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Abstract

Within the past years, interest in microfluidic devices has grown in multiple fields such
as biology, medicine, and electronics. In order to fully integrate complex processing sys-
tems on chips, micro-pumps are essential. This thesis presents a study of electroosmotic
pumping based on asymmetric electrode-arrays subject to an AC voltage bias.

We first introduce the basic equations for microfluidics with charged solutions: the
Navier-Stokes equation, the Nernst-Planck equation, and the Poisson equation, which
define the frame of the analytical work of the thesis. The fundamentals of electroosmosis
are then presented along with various experimental results for pumps and electrode-arrays.

Extending the work of Ajdari, we then develop a model for electrolytes driven by
modulated surface potentials where we fully resolve the Debye layer dynamics. With my
supervisors we submitted a paper to Physical Review E presenting this work. Afterwards,
the theory of the asymmetric electrode-array pump is introduced and we discuss the spa-
tial and temporal asymmetry of the system. When compared with experimental data,
our results give a good agreement for resonance frequencies. The high frequency regime is
then investigated in order to understand unexpected dynamics discovered by experimental
studies. Finally, we present numerical results obtained from finite elements simulations
and compare them with analytical and experimental data.
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Resumé

Au cours des dernières années, l’intérêt dans les composants microfluidiques a grandi
dans de nombreux domaines, tels la biologie, la médicine ou l’électronique. Pour intégrer
des process complexes au sein d’une même puce, les micro-pompes sont essentielles. Ce
rapport présente une étude d’une pompe electroosmotique basée sur un réseau d’électrodes
asymétriques soumises à une tension alternative.

En premier lieu, nous introduisons les équations de base pour des solutions chargées
au sein d’un système microfluide: les équations de Navier–Stokes, l’équation de Nernst–
Planck et l’équation de Poisson, qui définissent le cadre du travail analytique de ce projet.
Les principes fondamentaux de l’electroosmose sont ensuite exposés ainsi que des résultats
expérimentaux pour diverses micropompes et réseaux d’électrodes.

Nous développons par la suite un modèle pour les électrolytes soumises à des poten-
tiels modulés, où nous résolvons complètement la couche de Debye. Conjointement avec
mes superviseurs, nous avons soumis un article a Physical Review E décrivant ce tra-
vail. Par la suite, la théorie de la pompe à électrode asymétrique est présentée et nous
discutons de l’asymétrie spatiale et temporelle de la pompe. Nous obtenons une bonne
corrélation entre les fréquences de résonance trouvées expérimentalement et celles données
par notre modèle. Le domaine des hautes fréquences est étudié afin de comprendre des
phénomènes inattendus découvert par une campagne d’expériences. Enfin, nous présentons
des résultats numériques obtenus a l’aide de simulations éléments finis et les comparons
aux données expérimentales et analytiques.
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Chapter 1

Introduction

1.1 micropumps and applications

The interest in microfluidics has grown in the past decade for multiple reasons. We can put
forward the ever increasing need of automation in biochemistry laboratories for instance.
From this has emerged the concept of lab-on-a-chip, sometimes referred as micro total
analysis system (µTAS). Those new technologies are promising and may dramatically
change medical and chemical analysis. In miniaturizing all the components needed for
sample analysis, it is possible to integrate them on a single chip. Such devices provide many
advantages when compared to classical methods: low sample consumption, reduced size,
high degree of automation, and — in cases of successful mass-production — cheap systems.
An example of an application of the Lab-on-a-chip can be found in [3], where a chip is
proposed as a solution for fast genotyping from blood samples. To handle samples and
reagents, a fully integrated device would need self-contained components able to generate
proper fluid flows. This can be achieved by the means of miniaturized pumps. Yet, those
micropumps are found in very few current generation systems. Those systems often rely
on macro scale pumps outside the chip and thus are not totally integrated.

In addition to driving flows in a lab-on-a-chip, there are numerous applications for mi-
cropumps, such as implanted insulin delivery systems for diabetics, microelectronic cooling
or even micro-space exploration. The reader can find a detailed review of micropumps in
[4], [5].

We will now briefly present the main types of existing designs for pumps:

• Mechanical pumps
”pumps in which moving boundaries do pressure work on the working fluid in a
periodic manner” [4]. This definition applies mainly to piezoeletric, electrostatic, or
pneumatic based pumps. A common example of this kind of pump can be found in
some inkjet printers (see Fig. 1.1). The printhead uses a a piezoelectric actuator to
eject a droplet of ink.

• Electrohydrodynamic pumps
Electrohydrodynamic pumps rely on the interaction of electrostatic forces with ions

1



2 CHAPTER 1. INTRODUCTION

ink reservoir

���

PPq

piezoelectric disk
ink drop

��	V

Figure 1.1: IBM inkjet
printhead schematic. The
volume of the chamber is var-
ied by using a piezoelectric
disk actuator.

in dielectric fluids. This type of pump needs the existence of a space charge in the
fluid in order to obtain a Coulomb force that can drive the fluid. This is an important
limitation, especially for bio-applications.

• Electroosmotic (EO) pumps
Electroosmotic pumping is based on the double-electrical layer that forms on charged
surfaces. The charges subject to a tangential DC electrical field generate a body force
that drives the fluid in a near wall region. Due to viscosity, this layer of moving fluid
generates a bulk flow in the rest of the channel. Some more complex design implies
AC currents such as described in this thesis.

In 2000, a new design for AC EO pumps was introduced by Ajdari in [6], based on
asymmetric electrode-array. Even though this thesis deals only with the pumping appli-
cation, electrode-arrays have been used for other purposes such as separation of particles,
viruses, DNA, or proteins [7]. However those topics are not discussed in this work.

Figure 1.2: Micropumps produced and designed at MIC by Brask, Arnoldus, Hansen
([8] and [9]). The left-hand side shows a DC porous pump and the right hand-side an
asymmetric electrode-array pump.
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1.2 topics treated in the thesis

This thesis deals with a new concept of electroosmotic pump, based on asymmetric
electrode-arrays. We give here a brief overview of the contents of the thesis.

• Basic microfluidics physics
In this chapter, we introduce the fundamental frame of equations used in microflu-
idics, to describe both the hydrodynamics and the electrokinetics.

• Electroosmotic pumps
After describing the fundamental equations, the principle of electroosmotic pumping
is exposed. We then introduce various reported designs of micro-pumps and give
some fundamental experimental results for the electrode-arrays.

• Theory of the symmetric electrode-array for driving electrolytes flow
We investigate the electrokinetics inducing fluid flow over electrode-arrays. Together
with my supervisors, I submitted a paper (see Ref. [10]) presenting this work.

• Theory of an asymmetric electrode-array pump
A theory of this design, originally proposed by Ajdari in [6], is given here. Moreover,
we investigate the limits of our analytical model along with the high frequency
regime.

• FEMLAB: a commercial finite element solver
We introduce here the finite element method solver FEMLAB which was used for
the simulations presented in this thesis. We also discuss the limitations of the Finite
Element Method for our problem.

• Simulations
In this chapter, I present and discuss some numerical results with analytical and
experimental data.
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Chapter 2

Microfluidics basic physics

This chapter is directly inspired by Chap. 2 and Chap. 3 in the book of Probstein [11].
We introduce here the main equations used in this thesis. However, this chapter is not
exhaustive and deals only with the problems encountered within the frame of our work.

2.1 Continuity

In the frame of this thesis, we deal with problems down to nanometric scales. The Navier–
Stokes equation is the classical governing equation for fluids. Yet, this formulation makes
the assumption that the fluid is a continuum, which means that all macroscopic length
scales are considerably larger than the largest molecular length scales. The molecular
spacing λmol is given by

λmol =
( M

ρNA

) 1
3 , (2.1)

where M is molar mass, NA the Avrogado number and ρ the mass density. For pure water
we have

λmol =
[ 18× 10−3 kg.mol−1

6.022× 1023 mol−1 1× 103kg.m−3

]1/3 ' 0.31 nm.

The continuum assumption is then valid for length scales ` ≥ 1 nm, where we can apply
the Navier–Stokes equation to describe the fluid.

2.2 Navier–Stokes equation

The equation system governing fluid flow is composed of the continuity equation (or mass
conservation equation), the momentum equation (the Navier–Stokes equation) and the
equation for the energy.

• The continuity equation takes the form

∂t ρ + ∇ · (ρv) = 0. (2.2)

5
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In this thesis, we suppose the fluid is incompressible and that ρ is constant1. We
then have

∇ · v = 0. (2.3)

• The momentum equation
We only consider the case of Newtonian fluid (where the shear stress is proportional
to the strain rate, by a factor η, the viscosity). The momentum equation for a
Newtonian fluid is then

ρ (∂tv + v ·∇v) = −∇p + η∇2v + F, (2.4)

where F are the body forces such as electrostatics forces or gravity. In this thesis,
we will mainly deal with electrical forces and will neglect gravity. The left-hand
side is usually a source of problem when dealing with the Navier–Stokes equation
since it is non-linear. However, we will show that, under certain assumptions valid
in microfluidics, we can linearize the momentum equation (see Sec. 2.3).

• Energy equation
For an elemental volume of fluid, we can write (see Ref. [12]):

∂t

[ 1
2
ρ v2 + ρUint

]
= −∇ · [ ρv(

1
2
v2 + H)− v · τ ′ − ρ cp Dheat ∇T

]
, (2.5)

where ρH is the enthalpy density and τ
′

the stress-tensor. The left-hand side is
the rate of change of the kinetic energy and the thermal energy. The right hand
side is the energy flux. In viscous flow we have a dissipation of kinetic energy into
heat via irreversible process. However, we will not deal with dissipation and thermal
matters in this thesis and we will not discuss further about the energy equation. Yet,
the thermal issues are to be considered when dealing with EO-pumping because of
the Joule effect. A short study of the efficiency of EO-pumping has been done in
Ref. [13]. Data for various pumps, including mechanical ones, has been collected in
Ref. [4].

2.3 Simplified Navier–Stokes equation for microfluidics

The Reynolds number, defined by the ratio of momentum transported by convection and
the momentum transported by viscous diffusion is commonly written as Re = ρ v L/η
where L is a characteristic length scale of the flow. For microfluidic devices we can make
a simple calculation with L ∼ 10−6 m and v ∼ 10−3 m.s−1. The Reynolds number is then
10−3. Even with high velocities in the channels, the Reynolds number will still be very
small compared to unity. This means that we can neglect all inertial effects in the Navier–
Stokes equation, Eq. (2.4). Moreover, since the Reynolds number Re ¿ 1 we can of course
assume that the flow is laminar. A turbulent flow is very unlikely in a microfluidic device.

1However, one can argue that, in the general case, the incompressibility constraint is not equivalent to
ρ being constant.
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In our linearized momentum equation, we only have the viscous forces η∇2v, the body
force F and the pressure gradient ∇p:

0 = −∇p + η∇2v + F. (2.6)

2.4 Solution of charged species

Let us consider a solution of ions, sufficiently dilute so that the species and their gradients
do not interact. We wish now to write the equations for the ionic flux. In this chapter,
we will handle particle densities instead of molar concentrations. Nevertheless, it is easy
to rewrite our results using the Faraday constant :

F = Na e. (2.7)

2.4.1 Diffusion

For each of the species in the considered solution, a diffusion of mass will occur. This is a
consequence of molecular motion. Fick’s first law of diffusion states that there is a linear
relation between the particle flux and the particle concentration gradient, which we can
state by writing for the ith specie:

iDi = −Di ∇ni, (2.8)

where the proportionality constant Di is the ionic diffusivity. Typical values of D are
around 10−9 m2 s−1. The reader can find a table giving the diffusivity for common
electrolytes solution in Ref. [11], p.25.

2.4.2 Electromigration

Under the action of an electric field, forces act on the different species, giving rise to a mass
transfer called electromigration. The force exerted on a particle is then ZieE ≡ −Zie∇φ.
The flux due to migration in an electric field is proportional to the force acting on the
particle multiplied by the particle concentration, which means that, for the ith specie

iemi = −µi ni∇φ, (2.9)

where the proportionality constant µ is the mobility. Diffusivity and mobility are directly
related by the Nernst–Einstein equation :

µi =
Zi e

kB T
Di. (2.10)

2.4.3 Convection

In the case of fluid motion, we have a particle flux induced by convection, which we can
write as

iconv
i = ni v. (2.11)

We will see in Chap. 4 that the convection is a source of problem: it induces a coupling
between the Navier–Stokes equation and the electrokinetics.
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2.4.4 Nernst–Planck equation

We sum the contribution of electromigration, diffusion and convection to write down the
so-called Nernst–Planck equation for the ith specie :

ii = iDi + iemi + iconv
i (2.12a)

= −Di∇ni − µi ni∇φ + niv. (2.12b)

Along with the continuity equation for the ith specie

∂tni = −∇ii , (2.13)

where i is the particle current, we have

∂tni + ∇[−Di∇ni − µi ni∇φ + niv
]

= 0. (2.14)

2.4.5 Poisson equation

An electrolyte used in EO pumps, for example, could be a solution of NaNO3, Ref. [1].
The electrolyte is then a region where there exists a charge density, commonly taken to be
0 since the electrolyte is globally neutral. However, we will see in Sec. 2.5 that this is not
true in the frame of this work. We consider the electrolyte to be an isotropic dielectric.
We can then write the Poisson equation

∇2φ(r, t) = −1
ε

ν = −
∑

i

1
ε

Zie ni, (2.15)

where ν is the charge density.

2.5 Electric Double layer

When brought into contact with an aqueous solution, most materials will acquire a surface
electric charge due to mechanisms such as ionization, adsorption and ion dissolution. In
the case of an electrolyte solution, the distribution of ions will be affected by those charges
near the solid/fluid interface. Let us suppose that the surface charges are positive. The
negatively charged ions will then be attracted to the surface where as the positives ions
will be repelled. Taking into account diffusive and thermal effects, a double electric layer
is then formed as shown in Fig. 2.1

2.5.1 Stern layer

The Stern layer is the inner layer where electrical forces dominate. The ions are bound
tightly and cannot slip on the charged surface. As this layer contains charges it can be
described — in a simple model — as a capacitor. This will be discussed in Chap. 4. At
the interface between the Stern layer and the rest of the electrolyte, a zeta (ζ) potential
is defined. However, this is not a very precise physcial definition of the ζ potential. This
topic will be discussed in Sec. 2.5.3
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Figure 2.1: Structure of electric double
layer with an inner immobile layer. The
system wall–liquid is electrically neu-
tral. The positive ions are hydrated.
Some of the negative ions are specifi-
cally adsorbed at the surface. Fig. from
Brask, [13].

2.5.2 Debye layer

In the Debye layer a balance is established between the electrical forces and diffusion (see
Eq. (2.12a)). The concentrations of ions relaxes in this layer from the surface concentration
to the bulk concentration. This layer can be directly solved analytically in a 1D problem
using Eq. (2.12a), Eq. (2.15) and Eq. (2.13) (see Ref. [11] p. 191). However, in this thesis
we will mainly deal with a 2D problem coupled with fluid motion. To handle simpler
equations we work in the frame of the Debye-Hückel approximation. We then write

n = n∗ + δn with δn ¿ n∗ (2.16)

where n∗ is the unperturbed particle density in the bulk and δn the perturbation of the
density in the Debye layer. This approximation is valid when the thermal energy dominates
over the electrostatic energy:

Z e ζ ¿ kB T. (2.17)

It is then possible to linearize the problem and obtain exponentially decaying solutions
over a defined length scale λD. A 2D case with spatial modulation is solved in Chap. 4.

2.5.3 Zeta potential

In Sec. 2.5.1, we introduced the Stern layer which is a layer of immobile ions bound by
electrical forces on the surface. The zeta potential is defined as the potential at the shear
surface between the stern layer and the electrolyte solution (see Ref. [11]). This potential
is typically of the order of 1-200 mV. Capillaries in microfluidic devices are made of glass,
polymers or siliconoxide. If siliconoxide is immersed in water, chemical reactions occurs
at the surface and induce a potential. The silanol groups SiOH form SiOH+

2 or SiO−

depending on the pH of the solution (see Fig. 2.2). Thus the zeta potential is dependent
on the pH of the buffer solution used and have an important influence on the electroosmotic
effects. It is also possible to adjust the zeta potential by using various coatings on the
surfaces. Even if Electroosmosis is usually based on the existence of a zeta potential, the
electrode-array theory introduced in Chap. 4 assumes that the zeta potential is vanishing.
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Figure 2.2: Silicon in aqueous solution
for basic and acid pH. Note the differ-
ence of surface charges for different pH.
Fig. from Brask [13]

2.6 Chemical reactions

Up to this point, we have considered that no chemical reactions occured in our system,
once the equilibrium is established. When dealing with electrolytes and electrodes, we are
exposed to such phenomena as electrolysis. For example, we may encounter the dissocia-
tion of water in H2 and O2. This is to be avoided for the following reasons :

• capillaries and bubbles
Bubbles in microfluidic devices causes important problems since they can clog micro-
channels because of surface tension.

• pumping and bubbles
Since the gaseous bubbles are not incompressible fluids, it is likely that, instead of
inducing flow, the generated pressure will act on the bubbles volume.

• electrodes and electrolysis
Electrolysis may damage the thin electrodes used in our systems and lead to the
destruction of the pump.

For all those reasons we want to avoid any chemical reactions. We must choose our applied
potentials carefully.
In the following chapters, we consider the situation with no chemical reactions in the
electrolyte. This implies that we have no charge injections from the electrodes. The
electrodes are thus considered as ”ideally polarizable” or ”completely blocking without
Faradaic processes”, Bazant [14]. The ionic fluxes vanishes at the fluid-electrode interface.
If we consider the electrode to be an infinite surface at x = 0 then

i
∣∣
x=0

= 0. (2.18)

The reader can find more details about charge injection for the AC EO pump in Ref. [6]
and Ref. [14].



Chapter 3

Electroosmotic micropumps

3.1 Electroosmotic flow

We do not intend to study in detail electroosmotic (EO) flow in this chapter, but only to
introduce the fundamental facts. The reader may find a comprehensive study of electroos-
motic flows in micro-channels in Ref. [11] and Ref. [13].
Electroosmostic flow was first described in 1809 by Reuss, (see [11] p.195). Under the
influence of an electric field, water can migrate through porous clay diaphragms. This is
now a well understood phenomenon. Let us consider the porous diaphragm as a infinite
number of parallel micro-channels. We suppose moreover that the water contains a given
concentration of ions. The EO pumping relies then on two effects :

• Debye layer
On the walls of the micro channel, let us assume the existence of a constant poten-
tial, this potential may be intrinsic (in the case of clay, the surface carries negative
charges, giving rise to a ζ potential) or imposed via a voltage source. This generates
a charged electrical double layer composed of ions, as described in Chap. 2.

• Parallel electrical field
We now introduce an electrical field parallel to the walls of the channel. This field
will generate a body force, due to the ions in the debye layer, as shown in Fig. 3.1.
The charged ions are subject to an electrical force, generating motion in the Debye
layer. Momentum is then transferred to the fluid bulk by viscosity. The source of
the electrical field is usually a cathode and an anode disposed at both end of the
channel.

In the microfluidic area, EO flows have been a matter of interest during the past
years. A number of important processes used on lab-on-a-chip relies on EO flows such
as electrophoretic separation or liquid chromatography. For pumping purpose, EO flow
provides various advantages over the mechanical induced flow. There is no moving parts
and the design of an EO pump is thus usually simpler. Moreover the flow profile is not
hyperbolic like in pressure driven flow but is flat (see Fig. 3.1), which can be interesting

11
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in some applications (see Ref. [15]). However, EO pumping is limited by an important
drawback: its poor efficiency due to the Joule effect. The efficiency can be defined as

η =
∆p Q

P
, (3.1)

where ∆p is the pressure built by the pump, Q the flow rate and P the power delivered
to the pump. In the DC case, we have P = V 2 σelec with σelec being the conductivity of
the electrolyte and V the applied voltage. Taking some values from Ref. [4], the reported
EO pumps have a typical thermodynamic efficiency under 1 %. This means that most of
the energy is dissipated into heat. This heat can be a source of problem in some devices.
This heat must be evacuated and can interfere with some process downstream the pump.
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Figure 3.1: Principle of electroos-
motic pumping. The charged layers,
induced by the electrodes potential,
are driven by the parallel electri-
cal field along the channel.Viscosity
transfers the momentum to the rest
of the fluid. In the case of a vanish-
ing back-pressure, the flow profile is
flat in the bulk. (Brask, [13])

3.2 EO pumps overview

We will now give some brief description of various characteristic of the DC Electroosmotic
pumps.

3.2.1 characteristics

The manufacturing of EO pumps is usually achieved by various techniques comparable to
what is made in common electronics, such as lithography. Microumps are usually based
on a thick glass wafer where thin layers of metals are deposited. As this thesis does not
deal with manufacturing, the reader should refer to Ref. [16] and Ref. [9] to have more
information about this topic.

Microfluidic channels typical dimensions are 1−300µm with various shapes depending
on the fabrication process. For example, laser ablation gives the channels a gaussian
profile. Materials include silicon and various polymers such as PMMA.

Usually the electrodes are made of metal. Because of manufacturing and/or chem-
ical matters, electrodes can be composed of multiple layers of different metals as seen
in Ref. [17]. Gold, platinum, titanium or chrome are used for their various interesting
properties. However gel electrodes and more complex systems have been reported (see
Ref. [18]).
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+ Gel Electrode (Salt bridge)

- Gel Electrode (Salt bridge)

Wide gap x 1
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Narrow gaps x 10

5 m x 20 mm m

Figure 3.2: On the left-hand side, a sketch of a parallel EO pump with six channels. The flow
rate of the channels sums, however it is not possible to build important pressure gradient. On the
right-hand side, a sketch of a cascade EO pump, with a narrow and a wide section. The pumping
is generated in the narrow section. This design allows to build up pressure gradient sequentially.
Figs. taken from (Brask, [13]).

3.2.2 DC micropumps design

• Parallel pumps
The parallel (see Fig. 3.2) pump is designed to achieve high flow rates. Adding EO
pumps in parallel allows to reach higher flow rates with relatively low voltage (see
Fig. 3.2). The use of a porous structure (or fritz) is a possible solution to achieve
high parallelization of EO pumping. The pores can be downsized down to 0.2 µm
(see Ref. [8] and Ref. [19]).

• Pumps in series
Adding pumps in series allows to build higher pressure (see Fig. 3.2). In order to
avoid voltage accumulation, the electrical field is reversed in specific wide parts of
the pump where EO flow is less important than in the narrow parts (see Ref. [18]).

3.2.3 AC micropumps design

EO pumps are usually based on DC currents. However, such designs usually needs high
voltage to give significant flows. As mentioned in Chap. 2, high voltage may generate
undesirable chemical reactions on the electrodes and they are not easy to implement in
miniaturized and/or portable devices. AC current designs should be able to overcome
this inconvenience. We will present in the next chapters the underlying theory for AC
electroosmotic pumping. This is a very open topic of research. A lot of experimental
observations are still not fully explained by theoretical models.
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3.3 Experimental data for electrode-arrays

3.3.1 Symmetric electrode-array

In Ref. [17], Green studied fluid flow over symmetric electrodes. The setup used is briefly
described in Fig. 3.3. The two electrodes are identical and an AC voltage is applied to

Ti-Au-Ti layers electrode

100 µm 25 µm 100 µm

Figure 3.3: Experimental setup for
symmetric electrode-array used by
Green [17]. The electrolyte is a dilute
aqueous solution of KCl. On the elec-
trodes a AC voltage is applied, with the
frequency up to 100 kHz and the volt-
age V0 < 5 V. The velocities are mea-
sured by µPIV. The fluid flow observed
gives velocities up to 500 µm.s−1 over
the electrodes.

them, so that the difference of potential between the two electrodes has an amplitude V0.
The fluid flow takes then the pattern of rolls across the electrodes. The velocities observed
are directly related to the frequency and to the amplitude of the AC current used. Some
values are given in Fig. 3.4. Complete results can be found in Ref. [17]. González et al.
proposed a theory to explain this flow in Ref. [20]. The flow observed over the symmetric
electrodes is, indeed, symmetric. Thus, it does not give rise to a pumping velocity. Yet,
we will show in Chap. 4 that a full understanding of the electro-hydrodynamics of the
symmetric electrode-array is an essential step towards a complete model for the electrode-
array pump.

3.3.2 AC electrode-array pump

In [6], Ajdari proposed to introduce asymmetry in the system in order to obtain a di-
rectional net flow. In Ref. [1] and Ref. [2], Brown and Mpholo have conducted various
experiments using asymmetric electrodes array. The setup used is given in Fig. 3.5. In this
setup, the asymmetry is introduced by taking a wide electrode and a narrow electrode.
It is possible to introduce asymmetry by other means, such as modifying the height of
electrodes or the capacitance of the electrode. Yet, from a practical point of view, the
most convenient way is to use a wide and narrow electrode cell. The main results of this
work was to prove that the asymmetric electrode-array design is able to generate a net
directional fluid motion in the channel. Some results are given in Fig. 3.6.

Beside those first results, Studer and Ajdari have shown, using a similar setup as
Brown’s, that it is possible to reverse the fluid flow for given frequencies (see Ref. [21]
and Fig. 3.7). This is a highly interesting feature for a microfluidic device, since it means
that this design is probably able to generate pumping in two directions. This topic will
be discussed in Chap. 5.
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Figure 3.4: Experimental results from
Ref. [17] for the symmetric electrode-
array. As voltage is increased, the ve-
locities are increased. The frequency
dependence shows a peak for a given
frequency between 102 Hz and 103 Hz.
This position of the peak varies with the
dilution of the electrolyte and with the
applied voltage. With higher concen-
trations, this peak is displaced towards
higher frequencies.

10−4M.L−1 NaNO3

340µm

Gold electrode

15.6 4.2 4.5 25.7 (µm)

Figure 3.5: Experimental
setup for asymmetric elec-
trodes arrays used by Brown
[1]. The spatial period of the
electrode cell is 50µm. On
the electrodes a voltage is ap-
plied so that the difference
of potential between the two
electrodes V0 is smaller than
1.4 V. The velocities are mea-
sured by µPIV.



16 CHAPTER 3. ELECTROOSMOTIC MICROPUMPS

µm s−1

Frequency (Hz)

Figure 3.6: Experimen-
tal results for the asym-
metric electrode-array. The
plot shows pumping velocities
over the electrodes against
the applied frequency at six
different values of the applied
voltage : 0.2 0.4 0.6 0.8 1.0
and 1.2 Vrms. For higher volt-
age, the resonance frequency
is lowered. (Brown, [1])

Figure 3.7: Plot of pumping
speed for a given domain of
voltage and frequency. No-
tice the change of the flow di-
rection for f ' 2 × 104 Hz.
(Studer, [21])



Chapter 4

Electrolytes driven by modulated
surface potentials

4.1 Introduction

This chapter is directly taken from the article [10] submitted to Phys. Rev E. We re-
visit the problem studied by Ajdari [6] where an electrolyte is perturbed by an AC-driven
spatially modulated surface potential. However, instead of modelling the surface as well
as the Debye layer by simple capacitors as Ajdari did, we develop a full non-equilibrium
description of the electro-hydrodynamics. This allows us to study the full dynamics of
ion concentrations, electrical potentials, velocity fields, pressure fields, and electrical cur-
rents. The study of this symmetric case is necessary to understand the dynamics of the
asymmetric electrode-array.

x = λD

x = 0

x = −d

V
ext

(y, t = 0)

−

2π
q

2π
q

electrolyte

insulator

conductor

x

y

Figure 4.1: A sketch of the sys-
tem under study. The bi-ionic elec-
trolyte is situated in the half space
x > 0. Below it, for −d < x < 0,
is a planar wall consisting of an in-
sulating dielectric slab of thickness
d and below that, for x < −d, is a
semi-infinite conductor.

In the following we consider a bi-ionic electrolyte, i.e., an aqueous solution of a salt
containing a positive and a negative type of ions with charges +Ze and −Ze, respectively,
where Z is the valence and e the elementary charge. In terms of Cartesian coordinates
(x, y, z) the electrolyte is confined to the semi-infinite space x > 0 by an impenetrable,
homogeneous and planar insulating layer with dielectric constant εs placed at −d < x < 0,
see Fig. 4.1. This layer models either a Stern layer or an oxide layer. In the case of a
modelling of the Stern layer, we have d ' λmol. If the insulator layer models an oxide

17
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layer, then d can take values up to a few nanometers. The insulating layer is bounded
by a conductor at x < −d which has been biased at the surface x = −d by a spatially
modulated, external AC potential Vext(y, t).

Vext(y, t) = V0 cos(qy)eiωt, (4.1)

where V0 is the amplitude, q the wavenumber of the spatial modulation, and ω the driving
angular frequency.

There is complete translation invariance along the z axis, so the z coordinate drops
out of our analysis, and all positions r = (x, y) are therefore just refereing to the xy plane.

4.2 Non-equilibrium description

4.2.1 The insulating layer, −d < x < 0

The insulating layer contains neither free space charge nor free currents so the electrical
potential φ(r, t) is governed by the Laplace equation,

∇2φ(r, t) = 0, for − d < x < 0. (4.2)

4.2.2 The electrolyte, x > 0

In the liquid electrolyte we consider the ionic densities n±(r, t), the potential φ(r, t), the
ionic current densities (the ionic flux densities) i±(r, t), the velocity field v(r, t) of the
electrolyte, and the pressure field p(r, t).

The number densities of the ions couple to the potential via Poisson equation,

∇2φ(r, t) = −Ze

ε

[
n+(r, t)− n−(r, t)

]
. (4.3a)

The ionic current densities are coupled to the ionic densities by a continuity equation,
which in the absence of any chemical reactions in the system is

∂tn
±(r, t) = −∇ · i±(r, t). (4.3b)

The presence of convection or of gradients in the densities n±(r, t) and the electric
potential φ(r, t) will generate ionic current densities i±(r, t). These currents are given by
the Nernst–Planck equation

i±(r, t) = −D∇n±(r, t) + n±(r, t)v(r, t)∓ µn±(r, t)∇φ(r, t),

where, for simplicity, we have assumed that the two types of ions have the same diffusion
constant D and the same mobility µ. We remind the reader that both the diffusion
constant D and the electric conductivity σ are linked to the mobility µ via the Nernst–
Einstein relation D = kBT

Ze µ and σ± = Zen±µ.
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Finally, the velocity field and pressure field of the liquid are coupled to the potential
and ionic densities by the Navier–Stokes equation

ρ
[
∂tv(r, t) + v(r, t) ·∇v(r, t)

]
= (4.3c)

−∇p(r, t) + η∇2v(r, t)− Ze
[
n+(r, t)− n−(r, t)

]∇φ(r, t),

where ρ is the mass density, η is the viscosity of the liquid, and p is the pressure. Further-
more, treating the electrolyte as an incompressible fluid we have

∇ · v(r, t) = 0. (4.3d)

The five coupled equations, Eqs. (4.3a) to (4.3d), fully govern the five physical quantities
n±, φ, i±, v, and p.

4.2.3 Boundary conditions

We consider a vanishing zeta-potential (i.e., no un-passivated surface charges on the
insulator-electrolyte interface). The non-vanishing zeta-potential case has been studied
in Chap. A and did not lead to the desired effects. Assuming a zero zeta-potential, the
boundary condition for the electric potential is then

φ(r, t)
∣∣
x=−d

= Vext(y, t), (4.4a)

φ(r, t)
∣∣
x=∞ = 0. (4.4b)

At the interface between the electrolyte and the insulating region the normal component
of the ionic current density vanishes,

0 = ∂xn±(r, t)
∣∣
x=0

± Ze

kBT
n±(r, t)∂xφ(r, t)

∣∣
x=0

. (4.5)

Here, we have utilized Eq. (4.3c) and the absence of convection at the interface due to the
no-slip boundary condition,

v(r, t)
∣∣
x=0

= 0. (4.6)

For the ionic densities we have

n±(r, t)
∣∣
x=∞ = n∞, (4.7)

where n∞ is the homogeneous density of either of the two types of ions in the absence of
an external perturbation, i.e., when V0 = 0. For the pressure, we assume that we have
no externally applied pressure gradients so that p is the internal pressure caused by fluid
flow and the electrical forces on the ions.



20 CHAPTER 4. ELECTROLYTES DRIVEN BY . . .

4.3 Static regime, ω =0

In the static regime we have equilibrium and neither current nor fluid flow, i.e., i± = 0 and
v = 0. The pressure gradient balances the electrical forces on the charges. The governing
equations for φ and n± of course reduce to those of electro-statics.

In the insulating layer φ(r) follows from Eqs. (4.2) and (4.4a),

φ(r) =
[
C1e

−qx + C2e
qx

]
cos(qy), for − d < x < 0, (4.8)

where C1,2 are integration constants.
In the electrolyte φ(r) is governed by the Poisson–Boltzmann equation which in the

Debye–Hückel approximation ZeV0 ¿ kBT becomes (see, e.g., Sec. 4.4.1 below or Ref. [22])

∇2φ(r) = λ−2
D φ(r). (4.9)

Here, we have introduced the Debye screening length λD as

λD ≡
√

εkBT

2Z2e2n∞
. (4.10)

The space charge follows from Poisson equation, Eq. (4.3a). From a straightforward solu-
tion for φ and Ze(n+−n−) we arrive at the following expression relating the total potential
drop across the system and accumulated charge in the electrolyte,

φ(∞, y)− φ(−d, y) ≡ 1
Ceff

∫ ∞

0
dxZe[n+(r)− n−(r)]. (4.11a)

The coefficient,

C−1
eff =

[
1 + (qλD)2

]sinh(qd)
qd

C−1
s +

√
1 + (qλD)2 cosh(qd) C−1

D , (4.11b)

is identified as the inverse of an effective series capacitance. The constant Cs is the intrinsic
surface capacitance and CD the capacitance of the Debye layer given by

Cs ≡ εs

d
, (4.11c)

CD ≡ ε

λD
. (4.11d)

In Ref. [6] the potential in the bulk of the electrolyte (x À λD) is governed by the
Laplace equation which is coupled to the external potential Vext by an effective capacitance
Ceff =

(
C−1

s + C−1
D

)−1. As shown above this approach is valid up to second order in the
small parameters qλD ¿ 1 and qd ¿ 1.

4.4 Dynamic regime, ω > 0

We now solve Eqs. (4.3) in the dynamic regime, ω > 0. First the ionic current densities
are eliminated by inserting Eq. (4.3c) into Eq. (A.5). Using the incompressibility of the
fluid, Eq. (4.3d), we get the continuity equation

∂tn
±(r, t) = D ∇2n±(r, t)− [∇n±(r, t)] · v(r, t)± µ∇ · [n±(r, t) ∇φ(r, t)

]
. (4.12)
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4.4.1 Debye–Hückel approximation

To advance further by analytical methods, we now linearize the continuity equation,
Eq. (A.14), in the density as follows. We assume n±(r, t)

∣∣
x=∞ ≡ n∞ and write

n±(r, t) = n∞ + δn±(r, t), lim
x→∞ δn±(r, t) = 0. (4.13)

It is a non-zero V0 that spawns δn± 6= 0, and when the applied voltage V0 is much smaller
than the thermal voltage VT , defined by

VT ≡ kBT/Ze, (4.14)

we have |δn±0 | ¿ n∞. In this limit the so-called Debye–Hückel approximation is valid,
and n±(r, t) ∇φ(r, t) is substituted by n∞ ∇φ(r, t) in Eq. (A.14). We subsequently use
Eq. (4.3a) to replace ∇2φ(r, t) with −ν(r, t)/ε where

ν(r, t) ≡ n+(r, t)− n−(r, t) = δn+(r, t)− δn−(r, t). (4.15)

Finally, we form the difference of the ”±”-versions of Eq. (A.14) and obtain the partial
differential equation

∂tν(r, t) =
[
D∇2 −D

1
λ2

D

− v(r, t) ·∇
]

ν(r, t). (4.16)

4.4.2 Diffusive regime

From our study of the static regime we know that the net charge density is non-zero only in
the Debye layer, x . λD. In this region the velocity will be vanishing because of the no-slip
boundary condition. Thus, diffusion will dominate so that convection can be neglected,
and the electro- and hydro-dynamic problems decouple. Since the density difference ν
changes over the length scales λD and q−1 for the x and y directions, respectively, the
condition for the decoupling is |vx|/λD + |vy|q ¿ Dq2 for 0 < x . λD. In this limit
Eq. (4.16) has a general cos(qy)eiωt modulated decaying solution of the form

ν(r, t) = C1e
−κx cos(qy)eiωt , x > 0, (4.17a)

where the decay parameter κ depends on the Debye frequency ωD,

κ ≡ 1
λD

√
1 + (qλD)2 + i

ω

ωD

, (4.17b)

ωD ≡ D

λ2
D

. (4.17c)

For the potential we seek a solution of a form similar to Eq. (4.17a), φ ∝ cos(qy)eiωt, and
substituting this together with Eq. (4.17a) into Eq. (4.3a) yields

(∂2
x − q2)φ(r, t) = −Ze

ε
C1e

−κx cos(qy)eiωt. (4.18)
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Demanding φ(r, t)
∣∣
x=∞ = 0 the solution is

φ(r, t) =
[
C1

Ze

ε
(q2 − κ2)−1e−κx + C2e

−qx
]
× cos(qy)eiωt, x > 0. (4.19)

In the insulating layer we have the following cos(qy)eiωt modulated general solution to
Eq. (4.2),

φ(r, t) =
[
C3e

−qx + C4e
qx

]
cos(qy)eiωt , −d < x < 0. (4.20)

In order to determine Cn (n = 1, 2, 3, 4) we first consider the boundary condition for the
current. Applying the Debye–Hückel approximation to the second term in Eq. (4.5) and
forming the difference of the ”±” solutions we arrive at

0 = ∂x

[
ν(r, t) +

CD

ZeλD
φ(r, t)

]∣∣∣
x=0

. (4.21)

Together with the boundary condition for φ at x = −d as well as the continuity of φ and
ε∂xφ at x = 0 we may determine the constants straightforwardly.

4.4.3 Long-period and low-frequency modulation

Next, we consider the regime where the spatial period of the modulation is much longer
than all other length scales, i.e., qλD ¿ 1 and qd ¿ 1. We also assume that ω ¿ ωD so
that κ ' 1/λD. In this limit we get

ν(r, t) = −qσ∞V0

ZeλD

1
ω∗ + iω

e−x/λD cos(qy)eiωt +O([qλD]2), (4.22)

and

φ(r, t) = V0
iω

ω∗ + iω
e−qx cos(qy)eiωt +O(qλD), (4.23)

where we have used the notation of Ajdari [6]

resonance frequency: ω∗ = qλD(1 + δ) ωD, (4.24a)
conductivity: σ∞ = [σ+ + σ−]

∣∣
∞ = εωD, (4.24b)

capacitance ratio: δ =
CD

Cs
. (4.24c)

These results are equivalent to those in Ref. [6] if we similarly to Eq. (4.11a) introduce
the Debye layer surface charge σD(y) = Ze

∫∞
0 dx ν(x, y).

4.4.4 Body-force

Until this point we have used the exponential notation for the temporal dependence.
However, since the body-force is essentially non-linear in the electrical potential/density
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Figure 4.2: Top and bottom pan-
els are gray scale plots of the am-
plitudes of the potential φ(r, t) [see
Eq. (4.23)] and of the pressure
p(r, t) [see Eq. (4.32)] as a function
of qx and qy. Notice the period dou-
bling in the pressure field compared
to the electric potential.

[see last term in Eq. (2.4)] we have to take the real part to get the body-force, i.e.,
F = −Zeν∇φ = −ZeRe{ν}Re{∇φ} so that we get

F(r, t) =
ηv1

λ2
D

cos(2ωt + ϕ)
ω
ω∗ + ω∗

ω

e−x/λD (4.25a)

× [
2 cos2(qy)ex + sin(2qy)ey

]
+O(

[qλD]2
)

where we following Ref. [6] have introduced

v1 ≡
qεV 2

0

4η(1 + δ)
(4.25b)

and the frequency dependent phase shift

ϕ = − arctan
(

ω

2ω∗
− ω∗

2ω

)
. (4.25c)

In the derivation of Eq. (4.25a) we have used that

Re
{

eiωt

iω + ω∗

}
Re

{
iωeiωt

iω + ω∗

}
=
−1
2ω∗

cos(2ωt + ϕ)
ω
ω∗ + ω∗

ω

. (4.26)

At low frequencies, F ∝ ω, it becomes maximal at the resonance frequency ω∗, and then
it falls off again at higher frequencies. We note that limω→0 F = O(

[qλD]2
)
, but this small

force will just be balanced by a pressure gradient so that limω→0 v = 0 and limω→0 i± = 0.
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Figure 4.3: Vector-plots of the
vector-amplitude of the velocity-
field v(r, t) in the bulk [top panel]
given by Eq. (4.31) and in the De-
bye layer [bottom panel] given by
Eq. (4.28). The flow pattern con-
tains rolls (with a temporal har-
monic motion), which are indicated
by contours of constant velocity
(dashed lines).

4.4.5 Linearized flow in quasi-steady state

In order to solve the Navier–Stokes equation, Eq. (2.4), we note that for a body-force of
small magnitude and with slow temporal variation the fluid response is linear and the flow
will approximately be at steady state at each moment in time. We begin by comparing the
inertial terms on the left-hand side (LHS) with the viscous term (second term) on the right-
hand side (RHS). The body force has a characteristic frequency ω and two characteristic
length scales λD and q−1 for the x and y-directions, respectively. Since ∂t essentially gives
a factor of ω, and ∇ essentially gives λ−1

D ex + qey, we can show that the viscous term
dominates over the LHS when ω ¿ ωc ≡ η

ρD ωD. This condition is easily fulfilled when
ω ¿ ωD, since typically η

ρD À 1, and Eq. (2.4) then becomes

0 ' −∇p(r, t) + η∇2v(r, t) + F(r, t). (4.27)

This is the resulting quasi-steady flow problem which is linear in the velocity field.

4.4.6 Debye layer flow

In order to solve Eqs. (4.3d) and (4.27) we study the flow over a λD-scale at the boundary
first and then a q−1-scale. For this boundary layer approach, we assume that for x .
λD, we have vx ∼ 0. Solving for the pressure and substituting into the y-component of
Eq. (4.27) we get

vy(r, t) = vs(y, t)
(
1− e−x/λD

)
+O(qλD), x . λD (4.28)

where the prefactor

vs(y, t) ≡ v1

cos(2ω t + ϕ)
ω
ω∗ + ω∗

ω

sin(2 q y), (4.29)

in the limit 1/q À x & λD can be interpreted as a slip-velocity at the wall acting as a
conveyor belt for the bulk fluid (see bottom panel of Fig. 4.3).
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4.4.7 Bulk flow

For x & λD we have that F ' 0 and we solve Eq. (4.27) together with Eq. (4.3d) and the
boundary condition

v(r, t)
∣∣
x=0

= vs(y, t) ey. (4.30)

To lowest order in qλD this gives

v(r, t) ' v1

cos(2ω t + ϕ)
ω
ω∗ + ω∗

ω

e−2qx (4.31)

×
(
− 2qx cos(2qy)ex + (1− 2qx) sin(2qy)ey

)
,

and
p(r, t) ' 4qηv1

cos(2ωt + ϕ)
ω
ω∗ + ω∗

ω

e−2qx cos(2qy). (4.32)

If we now substitute into Eq. (2.4) we get RHS− LHS ∝ e−x/λD +O(ω/ωD) +O([qλD]2)
which shows that Eqs. (4.31) and (4.32) are indeed excellent approximations to the full
solution of the non-linear time-dependent Navier–Stokes equation, Eq. (2.4), for x À λD.
For the incompressibility constraint, Eq. (4.3d), our solution gives ∇ · v = O([qλD]2). In
Fig. 4.3 we show a field-plot of the velocity-field, Eq. (4.31), along with the contours for
constant velocity.

4.5 Discussion

We have analyzed the full non-equilibrium electro-hydrodynamics of the Debye screening
layer that arises in an aqueous bi-ionic solution near a planar wall when applying a spatially
modulated ac-voltage V0 cos(qy)eiωt, Eq. (4.1). Our analysis applies to the low-frequency
Debye–Hückel regime where the amplitude V0 of the external potential is lower than the
thermal voltage VT and the driving frequency ω is lower than the inverse response-time
of the electrolyte ωD = σ∞/ε (see Secs. 4.4.1 and 4.4.3). Furthermore, we have limited
ourselves to the diffusive regime where convection can be neglected corresponding to a
sufficiently low driving amplitude, V0 ¿ Vc where

Vc ≡
√

(1 + δ)ηD/ε (4.33)

is a critical voltage [see first paragraph of Sec. 4.4.2, v ∼ v1ey in the Debye layer]. We
have also considered the low-frequency regime ω ¿ ωc where viscosity dominates over
inertia (see Sec. 4.4.5). Finally, we have considered the limit with the spatial modulation
being much longer than all other length scales in the problem, i.e. qd ¿ 1 and qλD ¿ 1
(see Sec. 4.4.3). In summary this means that we have studied the effect of Eq. (4.1) in the
limits

q ¿ min
{
d−1, λ−1

D

}
, (4.34a)

ω ¿ min
{
ωD, ωc

}
, (4.34b)

V0 ¿ min
{
VT , Vc

}
. (4.34c)
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Table 4.1: Typical values of central parameters.

Spatial modulation q−1 10−5 m
Insulator thickness d 10−8 m
Debye screening length λD 10−8 m
Resonance frequency ω∗ 106 s−1

Debye frequency ωD = σ∞/ε 107 s−1

Critical frequency ωc = (η/ρD)σ∞/ε 1010 s−1

Thermal voltage VT = kBT/Ze 25 mV
Critical voltage Vc =

√
(1 + δ)ηD/ε 100 mV

Ionic density n∞ 1 mol L−1

Viscosity η 10−3 Pa s
Mass density ρ 103 kgm−3

Ionic diffusion constant D 10−9 m2 s−1

Capacitance ratio δ = CD/Cs 10

Typical values of our parameters are listed in Table 4.1.

Using first order perturbation theory we have obtained analytic solutions for the pres-
sure and velocity field of the electrolyte and for the electric potential. The solutions have
been obtained both in the narrow Debye layer on the length scale λD and in the bulk on
the larger length scale 1/q set by the period of the applied external potential. As a main
result we have supplied a proof for the validity of the phenomenological capacitor model.

The full dynamics seems however not to be captured by the capacitor model. Taking
the time-average in Eqs. (4.25a) and (4.31) we get

〈
F

〉
t

= 0 and
〈
v

〉
t

= 0 (in full
agreement with the discussion in Ref. [6]). In contrast, we obtain

〈
F

〉
t
6= 0 if we begin

from Eqs. (4.17a) and (4.19) without expanding in ω/ωD and qλD (the result is finite
even in the zero-frequency limit). Somewhat similar results were reported in another non-
equilibrium study [20], though for a different geometry. Naively, this observation could
suggest that

〈
v

〉
t
6= 0 contrary to the statement in Ref. [6]. However, by also averaging

over the y-direction we get
〈
Fy

〉
t,y

= 0 suggesting that
〈
vy

〉
t,y

= 0 in agrement with the
symmetry arguments emphasized in Ref. [6]. If the finite

〈
F

〉
t

does not give the fluid a
directional flow globally, we might speculate that, at high frequencies, it makes the fluid
circulate in non-oscillating vortices (with a spatial pattern like in Fig. 4.3) whereas the
fluid is at rest at zero-frequency – despite

〈
F

〉
t
being finite. The solution to this apparent

contradiction lies in the pressure which will compensate the body-force at low frequencies.
This has not been pointed out previously in the literature. We can explicitly show that
the time-averaged body-force

〈
F(r, t)

〉
t
can be written as a gradient of a potential pF (r):

〈
F(r, t)

〉
t
= ∇pF (r) +O(

[ω/ωD]2
)

(4.35)
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where

pF (r) = p0 +
1
4εq2V 2

0[
qλD cosh(qd) + ε

εs

√
1 + (qλD)2 sinh(qd)

]2

× e−2
√

1+(qλD)2 x/λD cos2(qy) (4.36)

with p0 being a constant. Introducing the effective capacitance, Eq. (4.11b), we can also
write this as

pF (r) = p0 + qηv1

(
1 +

CD

Cs

)(
Ceff

CD

)2 1 + (qλD)2

(qλD)2
× e−2

√
1+(qλD)2 x/λD cos2(qy). (4.37)

The form of Eq. (4.35) suggests that
〈
v(r, t)

〉
t
= 0 +O(

[ω/ωD]2
)

(4.38)

with pF being a pressure that compensates the low-frequency part of the body force, see
Eq. (4.27). At high frequencies we expect vortices to co-exist with the harmonic fluid
motion described in Eq. (4.31) whereas at low frequencies the circulation vanishes and
we are left with the pure harmonic motion. Time-dependent finite element simulations
confirm this picture (see Chap. 7).

4.6 Conclusion

Our results provide the theoretical underpinning of the phenomenological capacitor model
widely used in the literature [6, 1, 17, 20, 5], and form a firm starting point for future studies
of electro-kinetic pumps and mixers driven by spatially modulated surface potentials. The
electrode-array based pumps relies on the dynamics described in this chapter (see Chap. 5).
However, our non-equilibrium approach has also revealed interesting short-comings in the
capacitor approach in [6] for high-frequency dynamics where vortices may appear along
with the harmonic rolls also predicted by the capacitor model. Moreover, the capacitor
approach is unable to describe the flow reversal observed in [21]. This matter will be
discussed in Chap. 5 and in Chap. 7.
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Chapter 5

Theory of an asymmetric
electrode array pump

The symmetric case has been presented in Chap. 4 where we described the flow obtained
for time modulated potentials. Ajdari introduces a symmetry argument to predict a direc-
tional net mean flow (e.g. a pumping effect). Generically, if a fluid is placed in a locally
asymmetric environment and if dissipation is induced by external means, then the fluid
should be globally set into motion in the direction of broken symmetry, even in the absence
of macroscopic gradients [6]. In this chapter we investigate this statement in the frame of
our analytical results from Chap. 4.

5.1 Asymmetric potential

5.1.1 Perturbated potential

We now introduce a perturbation in order to break the spatial symmetry of the previous
electrode array defined in Chap. 4. We rewrite the excitation potential as

Vext(y, t) = V0 cos(q y)
[
1 + β cos( 2q y + Ψ)

]
ei ω t, (5.1)

where β ¿ 1. In the following we typically set the phase shift Ψ = π
2 to achieve maximal

asymmetry. We can note that for Ψ = 0 the problem is symmetric.

Figure 5.1: A sketch of the asymmetric potential ap-
plied on the surface. The thick line is for Ψ = π

2 , the
thin line for Ψ = 0 (symmetric case). For the figure,
the coefficient β is taken here at 0.5.

29
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We have chosen here to introduce only a spatial asymmetry like Brown et al. have
done in their experiments [1]. As introduced in Chap. 3, the setup used was an array of
wide and narrow electrodes, which is purely a spatial asymmetry.

In the frame of Chap. 4 we know that our equations for the electrical field φ and for
the charge difference ν are linear. Using Eqs. (4.22) and (4.23) we have

ν(r, t) = −qσ∞V0

ZeλD

1
ω∗ + iω

e−x/λD cos(qy)
[
1 + β cos(2 q y + Ψ)

]
eiωt +O(

[qλD]2
)

+O(
[

ω

ωD
]2

)
,

(5.2)

φ(r, t) = V0
iω

ω∗ + iω
e−qx cos(qy)

[
1 + β cos(2 q y + Ψ)

]
eiωt +O(qλD) +O(

[
ω

ωD
]2

)
.

We only consider the first order of the perturbation:

F1 = −Z e
[
Re(ν0)Re(∇φ1) + Re(ν1)Re(∇φ0)

]
, (5.3)

where ν0 and φ0 are the unperturbated solutions with β = 0. As for ν1 and φ1 we have

ν1(r, t) = −β
qσ∞V0

ZeλD

1
ω∗ + iω

e−x/λD cos(q y) cos(2 q y + Ψ)eiωt +O([qλD]2) +O(
[

ω

ωD
]2

)
,

(5.4)

φ1(r, t) = β V0
iω

ω∗ + iω
e−qx cos(q y) cos(2 q y + Ψ)eiωt +O(qλD) +O(

[
ω

ωD
]2

)
.

Since we only changed the prefactor in ν and φ, we can still use the following relation,
seen in Chap. 4, to simplify our equation:

Re
{

eiωt

iω + ω∗

}
Re

{
iωeiωt

iω + ω∗

}
=
−1
2ω∗

cos(2ωt + ϕ)
ω
ω∗ + ω∗

ω

. (5.5)

If we integrate F1 over time, we then have
〈
F(r, t)

〉
t
= O(qλD) +O(

[
ω

ωD
]2

)
.

This null averaged body force — when inserted into the time averaged Navier-Stokes
equation — cannot produce a mean velocity, and therefore no pumping effect. However
this is true only for first order in ω (since the correction comes in as O(

[ ω
ωD

]2
)
. As

discussed in Chap. 4, for high frequencies, a mean flow pattern is expected (see Ref. [1]
and [20]). Those are new facts that were not included in the original study from Ajdari [6].

5.1.2 General geometry

We can extend this result to more complex geometry, such as the Brown pump [1], by
using Fourier series.

V (y, t) =
∞∑

n=1

[
an cos(2π n q y) + bn sin(2π n q y)

]
+ a0, (5.6)
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where V (y, t) is a given potential applied on the electrode. We can apply our results from
Chap. 4 as long as n q λD ¿ 1. Fig. 5.2 shows an example of a potential from a truncated
Fourier series. Using analog calculations as previously, we can then show that the time
averaged velocity field is 0.

Using only first order results in ω and spatial asymmetry, it is not possible to obtain
any mean velocity field because the mean flow obtained lies then in higher order terms in
ω. Ajdari has proposed a different approach in Ref. [6], where both spatial and temporal
symmetry is broken via the capacitance of the insulating layer.

−V0

0

V0

- y

Figure 5.2: Sketch of a potential
with a truncated Fourier series. The
thin line is the truncated Fourier se-
ries with n ≤ 10. The thick line
is the original square potential. At
first examination this setup seems
to be asymmetric. However, if the
sections with V (y) = 0 have equal
lengths, we can note that we have
symmetry axes in the middle of each
electrode.

5.2 Asymmetric surface capacitance

5.2.1 Averaged body force

We showed that a spatial asymmetry does not give rise to a pumping effect to lowest order
in ω. We wish now to introduce a spatio-temporal asymmetry. Instead of using a distorted
potential, we follow Ajdari and introduce a perturbation in surface capacitance. We now
rewrite the surface capacitance as follows:

Cs =
CD

δ
=

ε

λD δ
, (5.7a)

δ = δ0

[
1 + β cos(2 q y + Ψ)

]
, (5.7b)

ω∗ = qλD(1 + δ) ωD, (5.7c)

where Ψ is a given phase. We choose β ¿ 1 and we make a Taylor expansion to write

φ = φ0 + φ1 +O(β2), (5.8a)

ν = ν0 + ν1 +O(β2), (5.8b)
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where φ0 and ν0 are the unperturbed potential and charge difference obtained in Chap. 4,
Eqs. (4.23) and (4.22), respectively. We have then for φ1 and ν1 :

φ1 = −i q λD V0
ω ωD

(iω + ω∗)2
δ0 β cos(q y) cos(2 q y + Ψ)e−q xei t ω (5.9a)

ν1 = q2 λD
V0ε

Ze

ωD
2

(iω + ω∗)2
δ0 β cos(q y) cos(2 q y + Ψ)e−

x
λD ei t ω (5.9b)

We remind the reader that ω∗ is now a function of β, according to Eq. (5.7c). The first
order component of the body force is then obtained by Eq. (5.3). After time-averaging,
we have

〈
F1(r, t)

〉
t
= −β q3δ0V

2
0 ε

ω2 ωD
2

(ω2 + ω∗2)2
e
− x

λD cos(q y)2 sin(2 q y + Ψ) ey. (5.10)

We may remark that the x component of the body force vanishes whereas the y component
is finite. We now average over a spatial period,

〈
F1(r, t)

〉
t,y

=
β

4
δ0 q3 V 2

0 ε
ω2 ωD

2

(ω2 + ω∗2)2
e
− x

λD sin(Ψ) ey. (5.11)

This non-zero averaged body force, when inserted into the Navier–Stokes equation will
give rise to non-zero velocity field.

5.2.2 Averaged bulk flow

We use the same simplification as in Chap. 4. That means that our Navier–Stokes equation
is non-inertial and thus linearized. Since we know that the zeroth order gives a null velocity
field, we only consider the first–order terms in β for the body force,

0 ' −∇p(r, t) + η∇2v(r, t) + F1(r, t). (5.12)

We consider only the pumping flow, which means that we average the equations over space
and time.

0 ' −∇〈
p(r, t)

〉
t,y

+ η∇2vpump(r, t) +
〈
F1(r, t)

〉
t,y

. (5.13)

Applying a Debye layer flow assumption as in Chap. 4, we can easily solve our problem.
Using Ajdari’s notation, we obtain :

vpump = vp sin(Ψ)
( ω

ω∗
+

ω∗

ω

)−2
(1− e

− x
λD ) ey +O(qλD) +O(

ω

ωD
)2, (5.14)

with
vp = β q V 2

0 ε
δ0

4 η (1 + δ0)2
, (5.15)

and where we used

(q λD ωD)2 '
( ω∗

1 + δ0

)2
(5.16a)

( ω∗ ω

ω2 + ω∗2
)2

=
( ω

ω∗
+

ω∗

ω

)−2
(5.16b)



5.3. HIGH FREQUENCY REGIME 33

We note that our results are consistent with Ref. [6]. Using this asymmetric capaci-
tance, we have shown that we can achieve a pumping effect in the first order in O( ω

ωD
)

for sin(Ψ) 6= 0. If sin(Ψ) = 0, we still have a mean flow [see Eq. (5.10)] in the form of a
periodic rolls pattern without pumping (see Chap. 4). Using the typical parameters from
Table. 4.1 and β = 0.1, we have vp ≈ 100 nm s−1 for V0 = 25 mV. We could apply higher
voltages such as V0 = 1 V but then we are not anymore in the frame of the Debye–Hückel
approximation (see Chap. 4, sec. 4.4.1 ) and our results may not be valid. Nevertheless,
if we set V0 = 1 V we get vp ≈ 150µm s−1 which is comparable to the values obtained by
Brown in his experiments [1].

If we try to compare the frequency where the max velocity is reached in the experiments
with the analytical results, we are confronted with the problem of determining ω∗. In
Chap. 4, we introduced an insulating layer to model either the Stern layer or an oxide
layer. We must then define a proper thickness of the insulating layer in our model to fit
the physics. Yet, this thickness is not given in the experimental data. However, in the
case of a Stern layer, we have the insulator thickness d ≈ λmol ≈ 0.3 nm. Moreover, in
our model, we assumed that the anion and the cation have the same diffusivity constant,
whereas Brown used a solution of NaNO3 at 10−4 mol L−1 in his experiments [1]. The
pair Na+, NO−

3 has different diffusivity constant for each species. We choose to set in
our model the diffusivity D = 1.5 × 10−9 m s−1 which is a rough estimate taken from
chemistry tables. The results are given in Table. 5.1.

The predicted resonance frequency ω∗ agrees nicely with the experimental data from
Ref. [1]. Brown found maximum velocities for a frequency range from 0.7 to 2.5 kHz,
depending on the voltage (the resonance frequency varies with the applied voltage). Our
model gives ω∗ = 1, 74 kHz for V0 < 25 mV, and for the lowest voltage given by Brown
(0.2 V), the resonance is around 2 kHz. We performed the same calculations using the
experimental data from Mpholo [2]. This case is similar to Ref. [1] except that the lengths
of the electrode patterns are different and that Mpholo uses only voltage higher than 1 V,
which is beyond the range of validity of the Debye-Hückel approximation of our analytical
model. The parameters used are given in table Table. 5.1. The theoretical values do
not match perfectly the experimental data but are still qualitatively relevant. The reader
should keep in mind that the values given for ω∗ are very sensible to any change in the
input parameters.

5.3 High frequency regime

We wish now to study the high frequency domain. Interesting effects have been reported
in Ref. [21] where a reversal of the fluid flow has been observed. Our results from Chap. 4
are unable to predict such flows. We suspect that the diffusivity of ions is somehow related
to this, yet we simplified our expressions considering that ω ¿ ωD. Thus, we intend now
to use the full solution of the electrokinetic problem defined in Sec. 4.4.2. Using software
such as Mathematica, it is possible to work with those fastidious expressions.
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Table 5.1: ω∗ calculated for the Brown [1] and Mpholo [2] experiments
Concentration (mol m−3) 0.1 - - -
λD (nm) 30.5 - - -
Patterns length (µm) 50 25 15 10
D (m−2 s−1) × 10−9 1.5 - - -
d (insulator thickness, nm) 0.3 - - -
theoretical ω∗ (kHz) 1.74 2.32 3.86 5.80
ω∗xp experimental resonance freq. (kHz) 0.7 1.1 1.7 2.7
ω∗xp/ω∗ 0.40 0.47 0.44 0.46

5.3.1 Diffusive break-down, ω > ωD

When the excitation frequency ω is comparable to ωD, the charge distribution in the Debye
layer is not anymore a simple exponential decay and the term κ = 1/λD

√
1 + (qλD)2 + i ω

ωD

does not simplify to κ ' 1/λD.
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Figure 5.3: Plot of ν versus x for
various frequencies, y = 0 and t = 0.
The thick line is for ω = 0, the thin
line for ω = ωD and the dashed line
for ω = 2 ωD. For low frequencies
ν is a monotonous function of x.
When ωD . ω, ν has opposite signs
in the Debye layer and in the bulk.

Instead of being a monotonous function of x, ν changes sign before vanishing when
x À λD (see Fig. 5.3). For ω À ωD the charge build-up is too slow to follow the oscillating
driving force generated by the potential and we have then ν ' 0.

5.3.2 Body-force balance

For v = 0 we have a balance between the time-averaged pressure gradient and the body
force such as 〈∇ p(r, t)

〉
t
=

〈
F(r, t)

〉
t
. (5.17)

Performing an integration for the x component of Eq. (5.17), we can write

〈
p
〉
t
= p0 +

∫ 〈
F · ex

〉
t
dx, (5.18)
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which upon insertion into the ey component of the pressure and body force balance, leads
to

∂y

[ ∫ 〈
F · ex

〉
t
dx

]
− 〈

F · ey

〉
t
= 0. (5.19)

This is true only if v = 0. If v 6= 0 we indeed have the Navier–Stokes equation with a
non-zero term η∇2v and the balance from Eq. (5.19) becomes

∂y
[ ∫ 〈

F
〉
t
· ex dx

]
− 〈

F
〉
t
· ey = f, (5.20)

where f is a scalar function of r, t and ω. f is directly related to η∇2
〈
v

〉
t

and thus to
the fluid velocity. This balance is an indicator for the resulting fluid flow. Fig. 5.4 shows
plots of f versus x. It appears that the balance is positive or negative depending on x. To
be able to conclude about the effect of the balance on the Debye layer flow, we integrate
it for 0 < x < ∞.
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Figure 5.4: Plot of the body-force
balance f versus x for y = π/(4 q)
and t = 0. The thick line stands for
ω = 0.1 ωD, the thin line for ω = ωD

and the dashed line for ω = 10ωD.
f vanishes as expected for ω = 0.

The results of this spatial integration are shown in Fig. 5.5, with plots of the integral∫∞
0 f dx against ω. It appears that the integrated value of the balance does not change

sign. However, this direct integration may not be relevant because the values of the body
force are huge for x ¿ λD and have a strong influence on the result. This is problematic
since the first layers of molecules on the electrode are not likely to move because of electrical
forces not described in our model. In Chap. 2 we defined the inter-molecular spacing λmol

for water. The numerical value was 0.3 nm. We know that the continuum assumption
made in Chap. 2 is not valid anymore for length scale smaller than λmol. Thus it is likely
that our model does not describe properly the thin layer 0 < x < λmol because we did not
take into account some forces. Let us write the contribution of those forces to the balance
as

FStern =
∫ λmol

0
fStern dx. (5.21)

Let us suppose that the first layer of molecules outside the insulating layer is immobile.
This includes the domain 0 < x < λmol. The balance of the forces in this layer vanishes
since we have v = 0. This gives

∫ λmol

0
fStern dx +

∫ λmol

0
f dx = 0. (5.22)
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Figure 5.5: Plots of∫∞
0 f dx for y = π/(4 q)

versus ω. We do not
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for f . We can notice that
the balance reaches its
maximum around ω = ωD.

Over the whole domain, we can write the integral of the body force balance as :

∫ λmol

0
fStern dx +

∫ ∞

0
f dx =

∫ λmol

0
f dx +

∫ ∞

λmol

f dx +
∫ λmol

0
fStern dx, (5.23)

which reduces to ∫ λmol

0
fStern dx +

∫ ∞

0
f dx =

∫ ∞

λmol

f dx. (5.24)

We showed that the relevant integrated body force balance to be considered is the integral∫∞
λmol

f dx. Fig. 5.6 shows some numerical results of this integral.
Those results are highly interesting because they show a change of sign of the integrated

body-force balance f around ω = ωD. This means that, for a given frequency we have
f = 0, which is equivalent to v = 0. Thus we may expect a fluid flow reversal around
ω = ωD. The rolls will turn the opposite way over the electrodes. If we had introduced
asymmetry in the system, our pumping velocity would revert.
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versus ω. f is zero around
ω = ωD, which suggests a
change of direction in the
fluid flow.
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Table 5.2: Debye frequencies for given parameters
Concentration (mol m−3) 1 0.1
D (for KCl, m2 s−1) ' 2× 10−9 ' 2× 10−9

λD (m) 9.64× 10−9 3.05× 10−8

ωD (s−1) 2.15× 107 2.15× 106

5.3.3 Discussion

We wish now to confront this theory to the experimental data from Refs. [1], [17] and [21].
We determined the Debye frequencies for each case (see Table. 5.2). Brown and Green
did not observe any reversal in fluid motion (Ref. [1] and [17]). Since they gave results for
ranges of ω smaller than ωD we can only conclude that our theory does not disagree with
their data. However in the case of Ref. [21], the fluid reversal is observed at ω ' 2× 104

and ω ' 5× 104 for a 0.1 mol m−3 and a 1 mol m−3 KCl buffer respectively. As shown in
Table. 5.2, the Debye frequency in both case are much larger so the fluid reversal happens
for ω < ωD. Yet, we can still argue that when the concentration of the electrolyte raises,
the frequency at which the fluid reversal is observed raises too. We have here a qualitative
agreement between the experiments and our theory, since the Debye frequency is related
to the concentration via the Debye length expression Eq. (4.10). As for the quantitative
comparison, it is not surprising it does not match, since our model relies on simple cosine
modulation in the frame of the Debye-Hückel approximation with V0 < 25 mV whereas the
experimental values for V0 are up to 10 V. Moreover, we know from the experimental data
that the non-linearities arising from high voltages affects the frequency dependence of our
system. The numerical results from Chap. 7 seem to confirm this picture. For example,
when the applied voltage is raised, the resonance frequency is lowered (see Ref. [1]). It
is possible that our comparison between the experimental frequencies and our predicted
frequencies is biased because of the non-linear effects.
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Chapter 6

FEMLAB, a finite element solver

The analytical work from Chap. 4 and Chap. 5 has been conducted in parallel with a
numerical study. We will now briefly introduce the computational tool and the method
used during this thesis. An introduction to the finite element method for microfluidic
system can be found in Ref. [23]. For an exhaustive documentation on the FEM, the
reader should refer to Ref. [24].

6.1 The finite element method

The finite element method (FEM) is a numerical method that can solve most partial
differential equations (PDE) encountered in physical problems. This numerical method is
widely used over a large area of applications, the classic one being structural mechanics.
Since the finite element method is able to solve PDE problems, it is possible to solve
the electrokinetics equations defined in this thesis. Even though many numerical solvers
developed for the Navier–Stokes equation use the Finite Volume Method, the FEM is able
to handle the fluid problem as well. Thus, this tool allows us to solve numerically our fully
coupled PDE problem.

6.2 FEMLAB

FEMLAB was developed in 1999 by COMSOL (see Ref. [25]). The version 3.0a (2004)
has been used for this thesis. This software is closely interfaced to Matlab for scripting
and post-processing. There are thus two principal ways of working with FEMLAB: the
Graphical User Interface (GUI) or the programming language in Matlab. The GUI is
sufficient to deal with common problems. However, more complex modelling requires the
use of the programming language. For the simulations presented in this thesis, we both
used the GUI and the FEMLAB programming language.

39
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6.2.1 Hardware

The simulations were run under windows2000 with a Pentium4 CPU at 3 GHz with 1
gigabyte of memory. We did experience some stability problem of the FEMLAB GUI that
seemed to be related to video card and memory system of the computer. Typically, the
simulations took between a couple of seconds up to a couple of hours to run, depending
on the various parameters.

6.2.2 equations formulation

FEMLAB has different ways of representing the equations to be solved, the so-called
application modes. Those application modes cover a wide range of physics such as heat
transfer or structural mechanics. However, we only used the General PDE mode and the
Navier–Stokes mode.

• General PDE formulation
For a single variable U , FEMLAB represents the PDE system in the domain Ω with
boundary ∂Ω by

da∂tU + ∇ · Γ = F in Ω (6.1a)

−n · Γ = G + (∂uR)T µ on ∂Ω (6.1b)
0 = R on ∂Ω (6.1c)

where the supscript T denotes the transpose. The first equation is the PDE itself.
The second and third equations are the Neumann and Dirichlet boundary conditions,
respectively. The terms Γ, F , G, and R are coefficients given by the user. They can
be functions of the spatial coordinates, of the solution U , or of the space derivatives
of U . The coefficients F , G, R, and da are scalar, whereas Γ is the flux vector.
Finally, the variable µ is the Lagrange multiplier (p. 227 in the modelling guide
[25]). This way of writing the PDE suits perfectly our electrokinetics problem as we
will see in Chap. 7.

• Navier–Stokes application mode
The Navier–Stokes application mode uses the PDE general formulation to implement
the momentum equation and the incompressibility constraint. The pressure term is
placed in the Γ term of the PDE general form. This is called the full stress tensor
formulation:

ρ ∂tv −∇ · [p I + η
(∇v + (∇v)T

)]
+ ρv ·∇v = F, (6.2)

∇v = 0, (6.3)

where I is the unit diagonal matrix. For the boundary conditions FEMLAB allows
the user to choose between no-slip velocity, imposed velocity profile, symmetry or
pressure constraint. It is also possible to introduce periodic boundary conditions
(p.64 in the modelling guide [25] ).
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6.2.3 FEMLAB limitations

The use of the FEM method in a Matlab environment allows fast and simple post-
processing of the results in a high level programming language. Setting up a problem
and solving is fast and convenient. However, FEMLAB has some limitations.

An important limitation concerns the mesh. FEMLAB generates only unstructured
grids where the aspect ratio of the elements is constant. Yet, to solve boundary layers, it
is useful to have a variable aspect ratio. The unstructured mesh shown in Fig. 6.1 does not
make a proper use of elements and lead to an important amount of wasted memory and
computation time. This matter becomes especially problematic in the frame of this thesis
since we deal with both nanometric and micrometric length scales with a full simulation
of the Debye layer.
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Figure 6.1: Sketch of a
structured (left hand side)
and unstructured mesh
(right hand side) for a
boundary layer. Notice
the change in aspect
ratio of the cells for the
structured mesh.

A solution to that would be to solve the boundary layer in a different FEMLAB
geometry where a high aspect ratio for the mesh is imposed. Unfortunately such a process
is not very convenient because it involves coupling variables. Another solution would be
to use a different mesh generator where it would be possible to apply a variable aspect
ratio on the elements near the electrode.
As the geometries used in this thesis are extremely simple, we addressed this problem in
yet another way. We simply generated a mesh using the Femlab mesh tool, exported it in
Matlab and then applied a transformation to the nodal coordinates of the mesh in order
to have a high density of elements in the Debye layer. This topic will be discussed in
Chap. 7
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Chapter 7

Numerical simulations

We used FEMLAB with two purposes. First, FEMLAB was used as a numerical partial
differential equation solver which enabled us to investigate the problems encountered when
working with the analytics. Second, it was used to simulate different cases that were not
in reach of our analytical model, this comprehend three aspects: complex geometries, high
frequencies and high voltages. This work should be regarded as numerical experiments.
The data presented here is more qualitative than quantitative. The aim is to understand
the general behavior of the electrode-array and to isolate some fundamental parameters.

7.1 Problem setup

7.1.1 Equations solved in the computational domain

In the electrolyte, we use φ, c+, c−, v and p as independent variable with c+ and c−

being the molar concentrations for the positive and negative ions respectively. We use
molar concentrations instead of particle densities just to handle smaller numbers, with
NA c± = n±. We look for a solution of the following equation system:

ε ∇2φ(r, t) = −F (c+ − c−), (7.1a)

∂tc
± + ∇[−D∇c± ∓ µ c±∇φ + c±v

]
= 0, (7.1b)

ρ ∂tv −∇ · [p I + η
(∇v + (∇v)T

)]
+ ρv ·∇v = −F ( c+ − c− )∇φ, (7.1c)

where F = NA e is the Faraday constant. This equation system can be fit into FEMLAB
using the PDE general form and the Navier–Stokes application mode. For example, for
the variables c±, we write Γ = i± = −D∇c± ∓ µ c±∇φ + c±v.

In the insulating layer, since there are no charges, the Poisson equation reduces to the
Laplace equation. There is indeed no fluid in the insulator. The equation to be solved is
then:

∇ · (εs ∇φ(r, t)
)

= 0. (7.2)
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Once the problem is set up, we can run a time-dependent simulation until the system
converges towards a temporal periodic solution, which usually occurs after a couple of
time periods.

7.1.2 Boundary conditions

We apply the boundary conditions as described in Fig. 7.1. Some changes may occur
among the different simulations. In some simulations we discarded the insulator layer to
save memory. For the symmetric systems, we sometimes used the symmetric boundary
conditions instead of the periodic conditions, which are then equivalent. Moreover the
symmetry argument allows us to reduce the computational domain by a factor two, with
0 < y < π/q instead of 0 < y < 2π/q.

Ω2Ω1

∂Ω

-
6

y

x

φ = f(y, t)

n · i
± = 0

No-slip condition

φ = 0

c± = 1 mol m−3

p = p0 = 0

?

Periodic conditions
equivalent boundaries

?

n · (εs∇φ1 − ε∇φ2) = 0

Figure 7.1: The boundary conditions applied for the simulations. The case shown is the
model of Ajdari with insulator, in an open channel. The periodic boundary conditions are
here equivalent to the symmetric boundary conditions.

We will now make clear what we refer to as periodic boundary conditions and sym-
metric boundary conditions.

• Symmetric boundary conditions
For the symmetric case, we can consider that there is no ionic flux at the interfaces
and that the symmetry plane acts as an insulator plane for the potential. We thus
apply Neumann conditions for the charges and for the potential on the y boundaries.
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• Periodic boundary conditions
Periodic boundary conditions define equivalent boundaries. We choose a source
boundary and a destination boundary. The considered expression and their deriva-
tives must match. We apply this periodicity for all the independent variable. It
is possible to implement more elaborate periodicity conditions, however we did not
need them in our simulations.

7.2 Mesh issues

As discussed in Chap. 6, the standard mesh tool from FEMLAB impose a constant aspect
ratio over the meshed geometry. To mesh the Debye layer properly, we need to have a
couple elements in the x direction for 0 < x < λD. For example, if we have λD = 10nm,
we should take the size of the elements on the electrode boundary around 2 nm. The mesh
generator of FEMLAB produces equilateral triangles on the boundary. If the electrode is
20µm long, we have then 10.000 elements on the boundary. This is a waste of elements,
since we know that the gradients in the y direction along the electrode are very small.

7.2.1 New coordinate system

We know that our analytical solution for the electrokinetics decreases exponentially over
a length-scale λD. Thus, we have considered introducing a new coordinate system such as

ξ(x) = e
−x α

λD , (7.3)

x(ξ) = −λD

α
ln(ξ). (7.4)

The y coordinates are left identical. Let us now consider an infinitely derivable function
g. We then have

∂xg
(
ξ(x)

)
= − ξ

α

λD
∂ξg, (7.5)

∂x
2g

(
ξ(x)

)
= ξ

( α

λD

)2
[
∂ξg + ξ∂ξ

2g
]
. (7.6)

With this, we can rewrite our equations system Eq. (7.1a) in the new coordinate system
(ξ, y). However this approach is maybe not the most efficient one. We still have to deal
with the following problems:

• Complex geometries
Up to now, we considered very simple geometries. Unfortunately, if we want to deal
with more general cases, this coordinates transformation would not apply.

• PDE form
Once our equations are put into the new coordinates system, we still must fit them
into the PDE general form. We loose then the direct interpretation of Γ as the ionic
flux, which was convenient.
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Figure 7.2: Example of transformed mesh for α = 25λD. The mesh shown here is composed
of 1872 elements. Actual meshes for the simulations contained between 5000 and 7000
elements.

• Fluid length scale
The flow occurs on two length scales : λD and q−1. Thus we may suppose that this
new coordinate system is not suitable to solve the fluid flow.

We did not go further in this way and we moved forward to a more effective solution.

7.2.2 Mesh transformation

Instead of changing the coordinate systems, it is possible to apply a more effective mesh.
This means that we must concentrate elements where needed, in the Debye layer. The
considered geometry is a L × ` rectangle. We apply the following transformation on the
nodal coordinates,

ξ(x) = L
(
e
α x

λD − 1
) (

e
α L

λD − 1
)−1

, (7.7)

where α is a parameter for the transformation. We conserve the geometry since we have

ξ(0) = 0, (7.8)
ξ(L) = L.

Fig. 7.2 shows an example of a transformed mesh. We tested this transformation for a
simple problem with good results (see Chap. B). However, when we applied this transfor-
mation to our model, we were confronted to some problems on the boundaries. Inside the
domain, the solution was equivalent to the one obtained with a mesh given by the mesh
tool from FEMLAB. Yet, on the first boundary elements, the solver gave unexpected dis-
continuities for the potential and the charges. Despite our efforts, we did not find the
source of those artifacts.
Since it was still possible to run the simulations properly with the standard meshing tool
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of FEMLAB, we decided to leave this problem aside. This imposed some limitations
on the q λD values in the simulations. Thus, we mainly worked with q = π 106 m−1,
λD ' 10−8 m, giving q λD ' 3 × 10−2, so that the expansion in first order of q λD from
Chap. 4 is relevant.

7.3 Symmetric cosine modulation

In this section we present the numerical results obtained for the symmetric case described
in Chap. 4. The parameters used for the simulations are given in Table. 7.1. A typical
instantaneous velocity field obtained is shown in Fig. 7.3.

Figure 7.3: Typical plot of the instantaneous velocity field obtained for the Ajdari’s model.
The scale for x and y axis are the same. We have ω = 106, V0 = 25 mV. The domain is
1µm long. We used the symmetry properties to divide the computational domain by 2.

7.3.1 Numerical and analytical results

We first wanted to be sure that the numerical solution of the model is consistent with
the analytical problem from Chap. 4. However, we did not apply any expansion on the
potential and the charges. Instead we kept the full solution1, as we did in Chap. 5,
and inserted numerical values for each constants so that we could compare the numerical

1This was done using Mathematica. The analytical solution found is valid within the Debye-Hückel
approximation whereas the FEMLAB model does not use this assumption.
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Figure 7.4: The left-hand side plot shows the numerical error e1 versus x for φ and ν.
The cross-section is y = 0, 0 < x < 10λD and t = 0. The right-hand side plot shows the
numerical error for φ over the cross-section x = 5 λD, 0 < y < π/q

solution from FEMLAB and the analytical solution. The error is defined here by

e1 =
Uan − Unum

Max(Uan, Ω)
, (7.9)

where Uan is the analytical solution and Unum the solution provided by FEMLAB for the
same problem. Fig. 7.4 shows a plot of the error for two different cross-section in the
electrolyte. The error is confined under 1% which is a fairly good result.

In order to confirm our hypothesis made in Chap. 4, we compared computations with-
out the convection term against computations with the convection term. For ω = 104 s−1

and V0 = 25 mV, we found an error e1 around 2.6%. For V0 = 0.5 V, we found an error of
3.8%. With voltage up to V0 = 1 V, the error found was under 9%. As the computations

Table 7.1: Typical parameters for the symmetric cosine simulations
Spatial modulation q π × 106 m−1

Insulator thickness d 10 nm
Debye screening length λD 9.63 nm
frequency ω 102 − 109 s−1

Thermal voltage VT = kBT/Ze 25 mV
Applied voltage V0 0-25 mV
Bulk ionic density n∞ 1 molm−3

Viscosity η 10−3 Pa s
Mass density ρ 103 kgm−3

Ionic diffusion constant D 10−9 m2 s−1

Capacitance ratio δ = CD/Cs 8.3
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are much faster without the convection term, in most of the following simulations, we
discarded the convective effects.

7.3.2 Voltage dependence for the cosine modulation

We wish to obtain results for voltages where the Debye-Hückel approximation is not valid.
We ran simulations with 0 < V0 < 2V for a dilute concentration of c = 0.1mol m−3 so
that the Debye length is λD ' 30 nm. The results are given in Fig. 7.5. We used this
dilute concentration and greater Debye length in order to have a more simple problem
to solve numerically. As expected from the analytical model, the velocity obtained is
proportional to V 2

0 for V0 small enough. For higher voltages, this is not true anymore.
For V0 ≥ 1.5 V, the time-averaged velocity diminishes. This confirms the picture given by
Brown in Ref. [1]. He has shown in his experiment that the excitation frequency giving
the maximum velocity is a function of the voltage. Thus, since we ran the simulations
for a constant ω = 104 s−1, we do not give here the maximum velocity achievable for the
given voltage.
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Figure 7.5: Symmetric cosine modulation: plots of time averaged velocity (x-component)
in the electrolyte for ω = 104 s−2 and c = 0.1mol m−3. The velocity is taken on the
point (x, y) = (6.5λD ; 1/q × π/2) = (0.2µm; 5 µm). The profile is proportional to V 2

0 for
V0 ≤ 0.5 V. For V0 ≥ 0.5 V, we observe a linear relation between V0 and

〈
v
〉
t
. Finally, for

V0 ≥ 1.5 V,
〈
v
〉
t
diminishes. This is not unexpected since we know from the experiments

in Ref. [1] that the frequency giving the maximum speed is a function of the given voltage.

7.3.3 Frequency dependence for the cosine modulation

Here, we ran simulations in order to observe the fluid reversal. The results of those
computations are shown in Fig. 7.6, where we observe the fluid motion inversion for ωD

between 2× 105 and 5× 105 s−1. However, we can note that the speed for each direction
differs by at least one order of magnitude.
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Figure 7.6: Symmetric cosine modu-
lation: plots of time-averaged veloc-
ity (x–component) against ω. The
velocity is evaluated on the point
(x, y) = (6.5λD , 1/q × π/2). The
applied voltage is 25 mV. We have
ω∗ ' 3 × 106 and ωD ' 3 × 107.
The velocity reverts for ω between
2× 105 and 5× 105.

7.3.4 Computation over the voltage-frequency domain

We wish now to give more complete results for the voltage-frequency dependence. With
this aim in mind, we ran a script to perform computations for a hundred points in the
given domain. The results are shown in Fig. 7.7. We do not observe the fluid reversal,
probably because of a lack of points in the proper area.
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Figure 7.7: Symmetric co-
sine case : 3D Plots of
time-averaged velocity (x–
component) against volt-
age and frequency with
λD = 30.4 nm, ω∗ = 3.07×
105 s−1, ωD = 1.07 × 106

s−1 The velocity is evalu-
ated at the point (x, y) =
(6.5λD , 1/q × π/2)
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7.4 Simple symmetric electrode

7.4.1 simulation setup

The pumping effect is based on the existence of a mean flow over electrodes-arrays. The
pumping velocity is obtained by introducing asymmetry in the electrode-array. The under-
standing of the symmetric case is thus a necessary step. We present now some simulations
of the symmetric setup described by Green in [17] (see Chap. 3). In the experiments,
the electrodes used were 100 µm wide. Yet, it was not possible to run simulations with
the same size of electrodes for the reasons discussed in Sec. 7.2. The mesh then would
contain far too many elements.2 The size of the electrodes are 1µm, the gap between the
two electrodes being modelized by a smoothed Heavyside function. On the liquid/wall
interface, we applied Neumann boundary conditions for the inert substract and Dirichlet
boundary conditions for the electrode (see Fig. 7.8). We could have reduced the com-
putational domain using some symmetry argument. However, since we have in mind to
extend our simulations to the asymmetric case, we did not use those properties. Finally,
we assume that the insulating layer thickness vanishes. This means that the capacitance
ratio δ = CD/Cs goes to zero which gives ω∗ = q λD ωD. In this simulation we have
ω∗ = 6.3 × 105 s−1. In Fig. 7.9, we compare the experimental time-averaged streamlines
obtained in Ref. [26] with our numerical results.
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���
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∂xφ = 0

� ∂xφ = 0

�
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(

1 − 2H(x − s/2)
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Periodic conditions
equivalent boundaries

6

6

6

Figure 7.8: Boundary conditions applied for the Green setup. H denotes the Heavyside
function and s the curve parameter, with 0 < s < 1. The insulating layer is here discarded.

2The relevant parameter to consider being qλD, it is possible to decrease the ionic concentrations in
order to obtain a larger Debye length and thus reduce the number of elements needed.
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Figure 7.9: Comparison between
experimental and my numerical
streamlines patterns. On the left
hand side, the experimental stream-
lines from Ref. [26]. On the right-
hand side, my the numerical results.

7.4.2 Frequency dependence for the symmetric electrodes

We ran simulations over the frequency domain 104 < ω < 108 s−1. The results are shown
in Fig. 7.10. We have the resonance for ω ≈ 106 s−1. The theoretical resonance calculated
with the results from Chap. 4 is ω∗ = 6.5×105, and we have here a fairly good agreement.

Figure 7.10: Plot of time-
averaged velocity over
the symmetric electrodes
against frequency. The
point where the velocity
is evaluated at a distance
x = 0.3µm over the
inter-electrode gap.
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7.5 The Brown pump

We use the same setup as described in Sec. 7.4.1, except that we do not have symmetric
electrodes. The cell size is 1µm, the gap between the two electrodes is modelized by a
smoothed Heavyside function. The electrode-array is placed in an open channel without
bonding. We have λD ≈ 10 nm, ωD = 107 s−1 and ω∗ = 6.5× 105 s−1.

7.5.1 Streamlines

In order to provide a simple picture of the flow over the electrode-array, we give some
streamlines plots, for the instantaneous velocity field and for the time-averaged velocity
field (Fig. 7.11).

Figure 7.11: On the left-hand side: plot of instantaneous velocity field over the asymmetric
electrodes with ω = 105 s−1, V0 = 10 mV. The domain is 1µm long. The maximum speed
observed are about 4 µm s−1. Note the rolls over each electrodes. On the right-hand side:
time-averaged velocity field for the same parameters. Note the presence of a pumping
velocity about 1 µm s−1 .

7.5.2 Frequency dependence

In Fig. 7.12, we give some plots for a low voltage simulation with V0 = 10 mV in order to
show the fluid reversal. The fluid reversal occurs around ω = 5× 105, which is lower than
ω∗. This result is not predicted by our theory from Chap. 5. The frequency given by the
theory would be around ωD. It could be interesting to run a complete simulation over the
frequency-domain with voltage up to 5 V so that we can compare the map obtained by
the numerics with the map obtained by Studer in [21]. However we did not have time to
conduct this study in the frame of this thesis. Each computation takes around one hour
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and we need at least a hundred points. Assuming that no unexpected problem occurs,
this means at least four days of computation.

10
4

10
5

10
6

10
7

−4

−2

0

2

4

6

8
x 10

−6

×10
−6

m s
−1

-4

0

4

8

10
4

10
5

10
6

10
7

s
−1

Figure 7.12: Plot of time-averaged
pumping velocity agains ω for the
Brown pump with V0 = 10 mV. The
velocity is taken at 0.3µm over the
large electrode.

7.6 Discussion

In this chapter, we first showed the effectiveness and limitations of FEMLAB to solve our
coupled equations. Previous numerical studies (see Ref. [26]) used a slip-velocity model
and did not fully resolve the Debye layer like we do. However we did not have time to
run an exhaustive numerical study but the needed tools have been tested and validated.
We confirmed the picture that the convective effects do not have a massive impact on the
velocity field obtained. Yet, it could be interesting to check this matter more carefully. If
we want to compare our linear analytical results (with a Debye–Hückel approximation),
to our numerical results with voltage V0 > 25 mV, we are confronted to unpredicted
phenomena coming from the non-linearities. Thus, is seems that the linearization of the
equations via the Debye–Hückel approximation induces a loose of not only quantitative
but also qualitative relevance of our model for voltage greater than 25 mV.



Chapter 8

Conclusion

AC EO pumps based on electrode-arrays could be an interesting solution for integrated
micropumps in lab-on-a-chip devices. Their design is fairly simple and the voltage needed
is low, which are important matters in microfluidics. Following up on the work of Ajdari
in [6], we proposed a model for the symmetric electrode array, where the Debye layer is
fully resolved (see Chap. 4).1 The asymmetric array is then considered as a perturbed
symmetric array in Chap. 5. We worked in the frame of the Debye-Hückel approximation
with excitation frequencies small in front of the Debye frequency, whereas the experiments
are conducted beyond those voltage and frequency domains. Yet, we found good agreement
for the resonance frequency between our model and the experiments. Nevertheless, our
low-frequency analytical results were not able to predict the fluid reversal observed in
Ref. [21]. We then studied the full analytical solution with the help of Mathematica (see
Chap. 5). We showed that the fluid reversal phenomenon is contained in our electrolyte
model. This work is summarized in Fig. 8.1, starting with the symmetric case with a pure
harmonic flow and ending on the asymmetric electrode-array giving rise to a pumping
velocity. In Chap. 7, we conducted a numerical study where we fully simulated the Debye
layer using the finite element method solver FEMLAB. We demonstrated the effectiveness
of this approach. We confirmed the fact that the fluid reversal can be described by our
model. Moreover we investigated domains unreachable within the analytics. This means
voltages beyond the reach of the Debye-Hückel approximation, at high frequencies and
with convection coupling.

A lot of theoretical work has still to be done about the electrode-arrays. We still did
not provide a simple analytical solution of our model in the general case. Our model
does not take into account various physical properties of the electrode-arrays but the non-
linearities and the equations coupling already limit the analytical approach. The model
does not include charges injection that are likely to happen for voltages high enough.
It does not include Joule heating and thermal effects either. Nevertheless we obtained
consistent values for resonance frequencies and for pumping velocities.

Concerning the numerical simulations, we can give at least three interesting studies to
be conducted. First, it should be possible to give an optimized geometry, possibly non-flat,

1A paper was submitted to Phys.Rev. E presenting this work.
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for the electrodes. Second, it should be also possible to give some relevant parameters for
the frequency at which the motion reversal occurs. And finally, the influence of the height
of the pumping channel on the flow rate has yet to be investigated.

At this point, it should be clear that the electrode-array pump is a very open topic of
discussion. The available experimental data is still very limited and the theoretical models
found in the literature can not fully explain the dynamics observed. We can thus expect
promising developments in the future.

Instantaneous velocity: harmonic flow

symmetric electrode-array (see Chap.4)

time averaging

�
�

�
�

�
�

���

H
H

H
H

H
H

HHj

ω < ωC ω > ωC

averaged flow

spatially periodic rolls

perturbation
theory

perturbation
theory

? ?asymmetric electrode array

(see chap.5)

pumping velocity

Figure 8.1: Summary of the study conducted on the electrode-arrays. We first described the
symmetric electrode-array with the means of cosine modulated potentials. After time-averaging,
we obtain a mean flow consisting of a spatially periodic roll patterns. It is possible to obtain two
directions for the mean flow. In this figure, we introduced ωC as the critical frequency where we
have v = 0 and the inversion of the pumping velocity. Then, introducing a perturbation on the
potential or on the surface capacitance, we obtain an asymmetric electrode-array giving rise to a
pumping velocity.



Appendix A

Electrode-array with non-zero zeta
potential

In this appendix, we work in the frame defined in Chap. 4, except that:

• Zeta potential
We assume the zeta potential to be finite. We then introduce a perturbation ζ1 with
spatial and time modulation.

• Insulating layer
The insulating layer previously introduced is now discarded. We wish to only con-
sider the effect of the potential perturbation.

A.1 Non-zero intrinsic zeta potential

Consider an aqueous solution of a salt containing a positive and a negative type of ions
with charges +Ze and −Ze, respectively, where Z is the valence and e the elementary
charge. The liquid is confined to the half-space x > 0 by an impenetrable, homogeneous
and planar wall placed in the plane x = 0. The electric potential on the wall is denoted
ζ(y, t). Charge transfer processes at the wall gives rise to a constant intrinsic zeta potential
ζ0, while an external voltage source leads to a smaller, possibly correction, of amplitude
ζ1, such that

ζ(y, t) = ζ0 + ζ1 cos(qy) eiωt, |ζ1| ¿ |ζ0|. (A.1)

The boundary conditions for the electric potential φ are

φ(0, y, z, t) = ζ(y, t), φ(∞, y, z, t) = 0. (A.2)

In the following the ionic densities n± , the potential φ, the velocity field v, and the
pressure p, are all written as a zero order contribution, for the case when ζ1 is zero, plus
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a first order contribution, when ζ1 differs from zero,

n±(r, t) = n±0 (x) + n±1 (x, y, t), (A.3a)
φ(r, t) = φ0(x) + φ1(x, y, t), (A.3b)
v(r, t) = 0 + v1(x, y, t), (A.3c)
p(r, t) = p0(x) + p1(x, y, t). (A.3d)

Note that we have anticipated that in zeroth order the velocity is zero and the pressure a
constant.

From the number densities of the ions n±(r, t) we form the difference ν(r, t), and the
sum nΣ(r, t),

ν(r, t) ≡ n+(r, t)− n−(r, t) = ν0(x) + ν1(x, y, t), (A.4a)

nΣ(r, t) ≡ n+(r, t) + n−(r, t) = nΣ
0 (x) + nΣ

1 (x, y, t). (A.4b)

The ionic flux densities are denoted i±(r, t). The continuity equations for each type of
ion in the absence of any chemical reactions in the system can thus be stated as

∂tn
±(r, t) = −∇ · i±(r, t). (A.5)

The electric current densities are denoted j±,

j±(r, t) = ±Ze i±(r, t). (A.6)

The presence of gradients in the densities ∇n±(r, t) and/or the electric potential
∇φ(r, t) will generate ionic current densities. These are given by the Nernst-Planck equa-
tion

i±(r, t) = −D∇n±(r, t)∓ µn±(r, t)∇φ(r, t) + n±(r, t)v(r, t), (A.7)

where, for simplicity, we have assumed that the two types of ions have the same diffusion
constant D and the same mobility µ. We remind the reader that both the diffusion
constant D and the electric conductivity σ can be obtained from the mobility µ as

D =
kBT

Ze
µ, (A.8)

σ±(r, t) = Ze n±(r, t) µ. (A.9)

The governing equations for φ(r, t) and n±(r, t) can now be written down. Combining
the Poisson equation with Eq. (A.4a) yields

∇2φ(r, t) = −Ze

ε
ν(r, t), (A.10)

and insertion of the Nernst-Planck equation Eq. (A.7) into the continuity equation Eq. (A.5)
leads to

∂tn
±(r, t) = D ∇2n±(r, t)± µ∇ · [n±(r, t) ∇φ(r, t)

]−∇ · [n±(r, t) v(r, t)]. (A.11)
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A.1.1 Zeroth order result

For the zeroth order the system is in thermodynamic equilibrium. The velocity field is
zero, the pressure is constant, and the ionic currents due to the gradients in the electric
potential and in the density exactly cancel each other.

We now linearize the continuity equation Eq. (A.11) in the density as follows. We
assume n±0 (∞) ≡ n∗ and write

n±0 (x) = n∗ + δn±0 (x), δn±0 (∞) = 0. (A.12)

Since it is a non-zero ζ0 that spawns δn± 6= 0, we shall prove later that |δn±0 | ¿ n∗ when
the electrostatic energy is much smaller than the thermal energy,

Ze ζ0 ¿ kBT. (A.13)

In this case the so-called Debye-Hückel approximation is valid, i.e., we substitute n±(r, t)∇φ(r, t)
by n∗ ∇φ(r, t) in Eq. (A.11). Using this, and noting ∂tn

±(x) = 0 as well as v0 = 0, we
arrive at

0 = D
[
∇2δn±0 (x)± Zen∗

kBT
∇2φ0(x, t)

]
, (A.14)

When the Poisson equation Eq. (4.3a) is inserted into Eq. (A.14), we obtain an equation
only involving densities,

0 = D
[
∇2δn±0 (x)∓ 1

2λ2
D

ν0(x)
]
, (A.15)

where we have introduced the Debye screening length λD given by

λD ≡
√

εkBT

2Z2e2n∗
. (A.16)

By adding the ”±”-equations of Eq. (A.15) we obtain ∇2nΣ
0 (x) = 0, which mean that

nΣ(x) is a linear function of x. But since n±0 (∞) = n∗ we must conclude

nΣ
0 (x) = 2n∗. (A.17)

If instead we form the difference of the ”±”-equations of Eq. (A.15) we obtain a partial
differential equation involving only ν0(x),

0 = ∇2ν0(x)− 1
λ2

D

ν0(x). (A.18)

It is easily proven by direct insertion that the solutions for φ0, ν0, and n±0 are given by

φ0(x) = ζ0 e−x/λD , (A.19a)

ν0(x) = −2
Zeζ0

kBT
n∗ e−x/λD , (A.19b)

n±0 (x) = n∗ ± 1
2

ν0(x). (A.19c)
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Note how the validity of the Debye-Hückel approximation follows from Eqs. (A.19b)
and (A.19c): |n±(x)− n∗| ¿ n∗ when Zeζ0 ¿ kBT .

Since the velocity field is zero (v0 = 0) the Navier–Stokes equation gives

0 = −∇p0 − Zeν0∇φ0, (A.20)

from which we get

p0(x) = const. +
(Zeζ0)

2

kBT
n∗ e−2x/λD . (A.21)

A.1.2 First order equations

The first order contribution to the diffusion-convection equation Eq. (A.11) is

∂tn
±
1 (r, t) = D ∇2n±1 (r, t)− [∇n±0 (x)] · v1(r, t)

±µ
[
[∇n±0 (x)] ·∇φ1(r, t) + n±0 (x)∇2φ1(r, t)

[∇n±1 (r, t)] ·∇φ0(x) + n±1 (r, t)∇2φ0(x)
]
. (A.22)

By forming ∂tn
+ − ∂tn

− the following expression for ∂tν1 appears

∂tν1 = D
[
∇2ν1 −

1
λ2

D

ν1 +
ν0(x)
2λDn∗

(
∂xnΣ

1

)− ν0(x)
2λ2

Dn∗
nΣ

1

]
. (A.23)

Likewise, we find for the sum ∂tn
+ + ∂tn

−

∂tn
Σ
1 = D

[
∇2nΣ

1 −
ν0(x)
2λDn∗

(
∂xν1

)− ν0(x)
λ2

Dn∗

(
∂xν1

)

− Zeν0(x)
kBTλD

(
∂xφ1

)− ν0(x)
DλD

(v1)x

]
. (A.24)

From the Poisson equation we get

∇2φ1 = −Ze

ε
ν1, (A.25)

Finally, for the velocity field we have the Navier–Stokes equation

ρ
(
∂tv1 + v1 ·∇v1

)
= −∇p1 + η∇2v1 − Zeν1∇φ1 (A.26a)

along with the incompressibility

∇ · v1 = 0. (A.26b)

We thus have 5 coupled differential equations for the 5 unknowns, v1, p1, φ1, nΣ
1 , and

ν1. Using an approximation in the high temperature limit, we can decouple some of those
equations.

In the high-temperature limit Eq. (A.23) becomes
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∂tν1 ' D
[
∇2ν1 −

1
λ2

D

ν1

]
, kBT À Zeζ0, (A.27)

which for an ansatz with a cos(qy)eiωt-dependence has a general solution

ν1(x, y, t) = C1e
−κx cos(qy)eiωt

with ωD = D/λ2
D and

κ = (1/λD)
√

1 + (qλD)2 + iω/ωD. (A.28)

Substituting into Eq. (A.25) and assuming a cos(qy)eiωt-dependence we get the follow-
ing general solution for the potential

φ1(x, y, t) =
[
− C1

Zeλ2
D

ε

ωD

ωD + iω
e−κx

+ C2e
−qx

]
cos(qy)eiωt. (A.29)

In order to satisfy the boundary condition at x = 0 we have

ζ1 = −C1
Zeλ2

D

ε

ωD

ωD + iω
+ C2. (A.30)

Since ∂yφ1 = O2(qλD) the Gauss’s theorem gives a good approximation for the surface
charge

− ∂xφ1(x, y, t)|x=0 = −Ze

ε

∫ ∞

0
dx ν1(x, y, t), (A.31)

that gives

C1κ
Zeλ2

D

ε

ωD

ωD + iω
− C2q = C1

Ze

εκ
. (A.32)

Solving for C1 and C2 we obtain (after substantial re-arrangements)

φ1(x, y, t) = ζ1
κe−κx − qe−qx

κ− q
cos(qy)eiωt, (A.33)

and

ν1(x, y, t) = −κεζ1

Ze
(κ + q)e−κx cos(qy)eiωt. (A.34)
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Figure A.1: Plot of φ1 and ν1 versus x, for y = 0, t = 0, and ω = 0. For φ1, left to right, we have
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Figure A.2: Equipotential lines for φ1 for qλD = 0.1, t = 0, and ω = 0.

A.1.3 Body force

We now consider the body force, without making expansions. For the electrical field we
have :

E0(r, t) = ζ0λ
−1
D e−x/λD x̂, (A.35)

E1(r, t) = −∇φ1(x, y, t). (A.36)

For the body force, which is a non-linear expression, we have

g0 + g1 = Ze(ν0 + ν1)(E0 + E1) (A.37)

and neglecting the second-order contribution ν1E1 we get

g1 ' Ze(ν0E1 + ν1E0).
(A.38)
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We now make an expansion for qλD ¿ 1 and ω
ωD

¿ 1:

g1 ' −εζ0ζ1

λ3
D

e−2x/λD eiω t




(
2 + i(3

2 − x
λD

) ω
ωD

)
cos(q y)

(
q λD − 1

2 ix q ω
ωD

)
sin(q y)


 . (A.39)

Let’s write the body force as a sum of two terms, a constant term and a frequency depen-
dent term:

g1 = g0
1 + gω

1 , (A.40)

where

gω
1 = −εζ0ζ1

λ3
D

e−2x/λD ei ω t




i(3
2 − x

λD
) ω

ωD
cos(q y)

− i
2x q ω

ωD
sin(q y)


 . (A.41)

From this, it is possible to apply a slip velocity model to obtain the bulk velocity. However
we can already discuss our results for the body-force.

A.2 Discussion

We wish now to compare the vanishing zeta potential case with the results form Chap. 4.
The spatial modulation of the body-force obtained in Eq. (A.39) is q whereas in Eq. (4.25a)
it was 2q. This means that the flow patterns following from Eq. (A.39) will have a q mod-
ulation whereas the rolls from Chap. 4 had a 2q spatial modulation. Thus the topology of
the flow totally differs from one case to the other.

If we now investigate the time-average of the body-force from Eq. (A.38), it is clear
that we obtain 0 since

〈
E1

〉
t
= 0, (A.42)〈

ν1

〉
t

= 0.

Thus, a non-zero time-averaged body-force — which is required to get any pumping
velocity—, would rely on second order terms such as

〈
E1 ν1

〉
t
. Those terms are the one

calculated in Chap. 4!
This study assumed that ζ1 ¿ ζ0. If we now assume that ζ1 and ζ0 are of the same

magnitude, we may suppose that a q and a 2q modulated flow patterns will interfere
with yet unpredicted results. However, the existence of the intrinsic zeta potential impose
spatially constant constraint on the charges. This effect is not likely to increase the
pumping velocities but rather decrease them.
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Appendix B

Mesh transformation: a test

B.1 Analytical problem

This chapter is based on the work of Laurits H. Olesen. We consider a simple analytical
problem of which we know the solution:

Ω =
(
x, y

)
ε
[
0, 1

]× [
0, 1

]
(B.1)

∇u2 =
(
a2 − π2

)
u for (x, y) εΩ (B.2)

u = sin(π y) e−a x for (x, y) ε ∂Ω. (B.3)

It is easily proved that the solution of this problem is

u = sin(π y) e−a x for (x, y) εΩ. (B.4)

Laurits H. Olesen made a FEMLAB script to solve numerically this problem. The results
obtained with a standard mesh from FEMLAB and a highly distorted mesh were equivalent
and very close to the analytical solution. This shows that it is possible to use high aspect
ratio elements in FEMLAB under some circumstances. Yet, this method did not work in
the more complicated simulations from Chap. 7.

B.2 Script listing

% 5/08/04

% Lauritz Højgaard Olesen

% Modified by L.Belmon for FEMLAB 3.0a

%

% we allow 1000 nodes

n = 1000;

% exponentially scaled mesh in the x-direction

L = 1; A = 2; fem.geom = rect2(0,L,0,1);

fem.mesh=meshinit(fem,’hmax’,sqrt(L/n)); disp(fem.mesh);

%creating a mesh a struct type that we can work with.

mesh=struct(’p’,fem.mesh.p,’e’,fem.mesh.e,’t’,fem.mesh.t,’v’,fem.mesh.v,’equiv’,fem.mesh.equiv);
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% plot the initial mesh

figure(1);meshplot(fem);axis equal;

%applying the nodal transformation

[n,m]=size(fem.mesh.p);

mesh.p(1,:)=L*[exp(fem.mesh.p(1,:)/A)-exp(0/A)]/[exp(L/A)-exp(0/A)];

fem.mesh=femmesh(mesh);

% plot the transformed mesh

figure(2);subplot(2,2,1);meshplot(fem); axis equal;

%setting up the equations

fem.sdim = {’x’ ’y’}; fem.dim = {’u’}; fem.const = {’a’ 25};

fem.expr = {’u0’ ’(x<1e-8)’};

fem.form = ’general’; fem.equ.ga = {{{’ux’ ’uy’}}};

fem.equ.f ={{{’(a^2-pi^2)*u’}}};

% Dirichlet boundary conditions everywhere

fem.bnd.r = {{’u-u0’}};

%Solving

fem = femdiff(fem); fem.xmesh = meshextend(fem);

fem.sol = femlin(fem);

subplot(2,2,2);

postplot(fem,’tridata’,’u’,’triz’,’u’,’refine’,1,’axisequal’,’on’);

% error

disp(’error(Linf) error(L2) min(meshqual)’)

disp([postmax(fem,’u-u0’)/postmax(fem,’u0’) ...

sqrt(postint(fem,’(u-u0)^2’)/postmax(fem,’u0^2’)) ...

min(meshqual(fem.mesh.p,fem.mesh.t))])



Appendix C

Paper submitted to Phys. Rev. E

Title
Electro-hydrodynamics of bi-ionic electrolytes driven by modulated surface potentials

Authors
N.A. Mortensen, L. Belmon, L.H. Olesen and H. Bruus

Reference
http://arxiv.org/abs/cond-mat/0407160

67



68 APPENDIX C. PAPER SUBMITTED TO PHYS. REV. E
ar

X
iv

:c
on

d-
m

at
/0

40
71

60
 v

1 
  7

 J
ul

 2
00

4

Electro-h y d rod y n a m ics of b i-ion ic electroly tes d riv en b y m od u la ted su rfa ce p oten tia ls

Niels Asger Mortensen,1 L ionel B elm on,1,2 L a u rits H ø jga a rd O lesen,1 a nd H enrik B ru u s1
1MIC – Department of Micro and Nanotech nology ,

T ech nical University of Denmark, DK -2 8 0 0 K ongens L yngby , Denmark
2E cole Centrale de Nantes, F -4 4 3 2 1 Nantes, F rance

(Dated: July 7, 2004)

W e study th e electro-h ydrodynam ic s of th e Deb ye sc reening layer th at arises in an aq ueous b i-
ionic solution near a planar insulating w all w h en applying a spatially m odulated ac-v oltag e w ith
ang ular freq uency ω. U sing fi rst order perturb ation th eory w e estab lish th e g ov erning eq uations for
th e full non-eq uilib rium prob lem and ob tain analytic solutions for th e pressure and v eloc ity fi eld
of th e electrolyte and for th e electric potential. O ur w ork prov ides th e th eoretical foundations of
ph enom enolog ical m odels discussed in th e literature. T h e non-eq uilib rium approach also rev eals
unex pected h ig h -freq uency dynam ic s not predicted b y ph enom enolog ical m odels.

PACS n u m b e rs: 4 7 .6 5 .+ a , 4 7 .3 2 .-y , 4 7 .7 0 .-n , 8 5 .9 0 .+ h

I. INTRODUCTION

R ecently , th ere h a s b een q u ite som e interest in electro-
h y d rod y na m ic s in m ic rofl u id ic sy stem s. AC -d riv en, m od -
u la ted su rfa ce p otentia ls h a v e b een u sed for p u m p ing [1 –
7 ] a nd for fl u id c irc u la tion a nd m ix ing, see R efs. [8 –
1 0 ] a nd references th erein.

W e rev isit th e p rob lem stu d ied b y Ajd a ri [1 ] w h ere a n
electroly te is p ertu rb ed b y a n AC -d riv en sp a tia lly m od -
u la ted su rfa ce p otentia l. H ow ev er, instea d of m od elling
th e su rfa ce a s w ell a s th e D eb y e la y er b y sim p le c a p a c i-
tors w e d ev elop a fu ll non-eq u ilib riu m d escrip tion of th e
electro-h y d rod y na m ic s. T h is a llow s u s to stu d y th e fu ll
d y na m ic s of ion concentra tions, electric a l p otentia ls, v e-
loc ity fi eld s, p ressu re fi eld s, a nd electric a l c u rrents.

In th e follow ing w e consid er a b i-ionic electroly te, i.e.,
a n a q u eou s solu tion of a sa lt conta ining a p ositiv e a nd
a nega tiv e ty p e of ions w ith ch a rges + Ze a nd −Ze, re-

x = λD

x = 0

x = −d

V
ext

(y,t = 0 )

−

2π
q

2π
q

e le c tro ly te

in su la to r

c o n d u c to r

x

y

F IG . 1 : A sk etch of th e system under study. T h e b i-ionic
electrolyte is situated in th e h alf space x > 0. B elow it,
for −d < x < 0, is a planar w all consisting of an insulating
dielectric slab of th ick ness d and b elow th at, for x < −d,
is a sem i-infi nite conductor. T h e top surface, x = −d, of
th e conductor is b iased b y a periodically m odulated potential
Ve x t(y , t) of period 2π / q (dotted line), w h ich g iv es rise to th e
form ation of a Deb ye sc reening layer of th ick ness λD in th e
electrolyte (dash ed line).

sp ectiv ely , w h ere Z is th e v a lence a nd e th e elem enta ry
ch a rge. In term s of C a rtesia n coord ina tes xy z th e elec -
troly te is confi ned to th e sem i-infi nite sp a ce x > 0 b y a n
im p enetra b le, h om ogeneou s a nd p la na r insu la ting la y er
w ith d ielec tric consta nt εs p la ced a t −d < x < 0 , see
F ig. 1 . T h is la y er eith er m od els a S tern la y er or a n ox id e
la y er. T h e insu la ting la y er is b ou nd ed b y a cond u c tor a t
x < −d w h ich h a s b een b ia sed a t th e su rfa ce x = −d b y
a sp a tia lly m od u la ted , ex terna l a c p otentia l V

e x t
(y , t)

V
e x t

(y , t) = V0 cos(qy )eiω t , (1 )

w h ere V0 is th e a m p litu d e, q th e w a v enu m b er of th e sp a -
tia l m od u la tion, a nd ω th e d riv ing a ngu la r freq u enc y .

T h ere is com p lete tra nsla tion inv a ria nce a long th e z

a x is, so th e z coord ina te d rop s ou t of ou r a na ly sis, a nd
a ll p ositions r = (x, y ) a re th erefore ju st refereing to th e
xy p la ne.

T h e m a nu scrip t is orga nized a s follow s: in S ec . II w e
introd u ce ou r non-eq u ilib riu m d escrip tion a nd in S ecs. III
a nd IV w e a d d ress th e sta tic a nd d y na m ic regim es, re-
sp ectiv ely . F ina lly , in S ec . V w e d isc u ss ou r resu lts in
rela tion to R efs. [1 , 4 ] a nd in S ec . V I conc lu sions a re
giv en.

II. NON-EQ UIL IB RIUM DES CRIP TION

A . Th e in su latin g lay e r, −d < x < 0

The insulating layer contains neither free space charge
nor free currents so the electrical potential φ(r, t) is gov -
erned b y the L aplace eq uation,

∇
2φ(r, t) = 0, for − d < x < 0. (2 )

B . T h e e le c tro ly te , x > 0

In the liq uid electrolyte w e consid er the ionic d ensities
n±(r, t), the potential φ(r, t), the ionic current d ensities
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2

(th e io n ic fl u x d e n sitie s) i
±(r, t), th e v e lo c ity fi e ld v(r, t)

o f th e e le c tro ly te , an d th e p re ssu re fi e ld p(r, t).
T h e n u m b e r d e n sitie s o f th e io n s c o u p le to th e p o te n -

tial v ia P o isso n ’s e q u atio n ,

∇
2φ(r, t) = −

Ze

ε

[

n+(r, t) − n−(r, t)
]

. (3 a)

T h e io n ic c u rre n t d e n sitie s are c o u p le d to th e io n ic
d e n sitie s b y a c o n tin u ity e q u atio n , w h ich in th e ab se n c e
o f an y ch e m ical reac tio n s in th e sy ste m is

∂tn
±(r, t) = −∇ · i±(r, t). (3 b )

T h e p re se n c e o f c o n v e c tio n o r o f g rad ie n ts in th e d e n si-
tie s n±(r, t) an d th e e le c tric p o te n tial φ(r, t) w ill g e n e rate
io n ic c u rre n t d e n sitie s i

±(r, t). T h e se c u rre n ts are g iv e n
b y th e N e rn st– P lan ck e q u atio n

i
±(r, t) = − D∇n±(r, t) + n±(r, t)v(r, t)

∓ µn±(r, t)∇φ(r, t), (3 c )

w h e re , fo r sim p lic ity , w e h av e assu m e d th at th e tw o ty p e s
o f io n s h av e th e sam e d iff u sio n c o n stan t D an d th e sam e
m o b ility µ. W e re m in d th e read e r th at b o th th e d iff u sio n
c o n stan t D an d th e e le c tric c o n d u c tiv ity σ are lin k e d to

th e m o b ility µ v ia th e E in ste in re latio n D =
k
B

T

Z e
µ an d

σ± = Zen±µ.
F in ally , th e v e lo c ity fi e ld an d p re ssu re fi e ld o f th e liq u id

are c o u p le d to th e p o te n tial an d io n ic d e n sitie s b y th e
N av ie r– S to k e s e q u atio n

ρ
[

∂tv(r, t) + v(r, t) · ∇v(r, t)
]

= −∇p(r, t) (3 d )

+ η∇
2
v(r, t) − Ze

[

n+(r, t) − n−(r, t)
]

∇φ(r, t),

w h e re ρ is th e m ass d e n sity , η is th e v isc o sity o f th e
liq u id , an d p is th e p re ssu re . F u rth e rm o re , treatin g th e
e le c tro ly te as an in c o m p re ssib le fl u id w e h av e

∇ · v(r, t) = 0. (3 e )

T h e fi v e c o u p le d e q u atio n s, E q s. (3 a) to (3 e ), fu lly g o v -
e rn th e fi v e p h y sical q u an titie s n±, φ, i

±, v, an d p.

C. Boundary conditions

A ssu m in g a v an ish in g z e ta-p o te n tial (i.e., n o u n -
p assiv ate d su rfac e ch arg e s o n th e in su lato r-e le c tro ly te in -
te rfac e ), th e b o u n d ary c o n d itio n fo r th e e le c tric p o te n tial
is

φ(r, t)
∣

∣

x=−d
= Ve x t(y , t), (4 a)

φ(r, t)
∣

∣

x=∞
= 0. (4 b )

A t th e in te rfac e b e tw e e n th e e le c tro ly te an d th e in su -
latin g re g io n th e n o rm al c o m p o n e n t o f th e io n ic c u rre n t
d e n sity v an ish e s,

0 = ∂xn±(r, t)
∣

∣

x=0
±

Ze

kBT
n±(r, t)∂xφ(r, t)

∣

∣

x=0
. (5 )

H e re , w e h av e u tiliz e d E q . (3 c ) an d th e ab se n c e o f c o n -
v e c tio n at th e in te rfac e d u e to th e n o -slip b o u n d ary c o n -
d itio n ,

v(r, t)
∣

∣

x=0
= 0. (6 )

F o r th e io n ic d e n sitie s w e h av e

n±(r, t)
∣

∣

x=∞
= n

∞
, (7 )

w h e re n
∞

is th e h o m o g e n e o u s d e n sity o f e ith e r o f th e tw o
ty p e s o f io n s in th e ab se n c e o f an e x te rn al p e rtu rb atio n ,
i.e., w h e n V0 = 0. F o r th e p re ssu re , w e assu m e th at
w e h av e n o e x te rn ally ap p lie d p re ssu re g rad ie n ts so th at
p is th e in te rn al p re ssu re cau se d b y fl u id fl o w an d th e
e le c trical fo rc e s o n th e io n s.

III. S T A T IC R EG IM E, ω = 0

In th e static re g im e w e h av e e q u ilib riu m an d n e ith e r
c u rre n t n o r fl u id fl o w , i.e., i

± = 0 an d v = 0. T h e p re s-
su re g rad ie n t b alan c e s th e e le c trical fo rc e s o n th e ch arg e s.
T h e g o v e rn in g e q u atio n s fo r φ an d n± o f c o u rse re d u c e
to th o se o f e le c tro -static s.

In th e in su latin g lay e r φ(r) fo llo w s fro m E q s. (2)
an d (4 a),

φ(r) =
[

C1e
−q x+C2e

q x
]

c o s(q y ), fo r −d < x < 0, (8 )

w h e re C1,2 are in te g ratio n c o n stan ts.
In th e e le c tro ly te φ(r) is g o v e rn e d b y th e P o isso n –

B o ltz m an n e q u atio n w h ich in th e D e b y e – H ü ck e l ap p ro x i-
m atio n ZeV0 � kBT b e c o m e s (se e , e.g., S e c . IV A b e lo w
o r R e f. [1 1 ])

∇
2φ(r) = λ−2

D φ(r). (9 )

H e re , w e h av e in tro d u c e d th e D e b y e sc re e n in g le n g th

λD ≡

√

εk
B
T

2Z2e2n
∞

. (1 0)

T h e sp ac e ch arg e fo llo w s fro m P o isso n ’s e q u atio n ,
E q . (3 a). F ro m a straig h tfo rw ard so lu tio n fo r φ an d
Ze(n+ − n−) w e arriv e at th e fo llo w in g e x p re ssio n re -
latin g th e to tal p o te n tial d ro p ac ro ss th e sy ste m an d ac -
c u m u late d ch arg e in th e e le c tro ly te ,

φ(∞, y ) − φ(−d , y ) ≡

∫ ∞

0
d x Ze[n+(r) − n−(r)]

Ce ff

. (1 1 a)

T h e c o e ffi c ie n t,

C−1

e ff
=

[

1 + (q λD)2
] sin h (q d )

q d
C−1

s

+
√

1 + (q λD)2 c o sh (q d ) C−1

D , (1 1 b )
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3

is id e n tifi e d a s th e in v e rse o f a n e ff e c tiv e se rie s c a p a c i-
ta n c e . T h e c o n sta n t Cs is th e in trin sic su rfa c e c a p a c i-
ta n c e a n d CD th e c a p a c ita n c e o f th e D e b y e la y e r g iv e n
b y

Cs ≡
εs

d
, (11c)

CD ≡
ε

λD
. (11d )

In R e f. [1] th e p o te n tia l in th e b u lk o f th e e le c tro ly te (x �
λD) is g o v e rn e d b y th e L a p la c e e q u a tio n w h ich is c o u p le d
to th e e x te rn a l p o te n tia l Vext b y a n e ff e c tiv e c a p a c ita n c e

Ceff =
(

C−1
s + C−1

D

)−1
. A s sh o w n a b o v e th is a p p ro a ch is

v a lid u p to se c o n d o rd e r in th e sm a ll p a ra m e te rs qλD � 1
a n d qd � 1.

IV. DYNAMIC REG IME, ω > 0

W e n o w so lv e E q s. (3) in th e d y n a m ic re g im e , ω > 0.
F irst th e io n ic c u rre n t d e n sitie s a re e lim in a te d b y in se rt-
in g E q . (3c) in to E q . (3b ). U sin g th e in c o m p re ssib ility o f
th e fl u id , E q . (3e), w e g e t th e c o n tin u ity e q u a tio n

∂tn
±(r, t) = D ∇

2n±(r, t) − [∇n±(r, t)] · v(r, t)

± µ∇ ·
[

n±(r, t) ∇φ(r, t)
]

. (12)

A. De b y e – H ü ck e l ap p ro x im atio n

T o a d v a n c e fu rth e r b y a n a ly tic a l m e th o d s, w e n o w lin -
e a riz e th e c o n tin u ity e q u a tio n , E q . (12), in th e d e n sity a s
fo llo w s. W e a ssu m e n±(r, t)

∣

∣

x=∞
≡ n

∞
a n d w rite

n±(r, t) = n
∞

+ δ n±(r, t), lim
x → ∞

δ n±(r, t) = 0. (13)

It is a n o n -z e ro V0 th a t sp a w n s δ n± 6= 0, a n d w h e n th e
a p p lie d v o lta g e V0 is m u ch sm a lle r th a n th e th e rm a l v o lt-
a g e VT , d e fi n e d b y VT ≡ kBT / Z e, w e h a v e |δ n±

0 | � n
∞

.
In th is lim it th e so -c a lle d D e b y e – H ü ck e l a p p ro x im a tio n is
v a lid , a n d n±(r, t)∇φ(r, t) is su b stitu te d b y n

∞
∇φ(r, t)

in E q . (12). W e su b se q u e n tly u se E q . (3a ) to re p la c e
∇

2φ(r, t) w ith −ν(r, t)/ ε w h e re

ν(r, t) ≡ n+(r, t)−n−(r, t) = δ n+(r, t)− δ n−(r, t). (14 )

F in a lly , w e fo rm th e d iff e re n c e o f th e ”±” -v e rsio n s o f
E q . (12) a n d o b ta in th e p a rtia l d iff e re n tia l e q u a tio n

∂tν(r, t) =

[

D∇
2 − D

1

λ2
D

− v(r, t) · ∇

]

ν(r, t). (15 )

B . Diff u siv e re g im e

F ro m o u r stu d y o f th e sta tic re g im e w e k n o w th a t th e
n e t ch a rg e d e n sity is n o n -z e ro o n ly in th e D e b y e la y e r,

x . λD. In th is re g io n th e v e lo c ity w ill b e v a n ish in g b e -
c a u se o f th e n o -slip b o u n d a ry c o n d itio n . T h u s, d iff u sio n
w ill d o m in a te so th a t c o n v e c tio n c a n b e n e g le c te d , a n d
th e e le c tro - a n d h y d ro -d y n a m ic p ro b le m s d e c o u p le . S in c e
th e d e n sity d iff e re n c e ν ch a n g e s o v e r th e le n g th sc a le s
λD a n d q−1 fo r th e x a n d y d ire c tio n s, re sp e c tiv e ly , th e
c o n d itio n fo r th e d e c o u p lin g is |vx|/ λD + |vy|q � Dq2

fo r 0 < x . λD. In th is lim it E q . (15 ) h a s a g e n e ra l
c o s(qy)eiω t m o d u la te d d e c a y in g so lu tio n o f th e fo rm

ν(r, t) = C1e
−κ x c o s(qy)eiω t , x > 0, (16 a )

w h e re th e d e c a y p a ra m e te r κ d e p e n d s o n th e D e b y e fre -
q u e n c y ωD,

κ ≡
1

λD

√

1 + (qλD)2 + i
ω

ωD

, (16 b )

ωD ≡
D

λ2
D

. (16 c)

F o r th e p o te n tia l w e se e k a so lu tio n o f a fo rm sim ila r to
E q . (16 a ), φ ∝ c o s(qy)eiω t, a n d su b stitu tin g th is to g e th e r
w ith E q . (16 a ) in to E q . (3a ) y ie ld s

(∂2
x − q2)φ(r, t) = −

Z e

ε
C1e

−κ x c o s(qy)eiω t. (17 )

D e m a n d in g φ(r, t)
∣

∣

x=∞
= 0 th e so lu tio n is

φ(r, t) =
[

C1

Z e

ε
(q2 − κ2)−1e−κ x + C2e

−q x
]

× c o s(qy)eiω t, x > 0. (18 )

In th e in su la tin g la y e r w e h a v e th e fo llo w in g c o s(qy)eiω t

m o d u la te d g e n e ra l so lu tio n to E q . (2),

φ(r, t) =
[

C3e
−q x + C4e

q x
]

c o s(qy)eiω t , −d < x < 0.

(19 )
In o rd e r to d e te rm in e Cn (n = 1, 2, 3, 4 ) w e fi rst c o n -
sid e r th e b o u n d a ry c o n d itio n fo r th e c u rre n t. A p p ly in g
th e D e b y e – H ü ck e l a p p ro x im a tio n to th e se c o n d te rm in
E q . (5 ) a n d fo rm in g th e d iff e re n c e o f th e ”±” so lu tio n s
w e a rriv e a t

0 = ∂x

[

ν(r, t) +
CD

Z eλD
φ(r, t)

]
∣

∣

∣

x=0
. (20)

T o g e th e r w ith th e b o u n d a ry c o n d itio n fo r φ a t x = −d
a s w e ll a s th e c o n tin u ity o f φ a n d ε∂xφ a t x = 0 w e m a y
d e te rm in e th e c o n sta n ts stra ig h tfo rw a rd ly .

C. L o n g -p e rio d an d lo w -fre q u e n c y m o d u latio n

N e x t, w e c o n sid e r th e re g im e w h e re th e sp a tia l p e rio d
o f th e m o d u la tio n is m u ch lo n g e r th a n a ll o th e r le n g th
sc a le s, i.e., qλD � 1 a n d qd � 1. W e a lso a ssu m e th a t
ω � ωD so th a t κ ' 1/ λD. In th is lim it w e g e t

ν(r, t) = −
qσ

∞
V0

Z eλD

1

ω∗ + iω
e−x/ λ D c o s(qy)eiω t+O([qλD]2),

(21)
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FIG. 2: Top and bottom panels are gray scale plots of the
amplitu des of the potential φ(r, t) [see E q . (22)] and of the
pressu re p(r, t) [see E q . (3 1 )] as a fu nction of q x and q y . N o-
tice the period dou bling in the pressu re fi eld compared to the
electric potential.

a n d

φ(r, t) = V0

iω

ω∗ + iω
e−qx c o s(qy)eiωt + O(qλD), (22)

w h e re w e h a v e u se d th e n o ta tio n o f A jd a ri [1]

re so n a n c e fre q u e n c y : ω∗ = qλD(1 + δ) ωD, (23 a )

c o n d u c tiv ity : σ
∞

= [σ+ + σ−]
∣

∣

∞
= εωD, (23 b )

c a p a c ita n c e ra tio : δ =
CD

Cs
. (23 c)

T h e se re su lts a re e q u iv a le n t to th o se in R e f. [1] if w e
sim ila rly to E q . (11a ) in tro d u c e th e D e b y e la y e r su rfa c e
ch a rg e σD(y) = Z e

∫ ∞

0
d x ν(x, y).

D . B o d y -fo rc e

U n til th is p o in t w e h a v e u se d th e e x p o n e n tia l n o ta -
tio n fo r th e te m p o ra l d e p e n d e n c e . H o w e v e r, sin c e th e
b o d y -fo rc e is e sse n tia lly n o n -lin e a r in th e e le c tric a l p o -
te n tia l/ d e n sity [se e la st te rm in E q . (3 d )] w e h a v e to ta k e
th e re a l p a rt to g e t th e b o d y -fo rc e , i.e., F = −Z eν∇φ =
−Z eR e{ν}R e{∇φ} so th a t w e g e t

F(r, t) =
ηv1

λ2
D

c o s(2ωt + ϕ)
ω
ω∗

+ ω∗

ω

e−x/ λ D (24a )

×
[

2 co s2(qy)ex + sin (2qy)ey

]

+ O
(

[qλD]2
)

qy

qx

x

λ
D

0.0

0.5

1 .0

1 .5

4

2

0
0

1

2
π π

FIG. 3 : V ector-plots of the v ector-amplitu de of the v elocity-
fi eld v(r, t) in the bu lk [top panel] giv en by E q . (3 0 ) and in
the D ebye layer [bottom panel] giv en by E q . (27 ). The fl ow
pattern contains rolls (w ith a temporal harmonic motion),
w hich are indicated by contou rs of constant v elocity (dashed
lines).

w h e re w e fo llo w in g R e f. [1] h a v e in tro d u c e d

v1 ≡
qεV 2

0

4η(1 + δ)
(24b )

a n d th e fre q u e n c y d e p e n d e n t p h a se sh ift

ϕ = − a rc ta n

(

ω

2ω∗
−

ω∗

2ω

)

. (24c)

In th e d e riv a tio n o f E q . (24a ) w e h a v e u se d th a t

R e

{

eiωt

iω + ω∗

}

R e

{

iωeiωt

iω + ω∗

}

=
−1

2ω∗

c o s(2ωt + ϕ)
ω
ω∗

+ ω∗

ω

. (25 )

A t lo w fre q u e n c ie s, F ∝ ω, it b e c o m e s m a x im a l a t th e
re so n a n c e fre q u e n c y ω∗, a n d th e n it fa lls o ff a g a in a t
h ig h e r fre q u e n c ie s. W e n o te th a t lim ω→0 F = O

(

[qλD]2
)

,
b u t th is sm a ll fo rc e w ill ju st b e b a la n c e d b y a p re ssu re
g ra d ie n t so th a t lim ω→0 v = 0 a n d lim ω→0 i

± = 0.

E. L in e ariz e d fl o w in q u asi-ste ad y state

In o rd e r to so lv e th e N a v ie r– S to k e s e q u a tio n , E q . (3 d ),
w e n o te th a t fo r a b o d y -fo rc e o f sm a ll m a g n itu d e a n d
w ith slo w te m p o ra l v a ria tio n th e fl u id re sp o n se is lin -
e a r a n d th e fl o w w ill a p p ro x im a te ly b e a t ste a d y sta te
a t e a ch m o m e n t in tim e . W e b e g in b y c o m p a rin g th e
in e rtia l te rm s o n th e le ft-h a n d sid e (L H S ) w ith th e v is-
c o u s te rm (se c o n d te rm ) o n th e rig h t-h a n d sid e (R H S ).
T h e b o d y fo rc e h a s a ch a ra c te ristic fre q u e n c y ω a n d tw o
ch a ra c te ristic le n g th sc a le s λD a n d q−1 fo r th e x a n d y-
d ire c tio n s, re sp e c tiv e ly . S in c e ∂t e sse n tia lly g iv e s a fa c -
to r o f ω, a n d ∇ e sse n tia lly g iv e s λ−1

D ex + qey, w e c a n
sh o w th a t th e v isc o u s te rm d o m in a te s o v e r th e L H S w h e n



72 APPENDIX C. PAPER SUBMITTED TO PHYS. REV. E
5

ω � ωc ≡ η
ρ D ωD. T h is c o n d itio n is e a sily fu lfi lle d w h e n

ω � ωD, sin c e ty p ic a lly η
ρ D � 1, a n d E q . (3 d ) th e n

b e c o m e s

0 ' −∇p(r, t) + η∇
2
v(r, t) + F(r, t). (26 )

T h is is th e re su ltin g q u a si-ste a d y fl o w p ro b le m w h ich is
lin e a r in th e v e lo c ity fi e ld .

F. Debye layer flow

In o rd e r to so lv e E q s. (3 e ) a n d (26 ) w e stu d y th e fl o w
o v e r a λD-sc a le a t th e b o u n d a ry fi rst a n d th e n a q−1-
sc a le . F o r th is b o u n d a ry la y e r a p p ro a ch , w e a ssu m e th a t
fo r x . λD, w e h a v e vx ∼ 0 . S o lv in g fo r th e p re ssu re a n d
su b stitu tin g in to th e y-c o m p o n e n t o f E q . (26 ) w e g e t

vy(r, t) = vs(y, t)
(

1 − e−x/ λ D

)

+ O(qλD), x . λD (27 )

w h e re th e p re fa c to r

vs(y, t) ≡ v
1

c o s(2 ω t + ϕ)
ω
ω∗

+ ω∗

ω

sin (2 q y), (28 )

in th e lim it 1/ q � x & λD c a n b e in te rp re te d a s a slip -
v e lo c ity a t th e w a ll a c tin g a s a c o n v e y o r b e lt fo r th e b u lk
fl u id (se e b o tto m p a n e l o f F ig . 3 ).

G . B u lk flow

F o r x & λD w e h a v e th a t F ' 0 a n d w e so lv e E q . (26 )
to g e th e r w ith E q . (3 e ) a n d th e b o u n d a ry c o n d itio n

v(r, t)
∣

∣

x= 0
= vs(y, t) ey. (29 )

T o lo w e st o rd e r in qλD th is g iv e s

v(r, t) ' v
1

c o s(2 ω t + ϕ)
ω
ω∗

+ ω∗

ω

e−2q x (3 0 )

×
(

− 2qx c o s(2qy)ex + (1 − 2qx) sin (2qy)ey

)

,

a n d

p(r, t) ' 4qηv
1

c o s(2ωt + ϕ)
ω
ω∗

+ ω∗

ω

e−2q x c o s(2qy). (3 1)

If w e n o w su b stitu te in to E q . (3 d ) w e g e t R H S −
L H S ∝ e−x/ λ D + O(ω/ ωD) + O([qλD ]2) w h ich sh o w s
th a t E q s. (3 0 ) a n d (3 1) a re in d e e d e x c e lle n t a p p ro x im a -
tio n s to th e fu ll so lu tio n o f th e n o n -lin e a r tim e -d e p e n d e n t
N a v ie r– S to k e s e q u a tio n , E q . (3 d ), fo r x � λD. F o r th e
in c o m p re ssib ility c o n stra in t, E q . (3 e ), o u r so lu tio n g iv es
∇ · v = O([qλD ]2). In F ig . 3 w e sh o w a fi e ld -p lo t o f
th e v e lo c ity -fi e ld , E q . (3 0 ), a lo n g w ith th e c o n to u rs fo r
c o n sta n t v e lo c ity .

TABLE I: Ty p ic a l v a lu e s o f c e n tra l p a ramete rs.

S p a tia l mo d u la tio n q−1 1 0−5 m
In su la to r th ick n e ss d 1 0−8 m
D eb y e sc re e n in g le n g th λD 1 0−8 m

R eso n a n c e fre q u e n c y ω∗ 1 0 6 s−1

D e b y e fre q u e n c y ωD = σ∞/ ε 1 0 7 s−1

C ritic a l fre q u e n c y ωc = (η/ ρD)σ∞/ ε 1 0 10 s−1

Th erma l v o lta g e VT = kBT / Z e 2 5 mV

C ritic a l v o lta g e Vc =
√

(1 + δ)ηD/ ε 1 0 0 mV

Io n ic d e n sity n
∞

1 mo lL−1

V isc o sity η 1 0−3 P a s
M a ss d e n sity ρ 1 0 3 k g m−3

Io n ic d iff u sio n c o n sta n t D 1 0−9 m2 s−1

C a p a c ita n c e ra tio δ = CD/ Cs 1 0

V . DIS C U S S IO N

W e h a v e a n a ly z e d th e fu ll n o n -e q u ilib riu m e le c tro -
h y d ro d y n a m ic s o f th e D e b y e sc re e n in g la y e r th a t a rise s
in a n a q u e o u s b i-io n ic so lu tio n n e a r a p la n a r w a ll w h e n
a p p ly in g a sp a tia lly m o d u la te d a c -v o lta g e V0 c o s(qy)eiωt,
E q . (1). O u r a n a ly sis a p p lie s to th e lo w -fre q u e n c y
D e b y e – H ü ck e l re g im e w h e re th e a m p litu d e V0 o f th e
e x te rn a l p o te n tia l is lo w e r th a n th e th e rm a l v o lta g e
VT a n d th e d riv in g fre q u e n c y ω is lo w e r th a n th e in -
v e rse re sp o n se -tim e o f th e e le c tro ly te ωD = σ

∞
/ ε (se e

S e c s. IV A a n d IV C ). F u rth e rm o re , w e h a v e lim ite d o u r-
se lv e s to th e d iff u siv e re g im e w h e re c o n v e c tio n c a n b e
n e g le c te d c o rre sp o n d in g to a su ffi c ie n tly lo w d riv in g a m -
p litu d e , V0 � Vc w h e re Vc ≡

√

(1 + δ)ηD / ε is a c riti-
c a l v o lta g e [se e fi rst p a ra g ra p h o f S e c . IV B , v ∼ v

1
ey

in th e D e b y e la y e r]. W e h a v e a lso c o n sid e re d th e lo w -
fre q u e n c y re g im e ω � ωc w h e re v isc o sity d o m in a te s o v e r
in e rtia (se e S e c . IV E ). F in a lly , w e h a v e c o n sid e re d th e
lim it w ith th e sp a tia l m o d u la tio n b e in g m u ch lo n g e r th a n
a ll o th e r le n g th sc a le s in th e p ro b le m , i.e . qd � 1 a n d
qλD � 1 (se e S e c . IV C ). In su m m a ry th is m e a n s th a t
w e h a v e stu d ie d th e e ff e c t o f E q . (1) in th e lim its

q � m in
{

d−1, λ−1

D

}

, (3 2a )

ω � m in
{

ωD, ωc

}

, (3 2b )

V0 � m in
{

VT , Vc

}

. (3 2c)

T y p ic a l v a lu e s o f o u r p a ra m e te rs a re liste d in T a b le I.
U sin g fi rst o rd e r p e rtu rb a tio n th e o ry w e h a v e o b ta in e d

a n a ly tic so lu tio n s fo r th e p re ssu re a n d v e lo c ity fi e ld o f th e
e le c tro ly te a n d fo r th e e le c tric p o te n tia l. T h e so lu tio n s
h a v e b e e n o b ta in e d b o th in th e n a rro w D e b y e la y e r o n th e
le n g th sc a le λD a n d in th e b u lk o n th e la rg e r le n g th sc a le
1/ q set b y th e p e rio d o f th e a p p lie d e x te rn a l p o te n tia l.
A s a m a in re su lt w e h a v e su p p lie d a p ro o f fo r th e v a lid ity
o f th e p h e n o m e n o lo g ic a l c a p a c ito r m o d e l.

T h e fu ll d y n a m ic s se e m s h o w e v e r n o t to b e c a p tu re d
b y th e c a p a c ito r m o d e l. T a k in g th e tim e -a v e ra g e in
E q s. (24a ) a n d (3 0 ) w e g e t

〈

F
〉

t
= 0 a n d

〈

v
〉

t
= 0 (in

fu ll a g re e m e n t w ith th e d isc u ssio n in R e f. [1]). In c o n -
tra st, w e o b ta in

〈

F
〉

t
6= 0 if w e b e g in fro m E q s. (16 a )
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a n d (1 8 ) w ith o u t e x p a n d in g in ω/ωD a n d q λ D (th e re -
su lt is fi n ite e v e n in th e z e ro -fre q u e n c y lim it). S o m e w h a t
sim ila r re su lts w e re re p o rte d in a n o th e r n o n -e q u ilib riu m
stu d y [4 ], th o u gh fo r a d iff e re n t ge o m e try . N a iv e ly , th is
o b se rv a tio n c o u ld su gge st th a t

〈

v
〉

t
6= 0 c o n tra ry to th e

sta te m e n t in R e f. [1 ]. H o w e v e r, b y a lso a v e ra gin g o v e r th e
y-d ire c tio n w e ge t

〈

Fy

〉

t,y
= 0 su gge stin g th a t

〈

vy

〉

t,y
= 0

in a gre m e n t w ith th e sy m m e try a rgu m e n ts e m p h a siz e d in
R e f. [1 ]. If th e fi n ite

〈

F
〉

t
d o e s n o t giv e th e fl u id a d i-

re c tio n a l fl o w glo b a lly , w e m igh t sp e c u la te th a t, a t h igh
fre q u e n c ie s, it m a k e s th e fl u id c irc u la te in n o n -o sc illa tin g
v o rtic e s (w ith a sp a tia l p a tte rn lik e in F ig. 3 ) w h e re a s
th e fl u id is a t re st a t z e ro -fre q u e n c y – d e sp ite

〈

F
〉

t
b e in g

fi n ite . T h e so lu tio n to th is a p p a re n t c o n tra d ic tio n lie s
in th e p re ssu re w h ich w ill c o m p e n sa te th e b o d y -fo rc e a t
lo w fre q u e n c ie s. T h is h a s n o t b e e n p o in te d o u t p re v i-
o u sly in th e lite ra tu re . W e c a n e x p lic itly sh o w th a t th e
tim e -a v e ra ge d b o d y -fo rc e c a n b e w ritte n a s a gra d ie n t-
p o te n tia l

〈

F(r, t)
〉

t
= ∇pF (r) + O

(

[ω/ωD]2
)

(3 3 )

w h e re

pF (r) = p0 +
1
4 εq 2V 2

0
[

q λ D c o sh (q d ) + ε
εs

√

1 + (q λ D)2 sin h (q d )
]2

× e−2
√

1+ (q λ D)2 x / λ D c o s2(q y) (3 4 )

w ith p0 b e in g a c o n sta n t. In tro d u c in g th e e ff e c tiv e c a -
p a c ita n c e , E q . (1 1 b ), w e c a n a lso w rite th is a s

pF (r) = p0 + q η v1

(

1 +
CD

Cs

)(

Ce ff

CD

)2
1 + (q λ D)2

(q λ D)2

× e−2
√

1+ (q λ D)2 x / λ D c o s2(q y). (3 5 )

T h e fo rm o f E q . (3 3 ) su gge sts th a t

〈

v(r, t)
〉

t
= 0 + O

(

[ω/ωD]2
)

(3 6)

w ith pF b e in g a p re ssu re th a t c o m p e n sa te s th e lo w -
fre q u e n c y p a rt o f th e b o d y fo rc e , se e E q . (2 6). A t h igh
fre q u e n c ie s w e e x p e c t v o rtic e s to c o -e x ist w ith th e h a r-
m o n ic fl u id m o tio n d e sc rib e d in E q . (3 0 ) w h e re a s a t
lo w fre q u e n c ie s th e c irc u la tio n v a n ish e s a n d w e a re le ft
w ith th e p u re h a rm o n ic m o tio n . T im e -d e p e n d e n t fi n ite -
e le m e n t sim u la tio n s se e m to c o n fi rm th is p ic tu re [1 2 ] a n d
sim ila r tim e -a v e ra ge d fl o w in a sligh tly d iff e re n t ge o m e -
try h a s b e e n o b se rv e d b o th e x p e rim e n ta lly , th e o re tic a lly ,
a n d n u m e ric a lly [3 – 5 ].

VI. CONCLUSION

O u r re su lts p ro v id e th e th e o re tic a l u n d e rp in n in g o f th e
p h e n o m e n o lo gic a l c a p a c ito r m o d e l w id e ly u se d in th e lit-
e ra tu re [1 – 3 , 5 , 1 3 , 1 4 ], a n d fo rm a fi rm sta rtin g p o in t
fo r fu tu re stu d ie s o f e le c tro -k in e tic p u m p s a n d m ix e rs
d riv e n b y sp a tia lly m o d u la te d su rfa c e p o te n tia ls. H o w -
e v e r, o u r n o n -e q u ilib riu m a p p ro a ch h a s a lso re v e a le d in -
te re stin g sh o rt-c o m in gs in th e c a p a c ito r a p p ro a ch in [1 ]
fo r h igh -fre q u e n c y d y n a m ic s w h e re v o rtic e s m a y a p p e a r
a lo n g w ith th e h a rm o n ic ro lls a lso p re d ic te d b y th e c a -
p a c ito r m o d e l.
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