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ABSTRACT:
We present an effective thermoviscous theory of acoustofluidics including pressure acoustics, thermoviscous

boundary layers, and streaming for fluids embedded in elastic cavities. By including thermal fields, we thus extend

the effective viscous theory by Bach and Bruus [J. Acoust. Soc. Am. 144, 766 (2018)]. The acoustic temperature

field and the thermoviscous boundary layers are incorporated analytically as effective boundary conditions and time-

averaged body forces on the thermoacoustic bulk fields. Because it avoids resolving the thin boundary layers, the

effective model allows for numerical simulation of both thermoviscous acoustic and time-averaged fields in three-

dimensional models of acoustofluidic systems. We show how the acoustic streaming depends strongly on steady and

oscillating thermal fields through the temperature dependency of the material parameters, in particular the viscosity

and the compressibility, affecting both the boundary conditions and spawning additional body forces in the bulk. We

also show how even small steady temperature gradients (�1 K=mm) induce gradients in compressibility and density

that may result in very high streaming velocities (�1 mm=s) for moderate acoustic energy densities (�100 J=m3).
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I. INTRODUCTION

Modeling and simulation are important for designing

microscale acoustofluidic systems. Traditionally, most mod-

els have been purely mechanical, but some include thermal

effects, such as in the studies of the acoustic radiation force

acting on suspended microparticles1–3 and of acoustic

streaming in rigid cavities.4,5

Here, we focus on acoustic streaming, where recent

developments in the field point to the necessity of making a

full thermoviscous analysis. Karlsen et al.6 introduced the

acoustic body force acting on a liquid governed by solute-

induced gradients in the compressibility and density of the

liquid. This force has explained the iso-acoustic focusing of

mircoparticles,7 patterning of concentration profiles,8 and

suppression of acoustic streaming.9,10 Simultaneously, Bach

and Bruus11 developed the effective theory for pressure

acoustics and streaming in elastic cavities, in which the vis-

cous boundary layer was solved analytically and imposed as

an effective boundary condition to the bulk field. This model

has enabled simulations of cm-sized three-dimensional (3D)

acoustofluidic systems,12,13 with hitherto prohibitive compu-

tational costs, and it has provided a deeper insight into the

physics of boundary- and bulk-induced streaming, but with-

out thermal effects.14

In this work, we combine our previous work on thermo-

viscous streaming in rigid systems,5 thermoviscous potential

theory,3 the theory of pressure acoustics with viscous

boundary layers and streaming in curved elastic cavities,11

and the 3D numerical modeling of acoustofluidic systems

using the latter theory,12 and develop an effective thermovis-
cous theory for a fluid-filled cavity embedded in an elastic

solid. The theory includes both steady and acoustic tempera-

ture fields for pressure acoustics with thermoviscous bound-

ary layers and for streaming with thermoviscous body

forces. In Sec. II, we set up the basic theory and model

assumptions. In Secs. III–V, the governing equations and

boundary conditions are derived from the theory for the

zeroth, first, and second order in the acoustic perturbation,

respectively. In Sec. VI, the theory is implemented in a

numerical model, which is then used in two examples to

show the nature and importance of thermal effects in acous-

tofluidics. Finally, we conclude in Sec. VII.

II. BASIC THEORY AND MODEL ASSUMPTIONS

We consider an acoustofluidic device consisting of an

elastic solid containing a microchannel filled with a thermo-

viscous Newtonian fluid and actuated by a piezoelectric

transducer at a single frequency in the MHz range. This

time-harmonic actuation establishes an acoustic field in the

system, which in the fluid, by the internal dissipation and

hydrodynamic nonlinearities, results in a time-averaged

response that leads to acoustic streaming.

A. Governing equations

In this work, unlike prior work,12 we leave the piezo-

electric transducer out of the analysis and only represent it
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by an oscillating displacement condition on part of the sur-

face of the elastic solid. The response of the fluid embedded

in the elastic solid to this oscillating-displacement boundary

condition is controlled by the hydro-, elasto-, and thermody-

namic governing equations of the coupled thermoviscous

fluid and elastic solid.

The linear elastic solid is described in the Lagrangian

picture by the fields of the density q, the displacement u,

and the temperature T, as well as the stress tensor r. Further,

for isotropic solids, there are eight material parameters: the

longitudinal and transverse sound speeds clo and ctr, the

thermal conductivity kth, the specific heat cp, the ratio of

specific heats c ¼ cp=cv, the thermal expansion coefficient

ap, and the isothermal and isentropic compressibilities js

and jT ¼ cjs. The velocity field is given as the time deriva-

tive of the displacement field vsl ¼ @tu, so no advection

occurs, and the governing equations are the transport equa-

tions of the momentum density q@tu and temperature T,3,15

q@2

t u ¼ $ � r; (1a)

@tT þ
ðc� 1Þ

ap
@tð$ � uÞ ¼

c
qcp

$ � ðkth$TÞ; (1b)

r ¼ � ap

jT
ðT � T0ÞI þ s; (1c)

s ¼ qc2
tr $uþ ð$uÞT
h i

þ q c2
lo � 2c2

tr

� �
ð$ � uÞI; (1d)

where superscript “T” indicates a transposed matrix.

The fluid is described in the Eulerian picture by the

fields of the density q, the pressure p, the velocity v, the

temperature T, and the energy per mass unit �, and by the

material parameters as before: kth, cp, ap, c, js, jT, but with

ctr replaced by the dynamic and bulk viscosity g and gb. The

governing equations are the transport equations for the den-

sity of mass q, momentum qv, and internal energy q�,3,5,16

@tq ¼ �$ � ðqvÞ; (2a)

@tðqvÞ ¼ $ � ðr� qvvÞ; (2b)

@t q�þq
v2

2

� �
¼$ � kth$Tþv �r�qv �þ v2

2

� �� �
þP;

(2c)

r ¼ �pI þ s; (2d)

s ¼ g $vþ ð$vÞ†
h i

þ gb � 2

3
g

� �
ð$ � vÞI: (2e)

Here, P is the external heat power density.

Pressure and temperature are related to the internal

energy density by the first law of thermodynamics and to the

density by the equation of state,3,5,17

qd� ¼ ðqcp � appÞ dT þ ðjTp� apTÞ dp; (3a)

dq ¼ qjT dp� qap dT: (3b)

The thermodynamics also shows up in the temperature and

density dependency5 of any material parameter q,

dq ¼ @q

@T

� �
q
dT þ @q

@q

� �
T

dq: (4)

The temperature sensitivity of each parameter is quantified

by the dimensionless quantity aq ¼ 1=apqð@q=@TÞq,

aq ¼ �1; ag ¼ �89; agb ¼ �100;

akth ¼ 11; aap
¼ 145; ajs

¼ �10; (5)

where the values are for water at T ¼ 25 �C.5 The temperature

dependency of the parameters implies that thermal gradients

may induce gradients in, say, density and compressibility.

This leads to the appearance of the inhomogeneous acoustic

body force fac introduced in acoustofluidics for solute-induced

gradients by Karlsen et al.6

B. Acoustic actuation and perturbation expansion

Following Ref. 11, we actuate time-harmonically with

angular frequency x by a displacement of a surface, so an

element at equilibrium position s0, at time t will have the

position sðs0; tÞ ¼ s0 þ s1ðs0Þe�ixt. For models containing

only a fluid, the displacement will be on the fluid boundary,

whereas for models containing both a fluid and a solid

domain, the actuation is on the solid boundary. For models

including the piezoelectric transducer driving the system,

the actuation parameter is the applied voltage.12 However,

this is not included in this work.

The acoustic response to the actuation parameter s1 is

linear, and the resulting fields will be complex fields

Q1ðrÞe�ixt, the so-called first-order fields with subscript 1.

The non-linearity of the governing equation results in higher

order responses to the actuation. We are only interested in

the time-averaged second-order response and define Q2ðrÞ
¼ hQ2ðr; tÞi ¼ ðx=2pÞ

Ð 2p=x
0

Q2ðr; tÞ dt. A time-average of a

product of two first-order fields is also a second-order term,

written as hA1B1i ¼ ð1=2ÞRe½A1B�1�, where the asterisk

denote complex conjugation. Thus, a given field Qðr; tÞ in

the model, such as density q, temperature T, pressure p,

velocity v, displacement u, and stress r, is written as the

sum of the unperturbed field, the acoustic response, and the

time-averaged response,

Qðr; tÞ ¼ Q0ðrÞ þ Q1ðrÞ e�ixt þ Q2ðrÞ: (6)

Similarly, through their dependency on temperature and

density, all material parameters, such as thermal conductiv-

ity kth, compressibility j, and (for liquids) viscosity g, are

written as exemplified by the viscosity,

gðr; tÞ ¼ g0ðT0Þ þ g1ðT1; q1Þ e�ixt þ g2ðT2; q2Þ; (7a)

g1ðT1; q1Þ ¼
@g
@T

� �
T0

T1ðrÞ þ
@g
@q

� �
T0

q1ðrÞ; (7b)
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g2ðT2; q2Þ ¼
@g
@T

� �
T0

T2ðrÞ þ
@g
@q

� �
T0

q2ðrÞ: (7c)

C. Separation of length scales

Acoustofluidic systems exhibit dynamics on two length-

scales, set by the acoustic wavelength and the thermoviscous

boundary layer width. The boundary conditions on the tem-

perature, heat flux, velocity, and stress at a fluid-solid inter-

face result in the appearance of a thermal boundary layer (in

fluids and solids) of width dt and in a viscous boundary layer

(in fluids only) of width ds, localized near fluid-solid interfa-

ces. Their dynamically-defined widths, jointly referred to as

d, are small compared to a typical device size or wavelength

d, so d� d,3

ds ¼
ffiffiffiffiffiffiffi
2�0

x

r
; dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dth

0

ð1� XÞx

s
	

ffiffiffiffiffiffiffiffiffi
2Dth

0

x

r
; (8)

where X¼0 for fluids and X ¼ ðc� 1Þð4c2
tr=3c2

loÞ� 0:01 for

solids, �0 ¼ ðg0=q0Þ, and Dth
0 ¼ kth

0 =q0cp0. Typically, dt � ds

� 500 nm, which is more than two orders of magnitude

smaller than d � 100 lm. In this paper, the various fields

are decomposed into a bulk field (d) and a boundary-layer

field (d) that are connected by the boundary conditions. In

Fig. 1, this decomposition is sketched near the fluid-solid

boundary for the acoustic temperature field T1. Also shown

are the boundary-layer widths ds and dt together with the

instantaneous position sðtÞ ¼ s0 þ s1ðs0; tÞ of the oscillating

boundary.

D. Boundary conditions

In the usual Lagrangian picture,11 an element with equi-

librium position s0 in an elastic solid has at time t the

position sðs0; tÞ ¼ s0 þ s1ðs0Þe�ixt and velocity V0 ¼ @ts ¼
V0

1ðs0Þ e�ixt with V0
1ðs0Þ ¼ �ixs1ðs0Þ. On the solid-fluid

interface, the no-slip condition applies, so the velocity of

the solid wall at a given time and position must equal the

Eulerian-picture fluid velocity vfl,

vflðs0 þ s1e�ixt; tÞ ¼ V0
1ðs0Þ e�ixt: (9)

This boundary condition must be obeyed separately for the

first- and second-order fields (subscript 1 and 2, respec-

tively), so a Taylor expansion yields11

v1ðs0Þ ¼ V0
1ðs0Þ; (10a)

v2ðs0Þ¼�hðs1 �$Þv1ijs0
¼� 1

x
hðiV0

1 �$Þv1ijs0
: (10b)

At position s0 on the fluid-solid interface with surface nor-

mal n, also the stress r ¼ r1 þ r2 must be continuous in the

first- and second-order contributions r1 and r2 separately,

rsl
1 ðs0Þ � n ¼ rfl

1 ðs0Þ � n; (11a)

rsl
2 ðs0Þ � n ¼ rfl

2 ðs0Þ � nþ hðs1 � $Þrfl
1 ðs0Þ � nijs0

: (11b)

Here, the thermal effects enter through the temperature

dependency of the viscosity parameters g and gb, see Eqs.

(2d) and (7).

Similarly, the temperature T ¼ T0 þ T1 þ T2 must be

continuous across the solid-fluid interface in each order

separately,

Tsl
i ðs0Þ ¼ Tfl

i ðs0Þ; i ¼ 0; 1; (12a)

Tsl
2 ðs0Þ ¼ Tfl

2 ðs0Þ þ hs1 � $Tfl
1 ijs0

: (12b)

Also, the heat flux n � ð�kth$TÞ must be continuous across

the interface,

kth;sln � $Tslðs0; tÞ ¼ kth;fln � $Tflðs0 þ s1e�ixt; tÞ; (13)

which order by order becomes

kth;sl
0 n � $Tsl

i ðs0Þ ¼ kth;fl
0 n � $Tfl

i ðs0Þ; i ¼ 0; 1; (14a)

kth;sl
0 n � $Tsl

2 þ kth;sl
2 n � $Tsl

0 þ hk
th;sl
1 n � $Tsl

1 i
¼ kth;fl

0 n � $Tfl
2 ðs0Þ þ hkth;fl

1 n � $Tfl
1 ðs0Þi

þ kth;fl
2 n � $Tfl

0 ðs0Þ þ
D

s1 � $ kth;fl
0 $Tfl

1 ðs0Þ
h i

� n
E

þ
D

s1 � $ kth;fl
1 $Tfl

0 ðs0Þ
h i

� n
E
: (14b)

E. Range of validity of the model

We briefly discuss the range of validity imposed by the

main assumptions. First, perturbation theory is valid when

lower-order terms are much larger than and unaffected by

higher-order terms, say, q0 
 jq1j and jv1j 
 jv2j, and

FIG. 1. (Color online) Sketch of the fields at the fluid-solid interface. s0 is

the equilibrium position of the interface @X; s1 the time-dependent dis-

placement away from @X, and s ¼ s0 þ s1 the instantaneous position. The

dashed lines represent the viscous and thermal boundary-layer widths width

ds (black) and dt (red) in the solid and fluid. d without a subscript refers to

either ds or dt, and d refers to the bulk lengthscale, so dt � ds � d� d. The

temperature Txl
1 (black) is the sum of a bulk field Td;xl

1 (blue) and a

boundary-layer field Tdxl
1 (red).
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when the latter can be neglected in the governing equations.

For example, zeroth-order heat Eq. (16) is only valid if the

timescale for advective heat transport tadv ¼ dt=jv2j is much

longer than that of diffusion tdif ¼ d2
t =Dth

0 in a system with

characteristic length dt. For dt ¼ 1 mm this requires

jv2j � ðDth
0 =dtÞ 	 150 lm=s.

Second, due to low oscillatory advection, we assume

$ � ðq0v1Þ 	 q0$ � v1, where q0 is a parameter of the fluid.

This requires jq0$ � v1j 
 j$q0 � v1j. By using the parame-

ter aq of Eq. (5), the validity of our theory is limited by

j$T0j �
kc

agap0

				
				 	 5000

K

mm
: (15)

Here, ag is used as the viscosity that has the strongest tem-

perature dependency. In conventional acoustofluidic sys-

tems, j$T0j� 50 K=mm� 5000 K=mm.

Third, the effective boundary-layer theory requires the

boundary-layer width to be much smaller than the bulk

wavelength, k0d� 1, see Sec. II C, which is true for MHz

acoustics in water.

III. ZEROTH ORDER: STEADY BACKGROUND FIELDS

Before turning on the acoustics, p0 is constant and

v0 ¼ 0 in the acoustofluidic system. The temperature T0 is

determined by boundary conditions set by the surroundings

and the heat power density P0 from given sources and

sinks. T0 is governed by the energy conservation [Eq. (2c)]

to zeroth order in the acoustic actuation,

0 ¼ $ � kth
0 $T0


 �
þ P0: (16)

T0 determines the zeroth-order water parameters, such as

q0ðT0Þ and g0ðT0Þ, and thereby affects the resonance fre-

quency and the Q-factor of the acoustofluidic system.

IV. FIRST ORDER: ACOUSTICS

For the first-order fields, we solve the viscous and ther-

mal boundary layers analytically and use these solutions to

derive a set of effective boundary conditions for the bulk

fields. The analysis is based on our previous work: the gov-

erning equations derived in Refs. 3 and 5, the potential the-

ory derived in Ref. 3, and the effective boundary method

derived for viscous but not thermal boundary layers in Ref.

11. The result is a model where we solve for the displace-

ment field u1 in the solid and for the pressure p1 in the fluid,

and both these bulk fields are subject to the effective bound-

ary conditions that implicitly contain the boundary layers.

The temperature T1 is incorporated through p1, u1 in the

first-order equations and the effective boundary conditions.

A. Acoustic equations and potential theory for fluids

The governing equations for the complex-valued acous-

tic field amplitudes in a fluid are given in Eq. (11) of Ref. 5:

the mass continuity equation, the momentum equation, and

the heat equation, which couple together the pressure p1, the

velocity v1, and the temperature T1,

�ixap0 T1 þ ixjT0 p1 ¼ $ � v1; (17a)

�ixq0 v1 ¼ �$p1 þ bg0$ð$ � v1Þ þ g0r2v1; (17b)

�ixT1 þ ixðc� 1Þ js0

ap0

p1 ¼ Dth
0 r2T1; (17c)

where b ¼ ðgb
0=g0Þ � ð2=3Þ. Following Ref. 3, these equa-

tions are solved using potential theory based on the standard

Helmholtz decomposition of the velocity field, v1

¼ $ð/c þ /tÞ þ $�W ¼ vd
1 þ vd

1, where /c is the com-

pressional potential, /t is the thermal potential, and W is the

shear vector potential. At the fluid-solid interface jTd
1 j

	 jTd
1 j, and combining this with T1 ¼ Td

1 þ Td
1 ¼ ½iðc� 1Þ

x=ap0c2
0�/c þ ð1=ap0Dth

0 Þ/t with the typical acoustofluidic

parameter values inserted, we can deduce j/tj 	 ðc� 1Þ
ðxDth

0 =c2
0Þj/cj 	 10�8j/cj � j/cj. From this follows that

p1 	 ixq0ð1þ iCsÞ/c, and we replace /c; /t, and W by p1,

Td
1 , and vd

1,

p1 	 ixq0ð1þ iCsÞ/c; Td
1 ¼

/t

ap0Dth
0

; vd
1 ¼ $�W: (18)

Finally, using the smallness of the damping coefficients,

Cs ¼ ð1=2Þð1þ bÞðk0dsÞ2 � 1 and Ct ¼ ð1=2Þðk0dtÞ2 � 1,

with k0 ¼ x=c, approximate solutions to Eq. (17) are

obtained from the potentials solving three Helmholtz

equations,

r2p1 ¼ �k2
c p1; kc ¼

x
c0

ð1þ iCfl
0cÞ; (19a)

r2Td
1 ¼ �k2

t Td
1 ; kt ¼

1þ i

dt

ð1þ iCfl
0tÞ; (19b)

r2vd
1 ¼ �k2

sv
d
1; ks ¼

1þ i

ds

: (19c)

Here, Cfl
0c ¼ ½Cs þ ðc� 1ÞCt�/2 and Cfl

0t ¼ ðc� 1Þ½Cs � Ct�/
2 are the resulting damping coefficients, whereas the complex-

valued wave numbers ks and kt reveal the existence of the viscous

and thermal boundary layers of thickness ds and dt, respectively,

see Fig. 1. The full velocity v1 and temperature T1 are given by p1,

vd
1, and Td

1 as,

v1 ¼ vd
1 þ vd

1 ¼ v
d;p
1 þ v

d;T
1 þ vd

1; (20a)

vd;p
1 ¼ $ �i

1� iCs

xq0

p1

� �
; vd;T

1 ¼ $ ap0Dth
0 Td

1

h i
; (20b)

T1 ¼ Td
1 þ Td

1 ; Td
1 ¼ ðc� 1Þ js0

ap0

p1: (20c)

Note that both vd;p
1 and vd;T

1 are gradient fields in the

Helmholtz decomposition, but that vd;T
1 despite its super-

script “d” is a boundary-layer field. Because T1 is split into a
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bulk and a boundary layer field, the material parameters q ¼
q0 þ q1 are split similarly. For example, the first-order vis-

cosity g1 introduced in Eq. (7) (and similar for other mate-

rial parameters) becomes

g1 ¼ @Tg0 ðTd
1 þ Td

1Þ þ @qg0ðqd
1 þ qd

1Þ ¼ gd
1 þ gd

1: (21)

B. Acoustic equations and potential theory for solids

For a linear elastic isotropic solid with density q0, lon-

gitudinal sound speed clo, and transverse sound speed ctr,

the governing equations are the linearized form of the

momentum and heat equation [Eq. (1)] for the displacement

field u1 and the temperature T1,3

�x2q0u1 ¼ �
ap0

jT0

$T1 þ ðc2
lo � c2

trÞ$ð$ � u1Þ þ c2
trr2u1;

(22a)

�ixT1 � ix
c� 1

ap0

$ � u1 ¼ Dth
0r2T1: (22b)

In analogy with the fluid, the governing equations for the

solid are solved by potential theory, again following Ref. 3.

The displacement field is Helmholtz decomposed as �ixu1

¼ $ð/c þ /tÞ þ $�W ¼ �ixðulo
1 þ utr

1 Þ, where /c is the

compressional potential, /t is the thermal potential, and W
is the shear vector potential, and where we have used

vsl
1 ¼ �ixu1. Using the same approximations as for the

fluid, we have T1 ¼ Td
1 þ Td

1 ¼ ½iðc� 1Þx=ap0c2
0�/c

þð1=vap0Dth
0 Þ/t. We keep /c, but use Td

1 ¼ ð1=vap0Dth
0 Þ/t

instead of /t, and utr
1 ¼ $�W instead of W. The solution to

Eq. (22) is obtained from the potentials solving the follow-

ing three Helmholtz equations:

r2/c ¼ �k2
c/c; kc ¼

x
c0

ð1þ iCsl
0cÞ; (23a)

r2Td
1 ¼ �k2

t Td
1 ; kt ¼

1þ i

dt

ð1þ iCsl
0tÞ; (23b)

r2utr
1 ¼ �k2

s utr
1 ; ks ¼

x
ctr

: (23c)

Here, c2
0 ¼ c2

lo þ ðc� 1Þ=q0jT0; Csl
0c ¼ ðc� 1ÞvCt=2, and

Csl
0t ¼ c2Ct=8ð1� XÞ are damping coefficients, dt and Ct are

given by Eq. (8), v ¼ 1� 4c2
tr=3c2 	 1=2, and X ¼ ðc� 1Þ

4c2
tr=3c2 	 ðc� 1Þ=2. For a solid, only Td

1 is a dampened

field confined to the boundary layer, whereas /c and utr
1 are

bulk fields. The transverse waves in fluids and solids are

qualitatively different: vd
1 cannot propagate in a fluid and is

restricted to the boundary layer, whereas utr
1 can propagate

in a solid and is not associated with a boundary layer. The

full displacement u1 and temperature T1 are given by

/c; utr
1 , and Td

1 as

u1 ¼ ulo
1 þ utr

1 ; ulo
1 ¼

i

x
$/c; (24a)

T1 ¼ Td
1 þ Td

1 ; Td
1 ¼

iðc� 1Þx
ap0c2

0

/c: (24b)

For most solids, the bulk thermal field Td
1 is negligible and

the displacement can be modelled by Eq. (22a).

The explicit expression for the stress tensor rxl
1 in the

fluid (xl ¼ fl) and in the solid (xl ¼ sl) can be formulated

jointly in potential theory as3

rxl
1 ¼� pxl

1 Iþ gxl
0 ð2k2

c � k2
s Þ/c þ ð2k2

t � k2
s Þ/t


 �
I

þ gxl
0 $vsl

1 þ ð$vsl
1 Þ

†
h i

; (25)

where in the solid psl
1 ¼ 0; gsl

0 ¼ ði=xÞq0c2
tr; v

sl
1 ¼ �ixu1.

C. The thermal boundary layer

The temperature fields Td;xl
1 in the fluid (xl ¼ fl) and the

solid (xl ¼ sl) are given by Eqs. (19b) and (23b). Following

Ref. 11 with x and y parallel to the interface and z perpen-

dicular, an analytical solution can be found using the thin-

boundary-layer approximation r2 	 @2
z in these equations

in combination with the condition that the field decays away

from the boundary,

Td;fl
1 ðx; y; zÞ ¼ Td0;fl

1 ðx; yÞ eikfl
t z for z > 0; (26a)

Td;sl
1 ðx; y; zÞ ¼ Td0;sl

1 ðx; yÞ e�iksl
t z for z < 0: (26b)

The amplitude of the boundary fields Td0;fl
1 ðx; yÞ and

Td0;sl
1 ðx; yÞ is determined by the boundary conditions in Eqs.

(12a) and (14a) as follows: The normal vector n ¼ �ez

points away from the fluid, so n � $ ¼ �@z, and we obtain

Td0;fl
1 ¼ Td0;sl

1 � DTd0
1 ; (27a)

kth;fl
0 @zT

d;fl
1 ¼ kth;sl

0 @zT
d;sl
1 for z ¼ 0; (27b)

where DTd0
1 ¼ �ðT

d0;fl
1 � Td0;sl

1 Þ. From Eq. (27b), it follows

Td0;fl
1 ¼ � kth;sl

0 ksl
t

kth;fl
0 kfl

t

Td0;sl
1 ¼ � ~Z Td0;sl

1 ; (28)

where ~Z ¼ Zsl=Zfl is the ratio of Z ¼ kth
0 kt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kth

0 cp0q0

q
of

the solid and the fluid, respectively. Combining Eqs. (27a)

and (28) leads to the final expression for the boundary-layer

fields,

Td;fl
1 ðx; y; zÞ ¼ �

~Z

1þ ~Z
DTd0

1 ðx; yÞ eikfl
t z; (29a)

Td;sl
1 ðx; y; zÞ ¼ þ

1

1þ ~Z
DTd0

1 ðx; yÞ e�iksl
t z: (29b)

D. The viscous boundary layer

The viscous boundary layer exists only in the fluid since

in the solid both ulo
1 and utr

1 are bulk fields. The velocity field
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in the fluid is given in Eq. (20a) as v1 ¼ vd
1 þ vd

1, where vd
1

depends on the bulk field p1 and the boundary field Td
1 . The

boundary field vd
1 is given by the Helmholtz Eq. (19c), to

which an analytical solution can be found using the thin-

boundary-layer approximation r2 	 @2
z in combination with

the condition that the field decays away from the

boundary,11

vd
1 ¼ vd0

1 ðx; yÞ eiksz: (30)

The amplitude vd0
1 of the boundary field is determined by

the no-slip condition [Eq. (10a)],

vd0
1 ¼ V0

1 � vd0
1 ¼ �ixu0

1 � vd0
1 : (31)

E. The effective boundary condition for the velocity

Given the analytical solutions of the three boundary-

layer fields, we only need to numerically solve the three

bulk fields, namely, /c and W in the solid and /c in the fluid,

or equivalently, the displacement u1 in the solid and the

pressure p1 in the fluid. Therefore, we set two effective

boundary conditions on these bulk fields using the analytical

solutions for the boundary-layer fields: One effective bound-

ary condition on the displacement u1 in the solid derived

from the condition on the stress, and another on the pressure

in the fluid.

First, from the no-slip condition [Eq. (10a)], we derive

the boundary condition for the first-order pressure field p1,

which takes the viscous and thermal boundary-layer effects

into account through terms with ks; kt, and Td0
1 . We express

the compressional velocity vd0;fl
1;z on the fluid-solid interface

through the no-slip condition [Eq. (31)], then use the incom-

pressibility condition on the boundary-layer velocity,

iksv
d0;fl
1;z þ $ � vd0;fl

1 ¼ 0, to get rid of the z-component vd0;fl
1;z ,

and finally introduce the bulk fields in the fluid,

vd0;fl
1;z ¼ vd0;sl

1;z � vd0;fl
1;z ¼ vd0;sl

1;z �
i

ks

$ � vd0;fl
1

¼ vd0;sl
1;z �

i

ks

$ � vd0;sl
1 � vd0;fl

1

h i

¼ vd0;sl
1;z �

i

ks

$ � vd0;sl
1

� �
þ i

ks

$ � vd;fl
1 � @zv

d;fl
1;z

h i
z¼0

:

(32)

Combining Eqs. (17a) and (20c), we obtain

$ � vd
1 ¼ i

ð1� iCsÞk2
c

xq0

p1 � ixap0Td
1 : (33a)

Then using Eq. (20a), we write vd0;fl
1;z and @zv

d;fl
1;z evaluated at

the solid-fluid interface at z ¼ 0, and arrive at

vd0;fl
1;z ¼ �

i

xq0

ð1� iCsÞ@zp1 þ ap0Dth
0 @zT

d
1 ; (33b)

@zv
d;fl
1;z ¼ �

i

xq0

ð1� iCsÞ@2
z p1 þ ap0Dth

0 @
2
z Td

1 : (33c)

Inserting Eqs. (33) and (10a) into Eq. (32) leads to the final

form of the effective boundary condition on p1,

@zp1 ¼ i
xq0

1� iCs

V0
1z �

i

ks

$ � V0
1

� �
� i

ks

k2
c þ @2

z

� �
p1

þ i

kt

ap0

jT0

k2
0 Td0

1 for z ¼ 0: (34a)

The first two terms on the right-hand were derived by Bach

and Bruus,11 whereas the last term is a new correction due

to the thermal boundary layer. For Td
1 	 Td

1 at z ¼ 0, this

thermal correction is of the order ½ðc� 1Þ=kt� k2
c p1. We

emphasize, that although formulated as an effective bound-

ary condition on the pressure gradient, Eq. (34a) is the no-

slip velocity condition.

F. The effective boundary condition for the stress

Next, using the explicit expressions for rsl
1 and rfl

1 , we

turn to the stress boundary condition [Eq. (11a)], the conti-

nuity of the stress r1 across the fluid-solid interface,

rsl
1 � ez ¼ rfl

1 � ez. For the fluid, we use ks 
 kc; j/cj 
 j/tj,
and j@zv

d
1j 
 jrvd

1j in Eq. (25), and find

rfl
1 � ez ¼ �p1ez þ iksg0 v

d0;sl
1 þ i

xq0

$p1

� �
s0

: (34b)

For the solid, we neglect in Eq. (25) the derivative @k/t

along the surface, as it is a factor Ct ¼ ð1=2Þðk0dtÞ2 smaller

than @k/c. The remaining /t-dependent boundary-layer

terms cancel out, leaving only the bulk-term part r
d;sl
1 of rsl

1 .

The resulting effective stress boundary condition is

r
d;sl
1 � ez ¼ rfl

1 � ez: (34c)

As the thermal boundary-layer fields do not enter, this

expression is identical to the effective boundary condition

for the stress derived in Ref. 11.

V. SECOND ORDER: ACOUSTIC STREAMING

For the second-order fields in the fluid, we follow Eq. (6)

and consider only the time averaged fields, namely, the veloc-

ity v2, pressure p2, and stress r2. The temperature field T2

does not enter the second-order continuity or Navier–Stokes

equation, so we drop the heat equation. The first-order temper-

ature field T1 enters the equations through the material param-

eters of the fluid,

0 ¼ �$ � ðq0v2Þ þ _qac; (35a)

0 ¼ �$p2 þ $ � s2 þ f̂ ac; (35b)

s2 ¼ g0 $v2 þ ð$v2Þ†
h i

þ gb
0 �

2

3
g0

� �
ð$ � v2Þ I; (35c)

v0
2 ¼ �

1

x
h iV0

1 � $
� �

v1ijr¼s0
: (35d)

Here, the excess-density rate-of-change _qac and the acoustic

body force f̂ac are defined as time-averaged products of fast
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varying first-order fields in the limit q0v1 
 q1v0, which

holds for typical acoustofluidic devices,

_qac ¼ �$ � hq1v1i; (36a)

f̂ ac ¼ $ � �q0hv1v1i þ s11½ �; (36b)

s11 ¼ hg1 $v1 þ ð$v1Þ†
h i

þ gb
1 �

2

3
g1

� �
ð$ � v1ÞIi: (36c)

The slowly varying second-order fields are split up in a bulk

field (superscript “d”) and a boundary field (superscript “d”)

according to their response to the boundary and bulk part of

the acoustic force f̂ac ¼ f̂
d

ac þ f̂
d

ac, and they are coupled by the

boundary conditions

p2 ¼ pd
2 þ pd

2; v2 ¼ vd
2 þ vd

2; (37a)

s2 ¼ sd
2 þ sd

2; s11 ¼ sd
11 þ sd

11: (37b)

Note that in contrast to the first-order fields, this is not a

Helmholtz decomposition: by definition, a second-order

boundary-layer field “d” contains at least one first-order

boundary-layer field. The computation strategy for second-

order streaming is similar to the one for first-order acoustics:

(1) find analytical solution to the boundary layers, (2) for-

mulate effective boundary conditions, and (3) solve the bulk

fields with the effective boundary conditions. This decom-

position enables simulations of the bulk fields without

resolving the boundary-layer fields.

A. Short-range boundary-layer streaming

The short-range part “d” of Eq. (35) is given by the

short-range part of the second-order fields as well as all

source terms containing at least one boundary-layer field,

0 ¼ $ � q0v
d
2

� 

þ _qd

ac; (38a)

0 ¼ �$pd
2 þ $ � sd

2 þ f̂
d
ac; (38b)

wherevd
2 ! 0 as z!1: (38c)

At the boundary, the advection term can be neglected com-

pared to the viscous term because of the large gradients

induced by the small lengthscale d. The thermal boundary

layer Td
1 and the associated boundary-layer velocity vd;T

1

introduce a correction vd;T
2 to the purely viscous boundary-

layer term vd;p
2 computed in Ref. 11,

vd
2 ¼ v

d;p
2 þ v

d;T
2 : (39)

In the parallel component of vd
2, the pressure field can be

neglected because @kp
d
2 � g0@

2
z v

d
2k.

11 Thus, combining Eqs.

(36b) and (38b), the parallel component of the short-range

velocity field vd;T
2 obeys

�0@
2
z v

d;T
2;k ¼ $ � hvd

1v
d;T
1 þ v

d;T
1 vd

1 þ v
d;p
1 v

d;T
1

h
þ vd;T

1 vd;p
1 þ v

d;T
1 vd;T

1 i �
1

q0

$ � sd
11

i
k
: (40)

Here, sd
11 depends on T1 through g1ðT1Þ, whereas the

velocity vd;T
1 , given in Eq. (20a), depends on the thermal

boundary layer Td
1 . From Sec. IV and, in particular, Eqs.

(20), (26), and (30), follow the relations $ � vd
1 ¼ 0; jvd

1;kj
	 jvd

1;kj; jvd
1;zj 	 ðkcdsÞjvd

1;zj, jTd
1 j 	 jTd

1 j, $ � vd;T
1 	 ðc� 1Þ

$ � vd;p
1 , jvd;T

1;z j 	 ðc� 1ÞðkcdtÞjvd;p
1;z j, jv

d;T
1;k j 	 ðc� 1ÞðkcdtÞ2

jvd;p
1 j, and vd;T

1 ¼ ap0Dth
0 $Td

1 . To lowest order in kcd� 1

(involving @zT
d
1 and @zv

d
1, respectively), these relations com-

bined with time averaging Re[a1] Re[b1] ¼ ð1=2ÞRe½a1b�1�
change Eq. (40) to

�0@
2
z v

d;T
2;k ¼

�
@zv

d
1

� 

vd;T

1;z i þ h vd
1 þ v

d;p
1

� 

@zv

d;T
1;z

� 
�"

� 1

q0

ðhð@zg
d
1Þ@zv

d
1i þ hðgd

1 þ gd
1Þr2vd

1iÞ
#
k

¼ 1

2
Re

2ap0Dth
0

d2
t

dt þ ids

ds

vd
1 þ ivd;p

1

� �
Td�

1

"

� 2

q0d
2
s

ds þ idt

dt

gd
1 þ igd

1

� �
vd�

1

#
k

: (41)

The integration of Eq. (41) after z twice is facilitated by

using the analytical forms [Eqs. (26) and (30)] for vd;T
1 ; Td

1 ,

and vd
1, and by noting that in the boundary layer gd

1 	 gd0
1

þ z@zgd
1 	 ð1þ kcdsÞgd0

1 	 gd0
1 and similarly vd

1 	 vd0
1 ,

vd
1 ¼ vd0

1 ðx; yÞ qðzÞ with qðzÞ ¼ eiksz; (42a)

Td
1 ¼ Td0

1 ðx; yÞ rðzÞ with rðzÞ ¼ eiktz; (42b)

gd
1 ¼ gd0

1 ðx; yÞ rðzÞ; (42c)

gd
1 	 gd0

1 and vd;p
1 	 vd0;p

1 for z� d: (42d)

Following the procedure of Ref. 11, we introduce the inte-

grals I
ðnÞ
ab of the integrand aðzÞ bðzÞ�, where a(z) and b(z) are

any of the functions 1, q(z), and r(z),

I
ðnÞ
ab ¼

ðz

dzn

ðzn

dzn�1 � � �
ðz2

dz1 aðz1Þ bðz1Þ�jz¼0;

I
ðnÞ
ab / dn with d ¼ ds; dt and n ¼ 1; 2; 3;…: (43)

With this notation, Eq. (41) is easily integrated to give

vd0;T
2;k ¼

ap0Dth
0

�0d
2
t

Re
dt þ ids

ds

Ið2Þqr v
d0
1 Td0�

1 þ iI
ð2Þ
1r v

d0;p
1 Td0�

1

� �
k

� 1

g0d
2
s

Re
ds þ idt

dt

Ið2Þrq gd0
1 v

d0�
1 þ iI

ð2Þ
1q gd0

1 v
d0�
1

� �
k
;

(44a)
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where the integrals are given by I
ðnÞ
ba ¼ ½I

ðnÞ
ab �
�

and

I
ð2Þ
1r ¼ �

i

2
d2

t ; I
ð2Þ
1q ¼ �

i

2
d2

s ; Ið2Þrq ¼
i d2

s d
2
t

2ðds þ idtÞ2
: (44b)

When inserting qd
1 ¼ �q0apTd

1 in the final expression for the

thermal correction, vd0;T
2k becomes

vd0;T
2;k ¼ �

1

2q0

d2
t

d2
s

Re
ds

ds � idt

vd0
1 qd0�

1 þ vd0;p
1 qd0�

1

� �
k

� 1

2g0

Re
dt

dt � ids

gd0
1 v

d0�
1 þ gd0

1 v
d0�
1

� �
k
; (45)

where two terms are due to the change in density and two to

the change in viscosity. The perpendicular part of the short-

ranged streaming velocity vd0;T
2z can be found by integrating

the continuity Eq. (35a), @zv
d;T
2z ¼ �$k � vd;T

2k

� 1
q0

$ � hq1v1id;T , once with respect to z,

vd;T
2z ¼ �$k �

ðz

vd;T
2k dz� 1

q0

ðz

$ � hq1v1id;T dz: (46)

The term
Ð z
vd

2k dz is given by Eq. (44a) by substituting

all I
ð2Þ
ab by I

ð3Þ
ab / I

ð2Þ
ab d, so j$k �

Ð z
vd

2k dzj � ðkcdÞ jvd0
2kj, andÐ z$ � hq1v1id dz 	

Ð z
@zhqd

1v
d;p
1;z i dz ¼ hqd

1v
d;p
1;z i. Including pre-

factors, we obtain to leading order in kcd,

vd0;T
2;z ¼ �

1

2q0

Re qd0�
1 vd0;p

1z

h i
: (47)

B. Bulk field and effective boundary condition

With the short-range boundary-layer streaming term

vd0
2 ¼ v

d0;p
2 þ vd0;T

2 in place, it is now possible to set up the

governing equations and boundary conditions for the

second-order bulk acoustic streaming vd
2,

0 ¼ $ � q0v
d
2

� �
� _qd

ac; (48a)

0 ¼ �$pd
2 þ $ � sd

2 þ f̂
d

ac; (48b)

sd
2 ¼ g0 $vd

2 þ ð$vd
2Þ

†
h i

þ bg0ð$ � v2Þ I; (48c)

vd0
2 ¼ �vd0

2 �
1

x
h iV0

1 � $
� �

v1ijr¼s0
: (48d)

Here, _qd
ac and f̂

d

ac are the bulk terms in Eq. (36). In the mass-

conservation equation, $ � vd
2 becomes

$ � vd
2 ¼ �

$ � hqd
1v

d;p
1 i

q0

¼ C
k0jvd;p

1 j
2

2c0

: (49)

Each term of $ � vd
2 scales as ðk0=c0Þjvd;p

1 j
2 
 ð1=2Þ

Cðk0=c0Þjvd;p
1 j

2
, so ð1=q0Þ$ � hqd

1v
d;p
1 i is negligible compared

to the individual terms in $ � vd
2. We thus conclude that

$ � vd
2 ¼ 0, and that the streaming flow is incompressible. The

acoustic body force f̂
d

ac may be expressed as follows, where

$q0 and $js0 unlike in previous work6,9 can be induced by

temperature gradients:

f̂
d

ac ¼ �$ � hq0v
d;p
1 v

d;p
1 i þ $ � sd

11 (50a)

¼� $hLd
aci þ

1

4
jvd;p

1 j
2$q0 þ

1

4
jp1j2$js0

�Cx
c2

0

hvd
1p1i þ $ � sd

11: (50b)

The gradient force �$hLd
aci of the Lagragian hLd

aci ¼
ð1=4Þ js0jp1j2 � ð1=4Þq0jvd

1j
2

does not induce stream-

ing.11,18 The next two terms form the inhomogeneous acous-

tic body force spawned by gradients in the density q0 and in

the compressibility js0.6 The subsequent Eckart-streaming

force term is important for either large systems or for

rotating acoustic waves where vd
1 and p1 have significant

in-phase components.14 The last contribution $ � sd
11 is due

to the temperature-dependent viscosity, gd
1 ¼ agg0ap0Td

1 ¼
ag ðc� 1Þg0js0p1. Using vd;p

1 	 �ið1=xq0Þ$p1 as well

as $ � ½$vd;p
1 þ ð$v

d;p
1 Þ

†� ¼ 2$ð$ � vd;p
1 Þ ¼ �2k2

cv
d;p
1 ; $gd

1 ¼
agg0 ðc� 1Þðikc=c0Þvd;p

1 , and hg1ð$ �v
d;p
1 Þi/ hp1ðip1Þi¼ 0,

we reduce $ � sd
11 to

$ �sd
11¼2ðc�1Þagg0

x2

c2
0

� i

x
vd;p

1 �$
� �

vd;p
1

� �
�js0hvd;p

1 p1i
" #

: (51)

Here, the first and second term involve the Stokes drift and

the classical Eckart attenuation [Eq. (50b)], respectively.

Now, collecting the results [Eqs. (49)–(51)], the governing

equations [Eq. (48a)–(48c)] of the acoustic streaming

become

0 ¼ $ � vd
2; (52a)

0 ¼ �$ pd
2 � hLd

aci

 �

þ g0r2vd
2 þ f d

ac; (52b)

f d
ac ¼�

1

4
jvd;p

1 j
2$q0 �

1

4
jp1j2$js0

þ 1� 2agðc� 1Þ
bþ 1

� �
Cx
c2

0

hvd;p
1 p1i

þ 2agg0ðc� 1Þ x
c2

0

hivd;p
1 � $v

d;p
1 i : (52c)

Here, the Lagrangian density hLd
aci is merged with pd

2 as an

excess pressure. Since $hLd
aci is orders of magnitude larger

than f d
ac, its merging with $pd

2 renders the numerical simulation

more accurate,18 and makes it possible to use a coarser mesh in

the bulk of the fluid domain.11 The term �½2agðc� 1Þ�=ðbþ
1Þ 	 0:44 leads to an increase in the bulk-driven Eckart streaming

by 44% compared to a purely viscous model. The last term is due
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to gradients in the viscosity gd
1, so a fluid particle oscillating

s1 ¼ ði=xÞvd;p
1 experiences a varying viscosity during its

oscillation period.

Finally, the thermal corrections to the boundary

condition [Eq. (48d)] stem from vd0;T
2 in the boundary-layer

velocity vd0
2 ¼ v

d0;p
2 þ vd0;T

2 , see Eqs. (45) and (47), and

from vd;T
1 in v1 ¼ vd

1 þ v
d;p
1 þ v

d;T
1 in the Stokes drift term

�ð1=xÞ hðiV0
1 � $Þv1ijr¼s0

. As jvd;T
1k j � jv

d;T
1z j, then V0

1 �
$vd;T

1 	 V0
1;zap0Dth

0 @
2
z Td

1 ez ¼ ðx=q0ÞV0
1;zðiqd

1Þ ez,

1

x
h iV0

1 � $
� �

vd;T
1 ijr¼s0

¼ 1

2q0

Re V0
1;zq

d0�
1

h i
ez: (53)

In terms of the A- and B-vector notation of Ref. 11, the

boundary condition [Eq. (48d)] for the streaming velocity vd
2

is given by the purely viscous terms (superscript “vs”) from

Ref. 11 and the thermal corrections (superscript “th”) due to

vd0;T
2 , Eqs. (45) and (47), and vd0;T

1 , Eq. (53),

vd0
2 ¼ A � exð Þex þ A � eyð Þey þ B � ezð Þez;

with A ¼ Avs þ Ath; B ¼ Bvs þ Bth; (54a)

Avs ¼� 1

2x
Re vd0�

1 � $ 1

2
vd0

1 � iV0
1

� �
� iV0�

1 � $v
d;p
1

�

þ 2� i

2
$ � vd0�

1 þ i $ � V0�
1 � @zv

d;p�
1z

� 
� �
vd0

1

�
;

(54b)

Ath ¼ 1

2q0

d2
t

d2
s

Re
ds

ds � idt

vd0
1 qd0�

1 þ vd0;p
1 qd0�

1

� �

þ 1

2g0

Re
dt

dt � ids

gd0
1 v

d0�
1 þ gd0

1 v
d0�
1

� �
; (54c)

Bvs ¼ 1

2x
Re ivd0;p�

1 � $vd;p
1

h i
; (54d)

Bth ¼ 1

2q0

Re vd0;p
1 � V0

1

� 

qd0�

1

h i
: (54e)

The magnitude of the thermal terms are ðc� 1Þaq times the

magnitude of the leading viscous terms. For water, ðc� 1Þ
jagj 	 0:9 and ðc� 1Þjaqj 	 0:01 at room temperature, so

here, the g1-terms are important and must be included in

acoustofluidic analyses, whereas q1-terms are negligible.

For gases with c� 1 	 0:4, the density terms may be

important.

The results in Eqs. (52) and (54) are our main results

for the second-order streaming part of the effective thermo-

viscous theory, and they form the equations that are imple-

mented in our numerical model.

VI. NUMERICAL IMPLEMENTATION AND EXAMPLES

We implement the effective thermoviscous model in

the commercial finite-element software COMSOL

Multiphysics.19 It is validated by comparisons to full

numerical simulations, and two examples of significant ther-

mal effects in acoustofluidic devices are shown. All simula-

tions are done in COMSOL 5.619 on a HP-G4 workstation

with a processor Intel Core i9-7960X @ 4:20 GHz and with

128 GB ram.

The effective thermoviscous model solver contains

three steps: (1) the zeroth-order thermal field, (2) the acous-

tic pressure and displacement fields, and (3) the stationary

streaming fields. The acoustic temperature field T1 is

included analytically and therefore does not increase the

numerical workload compared to the purely viscous model.

The effective thermoviscous theory allows us to simulate

acoustofluidic systems in three dimensions, which has pro-

hibitive numerical costs for the full model.

Following our previous work,5,6,11,12,20 the governing

equations [Eqs. (16), (19), (22a), and (52)] are implemented

in COMSOL using the mathematical PDE Module. The sur-

face fields (superscript “0”) are defined only on the fluid-

solid interfaces. The effective boundary conditions [Eq.

(34)] for p1 and u1 are implemented as weak contributions,

whereas the boundary condition in Eq. (54) for vd
2 is imple-

mented as a Dirichlet boundary condition. Further details on

the implementation of the numerical model in COMSOL are

presented in the supplementary material.21

A. Example I: Two-dimensional (2D) streaming
in a square channel

The first example is the square channel, which has been

studied both experimentally22–24 and numerically.22 In a

square channel, a rotating acoustic wave can be set up

by two perpendicular, out-of-phase standing waves, as ana-

lyzed theoretically by Bach and Bruus.14 We apply the

effective thermoviscous model in the fluid domain of

the square channel in the 2D yz cross section with the veloc-

ity V0
1 ¼ V0e�ixtey at the vertical sides y ¼ 6ð1=2ÞW and

V0
1 ¼ iV0e�ixtez at the horizontal sides z ¼ 6ð1=2ÞH, a

rigid-wall model with side length H ¼ W ¼ 230 lm. The

zeroth-order temperature field is set to be constant,

T0 ¼ 20 �C. We emphasize three main points of the results,

shown in Fig. 2: (1) The effective model reduces the compu-

tational time and memory requirements significantly. (2)

Given that it is 2D, the full model can be simulated, and it

agrees with and thus validates the effective model. (3) The

thermal corrections strongly influence the streaming flow

pattern.

The meshes plotted on top of the pressure field in Fig.

2(a) are the ones needed to obtain an L2-norm-convergence5

of 0:1% for p1 and 1% for the streaming v2 for the full and

for the effective model. With computation times of

15 versus 2 s and 130 042 degrees of freedoms versus 1788,

the effective model is in this case seven times faster and

requires 130 times less memory than the full mode to

achieve the same accuracy. Figures 2(b)–2(f) show the

resulting streaming v2 obtained using different assumptions.

Figures 2(e) and 2(f) illustrate that the effective and full

models agree, thus validating the former. Figure 2(b) shows

how much v2 is changed when disregarding all thermal
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effects as in Ref. 11, whereas Figs. 2(c) and 2(d) illustrate

the effect of adding only the thermal bulk effects of Eq.

(52), and adding only the thermal correction to the boundary

condition of Eq. (54). Clearly, all the thermal effects need to

be added, and in this example, they stem from the tempera-

ture dependence of the viscosity through g1 in the bulk term

[Eq. (50)] $ � s11 and the boundary term [Eq. (54)] AT .

Physically, the bulk term strengthens the central streaming

roll, whereas the boundary term changes the morphology of

the boundary streaming and additionally strengthens the

central streaming roll.

B. Example II: 3D streaming due to thermal fields

The second example is the capillary glass tube widely

used as a versatile acoustic trap in many experimental stud-

ies.23–26 Inside the tube, in the region above the piezoelec-

tric transducer, a characteristic streaming flow pattern

containing four horizontal flow rolls is established.25 This

pattern cannot be explained in numerical modeling20,27 in

terms of boundary-driven streaming or classical bulk Eckart

streaming; however, here we argue, based on our thermo-

acoustic simulation results, that thermal effects are responsi-

ble for this streaming pattern. This result is important as the

streaming pattern is used to lead nanoparticles into the cen-

tral region, where they are trapped by larger seed particles.

The 3D model, see Fig. 3, is similar to device C1 in our

previous work:20 a glass capillary tube of width W ¼ 2 mm

and height H ¼ 0.2 mm, actuated from below in its central

region by a piezoelectric transducer. The temperature is set

to Tair ¼ 25 �C at x ¼ Lend and to zero flux on all other outer

surfaces except on the transducer. For simplicity, the trans-

ducer is represented by a (red) region of width WPZT, length

LPZT ¼ 1:16 mm on the glass surface, with a given oscilla-

tory displacement u ¼ uPZTe�ixt and steady temperature28

T ¼ Tair þ TPZT, where uPZT ¼ u0 ez with u0 ¼ 0:25 nm and

TPZT ¼ 1:5 �C. We exploit the xz and yz symmetry planes

and simulate only a quarter of the system. To simulate an

infinitely long channel, we use a perfectly matched layer

(PML) to avoid reflections from the ends.20,21,29

The mesh shown in Fig. 3(a) results in an L2-norm-con-

vergence5 of 1% in the pressure p1 and in the streaming v2,

and of 3% in the displacement u1. The simulation requires

491.959 degrees of freedom and takes 7 min.

For the steady temperature T0 shown in Fig. 3(b), we

find by inspection a resonance at f ¼ 3:898 MHz, for which

the resulting acoustic displacement u1 and pressure p1 are

FIG. 3. (Color online) (a) The simulated 3D system (reduced to a quarter

by symmetry) consisting of the water (blue), the glass (yellow), and the arti-

ficially absorbing PML (green) domains described further in the supplemen-

tary material (Ref. 21). Also, shown are the actuation region (red) and the

mesh (black). (b) Color plot of the steady temperature T0 from 20.0 (black)

to 21:5 �C (yellow). (c) Color plots of the displacement ju1j in the glass

from 0 (blue) to 9.5 nm (yellow) and the acoustic pressure p1 in the water

from –1.6 (blue) to þ1:6 MPa (red). Note the dampening of u1 and p1 in

the PML region.

FIG. 2. (Color online) Simulated fields in a square channel with a rotating

pressure wave of energy density Eac ¼ 19 J=m3 actuated as described in the

text. (a) Color plot of p1 at time t ¼ 0 from –0.4 (blue) to þ0:4 MPa (red),

and the mesh used in the full (left) and in the effective (right) thermoviscous

model. (b) Vector plot of the streaming velocity v2 (magenta) and color

plot of its magnitude from 0 (dark blue) to 20 lm=s (yellow) [same scale in

(b)–(f)] for the effective viscous model without thermal terms. (c) v2 for the

effective viscous model with thermal bulk terms. (d) v2 for the effective

viscous model with thermal boundary terms. (e) v2 for the complete effec-

tive thermoviscous model. (f) v2 for the full thermoviscous model.
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shown in Fig. 3(c). T0 is inhomogeneous with an almost

constant temperature gradient along the tube in the x-direc-

tion, and, in agreement with previous experiments25 and

simulations,20 p1 appears as a vertical half-wave resonance

localized in the region above the transducer, but stronger in

the center than at the sides. Combining the effects of p1 and

the T0-dependency of the density q0 and compressibility js0,

the acoustic body force [Eq. (52c)] driving the streaming v2

becomes

f d
ac 	 �

1

4
jv1j2$q0 �

1

4
jp1j2$js0

¼ � 1

4
ðaqq0jv1j2 þ ajjs0jp1j2Þap0$T0 : (55)

Since by Eq. (5), js has a stronger temperature dependency

than q, f d
ac is dominated by the jp1j2-term. This results in a

body force parallel to $T0 and strongest in the center, where

jp1j is maximum.

The numerical simulation result for v2 is shown in Fig.

4: The characteristic four horizontal flow rolls are clearly

seen, the radius of which is determined by the width of the

channel and the width of the actuation as observed by

Hammarstr€om et al.25 This phenomenon is explained in

terms of the acoustic body force f d
ac, which pushes the liquid

into the center region near the vertical xz-plane at y ¼ 0,

where it is strongest, accompanied by a back-flow at the

edges near y ¼ 6ð1=2ÞW, where the body force is weaker.

In Fig. 4(a), v2 is shown in three different horizontal planes.

The variation in the flow rolls reflects the z-dependence of

the thermal gradient above the transducer. In Fig. 4(b), v2 is

shown in the full horizontal plane at z ¼ 0 lm. Note how

the four flow roll centers are located near the edge (red

lines) of the actuation region. To emphasize the crucial role

of the thermal effects, we show in Fig. 4(c) the streaming

flow resulting from neglecting all thermal effects: In agree-

ment with previous purely viscous models, but in contrast to

experimental observations, the characteristic four-flow-roll

pattern does not appear. Another important feature of

the thermoviscous streaming is its magnitude. In Fig. 4,

jv2j ¼ 50 lm=s is obtained with an acoustic energy density

of Eac ¼ 77 J=m3. This is five times larger than the 10 lm=s

of the purely viscous streaming, and notably only a factor of

3 lower than the 150-lm=s-limit of Sec. II E that marks the

validity of the applied effective thermoviscous model.

In conclusion, the example highlights two important

aspects: (1) The effective thermoviscous model enables 3D

thermoviscous simulations in acoustofluidic systems, and

(2) even moderate thermal gradients may create high

streaming velocities in acoustofluidic systems. Such gra-

dients can of course be created not only by heat generation

in the transducer as in this example, but also more controlla-

ble by ohmic wires, Peltier elements, and external light sour-

ces. Notably, the validity of the perturbation approach

breaks down at moderately high, but experimentally obtain-

able acoustic energy densities above �100 J=m3 in combi-

nation with a moderate thermal gradient �1 K=mm, and

this calls for an extension beyond perturbation theory of the

presented theory.

VII. CONCLUSION

We have derived an effective thermoviscous theory for

a fluid embedded in an elastic solid. The steady zeroth order

temperature field is governed by Eq. (16). The acoustic

fields are governed by the Helmholtz equations, Eqs. (19)

and (23), the decompositions [Eqs. (20) and (24)], and the

effective boundary conditions [Eq. (34)]. The time-averaged

acoustic streaming is governed by the effective Stokes equa-

tion, Eq. (52), and the effective boundary conditions, Eq.

(54). The theory includes the thermoviscous boundary layers

and the acoustic temperature field T1 analytically, and

impose them as effective boundary conditions and time-

averaged body forces on the thermoacoustic bulk fields.

The theory has been implemented in a numerical

model,21 which, because it avoids resolving numerically the

boundary layers, allows for simulating both the first-order

thermoviscous acoustic fields and second-order steady fields

in 3D models of acoustofluidic systems. A conventional

FIG. 4. (Color online) The streaming velocity v2 (magenta arrows) and its

magnitude from 0 (blue) to u0 ¼ 50 lm=s (yellow) in a symmetry quarter

of the trapping capillary tube. (a) v2 in three different horizontal planes. (b)

v2 in the full central plane z ¼ 0. The dashed black lines show the symme-

try planes, and the red lines the edge of the actuation region. (c) v2 in the

central plane z ¼ 0 without thermal effects. Note that here u0 ¼ 10 lm=s.
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brute-force direct numerical simulations is very difficult due

to large memory requirements. In 2D, the model was vali-

dated by direct numerical simulations, and in 3D, its self-

consistency has been checked by mesh-convergence

analyses.

We have applied the effective thermoviscous model in

two numerical examples to demonstrate the importance of

thermovisocus effects in microscale acoustofluidic devices.

In particular, we have shown how the acoustic streaming

depends strongly on the thermal fields: (1) The oscillating

temperature field T1 impacts the streaming through the tem-

perature dependency of the viscosity, causes corrections to

the effective boundary condition, and spawns an additional

body force in the bulk. In the 2D model of the square chan-

nel in Sec. VI A and Fig. 2, we have shown how the thermo-

viscous effects are particularly important for the

morphology and magnitude of the streaming in a rotating

acoustic field. (2) The presence of an inhomogeneous sta-

tionary temperature field T0 affects the streaming through

the induced gradients in compressibility and density. In the

3D model of the capillary glass tube in Sec. VI B and Fig. 4,

we have shown, how the experimentally-observed character-

istic horizontal streaming rolls in the standing acoustic reso-

nance of Fig. 3, are caused by heating from the actuation

area. We have also shown, how very high streaming veloci-

ties (�1 mm=s) can be caused by small temperature gra-

dients (�1 K=mm) for moderate acoustic energy densities

(�100 J=m3).

Our theoretical model enables 3D simulations of ther-

moviscous effects in microscale acoustofluidic devices. The

results point to new ways for microscale handling of fluids

and particles using a combination of acoustic and thermal

fields. Although we have developed the effective thermovis-

cous theory within the narrow scope of microscale acousto-

fluidics, it is more general and may find wider use in other

branches of thermoacoustics.
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