oo 0.035 ax 0.00797
Ap 0.25 as 0.0608
Neo 1.0 as 377.7515
AN 0.45 a4 0.00499
a 50.0
b 3.0
b 50.0
d 4.0
given by
=240 5, (5.16)
where _ )
A7) = foo + Apexp [— <1 + %) exp <—7‘)] , (5.17)
and ) b
n(¥) = neo — Anexp [— <1 + |lc’> exp (—m)] , (5.18)

with the default settings as in Table 5.1.

Table 5.2: Parameters for simple power law constitutive equations.

Parameter Our Power Law Chang’s Power Law [5]
k 0.057 0.00733
n 0.623 0.932

The Walburn and Schneck model is given by

az .q1_ .
T = aj exp (agH + H—‘Z’yl “3H> 4, (5.19)

where the default settings are given in Table 5.1. The simple power law is
T = kA", (5.20)

where measured values of k and n are listed in Table 5.2. In all studies on
blood rheology shear thinning is restricted to regions at relatively low shear
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Figure 5.9: The figure shows the viscosity for different blood constitutive equa-
tions, which have been derived from different blood samples. In the preprocessor
it is not possible to specify valid ranges of the non-Newtonian viscosity. Hence,
the viscosity in the simple power law model keeps decreasing. For measurements
performed in this project the viscosity was constant for shear rates above 300s7!.
The plotted Walburn and Schneck and Power Law (Blood) model are the default
models in the CEFD-ACE+ package.

rates, which means there should be a transition, where the constitutive
equations switches from a power law to a Newtonian. Figure 5.9 shows the
non-Newtonian viscosity for different constitutive equations. It is noticed
that the Chang group measured the viscosity in an interval, where we ac-
cording to our experimental results would start to expect linearity. Chang’s
power law is the least non-Newtonian, which probably is due to the mea-
surement technique. The viscosity was measured in an oscillating tube, and
the viscoelastic shearing viscosity 7y appear less non-Newtonian compared
to the shearing viscosity 7, see the discussion in chapter 4. Furthermore,
the used blood was defibrinated sheep blood. Fibrinogen is important for
rouleaux formation, and it could therefore be expected that the blood only
had a small tendency to aggregate. Walburn and Schnecks model is appli-
cable until 110s7!,

Experimental work from this project shows that the viscosity reaches a
constant level at high shear rates, 300s~!. This problem is not addressed
in the CFD-code for the simple power law model. We can get an estimate
of the consequences if we look at Hagen-Poiseuilles equation for Newtonian
fluids in tubes

- TR dP

Q= B dz (5.21)
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where @ is the flow rate, u the Newtonian viscosity and dP/dz the axial
pressure gradient. At high shear rates the viscosity used in the calculations
will be smaller than the experimental viscosity. This means, for a con-
stant flow rate, that the pressure gradient will be underestimated. However,
Chang and coworkers showed in an experiment for a shear flow in a straight
microchannel that CFD-ACE+ simulations with a simple power law yielded
pressure drops in agreement with the experiments [5].

The more complicated model Power Law(Blood), has the feature of re-
covering a Newtonian viscosity at high shear rates. However, it is derived
from measurements on normal blood, which means that the hematocrit
varies within the range of normal hematocrits, i.e., the hematocrit is not
a constitutive parameter.

In the Walburn and Schneck model we can specify the hematocrit, but it
has the disadvantage that the viscosity keeps decreasing, as a function of the
shear rate. The model is derived for human whole blood at 37 °C. However,
we shall in this project not be concerned with the temperature effects.

5.4 Flow in microchannels

As mentioned in the last section, when we perform the simulations, the
simple power law is considered valid for infinitely large shear rates, which
contradicts the experimental results. In the experiments for this project
the power law ceased to be valid after 140s~!, and the viscosity reached a
constant plateau. In the paper by Chang et al. [5] the apparent viscosity was
measured and fitted with a power law up till 400s~. When they applied
the power law in simulations, the results were in a fine agreement with
experimental work, if the geometry was a straight channel. This could look
like a coincidence as the calculated shear rates are far beyond 400s~!.

We will in this section apply our power law for simulations in a micro-
tube, and show the principles of grid analysis. Furthermore, Chang’s results
in a microchannel will be compared with a re-simulation in a microtube with
the same cross-sectional area. This is done to obtain information of the ve-
locity and shear rate profiles. Figure 5.10 shows two different discretizations
of the same grid. As seen, the cells are clustered in order to resolve the larger
change in velocity close to the wall. The flow field does not change in the
axial direction, and only a few grid points are necessary. High aspect ratios
may lead to difficulties in convergence. However, in this case we had a fine
convergence. The grid dependence analysis shows that the relative error
between the coarse and fine grid is below 35%, Fig. 5.11. Furthermore, the
fine grid is coinciding with the analytical solution, and we shall therefore
take the fine grid as independent of discretization. In geometries of higher
complexity, a more thorough analysis would be necessary. According to the
Best Practise Guidelines by Casey and Wintergerste [4], a good grid analysis



CHAPTER 5. NUMERICS AND SIMULATIONS 70

RI | TG00 -0 —

| DEOE -] -
r el i e i i i i
S NS ([ S A (N S S S S A S S A ' %TY O
T OC00E - (02
BOG0DE - G2
B DCO0T - (02
4 DEOOE - i3
A NG00T - 102
2 Don0E -
| DEnE-o2
0 Do < G0

Figure 5.10: The figure shows two different grids for the cross section of a micro-
tube, where the radius is 35 um and the length is 12mm. The upper figure shows
the coarse discretization where the cells are clustered near the walls to account
for the larger variation in the velocity. For the simulations axisymmetry was used
around the z-axis. The domain is divided into 20 x 20 cells. The lower figure shows
the finer discretization with 20 x 40 cells. The colorbar shows the velocity in the
axial direction.
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Figure 5.11: The figure shows the grid dependency of the velocity profiles in a
microtube with a radius of 35 um. Legends: (o) fine grid, (4) coarse grid, (- solid
line) analytical solution. When a solution becomes independent of discretization,
the geometry is properly resolved. It is noticed that the relative error between
the coarse and fine grid is larger in areas with a large change in the velocity, i.e.,
near the wall. In this case, we consider the fine grid acceptable and shall use it for
further simulations.

include at least three different resolutions for each coordinate axis. Never-
theless, as we can compare with the analytical solution, we have no reason
to doubt that the fine grid is independent of discretization.
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Figure 5.12: Panel(a) shows the velocity and shear rate profiles calculated on
the fine grid in Fig. 5.10 using the simple power law, Eq. (4.20). The pressure
drop is 16 x 10> Pa. With a density at 1003kgm ™ the volumetric flow rate is
2.7 x 1079 m3s~1. From fitting of the simple power law, it is known that our
power law equation is valid until 140s~!. This is not taken into account in the
simulations. Panel (b) shows the effect of non-Newtonianness in the simple power
law. When the power law index decreases, the profile tends to flatten. This means
that we have very high shear rates close to the wall, and small shear rates in the
center region.

Figure 5.12(a) shows the velocity and shear rate profile calculated on the fine
grid. It is noticed that a short distance from the center we exceed the ex-
perimental shear rate range, which suggest that more than one constitutive
equation is required to model blood flow in microchannels.
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Figure 5.13: The figure shows the volume flow rate for a microchannel with di-
mensions 200 pm x 60 pm x 12 mm and a tube with a radius of 62 ym and 12 mm in
length. The cross sectional areas are 12000 um? and 12076 um?, respectively. The
simulations on the channel are taken from Chang et al.[5], and the simulations on
the tube are carried out for the present project. The results on both the channel
and the tube are obtained with the Power Law from the research of Chang and
coworkers.

When the non-Newtonianness for a shear thinning liquid is increasing,
i.e, the index is smaller than one and approaches zero, the velocity profiles
become more blunted, see Fig. 5.12(b). In Fig. 3.8 it was seen that the ve-
locity profile for blood is blunted at low shear rates. However, it approaches
the parabolic profile at high flow rates. Hence, the simple power law is not
adequate to describe the velocity profile. We shall now take a closer look
on the issue of valid shear rate ranges for the constitutive equation. Simu-
lations in tubes are less time consuming than in a channel geometry, since
in tubes we can use the advantage of axisymmetry. Therefore, we will make
the following considerations for a tube flow.

Figure 5.13 shows a comparison between a microchannel and a micro-
tube simulation with Chang’s power law. As expected for a given pressure,
the flow rate is largest in the tube due to the smaller surface to volume
ratio, and the slightly larger cross sectional area. It was also pointed out
by Chang et al. that the flow rate is almost linearly dependent on the
pressure, as the power law index is close to one. In the paper [5] it is also
noted that corresponding flow and pressure data are in a very fine agree-
ment between simulations and experiments for simple geometries, but there
is somehow a discrepancy when the geometries becomes more complex, i.e, a
90° bend. For this geometry Chang et al. show that the simulated pressures
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Figure 5.14: The figure shows the shear rate and viscosity in a tube with 62 ym
in radius for different pressures. The simulations are performed for this project
with the use of Chang’s [5] Power Law, Table 5.2. The markers indicate: (4)
AP =5000Pa, (o) AP = 16000Pa, and (x) AP = 30000 Pa. The arrows indicate
on what axis the values should be read. The power law is obtained from data in
the shear rate range between 50 and 400s~!. On this basis we have pictured the
experimental limits as dotted lines. It is noticed that we exceed the experimental
limit about 10 microns from the center. The upper experimental limit for the shear
rate is 400s™1 and the corresponding viscosity is 4.85 x 1073 Pas [5].

are consistently lower than the experimentally obtained. Using the power
law implies that the viscosity will keep decreasing as we go to higher shear
rates, Fig. 5.14. It is known that the viscosity actually reaches a constant
level at high shear rates, and the simple power law should therefore fail
at high shear rates. However, the equation predicts the relation between
pressure and volume flow rates in a straight channel.

We can also interpret the problem from a more physical point of view,
and consider blood as a fluid consisting of plasma with suspended particles.
In the theory section it was seen that the cellular components of blood were
migrating away from the wall, and a region of 10 um from the wall could be
almost free of cells, Fig. 3.9. Therefore, at the high shear rates near the wall
we can not allow viscosities below 1.2 Pa s, the viscosity of plasma. To fulfill
this requirement for Chang’s equation, we can not go beyond 340 x 10?571,
After all, these shear rates should not become actual.

The shear stresses in a microfluidic system is valuable information for the
designing process. When red blood cells are exposed to high shear rates they
may lyse, which is an unwanted process for some applications. According to
Chang et al. [5], hemolysis will occur at shear rates above 30 x 10%s7!.

To sum up on the foregoing analysis, a disadvantage of the simple power
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law model is that it does not reduce to a Newtonian model at high shear
rates. Even at high shear rates the velocity profile will be blunted.

The Power Law(Blood) model is applicable even at high shear rates.
The power law index n starts of at values smaller than one at low shear
rates, shear thinning, and approaches one at higher shear rates, Eq. 5.18.
The viscosity index A is also approaching a constant value at high shear
rates, Eq. 5.17. In other words, the model recovers the Newtonian model
at high shear rates. Its implementation in CFD-ACE+ will be tested in the
following section 5.5.

Fung [10] suggests another way to obtain a velocity profile that is blunted
at small shear rates and gets progressively more Newtonian as the flow rate
is increased. In a tube or channel the shear rate approaches zero at the
center. For blood samples containing fibrinogen it is possible to observe
yield stresses, and the idea is now to divide the tube into different regions
of shear rate. Near the wall we would apply a Newtonian model, and in
the middle of the tube we could choose the Casson model. According to
the Casson model, blood behaves like a solid at small shear rates, and we
would therefore have a plug flow in the center of the tube. As the flow rate
is increased, the solid domain in the middle will decrease, and the profile
will get less blunted.

By this last approach we are starting to think of blood as an inhomoge-
neous fluid, consisting of plasma near the wall. As the flow rate is increased
the cells are squashed together in the center, due to the effect from the walls.
A more extensive outline of a cell layering theory for blood in a shear flow
is given by Thurston [24].

This model, where the tube is divided into shear rate regions, are imple-
mentable in CFD-ACE~+, through the so-called usersub files. However, it is
not covered in this project.

5.5 Simulations with default Power Law(Blood) in
simple microchannel

The strength in numerical simulations in CFD-ACE+ is the possibility of
simulating a flow in fairly complex geometries. Compared to the tube, we
shall now take a step towards a geometry slightly more complex. In the
preceding section it was seen that the default Power Law(Blood) model
reduced to a Newtonian liquid at high shear rates. We will now test the
CFD-package and see if this feature is obtained in the simulations. This is
done by comparing velocity profiles at different flowrates.

Additionally, Chang and colleagues [5] did not take the Fahraeus effect
into account, and we could therefore expect that the viscosity in their sim-
ulations are overestimated. However, they did probably also use the power
law beyond the experimental limit, which means the viscosity is underes-
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Figure 5.15: The figure shows Chang’s equation after it has been corrected for
the Fahreaus effect according to Fig. 3.11(a). The default CFD-ACE+ power law
blood has been changed in order to fit the other curve. The parameters were set as
seen in 5.1 with the exception pns = 0.41 and Ay = 0.3.

timated. In the case of the simple channel there were a fine agreement
between simulations and experiments. Therefore, one of the intentions of
the following simulations was to investigate, if the two mentioned effects
could cancel each other.

A tube with a radius of 62 um corresponds to the cross sectional area
for the channel used by Chang. They used defibrinated blood from a sheep
with a hematocrit at 41%. If we assume that Fig. 3.11(a) is a good approx-
imation to sheep blood we would have a 10 % reduction in the hematocrit.
Figure 5.15 shows Chang’s measurements after the reduction. In the figure
is also shown the power law blood model, where the default parameters have
been changed in order to make a better fit. Figure 5.16 shows the simple
rectangular channel, with the lineprobe where I extracted velocity profiles
for different flow rates.

Figure 5.17 shows that we can produce the expected blunted velocity
profile with the power law blood model. In other words the model seems to
be implemented correctly in the CFD-code. However, within the time limits
of this project, it was not investigated thoroughly to what extent the two
mentioned effects will cancel each other.
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Figure 5.16: The figure shows a simple channel with cross sectional area 200 x
60 um? and length 12 mm. The colorbar shows the magnitude of the velocity in the
x-direction for a pressure drop at 5000 Pa. The lineprobe is used to extract velocity
profiles in CEFD-VIEW. Because of the rectangular shape and small dimensions, the
velocity profiles will be distorted from the parabolic shape.
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kel / --- AP =16000 Pa \

0 0.2 0.4 0.6 0.8 1
Dimensionless height

Figure 5.17: Velocity profiles for the lineprobe shown in Fig. 5.16. The profiles are
obtained by simulations with the power law (Blood) model for different pressures.
The figure shows that the model works as expected, as the profiles are blunted at
low flow rates, i.e., small pressure gradients.



Chapter 6

Discussion and Conclusion

In this study we attempted to find by experiments a relation in a blood
constitutive equation explaining the dependency on the dimensions of a
microchannel. However, due to uncertainties of a skewed rotating disk, it
was not possible to investigate the problem using this geometry.

In other studies of blood flow in microchannels the viscosity is obtained
in an oscillating tube [5]. It was therefore the intention to establish a relation
between the viscoelastic properties of blood and the steady state shearing
viscosity. This was done by means of Thurstons theory of a degradation
formula, which modelled the break down of aggregates or rouleaux.

Since an oscillating disk, in contrast to a rotating, is measuring over the
same point, we hoped that we could decrease the influence of the disk’s skew-
ness. This hypothesis was, however, never tested due to other instrument
problems.

Another output of oscillating measurements is the information about
time relaxation parameters for blood in an almost stationary state, but
their relevance to modelling of blood flow have not been investigated.

From the shearing viscosity measurements, we obtained a constitutive
equation described by a power law, with a shear thinning power law index.
It is believed that the equation is valid, as the same result was obtained in
two different geometries. Still, the equation only expresses the properties of
blood at large gap sizes.

Chang et al. [5] have obtained some very fine results on simulations of
blood flow in simple microfabricated geometries. Even though their results
seems to estimate the quantitative relation between flow rate and pressure
drop, there is still some questions that should be addressed. Why does the
prediction break down for complex geometries, and is the simple power law
applicable at high shear rates? For blood flow, measured velocity profiles
are blunted at low flow rates, whereas it becomes more parabolic at higher
shear rates. This is a behavior, which is not contained in the power law.
Fung [10] suggest that a Newtonian model should be applied at high shear
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rates near the wall, and a non-Newtonian model at lower shear rates. This
was not tried in the simulations.

In the CFD-ACE+ package the power law(Blood) model is non-Newtonian
at small shear rates, and it reduces to Newtonian model, as the shear rate
is increased. However, the simulations with the model did not show the
expected blunted velocity profile. Meaning, there is s problem with the
implementation.

In more complex geometries normal forces may affect the flow and flow
resistance. In the theory section we discussed the CEF-equation, which
models normal forces, however the problem was not addressed in this project
but it might be a topic for further investigations on blood blow.

From the review on blood flow, we also learned that blood can not be
considered as a continuum at very small length scales. Due to the high
shear rates, cells migrate away from the wall towards the center. In this way
plasma lubricates the flow of the cellular content. As plasma is a Newtonian
liquid, this observation speaks for Fung’s solution that the liquid near the
wall should be expressed with a shear-independent viscosity.

Furthermore, for future and better results of rheological experiments on
blood, it will require that we can measure the hematocrit. This is done in a
microhematocrit centrifuge . The hematocrit is a very important rheological
parameter. At hematocrits below 8% blood behaves Newtonian, and, in
general, the viscosity is an increasing function of the hematocrit. Also, to
address the Fahraeus effect it is necessary to measure hematocrits, and have
a good laboratory practice.



Chapter 7

Outlook and Ideas

Microfluidic systems is a new field to me, and after 8 months of study it is
difficult not to be overwhelmed by the possibilities. The ultimate goal of
a microfluidic system is a fully integrated low cost disposable chip, which
is capable of processing and analyzing a body fluid in order to give a full
diagnosis. Microtechnology is a field where a range of new opportunities have
been discovered, and it is also a field where it is allowed to utter visions and
ambitious ideas. Therefore, it is sometimes difficult to remember what is
actually possible at present time and what is the ultimate goal. In that
perspective, I will take the liberty of expressing some of the thoughts that
emerged during this project.

In this section I will present ideas for two kinds of microfluidic systems
that both processes blood. The first example is a microreactor used for or-
ganic synthesis using enzymes as a catalytic agent. The second is a micro
rheometer used to continuously study the rigidity of individual cells, as a
chemical is added. In this way it would be possible to screen for the effect
of a large variety of drugs.

Microreactor

In general microreactors have the advantage of large heat and mass trans-
port due to the increased surface to volume ratio [13]. They use smaller
amounts of reactants, and are more efficient than conventional macroscopic
reactors.

Many drugs are organic molecules resembling substrates, which are nat-
urally found in the body. They deviate, however, slightly from the natural
substrates as they inhibit an enzyme or receptor instead of starting a cascade
of biochemical reactions, which control the physiological state.

This device, which could be referred to as a microbioreactor, should be
able of converting a plasma protein into a peptide that regulates a physi-
ological mechanism. A bioreactor can just be thought of as a shallow mi-
crochannel, where enzymes are immobilized on the walls.
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To illustrate the idea of this reactor I have picked out an example as ad-
vised by Lars Ole Simonsen [20] from the University of Copenhagen. How-
ever, I will emphasize that this is just a suggestion, but it would be possible
to develop more appropriate examples in cooperation with people having a
larger insight into pharmacology.

Renin is a proteolytic enzyme released from specific cells in the kidney
and acting on a plasma protein angiotensinogen. A reaction scheme could
be expressed as

—_—
Angiotensinogen Renin Angiotensin I
Angiotensin 1 ACE Angiotensin I1

Angiotensin IT Chemical Modification ARA.

Angiotensinogen discard the N-terminal decapeptide angiotensin I, where-
after an angiotensin converting enzyme (ACE) converts angiotensin I into
the active octapeptide Angiotensin II. In the body, Angiotensin II binds to
a receptor (AR) and stimulates an increase of the blood volume, and blood
pressure. The effects of Angiotensin II is a complex matter, however high
levels of Angiotensin II over longer periods is damaging for the health. The
Angiotensin II receptor antagonist (ARA) binds to the Angiotensin II re-
ceptor, however, it does not stimulate to an increase in blood volume. A
known receptor antagonist is for example Losartan, which is distributed on
the Danish market.

A microfluidic system for this purpose would consist of a filter, and three
reactors. First a filter to remove the blood cells, whereafter the plasma enters
the reactors with immobilized enzymes and a chemical reactor corresponding
to the steps in the scheme.

This kind of process would not be convenient in a conventional reactor, as
the protein substrate is a reactant of limited resource. In the microreactor,
high surface to volume ratio ensures that the distance between immobilized
enzymes on the reactor wall and the substrate is short, which results in high
efficiency. Furthermore, as enzymatic reactions are very specific, it would be
possible to eliminate side reactions. Computational fluid dynamics would
be a very powerful tool in designing such a reactor, and CFD-ACE+ has
already a build-in biochemical module to handle enzymatic reactions.

Device for measuring blood cell deformability

The second example is inspired by Poul Bennekou [2], and his experi-
ence with sickled red cells. People suffering from sickle cell anemia, are very
vulnerable to changes in blood viscosity, which is determined by the rigidity
of the red cells. Many drugs affects the red cell membrane and can there-
fore have a critical consequence for sickle cell anemia patients. Therefore,
it would be convenient with a small device for continuous monitoring of the
rigidity of the red cells as a drug is added. This instrument could be thought
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off as a scaled down rotational rheometer, where a small rotational disk re-
lates the strain of a blood cell with an applied force. Viscosity measurements
of blood in conventional rheometers have been used for clinical purposes for
a while [15]. However, micromachined devices for measurements on the
deformability of individual cells are under development [26].

It will take a lot of effort to turn these ideas into functional products,
and it was after all not the intention of this project. These ideas should serve
as an illustration of some of the possible applications of microfluidic systems
manipulating blood, and the importance of interdisciplinary research on this
particular field.
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Appendix A

Viscosity and Torque
Measurements

This appendix is a collection of all the viscometer measurements from the
gap size dependency study in the parallel disk geometry. In the figures are
shown the viscosity and corresponding torque. The valid torque range for
the rheometer is from 0.1 to 2 x 10° uNm, and close to these limits the
uncertainty of the measurements increases.
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Figure A.1: Gap size measurements: parallel disk geometry.
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Figure A.2: Gap size measurements: parallel disk geometry.
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Figure A.3: Gap size measurements: parallel disk geometry.
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Figure A.4: Gap size measurements: parallel disk geometry.
107 110°
Gap 70 um
—

- £
¥ z
- _ =
210" 110° &
o =}
[$) - g
2 o
S =
-3 1
10 e — o
10’ 10° 10° 101

Shear rate, s

Figure A.5: Gap size measurements: parallel disk geometry.






Appendix B

Matlab Source Code:
Calculation of Eq. 5.12

Script file:

%»this program calculates the angular velocity in the
%rz-plane of a parallel disk rheometer

omega=2; hangular velocity

a=0; %lower integration boundary

R2=0.04; Ymeter

H=0.001; Ymeter

el=R2/H %dimless parameter

R1=0.03 Jmeter

d=R1/R2; %fraction between radius of upper plate divided

%by the radius of the spill, and upper
hintegration boundary in calculation of constants
filename = ’vthetasum_120_R103.txt’ r=linspace(0,1,100);
z=linspace(0,1,50);
%z=1;
testkm=kn; %gets a vector with the first
% 1000 zeros of the BesselJ_1 function
km=testkm(1:1000); tic; vthetasum=zeros(100, 1);

%vthetasum represents the velocity profiles as a finite sum of n terms
for j=1:50,
for i = 1:100,
vtheta=An(km, a, d, el).*BesselJ(1l,km.*r(i)).*...
sinh((km/el) .*z(j));
vthetasum(i, j) = sum(vtheta);
end
end
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toc;

hfigure(1);
hold; plot(r,vthetasum(:,j)); xlabel(’r’); ylabel(’v_{\thetal}’)

hold;

fid = fopen(filename,’a’);
fprintf(fid, ’%s’, *%R1 R2 H el’);
fprintf (fid,’%12.4f %12.4f %12.4f %12.4f\n’, R1, R2, H, el);

fprintf(fid,’%12.4f %12.4f 12.4f Y12.4f Y12.4f Y12.4f %12.4f...

%12.4f
%12.4f
%12.4f
%12.4f
%12.4f

%12.4f
%12.4f
%12.4f
%12.4f
%12.4f

fclose(fid);

%12.4f
%12.4f
%12.4f
%12.4f
%12.4f

Function files:

%12.4f
%12.4f
%12.4f
%12.4f
%12.4f

%12.4f
%12.4f
%12.4f
%12.4f
%12.4f

function y=An(fkm, fa, fd, fel)

%12.4f
%12.4f
%12.4f
%12.4f
%12.4f

y=(2.*fd./fkm. 2.*BesselJ(1,fd.*fkm). ..
-fd."2./fkm.*BesselJ(0,fd.*fkm))...
.x2./(fd.*BesselJ(2,fkm) . 2.*sinh(fkm./fel));

function y=kn y=load(’BesselZero.txt’);

% BesselZero.txt contains the first

% 1000 zeroes of Bessel J_1

%12.4f %12.4f %12.4f...
%12.4f %12.4f %12.4f. ..
%12.4f %12.4f %12.4f...
%12.4f %12.4f %12.4f. ..
%12.4f\n’ ,vthetasum’) ;



Appendix C

Answer from CFD Research
Corporation

This appendix is a fraction of an email from Sekhar Radhakrishnan from
CFD Customer Support. On a question about the implementation of the
power law(Blood) model I received this answer, which states that the pa-
rameters in the non-Newtonian model are in cgs units.

3. Also, the thing to note is that all the values that you enter
for viscosity and density for the non-Newtonian viscosity models
should be in cgs units, because the code converts these into SI
units internally. This is a remnant of the old structured code
which will be rectified soon so that the user can enter everything
in ST units for these models. I will let you know when this gets
fixed. In the meanwhile you can use the cgs units whenever you use
the non-Newtonian models. This is true just for the non-Newtonian
viscosity models. All other viscosity models take SI units.

Best regards.

Sekhar

Sekhar Radhakrishnan Customer Support Group EMAIL:
mailto:support@cfdrc.com WEB: http://www.cfdrc.com TEL:
256-726-4900 FAX: 256-726-4806
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