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Abstract

Micro�uidics is about the manipulation of liquids in small channels. It is ex-
pected to revolutionize chemical and biological analysis systems. Devices such
as pumps, valves, mixers and sensors are essential for making a so-called Lab-
on-a-Chip.

One of the promising type of micropumps is driven by electroosmosis (EO).
EO pumps are purely driven by electric �elds and have no moving parts. Various
types of physical and chemical phenomena involved in EO pumps are described
in the thesis. An analytical approach to characterization (Q-p) of EO pumps
is proposed. This method is compared with numerical computational �uid dy-
namics. The principles are applied to two existing EO pumps, and agreement
within a few percent between model and simulation is achieved.

Two novel designs are presented: (1) The Two-Liquid Viscous Pump that
can pump all types of liquids. A simpli�ed model and simulation are presented
capturing the essence of the pumping principles. (2) The Shallow Reservoir
pump is a modi�cation of an existing pump, allowing simple integration into a
chip. Design guidelines on the reservoir dimensions are given.
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Resumé

Mikro�uidik handler om styring/kontrol af væsker i mikrokanaler. Teknikken
forventes at revolutionere kemiske og biologiske analysesystemer. Komponenter
så som pumper, ventiler, mixere og sensorer er essentielle for realiseringen af det
såkaldte Lab-on-a-Chip.

En type af de lovende mikropumper er drevet af elektroosmose (EO). Elek-
troosmotiske pumper er alene drevet af elektriske felter og har ingen bevægelige
dele. Den bagvedliggende fysik og kemi er beskrevet i rapporten. En analytisk
metode til karakterisering (Q-p) af EO pumper er foreslået. Metoden er sam-
menlignet med numeriske beregninger med computational �uid dynamics. De to
metoder er anvendt på to eksisterende pumper, og overensstemmelse indenfor
et par procent er opnået.

To nye pumpedesigns er præsenteret: (1) Den viskose to-væske pumpe kan
pumpe alle typer væsker ved hjælp af elektroosmose. En simpli�ceret model
og simuleringer er præsenteret. Sammen beskriver de principperne i den nye
pumpeteknik. (2) Den �ade reservoir pumpe er en modi�ceret udgave af en
eksisterende pumpe. Den nye pumpe kan integreres i et kanalsystem på en chip.
Dette muliggøres ved hjælp af de omtalte reservoirs. Dimensioneringen af disse
reservoirs er beskrevet.
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Chapter 1

Introduction

Micro�uidics, the manipulation of liquids in small channels, is a new and promis-
ing technology expected to revolutionize chemical and biological analysis sys-
tems.

Miniaturization of traditional analysis systems has many advantages. The
aim is to integrate a complete micro total analysis system (µTAS) on a device.
Such devices can be made very compact and portable. Medical diagnostics,
environmental monitoring and on-line process control are some of the promising
areas. These new devices are expected to exceed the existing systems in speed
and accuracy. An important feature of the microsystems is that they will be
cheap once they are mass-produced, making the technology widely available at
a low cost.

The �eld of µTAS is truly cross-disciplinary, including chemistry, condensed
matter physics, optics, material science, and hydraulic engineering. A micro�u-
idic analysis system could comprise several micro�uidic components such as
pumps, valves, mixers, �lters and separators. They are the building blocks for
the �uidic part of a Lab-on-a-Chip. The thesis at hand is exclusively dealing
with the pump devices used for such a chip, Fig 1.1.

Figure 1.1: A schematic of a mixing channel. The
devices consist of two layers: the substrate, in which
the channels have been etched (blue), and the lid
(transparent). The lid is attached to the substrate
using a process called bonding. Holes have been
drilled in the lid for access to the channels.

The �ow in micro�uidics is laminar, whereas macroscopic �ow is usually
turbulent. Within the last 20 years, computational �uid dynamics (CFD) have
been widely used in the industry for designs of airfoils, cars, pumps, etc. These
CFD programs can also be applied to micro�uidics, with certain limitations,
however. The existing programs can only describe the electro kinetic phenom-
ena such as electroosmosis from a macroscopic level. However, the micro�uidic
handling CFD programs are however becoming increasingly sophisticated in
order to meet the demands from customers. The use of simulations in micro�u-
idics reduces the development time and increases the understanding, but does

1



2 CHAPTER 1. INTRODUCTION

not replace experiments. Only modelled phenomena are included in simulations,
whereas experiments include everything.

Development of novel micro�uidic devices requires a thorough understanding
of micro�ows and the properties of the liquids. The continuum approximation
does apply to �ows in microchannels. The governing equations are the Navier-
Stokes and the continuity equation. A de�nitive characteristic of micro�uidics is
the laminar (not turbulent) nature of the �ow. The Reynolds number1 in a typi-
cal macroscopic �ow, say a running water faucet, is Re ≈ 104. In micro�uidics a
typical Reynolds number would be Re ≈ 10−1. One may imagine honey coming
out of the water faucet instead of water yielding an equivalent low Reynolds
number.

Pumping in a micro�uidic system is accomplished using either pressure or
electroosmosis (EO). The pressure source can be either external or integrated
into the device. This thesis will concentrate on pumps that can be integrated
into a chip - in particular electroosmotic pumps.

Electroosmosis is an electro chemical surface phenomena. At a solid-liquid
interface charged ions may be chemically bound to the interface. The excess
of surface charges attracts ions of opposite charge (counterions). These mobile
counterions can be manipulated by an external electric �eld to generate an
electroosmotic �ow (EOF), Fig. 1.2.
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Negatively charged surface Figure 1.2: Schematic illustration
of electroosmotic �ow (EOF). The
two electrodes generate an elec-
tric �eld that exerts a force on the
charged Debye layer. A balance be-
tween electrical and viscous forces
arises in the charged Debye layer.

In the following list an introduction to the chapters and their contents will
be given.

• Physics of Liquids
The starting point will be the physics of liquids with emphasis on mi-
cro�uidics and electroosmosis. Then the micro�uidic �ow characteristics
and physical properties of liquids are discussed. This discussion is followed
by an introduction to the theory of electroosmotic �ow. The microscopic
theory will be held on a thorough, but introductory level. The theory of
colloid science is very comprehensive and a topic of intensive research at
the moment. The important conclusions from the microscopic theory are
extracted and transferred to the elementary �ow analysis.

1Nondimensional number expressing the ratio between inertial forces and viscous forces. In
turbulent and laminar �ows the corresponding Reynolds numbers are high and low, respec-
tively.
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• Elementary Flow Analysis
The elementary �ow analysis covers both a detailed �ow analysis and a
more macroscopic approach. Much of the theory is well established, but
in this context it is applied to a new area. An EO pump may be analyzed
in a macroscopic manner, setting up an equivalent electrical circuit. This
approach will be seen to be a very valuable model for various EO pumps.
Especially the e�ect of combining analytical modelling with computational
�uid dynamics is seen to be bene�cial.

• Computational Fluid Dynamics
A brief introduction to Computational Fluid Dynamics (CFD) is given.
Application of CFD to micro�uidics is a very new area. The micro�uidic
oriented CFD-package Coventor is used to simulate four di�erent EO
pumps. Some of the special boundary conditions and limitations of the
program are discussed.

• Overview of Micropumps
All research must start with a literature survey. Di�erent types of modern
micropump designs are presented and commented. A good physical un-
derstanding of various physical e�ects is essential in making new designs.
An overview provides the opportunity to investigate the �ndings of others
and apply them to new ideas.

• Models and simulations
Based on the overview chapter two cascade pumps are selected. The par-
allel cascade pump developed by Morf et al., 2001, and the Low-voltage
cascade pump developed by Takamura et al., 2001. A thorough analysis is
assisted by analytical models and CFD. On the authors request, Takamura
conceded to giving the information that made the analysis possible. The
results reveal many interesting things. Some of the knowledge gathered in
this chapter is projected into new designs.

• Novel Designs
In this chapter the introduced principles are used for making new pump
designs. EO pumps can only operate with conducting liquids. Nonpolar
liquids are usually nonconducting and cannot be pumped using traditional
EO pumps. The idea is to position a sheet of polar liquid between the
nonpolar liquid and the interface. A two-liquid EO pump is developed
e�ectively expanding the range of pumping liquids to all liquids. The pump
is given the name: �The Two-liquid Viscous Pump�.
With inspiration in the shallow/planar pump developed by Chen, 2000, a
new integrated design is achieved using reservoirs the so-called: �Shallow
Reservoir Pump�. The pump design is very promising with respect to �ow
rate and backpressure. The introduced concepts may also be useful in
other micro�uidic applications.
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Chapter 2

Physics of Liquids

2.1 Momentum and Continuity
In this section we shall investigate the governing equations and the types of �ows
a micro�uidic system may comprise. In this thesis we are exclusively dealing with
liquids - however, the governing equations are valid for both gases and liquids,
commonly denoted �uids.

The governing equations in �uid dynamics are the continuity and the Navier-
Stokes equation. They are based on the assumption that a �uid is a continuum.
This is generally a good approximation because the molecular spacing λmol is
very small compared to the length scales considered, Lautrup.

λmol =
( M

ρNA

) 1
3 (2.1)

Example: The Molecular Spacing
For water the average molecular spacing is λmol,water = 0.31 nm which is
roughly equivalent to the size of a molecule. In the case of air the average
molecular spacing is much larger. λmol,air = 3.6 nm. These length scales
are tiny. However, the continuum approximation must be kept in mind
when dealing with micro�uidics.

The continuity equation states

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.2)

If the �uid is incompressible, the divergence of the velocity is zero, ∇ ·u = 0. If
the density ρ is constant, the �uid is incompressible. It is, however, not possible
to deduct that an incompressible �uid has a constant density.

The forces acting on a �uid element can be divided into surface forces and
body forces. The surface forces may be described by a stress tensor τ ′. τij is
the component of stress, i.e., force per unit area, acting in the i-direction on a
surface element in the j-direction. The the sum of body forces is labelled gi. The
diagonal components of the stress tensor are called pressures. The Navier-Stokes

5
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equation,

ρ
Dui

Dt
=

∂τij

∂xj
+ gi, (2.3a)

ρ
Dui

Dt
= −∇p + µ∇2ui + gi. (2.3b)

The latter form of the Navier-Stokes equation is generally valid for incompress-
ible Newtonian �uids1. The substantial derivative of the velocity,

Du

Dt
=

∂u

∂t
+ u ·∇u, (2.4)

contains nonlinear convective terms, also called inertia terms. As long as these
terms are small compared to the viscous term, the �ow is said to be laminar. A
measure for the ratio between inertial and viscous forces is the Reynolds number
de�ned as

Re =
L u

ν
, (2.5)

where L and u is a characteristic length and velocity, respectively. The
Reynolds number at the transition between laminar and turbulent �ow is of
the order 103, depending on the geometry and type of �ow2. For a Poiseuille
�ow in a tube the critical Reynolds number is Recrit ≈ 580. In micro�uidics
the �ow is almost always laminar due to the micro length scales L ≈ 100 µm,
small velocities u ≈ 1 mm/s and kinematic viscosity 1.00× 10−6 m2/s yielding
a Reynolds number of Re = 0.1.

At very low Reynolds numbers the �ow is also said to be creeping which
means that the inertial e�ects are negligible. This happens at Reynolds numbers
Re < 5, Yang, 2001. The mathematical implication of this is that nonlinear
terms in the Navier-Stokes equation disappear.

If the �ow is free of vorticity, the governing equations simplify considerably.
This type of �ow is called potential �ow. Viscous �ow is generally not potential
�ow, but in some special cases it may be described as such. Given the appropri-
ate boundary conditions electroosmotic �ow can be described as potential �ow
independent of the Reynolds number, Appendix F, Cummings et al., 2000.

2.2 The Energy Equation
In viscous �ows there will be dissipation of energy through irreversible processes.
In practice this means that mechanical and electrical energy are dissipated to
heat. The temperature of the system will increase until an equilibrium between
heat generation and heat transport is obtained. The energy equation is applied,
Landau and Lifshitz,

∂

∂t

(1
2
ρu2 + ρUint

)
= −∇ ·

(
ρu(

1
2
u2 + H)− u · τ ′ − ρcpDheat∇T

)
. (2.6)

1In Newtonian �uids the shear stress and the rate of strain are proportional. For example,
water is Newtonian whereas, e.g., blood is non-Newtonian.

2For example, the wave boundary layer in an ocean wave may not be fully turbulent before
Re = 106
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The left hand side of Eq. (2.6) is the rate of change in mechanical and thermal
energy respectively, 1

2ρu2 and ρUint. The right hand side is the divergence of
the energy �ux, i.e., source terms. The unit is power per volume. The �rst term
is the kinetic energy ρu2/2 and enthalpy ρH. The second term is the internal
friction due to the viscosity. The last term is the heat transport. A more detailed
discussion of the terms will be done in the following.

Rewriting Eq. (2.6), assuming steady state, and adding the term for ohmic
heating P = λelecE

2, we obtain

0 = ∇ ·
(

ρu(
1
2
u2 + H)− u · τ ′ − ρ cp Dheat∇T

)
+ λelecE

2. (2.7)

In the following we shall apply Eq. (2.7) to a uniform steady �ow between two
in�nitely large plates with the y-axis parallel to their normal vectors. The �ow
is partially driven by EO and pressure in the x-direction.

• Mass transport
The divergence of the mass transport is zero because the �ow is uniform.

• Internal friction
In order to determine the internal friction we must know the velocity �eld
u and the stress tensor τ ′. The �ow can be written as u = (u, 0, 0) having
only one component in the x-direction. The stress tensor is a 3×3 matrix.
The diagonal elements are the pressures. The only other nonzero elements
are τxy = τyx = µdu

dy , according to the viscosity law valid for Newtonian
�uids. The stress tensor is symmetric τij = τji, Lautrup.

τ ′ =




τxx τxy τxz

τyx τyy τyz

τzx τzy τzz


 =



−p µdu

dy 0
µdu

dy −p 0
0 0 −p


 (2.8)

Calculating the divergence of the product u · τ ′ yields

∇ · (u · τ ′) = ∇ ·
(
−up, uµ

du

dy
, 0

)
(2.9)

= −u
dp

dx
+ µ

[(du

dy

)2

+ u
d2u

dy2

]
(2.10)

Eq. (2.10) may be simpli�ed using by the Navier-Stokes equation for the
same problem. The last term on the right hand side is the power that the
electrical force adds to the �uid with charge density ρE .

0 = −dp

dx
+

dτxy

dy
+ ρEE (2.11)

−ρEE = −dp

dx
+ µ

d2u

dy2
(2.12)

By multiplying Eq. (2.12) with u and inserting in Eq. (2.10) we obtain

∇ · (u · τ ′) = µ

(
du

dy

)2

− uρEE (2.13)
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• Heat transport
The heat transport is only calculated for the liquid, but in order to be of
practical relevance, the problem should be expanded to include the walls
(planes). The present analysis is done for the �uid only.

ρcp∇ · (Dheat∇T ) = ρcpDheat
d2T

dy2
(2.14)

• Ohmic heating
The ohmic heating P is given as

P = λelecE
2 (2.15)

For a Debye layer of �nite thickness, some corrections should be made to
the conductivity, Rice and Whitehead, 1965.

The �nal energy equation is

0 = µ

(
du

dy

)2

− uρEE + ρcpDheat
d2T

dy2
+ λelecE

2 (2.16)

The �rst term is always positive and may be interpreted as the viscous dissi-
pation. The second term is always negative. It is equivalent to the mechanical
power that the EOF generates. The third term is the heat transport which must
balance the other terms in thermal equilibrium. The last term is the ohmic heat-
ing. In case of an applied pressure gradient, this will enter the equation by the
�rst term, i.e., viscous dissipation.

2.3 The Electric Double Layer
The basis of electroosmotic (EO) pumps is the formation and manipulation of
electric double layers (EDL). It is very important to understand the underlaying
physics in order to make good approximations. As a starting point, we consider
the charge transport in a liquid.

The �ux of a charged species J is governed by di�erent e�ects. The general
description of these phenomena is governed by a general potential as a function
of pressure, temperature, electric state, concentrations, composition of phases,
etc. An analytical description, however, is not feasible due to the nonlinear
characteristics of the potential. If the electrolyte is dilute this is not a problem,
because then the transport e�ects may be linearly superposed.

The involved transport processes are electromigration, di�usion, and con-
vection. If a charged species is subjected to an electric �eld it will migrate,
i.e., electromigration. If we neglect the e�ects of external and induced magnetic
�elds, we obtain the following form of the Nernst-Planck equation, Probstein

Ji = −αizici∇φ−Dmass,i∇ci + ciu, (2.17)

where Ji is the molar �ux of the i-th species due to electromigration, mass
di�usion and convection in that order. The mobility is related to the mass dif-
fusivity Dmass,i and the thermal energy kT as αi = eDmass,i/(kT ). Eq. (2.17)
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is only valid for dilute concentrations. Hence, in the following analysis the elec-
trolytes are assumed to be dilute.

If we consider a charged surface in contact with a dilute, fully dissociated
salt, the charged surface will attract the ions of the opposite charge, the so-called
counterions. Hence, an area will exist where the concentration of counterions is
larger than that of the coions 3. This phenomena leads to the formation of an
electric double layer, or Debye layer. In Fig. 2.1 the wall charge is negative. The
double term refers to the fact that there are two layers. The inner layer, which is
immobile due to strong electrical forces, and the outer layer, the di�usive layer,
which may be a�ected by an external electric �eld. The surface charge arises
from chemical reactions as discussed in Sec. 2.7.
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Figure 2.1: Structure of electric
double layer with an inner immo-
bile layer. The system consisting of
wall and liquid is electrical neu-
tral. The di�use layer is mobile
and can therefore be manipulated
by an external electric �eld. The
positive ions are hydrated. Some
of the negative ions are speci�cally
adsorbed at the surface, Keith et
al.

2.4 Thickness λD of the Double Layer
The thickness of the electrical double layer is governed by a balance between
di�usion and electrical forces. The length is also known in the literature as the
Debye length. It is a characteristic length scale for the electrical screening. First
we introduce the electrochemical potential µchem,i, which is the free energy of
the last arrived particle. It consists of an electric and chemical potential. The
gradient of the electrochemical potential must be zero in equilibrium, i.e., steady
state. If this was not the case, a �ow would be induced. The chemical potential
is given as

µchem,i = µ0
chem,i + kT ln ni, (2.18)

where ni = ci/c0
i is the concentration of ions relative to a reference concentra-

tion. µ0
chem,i is the standard chemical potential which is equal to the chemical

potential when ni = 1. The Debye length is found by balancing repulsive dif-
fusive forces with attractive electrical forces, which is the same as requiring
∇µi = 0.

∇µi = ∇µchem,i + zie∇φ, (2.19)
∇µchem,i = −zie∇φ, (2.20)

In one dimension we get
dµchem, i

dx
= −zie

dφ

dx
. (2.21)

3The charges of the coions have the same sign as the charges of the surface.
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Inserting Eq. (2.18) into Eq. (2.21) yields

1
ni

dni

dx
= −zie

kT

dφ

dx
. (2.22)

Integrating Eq. (2.22), the Boltzmann distribution (2.24) is obtained by requir-
ing that φ = 0 when ni = 1. This is equal to setting ci = c0

i , where the latter is
the salt concentration of the bulk �uid.

ni = exp(−zie

kT
φ), (2.23)

ci = c0
i exp(−zie

kT
φ). (2.24)

The Debye layer is not electrically neutral. Hence, the Poisson equation,
which states the relation between the electric �eld and the charge density, is
invoked. For simplicity the dielectric constant is assumed spatially invariant,
and hence reduces Eq. (2.25a) to Eq. (2.25b). This approximation is not very
good because of the strong polarization e�ects in the Debye layer. The problem
is discussed in Sec. 2.6.

∇ · (ε∇φ) = −ρE , (2.25a)
∇2φ = −ρE

ε
(2.25b)

The charge density is inserted in the Poisson equation Eq. (2.25b) along with
the Boltzmann distribution, Eq. (2.24).

d2φ

dx2
= −1

ε

∑
cizie (2.26)

This is a nonlinear di�erential equation, due to the exponential terms on the
right-hand side. The solutions will be discussed in Sec. 2.5. For now we will use
the Debye-Hückel approximation ziφ

kT ¿ 1, in which case exp( ziφ
kT ) ≈ 1− ziφ

kT .

d2φ

dx2
= −1

ε

∑
c0
i (1−

zieφ

kT
) (2.27a)

= −1
ε

(∑
ec0

i zi −
∑

c0
i z

2
i e2 φ

kT

)
zie (2.27b)

=
e2

εkT
(
∑

z2
i c0

i )φ (2.27c)

= κ2φ. (2.27d)

In the Eq. (2.27b), the �rst sum is zero because the bulk liquid is electrically
neutral. In the last equation, the term in front of φ contains a characteristic
length scale, 1/κ = λD, which is the Debye length. The Debye length is also a
measure for the thickness of the double layer.

λD =
1
κ

=

√
εkT

e2
∑

z2
i c0

i

(2.28a)

=

√
εkT

2e2z2c
(2.28b)
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In Eq. (2.28b), the salt is assumed symmetric for simplicity. The error by making
this approximation is quite small, since the concentration of the counterions is
much larger than that of the coions.

The thickness of the double layer depends on the temperature T , concentra-
tion c and valence number z of the ions. At a distance of approximately 3λD,
the potential will be reduced to 2% of its near surface value.

At high temperatures the ions move quickly which leads to a decrease in the
shielding since they are dispersed more. For high concentrations the shielding is
more e�ective because the charge density is larger.

The double layer thickness is dependent on the concentration of the bu�er,
λD = 1.09 × 10−9ε(z

√
c)−1 at room temperature. Hence, if the bu�er concen-

tration or the ionic strength4 is increased, the double layer is compressed. This
a�ects the potential distribution, and the zeta potential is reduced.

The zeta potential is expected to become larger (in magnitude) for small
electrolyte concentrations.

Example: Thickness of Double Layer
At a temperature of 25oC, the above expression computes to λD =
9.61 × 10−9(z

√
c)−1, where the dielectric constant for water has been

used: ε = 78.3ε0. For a concentration of 102 mol/m3 (0.1M), λD =
0.961 nm. So in this case, the EDL is no more than approximately 10
atoms wide.

2.5 The Electric Potential
Consider a circular capillary �lled with an aqueous solution. At the solid-liquid
interface an EDL is formed. The ion concentrations ci are connected with the
electric potential φ through the Poisson equation, Eq. (2.25b). The capillary
length is assumed to be much larger than the radius. Adopting cylindrical coor-
dinates with x as the longitudinal coordinate, the ∂2

∂x2 -terms may be neglected
because variation is very small compared to the radial variation. Furthermore,
the solution is assumed symmetric, so the angular variation is also disregarded.

1
r

∂

∂r

(
r
∂φ

∂r

)
= −ρE

ε
(2.29a)

= −Fz

ε
(c+ − c−). (2.29b)

It is convenient to split up the potential in two parts. A radial component ψ(x, r)
and a longitudinal component Φ(x).

φ(x, r) = Φ(x) + ψ(x, r) (2.30)

In order to �nd the concentrations, the ion �ux is considered. In equilibrium the
radial �ux of ions must be zero. This requirement is inserted into the Nernst-
Planck equation, Eq. (2.17). By integrating the radial component of the Nernst-
Planck equation and using that the di�usivity is Dmass = RTα, the Boltzmann

4Ionic strength is a quantity representing interactions of ions with water molecules and
other ions in a solution I = 1

2

P
z2
i ni.
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distribution is obtained

0 = − z

RT
DmassFc

∂ψ

∂r
−Dmass

∂c

∂r
, (2.31)

z

RT
F

∂ψ

∂r
= −1

c

∂c

∂r
, (2.32)

− z

RT
Fψ = ln(c) + const, (2.33)

c± = c0 exp
(
∓zFψ

RT

)
, (2.34)

where α is the mobility of the ions. By inserting the Boltzmann distribution
Eq. (2.34) in Eq. (2.29b), the following nonlinear second order ordinary dif-
ferential equation (ODE) arises. For simplicity, the variables have been made
dimensionless, r∗ = r/a, λ∗ = λD/a and ψ∗ = zFψ/(RT ).

λ∗ 2 1
r∗

∂

∂r∗

(
r∗

∂ψ∗

∂r∗

)
= sinh(ψ∗). (2.35)

In combination with the boundary conditions this forms a nonlinear boundary
value problem (BVP).

∂ψ∗

∂r∗
= 0, at r∗ = 0, (2.36)

ψ∗ = ζ∗, at r∗ = 1. (2.37)

The zeta potential will be explained in Sec. 2.7 for now it is simply the potential
at the wall interface.
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Figure 2.2: Nondimensional screening potential ψ∗ in two di�erent geometries: (a)
In a radial channel where the length scale is the radius of the channel. (b) Potentials
between two planes where the length scale is half the spacing of the planes.

In Fig. 2.2 the potentials have been calculated for di�erent values of λ∗ using
the program in Appendix D, Potential solver. Two geometries are considered. A
circular capillary in Fig. 2.2(a), and a one dimensional parallel plate geometry in
Fig. 2.2(b). In the large cases of λ, the potential equals the zeta potential across
the entire channel width. For small values of λ the potential is zero everywhere
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except near the boundaries. This illustrates the di�erent shielding e�ects. For
small ratios the bulk �ow is completely shielded, refer to Sec. 2.4. This will often
be the case, since the Debye length is very small compared to most capillaries.

An analytical solution for the potential may be obtained by linearizing the
right-hand side of Eq. (2.35), and the double layer thickness λD ¿ a must be
small compared to the radius of the capillary. Hence curvature e�ects can be ne-
glected. This is termed the Debye-Hückel approximation. The result is a simple
exponential function. This result also emerges from the linearized parallel planes
case, as this is the exact same case when the curvature e�ects are neglected.

ψ = ζ exp
(− a− r

λD

)
. (2.38)

2.6 The Helmholtz-Smoluchowski velocity
The purpose of this section is to �nd the velocity as a function of an external
electric �eld. The concepts introduced here are essential for a description of
electroosmotic �ow.

�Electroosmosis is the movement of liquid relative to a stationary charged
surface (e.g., a capillary or porous plug) by an electric �eld. The pressure nec-
essary to counterbalance electroosmotic �ow is termed the electroosmotic pres-
sure�, Shaw. The equation governing the �ow is the well known Navier-Stokes
Eq. (2.3b).

Since the length scale of the Debye layer is very small λD ≈ 1 − 10 nm the
corresponding Reynolds number is of the order Re ≈ 10−6. Hence the inertial
forces may be neglected in the boundary layer (di�usive layer). A discussion of
inertia forces and Reynolds numbers can be found in Sec. 3.1. So the problem is
reduced to a balance between electric forces and viscous forces. The maximum
velocity in the boundary layer is then used as a boundary condition for the bulk
�ow. Introducing Poisons equation to eliminate the charge density ρE

µ∇2u = ρE∇φa (2.39)
= −ε

(∇2φ
)∇φa (2.40)

To identify nonessential terms the x and y coordinates are scaled by the radius
a and the Debye length λD respectively,

x = a τ, (2.41)
y = λD η. (2.42)

The Laplace operator of the intrinsic potential and the gradient of the applied
potential in Eq. (2.40) are computed separately in Eqs. 2.43b and 2.43c. Note
that the tangential term in the gradient of the intrinsic potential is expressed
by means of the applied potential. Its magnitude is proportional to the applied
�eld by the factor χ. This is a correction factor due to the polarization of the
dielectric liquid within the Debye layer. The electric �eld in the Debye layer
E ≈ 107 V/m is much larger than the applied �eld E ≈ 104 V/m. The terms
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computes to

∇φi =
(

χ

a

∂φa

∂τ
,

1
λ

∂φi

∂η

)
, (2.43a)

∇2φi =
χ

a2

∂2φa

∂τ2
+

1
λ2

∂2φi

∂η2
, (2.43b)

∇2u =
(

1
a2

∂2u

∂τ2
+

1
λ2

∂2u

∂η2
,

1
a2

∂2v

∂τ2
+

1
λ2

∂2v

∂η2

)
. (2.43c)

A value of the χ-factor is di�cult to obtain. A more detailed physical description
of the Debye layer is required. This is beyond the scope of the this analysis, but
the χ-factor can be incorporated in an suitable choice of the dielectric constant
for the Debye layer, in the following just denoted ε.

Collecting terms in the tangential direction, and neglecting terms of order
λ/a or higher Eq. (2.40) becomes

µ
∂2u

∂η2
= −ε

dφa

dx

∂2φi

∂η2
. (2.44)

Note that the gradient of the applied �eld is given in the x-y coordinates. By
double integration with respect to η and use of the conditions ∂u

∂η = ∂φi

∂η = 0
as y → ∞ and that φi = ζ at u = 0, the integrated equation yields the very
important relation,

ueo =
εζ

µ

dφa

dx
= αeoEx, (2.45)

αeo = −εζ

µ
, (2.46)

which is the Helmholtz-Smoluchowski relation, refer Fig. 2.3. Eq. (2.45) is also
known as the electroosmotic velocity, where αeo is the EO mobility and Ex the
electric �eld. Recent research has shown that the zeta potential is ambiguous in
that sense that for one mobility there may be two corresponding zeta potentials,
Hunter 2001. It is therefore important to emphasize that it is the EO mobility
αeo that is important with respect to EO pumps.

The electric �eld is given by the potential and the electrode separation. If a
dielectric is present the �eld is unchanged, but the charges at the electrodes are
increased in magnitude. One should be careful not to confuse this setup with
an isolated capacitor, with �xed charges, in which the �eld is reduced because
of the dielectric.
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(non-conducting)

Electrolyte
solution

Diffuse layer

Eeo

Figure 2.3: Flow produced by
an electric �eld acting on a
charged di�use double layer. The
electroosmotic velocity is denoted
ueo = αeo E. There is overall
charge neutrality.

Example: EO velocity
From an experiment conducted by Cummings et al., 2000. The applied
electric �eld is 50 V over 20 mm. Ex = 2.5×103 V/m. The zeta potential,
ζ = −100 mV so ueo = 200 µm/s. The dielectric constant is ε = 78.3 ε0
and the dynamic viscosity µ = 1.0×10−3 kg (m s)−1 are those of water
at room temperature.

2.7 The Zeta Potential
The thickness of the double layer is given by the Debye length λD. The derivation
of the Debye length was based on the assumption that the ions are points. In
real life the ions are not that small compared with the Debye length. So when
considering the boundary condition for the potential, we must have a more
accurate description. The center of the inner most ions are in a �nite distance
from the surface. This inner layer is called the Stern layer, Fig. 2.4. This layer
is bounded by strong electrostatic forces E ≈ 107 − 108 V/m and hence is
immobile. The counterions are attracted to the surface and in this way screening
the surface charge.

Figure 2.4: Structure of electric
potential in the double layer with
inner Stern layer. The thickness of
the Stern layer is approximately
the width of an atom δ ≈ 0.1 nm.
The zeta potential is de�ned at the
surface of shear. In other words
where the ions start to move,
Probstein.

The zeta potential is de�ned as the potential di�erence across the Debye
layer from the shear surface between the charged surface and the electrolyte
to the far �eld (zero), Probstein. The zeta potential is typically of the order
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ζ ≈ 1 − 200 mV. The system, liquid and surface, is electrically neutral. So the
wall charge must equal that of the �uid charge with opposite sign. Far away
from the wall, the �uid is electrically neutral, Adamson and Gast.

We are considering glass as the main material that the capillaries are made
of. Other materials such as polymers (e.g., PMMA) can also be used. Such
materials are interesting with respect to mass production and fast prototyping,
but glass/siliconoxide o�ers the highest level of re�nement available, i.e., the
most accurate structures.

If siliconoxide (silica or quartz) is immersed in water, the potential is gener-
ated by a chemical reaction at the surface. The silanol groups SiOH are changed
to either SiOH+

2 or SiO− depending on the bu�ers pH value, Fig. 2.5.

Figure 2.5: Chemical reactions for Silicon in aque-
ous mediums with di�erent pH. Silanol groups react
with the ions in the aqueous solution, creating an
excess of charge at the surface.

In this way the zeta potential may be varied by the pH of the bu�er solution.
At the some pH-level, point of zero charge (PZC), the wall potential is zero. For
high pH levels the change in EO mobility is marginal. A suitable choice of the
bu�ers pH-value must be considered in order to have e�ective electroosmotic
pumping.

SiOH + H+ → SiOH+
2 (2.47)

SiOH + OH− → SiO− + H2O (2.48)
pKa(−SiOH) ≈ 6 (2.49)

2.8 Di�usion of Mass and Momentum
Mass Di�usion
If two mixable liquids are placed together, they will mix without any stirring.
The process is called mass di�usion. Later in the report a pump that utilizes
two liquids will be presented. Hence, it will be useful to introduce some of the
basic knowledge about di�usion.

The di�usion of mass is related to the mobility of molecules within the liquid.
A large di�usion coe�cient Dmass means that molecules are relatively free to
move. The movement can be described as a series of short jumps - random walk,
Atkins [6]. The root means square average d of the position is given as

d =
√

2Dmass t. (2.50)
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Example: Travelling Molecules
The Di�usion coe�cient for water is 2.26× 10−9m2/s at room temper-
ature. Then the average molecule travels 2 cm away from its origin in
a day. This may seem surprisingly low and in practice there will nearly
always be some convective motion.

Returning to the concept of the random walker the di�usion coe�cient may be
expressed as

Dmass ≈ `2

τcol
= ` umolecule (2.51)

Where ` is the mean free path between collisions, τcol is the time between the
collisions, and umolecule is the average velocity. The di�usivity increases with
temperature, since the average velocity is umolecule ∝

√
T . The molecular dif-

fusion increases with temperature, because the molecules can then more easily
escape from the attractive forces exerted by their neighbors. In general, the
molecules in a �uid have kinetic energies comparable with the intermolecular
potential energy. A pair distribution function g may be de�ned as the proba-
bility of �nding a molecule in the range δr. For a crystal lattice the g-function
has sharp peaks, indicating neighboring molecules. For a �uid the g-function
is smeared out increasingly with temperature. The probability for a molecule
to jump to a vacant lattice site5 is thought to follow an Arrhenius tempera-
ture dependence, Eq. (2.52), Atkins, [6]. The di�usion Dmass is increasing with
temperature T ,

Dmass = Do
mass exp

(
−∆G

RT

)
. (2.52)

The problem with this theory is that the intermolecular potential ∆G is a purely
an empirical constant and widely, debated as in the article by Alder and Hilde-
brand, (Activation Energy: Not Involved in Transport Processes in Liquids,
1973). However, the activation energy theory is quite common because of its
good agreement with experiments, Atkins, [6]. The viscosity is related to the
mass di�usion coe�cient, as we shall see later.

Viscosity
A Newtonian �uid is de�ned as a �uid in which the relation between shear
stress and rates of strain is linear. This is a constitutive relation because it gives
a relation between applied force and deformation.

For convenience the two types of viscosity are de�ned in Eq. (2.53). ν is the
kinematic viscosity, µ is the dynamic viscosity and ρ is the density of the �uid

ν =
µ

ρ
. (2.53)

The kinematic viscosity may be considered as the di�usion coe�cient for mo-
mentum. The di�usion constants have the same unit. The kinematic viscosity

5Molecules in liquids are not ordered as molecules in solids. However we will adopt this
description as an best approximation.
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is related to the mass di�usion coe�cient Dmass. If the Dmass increases, the
molecules will be more mobile, and hence transfer more momentum. Thus, the
viscosity should show the same temperature dependence as the mass di�usivity,
Table 2.1.

Species Temperature ν Dmass
oC m2/s m2/s

Water 5 1.51× 10−6 1.31× 10−9 (self-di�usion)
Water 15 1.14× 10−6 1.78× 10−9 (self-di�usion)
Water 25 0.890× 10−6 2.26× 10−9 (self-di�usion)
Water 35 0.723× 10−6 2.92× 10−9 (self-di�usion)
Water 45 0.602× 10−6 3.56× 10−9 (self-di�usion)
Water 50 0.547× 10−6 -
Water 100 0.30× 10−6 -
Ethanol 25 1.07× 10−6 1.24× 10−9 (in water)
Glycine 25 - 1.06× 10−9 (in water)
Dextrose 25 - 0.673× 10−9 (in water)
Sucrose 25 - 0.522× 10−9 (in water)

Table 2.1: Di�usion and viscosity constants, Atkins [7], Mills.

Mass di�usion and Viscosity
We have now described both mass di�usion and momentum di�usion (viscosity).
From this description it is clear that some relation must exist between the
di�usion coe�cient Dmass and the mobility of the molecules. This empirical
relation is the Einstein relation.

Dmass = αRT
zF

α = ez
f

}
Dmass =

RT

fNA
=

kT

f
(2.54)

If one assumes that the frictional drag for the molecule travelling through the
liquid is proportional to the velocity, Stokes Law, f = 6πµa, may be applied. The
dimension of f is force per velocity. Experiments using magnetic resonance have
shown that results will at least be of the right order of magnitude, Atkins, [7].
From these assumptions the Stokes-Einstein equation emerges, Eq. 2.55. This is
the missing link between di�usivity and viscosity under the given assumptions.

Dmass =
kT

6πµa
, (2.55)

where a is the e�ective radius of the ion, µ the dynamic viscosity, k the Boltz-
mann constant and T the temperature of the liquid.
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Figure 2.6: Di�usivity and
dynamic viscosity calculated
using the Arrhenius and
Stokes-Einstein relations,
Eqs. (2.52) and (2.55). The
best �t was obtained with

G
RT o = 8 where T o = 298K.
Values are made nondi-
mensional with values at
T o = 298K.

2.9 Thermal Di�usion
Thermal di�usion is di�erent from mass di�usion. In thermal di�usion the inter-
action between molecules is considered. If a material is a good heat conductor,
it will have a large thermal di�usion coe�cient. In many liquids heat will be
transported by means of convection. This phenomenon is not interesting in this
context.

λheat =
Dheat

ρcp
(2.56)

where λheat is the heat transfer coe�cient, and cp is the heat capacity for con-
stant pressure. Generally, if a material is a good heat conductor, it will also be
a good electrical conductor.

T ρ cp λheat Dheat

K kg/m3 kJ/(kgK) W/(mK) m2/s
Water 300 998 4.18 0.56 1.3 · 10−7

Ethanol 300 789 2.43 0.17 8.9 · 10−8

Glycerol 300 1261 2.43 0.29 9.5 · 10−8

Table 2.2: T is the temperature, ρ is the density, cp is the heat capacity, λheat is the
thermal conductivity, and Dheat is the thermal di�usivity, Andersen.

2.10 Mass Di�usion
Miscible Liquids
If two miscible liquids are placed adjacent to each other, di�usion will occur until
there are no gradients in the concentration. The mathematical formulation of
this phenomenon is the di�usion equation. A number expressing the importance
of di�usion compared to convection is the Peclet number

Pemass =
L u

Dmass
. (2.57)
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For small Peclet numbers Pemass < 1, di�usion is the dominating e�ect. This
can easily be the case in micro�uidics.

Consider a channel with two miscible liquids A and B. Liquid A occupies
the fraction a/W of the channel and liquid B occupies the rest. This is the
initial condition (IC). The boundary value problem (BVP) requires an IC with
continuous derivatives Eq. (2.58d) for mathematical reasons. The BCs are ho-
mogeneous Neumann conditions. A Neumann boundary condition sets a value
for the derivative. The BVP, Eq. (2.58), may be solved analytically, Strauss,

PDE ∂c
∂t −Dmass

∂2c
∂x2 = 0, (2.58a)

BC1 ∂
∂tc(0, t) = 0, (2.58b)

BC2 ∂
∂tc(W, t) = 0, (2.58c)

IC cIC(x) = 0.5
(
1 + tanh

[ γ

W
(x− a)

])
, (2.58d)

where γ determines the steepness of the initial condition. Using a Fourier ex-
pansion we get

c(x, t) =
1
2
A0 +

∞∑
n=1

An exp
[
−Dmasst

(nπ

W

)2
]
cos

(nπx

W

)
, (2.59)

where the Fourier coe�cients

An =
2
W

∫ W

0

cIC(x) cos(
nπx

W
)dx, (2.60)

are found by numerical integration, Appendix D, Di�usion. An important fea-
ture in the solution is the characteristic time scale that emerge, to = W 2

Dmass
.

This time scale governs the problem entirely, and may be used to evaluate the
importance of di�usion in laminar �ow.

Liquid A Liquid B

0 W
x

W 2

Dmass
t

Characteristic
Diffusion time

=

Figure 2.7: Time evolution of
the concentration in a narrow
channel. If the width W =

10 µm and the self-di�usion
constant for water, Dmass =

2.26 × 10−9m2/s, was used,
then to = 0.044 s. The di�u-
sion is very fast for this small
length scale.

Immiscible Liquids
The other case is two immiscible liquids. Two liquids will not mix if one of them
is polar and the other is nonpolar. If the solution is stirred, the phases will be
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mixed on a macroscopic level, but after a period of time the original phases
will be restored. The most well-known example of two such immiscible liquids
are water (polar) and oil (nonpolar). The interface between the two phases
is very thin, i.e., only a few layers of molecules. The properties of molecules
and ions in this layer di�er essentially from the properties in the bulk volume,
Shaposhnikova, 1999. The properties at the interface are not relevant in the
scope of this report, and may be disregarded.

2.11 Conductivity of Liquids
Calculating the electric current �ux includes knowledge of the ion concentration
distribution. Three terms are important: the electromigration, di�usion and
convection. Electromigration will be the dominant term since no longitudinal
charge gradients are expected.

I = −F 2∇φ
∑

z2
i αici − F

∑
ziDi∇ci + Fu

∑
zici. (2.61)

The electroosmotic �ow speed is proportional to the electric �eld under some
conditions. An approximate velocity is given by the Helmholtz-Smoluchowski
relation. Increasing the electroosmotic �ow speed can therefore be done by in-
creasing the �eld. The �uid will be heated by the electrical current due to the
resistivity. The heating of the �uid may not be desirable, because it could dam-
age some biological samples being transported.

The conductivity of an ion solution is governed by the electrolyte, the tem-
perature and the concentration. The charged ions are a�ected by the electric
�eld. Hence, they will obtain an ordered migration velocity. This velocity is gov-
erned by a balance between inelastic collisions and the electrical force acting on
an ion, Probstein.

For dilute solutions the Kohlrausch's law of the independent migration of
ions apply. This law states that the conductivities may be superposed linearly
for a solution.

Cations λo
elec Anions λo

elec

cm2 S/mol cm2 S/mol
Ba2+ 127.2 Br− 78.1
Ca2+ 119.0 SO2−

4 160.0
Na+ 50.1 Cl− 76.35
K+ 73.5 NO−3 71.46
H+ 349.6 OH− 199.1

Table 2.3: Limiting ionic molar conductivities in water at T = 298 K, Atkins, [7]. The
conductivity is obtained by multiplying the concentration with the molar conductivity.

From Table 2.3 and Eq. (2.62) the ionic mobilities may be calculated, in
particular the electrophoretic mobility αep,

αep =
λelec

zF
. (2.62)
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Kohlrausch' law applies only for very dilute solutions. So for higher concentra-
tions the conductivity must be corrected by the following equation,

λelec = λ0
elec −B

√
c. (2.63)

λ0
elec is the limit value for the molar conductivity. B is some constant determining

the sensitivity of the concentration. Table values for some salts can be seen in
table (2.4). Note that by summing the molar conductivities, e.g., for Na+ and
Cl− in Table (2.3) one obtains the limit value for NaCl in Table (2.4).

Salt 1.0 0.1 0.01 0.001 ≈ 0
[λelec] = cm2/(Ωmol) mol/L mol/L mol/L mol/L mol/L

AgNO3 77.8 109.09 124.68 130,45 133.4
Na2SO3 - 179.88 224.76 248.18 260.2
NaCl 85.8 106.69 118.45 123.68 126.5

Table 2.4: Molar conductivity for di�erent salts. The rightmost column is the λo
elec

values. The conductivity is obtained by multiplying the concentration with the molar
conductivity, Andersen et al.

Example: Electric resistance of a capillary
A 10 mM (c = 10 mol/m3) solution of Borax (Na2B4O7) is considered.
The radius of the capillary is r = 100 µm, and the length is L = 1 cm.
Conductivity of the Borax solution λelec = 3.41 × 10−1 S/m, so the
resistance is R = L

πr2
1

λelec
= 0.93 MΩ.

2.12 Electroosmotic Mobility
As we saw in the previous section, the capillaries are likely to be heated consid-
erably due to Joule heating. As we shall see later, the electroosmotic mobility
may be approximated by the following relation,

αeo = εζ
µ

εψ0 = σ0λD

ψ0 ∝ ζ

λD ∝ √
εT





αeo ∝
√

εT

µ
. (2.64)

where σ0 is the surface charge density, and ψ0 the surface potential. It is
assumed that the surface charge density is independent of temperature, and
that the zeta potential and the surface potential ψ0 have the same tempera-
ture dependence. Furthermore, the equation is only a good approximation for
small surface potentials ψ0 < 25 mV. Hence, there are large uncertainties asso-
ciated with the model. Experiments have shown indirectly that the EO mobility
increases with temperature. From table values of ε and µ we may �nd the tem-
perature dependence of αeo. The values have been made dimensionless by values
at a reference temperature, Fig. 2.8.
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Example: EO mobility Test Setup
A simple experiment could be done in connection with the model. The
heat problem can be solved analytically if the geometry is simple. Having
EOF in a submerged circular capillary enables an analytical solution.
With a �xed temperature on the outside of the capillary the stationary
temperature within the capillary would be known. The analytical solu-
tion of the temperature is derived in Appendix H. The experiment could
give measurements of the EO mobility as a function of the temperature.



24 CHAPTER 2. PHYSICS OF LIQUIDS



Chapter 3

Elementary Flow Analysis

In this chapter we shall develop an understanding of �ow analysis in microchan-
nels, with emphasis on electroosmotic �ow (EOF). The chapter is very important
in relation to later analysis.

At �rst, a general analytical solution to a combined electroosmotic/pressure
driven �ow in circular capillary is obtained. The solution includes the e�ects
of a �nite Debye layer thickness. In the rest of the report the Debye layer is
assumed in�nitely thin unless otherwise is mentioned.

Secondly, analytical solutions to �ow distributions in rectangular channels
driven by electroosmosis and pressure are presented. The solutions for u(x, y)
are integrated, and relative �ow rates Q∗ are obtained. The relative �ow rates
are relevant in the subsequent �ow analysis, mostly dealing with �ow rates and
pressures. A Q-p diagram for a pump is a plot of the �ow rate versus pressure.
The higher the counter pressure the lower the �ow rate until the �ow is stopped
Q = 0 at the so-called backpressure.

Thirdly, we shall emphasize on some of the special characteristics of EOF.
Finally, the equivalent circuit theory is presented. The theory is conceptually

identical to that of electric circuits. The introduced concepts are highly useful
and are applicable to all of the considered designs.

3.1 Flow in a Circular Capillary
In this section we shall �nd the velocity distribution u(x, y) without the in�nitely
thin Debye layer assumption. An analytical solution is possible due to the simple
geometry. The electric potential and the corresponding charge distribution were
found in Sec. 2.5.

The Navier-Stokes equation is applied to derive the velocity distribution
in a circular capillary. The inertia terms have been neglected because of the
creeping �ow assumption. In creeping �ow the Reynolds number is so small
that inertia forces may be neglected. Simulations have shown that for Reynolds
numbers below Re < 5, it virtually makes no di�erence whether or not inertia
is included, Yang et al., 2001.

Pressure needs to be included, because the entire capillary �ow may not be

25
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driven by electroosmosis.

0 = −∇p + µ∇2u− F (z+c+ + z−c−)∇φa, (3.1)

where the electric �eld has been replaced by minus the gradient of the applied
potential φa. Using cylindrical coordinates for the axially symmetric capillary,
we adopt (r, θ, x) with x in the direction of the �ow. θ and r are in the angular
and radial direction respectively. We are solving for the velocity in x-direction,
u = (0, 0, u).

The mathematical form of Eq. (3.1) is a so-called inhomogeneous 2nd. order
partial di�erential equation. The solution to the homogenous problem, ∇2u =
0, is zero everywhere, so only the solution to the inhomogeneous problem is
considered. The inhomogeneous terms, and hence the solution u, have no angular
dependence.

The velocity pro�le is rotationally symmetric ∂u
∂θ = 0 and uniform ∂u

∂x = 0,
Eq. (3.1) becomes

µ

r

d

dr
(r

du

dr
) =

dp

dx
+ Fz(c+ − c−)

dφa

dx
. (3.2)

Using Eq. (2.29b) to eliminate the charge densities, one obtains the modi�ed
Navier-Stokes equation, which is then integrated with the appropriate boundary
conditions.

µ

r

d

dr
(r

du

dr
) =

dp

dx
− ε

r

d

dr
(r

dψ

dr
)
dφa

dx
, (3.3a)

du

dr

∣∣∣
r=0

= 0, and dψ

dr

∣∣∣
r=0

= 0, (3.3b)
u(a) = 0, and ψ(a) = ζ. (3.3c)

The solution is

u(r) = −(ψ − ζ)
ε

µ

dφa

dx
+

r2 − a2

4µ

dp

dx
. (3.4)

Here the Debye-Hückel approximation Eq. (2.38) may be utilized for ψ, or more
correctly the potentials given in Fig. 2.4. If the Debye-Hückel approximation is
used, the equation becomes

u(r) =
εζ

µ

[
1− exp

(− a− r

λD

)]dφa

dx
+

r2 − a2

4µ

dp

dx
, (3.5a)

Q =
εζ

µ

dφa

dx
πa2

(
1− 2

λD

a

)
− πa4

8µ

dp

dx
. (3.5b)

Two important conclusions can be derived from Eq. (3.5b): (1) The �ow rate,
Q is reduced in the case of channel dimensions comparable with the Debye
layer thickness. However Eq. (3.5b) is not valid for a ≈ λD. (2) The �ow rate
induced by EO is proportional to Q ∝ a2, whereas the pressure driven �ow is
proportional to Q ∝ a4. Scaling of a capillary will therefore make EOF more
e�ective in small capillaries. In the extreme case of uniform charge distribution
(total Debye layer overlap), a parabolic �ow pro�le will be induced, identical to
that of pressure driven �ow and Q ∝ a4.
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3.2 Flow in a Rectangular Channel
In this section a wide range of �ows in rectangular channels are investigated.
In many micro�uidic applications the cross sectional geometry is approximately
rectangular1. The �ow pro�les are found using theory for partial di�erential
equations (PDE). Separation of the variables and Fourier series is used for �nd-
ing the �ow pro�les expressed as in�nite series. The problem may be split up
into the pressure driven �ow and the EO driven �ows. The Debye layer and the
EO velocity is not resolved in this analysis, but merely considered as a moving
wall BC. This is the in�nitely thin Debye layer approximation.

The governing equation for the motion is the Navier-Stokes, Eq. (2.3b). For
a steady and uniform �ow this equation is simpli�ed to

∇2u =
1
µ

dp

dz
, (3.6)

= f(x, y). (3.7)

This type of linear second order inhomogeneous PDE is often referred to as the
Poisson equation. It is the governing equation for the type of �ow called creeping
�ow or Stokes �ow because of the lack of inertial e�ects. In the uniform case
f(x, y) is merely a constant. Fig. 3.1 illustrates the boundary value problem.

0 W

H
u(x,H)=f  (x)

u(x,0)=f  (x)

u(W,y)=g  (y)u(0,y)=g  (y) Ñ u=f(x,y)
2

2

21

1 x

y

Figure 3.1: Poissons equation with inhomogeneous Dirichlet BCs. A Dirichlet BC
speci�es the absolute value of the dependent variable, in this case u. A Neumann BC
speci�es the derivative of the dependent variable.

An analytical approach is not straightforward because of the inhomogeneous
PDE, which makes the separation of variables impossible. The remedy is to split
up the problem in two, and then use the fact that the PDE is linear, Asmar.
The individual solutions can then be superposed as u = u1 + u2, Fig. 3.2.

1Due to the fabrication techniques it is often di�cult to etch vertically and the walls will
tend to be slightly tilted or round.
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Figure 3.2: u1 is governed by Poissons equation with homogeneous Dirichlet BCs
whereas u2 is governed by the Laplace equation with inhomogeneous Dirichlet BCs.
Together they form the complete solution to the Poisson equation with inhomogeneous
Dirichlet BCs, u = u1 + u2.

The relevant boundary conditions are wall u = 0 and velocity u = U . The
latter is equivalent of electroosmotic �ow where the Debye layer is assumed
in�nitely thin. The �ow may also be pressure driven, which enters the equation
through the inhomogeneous term. The procedure is to solve both the Laplace
equation and the Poisson equation with the appropriate boundary conditions.

3.2.1 Solving the Laplace equation
Single moving wall
For simple geometries we can calculate the velocity �eld analytically. One of
the most simple cases is the Couette �ow, which is two in�nity large plates in
the xz-plane, separated by a distance H in the y-direction. The EO velocity is
approximated with a moving wall. If the top plate is moving with the velocity
U , we get the linear velocity pro�le,

u(y) = U
y

H
. (3.8)

If then we consider a rectangular channel of �nite width 2W and height 2H,
where only the lid is moving, things are much more complicated. This type of
solution is useful if the �ow is driven by electroosmosis on only one wall, or if
one wall has another EO mobility than the others. In fabrication of micro�uidic
devices the lid is bonded on the device and may have a di�erent EO mobilities.
The detailed solution is given in Appendix A.

Two moving walls
Here we will look at the situation where two parallel planes are moving opposed
by two �xed planes, Fig. 3.3. This corresponds to �ow driven by electroosmosis
on two walls. Boundary conditions and the simpli�ed Navier-Stokes equation
yields

u(W, y) = u(−W,y) = 0, (3.9)
u(x,−H) = u(x,H) = U, (3.10)
Initial guess u(x, y) = U + f(x, y), (3.11)

Navier-Stokes 1
µ

dp

dz
=

∂2u

∂x2
+

∂2u

∂y2
. (3.12)
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Figure 3.3: Rectangular channel �ow
driven by two moving walls. The velocity
of the walls is U . The aspect ratio is de-
�ned as κ = W/H.

Inserting the initial guess into Navier-Stokes equation and solving for uni-
form pressure gives

0 = uxx + uyy, (3.13a)
0 = fxx + fyy, (3.13b)

f(W, y) = f(−W,y) = −U, (3.13c)
f(x,−H) = f(x, H) = 0. (3.13d)

The governing equation is recognized as the Laplace equation with Dirichlet
boundary conditions. Such a boundary value problem can be solved by the
method of separation.

fn(x, y) =
∑

gn(x) hn(y) (3.14)
gn(x) = An cosh(λnx) + Bn sinh(λnx) (3.15)
hn(y) = Cn cos(λny) + Dn sin(λny) (3.16)

The guess at fn(x, y) comes from the characteristic polynomial, refer to Ap-
pendix A for details. Due to symmetry we have Bn = Dn = 0. The boundary
conditions give the eigenvalues λn = (π

2 +nπ)/H. From this set of eigenfunctions
the solution may be found by determining the Fourier coe�cients. Inserting the
reduced guess in the boundary conditions gives

−U =
∞∑

n=0

An cosh(λnW ) cos(λny) (3.17a)

−U =
∞∑

n=0

A∗n cos(λny) (3.17b)

A∗n =
2
H

∫ H

0

−U cos(λny)dy (3.17c)

= . . . = −2U

λn
(−1)n (3.17d)

Introducing the aspect ratio κ = W/H, the overall velocity �eld may be written
as2,

u(x, y)
1
U

= 1− 2
∞∑

n=0

(−1)n

π
2 + nπ

cosh
[
(π

2 + nπ) x
H

]

cosh
[
(π

2 + nπ)κ
] cos

[
(
π

2
+ nπ)

y

H

]
. (3.18)

2Evaluating u(x, y) on a pc requires that the expression is rewritten, see Appendix A
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The �ow rate is found by integrating u(x, y) over the domain,

Q = 4WHU
[
1− 2

κ

∞∑
n=0

1
λ3

n

tanh(λnκ)
]
, (3.19)

= 4WHUQ∗. (3.20)
This dimensionless �ow rate, Fig. 3.4 is very useful in relation to pump designs.
For a given aspect ratio and no counter pressure one may �nd the �ow rate once
the EOF velocity and geometry is known.
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Figure 3.4: Relative �ow rate Q∗ of a two
wall EO pump, as a function of the aspect
ratio (W/H). Note that the graph is sym-
metric. Q = 4WHUQ∗ where W and H

are half the width and height respectively.
U is the velocity of the walls. The �ow rate
approaches 1 asymptotically Q∗ → 1, cor-
responding to full EOF.
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Figure 3.5: Contour plot of u(x, y)

made nondimensional by U and
H. The aspect ratio is W/H = 2.
The solution is two-fold symmet-
ric. From Fig. 3.4 we see that the
relative �ow rate is 80%.

Fig. 3.4 and 3.5 are generated using a Matlab program, Appendix D, Two
Moving Walls.

Other Cases
Some other cases could be considered. Three moving walls opposed by one �xed
wall, e.g., the lid. Four moving walls is trivial since the velocity �eld is uniform.

The walls could also move with di�erent velocities. In most cases this can
be solved by combining the above presented cases.

Example: E�ective EO mobility
Consider a rectangular channel with two sets of opposing walls. The
one set having the EO mobilities αA

eo and αB
eo respectively. The aspect

ratio is 3, meaning that the channel is three times wider than it is deep.
From Fig. 3.4 the nondimensional �ow rate is read to be Q∗ = 0.82. If
αA

eo > αB
eo, the e�ective EO mobility is, αeo,eff =

(
αA

eo − αB
eo

)
Q∗ + αB

eo.
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3.2.2 Solving the Poisson Equation
Pressure driven �ow
Pressure driven �ow is very important, and it is almost always present in some
part of the micro�uidic network. Just a small section without EOF, or a change
in EO mobility, will induce pressure driven �ows.

In the previous section we solved the Laplace equation with inhomogeneous
Dirichlet boundary conditions. If there is a pressure gradient, the governing
equation alters to the Poisson equation, see Fig. 3.2(a). Remembering that the
�ow was steady state, and that f(x, y) = f was a constant, the theory is that
the solution may be expanded in a set of orthogonal eigenfunctions. Since we
are dealing with homogeneous BCs it is appropriate to use sine functions.

u(x, y) =
∞∑

n=1

∞∑
m=1

Emn sin
(mπx

W

)
sin

(nπy

H

)
. (3.21)

Inserting this solution into the Poisson equation, and recalling that f = 1
µ

dp
dz ,

yields

f =
∞∑

n=1

∞∑
m=1

−Emn

[(mπ

W

)2 +
(nπ

H

)2
]
sin

(mπx

W

)
sin

(nπy

H

)
, (3.22)

Emn =
−4

WHλmn

∫ H

0

∫ W

0

f(x, y) sin
(mπx

W

)
sin

(nπy

H

)
dxdy, (3.23)

where

λmn =
(mπ

W

)2 +
(nπ

H

)2
. (3.24)

The aspect ratio is de�ned as κ = W/H. The value of Emn inserted into the
equation for u(x, y) gives

u(x, y) =
−16W 2f

π4

∞∑

k=0

∞∑

l=0

sin
[
(2k + 1)π x

W

]
sin

[
(2l + 1)π y

H

]

(2k + 1)(2l + 1) [(2k + 1)2 + (2l + 1)2κ2]
(3.25)

Q =
−64W 3Hf

π6

∞∑

k=0

∞∑

l=0

1
(2k + 1)2(2l + 1)2 [(2k + 1)2 + (2l + 1)2κ2]

(3.26)

From Eqs. 3.25 and 3.26 the relative �ow rate Q∗ and velocity pro�le u(x, y)
can be found for various aspect ratios, Fig. 3.6 and 3.7. From Eq. (3.26), we
can see that Q ∝ f . Recalling that f = 1

µ
dp
dz we see that an expression of the

following form must apply

Q =
∆p

Rhyd
, (3.27)

where Rhyd is the hydraulic resistance de�ned from Eqs. 3.26 and 3.27. This
equation is very important, and forms the basis of the equivalent circuit theory.
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Figure 3.6: Relative �ow rate Q∗ of a pres-
sure driven �ow as a function of aspect ra-
tio (W/H). Note that the graph is symmet-
ric. Q = 4WHUQ∗ where W and H are
half the width and height respectively. U

is the maximum velocity. The nondimen-
sional �ow rate Q∗ approaches Q∗ → 2/3

asymptotically for high and low aspect ra-
tios.

A derivation of the asymptotic constant from Fig. 3.6 is straightforward.
For large aspect ratios the �ow is one dimensional. The dimensionless velocity
pro�le is, u(y) = 4y(1− y) so that u( 1

2 ) = 1. Q∗ =
∫ 1

0
u(y)dy = 2

3 .
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Figure 3.7: Contour lines of the
pressure driven �ow uhyd(x, y).
Made nondimensional with the
maximum velocity. The aspect ra-
tio W/H = 2. The �ow is two-
fold symmetric with maximum in
the center and zero velocity at the
boundary.

3.2.3 Superposition
The solutions for di�erent types of EO and pressure driven �ows have been
obtained. The total �ow can be found by simply adding the two solutions due
to the linear nature of the Poisson equation. However, one should mention that
this includes the assumption that the EOF, i.e., the EO velocity, is independent
of the pressure.

u = ueo + uhyd (3.28)

The �ow rates can also be added. This linearity enables a macroscopic approach.
The solutions are expressed in terms of in�nite series. In order to estimate the
error made when truncating the series, a graphical representation of the error
can be seen on Fig. 3.8.
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3.3 Electroosmotic Flow
In this section we shall describe some important features with EOF.

3.3.1 Constant Flow Rate
Consider EOF without counter pressure, with an in�nitely thin Debye layer,
with isotropic electrical conductivity, and constant EO mobility αeo. The �ow
rate is then solely governed by the electric �eld E, EO mobility, and the area
of the cross section A. The �ux of the electric �eld in the channel is conserved
because the walls are nonconducting. Combining these statements we obtain

Q = αeo E A
E A = const

}
Q = const (3.29)

The conclusion is that the �ow rate is independent of the area of the cross
section under the given assumptions. Hence, reducing the cross section does not
reduce the �ow. In Fig. 3.9 the well-known back step is depicted. In the case of
laminar pressure driven �ow we are creeping regime Re = 0.11, so no vortices
are formed behind the step. The �ow expands without losses.

With same conditions as previously mentioned the �ow is a potential �ow,
refer Appendix F. It makes no di�erence to the streaklines whether the �ow
is coming from the right or the left. This is only the case with creeping and
potential �ow.

Figure 3.9: Streaklines in the back step geometry. The channel is 50 µm and 100 µm
in the two sections respectively. The velocity in the narrow section is 2200 µm/s. The
corresponding Reynolds number is Re = 0.11 < 5, so it can be described as a creeping
�ow without vorticity.
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In case of a tapering, the larger electric �eld and consequently larger ohmic
heating can a�ect the EO mobility which depends on temperature, refer to
Fig. 2.8. Hence, a tapering may result in an increased �ow rate. This e�ect
could potentially be used as a passive �ow control. Spatial di�erences in EO
mobilities give rise to pressure gradients. Recent experiments with this e�ect
have been made by Ross et al., 2001.

If the channel dimensions becomes so small that they are comparable with
the Debye length a ≈ λD the �ow is reduced depending on the temperature
e�ects, as previously mentioned.

Thermal e�ects in EOF are largely unexplored, but are nonetheless very
important. Many experiments reported in the literature deviate from the linear
theory because of temperature e�ects.

3.3.2 Transient Time
In applications it may be useful to estimate the time that it takes for a �ow
pro�le to develop. Assuming that the Debye layer responds instantaneously
when the external �eld is applied, the time development of the velocity pro�le
in the bulk �uid may be calculated using laminar theory with the appropriate
boundary conditions. Here we consider a wall in the xz-plane, which is immersed
in �uid and set in motion instantaneously with velocity U , parallel to the plane.
The equation of motion for the velocity u(y, t)

∂u

∂t
= ν

∂2u

∂y2
, (3.30)

where y is the coordinate perpendicular to the wall. Applying the boundary
conditions

u(0, t) = U and u(∞, t) = 0, (3.31)

we obtain the solution

u(y, t)
1
U

= 1− erf
( y√

4νt

)
. (3.32)

The dynamic response time is very dependent of the distance, but also of the
kinematic viscosity. If y√

4νt
= const the response time is, t ∝ a2

ν where a is
a characteristic length. In a capillary this length would be the radius. In a
rectangular geometry it would be the half-length of the smallest edge. The error
function can be found in most mathematical programs such as Matlab.

Example: Time Scale
Consider a wall immersed in water. At a distance of y = 40 µm the
velocity will be 80 % of the terminal velocity U at u

U = 0.8 at 0.01 s
after the wall is set in motion.
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3.4 Equivalent Circuit Model
In a system featuring both electroosmotic �ow and hydrodynamic �ow, the
average velocity in a channel may be calculated by adding the two contributions,
as we saw in the previous section. The focus is shifted from �ow pro�les u(x, y),
to �ow rates Q. It is readily seen from Eq. (3.28) that the following must apply

Qtotal = Qeo + Qhyd. (3.33)

As previously shown, the hydraulic �ow rate may be written as

Qhyd =
∆p

Rhyd
, (3.34)

where ∆p is the pressure drop across a device, and Rhyd is the hydraulic resis-
tance of the device, see Table 3.1. Electroosmotic �ow without counter pressure
has a completely �at velocity pro�le. Hence, the �ow rate is hence found as the
EO velocity times the area of the cross section

Qeo = αeoφa
A

L
, (3.35)

= αeoφa

(
Relecλelec

)−1
, (3.36)

where Relec and λelec is the electrical resistance and conductivity respectively.
L is the length of the EO section, and φa is the applied voltage across the EO
section. Qeo is the free run �ow rate in an EO pump. Combining Eqs. (3.34)
and (3.36) Qhyd = Qeo, we obtain the following expression for the electroosmotic
pressure ∆peo

∆peo = αeoφa
Rhyd,eo

Relecλelec
. (3.37)

The EO pressure is the pressure where the EOF balances the hydrodynamic
�ow Q = 0. Therefore it is the maximum pressure an EO pump can deliver, the
so-called backpressure. The corresponding pump characteristic Q-p is

Q = Qmax

(
1− ∆p

∆peo

)
, (3.38)

where Qmax is the �ow rate in case of zero counter pressure. For a combined
hydraulic and electroosmotic �ow, the �ow rate is governed by the electroos-
motic pressure ∆peo, the dynamic counter pressure ∆phyd and overall hydraulic
resistance Rhyd,total.

Q =
∆peo + ∆phyd

Rhyd,total
(3.39)

∆phyd = ∆p−∆
(ρQ2

2A

)
(3.40)

The last term in Eq. (3.40) is the velocity head. At a velocity of u ≈ 1 mm/s the
pressure head is pvel = 1

2ρu2 ≈ 5×10−4 Pa. So in most micro�uidic applications
this term may be neglected. With this simpli�cation, the combined e�ects of
electroosmosis and pressure driven �ow can be written as

Q =
∆peo −∆p

Rhyd,total
(3.41)
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Hydraulic resistance Ohmic resistance
Rhyd Relecλelec

Circular 8µL
πa4

L
πa2

Rectangular 12µL
H3(W−0.6H) for W À H L

HW

Table 3.1: Values for the hydraulic and electrical resistances for rectangular and cir-
cular cross sections, Morf, 2001.

In Table 3.1 an approximative expression for the hydraulic resistance of the
rectangular cross section is given. The expression is only a good approximation
for large aspect ratios. The analytically obtained hydraulic resistance is

Rhyd = 12µL

{
H3W − 192

π5
H4

∞∑
m=0

(2m + 1)−5 tanh
[ (2m + 1)πW

2H

]}−1

.(3.42)

Eq. (3.42) is consistent with the derived expression in Eq. (3.26). The other
one is stated here, because it is simpler. Only a few terms need to be included
because the convergence of Eq. (3.42) is very fast.

Note that the �ow rate is independent of the electrical resistivity, since
Relecλelec only depends on the geometry of the channel.

The �uidic network is transformed to an equivalent electrical network. The
ohmic and hydraulic resistance are calculated by the standard electronic ap-
proach. The �ow rate is described as a current for which Kircho�'s law applies
is equivalent to the �ow incompressibility condition (∇ ·u = 0). The voltage has
the role of pressure in this context. The best way to illustrate the application,
is by an example.

Consider the �uidic network and the corresponding electrical circuit shown
in Fig. 3.10. We wish to �nd the pump characteristic Q-p.

Flow

EO section Hydraulic section

a
j

a
j

L L

L

W

W

H

eo

eo

eo

hyd,A

hyd,Bhyd

R R

R

hyd,left

hyd,right

Equivalent Circuit

Figure 3.10: Fluidic network and the equivalent circuit. Dimensions: Leo = 20 mm,
Lhyd,A = 20 mm, Lhyd,B = 5 mm, Whyd = 100 µm, Weo = 200 µm, etch depth
H = 10 µm, φa = 1000 V, αeo = 0.06 mm2(V s)−1, µ = 1.0× 10−3 kg (m s)−1.
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Example: Micro�uidic system
The procedure is to start by �nding the hydraulic resistances. The aspect
ratios W/H in the channels are high, they are 10 and 20 respectively,
so we can use the approximation given in Table 3.1

Rhyd =
12µL

H3(W − 0.6H)
. (3.43)

Inserting the values from Fig. 3.10 we obtain

Rhyd,eo = 1.24× 1015 kg (m4 s)−1, (3.44)
Rhyd,right = Rhyd,left = 2.87× 1015 kg (m4 s)−1. (3.45)

Note that the e�ective length of the right and left branch is (20 +
2.5) mm = 22.5 mm. The total hydraulic resistance is

Rtotal = Rhyd,eo +
1
2
Rhyd,left, (3.46)

= 2.68× 1015 kg (m4 s)−1. (3.47)

Once the hydraulic resistances are known the EO pressure or backpres-
sure can be found using Eq. (3.37)

∆peo = αeoφa
Rhyd,eo

Relecλelec
(3.48)

= 7.43× 103 Pa. (3.49)

Finally Eq. (3.41) gives the Q-p characteristic of the �uidic system

Q =
∆peo −∆p

Rhyd,total
(3.50)

= 2.77× 10−12 m3

s

(
1− ∆p

7.43× 103 Pa

)
. (3.51)

Setting ∆p = 0 gives the max �ow rate.

Calculations of this type may be done in a worksheet such as Excel, refer
to Appendix B for more examples.

3.5 Summary
The elementary �ow analysis chapter is very important in relation to modelling
of micro�uidic systems. Firstly, �ows in two di�erent cross section geometries
were analyzed. (1) In the case of circular geometry, the EOF with �nite Debye
layer thickness was investigated. It was found that the EO �ow rate for thin
Debye layers Qeo ∝ a2 whereas for pressure driven �ow Qhyd ∝ a4. In the case
of Debye layer overlap Qeo ∝ a4. (2) For rectangular cross sections, the velocity
distributions and �ow rate relations for di�erent aspect ratios were found. It
was also shown how the solutions could be superposed.

The �ndings were then transformed to be used in the so-called equivalent
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circuit theory. This theory uses a system design approach Q-p rather than a
detailed analysis u(x, y). The essential concepts: Max �ow rate, backpressure
and hydraulic resistance were introduced.

An example of how the theory can be applied was given. The theory is highly
useful and is used throughout the report.



Chapter 4

Computational Fluid
Dynamics

Computational �uid dynamics (CFD) allows the user to simulate local values of
velocity, pressure, electric �eld, mass fraction, etc. In theory, this is the ultimate
design tool, but in practice there are certain factors that limit its accuracy and
usefulness. Some of the disadvantages are that it is very time consuming, and
that often many simpli�cations have to be made. However, there are also many
advantages associated with CFD. It gives a visual understanding of the �uid
dynamics and it can assist in the understanding of the physics. In a complex
geometry, it is often the only way of analyzing the �ow.

Throughout this thesis I have worked with a combination of equivalent cir-
cuit models and CFD. I found that this combination gave the optimal results.
Comparing the circuit models with CFD calculations is a good way of verify-
ing the calculations when no physical experiments are available. It cannot be
stressed enough, that all CFD calculations at some point should be compared
favorably with some model before they can be trusted. In other words one should
always be critical towards the results.

In this chapter a brief introduction to CFD will be given followed by more
speci�c information about the CFD-package Coventor. The possibilities and
limitations of this package will be discussed. Two simple test cases are presented.

4.1 Modelling with CFD
Using a CFD program requires physical and mathematical insight. The old
saying: �Garbage in, garbage out�, is as true as ever before. Even the program
itself may contain a considerable amount of errors. Furthermore, special care
should be taken when traditional techniques are applied to new physical areas
such as micro�uidics.

A CFD package typically consists of a pre-processor, a solver, and a post-
processor. These di�erent elements will now be introduced.

39
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4.1.1 The Pre-processor
The Pre-processor is the interface between the user and the solver. Several
factors must be considered before the solver can be started.

• Geometry
The de�nition of the computational domain. The minimum area that needs
to be simulated. Simpli�cation of the geometry using symmetry, periodic-
ity, etc. can save a lot of computational time.

• Meshing
It is very important to generate an e�cient grid. It requires a considerable
amount of insight of the problem at hand to identify the critical regions,
etc. A solution should be independent of the mesh.

• Model
Selection of physical, electrical and chemical processes that need to be
modelled. Here the simpli�cation process plays an important part in mak-
ing good CFD. Unnecessary complexity tends to make the analysis more
inaccurate and di�cult.

• Fluid parameters
Parameters such as EO mobility, di�usion constant, viscosity, etc. need to
be speci�ed.

• Boundary conditions (BCs)
The boundary conditions are speci�ed on the surfaces that encapsulate the
computational domain. Typical boundary conditions are velocity, pressure,
wall e�ects (EOF), voltage, etc. A more detailed overview of the BCs is
given in the following sections.

• Initial conditions (ICs)
Examples of IC's could be speci�cation of a sample plug (concentration),
a velocity �eld, an electric �eld, etc.

4.1.2 Solver, Finite Element Method (FEM)
The governing equations can be solved by using the FEM method. The FEM
method makes use of simple piecewise functions, e.g., linear or quadratic, valid
on elements to describe the local variations of unknown �ow variables φ. The
governing equation is precisely satis�ed by the exact solution φ. If the piecewise
approximating solution for φ is substituted into the equation, it will not hold
exactly, and a residual is de�ned to measure the error. These residuals are then
minimized by multiplying them with a set of weighting functions and integrating
the so-called Galerkins method, Versteeg and Malalasekera.

The actual numerical solver is a sparse matrix solver. Gaussian elimination is
far too time consuming for large matrices. The calculation time is proportional
to N3 where N is the dimension of the matrix. One simple type of sparse matrix
solver is the Tri-diagonal matrix algorithm (TDMA), which is a very e�cient
method for solving tri-diagonal matrices. However, practical matrices are not
tri-diagonal. In this case, the TDMA is applied iteratively after rewriting the
equations, or a more implicit method is used.
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4.1.3 Solver, Finite Volume Method (FVM)
The Finite Volume Method is the most widely used CFD technique. It is based
on the concept of transport equations. The �uid domain is divided into �nite
volumes, and the governing equations are integrated over these volumes. The
integrated equation is approximated with various �nite di�erence methods such
as central di�erence, upwind scheme, etc. The numerical schemes convert the
integral equations into a system of algebraic equations. These equations are then
solved by an iterative method.

Rate of change
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f

Net flux of
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f

Net flux of

due to
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Figure 4.1: Description of the transport equation used in the (FVM).

Coventor 2001.3 can use both FEM and FVM. However FVM is much
faster for meshes with many cells (> 1000). The speci�cs are discussed later.

4.1.4 Post-processing
The simulation itself is worthless, unless we can extract the data in a meaningful
way. Some commonly used visualization techniques are,

• Vector �eld
Plots the velocity �eld with vectors in di�erent colors and lengths depend-
ing on the velocity.

• Streamlines
A streamline is a tangent to the velocity �eld at a �xed time.

• Streaklines
A streakline is also a tangent to the velocity �eld, but not at a �xed time.
The streaklines follow the particles, e.g., injection of dye into a �ow. In a
steady state �ow, the stream- and streaklines are identical.

• Volume visualization
Scalar variables such as pressure and electric potential may be visualized
using colors.

4.2 The Coventor Package
The Coventor package is speci�cally designed for microsystems. It was ini-
tially developed for MicroElectroMechanicalSystem (MEMS) applications. The
program uses microns as its base length. Hence, special care should be taken
when specifying and extracting values in non SI-units. Coventor has no tur-
bulence module, which is unnecessary in micro�uidics. Another characteristic
feature is that the mesh generation emulates the manufacturing process.

The Coventor package contains many di�erent types of modules. For the
problem at hand the micro�uidic solvers are used. Two solvers are particularly
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interesting from the pumping point of view: MemCFD and NetFlow1. The Mem-
CFD is a quite simple module that covers the most general CFD tasks: steady,
transient, compressible and incompressible laminar �ows. Standard boundary
conditions such as pressure, velocity and symmetry can be applied. This solver
is used for micromechanical devices such as pumps and valves. Hence the name
MemCFD.

The NetFlow module covers pressure, di�usion, electrophoresis and elec-
troosmosis. Chemical transport of up to four di�erent species can be modelled.
These are exactly the processes expected to be involved in an electroosmotic
pump. The pre-processor in NetFlow consists of a Layout builder, a Foundry
and a Solid Model. The total structure of the NetFlow module is given below

• Layout
2D layouts of masks can be made. The masks are used for de�ning an area
in which a foundry process will take place.

• Foundry
Fabrication processes are speci�ed to the di�erent masks. For example, a
mask may be deposited giving the substrate, and then etched with another
mask giving the channel system. See Fig. 4.2 for an example.

Figure 4.2: Screen shot from the foundry menu in Coventor. Three processes/steps
are de�ned. Step 0 deposits (stacked) the substrate made in silicon with the GND
mask and 50 µm thick. Step 1 etches a channel system 10 µm deep with the default
mask. The GND and default mask were made in the layout builder. Finally, the etched
channel system is planar �lled with water. It is this layer that forms the computational
domain.

• Solid Model
The Solid model module generates a 3D model based on the layout and
the processes de�ned in the foundry.

• Meshing
The meshing can be done semi-automatically in Coventor. The method
is very fast, but at the expense of less control over the mesh generation.
The program can handle meshes with up to 3 × 105 cells on a PC with
512 Mb ram, but in principle there should be no upper limit.

• Analysis
Labelling of patches can be very slow in the analysis tool. On a Pentium III
windows NT 4.0 system, the handling of the structures becomes intolerable
slow for mesh sizes above 2× 105 elements.

• Solver setup
It is possible to choose between the FVM and the FEM solver. The FVM

1The solver SwitchSim can be used to simulate cyclic voltage BCs.
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solver is much faster for large problems. The requirements for convergence
(tolerance) and boundary conditions are also speci�ed here.

The idea behind the layout and foundry steps is that the user will by guided to
making realistic micro�uidic designs. The possible designs have a two-dimensional
character, i.e., the bending pipe shown in Fig. 1 is not a possible design. The
mesh can then be generated in a external program such as I-deas and subse-
quently imported.

4.2.1 Boundary Conditions
In Coventor the surface boundary conditions are applied to patches. A patch
is a surface section on the model, e.g., a cube has six patches. Before undertaking
a large simulation project it is crucial to have a simulation logbook. The most
logical settings can be forgotten after a week or a month. The logbook should
contain information about the mesh generation, boundary conditions, etc., see
Appendix C. The boundary conditions are very important and largely govern the
solutions. Here I have described the boundary conditions used in the simulations.

• Pressure
Speci�es the pressure on a patch.

• Voltage
Speci�es the voltage on a patch.

• Inlet/outlet (default)
Speci�es zero velocity gradients in the normal direction of the patch. Hence
one must be careful not to place the inlet/outlet in a nonuniform, region
which would give spurious results. Furthermore, if the outlet condition is
combined with the pressure condition the problem is under-speci�ed2.

• Symmetry
Symmetry is invoked in order to save computational time, e.g., two sym-
metry planes can reduce the number of cells by a factor 4. The symmetry
BC assumes that the gradients perpendicular to the symmetry plane or
line are zero.

• Wall
The wall BC simply sets the velocity at the patch to zero.

• Velocity
Speci�cation of a velocity on a patch.

• EO mobility
In all the simulations the Debye layer is assumed in�nitely thin. This is
valid because a typical Debye length is 10 nm, and the considered dimen-
sions is of the order 10 µm, a factor 103 larger. However, if the Debye
length had been comparable with pump dimensions some corrected veloc-
ity boundary conditions could have been applied, Dutta and Beskok.

2If no boundary condition is speci�ed, Coventor sets the patch as an inlet/outlet with
zero pressure. This prevents under-speci�cation of the numerical problem.
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Coventor solves the Laplace equation using the voltage BCs and hence
�nds the potential distribution. The electric �eld is found as minus the
gradient of the potential. Once the electric �eld is known at the boundaries,
the �ow velocity is set by multiplying with the value for the electroosmotic
mobility. The approach is correct for a dielectric medium with conducting
walls, or a conducting medium with nonconducting walls.

4.3 Test Cases
The Coventor package is only a few years old. The program is very compre-
hensive with more than 1600 pages in the manual, which is not enough. In many
cases Coventor is like a black box. The NetFlow module uses a solver from
another CFD program called Fluent, which is well tested. However, adding new
types of boundary conditions, etc. to the code is very complex process, and er-
rors are bound to be made. For example, I spent two weeks �nding out why the
EO boundary condition did not work consistently. It turned out that for simple
geometries, the program solved the Laplace equation so fast that it could not
initiate the FVM solver before it was �nished. Hence, the program returned the
zero values for everything. After contacting the support the problem was solved
with a software patch. Questions to and answers from the Coventor support
is given in Appendix E. The Coventor support has been very helpful and it
is my belief that the upcoming version of Coventor will be much better than
the previous one, 2001.3.

4.3.1 Steady Laminar Flow in a Circular Capillary
The solution to the steady laminar �ow in circular capillary can be compared
to the analytical solution. The circular geometry of the problem suggests two
dimensional axi-symmetric coordinates are being utilized. The work �ow in
Coventor is described below.

• Layout
A ground mask is generated in which the channel (a rectangle) is to be
etched in. The etch mask 400×50 µm2 is also generated. The x-axis is the
symmetry axis. Coventor requires that the lower part of the etch mask
must be aligned with the x-axis (y = 0).

• Foundry
The ground mask is stack deposited in an arbitrary thickness. The layer
is called the substrate. Then the substrate is etched using the etch mask.
Finally, the water is planar deposited to a depth of 0 µm. This proce-
dure generates a water layer, which is the computational domain, refer to
Fig. 4.2.

• Solid Model
Builds the 3D model. Only the water layer is important.

• Meshing
The model is 3D, but we are only considering the xy-plane. Hence the
z-direction should only contain 1 cell. In this example, the rectangular
cross section suggest a brick meshing. The size of the grid cells are 50 ×
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2.5× µm2. The mesh features a high spatial resolution in the y-direction
(perpendicular to the �ow direction), where large velocity gradients are
expected.

• Analysis
The three patches: inlet, outlet and wall are marked and named. Settings
for water properties, patches, cell number 160, etc., are checked.

• Solver setup
The inlet pressure is set to 2 × 10−6 MPa in Coventor units or 2 Pa.
No boundary condition is speci�ed for the symmetry axis (x-axis). The
analysis tool is set to FVMtool (Finite Volume Method tool).

• Results
The analytical result is

v(r) = −r2 − a2

4µ

dp

dx
, (4.1)

v(0) = 3064 µm/s, (4.2)

where a = 50 µm, ∆p = 2 Pa, ∆x = 400 µm, µ = 1.0× 10−3 kg (m s)−1.
The program simulates the results in about 10 seconds. The maximum
velocity is computed to be 3060 µm/s. The result deviates with only about
0.1%, which is very good, so the test case is successful.

4.3.2 Steady Laminar Flow in a Rectangular Channel
In this test case we wish to analyze the grid dependency. The �ow is driven by
EO at two of the four walls, as described in Fig. 3.3 and Sec. 3.2.1. Furthermore,
a counter pressure is applied, giving the Q-p characteristic.

• Layout
The channel dimensions are L×W ×D = 6000× 600× 200 µm3.

• Foundry
Standard approach, with substrate, etch mask and planar �lling with wa-
ter.

• Solid Model
Builds the 3D model.

• Meshing
Di�erent mesh resolutions are applied with biasing. Only one cell in the
longitudinal direction is needed. The biasing focuses the grid density in
the area with large velocity gradients.

• Analysis
Six patches have to be assigned with di�erent names. Inlet, outlet, top
wall, bottom wall, left EO wall and right EO wall.

• Solver setup
Pressures and voltages are speci�ed at the inlet and outlet. The EO mo-
bility αeo = 6.0 × 104 µm2 (V s)−1 is speci�ed on the EO walls. The
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tolerance is set to 10−4 which means that when the solution after an iter-
ation is changed below the tolerance, the simulation is stopped/converged.
It is good practice to test the in�uence of the tolerance on the solution.
I worked with the problem for some time, because the simulations with
symmetry BC required a lower tolerance setting than those without sym-
metry. Empirically I found that simulations with symmetry BC require a
tolerance setting of 10−6. This is perhaps because the symmetry BC is a
Neumann condition, and the wall condition is a Dirichlet condition. Prob-
lems with Neumann BCs are typically more di�cult to solve numerically.

• Results
The analytical solution is found by superposing two solutions: the elec-
troosmotic driven �ow and the pressure driven �ow. The two types of �ow
are discussed in Sec. 3.2.1 and 3.2.2. The comparison between analyti-
cal results and CFD can be seen in Fig. 4.3. There is a high degree of
agreement between the simulated and theoretical results. The �ne mesh
(40 × 40) is slightly closer to the theoretical line. Only two meshes have
been analyzed for this geometry. A similar grid dependency analysis can
be found in Appendix I.
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Figure 4.3: Q-p diagrams calculated by Coventor 2001.3 with two di�erent meshes.
The tolerance setting is 10−4 in both cases. The applied potential is φa = 1000 V and
the EO mobility αeo = 0.06 mm2 (V s)−1.

4.3.3 Di�usion
The NetFlow module can simulate a carrier liquid with up to four species. Here
we will only need one additional species. Consider an in�nitely long rectangular
channel. Two miscible liquids each occupy half of the cross section, Fig. 4.4. From
the analytical analysis we can calculate the time evolution of the concentration
pro�le, and compare it with the solution obtained by Coventor, Table 4.1.
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Time Coventor Analytical Deviation
t/to c/co c/co

0 1 1
0.044 0.90 0.91 1%
0.072 0.80 0.81 1%
0.11 0.70 0.71 1%
0.18 0.60 0.60 0%
0.24 0.55 0.55 0%

Table 4.1: Concentration at the right boundary as a function of time. The character-
istic di�usion time is to = W 2/Dmass. There is a high degree of agreement between the
simulation and the semi-analytical results. Coventor slightly overshoots the values
in the beginning. Perhaps because of the large gradients in the initial state.

Liquid A Liquid B

H

W

x

y

Figure 4.4: The computational domain with the
species volume conditions. The time step in the sim-
ulation was dt = 5.7 × 10−4to, and the mesh was
20× 20. The half-width and height is W and H re-
spectively.

In the case of immiscible liquids a free surface module such as the volume of
�uid (VOF) method, is needed. Coventor 2001.3 does not support this option
in the NetFlow module. One can try to simulate the condition by setting the
di�usion constant to zero. The e�ective di�usion is not zero however, because
of the numerical di�usion. Furthermore, e�ects such as surface tension would
not be included in the simulation.
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Chapter 5

Micropump Overview

In this chapter we shall start by giving a brief overview of mechanical pumps.
Then it will be discussed how to characterize an electroosmotic pump and �nally
an overview of existing EO pumps will be given.

5.1 Mechanical Pumps
This section is dedicated to giving an overview of some of the existing mechan-
ical pumps. The overview consist of a short list of the traditional macroscopic
external pumps used in laboratories, and an example of a mechanical microp-
ump.

• External peristaltic pumps work in the same way as milking a cow.
Tubes in the pump are periodically compressed and thereby the liquid
is squeezed through the tube. This method has a tendency to generate
a pulsating �ow. These types of pumps o�ers high pressure of the order
1-5 bar and �ow rates that are more than su�cient for micro�uidic ap-
plications. They are therefore common in most laboratories working with
micro�uidics.

• External pressurized �ow, such as a gas canister, is suitable and inex-
pensive, but accurate adjustment of constant �ow rates might be di�cult,
Morf et al., 2001.

• Integrated mechanical micropumps utilizing a membrane can be op-
erated by di�erent methods, such as piezoelectric, electromagnetic, pneu-
matic and many more. The advantage is that they can pump most liquids
in the range 1−300 µL min−1. However, this technique engenders a pulsat-
ing �ow as well. Many of the mechanical micropumps only have a limited
lifespan, due to material breakdown, Gravesen, 1993.

The external macroscopic pumps are not interesting with respect to µTAS,
but are included here to demonstrate the alternative to the integrated mi-
cropumps. The mechanical micropumps and other micromechanical devices are
typically developed in the research area called MicroElectroMechanicalSystems
(MEMS).

49
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Example: An Electrostatically Actuated Micropump
The pump consists of two electrodes, a small chamber, and two passive
cantilever valves, see Fig. 5.1. Using an actuation frequency of 1kHz, a
pumping rate of 300 µL min−1 has been achieved. At higher frequencies,
the �ow is reversed, and for even higher ones, it is stopped, Koch.

Figure 5.1: An electrostatically actuated
micropump. Note the two small cantilever
valves, which will open and close period-
ically with the actuation frequency when
this is below 1 kHz, Koch.

5.2 Electroosmotic Pumps
Electroosmotic �ow pumps have no moving parts. The pumping mechanism is
generated by an external electric �eld, applied on an electric double layer (EDL),
Fig. 1.2.

If the electrodes are positioned in each end of the channel, and no external
tubing or pressures are applied, the �ow pro�le will be very �at - plug �ow. This
type of �ow is speci�cally suitable for capillary electrophoresis (CE), because
the hydrodynamic dispersion is minimal.

The pumps considered here are intended to be used as traditional pumps,
i.e., as pressure sources. In this section we will go through some of the design
rules and the subsequent assessment of the pump.

Q-p characteristics
In conventional pump design, a pump is characterized by a diagram showing
the �ow rate Q versus the pressure p.

If the adverse pressure is high, the �ow rate will be low and vice versa. The
pump characteristics are important when designing a �uidic network. The pump
characteristics consisting of corresponding values of �ow rate and pressure can
be measured in a setup as shown in Fig. 5.2.

EOF Pump

Pressure
transducer

Flow
measurement

Electrode

Electrode

Figure 5.2: Pump setup for mea-
suring pump characteristics. Si-
multaneous measurements of �ow
rate and backpressure is needed in
order to describe the pump char-
acteristic.
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Manufacturing
A very important issue in micro�uidics is the manufacturing. To a large extent,
the design is governed by the various etching techniques available. This thesis
does not deal with fabrication in detail, however, the manufacturing processes
have been kept in mind at all times. Typical dimensions in a microchannel are
1− 300 µm.

Small structures 1−50 µm are usually made in silicon, glass, silica or quartz
by etching techniques. The etch pro�les obtained with traditional wet etching
techniques are either round or slightly tilted, meaning that a narrow and deep
etch is not possible.

Only recently, using Inductively coupled plasma (ICP), the deep and narrow
etch has been possible, working with aspect ratios up to 50, Fig. 5.3.

Figure 5.3: Scanning Electron Microscope
picture showing 30 × 1.5 µm silicon walls
(from STSystems). The system can etch
10 µm min−1.

Larger channels of the order 300 µm are typically produced in polymers such
as Acrylic polymer PMMA. Polymers are promising with respect to bulk pro-
duction and fast prototyping. One of the fabrication methods is laser ablation,
which is a technique where the laser is used to evaporate the material. The
depth pro�le in this case is Gaussian. New types of laser ablation techniques
can make channels as narrow as 1 µm.

The one thing all the fabrication techniques have in common, is that they are
constantly improving. The fabrication data given here may very well be obsolete
within the next 10 years.

E�ciency
E�ciency is an issue which is less in important in the laboratory. However,
when the EO pumps are going to be applied to portable devices, the power
consumption may be of greater interest. High voltages are also a problem. The
thermodynamic e�ciency is de�ned as the useful pressure work over total power
consumption.

η =
∆p Q

U2/Relec
(5.1)

A high e�ciency is obtained by using a liquid with low conductivity, e.g., the
conductivity for deionized water (DI) is of the order λelec = 10−3 S/m, Chen et
al., 2000.
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Electrodes
Traditionally, metal electrodes, such as Pt or Au, are used in electroosmotic
pumping. This means that electrolysis can take place near the electrodes gener-
ating bubbles. This may interfere with the electrical current and the �ow due to
clogging. Another issue is that the chemical reactions at the electrodes changes
the pH-level and thereby the EO mobility. At the positive electrode (anode) the
pH will tend to become low.

Anode: reduced species → oxidized species +ne−

Cathode: oxidized species +ne− → reduced species

If the bulk solution is a bu�er, this will stabilize the pH until the bu�er is
depleted. Electrodes are therefore usually placed in an external reservoir.

Another important issue is the lifespan of the electrodes. A high electric
current will quickly erode and deposit material at the electrodes. Normally it
is a good idea to use a low conductivity bu�er to reduce the electrical current,
and thereby increase the operation time. However, some experiments with living
cells require a saline solution.

Temperature
The temperature should not be too high, in order to avoid bubble formation
and possible damage to biological samples. An estimate of the temperature can
be done using some approximations regarding geometry and electrical and ther-
mal conductivities. For a nonuniform section it may be di�cult to estimate the
temperature. Many of the governing parameters in EOF are highly temperature
dependent, e.g., the viscosity and the dielectric constant. In the design process
these values are often the problem, since the temperature in the capillary is
unknown. Very few experiments have been done in this area. One of the �rst
temperature measurements in microchannels was made by measuring the �u-
orescence intensity through a microscope with a digital video camera. As the
temperature rises, so does the �uorescence intensity, Ross et al., 2001.

Dispersion
For pumps in a micro�uidic system, dispersion may play a role. The amount of
dispersion can be estimated by making a time dependent simulation of a sample
plug �owing through the pump, and comparing the width before and after the
pump.

Dead volume
The peripheral volume of the pump, or dead volume such as reservoirs, can
increase the response time of the pump and complicate the �ushing of the device.
A large system volume can also increase the sample volume requirement, so a
compact design is desirable.
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5.3 Electroosmotic Pump Overview
5.3.1 The Cascade EO Pump
The aim is pumps capable of high pressures and �ow rates. The high �ow rates
can be obtained by positioning several regular electroosmotic pumps parallel to
each other - in a cascade, Fig. 5.4. In this way the �ow rate is increased by the
number of channels, without increasing the voltage. If the pumps are positioned,
in series the pressure can be accumulated, Fig. 5.5.

EOF Pressure

a
j Figure 5.4: Cascade EO pump with six

channels. Due to the anode position this
pump is no more e�ective with respect to
pressure and �ow rate than if there had
been only one channel. However the six
channel pump can be operated with high
voltages due to the low current in each
channel and hence the low heating, Morf
et al., 2001.

Inlet Outlet

+ Gel Electrode (Salt bridge)

- Gel Electrode (Salt bridge)

Wide gap x 1

50 m x 20 mm m

Narrow gaps x 10

5 m x 20 mm m

Figure 5.5: Low-Voltage Cas-
cade EO pump with three steps.
The pressure can be increased by
simply increasing the number of
steps. EOF generates large pres-
sures in narrow channels, refer to
Eq. (3.5b). By letting the EOF
pass through many narrow chan-
nels and through one wide channel
with reversed electric �eld a net
�ow is generated without accumu-
lation of voltage, Takamura et al.,
2001.

One disadvantage of the cascade pump is that it often requires a lot of
electrodes. The Low-Voltage Cascade pump is very interesting because it o�ers
the possibility of high pressures at low voltages. High voltages are impractical
in portable devices and can be dangerous to work with. Both of the cascade
pumps are thoroughly analyzed in Chap. 6.

5.3.2 The Shallow EO Pump
The characteristic feature of this type of pump is the planar nature of its design.
A design by Chen et al. consists of a short, wide and extremely shallow channel.
The electrodes are embedded in two reservoirs. This design combines a high
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pressure and with a high �ow rate. Experiments have been done by Chen et al.
at Stanford Micro�uidics Lab, Fig. 5.6.

Figure 5.6: Schematic of the pla-
nar EO pump produced at Stan-
ford Micro�uidics Lab. The EO
section is 4 cm wide, 1 mm long
and 0.9−1 µm deep. The potential
is applied between the two reser-
voirs. The �ow enters in one of
the reservoirs perpendicular to the
chip and exits through the other.
The pump has a backpressure ca-
pacity of almost p = 1.5 bar in the
range Q = 1− 10 µL (min)−1.

The parallel plates were separated by some plateaus/ribs, which cannot be
seen on Fig. 5.6. The plateaus should give the design structural stability, but
after the bonding the plates gradually collapsed over a period of two months.
Hence, the dimensions of the cross section are unknown. A picture of the actual
pump setup can be seen in Fig. 5.7.

Parameters such as the EO mobility and full geometry are missing, which
makes it impossible to simulate the pump characteristic accurately. However,
my estimate calculations show that the �ow rate should be much larger than the
experimental values. This is also an indication of the plate collapse. The design
cannot be directly integrated into a system. This problem will be addressed in
Sec 7.2, where the the design is further developed.

Figure 5.7: Picture of the planar
EO pump setup produced at Stan-
ford Micro�uidics Lab. The elec-
trodes, tube �ttings and reservoir
are clearly shown. The actual mi-
cropump lies in between the two
electrodes and is di�cult to see.
The picture illustrates how large
the lab equipment is compared to
the microchannels.

5.3.3 The Porous EO Pump
The electroosmotic velocity is independent of the capillary radius, as long as
the in�nitely thin Debye layer approximation is valid. In pressure driven �ow,
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Poiseuille �ow - the velocities are proportional to the radius squared u ∝ a2.
Hence, electroosmotic pumping is much more e�cient in small capillaries. One
way of utilizing this e�ect is to pack a larger capillary with tiny nonporous
particles. The particles are retained with a micro �lter, a so-called frit1, in
each end, Fig. 5.8. The frit blocks the particles, but allows the liquid to pass
with some hydraulic resistance. The packing e�ectively increases the surface-to-
volume ratio within the capillary, allowing the generation of very high pressures.

Filter

Packed Capillary

Figure 5.8: Porous pumping by use of non-
porous particles and micro�lters, e.g., frit.
The potential is applied along the packed
capillary. Pressure in excess of 20 bar have
been obtained, Zeng et al., 2001.

From a transport point of view, this type of pump will have a very large
mixing e�ect due to the irregularity of the channels. Due to its physical prop-
erties, it cannot be integrated directly into a chip with the currently available
fabrication techniques. With respect to pressure capacity, it is very promising.
One of the challenges is to fabricate a frit with low hydraulic resistance.

Example: Porous pump, Zeng
Dimensions: diameter 530 µm, length 5.4 cm and packed with 3.5 µm
nonporous silica particles.
Solution: Deionized water is used, but due to contact with the atmo-
sphere an equilibrium with carbon dioxide is established, reducing pH
to 5.7. The concentration of carbonic acid is estimated to c = 7.5 µM,
giving a Debye length of λD = 0.11 µm, which is quite large, but still
smaller than the pore radius.
Electric �eld: 2 kV/54 mm = 37 V/mm. This type of pump can create
very large pressures (max. backpressure p = 23.5 bar). For zero back
pressure the max �ow rate is Q = 0.08 µL/s. The driving �eld is very
large, so the bulk �uid must have a low conductivity in order to avoid
excessive ohmic heating.

5.4 Electrodes
A very important issue in the practical realization of electroosmotic pumps is
the electrodes. Some types of electrode arrangements are presented below.

5.4.1 Metal Electrodes
Rafael Taboryski from the Danish company Sophion Bioscience A/S pointed
out that one of the practical problems with EO pumps is the lifespan of the
electrodes. In one of their EO pumps the lifespan is as short as �ve minutes.

1The fused or partially fused materials used in making glass.
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Example: Electrode lifespan
Using a biobu�er 150 mM NaCl allows for transportation of living cells.
At lower or higher concentrations the cells are destroyed due to di�usion
of salts. The reactions at the electrodes are

Ag+ + e− → Ag, (5.2)
Ag + Cl− → AgCl + e−. (5.3)

The rate at which the anode disappears is

I = z v F
dm
dt = M v

}
dm

dt
= M

I

z F
(5.4)

where v is the reaction velocity, MAg = 107.9 g mol−1 the molar mass of
the silver electrode, I the electric current, z = 1 the number of charges
exchanged per reaction, and �nally F is the Faraday constant. Let us
consider a �ctive example and assume that the electric current is I =
1 mA and that the electrodes weigh m = 1 g. Then the lifespan t =
m

(
dm
dt

)−1 = 15 min.

5.4.2 Gel Electrodes
Another type of electrodes is the so-called gel electrodes. The metal electrode
is connected to an electrical conducting gel, which is in contact with the �uid,
Takamura et al. 2001. Hence, the gel acts as a salt-bridge and a pressure seal
and avoids bubble formation in the �uid region. In the Takamura case there
were some problems with the gel electrodes, such as leaks and high resistance.

5.4.3 Indirect Electrodes
As an alternative, the electrodes ions can be introduced through side channels as
shown in Fig. 5.9. The aim is to allow ions to move, while the liquid is retained,
i.e., a salt-bridge.

In the process of bonding the lid to the substrate, one leaves a small gap on
purpose, see Fig. 5.9. An extremely shallow channel is therefore generated, al-
lowing ions to travel across the gap from the side channels to the main channel,
Fig. 5.10. The EOF in this junction is restricted because the very small dimen-
sions cause the Debye layers to overlap. Recalling Fig. 2.2, an overlap will occur
if the channel dimension is smaller than a < 0.1 λD. Hence, this type of pump
will only work for low bu�er concentrations/thick Debye layers, depending on
the gap depth D.



CHAPTER 5. MICROPUMP OVERVIEW 57

FLOW

Salt-bridge
junctions

Ion
flux

Ion
flux

EOF
region

Top view

b

Ions

Gap

Field-free
region

Reservoirs Reservoirs

Figure 5.9: Indirect electroosmotic pumping. The potential is applied in two external
reservoirs. In this way the electrodes are kept away from the channel. The gap width,
b ≈ 3− 9 µm. More details of the gap is shown in Fig. 5.10.
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Figure 5.10: Illustration of the
shallow slit between the substrate
and the lid. The ions move over
the wall and through the slit be-
tween the substrate and the lid.
The gap depth is D ≈ 100 nm. The
setup only works if the Debye lay-
ers overlap.

In this manner, it is possible to transfer ions with only a small portion of
bulk �uid. However, if the gap is too deep, there may be considerable liquid �ow
across the junction. In the worst case all the �ow goes through the junction,
and the pump is useless.

The indirect electrode arrangement is a very promising technique, because
it has the same advantages as gel electrodes, but is much simpler to fabricate
once the technique is available. Experiments with indirect EOF have been done
in silicon by Guijt et al., 2001 and Alarie et al. 2001.
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Chapter 6

Models and Simulations

At this point in the thesis, we should possess the basic tools to analyze an
EO pump. In the micropump overview chapter, di�erent types of pumps were
introduced. The idea is to select two existing EO pumps and apply the concepts
from the previous chapters.

In the following sections we shall therefore model and simulate two di�erent
types of pumps - cascade pumps - using CFD. Both pumps have been introduced
in the overview chapter.

The �rst pump is a set of pumps connected parallel to each other - The
Parallel Cascade Pump. Design from Morf et al., 2001.

The second pump consists of a set of pumps connected in series - The Low-
Voltage Cascade Pump. Design from Takamura et al., 2001.

6.1 Parallel Cascade Pump, Morf et al.
Based on the experimental and theoretical work by Morf et al., we shall inves-
tigate a pump with six separate channels of di�erent lengths, Fig. 6.1(a). The
geometry of the pump is very simple, and a analytical approach is feasible.

The �rst step is to �nd the equivalent electrical circuit, Fig. 6.1(b). The
geometrical data are inserted in a worksheet, and the hydraulic and electrical
resistance of the segments are found using Table. 3.1. The total resistances are
then calculated analytically by use of circuit theory. If the system had been
more complex, an electronic analysis program such as Spice could have been
used. The pump characteristic can then be found using Eq. (3.39).

The calculations by Morf et al. are based on a whole system consisting of
pump, tubes, mixer, etc. We are only considering the pump part.
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Figure 6.1: (a) Channels 1-6 are the inlets, and the far most right tab is the outlet.
The �gure has correct aspect ratios. (b) This is the electrical circuit equivalent to the
�uidic network. The resistances can be calculated from the �uidic network, Morf et
al., 2001.

It should not be necessary to simulate the parallel cascade pump using CFD.
However, we want to build con�dence in using CFD, so we apply it to a problem
where we know the solution in advance. This serves as a test case for the use of
CFD in micro�uidic devices.

In the simulations the velocities are varying from 0.4 − 2.7 mm/s, giving
a maximum pressure di�erence between static and dynamic pressure of pvel =
1
2ρu2 = 4 × 10−3 Pa. Pressure losses due to the bending of the channels are
thus negligible1. The equivalent circuit theory assumes that the channels are
in�nitely thin - lines. This means that the regions within and near the junctions
are approximated with a uniform �ow. The error by making this assumption is
very small in the present case, because the channels are very long compared to
their width.

6.1.1 Meshing
In order to make accurate simulations a good mesh is imperative. A good mesh
is more dense in regions of large spatial and/or temporal variations. Since the
present simulation is time independent, we will only focus on the spatial reso-
lution of the �ow.

A 2D simulation is not possible, since the �ow resistance is governed by the
3D geometry. The problem is two-fold symmetric, which gives a reduction in the
number of cells by a factor 4. The length-to-width ratios of the channels are very
large, 8× 104 µm/300 µm ' 300. Insisting on cubic 3D cells, say 5× 5× 5 µm3

would in the symmetric case give a mesh with 1.3× 107 cells. This quite coarse
mesh would e�ectively be impossible to simulate on a normal computer2. The
number of cells can be reduced by using cells with large aspect ratios. Adjacent
cells must be of comparable sizes, so the mesh needs to be biased (graded) in
the direction of the channel, Fig. 6.2.

1In hydraulic engineering the velocity head, pvel, is assumed lost in a 90o bend in turbulent
�ow, Pedersen.

2The used computer is a 933 MHz Pentium III with 512 Mb of RAM.
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Figure 6.2: The mesh is generated
in Coventor 2001.3 and consists
of two parts. The three horizon-
tal channels are biased towards
the junctions. The mesh contains
1.56 × 105 elements, with 15 × 8

in the cross sections. Recalling the
symmetry BC, this corresponds to
15× 16.

The biasing is not straightforward in Coventor. Two or three separate
meshes have to be created, aligned and merged into a single mesh. Coventor
2001.3 is not �exible with respect to biasing. Hence the horizontal and vertical
channels must be generated separately. Then the horizontal channels must be
biased and cut in half because it can only bias in both directions. Other more
advanced programs such as I-deas could be used to generate the mesh. The
mesh can then subsequently be imported into Coventor. For the present ge-
ometry, the meshing tool provided by Coventor is su�cient. The �nal mesh
contains 1.56×105 cells and for a steady state simulation, the computing time is
two hours. However, the internal handling in program such as mesh generation,
assigning patches, etc., is very tedious because the graphical interface is very
slow.

6.1.2 Results
Several simulations were done on this geometry. Many of the initial simulations
gave poor results due to improper meshes. The meshing is di�cult because
of the aspect ratio of the geometry. The purpose of the simulation is to �nd
corresponding values of �ow rate and pressure (Q-p). These values are therefore
the �rst to be evaluated in a simulation. The simulated values lie within 2% of
the circuit model, Table 6.1 and Fig. 6.3.

Flow rate Backpressure Hydraulic resistance
Q/nL/s pmax/Pa Rhyd/g (mm4 s)−1

Model 44.76 321.8 7190
Simulation 44.28 314.4 7099
Deviation 1% 2% 1%

Table 6.1: Comparisons between with model and simulation, Appendix B, Morf.
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simulated values and the analyti-
cal results from the equivalent cir-
cuit model. The simulated values
are slightly below the theoretical
line. Parameters: φa = 1000 V,
αeo = 6 × 10−8 m2(V s)−1, and
µ = 1.00× 10−3 kg(m s)−1.

The electric �eld is governed by the Laplace equation with the homogeneous
Neumann BCs at the walls and Dirichlet BCs at the electrodes. The Neumann
condition prescribes that the gradient of the potential in the normal direction
is zero. This is equivalent of an insulating surface. The �ux of the electric �eld
is conserved. Hence, the �elds from the side channels are added to the �eld in
the vertical channel, Fig. 6.4.

Figure 6.4: The electric �eld reaches its
maximum after the last junction near the
outlet. Due to the discontinuous nature of
the BC at the corners, the �eld becomes
distorted. A mathematical solution of the
problem gives a singularity at the corner.
For a mesh with a �nite cell size this sin-
gularity is smeared out over a region. This
e�ect distorts the solution near the junc-
tion. Parameters: same as Fig. 6.3.

2% for Q and p is very close to the model, but I wanted investigate how good
an accuracy could be obtained with EOF and pressure in a straight channel.
Using the same cross section geometry, a 1% accuracy could be obtained. The
simulations converged to a slightly di�erent value than the theoretical. A close
look on the velocity �eld revealed that the velocities in the corners were too
large. This is caused by the discontinuous BC for the electric potential. The
remedy would be to make round corners or specify velocity as BC instead of EO
mobility.

These e�ects are important for the local �ow characteristics. The integrated
variables Q and p are however not so sensitive. The pressure distribution is
shown in Fig. 6.5.
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Figure 6.5: The pressure is ris-
ing continuously from the inlet to
the outlet. The rate of the pressure
buildup depends on the EO veloc-
ity ueo and is hence proportional
to the electric �eld. The pressure
increases fast near the outlet. Pa-
rameters: same as Fig. 6.3.

6.2 Low-Voltage Cascade Pump, Takamura et al.
In this section we shall analyze the Low-Voltage Cascade pump described in
the overview chapter, Fig. 5.5, Takamura et al., 2001. It is designed to work
as an e�ective pressure source. The main principle is to set multiple pumps in
series in order to accumulate pressure. The pump design was �rst presented in
the micro-TAS 2001 proceeding. The published article contained no calculations.
From the information given in the article it is not possible to simulate the pump.
So I contacted Ph. D. Yuzuru Takamura from The University of Tokyo and he
agreed on giving me additional information about the geometry. So the present
analysis is the �rst CFD analysis of this type of pump.

The analysis has two steps: an analytical model and CFD computations.
Comparisons between the two approaches should ensure reliable results.

6.2.1 The Model
The �ow is a combination of EOF and pressure driven �ow. The calculations
are based on the hydraulic resistances and the equivalent EO pressure of the
narrow and wide section respectively Fig. 6.6(a).
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Figure 6.6: (a) Simpli�ed schematic of the pump and the expected �ow pro�les,
refer to Fig. 5.5 for additional geometrical information (width of channels). There are
N = 10 channels in the narrow section (only depicted four). Even though the �ow
is reversed near the wall in the right channel, the net�ow is still positive. Note that
ueo,1 > ueo,2 because the electrode spacing is di�erent. Parameters: D1 = 800 µm,
D2 = 1230 µm, D3 = 170 µm and D4 = 185 µm, (b) The electrical circuit equivalent
used in calculation of potential drop across the EO section.

Combining Eqs. (3.37) and (3.42) yields Eq. (6.1). Each of the narrow chan-
nels gives the same high pressure. The wide channel gives a small counter pres-
sure because the electric �eld is reversed. The pressure across the whole step is
the two pressures subtracted, ∆pstep = peo,N − peo,W.

∆peo =
12 µ αeo ∆φa

H2 − 192π−5(H3/W )
∑∞

m=0(2m + 1)−5 tanh[ (2m+1)πW
2H ]

(6.1)

The individual hydraulic resistances Rhyd,1 and Rhyd,2 are calculated using
Eq. (3.42). Only the narrow and wide section are considered in the calculations,
Rhyd,total = N−1Rhyd,1 + Rhyd,2, Fig. 6.6(b). The third hydraulic resistance is
neglected because it is relatively small. Furthermore the �ow is not uniform in
this section so the circuit theory does not apply. The error by making this as-
sumption is of the order a few percent. R3 is used the calculation of the e�ective
potential.

The potential drop across the EO section is found using the equivalent circuit
shown on Fig. 6.6(b). For the potential drop only the relative resistances are
relevant. The individual resistances are proportional to R ∝ L/(W ×D), where
L, W and D are the length, width and depth of the channel respectively. The
relative potential drop η across the EO section is

η =

(
N
R1

+ 1
R2

)−1

(
N
R1

+ 1
R2

)−1

+ R3

= 0.885. (6.2)
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From Eq. (6.2) it can be seen that approximately η = 89 % of the applied
potential φa, is used in the EO section. This potential does not equal the actual
applied potential because another potential drop occurs in the gel electrodes,
Fig. 6.6(a). Hence, φa is unknown but could have been estimated if the electrical
current and conductivity of the liquid had been measured experimentally.

All of the above calculations are inserted in a worksheet, Appendix B, Taka-
mura. From this worksheet the results can be extracted.

6.2.2 CFD
Identifying the minimum computational domain is important in order to save
calculation time. Only one pump step needs to be analyzed. The cut should be
placed where the �ow is uniform. So the cut shown in Fig. 6.6(a) would not be
a good choice because the �ow is nonuniform near the inlet and outlet.

The computational domain may be divided because the �ow is creeping, i.e.,
inertial e�ects are negligible. So it does not matter which way the �ow is moving.
This approximation was veri�ed by a full geometry simulation. Furthermore a
horizontal symmetry plane can be applied. A top view of the computational
domain is shown on Fig. 6.7, lower corner. The �ow rate is the same but the
pressure buildup must be multiplied with two in order to obtain the full step
pressure buildup.

Figure 6.7: Part of the mesh used
in the CFD simulations. There are
14 cells across the narrow channels
and 7 cells perpendicular to the
plane, corresponding to 14 with-
out symmetry. The junction be-
tween the narrow channels and the
electrode compartment is not very
well resolved. Large cells are adja-
cent to small cells. The computa-
tions cannot be trusted near these
junctions. The full mesh contains
1.02× 105 cells.

Using the experience from other cases, a relatively simple mesh was gener-
ated. An important issue is that �ow pro�les in the narrow channels are resolved.
In this simulation 14× 7 cells are used in the cross sections. With the symme-
try BC it corresponds to 14 × 14 which is good enough within 5% accuracy
for the pro�les with full EOF and superposed pressure driven �ow. The mesh
used could be improved in the junction areas as shown on Fig. 6.7. However,
the results for �ow rate and backpressure in Table 6.2 are within 3% and 2%
respectively, indicating that the overall picture is good enough.

6.2.3 Results
The essential �ow parameters are compared in Table 6.2. There is a good agree-
ment between the simulation and circuit model.
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Flow rate Backpressure Hydraulic resistance
Q/nL/s pmax/Pa Rhyd/kg (m4 s)−1

Model 0.577 281.0 4.88× 1014

Simulation 0.560 274.0 4.89× 1014

Deviation 3% 2% 0%

Table 6.2: Comparisons between with model and simulation based on estimated values
for φa = 10V and αeo = 0.06 mm2(V s)−1, Appendix B, Takamura.

The �ow pro�les can be seen in Fig. 6.8. Remembering that the �ow is
symmetric, one may visualize the full �ow pro�le. The maximum velocity in the
core of the wide section is a factor 2.4 larger than the EO velocity at the walls.

Figure 6.8: Velocity magnitude |u| visualized at the symmetry plane and the sur-
face. Velocity pro�les are extracted from the symmetry plane in the wide and narrow
channels respectively. The computational domain has been graphically thickened for
visibility. Parameters: αeo = 0.06 mm2/(V s), φa = 5 V (which corresponds to 10 V
for a whole step) and pinlet = poutlet = 0.

Figure 6.9: Plot of the potential.
φa = 5 V is applied to the anode
and zero volts to the inlet and out-
let. This is equivalent to applying
2φa = 10 V across a full pump
step. Parameters: same as Fig. 6.8.
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The CFD simulation gives the pressure loss ∆p = 23 Pa in the area near
the anode. The estimated pressure drop is a combination of pressure loss due
to friction and due the reverse electroosmosis. The hydraulic pressure loss is
calculated using

∆p = RhydQ (6.3)
= 0.5× 3.208× 1013 kg(m4 s)−1 0.577× 10−12 m3/s (6.4)
= 9.26 Pa (6.5)

We also note that the simulated values for �ow rate are slightly below the model
values in Table 6.2.

Figure 6.10: Plot of the pressure
when zero backpressure is applied.
Inlet and outlet are both kept at
p = 0. A negative pressure of
23 Pa is generated in the vicinity
of the anode. The �ow in the an-
ode/electrode compartment is not
parallel with the EOF and is hence
partially pressure driven. Hence a
pressure is needed for the �ow to
move in this region. Parameters:
same as Fig. 6.8.

In Fig 6.10 a minimum pressure of ∆p = 23 Pa was simulated. In Appendix
B, Takamura 1/2, it can be seen that the model calculates a electroosmotic
pressure is calculated to be ∆peo,W = 0.521 Pa = 10.5 Pa in the wide channel
for a half stage.

So the overall estimated pressure loss is ∆p = (10.5 + 9.26) Pa = 20 Pa which
should be compared with the simulated ∆p = 23 Pa. The causes for this small
deviation is that the hydraulic resistance of the middle section was neglected.
Hence, the model overestimates the �ow rate and backpressure capacity of the
pump, refer Table 6.2.
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Figure 6.11: (a) The calculated velocities, ueo and umax, as a function of the EO
mobility times the applied potential, αeo × φa. (b) Maximum backpressure again as
function of αeo × φa. Parameters: µ = 1.00× 10−3 kg/(m s).

In the case of a 15 step cascade pump Takamura et al., 2001, measured a
static pressure of 800 Pa at an external voltage of 24 volts. From Fig. 6.11(b)
this corresponds to αeo × φa = 0.114 mm2/s (calculated). In Fig. 6.11(a) the
corresponding velocities are ueo = 0.13 mm/s and umax = 0.31 mm/s.

The experiments give a �Free Run EOF Velocity� of 0.50 mm/s, which is
clearly more than expected. According to Takamura the measurements are con-
ducted in the last wide section, which has no electric �eld. Hence, the �ow
is solely pressure driven. The model predicts a �ow rate of 0.110 nL/s at
αeo × φa = 0.114 mm2/s. The task is to convert a �ow rate into a max velocity
for a pressure driven �ow in a given cross section. In a rectangular channel with
an aspect ratio of W/H = 2.5, the nondimensional �ow rate is Q∗ = 0.52, refer
Fig. 3.6.

Q = A umaxQ
∗ ⇔ (6.6)

umax =
Q

Q∗A
= 0.21 mm/s (6.7)

where A = 50 × 20µm2. The velocity presented in the article is either umax =
0.21 mm/s, umean = 0.110 mm/s or a combination. It would have been more
useful to measure the �ow rate. Either way, it deviates by a factor 2.4−4.5 from
the simulation and model value, which match within a few percent. Note that
it is the ratio between backpressure and velocity that deviates. The absolute
values cannot be calculated on basis of the given information.

Calculations with the EO mobility αeo = 0.06 mm2/(V s) gives considerably
larger pressures than those measured. For the 15 stage pump with φa = 10 V
the backpressure is calculated to 4200 Pa. Indicating that the pressure measure-
ments are inaccurate or the pump is leaking.

I contacted Takamura with these conclusions, and he agreed that the results
from the micro-TAS 2001 proceedings were problematic. He had some possible
explanations to the discrepancies:

• Dimensions of the fabricated pump is not consistent with the design. The
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cross section of the fabricated narrow section was not rectangle but trape-
zoid.

• The pressure does not increase linearly with the number of stages. Leaks
was observed at the gel electrodes.

• Accuracy of the velocity and pressure measurements.

If the dimensions are inaccurate it is di�cult to estimate the backpressure
capacity, recalling that ∆peo ∝ a−2 where a is a characteristic length. The con-
sequence is, that if the narrow channels are 2 µm wide instead of 1 µm, the
backpressure would be a factor 4 smaller. The geometry of the cross section is
a secondary e�ect compared to the e�ect of the dimensions.

The accumulation of pressure was not a linear function of the number of
stages. This is a clear indication of a pressure leak. The �rst stages will hold
tight, but as the pressure increases an eventual leakage will be more pronounced.
The result is a lower pressure and �ow rate than expected.

The above explanations can account for the large deviations and Takamura
has explained that improvements have been made in the next version of the
Low-Voltage Cascade Pump.

6.3 Summary
In the Morf case it has been shown that the equivalent circuit theory and CFD
simulations with Coventor give consistent results within 1 − 2% for the �ow
rate and the backpressure. Problems with the electric �eld have been identi�ed
and remedies are suggested. This problem is however not that important with
respect to the backpressure and the �ow rate. It is also concluded that CFD is
not e�cient for this simple geometry.

In the Takamura case an analytical model was obtained using the circuit
theory. Simulations agree with the model within 3%. The larger discrepancy
arises because the analytical model is a simpli�cation of the real problem. The
model was used to analyze the experimental results obtained by Takamura et
al., 2001, and a considerable deviation was found, i.e., by a factor 2−5. Collabo-
ration with Takamura illustrated the clear advantage of a theoretical/simulation
approach. The combination of the circuit model and CFD calculations proved
its strength.

In both cases the equivalent circuit theory is very well suited to calculate the
pump characteristic. In the Parallel Cascade Pump case application of CFD was
not necessary, but primarily used as a test case. In the Low-Voltage Cascade
Pump, CFD provided a better understanding and a higher degree of accuracy.



70 CHAPTER 6. MODELS AND SIMULATIONS



Chapter 7

Novel Designs

Based on physics of liquids, elementary �ow analysis, and existing designs, we
can make our own innovations. In this chapter two novel concepts will be intro-
duced. (1) The Two-liquid Viscous Pump. This pump uses an internal pumping
liquid, which makes the pump independent of the working liquid (bu�er). (2)
The Shallow Reservoir Pump. The existing planar/shallow EO pump by Chen
et al., 2000, Fig. 5.6, cannot be integrated on a device without external tubing.
Using two reservoirs with the appropriate dimensions, the integration may be
accomplished.

7.1 The Two-liquid Viscous Pump
Electroosmosis is governed by the formation of an electric double layer. If the
working liquid does not contain any ions, no electric double layer is formed. A
measure for the amount of ions is the electrical conductivity. The range for the
working �uids is λelec > 10−6 S/m, Chen et al. Hence, nonpolar liquids such
as oils with very low conductivity cannot be pumped with EO. The remedy is
to introduce a pumping liquid that drags the working liquid by viscous forces
thus the name, Two-liquid Viscous Pump. Its performance is similar to EOF in
a single narrow channel.

7.1.1 Design history
The Idea
In this section the design process will be described. In the beginning of the
project I was presented with the design shown in Fig. 7.1. The device had
been used for focusing pressure driven �ows. Oliver Geschke got the idea to
use the device as a two-liquid EO pump. Some preliminary experiments were
unsuccessful. There are several reasons for this which we will clarify in the
following sections.
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Figure 7.1: The �rst idea of a Two-Liquid Viscous Pump. The pumping liquid enters
through inlet B, and the bu�er liquid at inlet A. Inlet/outlet B are connected to
external reservoirs.

The pumping liquid enters through inlet B, and the bu�er liquid at inlet A.
A thin layer of the pumping liquid is supposed to move along the wall from inlet
B to outlet B. It is this movement that drags the bu�er liquid. The thickness of
this so-called pumping liquid layer is denoted Dlayer. In the case of two equally
conducting liquids, the following would happen: There would be EOF between
Inlet and outlet B as expected, but the interface would be coinciding with the
symmetry line. Recall that EOF cannot be regulated by tapering or expanding
the channel. Hence, the pumping liquid would occupy the entire channel leaving
no room for the working liquid. The phenomena was described in Sec. 3.3.1.

The solution is to reduce the EOF in the two side branches. This can be
accomplished by doing one of three things. (1) Reducing the EO mobility in the
branches. (2) Lowering the electric �eld by introducing another set of electrodes.
(3) Making the branches so narrow that the Debye layers overlap, resulting in
a decreased �ow rate.

Assuming that the interface existed in Fig. 7.1, the pump would still not
work. Inlet/outlet B are connected to external reservoirs. These reservoirs are
open, and thus subjected to atmospheric pressure. The pressure buildup in the
pump will therefore drive a �ow from inlet A and B to outlet B. Generally, the
�ow will go where the hydraulic resistance is the lowest, so a pressure valve is
needed.

The design in Fig. 7.1 is also heavily in�uenced by macroscopic thinking.
Inlet B and outlet B are guided smoothly into the channel, avoiding any sharp
corners, which in turbulent �ow would give rise to separation and consequently
pressure loss. In micro�uidics the �ow is laminar, and sharp bends do not give
rise to any pressure loss. The pumping liquid can therefore easily be introduced
perpendicular to the channel.

Tube �ttings
A pressure valve could be an EO driven device with a very high hydraulic
resistance. Such a device would have a constant �ow rate independent of the
pressure di�erence across the device. A simple way of realizing this setup is to
place two long thin tubes between the pump and the electrodes, Fig. 7.2. The
tubes can easily have a lower EO mobility, and hence a reduced �ow rate. In
this way, the thickness of the pumping liquid layer may be controlled.
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Figure 7.2: The Two-liquid Viscous Pump with two external tubes inlet/outlet B.
The large hydraulic resistance of the tubes prevents any pressure driven �ow from
escaping through inlet/outlet B. A major problem is the large potential drop in the
tubes, reducing e�ciency considerably.

The problem is that the electric resistance of the thin tubes will be corre-
spondingly large. Hence, the main potential drop will occur in the tubes and
not in the EO channel. This is a problem because the pump will require high
operation voltages with the associated disadvantages.

7.1.2 The �nal design
In the following design the previously mentioned problems are addressed. Three
issues are the main concerns. (1) Design of a pressure valve. (2) Reduction of
EOF in speci�c regions, denoted B in Fig. 7.3, in order to reduce the pumping
layer thickness. (3) The main potential drop should occur in the EO section.

The optimal pump would be narrow and deep. Narrow because it gives large
pressures, and deep because of a large �ow rate. This type of geometry can be
achieved by using the ICP etching technique discussed in Sec. 5.2.

The pump shown in Fig. 7.3 consists of two electrode compartments and a
main channel. The electrode compartments are separated from the main channel
by use of so-called hydraulic valves. A hydraulic valve is simply a set of narrow
channels with large hydraulic resistance. The valves are needed because each
electrode compartment is connected to an open reservoir, and thus subjected to
atmospheric pressure. The electrodes are placed in these reservoirs.

Symmetry
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High EO mobility

Low  EO mobility
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Top view

Inlet A

Inlet  B Outlet B

Outlet A
D layer
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j

Figure 7.3: Schematic of the Two-liquid Viscous Pump. The expected velocity pro�les
are shown to give an idea of the overall �ow. Internal friction gives rise to a counter
pressure, which induces the parabolic �ow pro�les. The thickness of the pumping liquid
layer is Dlayer.
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Hydraulic Valve
Consider a channel with a as a characteristic length and �ow rate Q. For EOF
the �ow rate is proportional to Q ∝ a2, whereas in pressure driven �ows it is
proportional to Q ∝ a4. Hence, by letting the channel dimensions a become very
small the pressure driven �ow is suppressed compared to the EOF. This e�ect
can be utilized to block pressure driven �ows, the so-called hydraulic valve. The
overall hydraulic resistance of the valve must be large compared to the resistance
of the EO section, in order for the valve to be e�ective.

The ohmic heating is proportional to the square of the electric �eld strength,
as shown in the energy equation Eq. (2.15). In order to reduce the ohmic heating
and potential drop, the area of the cross section in the valve is increased. This
is achieved by increasing the number of channels in the valve. By doubling the
number of channels, the ohmic heating is reduced by a factor four. In Fig. 7.4
there are four channels connecting the electrode compartment with the bu�er
channel. For the given geometry approximately half of the potential drop is
across the EO section.

Thickness of pumping layer
The pumping liquid that enters the main channel will generate a layer of some
thickness Dlayer. The thickness of this layer is very important with respect to
the pump characteristic. If the layer is too thick, only a thin layer of bu�er is
pumped. The factors that govern the layer thickness are the following:

• The spatial distribution of electroosmotic mobility.

• The ratio of electric conductivities between the two liquids.

• The miscibility of the liquids

These factors make it a complex matter to determine the pumping layer
thickness in general. Two cases that cover most practical situations will be con-
sidered. (1) Miscible conducting liquids with dilute salt concentrations. (2) Im-
miscible liquids where the bu�er liquid is nonconducting.

(1) In the case of miscible liquids, the pumping layer will rapidly expand to
the whole channel due to di�usion. Hence, it is not meaningful to speak of a
pumping layer. The e�ective conductivity of the mixture will be a linear com-
bination of the conductivities of the bu�er and the pumping liquid. A further
implication is that the �ow leaving the pump will be a mixture of the bu�er
and the pumping liquid. The importance of these e�ects is strictly application-
speci�c.

(2) Immiscible liquids, e.g., oil-water, will have a well de�ned interface, and
we can use the pumping layer concept. The electric current density will essen-
tially be zero in oil phase. This should be included in the calculation of the
electric �eld. With the present CFD program this, however, is not possible, so
the two liquids are assumed to have the same conductivity. The e�ects of this
assumption will be discussed later. Another problem is that the two liquids
are assumed to have the same viscosity. In the oil-water case this is certainly
not the case. Some analytical calculation are shown in Appendix G. Since the
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liquids are immiscible, the contamination should be negligible. However, water
droplets may pass the valves at outlet B and then continue downstream. So it
is a di�erent type of contamination.
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Figure 7.4: Layout of a Two-liquid Viscous Pump. The bu�er �ow, A, is driven by
the pumping �ow, B. The pumping liquid enters at inlet B, goes through the narrow
valves, moves along the wall, and exits through the valve and �nally through outlet
B. The two electrode compartments each have four narrow channels of width W3.
The channels/valves ensure that the bu�er �ow does not enter inlet or outlet B. Two
regions with di�erent EO mobilities are identi�ed. The ratio between the mobilities
roughly governs the layer thickness of the pumping liquid. The high EO mobility area
between the valves is the EO section. The valve regions should be given a coating
with low EO mobility. Dimensions used in calculations: W1 = 5 µm, W2 = 20 µm,
W3 = 1 µm, L1 = 8 µm, L2 = 42 µm, L3 = 64 µm, L4 = 150 µm and D = 20 µm
deep, (full geometry, 40 µm).

7.1.3 Equivalent Circuit Model
The aim is to establish a model that can predict the Q-p characteristic. In this
respect, the pumping layer thickness, Dlayer, is important. The EOF depends on
the electric �eld, which depends on the �ow in the case of di�erent conductivities.
A rigorous model of the two-liquid pump is therefore a complex matter.

We shall only consider miscible and immiscible liquids with the same con-
ductivity. The latter case is unlikely to be of practical interest, because the con-
ductivities will normally be di�erent when dealing with immiscible liquids. The
results, however, are of general interest. Furthermore, we assume that the hy-
draulic valves are so e�ective that the pressure driven �ow through inlet/outlet B
is negligible. If the hydraulic resistances of the valves are much larger than those
of the EO section, this is a good assumption. Rhyd is calculated using Eq. (3.42),
remembering that there are four channels in the valves. For the present geome-
try, the overall hydraulic resistance of the valves is 26 times larger than the EO
section, implying that the error is small.

The �rst step is to �nd the e�ective potential φeff = η φa drop across the
EO section. The procedure is to analyze the equivalent electric circuit shown in
Fig. 7.5. The calculations are done in Appendix B, Two-Liquid Viscous Pump.
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Figure 7.5: The equivalent electric circuit of the Two-Liquid Viscous Pump. Note that
the whole pump/circuit is depicted. The overall resistance is calculated as Rtotal =
2Rαβ + R4, where R4 is the resistance of the EO section. R1 ∝ L1/(L3 × D), R2 ∝
L2/(W3 × D), R3 ∝ W2/(2W1 × D) and R4 ∝ L4/(2W1 × D). The proportionality
factor is in all cases 1/λelec.

The second step is to �nd the electric �eld in all EO driven sections. We need
to �nd the electric �eld in the valves. The �ux of the electric �eld is constant.
The electric �eld in the EO section is known because the e�ective potential
drop and the channel length is known. Multiplying the electric �eld with the
area of the cross-section gives us the electric �ux. From this we can calculate
the average electric �eld in the valves.

Example: Electric �eld
The relative e�ective potential η and spacing L are known. η = 0.523,
φa = 10 V, and L = 150 µm. Hence, the electric �eld becomes
E = (ηφa)/L = 0.0349 V/µm. The ratio between the areas of the
cross-sections is 4/5. So the average electric �eld in the narrow sections
becomes E = (4/5)−10.0349 V/µm = 0.0436 V/µm.

The third step is to �nd the e�ective EO mobility. Simulating with Coven-
tor requires that the EO mobility is speci�ed on the walls. In reality, the EO
mobility is governed by the interplay between liquid and surface. This makes
it di�cult to set up the right boundary conditions for a two-liquid simulation,
because it requires that the position of the liquids is known beforehand.

In the main channel, it is approximated that the vertical walls have a high
mobility, and the bed and lid have low mobilities. The pumping liquid is in
contact with the wall, and therefore has a high mobility. The working liquid has
a low/no EO mobility, and is in contact with the bed and the lid.

EOF with two di�erent EO mobilities is analyzed in an example in Sec. 3.2.1.
The e�ective mobility is used in the calculations.
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Example: E�ective Mobility
Consider a rectangular channel with two sets of opposing walls. The one
set having EO mobilities of αeo,low = 5000 µm2 (V s)−1 and αeo,high =
50000 µm2 (V s)−1 respectively. The aspect ratio of the channel is 2.5.
From Fig. 3.4 the nondimensional �ow rate is read to be Q∗ = 0.85.
The e�ective EO mobility, αeo,eff = Q∗

(
αeo,high − αeo,low

)
+ αeo,low =

43250 µm2 (V s)−1.

The �nal step is to couple the di�erent �ow rates. The �ow rate through the
valves (inlet/outlet B) can be found using the electric �eld and EO mobility,
and recalling that the pressure driven �ow is negligible.

Qvalve = αeo E A, (7.1)

where A is the area of the cross section. We are not interested in the internal
�ow rate Qint, but rather in the in/outgoing �ow rate, Qpump. For the complete
model worksheet, refer to Appendix B, Two-Liquid Viscous Pump.

Qpump = Qint − 2 Qvalve

Qint = Qeo −Qp

Qp ≈ Qpump



 Qpump =

1
2
Qeo −Qvalve (7.2)

where Qeo is the �ow rate of the EO section in case of zero counter pressure.
Qp is the reduction in �ow rate due to the counter pressure. In Eq. (7.2) we
have set Qp ≈ Qpump, this is not correct in general, but is only true when the
hydraulic resistance of the EO section is similar to that of the pressure driven
section.

CFD Simulations
Calculations with di�erent EO mobilities are considered for comparisons with
the model. In the immiscible case, the thickness of the pumping liquid layer is
investigated. In the miscible case, the terminal concentration is investigated.

Meshing of the two-liquid pump requires di�erent cell sizes. The valve chan-
nels are an order of magnitude more narrow than the EO section. Optimally,
the mesh should have been biased towards the junctions, Fig. 7.6. However, the
experience has shown that it makes little di�erence when considering pressures
and �ow rates.
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Figure 7.6: The mesh in a junction.
The number of cells in the cross-
sections is important. The wide (W)
and narrow (N) section has 10×10 and
10 × 10 respectively. Due to symme-
try it corresponds to 20 × 20 (W) and
10 × 20 (N) respectively. The cells in
the wide and narrow section measure
2.5×2×0.5 µm3 and 0.1×2×0.5 µm3

respectively. The worst cell aspect ra-
tio is therefore 5 (W) and 20 (N). The
full mesh contains 112.000 cells.

The transitions between EOF and pressure driven �ow can be seen in Fig. 7.7.
The aspect ratio of the EO section is W1/D = 0.25, so the pro�les in the
symmetry plane are expected to resemble parabolas, as those in a Couette �ow
with and without EOF.

Figure 7.7: Velocity vectors in the symmetry plane. The transition from pressure
driven �ow to EOF is clear. In the regions with low EO mobility, the �ow pro�le is
positive parabolic. After the last junction, the EOF drags the liquid, generating a
negative parabolic pro�le. Compare with Fig. 7.3. Parameters: as Fig. 7.9.

The laminar nature of the �ow can be visualized using streaklines, Fig. 7.8.
Note that streaklines are coincident with streamlines in the steady state case.
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Figure 7.8: Streaklines at the anode junctions. Even though the channels are orthog-
onal, the lamination is clear. The Reynolds number is of the order Re = 0.01 < 5, i.e.,
creeping �ow. In the case of immiscible two-liquid �ow, the expected pumping layer
thickness would be about 20% of the half-width. Please note that the �gure is com-
posed of three �gures, so the density of the streaklines is not meaningful. Parameters:
as in Fig. 7.9.

7.1.4 Comparison between Model and CFD
The relative e�ective potential drop η is voltage drop across the EO section,
divided by the applied potential. The CFD program solves the Laplace equation,
and hence obtains the potential and electric �eld. In the model, we assumed that
the electric �eld was constant in each section. This is not entirely true, so there
is a small deviation between the model and CFD, see Table 7.1.

E�ective potential
η

Model 52.3%
Simulation 51.5%
Deviation 2%

Table 7.1: Comparisons between model and simulation. The relative e�ective potential
η is the fraction of the applied potential that is across the EO section, Appendix B,
Two-Liquid Viscous Pump

Three simulations with di�erent EO mobilities in the low EO region, Fig. 7.4,
have been made. Comparisons between model and simulation can be seen in
Table 7.2. The model slightly exaggerates the �ow rate and backpressure. One
of the reasons for this is that a small fraction of pressure driven liquid escapes
through the valves.
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EO mobility Max �ow rate Backpressure
αeo/µm2(V s)−1 Q / nL/s Pa

Model 0 0.296 31.6
Simulation 0 0.290 30.6
Deviation 2% 3%
Model 5000 0.267 28.5

Simulation 5000 0.260 27.4
Deviation 3% 4%
Model 10000 0.237 25.3

Simulation 10000 0.230 24.3
Deviation 3% 4%

Table 7.2: Comparisons between model and simulation. The EO mobility in the low
mobility regions is changed. Agreement in max �ow rate and backpressure is within
4%. Parameters: dimensions as in Fig. 7.4, φa = 10 V, pin = pout = 0, Appendix B,
Two-Liquid Viscous Pump.

The pump is only partially driven by EOF. The sections with low EO mobil-
ity or no electric �eld are driven by pressure. The pressure distribution within
the pump can be seen in Fig. 7.9. This �gure has helped in the construction of
the model. The two approaches supplement each other.

Figure 7.9: Visualization of the pressure distribution. The �oating �gure above the
pump also displays the pressure. The �oat shows that the pressure varies linearly
from junction to junction, implying uniform �ow. Small peaks appear in both ends of
the EO section. The cause os this is the divergence of the electric �eld. Parameters:
dimension as in Fig. 7.4, αeo,low = 5000 µm2 (V s)−1, αeo,high = 50000 µm2 (V s)−1,
pin = pout = 0, φa = 10 V.

One of the unsolved problems in the circuit model is the pressure. In the



CHAPTER 7. NOVEL DESIGNS 81

equivalent circuit theory, the pressure is related to the �ow rate through the
hydraulic resistance. The situation becomes rather complicated when multiple
channels with di�erent EO mobilities merge. An analytic approach should be
feasible, but a more strategic approach is required. The upcoming version of
Coventor will have a system design module, but the complex nature of this
pump will require simulations.

Immiscible Liquids
The thickness of the pumping layer in a uniform �ow can be found from the
ratio between the valve and total �ow rate.

Dlayer = 2W1
Qvalve

Qint
, (7.3)

= 2W1
Qvalve

Qpump + 2Qvalve
(7.4)

where 2W1 is the width of the EO channel, Fig. 7.4. This equation, however,
is only valid for an EOF without pressure. As we shall see later, there will
always be a pressure gradient in the EO section. A counter pressure reduces
the velocities in the middle of the channel. The pumping layer will be thinner
because it moves faster, i.e., it is stretched compared to the inner �ow. Eq. (7.4)
should be regarded as a rough estimate on the pumping layer thickness, Dlayer.
The thicker the pumping layer is the less working liquid is pumped. The optimal
pumping layer thickness is therefore only a few Debye lengths ensuring the full
development of the EOF.

From a simulation point of view, it should be possible to �nd the pumping
layer thickness. Coventor 2001.3, however, does not support the free surface
BC in the Net�ow module. As an approximation, the di�usion constant was
set to zero. In laminar �ow, this approximation is not that bad. However, the
numerical di�usion will play an important role, so the mass fraction results are
not that reliable.

Eq. (7.4) estimates the pumping layer thickness. Mass fraction pro�les are
extracted from the simulations. The measurement line is shown in Fig. 7.10.
This line is placed at the bed or at the center. The simulation results are shown
in Fig. 7.11.

Mass fraction
1

Wall

Bed

Center

Measurement line

Symmetry plane

Figure 7.10: Schematic �gure of
how the plots in Fig. 7.11 are
made. The measurement line is
placed in the middle of the EO sec-
tion either near the center or the
bed.
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(a) (b)

Figure 7.11: Line plots of the mass fraction. Two line plots for each simulation are
shown. They are extracted in the middle of the EO section at the two indicated
depths (bed and center). (a) αeo,low/αeo,high = 1/10. The model estimates Dlayer =
1.04 µm. The discrepancy is quite large due to the nonuniform velocity pro�le. (b)
αeo,low/αeo,high = 1/5. The model estimates Dlayer = 1.85 µm, so it still overestimates
the thickness. In the limit αeo,low/αeo,high → 1, the model should give the right result.
Parameters: dimension as in Fig. 7.4, pin = pout = 0, φa = 10 V

The model overestimates the thickness of the pumping layer, because the
�ow in the inner section is reduced due to the adverse pressure, refer to Fig. 7.9.
In the lower part of the wall, the �ow is slower due to the low EO mobility
speci�ed at the bed. Compare with the analytical solution to the double moving
wall problem, Fig. 3.5. Hence, the pumping layer should be thicker near the bed,
as also the simulations show.

Fig. 7.12 shows the overall distribution of the mass fraction. Note how the
pumping layer grows until the last junction, where the �ow pro�le changes and
stretches the pumping layer, recall Fig. 7.7.
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Figure 7.12: Immiscible case: Top view of the mass fraction in the symmetry plane.
The di�usion is set to zero, trying to simulate immiscible two-phase �ow. The pumping
liquid, mass fraction 1, is introduced through inlet B. Anode: From left to right we see
an increasingly thick pumping layer. After the last junction the thickness is constant.
Cathode: A mixture of pumping liquid and bu�er is extracted through outlet B. Since
the �ow rate is the same in inlet and outlet, there is a net �ow of pumping liquid.
Indeed, there is a layer of residual pumping liquid continuing downstream. Parameters:
as in Fig. 7.9.

Miscible Liquids
The miscible case is shown in Fig. 7.13. The self-di�usion constant of water is
used. The di�erences between the miscible and immiscible cases are large, as
was expected. The two liquids rapidly mix, and a terminal concentration cter is
obtained. The characteristic di�usion time is to = W 2/Dmass = 0.044 s. Veloci-
ties are of the order 1 mm/s so the liquids completely mix within approximately
40 microns. Hence, it will be impossible to see any spatial variation of the con-
centration after this length. The terminal concentration cter can be calculated
using Eq. (7.6).

cter =
2Qvalve

Qint
, (7.5)

=
2Qvalve

Qpump + 2Qvalve
(7.6)

The model is based on the conservation of mass. So if the �ow rates are
correct, the concentration is correct. The results can be seen in Table 7.3.

Mass fraction
cter

Model 20.7%
Simulation 20.9%
Deviation 1%

Table 7.3: Terminal concentration in the miscible case. The EO mobilities are:
αeo,low = 5000 µm2 (V s)−1, αeo,high = 50000 µm2 (V s)−1, Appendix B, Two-Liquid
Viscous Pump, 2/2.
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Figure 7.13: Miscible case: Top view of the mass fraction in the symmetry plane. The
di�usion is set to self-di�usion of water, Dmass = 2260 µm2/s giving a Peclet number
of Pemass ≈ 20 based on L2 = 42 µm in Fig. 7.4 and u ≈ 1000 µm/s. The pumping
liquid with mass fraction 1 is introduced through inlet B. Anode: From left to right
we see that the bu�er liquid di�uses upstream towards inlet B, but only reaches about
halfway in. The mixing is so fast that we cannot see the pumping liquid layer. If the
velocities had been faster, this would have been possible. The terminal concentration
is cter = 0.209, which is what the model predicts. Parameters: as in Fig. 7.9, except
the di�usion constant.

7.1.5 Summary, Two-Liquid Viscous Pump
A novel Two-Liquid Viscous Pump has been presented. The idea and develop-
ment is described in detail. Finally, a model was compared with CFD simula-
tions. Agreement within 4% for the �ow rate and backpressure was obtained.
However, it was also stated that a more strategic modelling approach would
be bene�cial for this and more complex designs. With the currently available
software, it was only possible to simulate the immiscible two-phase �ow un-
der restrictive assumptions on the conductivity, viscosity, etc. Calculation of
the pumping layer thickness was more complex than expected. The model only
gave a rough estimate. The optimal the pumping layer thickness is no more than
a few Debye lengths. A realistic simulation of this problem will be very di�-
cult if the pumping layer is very thin. E�ects such as surface roughness, surface
tension and other surface e�ects may play an important role. Experiments are
essential for further progress.

In the miscible case, the two-phase �ow mixed very rapidly, as expected.
Accurate prediction and simulation of the terminal concentration was achieved.

One of its obvious applications for the Two-Liquid Viscous Pump, would be
to pump oil. From a hydraulic engineering point of view, this may be problem-
atic because oil is highly viscous. With the currently available etching techniques
the pump cannot generate very large pressures. Transporting oil droplets sus-
pended in water may be another possible application. In the miscible case the
design could be used as a mixer.

A novel EO pump design that works with all types of liquids has been devel-
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oped. The pump characteristic Q-p is largely governed by the possible channel
dimensions. Practical dimensions and problems are the topics of further work.
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7.2 The Shallow Reservoir Pump
The Shallow Reservoir pump is similar to the planar pump presented in Sec. 5.3.2.
The horizontal orientation enables the use of standard etching techniques and
extremely small plate spacing. Initially, we will investigate the e�ects of changing
di�erent parameters in the layout. From the parametric study we will conclude
that a very wide and extremely shallow cross section is optimal, Fig. 7.14.

The aim is to integrate this type of pump into the device. Preliminary sim-
ulations showed that a direct integration gave a very poor e�ciency. A detailed
investigation revealed the problem.

I discovered that by placing a reservoir at each end of the EO section, the
integration can be accomplished. The problems and remedies are discussed in
relation to this.

7.2.1 Optimizing the Geometry
We start by making some preliminary investigations regarding the geometry.
Consider an EO pump (EO section) with a rectangular cross section, Fig. 7.14.
Three essential parameters are identi�ed. The length L, the width W and the
depth D. These parameters e�ectively govern the pump characteristic Q-p.

Flow

W

L

D

j
a Figure 7.14: Channel with a rectangular

cross section. The depth D, width W and
length L are shown on the �gure. Across the
length of the channel, a potential is applied,
φa. The EO mobility is αeo.

The following assumptions are made in the analysis: Across the length L,
there is a �xed voltage drop φa and zero pressure di�erence ∆p. The problem
is most conveniently analyzed using a worksheet such as Excel. CFD is not
e�cient for this geometrical simple type of analysis. The important elements in
the analysis are given here.

• Geometrical data: width W , depth D and length L.

• Dynamic viscosity µ, EO mobility αeo and electrical conductivity λelec.

• Hydraulic resistance Rhyd, Eq. (3.42).

• Backpressure ∆peo, Eq. (3.37), and �ow rate Q, Eq. (3.39).

• Applied voltage φa, and corresponding electric �eld E = φa/L.

• The electric resistance, Relec = L
WDλelec

.

• Electric current, I = φa/Relec.

Once the model has been made, one can easily change the parameters and
see what the e�ect is. A geometrical study is shown in Table 7.4. From Table
7.4 it is concluded that the optimal design has a wide (W >) and shallow (D <)
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cross section, or a narrow (W <) and high (D >) one. It is the same geometry,
simply rotated by 90o. However, it is much easier to fabricate a wide and shallow
etch than a narrow and deep etch, such as that used in the Two-Liquid Viscous
Pump. The geometry should be shallow in order to generate large pressures, and
wide in order to obtain large �ow rates. This is possible because the backpressure
is asymptotically independent of the width W , and the �ow rate is proportional
to the width W .

Electric �eld Current Backpressure Flow rate
Length ↓ ↑ ↑ − ↑

↑ ↓ ↓ − ↓
Width ↓ − ↓ ↑ ↓

↑ − ↑ ↓,³ ↑
Depth ↓ − ↓ ↑ ↓

↑ − ↑ ↓,³ ↑

Table 7.4: The equations used are Ohm's law and Eq. (3.37) for the backpressure. The
relations are simpli�ed by an arrow (up ↑, down ↓, converges asymptotically ³, or equal
−), and do not say anything about the rate of change. By changing one parameter at
the time, the dependence could be determined, assuming that the temperature remains
the same, Appendix B, Layout.

According to Table. 7.4, the layout should be short in order to generate large
�ow rates. This is because of the increase in the electric �eld. The ohmic heating
is proportional to the electric �eld squared. The electric �eld is therefore often
the limiting factor, due to the allowed temperature in the liquid. In order to
minimize ohmic heating, it is preferable to use a liquid with low conductivity.

If the electric �eld becomes very high, it could result in uncontrolled electric
currents due to electric breakdown.

Temperature Dependence
Temperature is an important, but widely unexplored, issue in micro�uidics. The
model proposed here is able to estimate the pump characteristic as a function of
temperature, Fig. 7.15. This is very useful, but it requires that the temperature
is known. The temperature could be estimated using a heat conduction model, or
by measurements on the actual device. A temperature model combined with the
hydraulic model would give the backpressure and max �ow rate as a function
of the applied potential. This is an advantage, since the applied potential is
externally controlled.

In this section we assume that the temperature is known, and we expand
the hydraulic model to incorporate the temperature e�ects. This is achieved
by modelling the dynamic viscosity, electrical conductivity, and EO mobility
empirically. The following parameters are added to the hydraulic model.

• Temperature, T

• Dynamic viscosity µ, which is temperature dependent. Using tabulated
data, Andersen et al., a continuous curve is approximated with a 4th order
polynomial.
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• EO mobility, αeo, which is temperature dependent. Using the data from
Fig. 2.8, a continuous curve is approximated, using a 2nd order polynomial.

• Reference values for µ, αeo and λelec at T = 25oC.

Curves showing the temperature dependence of the backpressure and the
max �ow rate are is shown on Fig. 7.15. It should be pointed out that the tem-
perature dependence for the EO mobility is derived with several approximations,
refer to Sec. 2.12.
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Figure 7.15: Flow rate and back-
pressure as a function of tempera-
ture, made nondimensional by val-
ues at T = 25 oC. The �ow rate ex-
hibits linear dependence because
the EO mobility grows almost lin-
early, Fig. 2.8. When a counter
pressure is applied, 0.5pmax at
T = 25 oC, the increased mobil-
ity is balanced by a small decrease
in backpressure. The backpressure
decreases slightly, because the vis-
cosity decreases faster than the EO
mobility increases.

The main conclusions from Fig. 7.15 are that the �ow rate increases linearly
with temperature, and that the backpressure is independent of temperature.

7.2.2 Design History
The initial idea was simply to combine a wide and a shallow EO section with a
channel, as shown in Fig. 7.16.

Flow

j
a

EO section

Channel

Inlet Outlet

Outer Regions

Figure 7.16: The �rst idea of the
integrated planar/shallow pump.
As shown, the electrodes are intro-
duced from above.

One of the problems with the electrode arrangement shown in Fig. 7.16 is
that the electric �eld will not be uniform in the EO section. Only the middle
part of the EO section will have EOF, while the outer regions will have very
low EOF.

Imagine then, that many electrodes were distributed in such a way that the
electric �eld was uniform across the EO section. This does not solve the problem
either, because the �ow in the outer regions at some point will have to move
towards the center, where the inlet and the outlet are. This movement is not
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parallel to the imaginary electric �eld lines, and gives rise to pressure loss. A
more detailed description is given in the following sections, refer Fig. 7.23.

7.2.3 The �nal Design
The geometry of the shallow pump requires a �tting between the channel and
the pressure building EO section. A very wide and shallow channel has to merge
with a narrow and relatively deep channel. The remedy is to introduce a reservoir
between the EO section and the channel, as shown in Fig. 7.17.

Flow

Reservoirs

j
a

EO section

Channel

Inlet Outlet

Figure 7.17: The shallow/planar
pump combines high pressure and
a high �ow rate. It can be made
using standard etching techniques.
The reservoir concept is new, and
it enables the pump to be inte-
grated into a �uidic network.

The reservoirs do two things. (1) The electric resistance of the reservoirs is
small compared to the EO section. Consequently, the potential will be almost
constant in the reservoirs. The electric �eld will therefore be approximately
uniform in the EO section. (2) The �ow in the outer regions can move towards
the center with only a small pressure loss, because the hydraulic resistance of
the reservoirs is small compared to the EO section.
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Top view

Side view

EO section

DchDres
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W1 W
2

L1 L2 L3

Simulated area

Symmetry

Figure 7.18: Schematic view of
the Shallow Reservoir Pump. The
area used in simulating the reser-
voirs is marked. Dimensions: W1 =

200 µm, W2 = 1200 µm, D1 =

5 µm, D2 is variable, D3 = 50 µm,
L1 is not used, L2 = 100 µm,
L3 = 200 µm, ueo = 2000 µm/s.

The reservoir serves as a coupling device between the two sections. The
design factors are:

• Minimum pressure loss

• Minimum dead volume

• Minimum dispersion
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Minimum pressure loss can be obtained by making the reservoirs large, but this
counteracts the second and third requirement, the small dead volume and the
small dispersion. Hence, the dimensions of the reservoirs should be as small as
possible, without creating too large a �ow resistance. The governing factors are
the hydraulic resistances of the individual components. The hydraulic resistance
ratio does not scale linearly with the depth ratio.

7.2.4 Equivalent Circuit Model
The aim is to establish a model that can predict the Q-p characteristic.

The system consists of three hydraulic elements. The channel, the reservoir
and the EO section. The three elements are not coupled in series. The �ow rate
through the reservoir depends on the cross section chosen.

Qch = Qeo = Qtotal (7.7)
0 < Qres < Qtotal (7.8)

Eq. 7.8 is important when estimating the hydraulic resistances. In the case
where the reservoir has a small hydraulic resistance, the overall hydraulic resis-
tance is estimated using the following arguments, Fig. 7.19.
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Figure 7.19: The �ow rate
through a cross section in the
reservoir is expected to increase
linearly from zero to Qtotal. This
is because there is a constant
in�ow from the EO section.

The pressure loss is dependent on the �ow rate, which on average is Qtotal/2.
Hence, the e�ective hydraulic resistance of the reservoir may be approximated
to half of the geometrically based value.

Rhyd,total = Rhyd,ch + 1
2Rhyd,res + Rhyd,eo (7.9)

Using Eq. 7.9 and the standard equivalent circuit approach, the Q-p relation
is obtained.

7.2.5 CFD Simulations
The computational domain is selected to be as small as possible. Using symme-
try, we can reduce the problem by a factor two. The �ow in the large shallow
EO section is completely uniform, so instead of simulating the whole shallow
pump, we only select the section near the reservoir. The selected computational
domain is shown in Fig. 7.18. Five simulations with various reservoir depths
were done, Appendix B, Reservoir Design.

It is the same type of geometry used in a grid dependency test. The grid used
is therefore well tested, and should give �ow rate results within 3% of the best
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possible, Appendix I. A section of a Shallow Reservoir Pump mesh is shown in
Fig. 7.20.

Figure 7.20: Side view of the
mesh. The reservoir in this partic-
ular case is only half as deep as the
channel. There are two cell sizes.
The very �at cells in the EO sec-
tion and the �at cells everywhere
else. There are 10 cells across the
shallow EO section. The full mesh
contains 46.660 cells, and is only a
fraction of the whole geometry.

We are only interested in how the reservoir depth in�uences the �ow. The
electric �eld also depends on the depth, so instead of specifying an electric po-
tential and an EO mobility, a velocity ueo was speci�ed in the EO section. Con-
sequently, the electric �eld is decoupled from the problem, because a constant
velocity is the same as a uniform electric �eld and an EO mobility.

The Reynolds number is important when estimating the type of �ow that
we may encounter. In the EO section the Reynolds number is of the order

Re =
ueoDeo

ν
= 0.01, (7.10)

with ueo = 2000 µm/s, Deo = 5 µm and ν = 1.0× 106 µm2/s. The Reynolds
number ranges from Re = 0.01− 0.2, depending on the depth ratio in the given
simulation. Inertial e�ects should therefore be negligible in all cases, and it does
not matter at which end of the pump we are simulating.

The depth ratio Dres/Deo is varied, while Deo is �xed, and the corresponding
�ow rates are measured. The results are shown in Table 7.5.

hydraulic Simulation Circuit Model Deviation
depth ratio resistance ratio �ow rate �ow rate
Dres/Deo Rhyd,res/Rhyd,eo Q/Qo Q/Qo

20 0.010 1.00 1.04 4%
10 0.052 0.99 1.02 3%
5 0.34 0.92 0.90 2%
2 4.8 0.49 0.31 37%
1 37 0.16 0.05 65%

Table 7.5: Values for the �ow rate trough the outlet, as a function of depth ratios. Both
simulated and estimated values are presented. Flow rates are made nondimensional
with the �rst simulated value. The governing factor is the hydraulic resistance ratio,
Appendix B, Reservoir Design.

Table 7.5 shows, that in the �rst three simulations, the circuit model and sim-
ulation agree well. A closer inspection of the second simulation with Dres/Deo = 10
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reveals that the streaklines shown in Fig. 7.21 are positioned as expected.

Figure 7.21: Top view of the streaklines.
The simulation is done for a depth ra-
tio Dres/Deo = 10. The �ow is nicely
distributed across the whole width of the
pump, indicating that the �ow in the EO
section is not a�ected by the hydraulic re-
sistance of the reservoir. We also notice
that the density of the streaklines increase
towards the horizontal symmetry line. Pa-
rameters: as Fig. 7.18, pin = pout = 0.

In the circuit model, it was assumed that the �ow rate in the reservoir
increased linearly due to the in�ow from the EO section. The y-velocity in
the reservoir is approximately proportional to the �ow rate, see Fig. 7.22(a).
Hence, by plotting the Y -velocity along a line going from the outer region to
the symmetry line, we can measure the linearity of the �ow rate, see Fig. 7.22(b).
The �rst three simulations are linear, whereas the last are nonlinear.

Top view

x

y

z

Measurement line

Flow

W/2

Streaklines

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

Distance/ (W/2)

Y
−

V
el

oc
ity

/ u
eo

Depth ratio:                  
D

res
 / D

eo

Depth ratio: 20
Depth ratio: 10
Depth ratio: 5
Depth ratio: 2
Depth ratio: 1

(b)

Figure 7.22: (a) The �ow is visualized by use of streaklines. The number of the
streaklines crossing a cross section is proportional to the �ow rate. (b) Simulated
results of the Y-velocities along a centered measurement line for di�erent depth ratios.
The results are made nondimensional with the half width and the EO velocity.

If the hydraulic resistance of the reservoir becomes larger than that of the
EO section, the �ow characteristic changes. The streaklines change. Streaklines
from the fourth simulation with Dres/Deo = 2 can be seen in Fig. 7.23.
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(a) (b)

Figure 7.23: (a) D2/D1 = 10 and Rhyd,1/Rhyd,2 = 0.052. The hydraulic resistance
of the reservoir is so small that is does not a�ect the �ow in the shallow section.
(b) D2/D1 = 2 and Rhyd,1/Rhyd,2 = 4.8. The �ow in the shallow section is highly
in�uenced by the reservoir. In the outer part of the shallow section, the �ow reverses
and does not enter the reservoir. In this situation, the pump e�ciency is signi�cantly
decreased.

The last two simulations deviate signi�cantly from the model due to the
altered �ow characteristic, Table. 7.5. Recalling the design factors it is concluded
that the optimum hydraulic resistance ratio is approximately between 5%−30%.
If it is below 5%, there is unnecessary dead volume, and if it is above 30%, there
is a large pressure loss associated with the design.

The importance of dispersion is application speci�c, and will not be ad-
dressed here. Furthermore, a �ner mesh should be used for solving the advec-
tion/di�usion problem.

Certain unaddressed practical issues exist. One of them is the electrodes.
Di�erent types of electrodes may be �tted to the pump, but gel electrodes are
preferable, in order to reduce bubble formation, while still maintaining pressure.
Other electrode arrangements, such as nanochannels with Debye layer overlap,
connected to an open reservoir, might also be possible solutions.

Another issue is the shallow plate spacing. The bonding process may collapse
the plates. This problem was encountered by Chen et al. The remedy is to make
a considerable amount of ribs across the channel width.

7.3 Summary, Shallow Reservoir Pump
The Shallow Reservoir pump, which is a new and promising design, has been
developed. It makes e�cient use of the advantages of EOF. The design can be
fabricated using standard etching techniques, and it can be completely inte-
grated into a micro�uidic system, i.e., Lab-on-a-Chip.

For a simple rectangular channel it was concluded that a short, wide and
shallow channel gives the largest values of �ow rate and backpressure. Further-
more the temperature dependence of the �ow rate and backpressure was investi-
gated. The backpressure was found to be independent on temperature whereas
the �ow rate increased linearly. The model is based on physical constants and
the previously described temperature model for the EO mobility.



94 CHAPTER 7. NOVEL DESIGNS

An equivalent circuit model has been developed and compared to CFD simu-
lations. Agreement within 4% was achieved for the �ow rate in the linear region.
The limitations of the model were also investigated. Large discrepancies between
model and simulation were found when the hydraulic resistances of the reservoir
and the EO section were comparable.

The geometry of the reservoirs have been investigated, and the main con-
clusion is that the hydraulic resistance of the reservoir should be about in the
range 5%− 30% of the hydraulic resistance of the EO section.



Chapter 8

Conclusion

At this point it should be clear that micro�uidics is a very multi-disciplinary
�eld. The structure of the report should have helped the reader to a smooth
introduction to the topic.

An understanding of the underlying physics is essential for any progress. The
basic physical properties of liquids such as viscosity and di�usion are described.
During my literature study I found di�erent spurious versions of the energy
equation, e.g., Chen. So a rigorous treatment of the energy equation was needed.
Furthermore, the classic momentum and continuity equation are introduced.

A temperature model for the EO mobility is proposed. The model predicts an
almost linear increasing EO mobility as a function of temperature. The model
has not been compared to any experiments, possibly because there are none.
So the model stands alone, but the nonlinear pump characteristics give a clear
indication of an EO mobility, increasing with temperature.

In the elementary �ow analysis, the �uid dynamics are coupled with the
electrokinetic e�ects, showing that the �ow rate for pressure driven �ows scales
as Q ∝ a4, whereas for EOF Q ∝ a2. This e�ect is the essence of EOF, and can
be utilized particularly well in micro�uidic pumping.

Flows in di�erent geometries were analyzed using theory for partial di�er-
ential equations. The geometries considered were inspired by the novel designs.
In practice, the ideas for the novel designs appeared �rst and the theory was
then subsequently developed. The results were then generalized to be of use in
the equivalent circuit theory and in other designs. Plots of nondimensional �ow
rates versus aspect ratio and �ow pro�les are indeed very useful in the design
process.

The equivalent circuit theory is a well-known theory, and it is used by many
hydraulic engineers throughout the world. The theory is also very applicable to
micro�uidics. All the devices presented in this thesis are successfully modelled
with the equivalent circuit model.

Computational �uid dynamics was used in conjunction with the circuit
model. The dynamic interaction between the circuit model and CFD proved
to be very e�cient. Errors of di�erent kinds were quickly discovered and cor-
rected. Coventor 2001.3 is a relatively new CFD-package and it contains a
fair amount of bugs. Fortunately, the support group was very helpful. The di-

95
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rect focus on micro�uidics is unparallel in any other CFD software available.
Typically, the agreement between circuit model and CFD was within 3−4% for
the �ow rate and backpressure. This high degree of accuracy was achieved with
structurally simple meshes. The governing factor was the number of cells in the
cross sections.

Theory and simulation are the keywords of this thesis. The lack of experi-
ments is evident. Hence, I searched the literature for well described experiments
with EO pumps and found two cascade pumps. From this survey a description
of the di�erent types of EO pumps arose.

Two di�erent types of cascade pumps were chosen from the micropump
overview. The Parallel Cascade Pump is well suited for the equivalent circuit
theory. Agreement within 1− 2% between model and simulation was achieved.
Morf et al., 2001, also used the circuit theory for comparison with the experi-
ments. There was excellent agreement for low voltages.

The Low-Voltage Cascade pump by Takamura et al., 2001, is very interesting
because it can be operated with low voltages and is relatively simple to manu-
facture. There was not enough information in the published article to commence
a �ow analysis. Takamura agreed to provide the details. The investigation led to
the conclusion that there was something wrong with either the measurements
or the pump. Upon contact it became clear, that there were several problems
that had not been published. The case illustrated the need for a better simu-
lation e�ort in micro�uidics. It is my belief that an equal distribution between
experiments and simulation is the most e�cient way to progress.

Two novel designs were presented: (1) Introducing the �rst EO pump that
should be able to pump nonconducting liquids. The pump was denoted the Two-
liquid Viscous Pump. The expected performance with respect to �ow rate and
backpressure is similar to that of a single EO channel. Further investigations of
microscale two-phase �ows are needed. (2) Modi�cation of the planar/shallow
pump by Chen et al., 2000, allowing for integration into a chip system. The
pump is denoted the Shallow Reservoir Pump. A detailed analysis of a simple
rectangular channel was made. Flow rates and backpressures were found as
functions of geometry and temperature. This type of pump may in fact prove to
be the leading type of EO pumps for some time. The potentially most e�ective
EO pump is the porous pumps. New fabrication techniques may enable them to
be integrated into a chip in the future.

Anders Brask, c961052
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Appendix A

Flow in a Rectangular
Channel with moving Lid

Consider a steady uniform laminar �ow in a rectangular channel with a moving
lid. In mathematical terms this is the Laplace equation with inhomogeneous
Dirichlet BCs. The BVP is represented in Fig A.1. One must start with an
initial guess at the �ow pro�le. The obvious choice is Couette �ow pro�le. The
solution will converge to this pro�le for large aspect ratios, κ = 2 W/H.

FLOW

y

x

z

2 W

H

u=U

Figure A.1: Rectangular channel �ow
driven by moving lid. Width: 2W , height:
H.

u(y, W ) = u(y,−W ) = 0 (A.1)
u(0, z) = 0 (A.2)

u(H, z) = U (A.3)
Initial guess : u(y, z) = U

y

H
+ f(y, z) (A.4)

Navier-Stokes : 0 = ν

(
∂2u

∂y2
+

∂2u

∂z2

)
(A.5)

Inserting the initial guess into Navier-Stokes equation

0 = uyy + uzz (A.6)
0 = fyy + fzz (A.7)

BC1 : f(0, z) = f(H, z) = 0 (A.8)
BC2 : f(y,−W ) = f(y,W ) = −U

y

H
(A.9)

v
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The governing equation is recognized as the Laplace equation with Dirichlet
boundary conditions. Such a boundary value problem can be solved by the
method of separation.

f(y, z) = F (y)G(z) (A.10)

−F ′′(y)
F (y)

=
G′′(z)
G(z)

= λn (A.11)

F ′′(y) = −λnF (y) (A.12)

λn are constants and are referred to as the eigenvalues for the problem. There
exist now four cases depending on the nature of the eigenvalues which may
be zero, negative, positive or complex. Each solution to F (y) is investigated by
inserting the appropriate boundary conditions. It turns out that eigenvalues has
to be positive.

f(y, z) =
∑

fn (A.13)
fn = (An cosh(λnz) + Bn sinh(λnz))× (A.14)

(Cn cos(λny) + Dn sin(λny)) (A.15)

Due to symmetry of the solution (Bn = Dn = 0). The boundary condition
(BC1) gives the eigenvalues (λn = nπ/H). From this set of eigenfunctions (fn)
the solution may be found by determining the Fourier coe�cients. Inserting the
reduced guess into the (BC2) boundary condition gives

−U
y

H
=

∞∑
n=1

An cosh(λnW ) sin(λny) (A.16)

−U
y

H
=

∞∑
n=1

A∗n sin(λny) (A.17)

A∗n =
2
H

∫ H

0

−U
y

H
sin(λny)dy (A.18)

Integration by parts (A.19)

A∗n =
2U

nπ
(−1)n (A.20)

Finally the overall velocity �eld may be written as

u(y, z)
U

=
y

H
+ 2

∞∑
n=1

(−1)n

nπ

cosh(nπ z
H )

cosh(nπ W
H )

sin(nπ
y

H
) (A.21)

Evaluating this expression on a computer using a �nite number of digits may be
a problem. The fraction with the hyperbolic cosines will cause a problem when
n becomes large. The remedy is to write cosh(x) = (ex + e−x)/2 and divide by
ex in both nominator and denominator. The Matlab source code can be seen
in Appendix D, Moving Lid. One solution is shown in Fig. A.2.
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Figure A.2: Contour lines of the
solution u(x, y) made nondimen-
sional by U and H. The aspect ra-
tio is 2 W/H = 2.

The �ow rate may be found by integrating the solution, Fig. A.3.
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Figure A.3: Relative �ow rate of a
single wall EO pump as function of
aspect ratio. Note that the graph
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W and H is the full width and
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Appendix B

Pump Calculations

The following worksheets are made in Microsoft Excel 2000. The equations
used are not displayed and reader is left to the respective sections. The equations
can be found almost exclusively in Chap. 3. I have used di�erent colors and
typesetting for readability.

• Bold face: numbers, are used to display a calculated value.

• Bold face: titles, are used to emphasize the title.

• Plain face: constants and units.

• Gray font: workings.

The following worksheets are included.

• Morf, 1 page.

• Takamura, 2 pages.

• Two-Liquid Viscous Pump, 2 pages.

• Reservoir Design, 1 page.

• Shallow Reservoir Pump, 3 pages.

• Layout, 1 page.
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Appendix C

Simulation Logbook

Before undertaking a large simulation e�ort it is crucial to have a simulation
logbook. The most logical settings can be forgotten after a week or a month.
I have not included the actual simulation sheets because they are handwritten
in my native language (Danish). Furthermore all of the important results are
transferred to Appendix B.
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Appendix D

Matlab Source Code

Many small Matlab programs have been used in the report. In total I have
written 28 small programs. Either used for calculations or for plotting data.
Here three of the most important are included.

• Potential Solver
Solves the potential/velocity distribution in a circular capillary, Fig. 2.2(a).
The BVP is a nonlinear so a shoot and correct method was implemented.

• Moving Lid
Flow in a rectangular channel with a moving lid, Fig A.2 and Fig. A.3.

• Two Moving Walls
Flow in a rectangular channel with two moving walls, Fig 3.5 and Fig. 3.4.

• Di�usion
Di�usion problem in one dimension. Again the problem is solved analyti-
cally and evaluated numerically using Matlab, Fig. 2.7.
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D.1 Potential Solver
%Program to solve the potential/velocity distribution
%in circular capillary with finite sized Debye layers.
%Nonlinear BVP is solved by internal ODE-solver
%and a implemented shoot and correct method.
%Verified by calculations in Probstein, chap. 6
%by Anders Brask, MIC 2001
%Note: SIGN OF THE ZETA POTENTIAL
% FORMULA FOR CIRCULAR CAPILLARIES USED!!!
clear all close all global lambda

f=input('Plot velocity profile(1, default) or potential (2)?'); if
isempty(f) f=1; end

lambdavec=[2 1 0.4 0.2 0.1 0.01]; %Dimensionless Debye layer thickness

figure(1) hold on for j=1:1:size(lambdavec,2) zero=1e-6;
guess=0.0; delta=1e-10; error=1; maxerror=1e-4; zeta=2.79; p=0;
lambda=lambdavec(j);

if lambda==0.01 %Special case for small lambda
zero=0.9;

end

while error>maxerror p=p+1; for i=1:2
%[r,psi] = ode45(@vdp1,[zero 1],[guess+(i-1)*delta; 0]);

[r,psi] = ode45('vdp1',[zero 1],[guess+(i-1)*delta; 0]);
rightbc(i)=psi(length(psi(:,1)),1); end
slope=(rightbc(2)-rightbc(1))/delta;
guess=guess-(rightbc(1)-zeta)/slope;
error=abs(rightbc(2)-zeta)/zeta;
end %while

%Plotting either velocity of potential
if f==1 plot(r,-(psi(:,1)/zeta-1),'k','linewidth',2) hold on end

if f==2 plot(r,psi(:,1),'k','linewidth',2) hold on end

end %Lambda loop

%Labelling of graphs
%--------------------------------------------------------
if f==1 plot([0 0.9],[1 1],'k-','linewidth',2) axis([0 1 0 1])
xlabel('r/a','fontsize',12); ylabel('u/u_{\infty}','fontsize',12);
text(0.40,0.05,'\lambda*=2','fontsize',12);
text(0.45,0.20,'\lambda*=1','fontsize',12);
text(0.50,0.50,'\lambda*=0.4','fontsize',12);
text(0.60,0.70,'\lambda*=0.2','fontsize',12);
text(0.7,0.83,'\lambda*=0.1','fontsize',12);
text(0.81,0.93,'\lambda*=0.01','fontsize',12); end

if f==2 plot([0 1],[zeta zeta],'k--','linewidth',2)
xlabel('r/a','fontsize',12); ylabel('\psi`','fontsize',12);
text(0.6,2.9,'\zeta=2.79','fontsize',12);
text(0.1,2.55,'\lambda*=2','fontsize',12);
text(0.2,2.0,'\lambda*=1','fontsize',12);
text(0.35,1.2,'\lambda*=0.4','fontsize',12);
text(0.50,0.55,'\lambda*=0.2','fontsize',12);
text(0.65,0.35,'\lambda*=0.1','fontsize',12);
text(0.82,0.15,'\lambda*=0.01','fontsize',12); end
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D.2 Moving Lid
%Flow in a rectangular channel with moving lid.
%PDE solved analytically and the expression is evaluated.
%Sherman - Viscous Flow, p. 154
%No pressure gradient. Velocities are made nondimensional by U.
%Two plot options
%(1) Contour plot of velocity distribution for a given aspect ratio.
%(2) Nondimensional flow rate as function of aspect ratio
%by Anders Brask
%MIC 2002
%--------------------------------------------------------------------------
clear all

disp('1: Contour Plot of velocity') disp('2: Aspect Ratio')

p=input('Plot results (default=1):'); if isempty(p) p=1; end

if p==1 aspectratio=input('What is the aspect ratio (W/H) (max
10)(default=1): '); if isempty(aspectratio) aspectratio=1; end
aspectratio=0.5*aspectratio; %W is half width but H is full height.

N=50; %Resolution of mesh
M=30; %Number of terms in sum
yvec=linspace(0,1,N); %y/H
zvec=linspace(0,aspectratio,N); %z/H
u=zeros(N); signvec=ones(1,M);
signvec(1:2:M)=-1; %signvec=[-1 1 -1...]
nvec=pi*linspace(1,M,M); %nvec=pi [1 2 3 ...]

for i=1:N for j=1:N y=yvec(i); z=zvec(j);
u(i,j)=y+2*sum(signvec.*cosh(nvec*z).*sin(nvec*y)./(cosh(nvec*aspectratio).*nvec)); %i-th row

end end figure(1) cn=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9];
temp=[fliplr(u) u];
[cs,h]=contour(linspace(-aspectratio,aspectratio,2*N),linspace(0,1,N),temp(1:N,1:2*N),cn,'-k');
axis equal axis([-aspectratio aspectratio 0 1])

disp('Non-dimensional discharge'); disp(mean(mean(u))); end

if p==2
%---------------------------------------------------------------
L=50; M=30; N=50;

maxa=5; mina=0.05; discharge=zeros(1,L);
aspectratio=logspace(log(mina)/log(10),log(maxa)/log(10),L);
yvec=linspace(0,1,N); %y/H
signvec=ones(1,M);
signvec(1:2:M)=-1; %signvec=[-1 1 -1...]
nvec=pi*linspace(1,M,M); %nvec=pi [1 2 3 ...]
for k=1:L u=zeros(N);
zvec=linspace(0,aspectratio(k),N); %z/H
for i=1:N for j=1:N y=yvec(i); z=zvec(j);

u(i,j)=y+2*sum(signvec.*cosh(nvec*z).*sin(nvec*y)./(cosh(nvec*aspectratio(k)).*nvec)); %i-th row
end end discharge(k)=mean(mean(u)); end figure(1) close(1)
figure(1) semilogx(2*aspectratio,discharge,'-k','Linewidth',3);
axis([2*mina 2*maxa 0 0.5]) xlabel('Aspect ratio
(H/W)','Fontsize',14);5 ylabel('Relative
discharge','Fontsize',14); grid on
end %p
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D.3 Two Moving Walls
%Duct Flow
%Based on equations derived
%by Anders Brask
%MIC 2002
%--------------------------------------------------------------------------

aspectratio=input('What is the aspect ratio (W/H) (default=1): ');
if isempty(aspectratio) aspectratio=1; end

N=25; %Resolution of mesh
M=100; %Number of terms in sum
yvec=linspace(0,1,N); %y/H
zvec=linspace(0,aspectratio,N); %z/H
u=zeros(N); signvec=ones(1,M);
signvec(2:2:M)=-1; %signvec=[-1 1 -1...]
nvec=pi*linspace(0,M-1,M)+pi/2; %nvec=pi [1/2 3/2 5/2...]

for i=1:N for j=1:N y=yvec(i); z=zvec(j);
u(i,j)=1-2*sum(signvec.*cos(nvec*y).*(exp(nvec.*(z-aspectratio))+exp(-nvec.*(z+aspectratio)))...
./nvec./(1+exp(-2*aspectratio*nvec))); %i-th row

end end figure(1) cn=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9];
temp=rot90([flipud(fliplr(u)) flipud(u); fliplr(u) u]);
[cs,h]=contour(linspace(-aspectratio,aspectratio,2*N),linspace(-1,1,2*N),temp(1:2*N,1:2*N)',cn,'-k');
clabel(cs,h,'manual') axis equal axis([-aspectratio aspectratio -1
1])
discharge=1-(2/aspectratio)*sum(signvec.*tanh(nvec*aspectratio).*sin(nvec)./(nvec.^3))



APPENDIX D. MATLAB SOURCE CODE xxix

D.4 Di�usion
%Diffusion problem in one dimension, part 1/2
%The initial condition is placed in a function, part 2/2.
%The Fourier coefficients are found by integrating this function.
%by Anders Brask
%MIC 2002
%--------------------------------------------------------------------------
clear all

global gamma a m W

N=20; %Fourier terms
M=40; %Spatial resolution
T=6; %Time resolution

k=2.26e-9; %Diffusion coefficient (m^2/s)
W=1e-5; %Width (m)
W=1; k=1/0.044; gamma=20; a=0.5*W; A(1:N+1)=0;
xvec=linspace(0,W,M); tvec=[0 0.015 0.05 0.1 0.2 1]*W^2/k;
%Fourier Coefficients
for m=0:1:N A(m+1)=2*quadl('stepfun',0,W)/W; end

figure(1) close(1)

for j=1:T for i=1:M
phi(i)=0.5*A(1)+sum(A(2:N+1).*cos((1:N)*pi*xvec(i)/W).*exp(-k*tvec(j)*((1:N)*pi/W).^2));

end hold on plot(xvec,phi,'k-') end figure(1) axis([0 W 0 1])
xlabel('x/W','Fontsize',14) ylabel('c/c^o','Fontsize',14)
text(0.5*W,0.96,'t=0','Fontsize',14) text(0.6*W,0.94,'t=0.015
t^o','Fontsize',14) text(0.7*W,0.85,'t=0.05 t^o','Fontsize',14)
text(0.8*W,0.75,'t=0.1 t^o','Fontsize',14) text(0.85*W,0.64,'t=0.2
t^o','Fontsize',14) text(0.9*W,0.54,'t=t^o','Fontsize',14)
text(0.1*W,0.8,sprintf('Characteristic \ndiffusion time,\nt^o=%0.2g s',W^2/k),'Fontsize',14)

%Diffusion part 2/2
%Function used in evaluation of Fourier coefficients A_n.
%By Anders Brask
%MIC 2002

function stepfun = stepfun(x)

global gamma a m W

stepfun = 0.5*cos(pi*m*x/W).*(1+tanh(gamma*(x-a)/W));





Appendix E

Coventor Support Q&A

In the following appendix questions and answers from Coventor Support are
presented. The answers have been written by Technical director, Dr. ir. Joost
van Kuijk and senior application engineer Chris Welham.

Q:
I have worked the Wall Effects, EO mobility BC in a simple
straight channel. Why does it only return zero velocities.

A:
There is a numerical problem in the FVMTool. Briefly, for some
models the potential equation can solve so fast that there are not
valid boundary conditions for the momentum equation so that it is
not solved.

This problem has been fixed and will be included in the next
official patch release, due out next year. In the meantime I can
send you the required replacement FluentWrapper.exe. Please could
you let me know the OS you are using, so that I can send the
appropriate file. The new file must be put into
/coventorWare2001.3/bin. The as installed FluentWrapper.exe that
is present should be re-named so that it is not over-written.

Q:
What is the molecular weight used for in \textsc{Coventor} (just
briefly). Is it mandatory?

A:
The molecular weight is not used anywhere, and does not need to be
set. It will be removed in the next release.

Q:
How large aspect ratios be used with the FVM tool?

A:
Element aspect ratios should generally be less than 100 to 1.
Higher aspect ratios will cause solver divergence or unphysical
answers. It is actually possible to run problems with 1 million
elements, using the FVMTool, but you need about 1.5 gigs of RAM
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for this, so its typically not a good idea. I don't really know
anything about your simulation, but the best approach is usually
to run a shorter sample with detailed simulation, extract the
behaviour, and build a system model to simulate the larger system.

Q:
I have question regarding the mass fraction. I have just simulated
a simple flow in a T-junction. At the one end I introduced species
with mass fraction 1 (SpeciesSurfBCs). The simulation gave mass
fractions as high as 1.26. In my opinion mass fractions should not
exceed 1! How does it calculate it? The carrier is water and I
have not specified the density of species 1. If have searched
through the microfluidic analysis and reference guide documents.
The simulation was done nondilute which is perhaps why it goes
wrong? However as I understand it the difference between the
dilute and nondilute option is only relevant for conductivity
calculations.

A:
Nondilute simulations can often result in increasing species
fractions. This usually occurs when a species is being transported
by electrophoresis, and has a nonzero species conductivity. This
results in an effective velocity field that has a nonzero
divergence, so the mass fraction can increase (this is often
called stacking, and the effect is used for sample
pre-concentration in Capillary Zone Electrophoresis). Remember
that all nondilute simulations should be done with the FVMTool.
Its also possible to get increasing mass fractions for dilute
simulations if very coarse timesteps are used (this would
obviously be a numerical error).

Q:
The FlowRate patch query should give the Flux through a patch. But
this is not the case (unless the flow is perpendicular to the
patch). Patch query on a patch that is parallel to the flow does
also give considerable values.

A:
The flow rate query calculates the flow rate of fluid
perpendicular to the patch (mathematically, the integral of the
fluid velocity dotted with the patch normal). It typically gives
very small answers for flow rate through walls, but not exactly
zero, we are not sure why and are looking into this.



Appendix F

Similitude between the
Velocity and Electric �eld

Direct numerical simulation of the Navier-Stokes equation with species trans-
port coupled with the Poisson equation is extremely complicated. Hence it is
preferable if some simpli�cations could be made. The �ow is strictly laminar so
no turbulence modelling is needed. If the Debye layer is disregarded, the Poisson
equation may be replaced with the Laplace equation. The Debye layer is impor-
tant from a physical point of view and determines the similitude between the
�uid and the electric �eld. However it is not important to resolve this layer in
the numerical simulations. Even if this was necessary it would be very di�cult
because of di�erences in the order of magnitude of the length scales, Cummings
et al., 2000.

In some situations it may be possible to determine the �ow from the Laplace
equation solely. The conditions for this major simpli�cation are partly shown
on Fig. F.1 and discussed thoroughly in the following.

Figure F.1: Conditions for Similitude between the �uid and Electric �eld in EOF.

• In order for a �ow to exhibit similitude the electric �eld must be quasi-
stationary. For a given system there will be a transient time and as long
as the �eld changes slow compared to that time it will not violate this
condition.

• A laminar pressure driven �ow generates a parabolic velocity pro�le. Hence
the pressures must be the same at the inlet and outlet, i.e., no pressure
gradients can be present.
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• Gravity may also induce a parabolic velocity pro�le so the �ow must be
orthogonal to the gravity �eld.

• The Debye layer must be thin λD ¿ a where a is the radius of the
channel. This assumption was used in the derivation of the Helmholtz-
Smoluchowski relation. If indeed the double layer covered the entire chan-
nel it would have a uniform charge density and hence a parabolic velocity
pro�le would be induced.

• Other less stringent conditions also have to ful�lled in order to meet full
similitude. Uniform density, viscosity and conductance for the bulk �ow.
The boundaries must be impermeable, nonconducting and with constant
zeta potential (constant double layer thickness).

• There cannot be any electrodes within the domain of similitude.

• The inlet and outlet velocities Fig. F.1 have to ful�ll the Helmholtz-
Smoluchowski relation. If all these conditions are met the �ow will be a
simple potential �ow1 which can be calculated from the Laplace equation
by means of �nite element method (FEM) or another numerical method.
Orthogonal intersections of streamlines and isopotentials indicate a po-
tential �ow.

1Potential �ow is free of vorticity.



Appendix G

Two-Phase Flow

In some types of EO pumps it may be desirable to use two di�erent liquids.
If the liquids are to be separate for a long period of time they have to be
immiscible. An example of such to liquids could be water and oil. Which leads
us to the next point namely that the liquids have di�erent viscosities, Fig. G.1.
One should imagine that the �gure could be mirrored in the symmetry line -
layer of zero stress.

FLOW

Adverse pressure
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x

Symmetry axis, layer of zero stress

Interface

b
2

b
1

u

1
m

2m
W

eo

Figure G.1: Velocity pro�le in
laminar adjacent �ow of two im-
miscible �uids with di�erent vis-
cosities. The velocity and shear
stress must match at the interface,
y = 0.

Introducing nondimensional coordinates, and ratios of viscosity σ and layer
thickness κ. µ0 is a reference viscosity.

y∗ =
y

W
τ∗yx =

τyx

µ0
u∞
W

∇p∗ =
∇p

µ0u∞
W 2

(G.1a)

u∗i =
ui

u∞
µ∗i =

µi

µ0
(G.1b)

σ =
µ1

µ2
κ =

b1

b2
(G.1c)

Inserting these terms in the steady state, incompressible Navier-Stokes equation
for creeping �ow we obtain

∇p∗ = µ∗i
d2u∗i
dy∗2

. (G.2)

Eq. (G.2) is then integrated twice with respect to y∗ and the appropriate bound-
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ary conditions (BCs) are applied.

BC1 τ∗yx,1 = τ∗yx,2 at y∗ = 0 (G.3a)
BC2 u∗1 = u∗2 at y∗ = 0 (G.3b)

BC3 u∗2 = 1 at y∗ =
−b2

W
(G.3c)

BC4 du∗1
dy∗

= 0 at y∗ =
b1

W
(G.3d)

After some calculations the two velocity pro�les u∗i
(
y∗, ∇p∗

µ∗2
, κ, σ

)
are obtained,

Fig. G.2. Here two di�erent cases are shown.
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Figure G.2: Velocity pro�le in laminar adjacent �ow of two immiscible �uids. (a) The
dynamic viscosity is higher in the bottom layer. (b) Here the situation is the opposite.



Appendix H

Temperature in a Capillary

Here we begin by making a rough estimate on the heat dissipated in a chan-
nel. Let us consider a capillary with an inner radius r1 and outer radius r2, see
Fig. H.1. The outer part of the capillary is in thermal contact with a reservoir
at a �xed temperature T2. The heat dissipated within the capillary is there-
fore transported throughout the capillary wall. We are interested in �nding the
temperature within the capillary T1 in the stationary situation.

P = q̇heat,trans., (H.1)

T1T2

r
1

r
2

Figure H.1: Heat conduction in a radial channel.

where the ohmic heating is

P = E2cλelec, (H.2)

and the heat transport rate is

q̇heat,trans. =
2λheat

r2
1 ln r2

r1

(T1 − T2) (H.3)

(H.4)

q̇ is the energy per volume per time. P is the ohmic heating and q̇heat,trans is
the heat transport. If the expressions are matched one obtains

T1 = T2 +
r2
1E

2cλelec ln r2
r1

2λheat
(H.5)
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Remark that the terminal temperature is proportional to the square of radius
and electric �eld. Recalling that the EO velocity is proportional the electric �eld
there may be a con�ict limiting the size of applicable �eld size.

Example: Heating of a capillary
A solution with a concentration of 0.01 M KCl (c = 101 mol/m3) is
considered. The capillary's inner radius is r1 = 50 µm and the outer
radius is r2 = 200 µm. Conductivity of KCl λelec = 150×10−4 m2S/mol,
electric �eld E = 2× 105 V/m, ambient temperature T2 = 293 K. Then
T1 − T2 = 12 K.



Appendix I

Grid Dependency

The following analysis is based on the Shallow Reservoir Pump. In the prelim-
inary study of the Shallow Reservoir Pump the whole geometry as shown on
Fig. I.1 was simulated. For that purpose a grid dependency analysis was made.

Figure I.1: The computational domain used in the grid dependency analysis.

The data in Table I.1 is taken from Appendix B, Shallow Reservoir Pump
(Shallow 2, geometry A).

Simulation Cells Tolerance Flow rate Max velocity z-cells
×10 nL/s µm/s

2 11000 10−4 4.84 3610 10
8 11000 10−6 4.84 3610 10
3 15000 10−4 4.84 3639 10
10 15000 10−6 4.85 3638 10
4 60000 10−4 4.92 4451 10
1 66000 10−4 4.96 4981 15
9 66000 10−6 4.97 4981 15
5 120000 10−4 4.97 5024 20
9 120000 10−6 4.99 4981 20

Table I.1: Grid and tolerance dependency for the Shallow Reservoir Pump. The z-cell
column is the number of vertical cells in shallow region.
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The number of cells is varied from 11000 to 120000. A series of observations
is made. Regarding the tolerance it is noticed that for �ne meshes it is more
important than for coarse meshes. This must be due to its de�nition.

The �ow rate changes 3% from the coarsest to the �nest mesh. The compu-
tation time is however, changed from 2 minutes to 2 hours. So a Q-p simulation
with 10 points takes a day for the �nest mesh. Hence, in many simulation rel-
atively coarse meshes were used since the last few percents of accuracy costs a
great deal in work and computational time. In the present case I would have
used the simulation 9 as a good compromise.

The max velocity changes a great deal. This because of the divergence of
the electric �eld. The velocity is coupled to the electric �eld through the EO
mobility. As the cell size become smaller the divergence become increasingly
pronounced.

The number of z-cells is important because it determines the resolution of
the velocity pro�le in the large shallow section.


