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Abstract

Dispersion of samples driven in microflows may be either wanted or unwanted.
For example, the mixing of one chemical into the other may be wanted for faster
chemical reactions. Dispersion may be undesired when, for example, measuring
the concentration of a florescent species, since too much dispersion yields low
concentrations, which makes it difficult to obtain accurate detection measure-
ments.

We have considered three different effects causing dispersion of samples in
microflows: diffusion, velocity gradients of the flow profile, and finally geometri-
cal effects, such as the "race track" effect observed when a sample flows through
a turn. The dispersion has been investigated theoretically and by means of
computational fluid dynamics (CFD). The theoretical findings have been com-
pared with CFD simulations. With respect to flows in cylindrical geometries,
the so-called Taylor dispersion has been studied, and a general formula for find-
ing Taylor’s effective dispersion coefficient has been derived. Investigations have
been made as to whether the dispersion in a turn can be diminished by short
circuiting the electric field in the turn. Using CFD we have concluded that the
short circuiting worsened the dispersion caused by the turn. To minimize the dis-
persion induced by turns with flows driven electrokinetically, we have suggested
changes of the electroosmotic mobility. CFD simulations demonstrate the cor-
rectness of the suggestions. Moreover, a novel method for controlling dispersion
is suggested, and the steady state situation is studied.






Resumé

Dispersion af vaeskeprgver drevet i strgmninger i mikrokanaler kan vaere bade
gnsket og ugnsket. For eksempel kan blandning af et kemikalie i et andet vaere
pnsket for at opna hurtigere kemiske reaktioner. Dispersion kan vaere ugnsket i
tilfaelde hvor koncentrationen af et flourecerende stof skal males, idet dispersion
giver lave koncentrationer, hvilket medfgrer problemer med at opna preecise
malinger.

Tre forskellige effekter som giver anledning til dispersion i mikrokanaler er
blevet undersggt: Diffusion, gradienter i hastigheds profiler og geometriske ef-
fekter, som for eksempel "race-track"-effekten, der opstar nar en veeskeprgve
sendes igennem et sving. Dispersionen er blevet undersggt teoretisk og ved
hjeelp af kommercielt software, CFD. Teorien er blevet sammenlignet med CFD
simuleringerne. Med hensyn til strgmninger i cylinderformede geometrier er den
sakaldte Taylor dispersion studeret, og en generel formel til bestemmelse af
Taylor’s effektive dispersionskoefficient er udledt. Desuden er det blevet under-
sggt om dispersionen i et sving kunne mindskes ved at kortslutte det elektriske
felt. Ved hjalp af CFD er det blevet fastslaet at kortslutningen gger dispersio-
nen, s idéen ma forkastes. Til mindskning af dispersionen forarsaget af sving
i mikrokanaler er sendringer til den elektroosmotiske mobilitet foreslaet. CFD
simuleringer cementerer rigtigheden af de foreslaede sndringer. Ydermere er en
metode til at kontrollere dispersionen af en veaeskeprgve ved hjelp af elektriske
felter blevet foreslaet, og "steady-state" tilstanden er blevet undersggt.
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Chapter 1

Introduction

Microtechnology has within the last decade given birth to systems for analysing
fluids on micrometer scale, the so-called Micro Total Analysis Systems, pu-TAS,
which has been developing with considerable success. Applications of u-TAS
are e.g. found in pollution detection and medicine research. In this context it is
natural also to mention the Lab-on-a-Chip concept. The idea behind Lab-on-a-
Chip is to make a system on the micrometer scale!, which can perform all the
necessary steps in a specific analysis process. No user interaction is needed except
at the initial input stage. Advantages of making such a system on a micrometer
scale are that it becomes very portable, many systems could be made easy to
mass produce, and the quantities needed to make the analysis are measured in
nanograms rather than several grams. Especially the pharmaceutical industry
has shown interest in the Lab-on-a-Chip concept, because of the request for
fast analysis. The ability to speed up the analysis process is important, because
of issues such as patents and intellectual properties, IP, which only run for a
limited period of time.

In this thesis we will be concerned with the dispersion or spreading of a chem-
ical substance, a sample. This dispersion takes place in microchannels, which
form the basis of u-TAS or Lab-on-a-Chip technology. We will not concern
ourselves with the actual chemical reactions. In order to account for the disper-
sion of samples a thorough understanding is needed of the constitutive physical
relations governing fluid dynamics, diffusion, and electromagnetism. Applying
mathematics to fluid dynamics naturally leads to computational fluid dynam-
ics, CFD, which is one of the most important tools for solving ;-TAS problems
without making real experiments. We will not claim that CFD can replace ex-
perimental work. CFD is rather a supplement to the work of experimentalists.
Procedures such as sensitivity analysis on a whole range of parameters can be
made easier applying CFD. CFD can also present solutions visually giving us the
possibility of studying parameters almost continuously through time. A feature
which could prove to be very valuable in the search of novel designs.

Thus, during this project we will study the dispersion of samples in mi-
croflows both from a theoretical point of view and through CFD simulations.
The CFD simulations will be made using the commercial software Coventor.

ICompare these microfluidic systems with a human hair, which is roughly 200um wide.



2 CHAPTER 1. INTRODUCTION

Chapter Review

After this introductory chapter we will in Chapter 2 lay out the basic physics
needed throughout the thesis. The basic physics include equations for conser-
vation of mass, momentum and energy, equations for diffusion and convection
of a sample, and a transport equation for a sample influenced by diffusional,
convectional, and electrical forces.

In Chapter 3 we will consider the possibilities of driving liquids electroki-
netically. Here the understanding of the basic principles behind electrophoresis
and electroosmosis are key issues.

A more common way of driving fluids is by means of pressure gradients. In
Chapter 4 velocity profiles obtained in pressure driven flows are found using an
analytical approach.

Now that the fundamentals of driving flows have been accounted for we will
in Chapter 5 consider the dispersion of a sample placed in such a flow. Different
effects contributing to the dispersion of a sample are discussed, such as Taylor
dispersion and the race track effect. Possible ways of counteracting dispersion
are proposed. The theory presented closely follow the work by Probstein (1994).

A novel technique for dispersion control is presented in Chapter 6. Shortly,
the possibility of applying electric fields to obtain a separation of oppositely
charged ions is studied. When a separation is obtained a spacial translation of
the electric field will drag along the separated ions and keep them separated.

In Chapter 7 the commercially available CFD software, Coventor, will be
applied to investigate the dispersion of an electrokinetically driven sample trav-
elling through a turn. Different approaches will be taken toward minimizing the
dispersion. The advantages of applying CFD simulations for such studies will
become apparent.

Finally, in Chapter 8 conclusions and outlook are presented. We will sum up
the important findings and experiences gathered throughout this project, and
give an overview of the further work, which lies as a natural continuation of this
master thesis.



Chapter 2

Basic Physics

In the following the basic physical relations needed throughout this thesis will
be presented. Theory in the following chapters is thus solely based on the fun-
damental physical principles described below.

Definition of a fluid: "A fluid can be defined as a material that deforms
continuously and permanently under the application of a shearing stress, no
matter how small." This definition is quite common and can be found in many
textbooks. Applying a shear stress, if it is not too large, will deform a solid to
some degree, but the solid deforms only while the shear stress is applied and
regains its original shape when it is relieved.

2.1 Fluid Flow

The governing equations for fluid flow concerns mass, momentum, and energy.
Mass is dealt with through the continuity equation. Momentum is dealt with
through Newton’s second law, and energy is dealt with through the thermal
diffusion equation. Newton’s second law is in the case of fluid flow most conve-
niently written in the form of the Navier-Stokes equation

du +(u-Viu= —EVp—Fl/VZu—&—f, (2.1)
ot p

where u is the fluid velocity, ¢ is time, p is mass density, v is the kinematic
viscosity and f is body forces acting on the fluid such as gravity or electrical
forces. The first term on the right-hand side governs the change in momentum
caused by the pressure gradient, whereas the second term governs the diffu-
sion of momentum, and the kinematic viscosity can as such be considered as
a diffusion constant for momentum. We will later on consider mass and ther-
mal diffusion. Often we will refer to the dynamic viscosity (i) instead of the
kinematic viscosity. This is given as

w=rvp. (2.2)

The Navier-Stokes equation governs the flow of momentum. Correspondingly
the conservation of mass is governed by the continuity equation for fluid flow,
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which generally is given as

Ip

LV (pw) (23)
In many cases fluids can be considered incompressible, p constant, and indeed we
will assume this throughout this thesis. This assumption simplifies the continuity
equation as follows

V-u=0. (2.4)

Besides the governing equations two dimensionless quantities are worth mention-
ing as they are traditionally important for fluid flows. The Reynolds number and
Peclet number respectively defined as

momentum transported by convection UL

Re = = —, 2.5
momentum transported by viscous diffusion v (25)

mass transported by convection UL

Pe = (2.6)

mass transported by diffusion D’
where U is a characteristic velocity (e.g. the mean velocity), L is the charac-
teristic length (e.g. the radius of a tube), v is the kinematic viscosity and D is
the diffusion coefficient. The Peclet number defined above is also known as the
diffusion Peclet number. A thermal Peclet number can be defined similarly just
replacing mass with heat. We will mainly be concerned with the diffusion Peclet
number.

2.2 Diffusion

The governing equation for diffusion of particles is given by Fick’s law, which
states that the particle current density given by

J = uc, (2.7)
is proportional to the concentration gradient
J=-DVcg, (2.8)

where D is the diffusion coefficient. D is thus a measure of how easy it is for a
particle to diffuse given a specific concentration gradient. The equation for the
conservation of species is given by
Oc
— + V- (uc) =0. 2.9
V- (ue) (29)
Often in a microfluidic system a species is also transported by convection as
well as diffusion, i.e.

J =-DV?c+uc (2.10)

Combining equations (2.8) and (2.10) yields the convection diffusion equation

% + V- (uc) = DV, (2.11)
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Assuming the fluid to be incompressible we arrive at

dc
— +(u-V)e=DVZc (2.12)
ot
A similar equation exists for the transfer of heat (Fourier’s law), where a heat
diffusion coefficient appears instead of D and c is replaced by temperature, T,
oT
E + (ll : V)T = atemPVQTa (213)
where ctemp is the thermal diffusivity. We have thus presented the equations
for conservation of mass together with the transport equations for momentum,
species and thermal energy.

2.2.1 Temperature Dependence of Viscosity and the Dif-
fusion Coefficient

We will consider a model for the temperature dependence of the viscosity, or
diffusion coefficient of momentum. Next we will use a coupling between the
dynamic viscosity and the diffusion coefficient, to obtain a relation between D
and temperature.

The velocity gradient in the flow direction, g—z is proportional to the product
of the shear stress 7,, and the exponential factor exp (—AG/RT) (Probstein,

1994),
ou —-AG
a—y X Ty exp <W> s (214)

AG is the minimum energy required for a molecule to escape from its neigh-
boring molecules in the liquid, R is the gas constant, and 7T is the temperature.
The connection between shear stress and the velocity gradient for Newtonian
fluids,

ou
Tyx = ,Ua_ya (2.15)
then yields
AG
— 2.1
,uo<exp<RT>, (2.16)

relating temperature and dynamic viscosity. The connection between the viscos-
ity and the diffusion coefficient is found from Stokes’ law and the Stoke-Einstein
equation, respectively

[ =6map, (2.17)
RT
f= m7 (2.18)

where f is the frictional force. Eliminating f we obtain

RT

D= ———. 2.19
6mNap ( )
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Inserting the temperature dependence on the viscosity yield

RT AG
D x 6r N1 exp (RT) . (2.20)

Hence we have found, 1 = Ajexp(B1/T) and D = AT exp(B2/T), where
(A, As, By, By) are constants. Below an example is given for water. Table values
for the self diffusion coefficient and the viscosity at different temperatures have
been found on the internet!. Figure 2.1 shows the Table values as, *. The curves
are fittings to the Table values, where (A;, A3, By, B2) are adjusted to obtain
the best fitting. Details on the fitting are given in Appendix E. We notice that
it is indeed possible to make a reasonably good fit from the relations, pu =
Ajexp(B1/T) and D = A;T exp(B2/T), indicating that the above theory can
be trusted.

+ Table Values ! ! )
1.8+ — Fitting * Table Values
—— Fitting 4

. . . . . 1 . . . .
280 300 320 340 360 270 280 290 300 310 320
TK T/K

(a) (b)

Figure 2.1: Viscosity, u, and the self diffusion coefficient, D, as function of temperature of
water. The points are table values and the curves are fittings to these table values. The viscosity
and self diffusion coefficients are fitted as, p = A1 exp(B1/T) and D = A>T exp(B2/T), where
(A1, Az, B1, Ba) are constants adjusted to obtain the best fitting.

2.3 Electrical Phenomena

The macroscopic Maxwell equations form the basis of the theory of electromag-
netism. Governing the electrical potential we have

V-D = p,, (2.21)

where D is the electric displacement and p. is the free charge density. The
connection between the electric displacement and the electric field E is for a
linear material per definition D = €E, where € in general is a tensor. We will
assume the dielectric constant to be isotropic. The electric potential ¢ is defined
from the equation

E=-V¢ (2.22)

Thttp://www.nmr-relaxation.com /handbook /general /water.htm
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Combining equations (2.21) and (2.22) gives the Poisson equation relating the
electrical potential and the charge density.

1
Vi = ==pe- (2.23)

We mentioned earlier that a body force could be present in the Navier-Stokes
equation, e.g. electrical forces. In the case of a fluid particle, with charge ¢, the
body force is given by the Lorentz force

F.=q¢(E+uxB), (2.24)

where B is the magnetic field. In the cases considered in this thesis magnetic
fields are disregarded (B = 0). In order to make the Lorentz force applicable
to the Navier-Stokes equation in the form it is presented in equation (2.1) we
divide by a unit volume to obtain

f, = p.E = —p.Vo. (2.25)

2.4 Transport of Charged Species

Consider a dilute solution of charged species. To obtain the total flux of species
the contribution from electromigration must be added to equation (2.10). This
yields the Nernst-Planck equation (Probstein, 1994) for the total flux (J;) of
the #/th particle

J; = —Oé;(Ztiivd) — Di?ci + c;u (2.26)

where o is a mobility, z; is the charge, c is concentration, ¢ is electric potential,
D; is the mass diffusion coefficient and u is the velocity. The mobility is related
to the diffusion coefficient by the Nernst-Einstein equation: D; = RT«; . Notice
that the first term on the right-hand side is the flux caused by the Lorentz force.
The mobility is thus regarded as a measure of how mobile the charges are in the
electric field.






Chapter 3

Electrokinetically Driven
Flows

Before we can begin to consider the dispersion of some species in a microflow,
we need to understand what drives the actual flows. In this chapter we will
study how liquids can be driven electrokinetically. When referring to flows driven
electrokinetically we think of electrophoresis and electroosmosis, which can be
defined as

e Electrophoresis: Consider a charged material suspended or dissolved in
a liquid. Applying an electric field to the system results in a movement of
the charged material. This is electrophoresis. In case the charged material
is able to move without any applied electric field, e.g. by sedimentation,
an electric field is created. This electrokinetic phenomenon is known as
the sedimentation potential and can be regarded as the opposite of elec-
trophoresis.

e Electroosmosis: Consider a liquid in contact with a charged surface.
Moving the liquid with an applied electric field we obtain electroosmosis.
In case liquid in contact with a charged surface is moved by another source
than an electric field, e.g. by pressure, an electric field is created. This
electrokinetic phenomenon is known as the streaming potential and can
be regarded as the opposite of electroosmosis.

3.1 Electrophoresis

For practical purposes electrophoresis has been used as a powerful tool for sep-
aration of ionized chemical mixtures. This is possible because different charged
molecules are mobile to a different degree. E.g. large molecules will experience
more resistance when dragged through a fluid than a smaller molecule with the
same charge. We will not go into detail on these matters here, but just stress
the important empirical relation between the electric field and the velocity of
the charged particle.

u = E=—a, Vo, (3.1)
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where o, is the electrophoretic mobility. This relation will form the basis on ev-
erything concerning electrophoresis throughout this thesis. We will hence neglect
any sedimentation potentials, which might be present in any of the discussed
cases.

3.2 Electroosmosis

The handling of electroosmosis in Coventor is very simple, since only an elec-
troosmotic mobility needs to be specified at the wall. This gives a velocity bound-
ary condition at the wall, which is the local electric field times the electroosmotic
mobility. In the following we will consider an example with electroosmosis in a
circular capillary, and with this example justify the manner velocity boundary
conditions are specified in Coventor.

3.2.1 Electroosmosis in a Circular Capillary

We consider an infinitely long circular capillary, i.e. we neglect the special cases
at the ends of the capillary. The inner surface of the capillary is assumed to be
negatively charged and placed in an electric field parallel to the symmetry axis
of the capillary. The force on an ion of charge ¢ is given by the Lorentz equation.
The force per unit volume is

fo=pE (3.2)

The momentum equations for the flow is given by the Navier-Stokes equation.
Assuming the flow to be inertia free, p%;‘ = 0, without pressure gradients,
Vp = 0, and neglecting the gravitational force, pg = 0, we obtain a balance
between the viscous force and the electric force

pV2u+ p.E = 0. (3.3)

1ti . __ inertial force __ pU?/L
From the definition of the Reynolds number: Re = 3578008 = LU7L2> We see

that neglecting the inertia is equivalent to assuming Re = 0. In the direction of
the symmetry axis equation (3.3) becomes

1ou  0%u 10%°u 0%u
s + or? * r2 562 * 022 T peE=0. (34)
We assume rotational symmetry, 9/00 = 0, uniform conditions in the axis of
symmetry, 9/0z = 0. Furthermore assuming Ap < a (a being the radius of the
capillary, and Ap is the Debye length, which is defined later) we can neglect the
curvature term, giving an equation corresponding to a plane case (notice r has
been replaced by y to indicate the plane case situation)

0%u 0%¢

where we have used Poisson’s equation. Integrating (3.5) we obtain

,ug—z = 6(3—25]53: + constant (3.6)
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At the edge of the diffuse layer (y — oo) we set the velocity v and the electric
potential ¢ to be constant, hence

Ou =0 for y— oo, (3.7)
dy
g—j =0 for y— o0, (3.8)

which means that the constant in equation (3.6) must be zero. Integrating (3.6)
and setting ¢ = ¢ for u = 0 we obtain the Helmholtz-Smoluchowski equation

U = 572, (3.9)

From the above equation the earlier claimed linear relation between the electric
field and the velocity at the wall is found. The electroosmotic mobility is thus
29
Qep = ——. 3.10
o (3.10)
Example: Electric field: E, = 2.5 x 10? V/m. Zeta potential: ¢ = 0.1 V. With

the dielectric constant and dynamic viscosity for water, the velocity becomes:
Uso = 200 pm/s.

3.2.2 The Debye Length

In the previous subsection we mentioned a length scale called the Debye length.
This length scale will be defined in the following example. We will consider the
interior of a tube with a fixed potential at the wall, the zeta potential. When
assuming no convection and no total flux, the Nernst-Planck equation gives a
balance between the diffusion and the electromigration, which can be integrated
to give the Boltzmann distribution for the concentration of positive and negative
ions respectively

d(b dci
— F =D 3.11
axzaFes— = Dy —= (3.11)
where Dy = RTa.y. Rearranging and integrating gives
dop = — 3.12
- [ao= 25 (312)
yielding
2F¢(r)
= . -].
cy(z, 1) = co(x) exp (:F AT > (3.13)

Notice that z = +z. Poisson’s equation gives

10 0 F
ror < (’;f) 772(64_ —c-) (3:-14)
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Inserting (3.13) into (3.14) gives a non-linear second order ODE

N2 9 (,a¢'

—
r’ or! or!

) = sinh ¢/ (3.15)

The differential equation has been made non-dimensional in the following man-
ner

r'=r/a XN =MApj/a ¢ =z2F¢/RT (3.16)

Above we have introduced the Debye length, Ap ,which from the non-dimensiona-
lizing is found to be

eRT \'/?
Ap = | = . 3.17

b <2F222c> (8:17)
Example: Temperature: T = 25°C. Dielectric constant for water: ¢ = 78.3¢g.

Concentration: 1022“11—%1 (0.1M). These values gives a Debye length of: A\p = 2nm.

Equation (3.15) has been solved numerically using symmetry boundary con-
ditions at 7’ = 0 and Dirichlet boundary conditions at ' = 1 at the surface

/
% —0 at =0, (3.18)
¢ =¢ at =1 (3.19)

Using the MatLab Code given in Appendix A the curves given in Figure 3.1
have been obtained. The curves give a clear picture of the meaning of the Debye
length. Ions which exist a certain number of non dimensional Debye lengths
from the wall are screened from the zeta potential. The Debye length can hence
be regarded as a measure of the screening length. When )\ becomes larger than
1 we notice that the screening is very poor, because all of the interior of the
tube is closer than 1 Debye length from the wall.
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Figure 3.1: The dimensionless potential, ¢/, for varying dimensionless Debye lengths, \' =
Ap/a. The dimensionless zeta potential, ¢/, at the wall has been chosen to be 2.79. We notice
that A’ can be regarded as a screening length.






Chapter 4

Pressure Driven Flows

In this chapter solutions of different types of flow problems are presented, i.e.
velocity profiles given by the Navier-Stokes equation in either two or three di-
mensions with some given boundary conditions. The velocity profile gradients
are important in respect to the dispersion. This becomes evident in the theory
on Taylor dispersion presented in the next chapter. Moreover, the analytically
calculated profiles can be used to verify the simulation software, and to obtain
an estimate of the grid dependency.

4.1 Steady Flow in a Cylindrical Tube

At first we consider a two dimensional steady flow in a straight channel. The
velocity distribution of such a problem is found to be the shape of a parabola

w(y) = Umax (1 - Z—Z) : (4.1)

Moving along to consider the 3D-case of a cylindrical tube one might expect

the velocity field to be the shape of a paraboloid. In the following we will show

that this is actually true. This flow is also known as Poiseuille flow. The Navier-

Stokes equation in 3D-cylindrical coordinates and the continuity equation for
incompressible fluids will be assumed to fully describe the problem

g—ltl +(u-V)ju = f%Vp + %Vzu, (4.2)

V-u = 0. (4.3)

Here p is the mass density, p the viscosity, p the pressure and u the velocity
field. The z-component of equation (4.2) reads

Ou, Ous Ous o 10uw,  10p OPus 10 ( Ou.\ 1%
at "oy Ty TUen dp  pdz 022  ror "or r2 9p?’

where we have used the Laplacian operator in cylindrical coordinates. The flow
is driven by a pressure gradient in the z-direction, and as we are looking for the

15

(4.4)
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steady state solution the velocity is
u(r, g, z) = u(r)e,. (4.5)

Inserting this velocity field in the Navier-Stokes equation, a considerable simpli-
fication is obtained. We need only to solve for u(r). Furthermore the continuity
equation and the steady state assumption yields aa’j =0 and % = 0, respec-
tively. All terms on the left-hand side of equation (4.4) thus vanish. On the
right-hand side the second term vanish because of the continuity equation and

the last term vanish because of rotational symmetry. We finally arrive at

dp w0 ou
B2 (22 4.
dz ror (r 6r> (46)
The above equation yields upon integrating twice
1
u(r) = 5 %ﬁ + Aln(r) + B. (4.7)

As In(r) — —oo for 7 — 0 we must require A = 0, and using the no-slip
boundary condition u(a) = 0 we find

u(r) = L 9p

= ﬂ&(ﬁ —a?). (4.8)

This can be rewritten in terms of the mean velocity U as follows

1 27 a 1 ap a2
yielding
1 dp 2U
——— = ——. 4.1
21 0z a? (4.10)

Inserting the last result in equation (4.8) gives

7,2
u(r) = 2U <1 - (12>2 (4.11a)
u(r) = Umaz (1 - 22) , (4.11b)

where %4, = 1(0) is the maximum velocity. The minus sign in equation (4.10)
appears because the pressure gradient % assumes a negative value when w is
positive. Furthermore we notice: ;.. = 2U. The Poiseuille flow profile will

play an important role in the discussion of the so-called Taylor dispersion.

4.2 Velocity Profile in a Turn

In this section the velocity profile in a turn with a rectangular cross section will
be calculated expanding the solutions on a complete set of basis functions. A
thorough description of this method of solving differential equations is made by
Asmar (2000). The geometry is sketched in Figure 4.1.
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Figure 4.1: Geometry of the domain where the solution is found with system of coordinates.
Be aware that the angular coordinate 0 is defined from the y-axis.

Assuming the velocity field to be purely azimuthal, u = u(r, z)ey, the Navier-
Stokes equation yields

o0 (10 0%u 1 dp
~Z (= - =X 4.12
or (T or (TU)> T oz ur 90’ (412)
rearranging
0%u  Ou wu A%u  10p
e 4.13
" or2 +8r T+T822 w00 (4.13)
The equation is made non-dimensional as follows
!/ T !/ z !/ u/'l’
== =2 = —. 4.14
r o ) z h ) u o % ( )

For notational convenience the primes (’) will be omitted from this point and
on. Notice we have assumed % to be constant. Hence

O%u  Ou u+<ro)2 0%u
h

P2
+ 0z2

p—— 24~
or2  or r

In order to obtain an analytical solution to the above inhomogeneous partial

differential equation we will expand the solution on a complete set of basis

functions. To get a good idea of which basis functions to use for the expansion,

we consider firstly the homogeneous equation only. Consider a solution of the

form.

=1 (4.15)

u(r,z) = R(r)Z(z). (4.16)
Inserting equation (4.16) into the homogeneous form of equation (4.15) yields

r’R"(r) +rR'(r) = R(r) _ (ro/h)*Z"(2) _
2 R(r) B 26 o (4.17)
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where ko must be a constant because everything on the left-hand side of the first
equality sign depends only on r and everything on the right-hand side depends
only on z. Equation (4.17) gives two ODE’s

r?R"(r) +rR'(r) — (kgr* + 1)R(r) = 0 (
Z"(2) + (h/ro)*koZ(2) = 0 (

4.18)
4.19)
Equation (4.19) must be solved with the boundary conditions Z(0) = Z(1) = 0.
For ky < 0 the only solution is the trivial Z(z) = 0. For ko > 0, however, we
find the eigenfunctions

Zn(z) =sin(nmz), neN (4.20)
The general solution of equation (4.18) for ko = 0 is found to be
R(r) = Ar+ Br™, (4.21)

where A and B are constants. However, the boundary conditions R(r;/r,) =
R(1) = 0, where r;/r, # 1 gives only the trivial R(r) = 0 solution. When
ko = 7% > 0 we obtain the modified Bessel’s differential equation with index 1
with the solution

R(r) = CIi(yr) + DKy (yr), (4.22)

where C' and D are constants. Trying to satisfy the boundary conditions we
encounter the requirement

1 K
Li(yri/ro) — Ki(yri/ro)
No values of v can satisfy the above equation. With ky = —y2 < 0, however, we
obtain Bessel’s differential equation with index 1, and consequently
R(r) = CJy(vyr) + DY1(vr), (4.24)

where C and D are constants. Applying again the boundary conditions, R(1) = 0
and R(r,/r,) = 0 yields the solutions

_ Yl ('Ym)
J1(Ym)

Here +,, are the positive zero points of the function

R (r) = Y1(ymr) Ji(Ymr), meEN. (4.25)
Rm(ri/ro) =0, (426)

Based on the two complete sets of eigenfunctions given by equations (4.20) and
(4.25) we can write u as the following general superposition

u(r,z) = Z
n=1

where E,,,,, are expansion coefficients to be determined * . By construction u(r, z)
satisfy the boundary conditions u = 0 everywhere on the surface. Inserting

o

E,.,sin(nmz) (Yl(’ymr) - 28:; Jl(vmr)) , (4.27)

m=

I'We have here applied: If ¢,, is a basis for L2(I) and vy, is a basis for L2(J), then ¢, m
is a basis for L2([I x J]).
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equation (4.27) in equation gives (4.15)

oo o0

Z Z Epm sin(nmz)r Ry (ymr) (A/?n + (%)ﬁ =—1 (4.28)

n=1m=1

Multiplying on each side of equation (4.28) with sin(nmz)R; (y,»7) and integrat-

ing gives
2 1 1
Enm (%%L + (M) )/ sinQ(mTz)dz/ R (ypmr)rdr
h 0 0

1 1
= —/ sin(mrz)dz/ Ry (Ymr)dr, (4.29)
0 0
which upon rearranging gives the expansion coefficients
—4G ronmy2] 7"
Bum = 5 s 92+ (20 4.30
= oo [ () (4:30)

where
D= 3 [ERo() ~ RO’ —  (£) [3Ro(2) - Ba(z)] (a3)

G = 5 [Ro(2) = Ro(1)]. (4.32)
A MatLab program has been developed to find the velocity profile. The code is
given in Appendix G. Examples of a velocity profile is shown in Figures 4.2 and
4.3.
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Figure 4.2: Velocity profile.
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Figure 4.3: Contour of velocity profile. Notice the asymmetry. The peak of the profile is
closer to the inner wall than the outer wall.

Summary: In the preceding chapter we have found the velocity profiles for
a pressure driven flow in a tube. This will be applied in the theory on Taylor
dispersion in the following chapter. Furthermore we have found an analytical
expression for the velocity profile of a pressure driven flow in a turn with a
rectangular cross section. This velocity profile is applied to the grid dependency
analysis. The method for solving boundary value problems for partial differential
equations, as we have described it above, will also be used in Chapter 6.






Chapter 5
Dispersion

Whenever dispersion is mentioned throughout this thesis, one should imagine
the spreading of some species flowing in some liquid. The degree of the dispersion
of some species is often measured in terms of the standard deviation of the
species concentration profile. In this thesis we will focus on three physical effects
causing dispersion:

e Diffusion: The transport of some species caused by gradients in the con-
centration, given by Fick’s law.

o Geometry effects: The dispersion which may be caused by the geometry
of the system, through which a species is transported.

e Gradients in velocity profiles: When a species is transported by convection,
any gradients in the velocity profile will cause dispersion, because some
part of the species is travelling faster than other parts.

5.1 Taylor Dispersion

In the following section we will consider dispersion and diffusion in a capillary
tube. The velocity profile of a pressure driven flow in a cylindrical tube in such
a geometry will naturally be of great importance. Next, the theory of Taylor
dispersion will be dealt with, followed by a discussion of when other approxi-
mations than Taylor’s can be made. Taylor dispersion in channels with a square
cross section is especially interesting for microchannels in p-TAS. Channels hav-
ing sloping walls have been investigated by Daridon (2000). Geometries having
other cross sections have been investigated by Dutta (2000). In this thesis we
will only consider the tube shaped geometry.

5.1.1 Taylor Dispersion

The dispersion of one miscible liquid into another, due to a non-constant velocity
profile combined with diffusion orthogonal to the flow direction, is termed Tay-
lor dispersion. In the following theory we follow the work by Probstein (1994).
To illustrate the meaning of Taylor dispersion consider the following:

23
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Without diffusion With diffusion

»

= ) )

Figure 5.1: The figure shows the dispersion of a sample in a tube with and without diffusion

present at the initial stage, ¢ = 0, and at two later stages t1 > 0 and t2 > ¢;. The gray scale
represent the density of species.

Example: As an illustration of the following example see Figure 5.1. First as-
sume no diffusion. Take a long circular tube containing a fluid and place within
a sample. If we at time ¢t = 0 begin to move the fluid a parabolic velocity profile
will build up. This gives rise to a dispersion of the sample, since we have a max-
imum fluid velocity at the center of the tube and zero velocity at the inner wall.
Now consider radial diffusion. Because of radial concentration gradients we will
see the following: The faster-travelling molecules from the center of the tube
will diffuse into the low-velocity region near the wall and the slower travelling
sample molecules near the wall will diffuse into the high-velocity region at the
center of the tube. This mixing will smear out the parabolic shape as time goes
and will result in a cylindrical shaped sample for large times.

The Taylor Dispersion Equation
The axially symmetric convective diffusion equation with a constant diffusion is
given below

Jdc Jdc

— +u(r)— = D V? (5.1)
ot
where D is the diffusion coefficient. Transforming the equation into a moving
reference frame, with space-time coordinates (2’,¢") moving in the z-direction
at speed U, i.e.

' =x—Ut r=a +Ut
{ oy } or { by } (5.2)

¢’ o'
8—; + u'(r)a—; = DV (5.3)

we obtain

Taylor made the assumption that in this moving frame of reference, the flow

is quasi-steady, meaning that 6‘2, ~ (. Furthermore disregarding axial diffusion
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(this assumption is discussed later in this section), equation (5.3) is simplified
to

D0 (o
u(r)ﬁx’ “ o \or (5-4)

where u/(r) is the velocity profile in the moving frame of reference. From the

previous subsection we found the paraboloid velocity profile u(r) = % =
2U (1 - ;—z), hence u/(r) = % =& _y=vu (1 - 2;—2) giving
r2\ oc Do [ o
Ull-2—=)— = ——|(r— ). 5.5
( a2> oz’ r or <r8r> (5:5)
The solution is
Ua® (12 1%\ oc
= 5 = | == + Al B .
¢ 4D <a2 2a4) o © a(r) + 5, (56)

where A and B are integration constants, which remain to be determined from
boundary conditions. As ¢ must be finite for » = 0 we must require A = 0. For
r = 0 we obtain B = ¢/(0) = ¢, the concentration at the axis of symmetry. ¢g
is determined from the boundary condition 9= | _, =0 to be

Ua? (14 oc
/
=—|(—=-1)=—. .
“©= 9D <a4 > oz’ (57)
Hence the concentration as function of the radius is
Ua? (12 1%\ oc
/ 0
The mean concentration is found to be
- T [ re, ,  1Ua?0c
Cl:@ ; [/0 c(r)rdr} dcp:co—&—gE%, (5.9)
so that
Ua? 1 2 1%\ oc
') — = S ) ==, 1
clr)=e 4D ( 3 a2 2 a4> ox! (5.10)
Taylor proposed at this point that
ocd o7
—_—~ — 5.11
axr’  Ox’ ( )
could be assumed to be true if the following inequality was true
Ua®? (1
— | = 1. 5.12
D <L> < (512)
where L is the characteristic length over which the greatest change in ¢’ occurs.

We notice that the concentration gradient g;// has been replaced by %. As Acis

small compared to ¢ it is sufficient to consider 1/L in equation (5.12). This makes
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good sense as small values of L necessarily gives rise to larger concentration
gradients (in average) than larger L. An example of this is given for Gaussian

curves in Figure (5.2).

1.2F

0.81

0.2f

Figure 5.2: Two Gaussian curves with different characteristic length scales L are given.

Notice that L1, which is shorter than Lo, has larger concentration gradients. o1 and o2 are

the standard deviations for the two Gaussians.

Using equation (5.11) we can integrate to find the mass flux

- 1 e U2a? dp
Jmass = —5 "'rdrdp = —_—.
s a2 Jo /0 pUTETEe = 8D 0
Hence the effective diffusion coefficient is given by
U2a? 1
Deg = —— = —Pe?D
T 4gDp T a8 ¢
and with the continuity condition
@ — 8<]7HI£LSS
ot ox
we find in the moving frame of reference
oe 9%
— = Deg——.
at M our

(5.13)

(5.14)

(5.15)

(5.16)

Going back to the original frame of reference, using equations (5.2), we find for

the two terms in equation (5.16), respectively,

¢t a) _ deltw) _0cot  dcov oe . od

ot h ot At dx ot Ot oz’
0% 9 9¢@. ) Q de(wt) 9 (02w
ox' Ox  Ox T ox Ox Ox' \ Oz oz’

_ 05 (d=\T, O ot _ 0%
9z \ o ot oz’ Ox?

(5.17)

oo
ot oz’

(5.18)
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Inserting these two transformations in equation (5.16) we obtain

oe oc 0%c

This is known as Taylor’s dispersion equation.

Regions of Validity for Different Approximations

During the derivation of the Taylor dispersion equation we made two assump-
tions: We disregarded the axial diffusion and we assumed the following to be
true

Ua® (1
% (E) <1 (5.20)

For axial diffusion to be negligible compared to the dispersion we will require the
diffusion coefficient (D) to be much less than the Taylor dispersion coefficient,
ie.

a?U? 1

— — = __Pe*D 21
8D 48" ¢ (5.21)

Dk DeH:

Equations (5.20) and (5.21) can, respectively, be rewritten as

AL
Pe < — (5.22)

a
Pe > V48~T7 (5.23)

which are the requirements for the Taylor dispersion equation to be valid, writ-
ten in terms of the Peclets number and the ratio of the characteristic lengths a
and L (the radial and axial lengths over which there is appreciable concentration
change).

In the following other approximations will be considered. Firstly three im-
portant characteristic time scales are defined:

2

Radial diffusion time: % (5.24)
L2

Axial diffusion time: ) (5.25)
L L

Convection time: i (5.26)

Radial diffusion is negligible if the radial diffusion time is much larger than
the convection time, i.e.
a® L Ua L
— — = — =P — 5.27
DU D -7y (5.27)
Axial diffusion is negligible if the axial diffusion time is much larger than the
convection time, i.e.

L? L Ua a
— > = & — =P — 5.28
i) >>U e>>L (5.28)



28 CHAPTER 5. DISPERSION

Normally in a thin capillary we expect: L > a < % > 1> 7. Hence, for both
axial and radial diffusion to be negligible we only require

L

Neglecting diffusion means that that we have pure convection. Going to the
other limit where the convection time is assumed small compared to the two
characteristic diffusion times, we find similarly,

a2 L Ua L
— < = & — =P = 5.30
5 < i i) e K o (5.30)
L? L Ua a
5 < i i) e K 7 (5.31)

Hence, using L > a the requirement to fully neglect convection is Pe < . Since
we are considering a long capillary tube the radial concentration gradients will
rapidly turn to zero and we are left with nothing but axial diffusion.

Convective axial diffusion:

The case where axial diffusion is large compared to the Taylor dispersion, mean-
ing D > Deg, is referred to as convective axial diffusion. As the effective dif-
fusion is derived on the basis of the approximation: Pe < 4L/a, we obtain in
terms of the Peclet number:

Pe<k7 Pe < 4L/a (5.32)

Taylor-Aris:

From the above we notice that there is a range of Peclet numbers which have not
been covered, namely the range where neither Pe < 7 nor Pe > 7 is true. Say
the region corresponds to Pe € [0.7,70]. In that region Aris (1956) have proved
that the effective diffusion coefficient is simply the sum of the mass diffusion

coefficient (D) and the Taylor dispersion coefficient (11‘;2 ), i.e.

Pe?

Deg = D(1 + —
eff (+48

) (5.33)
Still we also need to require: Pe < 4L/a.

The regions of validity for the different approximations explained above have
been collected in figure (5.3). The signs <’ and ">’ have been converted to ’10
times less’ and 10 times larger’, respectively.

Analytical Solution of the Taylor Dispersion Equation
For certain initial conditions analytical solutions to the Taylor dispersion equa-
tion exist. E.g. if the delta function is used as an initial condition (t=0)

"0 §(x) (5.34)

i=—2
Ta?

then the analytical solution is given as

_ ng 1 (x — Ut)?
_ Ui 5.35
“T ra?2/aDegt ¥ < ADeqt (5:35)



CHAPTER 5. DISPERSION 29
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Figure 5.3: Visualization of regions where different approximations can be made regarding
the problem of sample broadening in a capillary tube. (From Probstein (1994), after A.A.

Sonin).

which is recognized as time increases as a gaussian curve travelling right while
increasing the standard deviation. An example is given in figure (5.4). For any
practical purposes the initial concentration profile would never be described by
a delta function. A more realistic initial concentration profile is the gaussian
shaped concentration profile. The solution for this initial problem is in fact
already given above, as this problem is simply a shift in the time variable. This

is demonstrated below. Say, we at time t = —t(, where tg is a positive time have
_ o
c=—=0(x), 5.36
0 6(a) (5.30)

then according to equations (5.34) and (5.35) this is equivalent to the initial

condition
_ no 1 ((E - Ut0)2>
t=0": A —— —_ ], 5.37
- 24/7 Degito P ( 4Degrto (5.37)

and the solution for ¢ > 0

(5.38)

Cc =

no 1 ( (m—U(t+to)>2)
—— exp| ——————5— ).

722 /Dt £ t0) T\ 4Den(t + to)

Taylor Dispersion for Rotational Symmetric Velocity Profiles
It may not always be the case that the velocity profile in the capillary tube is

shaped as a paraboloid. E.g. in Electroosmotic driven flows the profile is more
flat. For the general case we write the rotational velocity profile as

u(r) =Uf(r,a) (5.39)

where f(r,a) is a function of the distance from the axis of symmetry r and a is
the tube radius. U is the mean velocity. In analogy to the previous derivation
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Mean concentration as function of x for different times.
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Figure 5.4: Concentration profiles for different times. 2% = 0.5, U = 2, Deg = 0.05.
Ta

of the effective dispersion coefficient, it will be shown that for any rotational
symmetric velocity profile the effective dispersion coefficient is

Deg = D(1 + arPe?) (5.40)

where ar is a dimensionless constant. In case of Taylor dispersion with the
paraboloid velocity profile we have found ap = 1/48. Going into the moving
frame of reference the velocity profile becomes

_dx’  dx

u’(r)—E—E—U:U(f(r,a)—l). (5.41)

Inserting this expression in the diffusion equation we find

0 ( Oc Ur oc

—|r=—=) == — 1) — 42

or (T (“)7“> D (f(r, 2 O (5.42)
Integrating twice and using boundary conditions similar to the ones used deriv-

ing equation (5.8) we obtain

a?U oc

e(r) = E%I(r, a)+ co (5.43)

where ¢g is the concentration at the axis of symmetry and

I(r,a) = % [/% [/r(f(r, a) — 1)dr] dr} . (5.44)
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Expressing the concentration in terms of the mean concentration ¢ we find
similar to equation (5.10)

Ua? 0c

c=c+ Ea—x (C1 +I(r,a)) (545)
where
2 a
c1=—— [ I(r,a)rdr (5.46)
a=Jo

is equal to some real number. In the case of a parabolic velocity profile ¢; =
—1/3. Again assuming

Ud® 1

— <1 4

DI < (5.47)
we can approximate

oc o

—~ 5.48

ox’ — oz’ (5.48)

and find similar to equation (5.13)

_ _(%2% (;_42 /Oa(f(r, a) = 1)r U% U(f(r, a) - 1)rdr] dr} dr) (5.49)

From the above expression the effective diffusion coefficient is found to be

<

Deg = arPe?D (5.50)
where
ar = ;—42 Oa(f(r, a)—Dr [/i [/(f(r, a) — 1)rdr} dr} dr. (5.51)
Remark

The integrals in squared brackets in equations (5.44), (5.49) and (5.51) should
be regarded as the indefinite integrals of the functions within, with the constant
of integration equal to zero.

Example I
In the following we will calculate ap for a more general velocity profile than the

paraboloid. Consider
w(T) = Umax [1 - (C)n} , (5.52)

a

where n is some number, e.g. n = 2 for the paraboloid velocity profile. The
mean velocity U of the above profile is found to be

5o tma (5.53)

Hence in terms of the mean velocity the profile, equation (5.52), is given by

u(r) = U2 - (57 (5.54)
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which means that the f(r, ) function appearing in the formula for ar, equation
(5.51), is

24n T\
a) = 1— (—) ] . 5.55
flra)=="[1- (% (5.55)
Inserting the above expression into equation (5.51) yields
ar = . (5.56)
T o@+n)(d+n) ‘

Notice that when n = 2 we find ap = 1/48, as expected. Furthermore we notice
that for n — oo, ar — 0. This is also expected. When n — oo, u(r) — upax for
all r except at » = 1, where u = 0. Hence there are no gradients in the velocity,
and no Taylor dispersion can be present. In Figure 5.5 a plot of the velocity
profiles for different n’s are given together with a plot of ap as function of n.
Notice how the velocity profile becomes more and more flat as n is increased.

0.015

0.003

Figure 5.5: Figure (a) shows the velocity profile for n = 2, n = 6 and n = 12. Figure (b)
shows a as a function of n.

Example II
For non-Newtonian suspensions an empirical relation for flow in a cylindrical
geometry have been suggested by Chang et. al (2000)

r=k()", (5.57)

where k is a viscosity constant for non-Newtonian fluids with the unit Pa s™, ¥
is the shear rate, which in this case corresponds to %, and 7 is the shear stress.
The above empirical relation yields the velocity profile

r n+1
U(T’) = Umaz |:1 - (*) " :| . (558)
a

For n = 1 the paraboloid velocity profile is found again. Rewriting the above
profile into a form containing the mean velocity U instead of w;,,q, we obtain
f(r,a) needed to calculate ar from equation (5.51). We find

n2

T = S 16n + 30n2°

(5.59)
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When n = 1 we obtain as expected ar = 1/48 ~ 0.02083. According to Chang
et al. (2000) Walburn and Schneck have found n = 0.785 for human blood. This
value of n yields

ar ~ 0.01865, (5.60)

which is less than a7 = 0.02083 for ordinary Newtonian fluids. The velocity
profile in blood might hence yield less dispersion of some injected chemical
substance, than if a paraboloid velocity profile was assumed. Be aware that the
above calculations are based on the assumptions that blood is a continuum. This
might not be true in all cases because of the chemical composition of blood,
which includes the large red blood cells. The shape of these molecules may
depend on various parameters. Furthermore we have assumed that no chemical
reactions will affect the flow.

5.2 Geometry Effects

By geometry effects we think of the dispersion of a species caused by the geom-
etry of the system, through which the species is transported. As an example of
this effect we will firstly consider the race-track effect.

5.2.1 The Race Track Effect

When a channel is bent some angle (e.g. a U-turn corresponds to an angle of
radians) the so-called racetrack effect is introduced to the flow (see figure (5.6))

Figure 5.6: Channel with a U-turn.

The racetrack effect can be explained as follows: A molecule flowing just
next to the inner wall around a turn travel a shorter distance than a molecule
travelling next to the outer wall. Assuming that the molecules travel with the
same speed the inner molecule will finish the turn faster than the other molecule.
This leads to a dispersion due to the geometry of the channel. There is, naturally,
also a dispersion due to the diffusion caused by concentration gradients in the
sample. We will consider the combined effect of these dispersions at a later stage.

Consider the 2D-case shown in Figure 5.6. We will neglect diffusion and
assume a constant velocity profile over the entire width of the channel. The
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velocity is also assumed constant in any cross-section of the turn. If a rectan-
gular shaped sample is sent into a circular turn the shape of the sample will be
transformed into a parallelogram at the downstream side of the turn. This can
be seen from simple geometry. Consider a turn with an angle of 6 in radians.
Denoting the length of the sample, Af;, before the turn Afy after the turn, we
find that the sample has been dispersed

AEQ — Aél = fw. (561)

Aly, Als, and w are defined in Figure 5.6. We shall in the following show that
for electrokinetically driven fluids the dispersion under certain assumptions is
approximately doubled to 260w.

5.2.2 Electrokinetically Driven Fluids.

It is important to notice that the case described above is valid only when the
speed can be assumed to be constant over the entire width. This requirement
is e.g. not fulfilled in the case of electrokinetically driven fluids. Assume the
Helmholtz-Smoluchowski relations between the electrical field and the fluid ve-
locity, u = —aVy = aE, to be valid, where « is the mobility, which can be
either an electroosmotic mobility or an electrophoretic mobility!. The magni-
tude of the electric field must be smaller at the outer wall compared to the inner
wall. This can be realized by a simple consideration. The potential drop U over
the turn for the inner and outer "lane" is the same, but the outer "lane" is
longer (douter > dinner) - Since U = E d, the electric field must be smallest at
the outer wall and largest at the inner wall. The effect of having a difference
in the electric field will be examined in the following. For the inner and outer
paths of the turn we can write

L, = 0r; and vi:aEi:aU (5.62)
9’/‘1'
U

L, = 0r, and vO:anzjr (5.63)

From the above equations we find the travelling time for a molecule to flowing
along the inner and outer paths, respectively.

Li (97"2')2
t, = =+ — 2t 5.64
YTy alU ( )

L, (0r,)?
ty = — = 5.65
Vo alU ( )

The time difference is hence
02 9 9 62 0?2

At=t,—t; = w(ro —r;) = @(ro F+ri)(ro—1i) = ercwt (5.66)

Because of continuity the average fluid velocity in the straight parts of the
channel must equal the average velocity in the turns. Since u = aE, this means
that the average electric field (E,,) in the turn must equal the average electric

In some articles p is used for the mobility instead of a. We will, however, reserve the
symbol p to the dynamic viscosity.
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field in the straight parts, but the electric field in the straight part is constantly
E. Hence E,, = E. The magnitude of electric field in the turn is given by

U
E(r) = g Ti<T<Toy w=To—T (5.67)
averaging yields
1 (U U o U 1
Bow = — [ —dr=—m(2)=—m(1+——) (568
w f., Or w r; wh e _1
U w
= 5.69
wh 7, ( )

where we have used the first term in the series expansion of In(1 + z) and
1 : Tec 1 :

neglected the 5-term assuming “¢ > 3. In experiments conducted by Culbertson

et. al. (1998) 2.5 < “¢ < 10. Taking only the first term in the series expansion

then yields

Eop =~ = =FE, (5.70)

where E. is the magnitude of the electric field at the center curve in the turn.
The relative error between F, and F,, is given by

Eav - Ec c 1 !

w 2

A plot of the relative error is given in figure (5.7). The error for 7= = 2.5 is
approximately 1.4% and for higher values the error is even more negligible.

The relative error between Ec and Eav
0.09 T T

0.08 - 4

rc/w

Figure 5.7: Relative error between F. and Eqy.

Now, using U = E.0r. ~ E,,0r., rewrite equation (5.66) into

20w, 20w
= = 5.72
aEy  Vaw (5.72)

At
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where v,, is the average speed of the fluid. The increase of the sample width in
the direction of the flow is then increased

Al = v, At = 20w (5.73)

Comparing this to the result with just a constant velocity profile over the entire
width of the channel, we notice that the broadening of the band has doubled.
Example: The increase of the bandwidth is for § = 7 and a channel width in
the turn of w; = 55 pm found to be: Al = 346 um.

With ¢ = 0.1 V we obtain for water at 25° C a mobility of: a = 8.0 x 108 %—:
E =30 kV, then gives a time difference of: At =0.14 s.

A way to mend this problem could be to use different zeta-potentials at the
inner and outer wall, so t, and t; are equal. From the Helmholtz-Smoluchowski
equation we know: o = —%, where ( is the zeta-potential, which depend on
various things, among others material parameters of the wall. The condition for
the two time parameters to be equal is found

or, or,

t = 2=_"9 5.74

= (5.74)
97"7; 97’i

t’i = —_— = —, 5-75
ol (5.75)

equating the above times gives

2
91:(ﬁ>. (5.76)
Qo To

Hence the ratio of the a-parameters should equal the ratio of the radii of curva-
ture squared. In practice a straight channel is often connected to the two ends
of a turn. The electroosmotic mobility « of these straight parts should give rise
to a discharge equal to the discharge in the turn, or similarly the mean velocity
in the straight parts should equal the mean velocity in the turn. This gives a
relation between «, «,, a;, r; and r,, which is found in the following. The mean
velocity in the straight part is simply: aF,, where F is the magnitude of the
electric field in the straight parts. The mean velocity in the turn is the mean of
the velocities at the outer wall and the inner wall of the turn, since the velocity
in the turn must be a linear function of the radius, i.e.

_ U [ Ao\
Vg = % (’l"_1 + E) = OéES. (577)

FE, can be found from the fact that the mean electric field in any cross-section
of the channel must be equal, hence using equation (5.67), we find

P /Uﬂmh: ! /OUM:QE@ﬂﬁ:&.(m&

o — T o — T Or 0 r,—r;

7

Combining equations (5.76),(5.77) and (5.78) gives

In(r,/r;)
In (ro/74)
o, = QQW’I’E. (580)
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The above expressions are enough to handle the plane 2D-case. In three dimen-
sions, however, the electroosmotic mobility of the top and bottom patch of the
turn should also be changed. In fact, they must be equal and dependent on the
radius in the turn. From v(r) and E(r) (equation (5.67)) the top and bottom
mobilities is found to be

a(r) = v(r) _s In(ry/ri) o

_E(r) ar%—r?r7

where r; <7 <7, (5.81)

In an article by Chen and Zhu (1999), examples are given that it is actually pos-
sible to control the electroosmotic mobility with external radial electric fields.
The electroosmotic mobility can also be changed by laser modification of the
channels, Johnson (2001). Other means of minimizing turn induced dispersion
have been suggested by Griffiths (2001), where a tapering of the turns are stud-
ied.

In the above we have completely neglected the effect diffusion has on the
dispersion. This we will remedy with the considerations below. Firstly, two time
scales are important

e tp, the transverse diffusion equilibrium time. tp = w? where D is the

2D’
mass diffusion coefficient.

e t;, sample transit time around a turn. It is defined as the maximum time

. . Or or?2 or?
a molecule can spend in the turn, i.e. t; = 7¢ = = ~ —o.

The ratio between these parameters, tp/t;, is hence a measure of how much
diffusion takes place during the time it takes for a molecule to travel through
the turn. In the previous calculations we have therefore actually assumed that
tp/ty — oo or similarly D = 0. According to Culbertson et. al. (1998,[5]) this
assumption is, however, usually not met on microchips, and the article gives a
suggestion of the dispersion caused by the turn A¢ when taking diffusion into
account?

Al = 20w[l — exp (—tp/t)]. (5.82)

A plot of Al as function of ¢p/t; is given in figure (5.8). The equation (5.82)
and figure (5.82) shows that for ¢tp/t; going to infinity, as expected we return to
Al = 20w. For tp/t; going to zero Al goes to zero. It should be noted that Al
going to zero, does not mean there is no dispersion. There is still the diffusion
in the flow direction to be considered.

2The expression is found from computational simulations based on Fick’s law.
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w=1 and 6=n

Figure 5.8: A¢ as function of tp/t;.

Example: The self diffusion coefficient for water at 25°C is: D455 = 2.26 X
1072 m?s~!. Say the width of channel in the turn is: w = 69 pm, then the
transverse diffusion equilibrium time is: tp = 1.05 s. With radius of curvature:
re =500 m, 0 = 7 and Ve, = aFq, = 8x 1078 m2V 157! x 30kVm !, we find
t; = 0.32 s. Hence: tt—’f = 3.3. I this case according to figure (5.8) we see that the
diffusion is less important when determining the geometrical dispersion, since
for tt—’f = 3.3 the Al has almost reached its constant value.

Summary: In general three different effects contributing to dispersion in mi-
crochannels are studied, namely diffusion, geometry effects, and gradients in the
flow velocity profiles.

The theory of Taylor dispersion has been presented. The theory is extended
with a more general formula for the Taylor dispersion coefficient valid for rota-
tionally symmetric velocity profiles. Two examples applying the formula are also
given. Next the so-called race-track effect is studied. The additional dispersion
worsening effects arising when flows are electrokinetically driven are accounted
for. We have shown that altering the electroosmotic mobilities specified at the
walls of a turn the sample distortion can be decreased. Formulae for the optimal
change are also given. Finally possibilities for optimizing the geometry of turns
are studied.



Chapter 6

Dispersion Control by
Electric Fields

The mixing of one species into another may be undesired. In this chapter we
will propose a method of separating two species of opposite charge applying an
electric field.

When a specific electric field is applied in some geometry, charged species
will be redistributed accordingly. The redistribution process is described by the
Nernst-Planck equation. The speed of the charge redistribution is determined by
the diffusion coefficient, while the charge density is determined by the electric
potential. This will be shown in detail in the following chapter. The electric field
created when separating the ions must also be accounted for. This can be done
using the Poisson equation.

Imagine the separation of species is taking place in a microchannel. Trans-
lating the electric potential in any desired direction along the channel would
then move the species along with the potential. Using this method to transport
charged species in a microchannel the dispersion of the species is fully controlled.
See Figure 6.1. The translation speed should be adjusted according to the diffu-
sion so that the species is close to the steady state distribution in the potential
at all times. Thus the diffusion coefficient is the limiting factor for the speed at
which the species can be transported.

6.1 Practical Considerations

Some practical considerations should be made regarding the construction of
microchannels for the purpose of dispersion control by electric fields. The elec-
trodes generating the electric field should be placed close enough for the de-
sired electric field to be resolved acceptably. In the article by Ajdari (1999)
electrode arrays were placed along a channel with a spacing of approximately
60um. Brown (2000) has made electrode arrays with 50um intervals. According
to Sgren Jensen it is, however, possible to place 2um wide electrodes along a
channel with a spacing of 5um or even as low as 2um?.

IPrivate communication with Sgren Jensen, Ph. D. student at Mikroelektronik Centret -
MIC, Technical University of Denmark.

39
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The theory is quite similar to the Debye layer theory. In the first section we
will consider a 1D channel. Later we will consider the cylindrical tube 3D case,
which because of the rotational symmetry of the problem can be solved as a 2D
boundary value problem.

\% electrode potential at a given time

velocity u

I 3

micro o Yo © |l o @ @ D ® @ ionconcentration
channel s w : ions profiles

v

array of electrodes

Figure 6.1: Sketch of the separation idea. A number of electrodes are imagined placed along
a channel. Varying the voltages in time it is possible to transport the ions along the channel.

6.2 Dispersion Control in a 1D channel

For simplicity consider the 1D case on the z-axis in the interval —L < z <
L. In this interval we place an amount of positive and negative ions with the
concentrations ¢4 (z) and c_(z). We also place a parabolic applied potential:
¢ = ¢ox?. This gives rise to a separation of the positive and negative ions,
which then again gives rise to an intrinsic potential (¢;,, ). The distribution of the
positive and negative ions is determined from the total potential: ¢ior = g+ din
together with the Nernst-Planck equation (2.26)

—I/Z-ztiz-ngtot — DZVCZ = 0, (61)

where the convective term is neglected because we will consider the steady state
only. Upon integration the concentration of the negative and positive ions are
found to be

cx(x) = cFexp (—%ﬁl‘jﬁ(x)) , (6.2)
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where the constants i are to be determined from the initial amounts of positive
ions, n4, and negative ions, n_, i.e.

ny = A/_L cy(z)de. (6.3)

where A is a unit area. Because of Poisson’s equation we must require the
dimension of the concentration to be mol/m? even though we are working in
1D, hence the unit area A. Using Poisson’s equation the intrinsic potential can
be found

d2¢1’n Pe
=—-— 6.4
dax? € (64)
where
pe = (24c4 +2_c_)F. (6.5)
Equations (6.2), (6.4) and (6.5) form a differential equation for ¢,
d2¢in _
de?
F 0 —z4 F 9 _ 0 —z_F 9 '
; [z+c+ exp ( BT (goz” + qﬁm)) + z_c_ exp T (Pox” + din) | | -
(6.6)

When the applied potential is symmetric about z = 0 we can solve equation
(6.6) numerically by iterative methods using the following conditions

=0 0 6.7
z at z=0. .
¢m=co} (67)

where C is some arbitrary reference potential.

Example: 1D numerical solution
In the following we will consider solutions of equation (6.6). Firstly we have
assumed z = z; = —z_ and made the problem dimensionless, i.e.

¢,

dz'? - 2/\/_,'_

exp [ (¢, + i)l + 537 exp [+(d + dn)] (6.8)

20

where the differential equation has been made non-dimensional in the following
manner

F
§="2 ’=7, (69)
. 1( eRT \? 2 &

Ne =7 gm0 Pl ) il (6.10)

The two factors X, and A\_ is determined from the initial amounts, equation
(6.2). The non-dimensional amounts of ions are given as

2r2:2L 1 (!
nl = e R T )\,—ig /_1 exp(Froy (2))dz’ (6.11)
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The non-dimensional amounts of ions are chosen to be n/, = 1. An example of
results from such a simulation is given in figure 6.2 with the potential, ¢/, = 6x'2,
and L = 500um. Notice we have obtained the desired separation of positive and
negative ions. The positive ions are mainly concentrated around the middle
2’ = 0, and the negative ions are mainly concentrated at the ends z = =+1.
Going back to real physical dimensions ¢’ = 6 corresponds to

RT , 831451 JK 'mol™'- 298 K
= —¢ = .6 =0.15V. 6.12
¢ 2F ¢ 9.6485 x 104 Cmol ~* (6.12)

The ion concentration corresponds to

RT
7”;/* - % - ﬁ —3.8x 107 mol m~3. (6.13)

We will move on to investigate to consider a fully three dimensional problem in
the next section.

T
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Figure 6.2: Left figure: Distribution of positive and negative ions given as dimensionless
concentration. Right figure: Dimensionless applied, intrinsic and total potential. The applied

potential is for this example given as: ¢/, = 62’2, and L = 500 um.

6.3 Dispersion Control in a 3D Tube

We now consider a tube of length L and radius a. Within this tube we place a
dilute solution of positive and negative ions. Suppressing an electric potential
along the outer edge of the tube we expect to separate the positive and negative
ions.

Applying the Nernst-Planck equation for the positive and negative ions we
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find for the steady state situation

—ZiF
RT

c+ Voot = Ve, (6.14)

since there is no net flux of species and no convection. z4 is the valence of the
positive and negative ions (c4 ), respectively, and

¢tot = ¢a + ¢z‘na (6-15)

where ¢, is an applied electric potential, and ¢;,, is the intrinsic potential given
by the distribution of the ions. The equation connecting the intrinsic potential
and the distribution of the ions are given by Poisson’s equation

Vi = 12, (6.16)

€

where
pe = F(zpcp +2z_c_). (6.17)

The electrons generating the applied potential are assumed to exist outside the
tube. Hence the Poisson equation for the applied potential simplifies to the
Laplace equation

V2 = 0. (6.18)

The equation for the total potential is hence

V2in + V260 = Vo = ‘fe. (6.19)

In order to find the concentrations ¢4 we return to the Nernst-Planck equation.
Splitting the equation into a radial and an axial component we obtain

=2l 0ot _ Oci

RT ““or ~ or’ (6:20)
—ziF Odior  Ocy
RT "9z 0z (6.21)
Integrating the above we find
—ZiF
ci(r,z) = Ai(z) exp (W@m (r, z)) (6.22)
—ZiF
ci(r,z) = B;(r) exp (ﬁ(j)tot(r, z)) , (6.23)

where A;(z) are functions, which can at most depend on z and B;(r) are func-
tions, which can at most depend on r. Hence A;(z) and B;(r) must equal the
same constant, which we will denote ¢y, where the ’0’ indicates that ¢; = )

when ¢, = 0. Hence the distribution of the ions is given by

ci(r,z) = c? exp (;—;Fmot(r, z)) . (6.24)
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As we are considering a closed system, the total amounts of ions must be fixed
initially given values, n4, equal to the volume integral of the concentrations

. = /0 " [ /0 ’ /0 " estr z)rdz] dr] d9 = 21 /0 ’ [ /O ' ci(r,z)rdz] dr. (6.25)

Equations (6.24) and (6.25) gives and expression for ¢%.. We can hence write the
following partial differential equation for the total electric potential

a2¢tot 1 a¢tot a¢t0t
or? + r or + 072

_F Z4 N4 €Xp (%Qﬁtot) Z_n_ exp (%@ot) (6.26)

=— +
2me foa fOL exp (—_;}F <Z5tot> rdzdr foa fOL exp (%qﬁtot) rdzdr

which must be solved with the appropriate boundary conditions. Making the
equation non-dimensional we obtain

/2 82(1);015 /6¢;ot

2 /
e 0P} o1

o712 +r or' +r 12 022 = T/Qf(¢;ot)a (627)
where
1 n', exp (—@},) n’_exp (¢},:)
f(qs:ﬁot) = i [_ 1 1 + , : t/ o T 1 ; ! t/ P (628)
fo fo exp (— o) r'dz"dr fo fo exp (¢t,) r'dz'dr

The non-dimensional variables are defined as follows

/ T ! z
T _Zz 6.29
r=- 4= (6.29)
, zF , 2a%2%F?
_ ] e 6.30
Prot = R Ptot ¢ RT °© (6.30)

where ¢’ is the non-dimensional concentration.

In the case we are going to consider the total potential will be fixed along
the edges of the tube in the following manner

A for 2/=0, 0<¢ <1
By = Acos(2mz’) for =1, 0<z2' <1 (6.31)
A for 2/=1, 0<r' <1

For notational convenience the primes on the z and r variables are omitted
from this point and on. With the Dirichlet boundary condition above we have a
boundary value problem. A suggestion on how to solve the problem is given in
the following. We will proceed by separating variables and expanding the solu-
tion on a complete basis set. First we separate the problem into two boundary
value problems, see Figure 6.3, One problem with homogeneous boundary con-
ditions and an inhomogeneous PDE and another problem with inhomogeneous
boundary conditions and a homogeneous PDE. Given the two solutions ¢; and
@2, respectively, we can find the total potential

Grot = 1 + o (6.32)
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With the total electrical potential at hand the non-dimensional concentration
distribution can be found

ct = L exp (Fdhy;) - (6.33)
r r r
o1 Pot=Acos(2nz/L) a1 ¢1=Acos(2nz/L) ol 92=0
2 —
dotmA| Vo= i) [0o=A = &4=Al  v?,=0 01=A  F 0p=0] Vb= f0e)  |bp=
> Z » Z >
Symmetry L Symmetry L Symmetry L

Figure 6.3: Splitting of the boundary value problem into two cases, which are easier solved.
Finding ¢1 and ¢2 the solution is given as: ¢}, = ¢1 + P2.

We begin by considering the homogeneous PDE. Assuming the solution can
be separated, means

Pt (1 2) = R(r)Z(2). (6.34)

Inserting this into the homogeneous form of the PDE given by equation (6.27)
and rearranging yields
r?R"(r)+rR'(r) —(a/L)2Z"(2)

r2R(r) = Z(2) =k (6.35)

where k£ must be some constant independent on r and z, since the fraction on
the left-hand side of the first equal sign above is dependent only on r and the
fraction on the right-hand side of the first equal sign is dependent only on z.
Thus we obtain two ODE’s for the radial and axial direction respectively.

r?R"(r)+ R (r) —kr*R(r) = 0 (6.36)
Z"(2) +k(L/a)*Z(z) = 0 (6.37)

In order to solve the homogeneous PDE with the inhomogeneous boundary
conditions we split the problem into three sub boundary value problems. See
figure 6.4. We hence obtain ¢; as the sum of ¢14, ¢1p and ¢1..

r r

a 4, =0 a 4,,=0

= + +

do=A Vo0 [bo=A 9,50 V=0 (0,20 ¢.=A| V=0 0,20 60| V2,50 [h=A

r r
or=Acos(2nz/L) 6, =Acos(2rz/L

Symmetry L z Symmetry L z Symmetry L z Symmetry L z

Figure 6.4: Splitting of the boundary value problem into three cases, which are easier solved.
Finding ¢14, ¢15 and ¢1. we obtain: ¢1 = ¢14 + P1p + P1c-
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Firstly consider the BVP with homogeneous BC’s at the ends of the tube.
Searching for solutions in the axial direction we find that k& must be posi-
tive to avoid the trivial solution Z(z)=0. Imposing the boundary conditions
Z(0)=Z(1)=0, yields the eigenfunctions

Zm(z) =sin(mrz), meN (6.38)

With & positive the solution to the ODE for the radial direction, equation (6.36),
is given by a linear combination of the modified Bessel functions of zeroth order

Rm(T) = CIO('YmT) + DKO(’VmT)a (6'39)

where C' and D are constants to be determined, and v, = “7*. Since K¢ — oo

for r — 0 we must require D = 0. This also ensures that the symmetry condition,
R/'(0) = 0, is fulfilled. At this point we hence assume

D1a(1, 2) Z Cdo(ymr) sin(mnz), (6.40)

m=1
where C),, are constants to be determined from the last boundary condition,
oo
$1a(1,2) = Acos(2mz) = Y Cro(ym) sin(mmz). (6.41)
m=1

The constants Cy,Io(vm) can be interpreted as the Fourier sine coefficients of
the function Acos(27z) on the interval z € [0,1]. Multiplying on both sides of
the last equal sign and integrating over all z € [0, 1] yields

A /O {sinfrz(m — 2)] + sinfr=(m + 2)]} dz = CoTo (1) (6.42)

Integrating we obtain

2A <1 1

= keN A4
FIQ(’YQk_l) 2k — 3 + 2k + 1) ’ < ’ (6 3)

where we have substituted m = 2k — 1, because only uneven m gives non-zero
coefficients. Be aware of the case m = 2 which must be examined separately
by inserting before integrating analytically. The coefficient for m = 2, however,
also yields zero. Thus we have found

0 2A a(2k 9L ) 1 1 .
h1a(1, 2) Z Qk 1)7T) <2k —3 + o 1) sin((2k + 1)wz) (6.44)

—1 7l

We could have made the solution more general with a more general boundary
condition, say ¢14(1,2) = Acos(nomz), where ng € N or even ny € R. We will
however only consider the special case ng = 2, which already contains most
of the physical aspects of interest. See Appendix B for the coefficients for an
arbitrary ng.

We move on to find ¢qp, which is the case with homogeneous boundary
conditions at the end where z = 1 and along the edge where r=1. Searching for
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solutions in the radial direction we find that only £ < 0 gives solutions different
from the trivial solution, R(r)=0. Defining k = —~? the solution is given as a
linear combination of the Bessel functions of zeroth order

R(r) = CJy(vyr) + DYy(vr), (6.45)

where C' and D are constants to be determined. Immediately we realize that
we must require D = 0 because Yy(r) — —oo for r — 0. This also ensures that
the symmetry condition, R’(0)=0, is fulfilled. The boundary condition R(1) =0
gives

Jo(7)=0 = v=m (6.46)
where 7, is the n’th zero point of Jy. In the axial direction we need to solve

Z"(2) + (ynL/a)*Z(z) = 0. (6.47)

InL
a

Defining \,, =

the solution is given as
Zn(2) = Ae™ M 4 Bern?, (6.48)

Imposing the boundary condition Z(1)=0 gives the solution

$15(r,2) = 3 _ Bn(e* — M C72)) o (), (6.49)
n=1

where B,, are constants to be determined from the boundary condition at z = 0,

o0

G15(r,0) = A =" B(1 =€) Jo(yur), (6.50)

n=1

where B, (1 — e¢?*) can be interpreted as the expansion coefficients of .Jy for
¢15(r,0) = A. Multiplying on both sides of the second equal sign by Jo(ymr)r
and integrating over all r € [0, 1] yields

2A

B, = . 6.51
T () (1= ) (651
Thus we can write the solution
R 24 Jo(yar) etn® — eAn(272)
(blb(rv Z) Z - 2
n=1 Tn Jl(yn) 1—e*Mn
oo 24 J. " An(2—=2) _ ,—Apz
- ¥ 0(mr) e c (6.52)

Yo J1(vn) e —1

n=1

The last fraction involving the exponentials have been paraphrased in order to
avoid that any of the terms tends towards infinity for n — co. This is quite im-
portant when implementing the series in a computer program, since the number
of terms possible to calculate otherwise would be very limited. The solution ¢,
is similar to the above derivations found to be

24 J, T ern(z=1) _ o=An(z+1)
bro(rz) = 0(ynr) |

'77 Jl(’Yn) 1— 6_2/\” (653)

n=1
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Finally we expand the solution for the inhomogeneous boundary value problem
with homogeneous boundaries on a complete basis set

da(r,z) = Z Z mn SIn(mmz)Jo(vnr), (6.54)
n=1

m=1

where E,,, are constants to be determined. Notice that the boundary conditions
are satisfied regardless of E,,,,,. Inserting into the inhomogeneous PDE we obtain

S By sin(mz)r? (v?;+ (“”Z”)Q) Jo(vr) =12 f(Su),  (6.55)

n=1m=1

where f(¢},.) is given by equation (6.28). Notice we have not inserted equation
(6.55) into f(¢},:)- Later we are going to deal with this problem, as ¢}, will
be sought iteratively. Assume f(¢}.;) to be known in the following. Firstly we
notice that 72 can divided out from the above equation (6.55). Then multiplying
both sides by sin(n'mz)Jo(ym )r and integrating over all r, z € [0, 1] yields

4f0 fo (@} (1, 2)) sin(mm2) Jo (yn7)rdrdz

Fr = (42 + (=5=)°) 2 m)

, (6.56)

which inserted in equation (6.54), gives the solution to the inhomogeneous equa-
tion, ¢s.

6.4 Numerical Solution

The expressions derived in the previous section have been implemented in a
MatLab code to obtain solutions. A pseudo code is shown in figure 6.5.
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Pseudo Code

Initializing:
-Dimensions
-Amount of Species
-Applied Potential

‘ Solve to find d; ‘
v

First Guess:
¢tot: ¢1
v

‘ Calculate f@,,,) }4—‘
v

‘ Solve to find ¢, ‘ ‘ dot= O + ¢, ‘

¢ A
A =|c- Gl
A =|d- )
Is max(A,A_)<e?

iYes

‘ Plot solution

Figure 6.5: Flow chart sketching the pseudo code.

The entire MatLab code for the above flow chart is given in Appendix C.
With the solution procedure described above no guarantees are given regarding
convergence, and unfortunately, the iteration procedure only converged for very
low concentrations.

Other ways of solving this boundary value problem might be attempted. For
example a finite difference discretization combined with some iteration proce-
dure for the non-linear term. Another possibility is to use existing CFD software.
Using CFD software the entire time dependent solution ought to be obtainable.
Attempts to use Coventor for this purpose was made. However, the Coventor
software had some very unfortunate limitations. In order to generate a geome-
try where the electrodes are electrically isolated from the channel containing the
ions, internal walls are needed. See Figure 6.6. The electrodes need to be isolated
from the species, because the species otherwise is absorbed by the electrodes.
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2D topview
electrodes
L
I n R g -l
. LT LI ] LT ]
internal
\ patche7 :

' ) — I M M M
T 1 . 1 -

electrodes

Figure 6.6: Flow chart sketching the pseudo code.

It is possible to specify the condition Wall to the internal patches. However,
after extensive correspondence with the Coventor Support group in Amsterdam,
I have realized that the Wall condition only behaves as a wall in respect to fluids
driven by convection. When fluids move by diffusion the internal walls are simply
nonexisting, meaning that fluids can diffuse through internal patches with the
condition Wall specified. Species cannot, however, diffuse through Non-internal
patches given the Wall condition. For this reason it is not possible to isolate the
electrodes from the species.

In the following solution examples from the MatLab program are given. Each
example begins with a box listing the important parameters for the simulation:
L is the length of the tube, a is the radius of the tube, ¢ is the concentration,
T is the temperature, A is the voltage specified at the ends of the tube, and e,
is the convergence criteria on ¢ and c?.
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Example 1

2a.

1e

te=7

0.9
0.8
0.7
0.6
0.5

N

In Figure 6.7 the distribution of positive and negative ions is given. The
| L =100pm, a = 10pm, ¢ = 10" 2molm=3, T = 298K, A = 0.1V, ¢, = 2 — 4 |

parameters used are given in the box below

0.4

0.3

0.2
0.1

0.2

0.9
0.8
0.71
0.67
'~NO0.5F
0.4r
0.31
0.2
0.1

0.6

0.4

0.2

positive ions have been driven into the middle of the tube. Panels (c) and (d) show how the

Figure 6.7: Distribution of positive and negative ions. Panels (a) and (b) show how the
negative ions have been driven out to the ends of the tube.
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Example 2:
In Figure 6.7 the distribution of positive and negative ions is given. The
parameters used are given in the box below

L =100pm, a = 5um, ¢ = 107?molm 3, T = 298K, A = 0.1V, ¢, = 2e — 4

2 Be-

0.3

0.2

0.1

1 -
.25e-6 10-6
0.9

0.8

0.7
0.6

NO.5¢

0.4
0.3
0.2

01 Te-6 =
1.256-6

0.2 0.4 0.6

(c) (d)

Figure 6.8: Distribution of positive and negative ions. Panels (a) and (b) show how the
positive ions have been driven into the middle of the tube. Panels (¢) and (d) show how the
negative ions have been driven out to the ends of the tube.



Chapter 7

CFD Applied to Dispersion
Problems

In the following chapter different simulations concerning the dispersion of a sam-
ple travelling in a microchannel will be presented. In Table 7.1 a table is given
with diffusion coefficients for different solutions. We will use the self diffusion
coefficient for water as a starting point for the simulations presented in this
chapter.

Chemical Diffusion Coefficient/(m?s~1)

Water (in water) 2.26 x 107
Ethanol 1.24 x 1079

K+ 9.60 x 10710

Ht 9.31 x 1079

Nat 1.33 x 107°

OH~ 5.30 x 107

Cl~ 2.03 x 1079

Glycine 1.06 x 10~?
Dextrose 6.73 x 10710
Succrose 5.22 x 10710

Table 7.1: Selected diffusion coefficients for different dilute solutions in water at the tem-
perature: 298 K.

For the simulations presented we will apply the finite volume method. A thor-
ough description of this method is given by Versteeg and Malalasekera (1994).
We will consider two different geometries. Firstly, two straight channels con-
nected by a 180° turn will be studied. Secondly, we will consider a special spiral
geometry, which, in fact, is constructed by turns and straight channels.

However, several problems arise regarding the measuring of dispersion even
before we can study the results. This will be the subject of the first section.

93
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Figure 7.1: Sketch of the grid and the geometry used in the numerical simulation of flow
taking a 180° turn.

7.1 Measuring the Dispersion

In Chapter 5 we mention that often dispersion is measured in terms of the stan-
dard deviation of the species concentration profile. In this context the standard
deviation o is found as follows: (1) Find the mean concentration in each cross
section of the channel, and plot it as function of the length coordinate of the
channel. (2) Calculate the standard deviation of the obtained curve. If the con-
centration profile is a Gaussian, 40 corresponds to 95.5% of the sample. When
comparing simulation results with respect to dispersion we simply compare the
o values.

It is not in Coventor possible directly to obtain a measure of ¢ as function
of time. However, it is possible to obtain a value, as function of time, of some
quantity in a region specified by the user. Say, we specify two box shaped regions
with a width of one cell, one just before the turn inlet and one just after the
turn outlet. A sketch of these regions are shown in Figure 7.1. We can thus get
the amount of species in the cell layer just before the turn as function of time,
and on the basis of this obtain a time based standard deviation oy,. Similarly
obtaining a time based standard deviation for the turn outlet, we can obtain
another time based standard deviation o,.;. The difference, ooy — oin, then
corresponds to the dispersion caused by the turn including diffusion.

The time based standard deviation obtainable as described above, is different
to the standard deviation obtained at a specific time, because the first part of
a sample entering a measuring region will have experienced less diffusion than
the last part of the sample going through the measuring region.

The above described way of measuring dispersion does not require anything
on the distribution of the sample. If we on the other hand assume that the sample
is distributed as a Gaussian at all times we have another possibility: Reading
off the peak concentration at each time step we can calculate the standard
deviation, and thus get is as a function of time. This procedure will be applied
in one of the following sections.
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7.2 Parametric Studies

In this section we will investigate when good convergence is obtained. Param-
eters such as grid cell size, solution tolerance and magnitude of time steps will
be estimated for the simulations following in the next sections.

7.2.1 Pressure Driven Flow in a Turn

We consider a 180° turn with a rectangular cross section. The inner radius
is: 7; = 150 pm and the width is: w = 50 pum. Three different depths are
investigated: h = 25 um, h = 50 pm, and h = 75 pm. The flow is pressure
driven with a pressure drop of AP =1 x 10~% MPa.

(a) (b)

Figure 7.2: Sketch of the grid and the geometry used in the numerical simulation of flow
taking a 180° turn.

The simulation results are shown in Appendix F. In Chapter 4 an analytical
expression has been derived for the velocity profile in a turn with a rectangular
cross-section. A MatLab program to calculate the profile has been developed to
obtain values to compare with the simulations. The code is shown in Appendix
G. From the program we have found the flow rate and the maximum velocity,
which are given in Table 7.2. In the MatLab code the size of the matrices
containing the velocities were increased to obtain convergence of the flowrate
and the maximum velocity. From the charts given in Appendix F, we notice that
convergence was obtained for 50 x 50 matrices. The calculations with 100 x 100
matrices did not change the result within the accuracy given in Table 7.2. The
number of terms needed in the basis function expansions for the velocity was
also increased until convergence. A contour plot of the velocity for the 25 pym
deep turn is shown in figure 7.3. The contour plot is obtained with the MatLab
code in Appendix G.
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Figure 7.3: Contour plot of the velocity profile in the cross section of a 180° turn. The
pressure drop from turn inlet to turn outlet is 1 x 10~8 MPa. The contour plot is obtained
with the MatLab code in Appendix G.

Flowrate(MatLab) Flowrate(Coventor)

Depth/um P e Deviation
25 0.81x10° 0.83x10° 2.31%
50 3.99%x10° 4.03x10° 0.90%
75 8.32x10° 8.38x10° 0.73%

Table 7.2: Results obtained using the MatLab code given in Appendix G and selected
simulation results. For the simulation results the cell size is 2.5um.

The cells at the inner radius are closest to being cubic. We define the cell
size as being the edge length of the cubic cell. The cells have been made cubic as
there are no directions more important than others when a species is introduced.
The concentration gradient of the species should be equally well resolved in
all directions in order to avoid a dominant numerical diffusion! in one of the
directions.

Consider the simulation results given in Appendix F. For each cell size the
solution tolerance has been increased until convergence in the flow rate deviation
was obtained. Convergence is approximately obtained in the interval from 1076
to 1078 for the solution tolerance. In some of the cases shown in Appendix F
the flow rate deviation increases as the tolerance is decreased. See Table 7.3.

IDiscretizations of terms in differential equations may yield terms similar to diffusion terms.
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Res File Sol. Tol. FlowRate Max Vel. FlowRate deviation

turn5015resl 10~4 4.003 x 10° 3.309 x 10? 0.33%
turn5015res2 10— 4.052 x 105  3.354 x 102 1.55%
turn5015res3 108 4.053 x 105  3.355 x 102 1.58%

Table 7.3: Example of the simulation results shown in Appendix F. Sol. Tol. is an abbre-
viation for solution tolerance. We notice that decreasing the the solution tolerance actually
increase the FlowRate deviation, which might not be expected. The important thing is, how-
ever, that the FlowRate deviation converge as the solution tolerance is decreased.

Table 7.3 should not be misinterpreted in the way that a numerically large
tolerance gives better results. Convergence must be found for the flow rate
deviation for each cell size, before statements about the accuracy of a given cell
size can be given.

The results shown in Appendix F gives the clear picture that decreasing the
cell size also decreases the deviation between the theoretical expected value and
the simulated, which is the important feature to notice in Appendix F.

From the results in Appendix F we also observe that keeping the cell size
constant and increasing the depth of the channel, the flow rate deviation de-
creases. This can be interpreted in the following way: to obtain a small flow
rate deviation it is important how many cells there are in each cross section of
the turn, the physical dimensions of the turn are less important?, because more
cells give a better resolution of the velocity profiles.

The above grid dependency analysis will be used in the process of construct-
ing the systems investigated in the following sections. We have obtained an idea
of how fine grids should be, to obtain acceptable accuracies. We will accept a
flow rate deviation in the range from 1% to 3%. It is with the current computer
performances difficult to obtain more accurate solutions when making time de-
pendent simulations. Steady state solutions were typically obtained within 1-2
hours. The time dependent simulation results, however, were typically obtained
after 6 to 18 hours of simulation time.

7.2.2 Diffusion in a Straight Channel

In this subsection we will investigate the grid dependency with respect to diffu-
sion. How fine a mesh is needed before we can trust the results? To this end we
will consider a box shaped channel with the width w = 50pm, depth d = 25um,
and length [ = 500um. The box is open in both ends so the sample is able to
diffuse out of the volume. Within this box we place a sample with a Gaussian
density distribution in the length direction and equal in concentration in all
cross sections. We can calculate analytically the time it takes for the peak con-
centration to drop to half its initial value. Comparing this value to simulated
values we obtain a measure of how well the diffusion is simulated. The mean
concentration for each cross section is given as

S —x?
clz,t) = N CHITET) exp (4D(t i t0)> , (7.1)

20f course, the dimensions cannot be increased to the extent that we enter the turbulent
flow regime.




58 CHAPTER 7. CFD APPLIED TO DISPERSION PROBLEMS

where x is the space coordinate in the length direction, D is the diffusion co-
efficient, and ¢ is time. ty is the time it would take for the delta function,
cs(z) = Sd(x), to diffuse into the shape of ¢(z,0). S determine how much
species there is in total. When the initial standard deviation o of the Gaussian
is known tq is found as follows

0.2

to = —. 7.2
0= 2> (72)
The peak value as function of time is given by
S
(7.3)

Cpeak — — F7/—————.
Pk = o /Do 1 1)

The time ¢,/ it takes for the peak concentration to fall to half its initial value
is found to be
302 _ 302,

t1/2=3t0=ﬁ— D (7.4)
where o is the standard deviation of the sample at the initial stage. The o¢
is a Coventor parameter specifying the initial shape of the sample, which quite
oddly is defined different from the usual standard deviation. The results of a
series of simulations are shown in Table 7.4. From Table 7.4 we see as expected
that decreasing the cell size, solution tolerance or time step also decreases the
deviation between the theoretically expected 2, /o

- 308 3(50pm)?
V274D T 4226 x 103um?2 s

= 0.830s, (7.5)

and the ¢, /5 found from the simulations. All deviations are below 1% indicating
that diffusion is quite well simulated even for relatively coarse grids, large time
steps and high solution tolerances.

Cell size/um  Sol. Tol. Time step/s t1/9/s estim. ¢, deviation

10 10~4 0.1 0.823 0.84%
10 10~4 0.01 0.828 0.22%
10 10~7 0.1 0.831 0.11%
5 10—* 0.1 0.832 0.28%
5 10—* 0.01 0.830 0.07%
5 10~4 0.001 0.829 0.10%
5 10~7 0.1 0.832 0.24%
5 107 0.01 0.829 0.10%

Table 7.4: Grid dependency analysis for diffusion in a box. Only diffusion make the sample

disperse. The diffusion coefficient for water in water has been chosen: D = 2.26 x 103 yum?s~1.

Two extra simulations were made to investigate the effect of driving the
flow with electroosmosis, i.e. a flat velocity profile, no gradients. The results are
shown in Table 7.5.
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Cell size/um  Sol. Tol. Time step/s ty/5/s estim. ¢1,5 deviation

) 1074 0.01 0.830 0.07%
5 10~* 0.0025 0.830 0.07%

Table 7.5: Grid dependency analysis for diffusion in a box. The species diffusing is driven
by electroosmosis, meaning a constant velocity profile. As we have no velocity gradients only

diffusion should make the sample disperse. The diffusion coefficient for water in water has

been applied: D = 2.26 x 103 ym? s~ 1.

Hence, comparing to the grid dependency analysis of the velocity profile in a
turn, it is the resolution of the velocity profile determines the cell size required
for acceptable convergence rather than diffusion. We have here only compared
with the velocity profile made by a pressure driven flow. E.g. velocity profiles
for flows driven with electroosmosis in a turn could also be considered.

In the following simulations grid cell sizes and solution tolerances will be
chosen with the analysis above in mind.

7.3 Dispersion in a Turn, Part 1

In this section we will examine simulation results using the time based standard
deviation found from the turn-inlet/turn-outlet discharge of species as functions
of time. We will consider three different cases for flow in two straight channels
connected by a 180° turn. See Figure 7.4.

turn inlet

C Inlet

Outlet

Q -

Figure 7.4: Sketch of two straight channels connected by a 180° turn.

e First, the simple case with the same electroosmotic mobility at all walls.
At inlet and outlet no pressure is specified, meaning that no pressure
difference exist anywhere in the system. At the inlet and outlet the voltages
Uin and U,y are specified, yielding an electric field in the system driving
the fluid. The electric field is found by solving the Laplace equation in the
whole geometry.
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e Secondly, we consider a case where the turn is short circuited. Practically
we imagine it possible to place electrodes so that no potential gradients are
present in the turn. E.g. four electrodes with voltages: Uy > Us=Us > Uy.
Place U; at the inlet of the whole system, place Us at the turn inlet, Us at
the turn outlet, and U, at the outlet of the whole system. This setup is,
however, not possible to create using Coventor, because this would require
internal patches with a voltages applied. It is not possible to obtain a
transport of species through a patch with a specified boundary condition,
such as a voltage?.

Instead we will choose the electroosmotic mobility of the walls in the turn
to be zero. This gives effectively the same velocity boundary conditions as
short circuiting the turn would have done, since the velocity at the bound-
aries is the product of the electric field and the electroosmotic mobility.

e In the third case we will consider the system with modified electroosmotic
mobilities at the walls of the turn. The mobilities have been changed ac-
cording to equations (5.79) and (5.80) for the 2D case.

Consider electroosmotic driven flow in two straight channels connected by
a turn. Earlier on we have discussed the problems arising when a sample en-
ters such a turn. The sample will be dispersed because of the geometric effect.
Furthermore the sample will be dispersed because of the higher velocity at the
inner wall compared to the outer wall. Say, we short circuit the turn. Then the
last effect is eliminated. However, unfortunately another source of dispersion
arises: Gradients in the velocity profile. The flow in the turn is now pressure
driven with no-slip boundary conditions. Not only do we obtain gradients in the
velocity profile in the turn, there will also be velocity profile gradients in the
straight channels.

At first we will consider the 2D case of this problem. See Figure 7.5. The
2D case contains all of the interesting physical aspects of the problem. This is
followed by simulations to support the reason for trusting the simulation results
from Coventor. Secondly 3D simulations are made to obtain physically realistic
results.

31t is possible to have a species transport through an internal patch if no boundary condition
is specified.
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Figure 7.5: Sketch of the two straight channels connected by a 180° turn. The 2D flow profiles
are sketched to illustrate that short circuiting the turn affects the profiles in the electroosmotic
flow in the straight channels.

There will be a certain transition zone when going from a straight channel to
the turn and vice versa. Far from this zone the velocity profiles can be assumed
to be dependent only on r in the turn and y in the straight parts. Assuming the
flow to be inertia free the extension of these zones will be zero. The Reynolds
number is approximately

1 10—6 10—
:@: 00 x 107%m/s 50 x 10 m:5><10—3, (7.6)

R
‘T 1% 10-5m?/s

where U is a characteristic velocity, w the width of the channel, which is a
characteristic length scale and v is the kinematic viscosity. This very small
Reynolds number indicates that we can indeed assume the flow to be inertia
free. The Navier-Stokes equation in cylindrical coordinates yield the profiles

u(y) = Ci(y® —wy) +uj, (7.7)
us() = Co [ln(r) - %] + %Ar + g, (7.8)
uz(y) = Cs(y® —wy) + uj, (7.9)

where u] is the electroosmotic given velocity at the wall in the first straight
channel and uj is the corresponding velocity in the last channel. A and B
remains to be determined from the no-slip boundary conditions. C;, C5 and
Cs are given by

1 Op _10p

1 Op
= 2102 2= 90" P

= 2u Oz

Cs = (7.10)
Since the pressure is varying linearly along the length of the straight channels

and varying linearly with the angle in the turn we write

:pl—po :p3—p1 C :po—p3
YT oourr 0 R pr 0T 2ul3

(7.11)
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Requiring the discharges in the straight channels to equal the discharge in the
turn gives relations eliminating p; and ps from the equations. pg is a boundary
condition to be chosen at the ends of the system. The pressure gradients in
the system is independent of pg, likewise is the velocity profiles. The absolute
pressures, however, do depend on pyg.

The procedure described above to find Cy, Cs, and C3 and so the velocity
profiles can be made analytically. It is, however, quite a task to perform the
algebra by hand. Therefore the profiles have been found using Mathematica. In
Figure 7.6 a plot of the velocity profiles are shown for the case:

ui = uj = 200pm st Ly = 300um, Lz = 700.

pw=10"3kgm s, r; = 150um, r, = 200um, w = 50um.

uz
w (um [ =) Velocity Profile

Uz
(e fZE-D)D TrE] Veloeity Profile

175 150
150

1z5
100
75
50
25

100

s0

10 20 10 10 S 160 170 1800 190 oo A

(a) (b)

Figure 7.6: The velocity profiles for the system shown in Figure 7.5. The profiles u; and ug
are equal because the boundary velocities u] and uj are equal.

In Figure 7.7 the analytical expressions for the profiles are given. Would it be
possible to improve the velocity profiles? Consider the case where there is equal
electroosmotic mobilities in the straight channels before and after the turn.
This is the case in many real experiments, when all walls are composed of the
same material. If the velocity profile in the straight channels are constant the
discharge is: Q = Uw, where U is the constant velocity and w is the width of
the channel. Let us denote the pressure difference across the turn needed to
produce the same discharge, AP. Cunningly we place this pressure difference
across the whole system, so that the pressure at the inlet is AP higher than at
the outlet. The effect must be that no pressure drop can exist in the straight
channels. The entire pressure drop must exist across the turn, yielding constant
velocity profiles in the straight channels and a parabola-like velocity profile in
the turn. A 3D simulation showing such a profile is presented in Figure 7.8.
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R pl-po
ulnew = S].rrmllfy[ul[_‘{] /. C1— PR /. pls]
u

ulb -
(6 (w-y) ¥ (- (ri’ - ro®) (3013 (ri® —zo®y (ulb-u3b) —2xulbw’) + 12 L3 ri?
ro® (ulb -usb) Log[ri]® - 24 L3 ri’ ro® (ulb -u3h) Log[ri] Log[ro] +
1213 i’ ro' (ulb-u3b) Log(ro]®)) /
it (mrif ooty (3Llrit +3L3rit-3Llref-3l3refozaw) +
12 (L1+ L3 rif rof Loglrd]®- 24 (L1 + L3 ri®ro® Log[ri] Loglro] +
12 (L1+L3) ri® ro® Log[ra] )

3 1
uZnew = S:i.trplify[S:i.tmlify[uﬂr] /. consts] /. €2 L P'p f.pls /. p35]
pPi

(12 (Ll ulb+ L3u3b) w
(1:2 (1:12 - 1:02) Log[x] + rit (—1:2 + 1:02) Log[ri] + (1:2 - riz) raf Log[ro]))/
(r (i’ -ro®y (3L1rif+ 303 ri' 3Ll eo’ -3 L3 p0’ - 2w’y -

12 (L1+L3) ri® ro® Log[ri]® + 24 (L1 +13) ri®ro® Log[ri] Log[ro] -
12 (L1+L3) rif ro Log[ro]®))

deltaP - Flatten[Simplify[Solve[02 -- ulbw, p311]
[p3 - (8o (ri* - ro®y ulbw f ((r1? - o®)* -

ari'rot Log[]:i]2 +8rifra? Log[ri] Log[ro] - ari® rot Log[ro]z)}

Figure 7.7: Results extracted from Mathematica. uInew corresponds to the u; and us

velocity profiles. u2new corresponds to the ug velocity profile. deltaP corresponds to equation
(7.12).

Flice Plune
Contouwrs

Velogity Maognitude

0.00 4899 47.98 146.98 195.97

Figure 7.8: The velocity profile for a slice plane placed at the z-value equal to half the

depth of the channel. A pressure drop from inlet to outlet has removed the velocity gradients
in the straight channels.
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Using Mathematica an analytical expression for AP for the 2D case is found,
after some simplifications, to be

Srwp(r? = r2)u;

b N (7.12)
72 —r2 — 4r?r2 [ln (:—Oﬂ

after some simplification of the expression given in Figure 7.7. The above for-
mula is used in the following 2D simulations. In many microfluidic systems the
microchannels are meanders with several 180° turns. Consider a meander hav-
ing n short circuited turns. The pressure drop needed across the entire meander
AP, to avoid velocity gradients in the straight channels of the meander must
then simply be

A—Ptot =nAP. (713)

Removing the velocity profile gradients in the straight channels only diffusion
contributes to the dispersion of a sample. Thus yielding less dispersion compared
to the case without a pressure drop over the whole system. Now, the question
is: Will the effect of removing the velocity gradients in the straight channels
reduce the overall dispersion compared to the common case electroosmotic flow
in the turn? Simulations are needed to answer this question.

7.3.1 Simulations

For the following simulations we will use the physical properties of water as they
are given by Coventor.

Density(kg/um?) 9.9982 x 10716
TCE(1/K) 1.8000 x 1074
ThermalCond(pW /umK)  5.9840 x 10+5
SpecificHeat(pJ /kgK) 4.1800 x 10T%°
ElectricCond(pS/pum) 1.0000 x 1072
Dielectric 8.0200 x 107!
Viscosity (kg/pm/s) 1.0020 x 10~

Table 7.6: Physical properties for water used by Coventor.

The physical parameters given below are used for the simulation series pre-
sented in Figure 7.9.

L; =300pm Ly = 50pum
r; = 150pm 7, = 200pum
AU =10V EOmobility = 30000 ,U,Hl2 V-lgl

Table 7.7: Physical parameters of the channel used in the simulations.

The most important features of Figure 7.9 have been summarized in Table
7.8. In the Table we have given the Tp values for the outlet, only, where

Tp = 4o. (7.14)
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The Tp values for the inlet are practically equal for simulations having the
same diffusion coefficient. This was expected because only diffusion contributes
to the dispersion in the straight channels. This is also the case for the short
circuited turn, because we have applied a pressure drop across the whole system
cancelling out the velocity gradients in the straight channels. From the Tp
values measured at the outlet we can determine the effect of short circuiting
turns in microchannels. From the table below we conclude that short circuiting
the turns will increase the dispersion caused by the turn. Moreover, we conclude
that optimizing the electroosmotic mobility in the turn according to equations
(5.79) and (5.80) will decrease the dispersion.

D/(um2?s~1) Tp/s (short circuit) Tp/s (EO in turn) Tp/s (optimized EO)

226 1.754 0.949 0.445
2260 1.371 1.310 1.252

Table 7.8: Results from a 2D simulation. The T5 values are measured at the outlet. The T
values measured at the inlet were practically equal for simulations having the same diffusion
coefficient. From the above we conclude that short circuiting a turn increases the dispersion.
Furthermore we notice that optimizing the electroosmotic mobilities according to equations
(5.79) and (5.80) will decrease the dispersion.
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7.3.2 3D Simulations

We have concluded that short circuiting turns increase the dispersion for 2D ge-
ometries. In Figure 7.10 four simulations are presented for a 3D case. A pressure
drop over the whole system has been added in order to remove velocity gradients
in the straight channels for the short circuited cases. A plot of the geometry can
be seen in Figure 7.4. The velocity profile on the figure corresponds to the short
circuited turn. The results are summarized in Table 7.9. We notice that without
diffusion the short circuited turn clearly yield much more dispersion. For the
case with D = 2260 um? s~! there is practically no difference in the dispersion.
We thus conclude that short circuiting the turns in microchannels does not yield
less dispersion for both 2D and 3D cases.

D/(um?s~1)  Tp/s (short circuit) Tp/s (EO in turn)
0 6.753 3.545
2260 6.915 6.962

Table 7.9: Results from 3D simulations. The T)p values are measured at the outlet. The T
values measured at the inlet were practically equal for simulations having the same diffusion
coefficient. From the above we conclude that short circuiting a turn increases the dispersion.

30001 | -~ Tuminlet 3000f -~ Tuminlet
i —— Tumn outlet —— Turn outlet
h
I
2500 ! D=0 um%s 25001 D=2260 um?s 1
" Without EO in turn Without EO in turn
|
5 " | With pressure 2 With pressure
000 T, =6.753s, at outlet 000 T,=6.915s, at outlet
o o T,=0.710s, atinlet o T, =3.1885, atinlet
ES Lot £ L
s 1500 ‘\ : s 1500
o
1000 | ! 1000F .
[ !\
'
L DN
50011 500, .
b RN
[ X N
[ ! S
0 o " 0 =i i "
0 2 4 6 8 10 12 [ 2 4 6 8 10 12
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(a) (b)
3000F -~ Tumninlet 30001 - - Tuminlet
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Figure 7.10: Simulation results for a 3D simulation of a sample travelling through a turn
connecting two straight channels.
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7.4 Dispersion in a Turn, Part 2

In this section we will examine simulation results with respect to dispersion
reading off the peak concentrations as functions of time. The results will be
compared to the article by Culbertson et al. (1998).

Our goal will be to find the effective dispersion coefficient as a function of
time for a species going through a 2D turn. In the following we will assume
that the species is distributed as a Gaussian. This assumption can be quite
questionable when diffusion is not the dominant contribution to the dispersion.
When the peak concentration as function of time and the total amount of species
is known, we can obtain a measure of the diffusion coefficient. This is shown in
the following. Recall the translating and dispersing Gaussian

B C (z - Ut)?
c(z,t) = NI OITES) exp < Dud) t t> . (7.15)

Notice we have written Deg(t) to emphasize that the effective diffusion coefficient
is a function of time, and C' is defined as

C= /OO c(x, t)dx. (7.16)

The peak concentration as a function of time is given by

C

Cpeak (t> = > 5
24/ mDeg(t) (55 + 1)

where we have inserted the ¢y value given by equation (7.2). Rewriting this
expression gives

(7.17)

C? o?

Plotting % versus (% + t) the slope of the curve yields Deg(t). In the

peak
following figures, where Deg(t) is determined, we have for notational convenience

defined

02

Ce = —5—, (7.19)
47rcpeak
0.2

Ct = —+t. 7.20
5D T (7.20)

Cc is comparable to a length scale squared and Ct is a time scale shifted #g
compared to t.

7.4.1 Simulations

In the following we will present 2D simulations where the effective dispersion
coefficient have been determined. The results are presented in the following
figures.
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e Figure 7.12 is a simulation with the short circuited turn.

e Figures 7.14 and 7.15 are simulations with equal electroosmotic mobilities
specified on all walls for two different diffusion coefficients.

e Figures 7.16 and 7.17 are simulations where the electroosmotic mobilities
in the walls have been optimized to reduce dispersion.

All the figures have an (a) and a (b) part. The (a) subfigures show the points
obtained from the simulations. The peak value and the corresponding time have
been determined from the simulations. There is in the current release of Coven-
tor no easy way to obtain these points. The values have been obtained in the
following manner.

It is possible to use a feature called IsoVolume. A lower and upper bound
of the parameter to be investigated must be specified. We are considering the
species mass fraction, which ranges between 0 and 1. Specifying a lower bound of,
say, 0.3 and an upper bound of 0.7, only the volumes having species mass fraction
between 0.3 and 0.7 will be visible and colored according to the value. The
peak value can then be found choosing the upper bound to be 1 and gradually
increasing the lower bound until only the peak value is visible. An example is
in given for the initial concentration profile in Figure 7.11. The peak value and
the corresponding time have then been typed into a MatLab program for linear
regression and plotting. After some correspondence with the Coventor Support, I
have realized that there is no easier way to perform this quite tedious procedure.
According to the Coventor Support, improvements on this point are planned for
the next release of their software.

Lower Bound: 0.5

Lower Bound:0.998

Y
i Species Mass Fraction
0.00 0.25 E '

09.50 0.75 1.00

Figure 7.11: Visualization of the procedure to find the peak concentration in Coventor’s
simulation Visualizer. The lower bound is raised until only the peak is visible.

In all the figures linear regression has been made according to equation
(7.18). The effective dispersion coefficients are also given in the plots. The first
coefficient corresponds to the left most line, the next coeflicient corresponds to
the next line and so on.
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Before we begin a discussion of the simulations, the method for predicting
the dispersion introduced by a turn is briefly recaptured. Refer to equation
(5.82).

The Culbertson Method

The dispersion introduced by the turn was given by
Al = 20w (1 — exp(—tp/ty)) . (7.21)

This length is assumed to correspond to 4o, which is 95% of a Gaussian when
placed around the mean value. Hence the variance is given by

Al
o? = TR (7.22)
The effective dispersion coefficient is then given by
o2
Deg = e + D, (7.23)

where ¢ is the time it takes for the sample to travel through the turn. This is
valid only when there is electroosmotic flow in the turn.

Discussion

Consider in Figure 7.12, a simulation of the short circuited turn with pressure
applied to avoid velocity gradients in the straight channels. The left most line
corresponds to the effective dispersion coefficient in the straight channel. Since
the velocity profile is without gradients in this region, we expect only diffusion
to contribute to the dispersion. Indeed this is observed as the effective dispersion
coefficient is found to be Deg = 2266 um? s~!, which compared to the diffusion
coefficient D = 2260 um?s™!, is within the accuracy expected of the simulation.
The effective dispersion coefficient in the turn corresponding to the other linear
fit is found to be Deg = 2968 yum? s~!. The value is expected to be larger than
the diffusion coefficient, because there are contributions to the dispersion from
the race-track effect and the gradients in the parabola like velocity profile.

0 0.5 1 15

60001

50001

4000

C

(]
3000
2000

10001

D_ = 2266 micro-m?/s
eff,1

D = 2968 micro-m?/s
eff 2

25

Figure 7.12: Simulation with a parabolic velocity profile in the turn. A pressure drop has
been added to remove velocity gradients in the straight channels. The diffusion coefficient for
the simulation is: D = 2260 ym2s~1.
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In Figure 7.14 four linear fits have been made. The linear fits corresponds
to the first straight channel, the turn, the second straight channel, and finally
the last part of the second straight channel. The first coefficient is seen to be
almost identical to the diffusion coefficient as expected. The third coefficient
is larger than the diffusion coefficient even though the only contribution to the
dispersion in the second straight channel is diffusion. This could be explained by
the distortion of the sample, as it has travelled through the turn. The distortion
of the sample gives rise to concentration gradients in the direction orthogonal
to the direction of the flow. Hence diffusion in both the flow direction and the
orthogonal direction of the flow contribute to the dispersion of the sample. The
fourth line is a linear regression to the last four points corresponding to peak
values further downstream the second channel. The effective dispersion coeffi-
cient is observed to equal the diffusion coefficient again. This is interpreted as
follows: After some time the sample is smeared out, and there is no longer any
distortion of the sample, i.e. it is again distributed as a Gaussian in the flow
direction, and only diffusion in the flow direction contributes to the dispersion.
Figures 7.13 show the sample at different times, and indeed we notice the dis-
tortion of the sample just after the turn and the smearing out afterwards. A
certain transition zone, where we go from the larger dispersion in the turn to
a smaller in the straight channels, should hence be taken into account. This
transition zone before the Gaussian distribution is obtained again has not been
taken into account in the article by Culbertson et al.

When the diffusion time scale tp is much larger than the transit time*,
t;, the diffusion will dominate the dispersion, and this transition zone will be
negligible, thus under these conditions the method by Culbertson et al. can be
applied successfully.

[

t=0s

Species Mass Fraction

£.00 0.25 .20

Figure 7.13: The sample at the times: t = 0, t = 2, t = 4, t = 6. The lower bound was
set to 0.15 and the upper bound was 1, meaning that only concentrations in that range are
visualized.

4The transit time is defined as the time it takes for the sample to travel through the turn.
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Figure 7.14: Simulation with all walls having the same electroosmotic mobility. The diffusion
coefficient for the simulation is: D = 565 um?s~1!.

The settings for the simulation shown in Figure 7.15 are identical to the settings
for the simulation shown in Figure 7.14 except for the diffusion coefficient, which
is four times larger, or equal to the self diffusion in water. We notice that the
effective dispersion coefficient is only slightly larger in the turn, meaning that
diffusion is the dominating contribution to the dispersion in the turn. In Table
7.10 the results from Figures 7.14 and 7.15 are given and compared to the
method proposed by Culbertson et al. The deviations are within the expected
error of the simulations. See Table 7.10.

Comparing Deg = 2968 pm? s~! from Figure 7.12 to the corresponding
effective dispersion coefficient from Figure 7.15, Deg = 2370 um? s~!, we again
conclude that short circuiting the turn worsen the dispersion of samples.

1
| | 16000F
0.9 D, = 2.259x10°m?/s
08l 1 140007 b _ 2 370x10°m¥s
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07+ 1 12000r D =2.284x10°m?s
eff.3
0.6t 10000f
305
8050, O 8000
0.4f 1
. 6000f
03t 1
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0.21 * T * % * |
«
0.1t ey ) 2000—///
0 L L L L L L
0 1 2 3 4 5 6 % 1 2 3 4 5 6 7
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Figure 7.15: Simulation with all walls having the same electroosmotic mobility. The diffusion
coefficient for the simulation is: D = 2260 pum?s~1.
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Row no. ﬂm’é%,predicted Img%,simulated deviation
Figure 7.14 1 565 561 0.7%
2 887 940 5.9%
3 565 577 2.1%
Figure 7.15 1 2260 2259 0.04%
2 2370 2294 3.2%
3 2260 2284 1.1%

Table 7.10: Effective dispersion coefficients from from Figures 7.14 and 7.15. The first rows
(no. 1) correspond to Deg for the first straight channel, the second rows (no. 2) correspond to
Deg for the turn, and the third rows (no. 3) correspond t0 Deg in the straight channel after
the turn.

The simulations shown in Figures 7.16 and 7.17 are made with modified
electroosmotic mobilities at the walls in the turn for two different diffusion
coefficients. For both figures we notice that the effective diffusion coefficient in
the turn is close to being equal to the diffusion coefficient. This indicates that
the modification of the electroosmotic mobilities of the walls in the turn is in
fact optimal. We thus realize that to obtain even less dispersion, we need to
be able to control diffusion. This remains the most difficult task, which so far
has not been solved. To this end we will remind the reader about the previous
chapter, where we proposed a method to control dispersion of a charged species
using electric fields. Further studies into these matters could prove to be very
fruitful.
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Figure 7.16: Simulation with the walls of the straight channel having the same electroos-
motic mobility and modified electroosmotic mobilities on the walls in the turn. The diffusion
coefficient for the simulation is: D = 2260 ym?s~1!.
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Figure 7.17: Simulation with the walls of the straight channel having the same electroosmotic
mobility and modified electroosmotic mobilities of the walls in the turn The diffusion coefficient
for the simulation is: D = 226 um?2s~1.
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7.5 Spirals

In many microfluidic systems there is a need for rather long channels, because
certain chemical reactions should have time to occur before leaving the channel.
Of course, it is not clever to make just one long straight channel, if we wish the
channel to stay within some small microfluidic device. Hence we need to bend the
channel several times. This has through the years been done in different ways.
Often meanders have been made, i.e. series of straight channels connected by
turns. For such straight channels to lie close enough turns with rather small radii
of curvature are needed. Turns with small radii of curvature have, as we have
seen previously in this thesis undesired effects regarding dispersion. Another
possible way of bending the channels is to consider spirals. This has been done
by Culbertson (2000). One advantage of spirals is that the radii of curvature will
be small only in the center of the spirals. In this section we will consider spiral
shaped microchannels. See Figure 7.18. The spiral below has the extra advantage
that both inlet and outlet are placed at the edge of the spiral. This is useful when
a two dimensional point of view is to be maintained. For example if the inlet of
a spiral was placed in outer edge of the spiral and the outlet was placed at the
center, we would have to go into the third dimension to get out the transported
liquid. The spiral below is, in fact just as the meanders, created by straight
channels and turns. Hence we expect the theory by Culbertson et al., previously
applied, to be useful in predicting the dispersion. The compactness of channels
is important to obtain long channels in small areas. The spiral considered here
is indeed very compact:

ld
Figure 7.18: Sketch of a spiral.

With the smallest radius of curvature r and the distance between the cen-
terlines of the channels d given, the spiral shown in Figure 7.18 is the most
compact way of making a spiral, if both inlet and outlet is wanted at the edge
of the spiral, opposite to the case where one end of the spiral is at the edge and
the other end at the center of the spiral. This can be realized by the following
consideration: In order for the channel to spiral both into the center and out
again, there must be room for two circles of radius r at the center of the spiral.
Now, since the channel is folded as compactly as possible outside the two circles,
determined by d, the spiral is packed in the most compact way possible.
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Figure 7.19: Sketch of a spiral.

Before we can make any simulations a grid must be constructed. This is
done using the software I-DEAS, which has very extensive tools for generating
geometries and grids. The possibilities for generating grids in Coventor is at this
point very limited. Even when generating the grids for the straight channels
connected by a turn the possibilities in Coventor are less than acceptable. In
order to construct the spiral the angle o must be determined. From Figure 7.19
we find

Cy: 22 +y? =12 (7.24)
Cy: (z—m0)*+ (y—d)? =712, (7.25)

The two circles must intersect at the point

A= <352° g) . (7.26)

Inserting the point A into the equation for C; yields
x2 = 4r? — d%. (7.27)

Thus « can be found from the cosine relation

d _d
A /zg + d2 2r ’
Using I-DEAS the inner most part of the considered spiral is constructed. We

have chosen r = 200 um and d = 75 pum, yielding, o = 79.19°. Simulations are
presented in the following.

cos(a) = (7.28)

7.5.1 Simulations

The spiral is composed of five parts as shown in Figure 7.20. For each part
an effective dispersion coefficient have been found. Two simulations have been
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made with equal electroosmotic mobilities on all walls, and one simulation have
been made with the optimized electroosmotic mobilities at the walls.

Part 4 Deffa

Figure 7.20: The channel geometry is composed of five parts. The first and the fourth
parts are straight channels. The second and the third parts are turns bending an angle of,
180° + 79.19°, and the radius of curvature at the centerline is » = 200 um. The fifth part is a
turn bending 180°, and the radius of curvature at the centerline is r 4+ d = 275 pm.

Discussion: It should be mentioned that the simulation time for the following
2D simulations was approximately 20 hours, and the required hard disk space
for each simulation was about 12 GByte. The reason for such extreme hard disk
requirements is that for each time step all the physical data is saved, even the
data which does not change in time. Hence a lot of redundant data is stored.
Thus it is with the present available software and computer performance not
practically possible to make 3D simulations of spirals®.

In Tables 7.11 and 7.12 the most important results from the simulation data
shown in Figure 7.21 and 7.22 are given, respectively. The predicted values
of Degr2, Deg,3, and Degs have been determined by Culberton’s method. The
predicted values of Deg 1 and Deg 4 are simply the diffusion coefficient.

Much the same arguments as for the case with a turn can be given to explain
the deviations from the predicted values. The reason that the simulated effective
dispersion coefficients are in general higher than the predicted in the turns could
be explained by the distortion of the samples, yielding diffusion in the direction
orthogonal to the flow. Diffusion orthogonal to the flow is not accounted in the
predicted values.

The reason why Deg o in Part2 is larger than Deg s in Part3 could be ex-
plained as follows: The outer wall of Part2 goes into being the inner wall of Part3
and vice versa. Thus some of the distortion created in Part2 will be corrected
in Part3. This effect is especially pronounced in the simulation shown in Figure
7.22. Where the effective dispersion coefficient in Part3 is considerably lower
than the predicted value. The reason for this effect to be more pronounced in
the second simulation is that the flow rate is larger here compared to the first
simulation seen in Figure 7.21. The larger velocity means that diffusion orthogo-
nal to the flow direction has less time to occur, thus the distortion caused by the

5At a Coventor seminar in April 2002 T have been informed by Joost van Kuijk from
the Coventor department in Amsterdam, that in the next release of the Coventor software,
improvements have been made so the hard disk requirements are less extreme
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turn will be less smeared out, and thus more of the distortion can be corrected
again in Part3. This is shown in Figure 7.23.

No. D _ ,predicted Dew _ ,simulated deviation
pm? s pm? s
Figure 7.21  Deg 454 454 0.0%
Deg > 663 743 10.8%
Degr 3 663 718 7.7%
Degr 4 454 512 11.3%
Degr s 567 603 6.0%
Table 7.11: Effective dispersion coefficients from Figure 7.21.
No. m H?;‘ST_l ,predicted m m%g_l ,simulated deviation
Figure 7.22  Deg 454 457 0.7%
Degr > 1246 1451 14.1%
Degr 3 1246 1085 14.9%
Degr 4 454 853 46.8%
Degr s 911 941 3.2%
Table 7.12: Effective dispersion coefficients from Figure 7.22.
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Figure 7.21: Simulation results from a sample travelling through a spiral.
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Figure 7.22: Simulation results from a sample travelling through a spiral.
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Figure 7.23: 2D Simulation of a sample travelling through a spiral. Notice that the distortion
of the sample caused by the first turn is corrected to some degree in the following turn.

In Figure 7.24 a simulation is shown where the electroosmotic mobilities
in the turns have been changed according to equations (5.79) and (5.80). The
effective dispersion coefficient found from Figure 7.24 to be: 452um?s™!, which is
practically equal to the diffusion coefficient: D = 454pm?s~!, as we would expect
since the only contribution to the dispersion is diffusion. In Figure 7.25 the plug
is shown at different times. The lower bound has been set to 0.05, meaning that
only volumes with species mass fractions larger than 0.05 are visible. Notice that
everywhere the ends of the samples are orthogonal to the channel indicating that
there indeed can be no diffusion in the direction orthogonal to the flow.
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Figure 7.24: Simulation results from a sample travelling through a spiral.
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Figure 7.25: The plug as function of time.
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Summary A parametric study has been made to obtain experience regarding
the solution dependence on parameters such as cell size, time steps, and solution
tolerance.

Next a thorough investigation of flows in a system consisting of two straight
channels connected by a turn has been made. In usual electroosmotic flows the
electrical field in the turn enlarge the race track effect because the electric field
is stronger at the inner wall compared to the outer wall. This lead us to an idea
of short circuiting the turn. Short circuiting the turn, the flow becomes pressure
driven in the turn, giving gradients in the velocity profiles in both the turn
and the straight channels. A method to remove the velocity gradients in the
straight channel has been derived and applied to the simulations. We cannot,
however, avoid the velocity gradients in the turn, and unfortunately, simulations
have shown that this pressure driven flow profile causes more dispersion than
the usual electroosmotic flow. Hence we will have to discard the idea of short
circuiting the turn.

However, simulations have shown that changing the electroosmotic mobilities
at the walls in the turn, we can reduce the turn induced dispersion down to
diffusion in the flow direction.

Moreover, we have applied the method of predicting turn induced dispersion
developed by Culbertson et al. (1998). We have found that the method gives
reasonably good results as long as diffusion orthogonal to the flow direction can
be neglected.

Finally, simulations have been made on a spiral shaped microchannel. We
observed that for faster flowing species the distortion caused by the first of the
inner most turn was corrected to some degree by the following turn, because the
inner wall of the first turn is connected to the outer wall of the second turn and
vice versa. A single simulation was made where the electroosmotic mobilities of
the bending walls of the spiral were optimized. As expected we found that only
diffusion in the flow direction contributed to the dispersion.






Chapter 8

Conclusion

This thesis can be viewed upon as an introductory overview of problems en-
countered regarding dispersion in microchannels. On top of being an overview,
several novel ideas are presented and studied both theoretically and through
computer aided simulations.

Basic theory on electrokinetically and pressure driven flows are presented -
we need to understand the flow phenomena before we can expect to understand
the more complicated situation with a species driven by the flow.

It has been realized that for flows in microchannels dispersion is mainly
composed of three different effects, namely: diffusion, gradients in the velocity
profile, and geometry induced dispersion.

A study of the Taylor dispersion has been made, resulting in a more general
formula for Taylor’s effective dispersion coefficient. The formula has been applied
to an example with blood flow in a tube shaped geometry.

For flows driven by electroosmosis, formulae for minimizing turn induced
dispersion have been derived. Simulations have shown the correctness of the
formulae. Simulations also showed that the method proposed by Culbertson
(1998) for predicting the turn induced dispersion are correct as long as diffusion
orthogonal to the flow direction can be neglected. Before the physically inter-
esting simulations were created, a parameter study was made. That is, we have
investigated solution dependencies on grid, solution tolerance, and time step
magnitude.

Furthermore a method for controlling the dispersion of a charged species in
a microchannel applying electric fields is proposed and studied. The microchan-
nel should be so narrow that the Debye screening length is comparable to the
width of the channel. Placing an array of electrodes along a microchannel it
is possible to control the electric field inside the channel. The idea of driving
a sample through a microchannel under full control of dispersion is very com-
pelling. Further studies into this idea could prove to be very fruitful.

FLEMMING RYTTER HANSEN, c960861
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Appendix A

MatLab Code

A.1 ODE-solver

%0DE-solver
clear all
close all
global lambda

lambdavec=[ 10 2 1 0.4 0.2 0.1 0.01];
zerovec=[1e-8 le-8 1le-8 le-6 1le-3 1le-2 0.9];
zeta=2.79;

guess=0; delta=le-8; error=1; maxerror=le-4; zeta=2.79; p=0;

for k=1:length(lambdavec)
lambda=lambdavec (k) ;
zero=zerovec(k);
guess=0; delta=le-8; error=1; maxerror=le-4; zeta=2.79; p=0;

while error>maxerror
p=pt1;
for i=1:2
[r,psi] = ode45(@vdp1l, [zero 1], [guess+(i-1)*delta; 0]); rightbc(i)=psi(length(psi(:,1)),1);
end
slope=(rightbc(2)-rightbc(1))/delta;
guess=guess- (rightbc(1)-zeta)/slope;
error=abs(rightbc(2)-zeta)/zeta;
end %while
disp(p); disp(psi(1,1));

figure(1) plot(r,psi(:,1)) hold on
end %for

plot([0 1], [zeta zeta],’--’) hold on

title(’Dimensionless potential?);
axis([0 1 0 3]); xlabel(’r¢’); ylabel(’\psi¢’);

A.2 System ODE Setup

function dydt = vdpl(r,psi)
global lambda
dydt = [psi(2); sinh(psi(1))/lambda~2-psi(2)/r];
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Appendix B

Fourier Coeflicients

In the following we find the coefficients for the boundary condition ¢1,(r = 1,2) = Acos(nomz),
i.e.

Acos(nomz) = Z CrIo(vm) sin(mmz), (B.1)

m=1
which after multiplying by sin(n7z),n € N and integrating over all z € [0, 1], yields

2A 1 .
Cp = / cos(nomz) sin(mmz)dz (B.2)
Io(vm) Jo

For m = ng we find C,, = 0. For m # no we find

A -1
= ——— | ———— cos(mz(m — ng)

Io(ym) L7(m —no) e cos(mz(m + "o))] (B.3)

When ng is even only the uneven m’s yield non-zero coefficients, which are found to be

24 ( 1 N 1 ) , (B.4)

T rlo(ven—1) \2k—1—no ' 2k—1+no

where we have substituted m = 2k —1,k € N in order to disregard the even m’s. When ng is uneven
only the even m’s yield non-zero coefficients, which are found to be

_ 2A 1 n 1 (B.5)
k= TrIO(’sz) 2k — ng 2k + ng ’

where we have substituted m = 2k, k € N in order to disregard the uneven m’s.
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Appendix C

MatLab Code for Ions in a
Tube

Solving for Electric Potentials in a Tube
% Ions in a tube

clear all
%close all

%---INITIALIZING---

L=100e-6; a=1/sqrt(L); a=20e-6; Nr=25; Nz=75; N=1; Nmax=30;
Mmax=30; Gmax=110; rvec=linspace(0,1,Nr); rmat=repmat(rvec,Nz,1);
zvec=linspace(0,1,Nz); zmat=repmat(zvec,Nr,1)’; in=1; A=2;
M=6.75e-15; Y%amount of ions, non-dimensional

epsilon=3e-3;

con=1; %convergence counter

%relax=1;

figurenumber=3;

phiinconv=zeros(Nz,Nr,100); phiinhom=zeros(Nz,Nr);
phitemp=zeros(Nz,Nr); phia=zeros(Nz,Nr); phitot=zeros(Nz,Nr);
phi2=zeros(Nz,Nr); phi3=zeros(Nz,Nr); phi4=zeros(Nz,Nr);
Emn=zeros (Nmax ,Mmax); cOp(1)=1; cOm(1)=1;

disp(’---Finding gamman...........coeviunieinennnennnnn ’)
gamman=zeros(Gmax,1); gamman(l)=fzero(@besion,-0.1); nn=1; incr=1;
while nn<2
nn=nn+1;
gamman (nn)=fzero (@besion,gamman(nn-1)+incr) ;
ch=length(find(floor(10~6*gamman (nn))==floor(10~6*gamman))) ;
if ch>1
nn=nn-1;
incr=incr+0.1;
end
end while nn<Gmax
incr=gamman(nn) -gamman(nn-1) ;

nn=nn+1;

gamman (nn)=fzero (@besion, [gamman(nn-1)+0.9%incr gamman(nn-1)+1.1xincr]);
end tic
disp(’---Finding homogene solution................... ’)

lambdan=L*gamman/a; for n=1:Gmax
%temp2=4*A/(pi*(2%n-1))*besseli(0,a*(2*n-1)*pi*rmat/L)/besseli(0,a*(2*n-1)*pi/L).*sin((2*n-1)*pi*zmat);
%phi2=phi2+temp2;

temp2=2%A*(1/(2%n-3)+1/(2%n+1)) /pi*besseli(0,a*(2*n-1)*pi*rmat/L)/...
besseli(0,a*(2*n-1)*pi/L).*sin((2*n-1)*pi*zmat); phi2=phi2+temp2;

temp3=2%A/gamman (n)*besselj (0,gamman(n)*rmat)/besselj(l,gamman(n)).*...
(exp(lambdan(n)*(zmat-2))-exp(-lambdan(n)*zmat))/(exp(-2*lambdan(n))-1);

phi3=phi3+temp3;

temp4=2+%A/gamman (n) *besselj (0,gamman(n)*rmat)/besselj(l,gamman(n)) .*...
(exp(lambdan(n)*(zmat-1))-exp(-lambdan(n)*(zmat+1)))/(1-exp(-2*lambdan(n)));
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90 APPENDIX C. MATLAB CODE FOR IONS IN A TUBE

phi4=phi4+temp4; end phihomogen=phi2+phi3+phi4;
phihomogen(1,:)=A; phihomogen(Nz,:)=A;

%---Find phia---

%phia=in*A/N*cos(2*pi*zmat/L) ;

phitot=phihomogen; diff=1; maxdiff=1; meandiff=1; cOmdiff=1;
cOpdiff=1; disp(’---Starting while 10OP.........cvvvuunneiunnns ?)
while diff(con)>epsilon cOmold=cOm(con); cOpold=cOp(con);

%---Find f---

integrandm=exp(phitot) .*rmat;
f2m=(sum(integrandm) - (integrandm(1, : ) +integrandm(Nz, :))/2)/(Nz-1);
cOm(con+1)=M* ((sum(£2m) - (£2m(1)+£2m(Nr))/2)/(Nr-1))~(-1);

integrandp=exp(-phitot).*rmat;
f2p=(sum(integrandp) - (integrandp(1, :)+integrandp(Nz,:))/2)/(Nz-1);
cOp(con+1)=M*((sum(£2p) - (£2p(1)+£2p(Nr))/2)/(Nr-1))~(-1);

f=(cOm(con+1)*exp(phitot)-cOp(con+1)*exp(-phitot))/2;

disp(sprintf(’ cOm = %2.6f?,cOm(con)))
disp(sprintf(’ cOp = %2.6£?,cOp(con)))
disp(’---Finding Emn..........cciiiiiiiiniinnnnennn. )

%timel=toc;

for m=1:Mmax for n=1:Nmax sinmat=sin(m*pi*zmat);
besmat=besselj(0,gamman(n)*rmat);
integrand=f.*sinmat.*besmat.*rmat;

f2=(sum(integrand)- (integrand(1,:)+integrand(Nz,:))/2)/(Nz-1);
integral=(sum(£2)-(£2(1)+£f2(Nr))/2)/(Nr-1);
Emn(n,m)=-4*(gamman(n) ~2+(a*m*pi/L) ~2)~(-1) /besselj(l,gamman(n)) ~2*integral;
end %Mmax

end %Nmax

%disp(sprintf(’Calculation time=%2.4f’,toc-timel))

%test3=Emn;

disp(’---Finding inhomogene solution................. ’) for i=1:Nr
r=rvec(i); for n=1:Nmax for m=1:Mmax

temp=Emn (n,m)*sin(m*pi*zvec)*besselj(0,gamman(n)*r);
phiinhom(:,i)=phiinhom(:,i)+temp’;

end %Mmax

end %Nmax

end %Nr

phidiff=abs(phitot-(phiinhom+phihomogen)) ;
phitot=phiinhom+phihomogen;

phiinconv(:,:,con)=phitot; con=con+1;

cOmdiff (con)=abs((cOm(con)-cOmold)/cOm(con));
cOpdiff(con)=abs((cOp(con)-cOpold)/cOp(con));
diff(con)=max(cOmdiff(con),cOpdiff(con));

meandiff (con)=mean(mean(phidiff)); maxdiff(con)=max(max(phidiff));

elti=toc; mins=floor(elti/60); secs=round(elti-60*mins);
disp(sprintf(’ Time elapsed=/d minutes and %d seconds.’,mins,secs))
disp(sprintf(’ Max difference= %2.6f (absolute)’,maxdiff(con)))
disp(sprintf(’Mean difference= %2.6f (absolute)’,meandiff(con)))
disp(sprintf(’ Max diff. cOm = %2.6f (relative)’,cOmdiff(con)))
disp(sprintf(’ Max diff. cOp = %2.6f (relative)’,cOpdiff(con)))

end %inner while

disp(toc)

cp=cOp(con)*exp(-phitot); cm=cOm(con)*exp(+phitot);
integrandm=cm.*rmat;
f2m=(sum(integrandm) - (integrandm(1, :)+integrandm(Nz,:))/2)/(Nz-1);
Mm=((sum(£2m) - (£2m (1) +£2m(Nr))/2)/(Nr-1));

integrandp=cp.*rmat;

f2p=(sum(integrandp) - (integrandp(1, :)+integrandp(Nz,:))/2)/(Nz-1);
Mp=((sum(£2p) - (£2p (1) +£2p(Nr))/2)/(Nr-1));
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disp(sprintf(’Amounts of positive ions=%2.4f and negative ions=%2.4f’,Mm,Mp))
disp(sprintf(’lambda+/a=%2.4f and lambda-/a=%2.4f’,1/sqrt(cOp(con)),1/sqrt(cOm(con))))

%convergece plot

figure(2)
semilogy(1:length(cOmdiff),cOmdiff,1:length(cOpdiff),cOpdiff)
legend(’cOmdiff’,’cOpdiff’)

%---Plotting---

figure(figurenumber) subplot(2,3,1), mesh(rvec,zvec,phihomogen)
title(’\phi_{hom}’) xlabel(’r’) ylabel(’z’) subplot(2,3,4),
mesh(rvec,zvec,phiinhom) title(’\phi_{inhom}’) xlabel(’r’)
ylabel(’z’) subplot(2,3,2), mesh(rvec,zvec,phitot)
title(’\phi_{tot}’) xlabel(’r’) ylabel(’z’) subplot(2,3,5),
mesh(rvec,zvec,phitot-phihomogen) title(’\phi_{in}’) xlabel(’r’)
ylabel(’z’) subplot(2,3,3), mesh(rvec,zvec,cp) title(’c_{+}?)
xlabel(’r’) ylabel(’z’) subplot(2,3,6), mesh(rvec,zvec,cm)
title(’c_{-}’) xlabel(’r’)

ylabel(’z’)



Appendix D

Coventor Support Q&A

In the following appendix questions mailed to Coventor Support during the project are presented
followed by the given answers. The correspondence has taken place between Anders Brask and
Flemming Rytter Hansen at MIC and Criss Welham and Joost van Kuijk at the Coventor support.

Q:

I am trying to examine how diffusion of a specie can be suppressed
by electric fields. For this purpose I have made a geometry as
shown in the attached mbif-file. To begin with I am only
considering the 2D-case. Hence the top and bottom patches have
been left unnamed. The patches named "w", "inlet" and "outlet"
have been set to Walls. Patches "wl" and "wb" have been set to
Voltage=-4, "w2" and "w4" are set to Voltage=-1 and "w3" are set
to Voltage=0. This generates an approximate parabolic profile of
the electric potential, which hopefully could suppress the
diffusion.

Notice that there are two patches within the geometry, internal patches,
which have also been set to Walls. The rectangle bounded by the
"inlet=Wall", "outlet=Wall" and the to internal patches (=Wall)
now form a 2D channel. Placing a specie within this channel ONLY,
we would not expect the specie to be able to leave the channel (is
this true 7). What I notice is that the specie is diffusing
through the internal patch/Wall.

The electrodes: "wl", "w2", "w3", "w4" and "wb" have been placed as shown
in the mbif in order to avoid contact with the specie. Diffusion
through the internal pathes/Walls is also noticed when the voltage
is zero on all electrodes.

Solving these problems also soloves the problem described in the case:
CW_012102_01.

A:

Thanks for the description. Could you tell me what’s is supposed
to physically stop the species from diffusing from the central
"electrode" part through the internal wall into the two channels
on either side? Is it a special membrane that stops the diffusion
of the species? As the settings are, the boundary condition "wall"
does not stop diffusion, as I mentioned in my other email.

Flemming Rytter Hansen:

It is less important what prevents the species from diffusing into
the two side-channels. All I need is that no diffusion is possible
into these side-channels. I have tried making the side-channels of
some solid dielectric and the main channel of water. This would

prevent diffusion into the side-channels. However, with this setup
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it is not possible specify any voltages on the patches of the
side-channels. In fact, it is not possible specify anything on the
patches of the side-channels when they are fixed. My main problem
is that I want an electric field in the main channel, and at the
same time I want to have a species which cannot come in contact
with any of the electrodes generating this electric field. I want
my simulations to be time dependent, hence the need of the
electrodes to sustain the electric field. Is it possible to do
this with Coventor? I have attached the mbif-file we are
discussing.

Coventor Support:

At this time the model you describe will not work correctly as the
wall boundary condition does not stop species diffusing. To
simulate this problem we would need to implement another
"membrane" boundary condition that would stop diffusion between
two fluids. This, then, would stop species diffusing through the
internal wall and contacting onto the electrodes wil, w2 etc.

Could you indicate to me how important this problem is for you? It
is something that you were just "trying out" or is it part of an
important project? The reason is that our product management team
will need to priortise such an enhancement request and it will
help to have some background information as to why it is
important.

Flemming Rytter Hansen:

I would certainly like to have the possibility of placing a wall
(membrane) through which nothing can diffuse inside a geometry.
However, I have a deadline in about 3 months, and I wouldn’t
expect you to produce the new code within this limited period of
time. I am pursuing other ways to obtain my goal.

Q:

I am using Coventor for CFD purposes applying NetFlow. When using
species, is it possible to specify a charge connected with the
species? E.g. how would I specify a plug of equally charged
positive and negative ions. Furthermore, assume that the positive
and negative ions are separated to some degree, generating an
electric field. Does coventor take this into account?

Here is some more information on the Netflow settings. I gave you
slightly inaccurate information in my last email. Here is the
corrected version on the "dilute" and "non-dilute" options in
Netflow. The non-dilute option in Netflow refers to the change in
electrical conductivity caused by the presence of mobile, charged
ions (this is the only type of non-dilute electrokinetics problem
that we have good data for). It does not take into account the
density change, or the potential generated by the charged ions
themselves. The main reason for this is not the implementation of
the physics into the solver but the verification with experimental
data which we have not been able to find. If you believe you have
experiments that can show such effects in a quantified way we
would be willing to take a look at this. I hope this answers your
support request JVK_310102_02 sufficiently and I will close this
request. best regards,

A:

At the moment the Netflow module uses the option to set the model
to "dilute" and "non_dilute". The dilute option is default and
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means that there is no influence from the species on both the
fluid density of the carrier and the electric field from the
charge of the species. If you set the option to "non-dilute" the
first limitation is lifted which means that the species do not
influence the fluid density. We were working on lifting the second
limitation as well but i will have to inquire on what the status
is on this. I will get back to you on that, Best regards,

Q:

I am working with the MicroFluidics Solvers, NetFlow. I am trying
to insert an electric field in a rather simple geometry using the
VolumeBCs (Analysis->SolverSetup->VolumeBCs). I am using the
InputFile LoadValue, where I choose an mbif-file from the
following directory: C:\Design_Files\diffusion\Solutions\Results3.
The Results3 directory contains results from a simulation giving
an electric field in the correct geometry and position in the
system of co-ordinates. The results from the simulation with the
InputFile-electric-field are placed in the directory:
C:\Design_Files\diffusion\Solutions\Results4. The problem now is
that there is no electric field in the mbif results from the
Results4 directory. What am I doing wrong?

A:

The procedure is correct as you have described it (use the
Inputfile option, and specify the location of an MBIF that
contains the electric field). There are three things to watch out
for:

First, make sure that the file containing the E-field isn’t in the
current solution directory, or it will be erased. Second, this
procedure only works with the FEMTool. Third, make sure there are
no Voltage or Current surface boundary conditions.

If this doesn’t solve the problem, please let me know, and I will
investigate further.

Added comment: I was using the FVMTool, not the FEMTool
Q:

Is it possible to obtain more than eight boundary condition sets
(Analysis->SolverSetup->SurfaceBCs, 1st column)?

A:

Unfortunately not. There’s no workaround, except to try and group
as many patches together as possible, to reduce the number of BCs.
We are working on this for the next release.

Q:

Using Parametric Generators, why is it not possible to choose
Lengthl and Length2 to be zero when creating a U-turn?

A:

This is an oversight and I will submit a request for the generator
to be altered to allow this in the next release.

Q:

Is it possible to have magnetic fields when using "MicroFluidics
Solvers, NetFlow"?



APPENDIX D. COVENTOR SUPPORT Q&A

95

A:

No, though it may be implemented at some point. Would you wish to
supply the magnetic field strength or solve for the magnetic
field?

Q:

Say we are considering a 2D simulation of an electroosmotic flow.
Is it then possible to specify e.g. a varying E0_Mobility along a
specific patch? Example: a linearly varying E0_Mobility from one

end of the patch to the other.

A:

No, you cannot set this specific BC, yet. You would need to
approximate the linear change by using a number of patches to
create a stepped profile. Do you wish to simulate isoelectric
focusing (IEF), in which a pH gradient is set up across the
channel, and that might give rise to a linearly varying EO
mobility?

Q:

When using Parametric Generators, is it then possible to specify
exactly where the model should be placed in the xyz-system of
coordinates? This is e.g. important when using the "Merge
Mbifs...-tool".

A:

Not at the time of mesh generation. After the mesh is generated
you can translate and rotate the mesh by going to the
"tools->transform" menu in the mesh generators tab.

Q:

In the analyzer reference guide I found the following in the
section 4.2.2.: The software internally chooses an angle to
determine how many patches should be created for the perimeter.
The mesh shown in Figure R4-2 results in a single patch for the
perimeter of the rim, while a simpler mesh, shown in Figure R4-3,
results in eight individual patches for the perimeter (in addition
to one patch for the sensor top and one for the bottom) because of
the larger angle change.

Is it possible to change the angle referred to above?
A:

The angle is hard coded. I will find out if it is possible to
access it. Is it critical for you to be able to change it, or is
it a general question?

Q:

Is it possible to split patches? Consider e.g. a cube. Is it then
possible to split the top patch of the cube into two patches,
which then can be assigned different properties?

A:
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Yes. The way to do this is to change the material type of the
appropriate elements or partition the cube into two parts. If the
mesh is created in Ideas just select the elements from which you
wish to form a patch and change the material type *name* so that
it is different from the surrounding elements. (You could have two
materials; glassl and glass2 with identical properties). If you
are not using Ideas, use the split part function in the solid
modelling tab to partition the cube into two parts. Please also
turn the clip function on and specify a clip mask in the layout
editor. In this case you will create 3 sat files and will only
need to use the one with the "-split" subscript. Open the layout
and create a mask called (for example) "split". Use the split mask
to define how the cube will be paritioned. For example you can
split the cube into two parts. Meshing both parts together will
result in separate top patches (and bottom patches)

Q:

We have been trying to make EQF simulations with a very simple
case - a straight 3D channel. When trying to simulate with the
FVMTool in NetFlow we, however, obtain zero velocities everywhere.
We get no error messages. We have checked all settings several
times, and they seem to be in order. If we use the FEMTool in
NetFlow we obtain the correct results. We have previously received
an email from Joost van Kuijk with an mbif-file and an mps-file.
He used the FVMTool in his simulations. When running Joost’s files
on our computer we obtain seemingly correct results.

A:

There is a numerical problem in the FVMTool. Briefly, for some
models the potential equation can solve so fast that there are
non-valid boundary conditions for the momentum equation so that it
is not solved.

This problem has been fixed and will be included in the next
official patch release, due out next year. In the meantime I can
send you the required replacement FluentWrapper.exe. Please could
you let me know the 0S you are using, so that I can send the
appropraite file. The new file must be put into
/coventorWare2001.3/bin. The as installed FluentWrapper.exe that
is present should be re-named so that it is not over-written.

Q:

We have used NetFlow with FVMtool and Manhatten Bricks. In general
the FVMtool works ok. We have also tried to use Free meshing which
also works though it is very slow and inaccurate. Is this
typically or is this type of mesh generally not suitable for
FVMtool. We assume that FVMtool is an abrevation for Finite Volume
Method?

So the problems/questions are the following:

1. Why does FEMtool not work?
2. Can we use Ideas for better meshing with FVMtool?

3. It appears that there are no description of the FVMtool and its
parameters (relax, upwind etc.)?

4. How do you export the figures optimally? The figures cannot be
edited and they are very large. Do you use screen dumps?
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A:
Here are my answers to your questions:

1. Why does FEMtool notwork? First of all I can assure you that
the solver works. I just tested the T-channel tutorial in Netflow
on our machines and the solver runs and gives the results. This
leads me to believe that there is still something wrong with the
licensing. If you are saying that the FVMTool runs and the FEMTool
doesn’t I can conclude the following: You are running
CoventorWare2001.1 using the CoventorWare2001.3 license. This is
ok for most solver EXCEPT "FEMTool". The reason is that our
supplier has merged the licensing of both FVMTool and FEMTool into
1 single license "server" and therefor the FEMTool "server" as it
existed before doesn’t exist anymore. The only way to solve this
problem is to upgrade your software version to CoventorWare2001.3.
Your colleges should be able to point you to the right
directories.

2. Can we use Ideas for better meshing with FVMtool? I am not sure

what you mean exactly with this question but if you are asking if

you can use Ideas to create meshes for the solver the answer is

yes. In additio I have included a few meshing tips in the attached

PDF file. In addition you can say about the FVMTool and FEMTool:

* FVM seems to enjoy an advantage in memory use and speed for very large
problems, higher speed flows and source term dominated flows (like
combustion)

* FEM solutions can be very accurate using generally smaller grids

3. It appears that there are no description of the FVMtool and its
parameters (relax, upwind etc.)? I have also included some more
information on this in the attached PDF file. You can also find
some more information in the reference section of the MemCFD and
Netflow tutorials that come on the CD

4. How do you export the figures optimally? The figures cannot be
edited and they are very large. Do you use screen dumps? There are
many options in the visualizer to export pictures you have created
on your screen. I would like to refer you to the MEMS Analyzer
Reference Guide ,section 5.3.5 on the print function in the
visualizer. There are also options to export MPEG files.

5. We have also tried to use Free meshing which also works though
it is very slow and inaccurate. Is this typically or is his type
of mesh generally not suitable for FVMtool. We assume that FVMtool
is an abrevation for Finite Volume Method? You are right that FVM
stands for Finite Volume Method. You will find that the brick
meshes (or structured meshes as they are sometimes called) are
more accurate with less elements. It is very difficult to give
general guidelines but you usually need a lot of free-meshed
elements to get good results.

Q:

When LMTOOLS is opened and we in "server status" perform a "status
enquiry" we among other messages find the following:

Users of MTI_MemCFD: (Total of 7 licenses available)

Users of MTI_NetFlow: (Total of 7 licenses available)

However, if we try to run more than one simulation, the following
message is written in the L0G-file:

*x*%*xFLUENT LOG FILE START *x* Welcome to Fluent 5.6.1
Copyright 1999 Fluent Inc. All Rights Reserved Loading
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"C:\Coventor\CoventorWare2001.1\runtime\fluent\NT40\fluent5.6\1ib\fl_s11
95.dmp" Done. Current fluent usage: 1. frh@ggstpc3 Fri

Nov 30 10:21 ggstpc3 License for fluent expires 29-o0ct-2003. All
licenses for fluent are currently in use. All licenses for fluent

are currently in use. ***FLUENT LOG FILE END **x*

A:

This is a very good question and I appologize that I did not
notice it myself. I already got into contact with our licensing
department and asked them to sort out this mistake.

I looked further into the matter of fluent solver licenses and you
were absolutely right. Our third party software supplier who
supplies the Fluidic license made a mistake in cutting only a
license for 1 seat while the payment had been made for 7 seats. We
have contacted them and requested the new license. I am afraid
this will take a few days probably. Thank you for your patience.

Q:

How does the Add List function

work? In the manual I have found following:

Add List...: Enables a fileDialog window that displays directory
file paths. The user can point to a file with a listing of mbif
files. This mbifList file is created by the user, and may be
located in any arbitrary directory. It contains lines of file
paths to mbif files for the Visualizer to read. This function
provides a way to load multiple mbifs at one time.

How do the user create the mbifList file? When making a time
dependent simulation it is to my knowlegde not created
automatically, i.e. there are no *.mbiflist files anywhere on the
computer.

A:

AddList: Here is how AddList works. You make a text file which
contains the files you would like to list. As an example I have
made a list of mbif files ml.mbif through mb.mbif. You save this
file and give it the .mbifLIST extention. I personally use emacs
on both Unix and Windows2000, it is freeware and is maintained by
the GNU project. It is very usefull for looking into files and
editing them. Now you place this file in a directory where the
mbif files are located. Now you can browse to this list file and
import the complete list in one go. The "Visualize List" command
that you are used to does not use this .mbifLIST function. Instead
it looks at the other .value files for the files to list that are
in the result directory. The .value files are binaries.

Q:

Is it possible to save the settings in the Visualizer? Say, I wish
to have Mass Fraction 1, Pressure and Velocity as default Active
Fields instead of Mises and Displacement.

A:

Visualizer settings: Unfortunately it has not been possible to
save the settings of the visualizer. We understand that especially
for fluidic customers the fact that the visualizer always opens
with the Von Mises Stress and displacement is very inconvenient.
We are working on this issue and you should see improvements in
the next releases.



Appendix E

Curve Fitting

Rewriting the relations p = A; exp(B1/T) and D = AsT exp(B2/T) yields

In(p) = Bl% +1In(4,), (E.1)
In(D/T) = Bg% + In(Ay). (E.2)

Hence plotting In(x) and In(D/T) as function of 1/T yields a straight line
with the slope By and Bs, respectively, and the ordinate axis intercept equals
In(A;) and In(As), respectively. Linear regression to the table values have been
made using MatLab. Figure E.1 shows the linear regression.
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Figure E.1: Linear regression to table values.
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Appendix F

Grid Dependency Analysis

In the following Excel sheets simulation results from a grid dependency analysis
are presented.
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Grid Dependency Analysis

CHART: 1.

Simulation of a 180 degree turn with a rectangular cross section. Inner radive
150 ¢m, width: 500m, depth: 258m. Pressure driven flow, with a pressure drop
of 1 e-6 from inlet to outlet.

hlatLab calculation based on analytical derivation

FlowRate Pax el g rid

a8, 13E+H14| 1 302E+H12{100x100

B 13E+H14| 1 302EHI2 {5050

S 09E+14| 1 300EHI2|25x%25
Mesh: turn2510res Cell size isin average: 5 micran
Fes File ol Tal Flowerate Max el FlowH ate deviation:
turn251 0res3 1 00E-02| 8 472EH14| 1 332E+H12 421 %
turn251 0res 1 00E-04| 8765E+04( 1 F44E402 7A1 %
turn251 0res? 1 00E-06| 8,770E+H4| 1 F44E+H12 7a7 %
Mesh: turn251bres Cell size isin average: 3 33 micron
FesFile ol Tol, Flowrate Max Vel FlowR ate deviation:
turn 251 Sresl 1 00E-04| 8373E+04( 1 293E+02 305 %
turn251 Gres? 1 00E-06| 8 M7 EH4| 1 300E+HZ 353 %
turn 251 Sres3 1 00E-028| 8 4183E+H4( 1 F00E+D2 354 %
Mesh: turnZ620res Cell size isin average: 2 5 micron
FesFile Sal. Tol. Flowrate hax Vel FlowR ate deviation:
turn2520res1 1 00E-04| 8 428E+H14| 1 288E+12 JIBE7 %
turn2520res? 1 00E-06| 8 7EH4{ 1 3 EHZ 230 %
turn2520res3 1 00E-08| 8 318E+H4| 1 3 EHZ 231 %
Mesh: turn252bres Cell size isin average: 2 micran
FesFile ol Tol, Flowrate Max Vel FlowR ate deviation:
turn2525res1 1 00E-04| 8 135E+#4( 1 288E+02 006 %
turn2524res? 1 00E-06| 8246E+H14( 1 F08E+H1Z 143 %
turn2525res3 1 00E-08| 8247 E+H4( 1 F09E+2 144 %
Mesh: turnZ630res Cell size isin average: 1 BY micran
Fes File ol Tal Flowerate Max el FlowH ate deviation:
turn2630res 1 00E-04| 30c0E+H4| 1 277EHZ 0,86 %
turn2530res? 1 00E-06| 817 EH4| 1 J0E+D2 107 %
turn2630res3 1 00E-08| 8219E+H4( 1 307E+HZ 109 %

Figure F.1: Excell.
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CHART: 2.

Simulaticn of a 120 degree turn with a rectangilar cross section. [rher radns
150Mm, width: 308m. The depthis 508m for the simation residts abowve the
thick litne and 75 pm for the results below the thick line. Pressure driven flow,
witha pressure drop of 1e-6 from indet to owtlet

hlatLab calculation based an analytical derivation

FlowFate hax el grid

JFO9EHIS| 3 347E+HI2(100x100

JO9EHIG| 3 347EHI2|50xE0

JO8EHIG| 3 34MEHI2 (2825
hesh: turnb010res Cell size isin average: 5 micron
Fes File ol Tal, Flower ate hlax Vel FlowR ate deviation:
turna010res1 1,00E-04| 4 098 E415( 3 329E+H12 271 %
turna010res? 1,00E-06| 4 121 E415( 3 F48E+H12 328 %
turna010res3 1,00E-08| 4 121E415( 3 F48E-+H12 328 %
Mesh: turnall Gres Cell size isin average: 3 33 micron
Fes File ol Tal Flowerate Max Vel FlowR ate deviation:
turns01&res 1,00E-04| 4 003E405( 3 309E-+H12 033 %
turna015res? 1,00E-06| 4 052E415( 3 354EH12 1565 %
turna015res3 1,00E-08| 4 053E4H15( 3 355E+H12 1568 %
Mesh: turnG020res Cell size isinaverage: 25 micran
Fes File ol Tal Flowerate Max Vel FlowR ate deviation:
turns020res 1,00E-04| 3 242E405( 3 269EH12 -1.20 %
turna020res? 1,00E-06| 4 026E415( 3 348E-+H12 090 %
turna020res3 1,00E-08| 4 026E415( 3 F49E-+H12 090 %
hlatLab calculation based on analytical derivation
FlowRate hlax el grid

8. 32E+H15| 4 569E+12(100x100

8. 32E+H15| 4 569E+H12(50x50

829E+H15| 4 554EHI2 (25825
Wesh: turn?510res Cell size iz in average: 5 micron
FesFile ol Tal, Flowerate hlax Vel FlowR ate deviation:
turn¥a10rest 1 00E-04| 8 470E+05| 4 BS2E+H]2 1,80 %
turn¥o10res? 1 00E-O6| 8,534E+05( 4 GODE+HD2 287 %
turn¥a10res3 1 00E-08| 8,533E+05| 4 GODE-+H]2 286 %
Mesh: turn751bres Cell sizeisin average: 3,33 micran
FesFile ol Tal. Flowerate hlax Vel FlowR ate deviation:
turn¥a1ares] 100E-04| 8 279E+05| 4 A91E+H]2 049 %
turn¥alares? 1 00E-O6| 8 420E+05( 4 579E+H]2 1,20 %
turn¥al1ares3 1 00E-08| 8,421 E+05( 4 580E+H]2 121 %
Mesh: turn7520res Cell sizeisin average: 2 5 micron
FesFile ol Tal. Flowerate hlax Vel FlowR ate deviation:
turn¥520res] 1 00E-04| 8, 140E+05( 4 4A20E+HJ2 216 %
turn¥o20res? 1 00E-O6| 8,379E+05| 4 575E+H]2 071 %
turn¥520res3 1 00E-08| 5,331 E+05| 4 577EH]2 073 %

Figure F.2: Excell.




Appendix G

MatLab Code for Velocity
Profile in a Turn

% Velocity profile in a turn

clear all
close all

global ro ri

vboundary=100; %EQ velocity

ro=200; % outer radius

ri=150; % inner radius

h=25; 7 channel height

S=(ro-ri)*h;

dpdtheta=-9.2113e-8/pi; % pressure gradient
mu=1.002e-9; Jdynamic viscosity

data=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 16.8 21.5 23.5 24.2 24.2 24.0 23.6 23.2 22.7 22.1 21.2 19.9 17.5 13.1 0;
0 25.4 33.9 37.5 38.9 38.9 38.8 38.2 37.5 36.6 35.6 34.1 31.8 27.7 19.8 0;
0 29.3 39.8 44.4 46.2 46.2 46.1 45.4 44.6 43.6 42.3 40.5 37.6 32.5 22.9 0;
0 29.3 39.8 44.4 46.2 46.2 46.1 45.4 44.6 43.6 42.3 40.5 37.6 32.5 22.9 0;
0 25.4 33.9 37.5 38.9 38.9 38.8 38.2 37.5 36.6 35.6 34.1 31.8 27.7 19.8 0;
0 16.8 21.5 23.5 24.2 24.2 24.0 23.6 23.2 22.7 22.1 21.2 19.9 17.5 13.1 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]1;

M=50+1;

N=25+1;

Ksum=75;

rvec=linspace(ri/ro,1,N);

zvec=linspace(0,1,M);

MtP=zeros(N,M);

Discharge=0;

tic

disp(’Finding Roots?)

=== FINDING ROOTS FOR BESSELFUNCTIONS---------------—-

epsilon=10"-4;

Lmax=1000;

Nmax=90;

%Mt1=zeros(Nmax,1);
%Mt2=zeros(Nmax,1);
%MtP=zeros (Nmax,1) ;

lamb=linspace(epsilon,100,Lmax) ;
bes2=bes5(lamb) ;

gamman=zeros (Nmax, 1) ;

gamman (1)=fzero(@bes5,-0.1);
n=1;

incr=1;

while n<2
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n=n+1;
gamman (n)=fzero(@bes5,gamman(n-1)+incr) ;
if floor(10~4*gamman(n))==floor(10~4*gamman(n-1))
n=n-1;
incr=incr+0.2;
end
end
while n<Nmax
incr=gamman (n) -gamman(n-1) ;
n=n+1;
gamman (n)=fzero(@bes5, [gamman(n-1)+0.9%incr gamman(n-1)+1.1%incr]);

disp(toc)
disp(’Matrix build up’)

RO=bessely(0,gamman)-besselj(0,gamman) .*bessely(1,gamman) ./besselj(1,gamman) ;
ROriro=bessely(0,gamman*ri/ro)-besselj(0,gamman*ri/ro) .*bessely(1,gamman)./besselj(1,gamman);
R2=bessely(2,gamman)-besselj(2,gamman) . *bessely(1,gamman)./besselj(1,gamman) ;
R2riro=bessely(2,gamman*ri/ro)-besselj(2,gamman*ri/ro) .*bessely(1,gamman)./besselj(1,gamman);
integral2=(ROriro-R0)./gamman;

D=1/2%(1/2%(R0-R2)).~2-1/2x(ri/ro) ~2*(1/2%(ROriro-R2riro))."2;

for i=1:N
r=rvec(i);
%r=1.3;
%hfor j=1:M
hz=zvec(j);
%2=0.9;
if i/5==round(i/5)
disp(toc)
i
end

Rir=bessely(1l,gamman*r)-besselj(1,gamman*r).*bessely(1,gamman)./besselj(1l,gamman);

for n=1:Nmax

for k=1:Ksum
Enk=-4/(D(n)*(2%k-1) *pi)* (gamman (n) ~2+(ro* (2*¥k-1)*pi/h) ~2)~(-1) *integral2(n);
MtPtemp=Enk*sin((2%k-1)*pi*zvec)*Rir(n);
MtP(i,:)=MtP(i,:)+MtPtemp;
Discharge=Discharge+Enk+*integral2(n)*2/((2%k-1)*pi);

end %for

end %for

%end %of zvec(i)
end %of rvec(i)

%figure(1)

%plot(zvec,Mt1)

%mesh(rvec,zvec,MtP?)

%axis([ri/ro 1 0 1 min(min(MtP)) max(max(MtP))])
%axis equal

%figure(2)

rdim=ro*rvec;

zdim=h*zvec;
udim=MtP*dpdtheta*ro/mu;
Discharge
Qdim=Discharge*dpdtheta*ro~2xh/mu

f2m=(1-ri/ro)*(sum(MtP)- (MtP(1,:)+MtP(N,:))/2)/(N-1);
Discharge0=((sum(£f2m)- (£2m(1)+£f2m(M))/2)/(M-1))
Qdim0=DischargeO*dpdtheta*ro~2xh/mu

f2m=(ro-ri)*(sum(udim) - (udim(1, :)+udim(N, :))/2)/(N-1);
Discharge2=h* ((sum(f2m)- (£2m(1)+£2m(M))/2)/(M-1))

Ymesh(rdim,zdim,udim?)
%axis([ri ro 0 h min(min(min(udim)),0) max(max(udim))])

%figure(4)
Ymesh(rdim,zdim,data)
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%axis([ri ro 0 h min(min(min(data)),0) max(max(data))])

%disp(’Discharge (micro-m/s):?)

%disp(Qdim)
subpl=1;
if subpl==1

rdim=ro*rvec;

zdim=h*zvec;

udim=MtP*dpdtheta*ro/mu;

figure(1)

subplot(1,2,1), mesh(rvec,zvec,MtP’)

axis([ri/ro 1 0 1 min(min(MtP)) max(max(MtP))])
title(’Non-dimensional velocities.?’)

subplot(1,2,2), mesh(rdim,zdim,udim’)

axis([ri ro 0 h min(min(min(udim)),0) max(max(udim))])
title(’Velocities (\mu m/s)?’)

%subplot(2,2,3), mesh(rdim,zdim,data)

%axis([ri ro 0 h min(min(min(data)),0) max(max(data))])
%title(’Coventor?)

%subplot(2,2,4), mesh(rdim,zdim, (udim’-data))

%axis([ri ro 0 h min(min(min((udim’-data))),0) max(max((udim’-data)))])
%title (’Error?)

end

converge=0;

if converge==

figure(3)

subplot(2,3,1), plot(Bn)

axis([1 length(COnr) min(COnr)-le-4 max(COnr)+le-4])
title(’Bn’)

subplot(2,3,2), plot(Gnz)

axis([1 length(COnr) min(COnr)-le-4 max(COnr)+le-41)
title(’Gnz’)

subplot(2,3,3), plot(COnr)

axis([1 length(COnr) min(COnr)-le-4 max(COnr)+le-4])
title(’COnr’)

subplot(2,3,4), plot(D)

axis([1 length(D) min(D)-1le-4 max(D)+1le-4])
title(’D?)

subplot(2,3,5), plot(Mt1)

axis([1 length(Mt1) min(Mt1)-le-4 max(Mt1)+le-41)
title(’Mt1’)

subplot(2,3,6), plot(Mtempl)

axis([1 length(Mtempl) min(Mtempl)-le-4 max(Mtempl)+le-4])
title(’Mtempl?)

Mt1(length(Mt1))

end

%subplot(2,2,1), plot(Ckr)

%axis([1 length(Ckr) min(Ckr) max(Ckr)])
%title (’Ckr’)

%subplot(2,2,2), plot(Ckro)

%axis([1 length(Ckro) min(Ckro) max(Ckro)])
%title(°Ckro?)

%subplot(2,2,3), plot(Mt)

%axis([1 length(Mt) min(Mt) max(Mt)])
%title(’Mt?)

%subplot(2,2,4), plot(Mtemp)

%axis([1 length(Mtemp) min(Mtemp) max(Mtemp)])
%title (’Mtemp?)



