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Theory of acoustic trapping of microparticles in capillary tubes
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We present a semianalytical theory for the acoustic fields and particle-trapping forces in a viscous fluid inside
a capillary tube with arbitrary cross section and ultrasound actuation at the walls. We find that the acoustic
fields vary axially on a length scale proportional to the square root of the quality factor of the two-dimensional
(2D) cross-section resonance mode. This axial variation is determined analytically based on the numerical
solution to the eigenvalue problem in the 2D cross section. The analysis is developed in two steps: First, we
generalize a recently published expression for the 2D standing-wave resonance modes in a rectangular cross
section to arbitrary shapes, including the viscous boundary layer. Second, based on these 2D modes, we derive
analytical expressions in three dimensions for the acoustic pressure, the acoustic radiation and trapping force, as
well as the acoustic energy flux density. We validate the theory by comparison to three-dimensional numerical
simulations.
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I. INTRODUCTION

Acoustophoresis is the acoustically induced migration of
particles. During the past few decades the scientific field
of microscale acoustofluidics has emerged, where this phe-
nomenon is exploited for controlled handling of micropar-
ticles. Microscale acoustophoresis is gentle, label-free, and
contact-less, and therefore it is useful for bioanalytics in
lab-on-a-chip technologies. Examples include particle sepa-
ration [1–4], concentration of red blood cells [5], iso-acoustic
focusing of cells [6], acoustic tweezing [7–9], and cell pat-
terning [10,11]. One particularly prominent acoustofluidic
application is acoustic trapping of suspended microparticles
against an external flow in cheap, disposable glass capillary
tubes [12–17], which has been used for fast biological assays
[18,19] and for trapping of sub-micrometer particles by use
of larger trapped seed particles [20,21]. In these systems,
a piezoelectric transducer is attached to the capillary tube
and driven at MHz frequencies to generate a standing-wave
resonance mode localized inside the capillary tube above the
transducer.

The physics behind acoustophoresis is primarily described
by two time-averaged forces acting on the suspended parti-
cles. First, due to differences in density and compressibility
between the particles and the carrier fluid, the particles ex-
perience the acoustic radiation force, which scales with the
particle volume [22–27] and tends to focus particles. Sec-
ond, due to time-averaged momentum fluxes induced by the
acoustic fields, a steady acoustic streaming flow is generated,
and suspended particles therefore experience a drag force,
which scales with the particle radius and tends to mix particles
[28–30].

Both the acoustic radiation force and the acoustic stream-
ing are important in the acoustic trap. Aside from the
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one-dimensional (1D) or two-dimensional (2D) focusing in
the cross section due to the transverse acoustic radiation force,
the axial variations in the acoustic fields also give rise to
an axial acoustic radiation force, or trapping force. Further-
more, acoustic streaming in the plane parallel to the trans-
ducer surface is often observed above the edges of the trans-
ducer, strongly affecting the trapping characteristics [15,20].
The acoustic trapping in capillaries is therefore a three-
dimensional (3D) problem, see Fig. 1, which complicates both
the experimental characterization and the theoretical analysis
needed for further development. Further complications arise
from the many different 2D cross-sectional shapes that have
been employed in the experimental studies of acoustofluidics
in capillary channels: rectangular and trapezoidal shapes in
etched silicon devices [31], flat channels with quarter-circle-
shaped or tapered side walls in wet-etched glass devices [32],
circular shapes in glass tubes [17], rectangular shapes of
different aspect ratios in glass tubes such as 1:1 [16], 1:10
[14], and 1:20 [14,33], and flat glass tubes with a bulging
lid [14]. In addition, given the technique of pulling struc-
tured multimaterial fibers recently applied in microfluidics
[34], practically any cross-sectional shape of capillary tubes
for acoustofluidics can now be fabricated. This multitude of
shapes needs to be addressed theoretically.

In this work, we present a method to semianalytically
calculate the 3D acoustic pressure in a capillary tube of
arbitrary cross section actuated in an axially confined region
of length Lact at the walls, see Fig. 1. Based on the either
analytical or numerical solution to the 2D eigenvalue problem
in the cross section, we derive analytical expressions in three
dimensions for the acoustic pressure, the acoustic radiation
force, the acoustic energy flux density, and the ratio between
the axial and transverse acoustic trapping force. In particular,
we show that for a 2D resonance mode α, the axial component
of the radiation force is proportional to

√
�̄α , where �̄α is

the damping coefficient of the resonance mode α. In the
special case of a 1D standing pressure wave in the cross
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FIG. 1. A computed pressure resonance mode (dark red and light
blue for high and low pressure) in a capillary tube of arbitrary cross
section. (a) The complex-valued pressure mode pα

1 (x, y, z) in the 3D
tube � is the product of the 2D pressure mode p̄α

1 (y, z) in the cross
section �̄ and the axial dependency χα (x). It is excited by an actua-
tion confined to a region of length Lact . The dark magenta and light
green curves represent the real part of pα

1 and the magnitude |pα
1 |,

respectively. The relevant length scales in the x direction are shown:
the wave length λα

x , the decay length dα
x , and the characteristic length

scale Lα
x ; see Eqs. (20) and (21). (b) The pressure p̄α

1 (y, z) in the 2D
cross section �̄ with the surface normal vector n and the mesh used
in the numerical simulations.

section, our results agree with Woodside et al. [35], who
obtained an analytical expression for the axial radiation force
being proportional to the axial gradient of the acoustic energy
density Eac. However, whereas they left Eac undetermined, we
calculate it analytically.

We validate our analytical results by direct 3D numerical
simulations. Recent contributions in the 3D numerical mod-
eling of capillary tubes include Gralinski et al. [17] who
modeled a circular capillary tube with fluid and glass, Lei et al.
[15], who modeled the fluid domain of a capillary tube and
found four in-plane streaming rolls, and Ley and Bruus [36],
who took into account absorption of outgoing waves in both
the glass and the fluid. Also the piezoelectric transducer may
be included in a full-device simulation as done by Skov et al.
[37]. In the numerical validation of this paper, we model the
fluid domain with a prescribed movement of the fluid-solid
interface and implement a perfectly matched layer (PML) to
absorb outgoing waves.

The paper is organized as follows: We present the gov-
erning equations in Sec. II, and in Sec. III we describe the
numerical implementation used for validation of the presented
theory. In Sec. IV, we generalize our previous analytical
results for the acoustic pressure in rectangular cross sections
[38] to arbitrary cross sections. Using the residue theorem,
we derive the axial dependency of the 3D acoustic pressure.
We proceed in Sec. V by calculating the axial dependency
of the pressure in the case of a box-shaped actuation, and in
Sec. V C we validate the analytical results by 3D numerical
simulations. In Sec. VI, we present analytical expressions for
time-averaged acoustic quantities such as the axial radiation
force and the axial energy flux density. Finally, we discuss
our results in Sec. VII and conclude in Sec. VIII.

II. GOVERNING EQUATIONS

The physical displacement u0
phys(r, t ) of the fluid-solid

interface oscillates harmonically with the angular frequency
ω = 2π f and induces the physical pressure field pphys(r, t ) in
the fluid. These fields are represented as the real part of the
complex-valued linear perturbations u0

1 and p1,

u0
phys(r, t ) = Re

[
u0

1(r)e−iωt
]
, (1a)

pphys(r, t ) = Re[p1(r)e−iωt ]. (1b)
In a fluid of dynamic viscosity ηfl, bulk viscosity ηb

fl, isentropic
compressibility κfl, and mass density ρfl, the acoustic fields
are characterized by the compressional wave number kc with
real part k0 = ω

cfl
, the bulk damping coefficient �fl, the shear

wave number ks, and the viscous boundary-layer width δs

[27,30,37],

kc =
(

1 + i
1

2
�fl

)
k0, �fl =

(
4

3
+ ηb

fl

ηfl

)
ηflκflω, (2a)

ks = 1 + i

δs
, δs =

√
2ηfl

ρflω
, (2b)

where i = √−1 is the imaginary unit. In this work, we assume
that the viscous boundary layer is much thinner than the
acoustic wave length, as is the case in most acoustofluidic
applications,

k0δs � 1, �fl = 1

2

(
4

3
+ ηb

fl

ηfl

)
(k0δs)2 � 1. (3)

The acoustic pressure p1 satisfies the Helmholtz equation with
the compressional wave number kc and with the boundary-
layer boundary condition recently derived in Ref. [30], valid
for walls having a curvature radius much larger than the
viscous boundary layer width δs,

∇2 p1 + k2
c p1 = 0, r ∈ �, (4a)

D⊥ p1 = k2
0U1⊥(r), r ∈ ∂�, (4b)

D⊥ = ∂⊥ + i

ks

(
k2

c + ∂2
⊥
)
, r ∈ ∂�, (4c)

U1⊥(r) = ρflc2
fl

1 − i�fl

(
−n − i

ks
∇

)
· u0

1, r ∈ ∂�. (4d)

Here, the subscript ⊥ represents the inward direction (−n)
opposite to the outward-pointing normal vector n, and U1⊥(r)
is the effective actuation function defined in terms of the
physical interface displacement u0

1 of the fluid-solid interface
∂�. Finally, we write the following standard time-averaged
acoustic quantities, all defined in terms of the pressure p1:
The acoustic potential energy density Epot, the acoustic kinetic
energy density Ekin, the acoustic mechanical energy density
Eac, the acoustic radiation potential Urad for a suspended
spherical particle of radius a, the acoustic radiation force F rad,
and the acoustic energy flux density Sac,

Epot = 1

4
κfl|p1|2, Ekin = 1

4
κflk−2

0 |∇p1|2, (5a)

Eac = Epot + Ekin, Sac = 1

2ρflω
Im(p∗

1∇p1), (5b)

F rad = −∇Urad , Urad = 4

3
πa3

[
f0Epot − 3

2
f1Ekin

]
. (5c)
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TABLE I. Parameters used in the numerical simulations of water
as the fluid medium at 25◦C [42]; see also Sec. V C.

Parameter Symbol Value Unit

Mass density ρfl 997.05 kg m−3

Compressibility κfl 448 TPa−1

Speed of sound cfl 1496.7 m s−1

Dynamic viscosity ηfl 0.890 mPa s
Bulk viscosity ηb

fl 2.485 mPa s

Actuation displacement d0 0.1 nm
Cross-section length Lcr 300 μm
Axial domain length Lnum

x 5.46 cm
PML length LPML 500 μmm
PML strength KPML 1000 –

Here, f0 and f1 are the monopole and dipole scattering co-
efficients that are real-valued because we consider particles
with radius a much larger than both the viscous and the
thermal boundary-layer thickness [22,25–27]. Furthermore, in
Eq. (5b) “Im” and “∗” denotes imaginary part and complex
conjugation, respectively.

III. NUMERICAL VALIDATION METHOD

Our key theoretical results for the pressure p1, to be
presented in Secs. IV and V, are validated by the following
direct-numerical-simulation method. We use the weak form
PDE module in COMSOL MULTIPHYSICS [39] as described in
Refs. [30,37,40], see also an example COMSOL script in the
supplemental material of Ref. [41].

This validation is carried out in both a 3D and a 2D
version solving the harmonically-driven problem (4) using the
COMSOL “Stationary study.” Moreover, as explained in
Sec. IV, a main result of this work is that we can express
the 3D pressure in terms of 2D pressure eigenmodes and
eigenvalues, which we compute numerically using the COM-
SOL “Eigenvalue study.” In the numerical simulations we
use Lagrangian shape functions of quartic order, and the
parameters listed in Table I.

For the numeric validation, we choose a capillary with the
generic cross section shown in Fig. 1. This cross section has a
linear size of around 2Lcr, and its boundary ∂�̄ is given by the
arbitrarily chosen, smooth, wavy parametric curve in the yz
cross section, [y(s), z(s)] with s ∈ [0; 2π ], defined by y(s) =
Lcrhcr (s) cos(s), z(s) = 0.9Lcrhcr (s) sin(s + 0.2), and the ra-
dius function hcr (s) = 1 + 0.15 sin(2s + 1.5) − 0.2 sin(3s).

The mesh is chosen to resolve the pressure on the relevant
length scales. It is created as a 2D triangular mesh in the
cross section with mesh size 1

3 Lcr in the bulk and 1
6 Lcr

at the boundary; see Fig. 1(b). The 3D mesh is generated
by sweeping the 2D mesh along the axial direction with a
separation distance of 1

6 Lα
x , where Lα

x is the characteristic
axial length scale of the pressure introduced in Sec. IV C and
shown in Fig. 1(a). The mesh is validated by standard mesh
convergence tests [36].

For the 3D modeling of the long capillary tube, we use
symmetry considerations to halve the computational domain
[36], and a perfectly matched layer (PML) placed at the tube

end to suppress acoustic reflections there; see Sec. II C of
Ref. [36].

This numerical implementation of the model leads to
2 × 103 degrees of freedom (DOF) for the 2D simulations
and 4 × 105 DOF for the 3D simulations. The simulations
were performed on a workstation with a 3.5 GHz Intel Xeon
CPU E5-1650 v2 dual-core processor and with a memory
of 128 GB RAM.

Finally, we use the L2-norm to numerically compute the
relative deviation E (p, pref ) of a pressure field p from a
reference pressure field pref in the 3D domain � as

E (p, pref ) =
√∫

�
|p − pref |2 dV∫
�

|pref |2 dV
. (6)

The analogous relative deviation in the 2D domain �̄ is called
Ē ( p̄, p̄ref ), where an overbar denote a 2D quantity.

IV. THE ACOUSTIC PRESSURE IN A LONG STRAIGHT
CAPILLARY TUBE OF ARBITRARY CROSS SECTION

In the following, we calculate the acoustic pressure
p1(x, y, z) satisfying Eq. (4) to lowest order in the small
parameters k0δs, Eq. (3), in a long, straight capillary tube of ar-
bitrary cross section that is invariant in the axial x direction as
shown in Fig. 1(a). Our strategy has two key steps: First, based
on our previous analysis of the 2D cross-sectional resonance
modes p̄mn

1 (x, y) in a rectangular cross section having integer
m and n half-waves in the y and z direction, and including the
viscous boundary layer [38], we write an expression for the
2D cross-sectional resonance modes p̄α

1 (x, y) in an arbitrary
cross section. Second, by using these 2D modes together with
the residue theorem, we evaluate the 3D acoustic pressure
p1(x, y, z) satisfying Eq. (4) for any frequency f = 1

2π
ω and

actuation function U1⊥ as a sum over all resonance modes
α. This approach is valuable because it provides a physical
understanding of the acoustic trapping in the axial direction
and analytical scaling laws for various length scales and trap-
ping forces in terms of the properties of the 2D cross-sectional
resonance modes for any given shape.

A. The 2D pressure resonance modes in an arbitrary
cross section

In Ref. [38], we studied the special case of a rectangular
cross section of side lengths Ly and Lz. We derived to lowest
order in the small parameter k0δs, the resonance modes p̄mn

1
with m half-waves in the y direction and n half-waves in the z
direction, valid for wave numbers k0 close to the resonance
wave number k̄mn

0 . Here, and in the following, we use the
overbar to denote a quantity defined in the cross section �̄.
With this notation, the expression for p̄mn

1 given in Eq. (12) of
Ref. [38] becomes

p̄mn
1 (k0; y, z) = P̄mn

1 Ḡmn(k0)R̄mn(y, z), for k0 ≈ k̄mn
0 , (7a)

R̄mn(y, z) = cos

(
mπy

Ly

)
cos

(
nπz

Lz

)
, (7b)

P̄mn
1 =

∮
∂�̄

Ū1⊥R̄mn dl∫
�̄

(R̄mn)2 dA
, (7c)
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Ḡmn(k0) =
1
2 k̄mn

0

k0 − k̄mn
0 + 1

2 ik̄mn
0 �̄mn

. (7d)

The quantities used here have the following meaning:
R̄mn(y, z) in Eq. (7b) is the spatial dependency of a given 2D
cross-sectional resonance mode. P̄mn

1 in Eq. (7c) is a coupling
coefficient related to the overlap between R̄mn(y, z) and the ac-
tuation function Ū1⊥(y, z) defined in Eq. (4d) on the boundary
∂�̄ of the cross section �̄. Ḡmn(k0) in Eq. (7d) is the line-shape
function of the mode defined in terms of three parameters:
the wave number k0 = ω

cfl
, the resonance wave number k̄mn

0 ,
and the minute damping coefficient �̄mn = �̄mn

bl + �fl � 1,
where the latter is defined in Eq. (10) of Ref. [38] as the sum
of the boundary-layer damping coefficient �̄mn

bl and the bulk
damping coefficient �fl of Eq. (2a).

1. Generalization to an arbitrarily shaped 2D cross section

To generalize from the rectangular cross section to an
arbitrarily shaped cross section, it is helpful to write Ḡmn as a
function not of k0 but of the complex-valued wave number kc

from Eq. (2a) for kc ≈ k̄mn
c , where k̄mn

c is the complex-valued
resonance wave number. This variable shift is obtained by
inserting �̄mn = �̄mn

bl + �fl in Eq. (7d),

Ḡmn(kc) ≈
(
k̄mn

c

)2

k2
c − (

k̄mn
c

)2 , k̄mn
c =

(
1 − i

�̄mn
bl

2

)
k̄mn

0 . (8)

In Eqs. (7) and (8), we substitute the mode index mn by α, and
thereby introduce our main assumption, which is validated
numerically below, namely, an expression for the pressure
resonance mode p̄α

1 in an arbitrary cross section valid close to
resonance kc ≈ k̄α

c and to lowest order in the small parameter
k0δs,

p̄α
1 (kc; y, z) = P̄α

1 Ḡα (kc)R̄α (y, z), for kc ≈ k̄α
c , (9a)

P̄α
1 =

∮
∂�̄

Ū1⊥R̄α dl∫
�̄

(R̄α )2 dA
, (9b)

Ḡα (kc) =
(
k̄α

c

)2

k2
c − (

k̄α
c

)2 , k̄α
c =

(
1 − i

�̄α
bl

2

)
k̄α

0 . (9c)

Here, the eigenvalue k̄α
c and eigenfunction R̄α are defined

through the 2D eigenvalue problem, corresponding to Eq. (4),
in the cross section �̄ without actuation,

∇2R̄α + (
k̄α

c

)2
R̄α = 0, r ∈ �̄, (10a)

D⊥R̄α = 0, r ∈ ∂�̄. (10b)

The resonance frequency f̄ α of the 2D mode α is found from
the real part k̄α

0 = Re(k̄α
c ) of the eigenvalue k̄α

c ,

f̄ α = 1

2π
ω̄α = 1

2π
cflk̄α

0 . (11)

The damping coefficient �̄α of mode α is written as the sum of
the bulk damping coefficient �fl of Eq. (2a) and the boundary-
layer damping coefficient �̄α

bl of Eq. (9c),

�̄α = �̄α
bl + �fl, �̄α

bl = −2Im
(
k̄α

c

)
Re

(
k̄α

c

) . (12)

FIG. 2. Comparison in the cross section �̄ (defined in the text
of Sec. III and shown in Fig. 1) between the 2D pressure mode p̄1

1

from Eqs. (9) and (10) with α = 1 plotted for z > 0, and the 2D
numerical pressure p̄num

1 from Eq. (4) plotted for z < 0, both actuated
by the actuation function Ū num

1⊥ [light cyan curve and arrows, see
Eq. (13)] at the fundamental resonance frequency f̄ 1 = 1.1341 MHz.
The relative deviation defined in Eq. (6) between p̄1

1 and p̄num
1

is Ē ( p̄1
1, p̄num

1 ) = 0.14 %. The encircled magenta point marks the
position of the line used in the 3D line plots of Sec. V C.

2. Numerical validation in the 2D cross section

In Fig. 2, we validate numerically the generalized
resonance-mode structure Eq. (9) by using the cross section �̄

and the numerical procedure described in Sec. III. We choose
the actuation function Ū num

1⊥ along the boundary ∂�̄ of �̄ to be

Ū num
1⊥ (y, z) = ρflc2

fld0 sin

(
π

Lcr
y

)
e− z

Lcr . (13)

We determine numerically the lowest eigenmode α = 1 in
terms of the eigenfunction R̄1(y, z), Eq. (10), and eigenfre-
quency f̄ 1, Eq. (11), listed in Table II together with other rele-
vant mode parameters for α = 1. Inserting this eigenmode to-
gether with Ū num

1⊥ (y, z) and kc = 2π
c0

(1 + i 1
2�fl) f̄ 1 into Eq. (9),

we compute the pressure resonance mode p̄1
1(kc; y, z) at the

resonance frequency. In Fig. 2 we compare this theoretical
result p̄1

1 with the direct numerical simulation p̄num
1 obtained

from the 2D version of Eq. (4) at the resonance frequency
f̄ 1. Qualitatively, we see a smooth transition passing from
p̄1

1 above the dashed line (z > 0) to p̄num
1 below the dashed

line (z < 0). Quantitatively, the relative difference (6) between
the semianalytical p̄1

1 and the numerical p̄num
1 is found to be

Ē ( p̄1
1, p̄num

1 ) = 0.14 %, which is satisfactory in this approx-
imation to lowest order in the small boundary-layer-width
parameter k0δs = 0.24 %.

TABLE II. Values for the fundamental mode α = 1 of the 2D
eigenvalue problem obtained by numerical simulation.

Parameter Symbol Eq. Value Unit

Eigenvalue k̄1
c Eq. (10) 4761.01 − 3.49i m−1

Eigenfrequency f̄ 1 Eq. (11) 1.1341 MHz

Damping coefficient �̄1 Eq. (12) 0.00148 –

x length scale L1
x Eq. (20) 5.46 mm
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B. The 3D pressure

Based on Eq. (9) for the 2D cross-sectional pressure
modes p̄α

1 , we now derive the pressure p1(x, y, z) satisfying
Eq. (4) in the 3D capillary tube. For any given x-dependent
function φ(x), we denote its Fourier transform by φ̂(kx ), see
Appendix A. The 3D pressure is calculated from the inverse
Fourier transform,

p1(x, y, z) =
∫ ∞

−∞
p̂1(kx; y, z) eikxx dkx

2π
. (14a)

Since the integrand p̂1(kx; y, z) eikxx is a function of the
complex-valued wave number kx, we evaluate the integral
using the residue theorem for an appropriate closed contour
γ in the complex kx plane and find

p1(x, y, z) =
∑

kα
x inside γ

i Res
(
p̂1(kx; y, z)eikxx, kα

x

)
, (14b)

summing over the residues Res( p̂1(kx; y, z)eikxx, kα
x ) of all

poles kα
x inside the closed contour γ . To obtain these residues,

we only need an expression for p̂1(kx; y, z)eikxx valid close
to kα

x . The Fourier transform p̂1(kx; y, z) satisfies the Fourier-
transformed Helmholtz problem Eq. (4),

∇2 p̂1(kx; y, z) + (
k2

c − k2
x

)
p̂1(kx; y, z) = 0, r ∈ �̄, (15a)

D⊥ p̂1(kx; y, z) = k2
0Û1⊥(kx; y, z), r ∈ ∂�̄, (15b)

where ∂�̄ is the boundary of �̄. We note that Eq. (15)
for p̂1(kx; y, z) is similar to Eq. (4) for an x-independent
pressure p1 = p̄1(y, z) with the substitutions k2

c → k2
c − k2

x
and Ū1⊥(y, z) → Û1⊥(kx; y, z), see Appendix B for details.
Using these substitutions in Eq. (9), we obtain the result for
p̂1(kx; y, z)eikxx valid for k2

c − k2
x ≈ (k̄α

c )2 and to lowest order
in the small parameter k0δs,

p̂1(kx; y, z)eikxx ≈ −(
k̄α

c

)2
R̄αeikxx

(kx )2 − (
kα

x

)2

∫
∂�̄

Û1⊥(kx; y, z)R̄α dl∫
�̄

(R̄α )2 dA
,

(16a)

kα
x =

√
k2

c − (
k̄α

c

)2
. (16b)

From Eq. (16a) we see that p̂1(y, z, kx )eikxx has simple poles in
the complex kx plane at kx = ±kα

x , and therefore the residues
Res( p̂1(kx; y, z)eikxx, kα

x ) used in the sum Eq. (14b) can be
found analytically; see Appendix C. The resulting expression
for p1(x, y, z), valid for all frequencies and to lowest order in
k0δs, is

p1(x, y, z) =
∑

α

pα
1 (x, y, z), (17a)

pα
1 (x, y, z) = Pα

1 (x)Ḡα (kc)R̄α (y, z), (17b)

Pα
1 (x) =

[∫
∂�̄

U1⊥R̄α dl∫
�̄

(R̄α )2 dA
∗ gα

]
(x), (17c)

gα (x) = −ikα
x

2
eikα

x |x|. (17d)

Here, the asterisk “∗” denotes the usual functional convolu-
tion in the x coordinate; see Eq. (A3). gα (x) is the Green’s
function in the axial direction of mode α corresponding to

a delta-function actuation at x = 0, given by U1⊥(x, y, z) =
Ū1⊥(y, z)Lactδ(x), as this actuation yields

Pα
1 (x) = P̄α

1 Lactg
α (x), (18)

where Lact is an actuation strength of dimension length, and
P̄α

1 is the 2D coupling coefficient defined in Eq. (7c).

C. The axial length scales of each mode

The axial dependency of the pressure p1(x, y, z) is given
in Eqs. (17c) and (17d) by the actuation function U1⊥ and
the Green’s function gα . The latter leads to three axial length
scales that characterize each mode α. Here the strength of our
approach become apparent, as it allows us to extract analytical
expressions for these length scales. First, by using k2

c = (1 +
i�fl)k2

0 , Eq. (2a), and (k̄α
c )2 = (1 − i�̄α

bl )(k̄
α
0 )2, Eq. (9c), as

well as the assumption �̄α � 1, we write the x wave number
kα

x in Eq. (16b) of mode α as

kα
x = k̄α

c
1√
Ḡα

≈ k̄α
0

√
�̄α

√
�α + i, �α = k2

0 − (
k̄α

0

)2(
k̄α

0

)2
�̄α

.

(19)
Here, �α is the difference between the square of the wave
number k0 = ω

cfl
and the resonance wave number k̄α

0 , Eq. (11),
of the mode α scaled by (k̄α

0 )2�̄α . From Eq. (19), we identify
the characteristic length scale Lα

x of variation of the mode α in
the x direction as

Lα
x = 1

k̄α
0

√
�̄α

. (20)

Then, by using Eqs. (19) and (20), we write the decay length
dα

x and wave length λα
x of the function gα (x) in Eq. (17d) as

dα
x = 1

Im
(
kα

x

) = Lα
x

1

Im(
√

�α + i)
, (21a)

λα
x = 2π

1

Re
(
kα

x

) = Lα
x

2π

Re(
√

�α + i)
. (21b)

In the following, a tilde is used to denote rescaling by Lα
x in

the axial direction,

x̃ = x

Lα
x

, d̃α
x = dα

x

Lα
x

, λ̃α
x = λα

x

Lα
x

, (22a)

k̃α
x = Lα

x kα
x , g̃α = Lα

x gα. (22b)

In Fig. 3(a), we plot the rescaled Green’s function g̃α (x)
for three different frequencies: above resonance (k0 = k̄α

0 +
k̄α

0 �̄α , �α = 2), where it is propagating, at resonance (k0 =
k̄α

0 , �α = 0), and below resonance (k0 = k̄α
0 − k̄α

0 �̄α , �α =
−2), where it is evanescent. In Fig. 3(b), we plot the decay
length dα

x and the wave length λα
x of Eq. (21) as a function

of the actuation frequency for frequencies close to resonance
k0 ≈ k̄α

0 . For frequencies just below resonance, dα
x is small

and λα
x is large, and vice versa for frequencies just above the

resonance frequency. The three values of �α used in Fig. 3(a)
are marked by dashed vertical lines of the same color in
Fig. 3(b).

As an example of the characteristic length scale of the
axial pressure variation Lα

x , we consider a standing vertical
half wave in a rectangular cross section of height Lz with the
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FIG. 3. Plots of the rescaled quantities of Eq. (22). (a) The
complex-valued Green’s function g̃α (x) of Eq. (17d) plotted as the
real part (solid) and modulus (dotted) for three values of �α of
Eq. (19): Below (−2), at (0), and above (2) the α resonance. (b) The
decay length d̃α

x and wave length λ̃α
x , Eq. (21), as well as |k̃α

x |−1,
Eq. (19), plotted versus �α . The three vertical dashed lines mark the
values used in (a).

wave number k̄α
0 ≈ π

Lz
, for which Eq. (20) leads to the estimate

Lα
x ≈ 1

π
√

�̄α
Lz. For realistic values of the damping coefficient,

0.001 < �̄α < 0.01 [43], we obtain 10Lz > Lα
x > 3Lz.

V. THE AXIAL DEPENDENCY OF THE PRESSURE FOR A
SEPARABLE ACTUATION

Above, we derived analytical expressions for the charac-
teristic length scales of the Green’s function gα (x) entering
in Eq. (17c) for the pressure amplitude Pα

1 (x). Now, we show
analytically that the full 3D pressure at resonance separates
into a product of the 2D resonance mode and a trivial axial de-
pendency. We first calculate the axial variation of the pressure
mode pα

1 for a given separable model-actuation U1⊥ having
the dimensionless axial dependency ψact (x),

U1⊥(x, y, z) = Ū1⊥(y, z) ψact (x). (23)

In this case, the 3D mode pα
1 (x, y, z) in Eq. (17b) becomes a

product of the 2D mode p̄α
1 (y, z) and the dimensionless axial

dependency χα (x) of the pressure,

pα
1 (x, y, z) = p̄α

1 (y, z)χα (x), (24a)

χα (x) = [ψact ∗ gα](x), (24b)

which by Eq. (17a) leads to the pressure p1(x, y, z),

p1(x, y, z) =
∑

α

p̄α
1 (y, z)χα (x), for any frequency f .

(25)

FIG. 4. The box-shaped axial dependency ψbox
act (x) (dark blue

line) of the model actuation of width Lact , as well as the resulting
traveling-wave components excited by the left step at x = − 1

2 Lact

(dark red arrows) and by the right step at x = 1
2 Lact (light green

arrows).

When actuating the system near one of the 2D resonances, say
α = α′, we obtain the simplified expression

p1(x, y, z) ≈ p̄α′
1 (y, z)χα′

(x), for f ≈ f̄ α′
. (26)

A. A box actuation with sharp steps

In capillary-tube devices used for acoustic trapping, a
piezoelectric transducer is usually placed below the capillary
tube in a confined region [14–16,20,21,44]. To mimic such
an actuation, we consider the box-shaped axial dependency
ψbox

act (x) of the actuation, which is unity in the actuation region
of length Lact and sharply steps down to zero outside this
region, as sketched in Fig. 4,

ψbox
act (x) =

{
1, |x| < 1

2 Lact,

0, |x| > 1
2 Lact.

(27a)

Using this actuation in the convolution Eq. (24b) yields the
axial dependency χα

box(x) of the pressure,

χα
box(x) =

{
1 − eikα

x
Lact

2 cos
(
kα

x x
)
, |x| < 1

2 Lact,

−i sin
(
kα

x
Lact
2

)
eikα

x |x|, |x| > 1
2 Lact.

(27b)

By writing the sine and cosine factors in terms of traveling
waves, it is found that two waves travel away from each step
at x = ± 1

2 Lact as sketched in Fig. 4.
In the limit Lact � Lα

x , where the actuation is confined to
a region much narrower than the axial pressure length scale
Lα

x of Eq. (20), the axial dependency of the pressure is well
approximated by a simplified expression χα

δ (x) as

χα
box(x) ≈ χα

δ (x) = Lactg
α (x), for Lact � Lα

x , (28)

where gα (x) is defined in Eq. (17d) and plotted in Fig. 3(a) for
different frequencies.

B. A box actuation with smooth steps

In the following numerical validation, we consider
the more realistic box-actuation function U num

1⊥ (x, y, z) =
Ū num

1⊥ (y, z)ψnum
act (x), which separates as Eq. (23) with an axial

dependency ψnum
act (x), similar to the box shape ψbox

act (x) in
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Eq. (27a), but which has smooth transistions of width dact at
the steps x = ± 1

2 Lact,

U num
1⊥ (x, y, z) = Ū num

1⊥ (y, z)ψnum
act (x), at ∂�, (29a)

ψnum
act (x) = 1

1 + e
4(x− 1

2 Lact )

dact

− 1

1 + e
4(x+ 1

2 Lact )

dact

. (29b)

Here, Ū num
1⊥ is defined in Eq. (13) and shown in Fig. 2.

C. Numerical validation of the 3D mode method

Using COMSOL Multiphysics as described in Sec. III,
we validate the semianalytical Eq. (26) for p1(x, y, z) by the
direct numerical solution pnum

1 of Eq. (4) in the capillary
tube � sketched in Fig. 1, both actuated at the resonance
frequency f = f̄ 1 of the fundamental mode α = 1 of the 2D
cross section �̄. We assume that the tube is mirror-symmetric
around the y-z plane through x = 0, and take the length
of the computational domain to be Lnum

x = 10L1
x = 5.46 cm,

see Table II. At x = 0 we impose the symmetry boundary
condition ∂x pnum

1 = 0, and at x = Lnum
x we place the perfectly

matched layer (PML) mentioned in Sec. III to remove pressure
wave reflections from the tube end. The wavy boundary ∂�̄ of
the cross section �̄ is defined in Sec. III.

Using the 2D pressure mode (9) p̄1
1(y, z) obtained from the

eigenvalue problem (10), we construct the 3D pressure mode
(24), as p1

1(x, y, z) = p̄1
1(y, z)χ1(x). In the following, we use

the analytically known axial dependencies χ1
box(x), Eq. (27b),

and χ1
δ , Eq. (18), of the pressure to estimate the pressure

obtained numerically from the actuation profile ψnum
act (x) in

Eq. (29b).
To quantify the numerical validation, we compute at the

resonance f = f̄ 1 the relative deviation E (p1
1, pnum

1 ) defined
in Eq. (6) between the semianalytical 3D pressure mode p1

1
with the box actuation ψbox

act (x) of Eq. (27a) and the direct
numerical 3D pressure pnum

1 with the smoothen-box actuation
ψnum

act (x) of Eq. (29b),

p1
1 = p̄1

1(y, z)χ1
box(x), with ψbox

act (x) at f̄ 1, (30a)

pnum
1 = p1(x, y, z), with ψnum

act (x) at f̄ 1. (30b)

In Fig. 5, we study the axial dependency of the pressure for
varying actuation step width dact and fixed actuation length of
Lact = 2L1

x , rescaled as in Eq. (22) by the characteristic length
scale L1

x ,

d̃act = dact

L1
x

, L̃act = Lact

L1
x

. (31)

In Fig. 5(b) is shown that for small dact the semianalytical
expression (30a) is a good approximation for all x̃. For large
dact it deviates significantly from the numerical solution (30b)
inside the actuation region for |x̃| < 1, whereas it remains a
good approximation outside for |x̃| < 1. This is quantified in
the inset of Fig. 5(b), showing that the deviation Ebox (solid
line) is around 1 % for a sufficiently narrow actuation step
width d̃act � 0.4.

In Fig. 6 we vary the actuation length Lact and keep
the actuation step width fixed at d̃act = 0.1. For all actua-
tion lengths L̃act, the semianalytical expression (30a) p̄1

1χ
1
box

(dashed magenta lines) approximates well the full numerical

FIG. 5. The acoustic pressure for varying actuation step width
d̃act and fixed actuation length L̃act = 2. (a) The actuation profile
ψnum

act (x) used in the full numerical simulation for d̃act = 0.0 (dark
blue) to d̃act = 2.0 (light blue). (b) Line plots of the magnitude of the
acoustic pressure along the axis parallel to the x-axis shown in Fig. 2,
with |p1

1| = | p̄1
1χ

1
box| (magenta dashed line) from Eq. (30a), and

|pnum
1 | (blue lines) from Eq. (30b) obtained from the 3D simulation

by using the actuation of same color shown in (a). The inset shows
the relative deviation (6) Ebox (solid line) of the pressure mode
p̄1

1(y, z)χ 1
box(x) from the numerical pressure pnum

1 , as well as the
deviation for the 2D calculation given in Sec. IV A, Ē = 0.14 %
(dot-dashed line).

solution pnum
1 (30b) (solid green lines), whereas p̄1

1(y, z)χ1
δ (x)

(black dotted lines), see Eq. (18), as expected is only a good
approximation in the narrow-actuation limit L̃act � 1. In the
inset of Fig. 6(b) the relative deviations of these approxi-
mations from pnum

1 are quantified by Ebox (solid line) and Eδ

(dotted line).

VI. TIME-AVERAGED ACOUSTIC QUANTITIES CLOSE
TO RESONANCE

In typical experiments on acoustofluidic devices, the MHz
oscillation of the acoustic pressure p1 is not observed directly.
We therefore study the time-averaged acoustic quantities
given in Eq. (5).

A. Time-averaged quantities for a single mode

We study a single-mode pressure resonance of the form
p1 ≈ pα

1 = p̄α
1 (y, z)χα (x), see Eq. (26). Inserting this form in

Eq. (5) together with the rescaled axial coordinate x̃ = x/Lα
x

and the corresponding derivative ∂x̃ = Lα
x ∂x, both scaled with

the characteristic axial length scale Lα
x from Eq. (20), we

obtain the time-averaged quantities,

Eα
pot = Ēα

pot|χα|2, (32a)

Eα
kin = Ēα

kin|χα|2 + Ēα
pot

(k0Lα
x )2

|∂x̃χ
α|2 ≈ Ēα

kin|χα|2, (32b)
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FIG. 6. The acoustic pressure for varying actuation length L̃act

and fixed actuation step width d̃act = 0.1. (a) The actuation profile
ψnum

act (x) used in the full numerical simulations for L̃act = 0.1 (dark
green) to L̃act = 8.0 (light green). (b) Line plots of the magnitude of
the acoustic pressure along the axis parallel to the x axis shown in
Fig. 2. The green graphs show the pressure pnum

1 obtained from the
3D simulation by using the actuation of same color shown in (a).
The dashed magenta lines show p1

1 = p̄1
1χ

1
box from Eq. (30b), and the

dotted black lines show the pressure p̄1
1χ

1
δ valid in limit L̃act � 1,

see Eq. (18). The inset shows the deviation E from to the reference
pressure pnum

1 Eq. (6), for p̄1
1χ

1
box (Ebox, solid), for p̄1

1χ
1
δ (Eδ , dotted),

as well as the deviation for the 2D calculation given in Sec. IV A,
Ē = 0.14 % (dot-dashed line).

Eα
ac ≈ Ēα

ac|χα|2, (32c)

U α
rad ≈ Ū α

rad |χα|2, (32d)

Fα
rad ≈ F̄α

rad|χα|2 −
√

�̄α k̄α
0 Ū α

rad∂x̃|χα|2ex, (32e)

Sα
ac = S̄α

ac|χα|2 +
√

�̄αcflĒα
potIm[2(χα )∗∂x̃χ

α]ex. (32f)

Here, the overbar denote a cross-section quantity obtained by
using the cross-section resonance pressure p̄α

1 (y, z) in Eq. (5).
In Eqs. (32b)–(32e) we used that (k0Lα

x )−2 ≈ �̄α , see Eq. (20),
which is here assumed to be much smaller than unity. We
note that the time-averaged quantities listed in Eq. (32) have
three different axial dependencies: |χα|2 which is the axial
dependency of Eα

kin, Eα
pot, Eα

ac, U α
rad , (Fα

rad )yz, and (Sα
ac)yz.

∂x̃|χα|2 which is the axial dependency of the axial radiation
force Fα

rad,x. And finally Im[2(χα )∗∂x̃χ
α] which is the axial

dependency of the axial energy flux density Sα
ac,x.

B. Time-averaged quantities for the box actuation

In Fig. 7, we use the box actuation with χα = χα
box, see

Eq. (27b), to make contour plots in the L̃act-x̃ plane of the
axial dependency of the time-averaged quantities listed in
Eq. (32). For each quantity, we choose the rescaled frequency
�α ≈ f0− f α

0
1
2 f0�̄α

, see Eq. (19), to obtain the largest possible value

FIG. 7. The axial dependency of the time-averaged acoustic
quantities of Eq. (32) obtained by using χα

box from Eq. (27b) as the
axial dependency of the pressure. In each plot, the rescaled frequency
�α ≈ f0− f α

0
1
2 f0�̄α

, Eq. (19), is chosen to maximize the corresponding

physical quantity, and the maximum value is marked by yellow
points. The black dashed lines show the actuation edge x̃ = ± 1

2 L̃act .
(a) The axial dependency |χα

box|2 of the acoustic energy density Eα
ac,

and the cross-sectional radiation force (F rad )yz, where the contours
are separated by 0.1 and the thick blue lines mark the area where the
axial dependency of |χα

box|2 exceeds unity. (b) The axial dependency
∂x̃|χα

box|2 of the axial radiation force Fα
rad,x . (c) The axial dependency

Im[2(χα
box )∗∂x̃χ

α
box] of the axial energy flux density Sα

ac,x .

of that quantity, i.e. to optimize |Ḡα|2|χα
box|2, |Ḡα|2∂x̃|χα

box|2,
and |Ḡα|2Im[2(χα

box)∗∂x̃χ
α
box], respectively.

In Fig. 7(a) is shown a contour plot of the axial dependency
|χα

box(x)|2 of the acoustic energy density Eα
ac, Eq. (32c), and

cross-sectional radiation force (Fα
rad )y,z, Eq. (32e). The blue

contour delimit the region where the 3D acoustic energy
density Eα

ac is larger than the 2D acoustic energy density
Ēα

ac. The orange dot marks the maximum obtainable acoustic
energy density which is max{Eα

ac} = 1.23Ēα
ac, found at the

optimal actuation length L̃act ≈ 6.1.
In Fig. 7(b) is shown a contour plot of the axial dependency

∂x̃|χα
box(x)|2 of the axial acoustic radiation force Fα

rad,x, see
Eq. (32e). The orange dots mark the maximum obtainable
axial trapping force which is found to be max{Fα

rad,x} =
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∓0.63
√

�̄α k̄α
0 Ū α

rad , for the optimal actuation length L̃act ≈ 4.1.
For this optimal value, the force is largest at the axial position
x̃ = ±1.3, which is around 17% inside the actuation region.

Finally, in Fig. 7(c) is shown a contour plot of the axial
dependency Im[2(χα

box)∗∂x̃χ
α
box] of the axial acoustic energy

flux density Sα
ac,x; see Eq. (32f). Clearly, the energy is always

transported away from the actuation region at the edges of
the actuation domain x̃ ≈ ± 1

2 L̃act. The orange dots mark
the largest obtainable axial energy flux density which is
max{Sα

ac,x} = ±0.66
√

�̄αcflĒα
pot.

C. Example: A standing half-wave resonance in a rectangular
cross section

A standard device for acoustic trapping is the capillary
tube with the rectangular cross section 0 < y < Ly and 0 <

z < Lz, where a standing-half-wave resonance in the vertical
z direction is excited [14–16,20,21,44]. Using Eq. (7) with
k̄01

0 = π
Lz

for the 2D pressure mode p̄01
1 = P̄01

1 Ḡ01 cos (k̄01
0 z),

we evaluate the cross-sectional radiation force F 01
rad,z(x, z)

from Eq. (32e) as

F 01
rad,z(x, z)

4πa3k̄01
0

〈
Ē01

ac

〉 ≈ � sin
(
2k̄01

0 z
)|χ01(x)|2, (33a)

where � = 1
3 f0 + 1

2 f1 is the usual acoustic contrast factor

[23,26,27], and 〈Ē01
ac 〉 = 1

4κfl|P̄01Ḡ01|2 is the spatial average
of the acoustic energy density Eq. (32c) in the cross section
�̄. Similarly, we use Eqs. (7) and (32e) to evaluate the axial
radiation force,

F 01
rad,x(x, z)

4πa3k̄01
0

〈
Ē01

ac

〉 ≈
[

1

2
f1 − � cos2

(
k̄01

0 z
)]√

�̄01∂x̃|χ01|2.
(33b)

From Eqs. (33a) and (33b), we calculate the ratio between
the maximum axial radiation force and the maximum cross
section radiation force for the single standing-wave resonance
by using max {∂x̃|χ01(x)|2} ∼ 2 max {|χ01(x)|2},

max
{
F 01

rad,x

}
max

{
F 01

rad,z

} ≈ f1

�

√
�̄01 = 2

1 + 2 f0

3 f1

√
�̄01,

≈ 0.21
√

�̄01, for polystyrene particles. (33c)

In the last step we use the scattering coefficients f0 = 0.443
and f1 = 0.034 for large polystyrene particles [26]. As exam-
ples, Ley and Bruus [36] studied numerically the pyrex-glass
capillary tubes named “C1” (used by Hammerström et al.
[20] with inner dimensions Ly = 2 mm and Lz = 0.2 mm)
and “C5” (proposed by the authors with inner dimensions
Ly = 0.5 mm and Lz = 0.2 mm). In both cases, they found
the quality factor for the standing half-wave resonance in
the z direction to be Q = 53, corresponding to the damping
coefficient �̄01 = 1

53 . Using this value in (33c) gives the ratio
1

35 , where Ley and Bruus found the ratio to be 0.44 pN
22 pN = 1

50 for

C1 (see their Fig. 6) and 0.13 pN
7 pN = 1

54 for C5 (see their Fig. 9).
Hence, even though Eq. (33c) is obtained from a hard-wall
analysis, it predicts values close to the full simulation where
the surrounding glass capillary is included.

Furthermore, for the capillary tube C1 with the experimen-
tally found resonance frequency f = 1

2π
k0cfl = 3.970 MHz

and transducer length Lact = 1160 μmm [20], we calculate
L̃act = Lactk0

√
�̄01 = 2.6. From Figs. 7(a) and 7(b) follows

the prediction that the acoustic energy density Eα
ac and trap-

ping force Fα
rad,x may be approximately doubled by doubling

Lact.

VII. DISCUSSION

The theory presented in Sec. IV relies on the main assump-
tion that the 2D resonance modes in an arbitrary cross section
can be written as in Eq. (9) for wave numbers k0 very close to
the cross-section eigenvalues k̄α

0 . Whereas this generalization
is not proven mathematically, it is physically reasonable, and
we have validated it numerically in Fig. 2 with a relative
deviation of 0.14%. We note that the eigenfunctions R̄α (y, z)
in the cross section do not exactly form a complete set,
because the eigenvalues of the eigenvalue problem Eq. (10)
has a small imaginary part. However, in the limit k0δs � 1
the viscous boundary layer introduces a minute imaginary part
to the eigenvalues, and thus Eq. (9) is a good approximation.
It may be possible to come up with a special cross section
where our theory fails, but it does apply to all capillary tube
cross sections used in the experiments that are reported in the
literature.

We have presented detailed results for the special simplify-
ing, but experimentally relevant, condition that the actuation
frequency is near a resonance characterized by a single mode
that does not overlap with other modes, such that the 3D
pressure p1 is described by only a single term of the sum
Eq. (17). We emphasize, however, that this is not a necessary
condition, as the general theory allows both for nonresonant
actuation and for multiple overlapping modes. In fact, we have
done equally successful validations for frequencies away from
resonance, where more modes are taken into account.

We have considered the actuation to have a box-shaped
axial dependency given by Eq. (27a) to mimic a piezoelectric
transducer confined in the axial direction to a length Lact. In
a realistic glass-capillary system, the motion of the wall will
be more complicated as found from the numerical simulations
by Ley and Bruus [36] and the simulations and experiments
by Reichert et al. [45]. Nevertheless, when calculating the
ratio between the axial and cross-sectional radiation force
in the end of Sec. VI C and using the damping coefficient
�̄1 = 1

53 found from the numerical simulation by Ley and

Bruus, we almost reproduce their values, namely, Frad,x

Frad,z
≈ 1

50 .
This agreement indicates that the predictions from our theory
of the axial variations of the pressure remain valid for more
complicated wall actuation, and that the important effect from
the capillary walls is well described by a change in the
damping coefficient �̄α for the mode. The probable cause for
this increased damping factor of the fluid resonance is not
dissipation in the capillary tube but instead an axial transport
of energy in the solid away from the fluid, as pointed out by
Ley and Bruus [36]. This can be seen from Eq. (32f), which
states that the axial transport (Sac)x of energy is proportional
to the speed of sound cfl, and because the speed of sound in
the capillary tube is usually larger than in the fluid, energy
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is efficiently transported away from the trapping region. For
example, the longitudinal sound speed in pyrex glass is 3.7
times larger than in water [46].

VIII. CONCLUSION AND OUTLOOK

We have presented a semianalytical method to calculate
the acoustic pressure in a long, straight capillary tube of
arbitrary cross section with a localized ultrasound actuation
at the walls. Moreover, we have analytically derived the axial
dependencies Eq. (32) of the time-averaged response and used
it to derive an expression for the key aspect in the acoustic
trap, namely, the axial acoustic radiation force Eq. (33) acting
on suspended particles. The viscous boundary layer is taken
into account through an effective boundary condition Eq. (4b),
which is valid when the width δs of the viscous boundary layer
is much smaller than both the acoustic wavelength (k0δs � 1)
and the radius of curvature of the cross section. This condition
is usually satisfied in typical experiments.

In Eq. (9), the acoustic 2D cross-section resonance mode
p̄α

1 (y, z) in an arbitrary cross section was obtained by a gener-
alization of the well-studied case Eq. (7) of a rectangular cross
section. The 2D mode p̄α

1 (y, z) can be found analytically for
integrable shapes, such as rectangles, circles and ellipses, and
otherwise numerically as shown in Fig. 1. The theory results
in the correct amplitude and phase of p̄α

1 (y, z) by combining
the eigenvalue k̄α

c and the dimensionless eigenfunction R̄α of
Eq. (10) with the actuation function Ū1⊥ of Eq. (4d) and the
inclusion of the viscous boundary layer through the boundary
operator D⊥ in Eq. (4c).

From the 2D pressure modes p̄α
1 (y, z) in the cross sec-

tion, known for frequencies near resonance, we derived in
Eq. (17b) the 3D pressure modes pα

1 (x, y, z). The sum over α

of these modes, see Eq. (17a), constitutes the full 3D pressure
p1(x, y, z) including the axial dependency and valid for all
frequencies. In Eq. (20) we extracted for 3D resonance mode
pα

1 the characteristic axial length scale Lα
x = (k̄α

0

√
�̄α )−1,

where k̄α
0 is the 2D resonance wave number and �̄α is the

2D damping coefficient. Because the axial radiation force
(Fα

rad )x and the axial energy flux density (Sα
ac)x of resonance

mode α, depend on the axial gradient of the pressure, we find
in Eqs. (32e) and (32f) that these are both proportional to√

�̄α . These analytical results constitute the main theoretical
insight obtained by our mode analysis. Furthermore, from
a purely numerical-modeling point of view, the theoretical
method implies a drastic reduction in the computer-memory
requirements and in computation times, because the full 3D
system can be obtained from a 2D simulation of the cross-
section eigenproblem combined with the analytical expres-
sions for the axial dependencies. This reduction will facilitate
any numerical parametric study of the 3D acoustic trap.

To further study the physics of the acoustic trap, we chose a
box-shaped actuation which mimics a piezoelectric transducer
attached to the capillary walls in a confined region of length
Lact, and which allows for analytic solutions. In Fig. 7 is
shown the resulting axial dependencies of the acoustic en-
ergy density Eα

ac, the cross-sectional acoustic radiation force
(F rad )yz, the axial acoustic radiation force Fα

rad,x, and the axial
energy flux density Sα

rad,x. Remarkably, we found an optimal

actuation length Lact ≈ 2-5Lα
x that maximizes these quantities.

Furthermore, whereas the maximum acoustic energy density
Eα

ac is found in the center of the channel, maximum axial ra-
diation force Fα

rad,x is located around 17% inside the actuation
region, and the maximum axial energy flux density Sα

rad,x is
located at the edge of the actuation region.

We validated numerically our theory in Figs. 5 and 6 for
the 3D system shown in Fig. 1 near the resonance α = 1, by
using the box-shaped actuation given in Eq. (27a). We found a
relative agreement around 1 % between theory and simulation,
even when the box-shaped actuation had smooth steps. This
agreement is satisfactory as the theory was developed in the
limit of a small boundary-layer width (k0δs � 1), and k0δs =
0.0024 in the numerical model.

The presented theory motivates further studies of capillary
tubes. One obvious extension of this work is to compute
the acoustic streaming, in particular the horizontal in-plane
streaming rolls observed by Hammarström, Laurell, and Nils-
son [20] and by Lei, Glynne-Jones, and Hill [15]. The stream-
ing can be computed numerically by combining the presented
theory with the recently published methods of calculating
the time-averaged streaming velocity [30,37]. Another future
study, would be to include the elastic walls in the mode
analysis. For example, by combining the wall velocity U1⊥
obtained from a full 3D numerical simulation with the solution
of the 2D eigenvalue problem Eq. (10), the coupling strength
Pα

1 for each pressure mode pα
1 can be calculated from Eq. (17).

In this way the relative importance of each pressure mode
in the acoustic trap can be characterized. A last example of
further work is to investigate the loss of acoustic energy in the
fluid into the solid as briefly discussed in the last paragraph of
Sec. VII.

We have provided theoretical predictions of the axial vari-
ation of the acoustic fields in capillary tubes and pointed out
that there is an optimal actuation length leading to a maximum
acoustic radiation force, both in the axial and cross-sectional
directions. Our analysis provides a theoretical understanding
of the complicated 3D characteristics of acoustofluidics in
capillary tubes, and in long, straight channels in general. Our
resulting expressions can be used to aid in the design of
acoustic trapping devices, and we hope that our work will
inspire further systematic experimental characterization and
optimization of acoustic traps.

APPENDIX A: THE FOURIER TRANSFORM AND THE
CONVOLUTION RELATIONS

We define the Fourier transform Fx and the inverse Fourier
transform F−1

k as

φ̂(k) = Fx[φ(x)](k) =
∫ ∞

−∞
φ(x)e−ikx dx, (A1a)

φ(x) = F−1
k [φ̂(k)](x) =

∫ ∞

−∞
φ̂(k)e+ikx dk

2π
. (A1b)

For this convention, the convolution relations are

F[φ1 ∗ φ2] = F[φ1]F[φ2], (A2a)

F[φ1φ2] = F[φ1] ∗ F[φ2], (A2b)
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where the in-line asterisk denote the convolution,

[ f ∗ g](x) =
∫ ∞

−∞
f (x′)g(x − x′) dx′. (A3)

APPENDIX B: DETAILS ABOUT THE USE OF THE
BOUNDARY OPERATOR D⊥ IN Eq. (15)

The boundary operator D⊥ defined in Eq. (4c) takes into
account the viscous boundary layer. To be able to compare
Eq. (15) for p̂1 to Eq. (4) for p̄1, we need to express D⊥ in
terms of k2

c − k2
x . This is achieved by subtracting and adding

k2
x as D⊥ = ∂⊥ + i

ks
[(k2

c − k2
x ) + k2

x + ∂2
⊥]. Close to the poles

we have kx ≈ kα
x , and thus Eq. (16b) gives k2

c − k2
x ≈ (k̄α

c )2,
whereby D⊥ ≈ ∂⊥ + i

ks
[(k̄α

c )2 + (kα
x )2 + ∂2

⊥]. If we assume
(k̄α

c )2 � (kα
x )2, then we may ignore (kα

x )2. Later, this assump-
tion is proven correct by noticing that Eq. (19) yields (kα

x )2 ∼
�̄α (k̄α

c )2 with �̄α � 1. Consequently, Eq. (16) for the Fourier
transform p̂1 at kx-values close to the complex poles kα

x is valid
to O(�̄α ).

APPENDIX C: DETAILS IN APPLYING
THE RESIDUE THEOREM

To obtain the residues Res( p̂1(kx; y, z)eikxx, kα
x ) used

in Eq. (14b), we first rewrite Eq. (16a) by inserting
Û1⊥(kx; y, z) = ∫ ∞

−∞ U1⊥(x′, y, z)e−ikxx′
dx′,

p̂1(kx; y, z) eikxx

≈ −(
k̄α

c

)2
R̄α

(kx )2 − (
kα

x

)2

∫
∂�̄

∫ ∞
−∞ U1⊥(x′, y, z)eikx (x−x′ ) dx′R̄α dl∫

�̄
(R̄α )2 dA

.

(C1)

This expression is valid for kx close to the simple poles given
by ±kα

x = ±
√

k2
c − (k̄α

c )2; see Eq. (16b). Based on Eq. (C1),
the integral in Eq. (14a) is calculated using the residue theo-
rem over a closed contour γ in the complex kx-plane chosen
as follows: (1) For x − x′ > 0, the integrand Eq. (C1) vanishes
for kx → i∞, and we choose the closed contour γ to be the
counterclockwise contour consisting of the real Re(kx ) axis
connected to a semicircle of radius |kx| → ∞ in the upper
complex kx plane. This contour encloses the residues at kx =
+kα

x = +
√

k2
c − (k̄α

c )2 having positive imaginary part. (2) For
x − x′ < 0, the integrand Eq. (C1) vanishes for kx → −i∞,
and we choose the closed contour γ to be the clock-wise
contour consisting of the real Re(kx )-axis connected to a semi-
circle of radius |kx| → ∞ in the lower complex kx-plane. This
contour encloses the residues at kx = −kα

x = −
√

k2
c − (k̄α

c )2

having negative imaginary part. In either case (1) or (2), the
residues inside the closed contour γ are

Res
(
p̂1(kx; y, z)eikxx, kα

x

)

= −(
k̄α

c

)2
R̄α

2kα
x

∫
∂�̄

∫ ∞
−∞ U1⊥(x′, y, z)eikα

x |x−x′| dx′R̄α dl∫
�̄

(R̄α )2 dA

= −iḠα (kc)R̄α

∫
∂�̄

∫ ∞
−∞ U1⊥(x′, y, z)g(x − x′) dx′R̄α dl∫

�̄
(R̄α )2 dA

,

(C2)

where we inserted Ḡα (kc) from Eq. (9c) and introduced the
normalized function gα (x) given by Eq. (17d). Finally, using
the residues Eq. (C2) in the sum Eq. (14b), we obtain Eq. (17)
for the acoustic pressure p1.
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