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Green plants are Earth’s primary solar energy collectors. They harvest the energy of the Sun by
converting light energy into chemical energy stored in the bonds of sugar molecules. A multitude of
carefully orchestrated transport processes are needed to move water and minerals from the soil to sites
of photosynthesis and to distribute energy-rich sugars throughout the plant body to support metabolism
and growth. The long-distance transport happens in the plants’ vascular system, where water and
solutes are moved along the entire length of the plant. In this review, the current understanding of the
mechanism and the quantitative description of these flows are discussed, connecting theory and
experiments as far as possible. The article begins with an overview of low-Reynolds-number transport
processes, followed by an introduction to the anatomy and physiology of vascular transport in the
phloem and xylem.Next, sugar transport in the phloem is exploredwith attention given to experimental
results as well as the fluid mechanics of osmotically driven flows. Then water transport in the xylem is
discussedwith a focus on embolism dynamics, conduit optimization, and couplings betweenwater and
sugar transport. Finally, remarks are given on some of the open questions of this research field.
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I. INTRODUCTION

From the point of view of a physicist, plants are full of
mysteries. They are among the most successful organisms on
Earth in terms of both total biomass and individual size range,
and yet they lack the central organs which we associate with
life, such as heart or brain, and on which animals rely for
control and function. Indeed, plants are masters of decentral-
ized management, since they thrive and maintain coherence
even in very large organisms without these central units. This
requires an efficient and robust vascular system, which sustains
growth and communication throughout the entire organism,
from root to leaf of even the tallest tree, without, that is, a central
heart to drive the sap. The basic mechanisms, or driving forces,
for the flows in these vascular systems have proven difficult to
elucidate because the conduits are sensitive to manipulation,
ceasing transport when exposed to only slight disturbances.
Considering the importance of plants, as crops in the fields or

trees in the forests, to the existence of other life forms on this
planet, this is amazing. These basic mechanisms are the focus
of the present review, and we shall, in particular, discuss the
fluid dynamics emerging from the basic hypotheses and the
ensuing consequences for structure and function, testable by
field measurements. By thus investigating the mechanisms for
the functioning of the entire organisms, we hope to expose the
reader to interesting and challenging physics deserving
to be better known to active researchers in many fields of
physics.
The two main parts of the vascular system, the xylem and the

phloem, play a very different role in the life of plants (Fig. 1).
Their remarkable names were coined byGerman botanists from
the Greek words xylon (wood) and phloos (tree bark). The
xylem is the “water highway” which brings large amounts of
water from the roots to the leaves. Xylem tubes come in two
varieties: tracheids and vessels. The latter are the largest and
they can reach hundreds of μm in diameter andmeters in length.
They are made up of cellular segments, vessel elements of up to
around 1mm, separated by porous perforation plates. In a large
tree, the xylem is well protected inside the trunk and can daily
carry several hundred liters of water to the leaves, most ofwhich
is evaporated into the surrounding air. The reason for this
wasteful handling of the—often scarce—water resources, lies in
the plants’ approach to the acquisition of carbon dioxide. Plants
acquire CO2 simply by opening their “mouths,” i.e., the stomata
(pores) on the surface of their leaves. Opening the stomata does
letCO2 diffuse in, butmuchmorewater is lost: since living plant
cells need to be soaked inwater, the humidity inside a leaf is near
100%, typically much higher than outside, and thus several
hundreds of water molecules will be lost for every CO2

molecule gained. Together with sunlight, and a bit of the water,
CO2 is the basic ingredient for photosynthesis, primarily taking
place in the leaves, leading to the creation of sugars; sugars
which, through the phloem, provide the building material for
practically all growth in the plant—from root to leaf, including,
in a tree, the annual radial growth of the trunk. We find the
concentration of CO2 of 0.04 vol % in the atmosphere threat-
eningly high due to global warming, but, presumably, trees find
it threateningly low.
The theoretical understanding of the upward flows of water

came around 1900 in the form of the cohesion-tension theory
(Dixon and Joly, 1895): the driving force for the flow in the
xylem comes from suction generated in the leaves by
evaporation of water vapor into the atmosphere [Figs. 1(a)
and 1(c)]. The surprise was that the pressures in the xylem are
even lower than vacuum: they are negative. Negative pressures
are somewhat counterintuitive, in particular, if our intuition
comes from equilibrium thermodynamics and gases. Negative
pressures occur only in nonequilibrium or metastable states
and only in substances with strong cohesion, e.g., liquids. The
magnitude of these negative pressures (typically −2 MPa)
does remain surprising, as does the fact that water inside living
trees is transported in a metastable state. Thus a lot of recent
effort went into understanding how trees avoid or cope with
the local return to equilibrium in the form of cavitation, or
embolisms in biological terminology, which would seem to be
fatal for efficient water transport.
Compared to the water highway of the xylem, the phloem is

more like the small country roads passing through the villages.
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Everything is an order of magnitude smaller—the size of the
tubing and the maximum flow velocities. The pressure differs
not only in strength, but also in sign: the phloem runs under
positive pressure of the order of 1 MPa. The phloem is no less
important, however, since it carries the valuable sugars from
the mature leaves where they are produced to, e.g., new leaves,
roots, shoots, or fruits where they are needed. In contrast to the
xylem, the phloem tubes (sieve elements) are living cells, but
still the main transport mechanism, the so-called Münch
mechanism (Münch, 1930), is believed to be the purely
passive osmotic pressure differences caused by the gradients
in sugar concentration between sources and sinks of sugar
[Fig. 1(b)]. A large part of this review is devoted to the
consequences of this hypothesis, applied to the long-distance
sugar translocation from one end of the organism to the other.
The basis is formed by the equations for the dynamics of
osmotically driven flows, which seem quite unique to plants
and fungi. Of course, osmosis plays a large role in animals,

e.g., for the filtration in the kidneys, but the flow past the
kidney is generated by the heart, not by osmosis.
In a tree, the phloem resides on the inside of the bark and is

therefore easily destroyed if the bark is removed. On the other
hand, the phloem is well protected by the construction and
constituents of the tubes. Phloem tubes consist of cylindrical
sieve elements (perhaps around 10 μm in radius and 1 mm in
length) separated by perforated sieve plates. Disturbance of
the sieve element (e.g., mechanically or by cooling) can cause
local stopping of the flow, for instance, by occlusion of the
sieve tube by forisomes (a class of contractile proteins) or by
clogging of the sieve plates [Fig. 1(d)] (Lang and Minchin,
1986; Knoblauch et al., 2014). Suspension of translocation
is widespread throughout the plant kingdom and may be an
important control mechanism. The hydrodynamic mecha-
nisms involved in these processes, however, remain poorly
understood. The sensitivity of the phloem makes its contents
inaccessible to most. The remarkable exceptions from this rule

(a) (c)

(d)

(e)

(b)

FIG. 1. Schematic representation of vascular transport processes in plants. (a) Xylem water transport from soil to shoot is driven by
evaporation from leaves via the cohesion-tension mechanism. (b) Phloem sugar transport from leaves to regions of growth is driven by
differences in osmotic pressure according to the Münch mechanism. Details of transport processes in (c) leaves, (d) phloem tubes, and
(e) xylem conduits are also shown. For clarity xylem and phloem tubes are drawn as the same size. See further details in the text.
(d) From Jensen et al., 2012. (e) Adapted from Bauch, Liese, and Schultze, 1972. The background drawing of a tree is courtesy of
Camille Lucas and Alexandre Ponomarenko.

K. H. Jensen et al.: Sap flow and sugar transport in plants

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035007-3



are a group of small insects, aphids, who are actually able to
penetrate into the sieve elements and tap the valuable sweet
sap, without stopping the phloem. Aphids remain important
for investigations of the phloem, but despite their life-
sacrificing effort (letting biologists sever their body from
the stylet inserted into the plant) our knowledge about local
pressures and concentrations in the phloem is limited. Again,
this makes it paramount to extract measurable consequences
from this special type of fluid dynamics.
The phloem and the xylem interact and exchange water

along the entire length of the plant. This interaction is
particularly strong in the leaves, where the outlet from the
xylem (the tracheary elements) and the inlet to the phloem
(the sieve elements) are separated only by a few microns, with
a pressure in the former, say, around −2 and þ1 MPa in the
latter. Part of the water coming out from the tracheary element
should end up in the nearby sieve element, pushing the sugar
solution back into the tree, but only a small part of it. Most of
the water leaving the xylem moves into the leaf mesophyll and
evaporates through the stomata. On the way out, a small part,
perhaps a percent, of the water enters into the mesophyll cells
where the photosynthesis takes place—partly to contribute
to the photosynthesis and partly to assist the sugars on their
way back to the phloem. This coupled water-sugar transport,
sugar loading, is currently an active field of research, and we
will discuss some recent developments.
One point of view to which we return frequently, is that of

optimality. We know that plants, as other living organisms,
have been carefully selected by evolution and thus function
rather efficiently. This paper primarily deals with the physical
factors that characterize vascular transport processes.
However, numerous other effects play equally important roles.
For instance, mechanical effects impose important constraints
on leaf morphology and venation patterns. Moreover, envi-
ronmental factors and ecological interactions between plants
and animals influence the distribution of species. In general,
however, one can ask whether the choice of a particular
strategy can be motivated by some criterion of optimality by
which one can gauge the performance of plants in using a
particular strategy. Scientists have pondered this question for
centuries. In particular, the energy budget of living organisms
has been the focus of much attention, where energy broadly
defined denotes resources necessary for metabolism, growth,
and reproduction (e.g., nutrients, light, water, CO2 etc.). One
perspective due to Lotka (1922) (p. 150) that links fitness
and energy consumption strategies is “Where the supply of
available energy is limited, the advantage will go to that
organism which is most efficient, most economical, in
applying to preservative uses such energy as it captures.
Where the energy supply is capable of expansion, efficiency or
economy, though still an advantage, is only one way of
meeting the situation, and, so long as there remains an
unutilized margin of available energy, sooner or later the
battle, presumably, will be between two groups or species
equally efficient, equally economical, but the one more apt
than the other in tapping previously unutilized sources of
available energy.”
To test optimality hypotheses against biological data, two

different approaches are feasible (Brenner, 2014): Either one
must sample the characteristics of many species in the

phylogeny and compare results over a wide class of organisms
or one can use engineering principles to hypothesize adapta-
tions by the organisms to achieve optimality. The advantage of
the first approach is that it allows us to broadly determine if
the systems are optimized for a certain function and evaluate
potential performance metrics to elucidate sources of vari-
ability. As an example, we show in Sec. IV.C that the Münch
mechanism implies an optimal choice of the diameter of the
sieve tubes connecting the leaves of a plant to its root.
Specifically, we find that the competition between efficient
osmotic pumping (in the leaves) and efficient long-distance
transfer (through the stem) leads to the simple result that the
optimal diameter of the sieve tubes (leading to the largest flow
velocity) should scale as the cubic root of the product of the
length of the leaves and that of the stem. We find broad
agreement between this prediction and data, but outliers also
help identify drivers of variability. The second approach can
be used if the number of species is limited or not enough is
known about the physiology to make concrete statements
about optimality. If the engineering challenge, however, is
clear we can make hypotheses about what the individual
organism can do to enhance transport. From this, one can
propose concrete experiments to test specific cases that may
reveal new aspects of physiology. In Sec. VI.B, we give
examples of how this strategy has been applied to understand
vascular structure of leaves. As we focus on the basic physics
of fluid transport, the principles discussed are relevant for all
vascular plants. Aspects of conduit structure, however, vary
among different groups of plants. Here we emphasize trans-
port in two groups: gymnosperms, which are cone-forming
plants that include conifers and thus common trees such as
pines, spruce, and yew, and angiosperms, which include all of
the plants that produce flowers (e.g., oak trees, grasses, and
grape vines).
Another recurring topic is that of biomimetics. With the

dual purpose of understanding plants and learning from plants,
many researchers (including ourselves) have designed fluidic
devices based on certain features of the fluid dynamics of
plants. They have shown to be very helpful in highlighting
basic features, mostly of the vascular system. We review the
current state of the art and problems in this field, which we
find very promising.
The layout of the review is as follows. We start with a short

review of transport in low-Reynolds-number flows of rel-
evance for plants’ vascular systems and similar microfluidic
systems. This section should provide the physicist reader,
inexperienced in fluid dynamics, with a useful introduction
necessary for several later sections, as well as provide some
terminology to be used in the rest of the review. Similarly, we
do not assume the reader to have prior knowledge on plant
physiology, and Sec. III gives a review of the relevant aspects
of plant anatomy and physiology, in particular, the vascular
system. Thus, the phloem, the xylem, and the leaves are
described without going into too much detail, but this section
provides the necessary terminology as well as theoretical and
experimental background for the rest of the review.
In Sec. IV on sugar transport in plants, we first discuss the

available data on phloem flow translocation. After that we
discuss various biomimetic models for osmotically driven
sugar transport akin to the phloem. We then give a simplistic
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“hydraulic resistor” theory for the phloem flow, leading to the
optimality criterion for the diameter of the sieve tubes, limits
to leaf sizes, and optimal sugar concentrations.
Then, in Sec. V, we embark on the more detailed hydro-

dynamical theory of the flow in the phloem, the so-called
Münch-Horwitz equations, including some analytical solu-
tions for both transient and stationary flow, allowing us to
return to the optimality question in a more consistent way.
After this we briefly discuss the so-called unstirred layers,
beyond the Münch-Horwitz equations, occurring due to
inhomogeneities in osmotic flows and reducing the osmotic
efficiency.
In Sec. VI, we take up the water transport in the xylem.

After an experimental section, we discuss the details of the
cohesion-tension theory and the role of the bordered pits
controlling the water and air flow between neighboring xylem
tubes. We conclude the section by reviewing recent results on
conduit optimization and on the combined water and sugar
translocation in the leaves, specifically in connection with the
“polymer trap” loading mechanism.
A large body of literature has been devoted to plant vascular

biology, and for each topic discussed we attempted to give
references to the relevant literature. For textbook introductions
to plant biology, see Crafts and Crisp (1971), Canny (1973),
Niklas (1994), Kramer and Boyer (1995), Tyree and
Zimmermann (2002), Holbrook and Zwieniecki (2005),
Raven, Evert, and Eichhorn (2005), Evert (2006), Nobel
(2009), Taiz and Zeiger (2010), Morris et al. (2013), and
Vogel (2013) for more comprehensive discussions of vascular
physiology and plant biomechanics. There are also several
review type papers related to the topics we cover. The
following is a partial list: MacRobbie (1971), Pickard
(1981), Rand (1983), Boyer (1985), Dumais and Forterre
(2012), Gibson (2012), De Schepper et al. (2013), and Stroock
et al. (2014). In some ways one can think of the present review
as a follow-up of the impressive earlier reviews by Pickard
(1981), Rand (1983), and Stroock et al. (2014) which also
stressed the physical mechanisms involved in sap transloca-
tion, but with the emphasis primarily on the xylem. In the
present paper, the physical modeling has more focus on the
phloem (Secs. IVand V) since the fascinating fluid mechanics
of osmotically driven flows has, in our opinion, not quite
received the attention it deserves.

II. TRANSPORT AT LOW REYNOLDS NUMBERS

A. Microscale hydrodynamics

We begin with a short review of transport in low-Reynolds-
number flows of relevance to plants. This section provides a
useful introduction necessary for several later sections, as well
as some terminology to be used in the rest of the review.
The flow of sap (aqueous solutions of nutrients) in the

submillimeter-diameter conduits inside plants [Figs. 1(d) and
1(e)] is described using classical continuum theory in the
microfluidic regime as described by, e.g., Tabeling (2005),
Bruus (2008), Berthier and Silberzan (2010), and Kirby
(2010). Theoretically, the basic entity in microfluidics, and
hydrodynamics in general, is the so-called liquid particle. In
the Eulerian picture, this particle is a small region ΩðrÞ of

volume ΔV centered around the fixed position r. The detailed
molecular properties of the liquid are replaced by averages over
molecules i with mass mi and momentum mivi present in this
volume at time t, and thus the classical continuum description is
used involving the density field ρðr; tÞ (mass per volume), the
velocity field vðr; tÞ (momentum per mass in the volume), and
the pressure fieldpðr; tÞ (normal force per area). This averaging
typically requires ΔV to be ð10 nmÞ3 or larger.
For brevity we often suppress the arguments r and t in the

following.
The sap in plants is well described as incompressible,

Newtonian liquids with viscosity η. The viscosity combined
with the narrow conduits in plants results in such low flow
speeds v that nonlinear velocity terms can be neglected. This
approximation is valid when the dimensionless Reynolds
number Re is small,

Re ¼ UL
ν

≪ 1; with ν ¼ η

ρ
: ð1Þ

Here L is the characteristic width of the conduit, U is a
characteristic flow speed, and ν is the kinematic viscosity. For
sap in the phloem ν ≈ 2 × 10−6 m2=s, and with a maximum
flow speed of U ≈ 0.1 mm=s in a 10-μm-radius plant cell we
obtain Re ≈ 5 × 10−4. This number and other characteristic
numbers for microfluidic flows in plants are given in Table I.
Further simplifications can be obtained by noting that the

body force density g ¼ −gez due to gravity is balanced by the
hydrostatic pressure phs,

phs ¼ −ρgz; ð2Þ

so henceforth gravity is left out of the flow equations for the
sap and p is without phs. With these simplifications, we arrive
at the governing equations for plant microfluidics, the Stokes,
and continuity equations expressing the conservation of
momentum and mass in the sap,

ρ
∂v
∂t ¼ −∇pþ η∇2v; with ∇ · v ¼ 0: ð3aÞ

The most common boundary condition on the sidewalls of a
liquid-carrying channel is the no-slip condition,

vðat wallÞ ¼ vwall ð¼ 0 for stationary wallsÞ: ð3bÞ

TABLE I. Comparison of parameters for flow in a phloem tube,
xylem vessel, and the human aorta. The diffusivity for sucrose in
water D ¼ 5 × 10−10 m2=s is used in the calculation of the Péclet
number Pe. Adapted from Rand, 1983.

Phloem Xylem Human aorta

Velocity u (m/s) 10−4 10−3 4 × 10−1

Radius a (m) 10−5 10−4 1.5 × 10−2

Viscosity η (Pa s) 2 × 10−3 10−3 3 × 10−3

Density ρ (kg=m3) ∼103 ∼103 ∼103

Reynolds number (Re ¼ ρua=η) 5 × 10−4 10−1 2 × 103

Péclet number (Pe ¼ ua=D) 2 2 × 102 1.2 × 107

Schmidt number ðSc ¼ η=ρDÞ 4 × 103 2 × 103 6 × 103
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By taking the divergence of Eq. (3a) and then using the
incompressibility condition ∇ · v ¼ 0, it is seen that the
pressure must be a solution to the Laplace equation,

∇2p ¼ 0: ð3cÞ

As a first example, we study the classical steady
(∂v=∂t ¼ 0) Poiseuille flow in an infinitely long cylindrical
pipe of radius a centered on the x axis driven by a pressure
difference which drops from p ¼ Δp to p ¼ 0 over the finite
section of the pipe between x ¼ 0 and x ¼ L; see Fig. 1(d).
The symmetry of the problem favors the use of cylindrical
coordinates ðr; xÞ for which

∇2 ¼ ∂2

∂r2 þ
1

r
∂
∂rþ

∂2

∂x2 ;

and it leads to an axisymmetric solution, where the pressure
depends only on z as p ¼ pðxÞ, while the velocity field is
parallel to the z axis, but depends only on the radial coordinate

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
, vðr; xÞ ¼ vxðrÞex. Since ∇2pðxÞ ¼ 0 leads to

a linear pressure drop, we obtain

p ¼
�
1 −

x
L

�
Δp; ð4aÞ

∂2vxðrÞ
∂r2 þ 1

r
∂2vxðrÞ
∂r2 ¼ 1

η

∂p
∂x ¼ −

Δp
ηL

; ð4bÞ

yielding the well-known paraboloid velocity profile vxðrÞ,

vxðr; xÞ ¼
Δp
4ηL

ða2 − r2Þ; fulfilling vxða; xÞ ¼ 0: ð4cÞ

By integration of the velocity profile across a circular cross
section, we obtain the volumetric flow rate Q and the
hydraulic resistance Rpoi

hyd defined by the Hagen-Poiseuille

relation Δp ¼ Rpoi
hydQ,

Q ¼
Z

a

0

2πrvxðrÞdr ¼
πa4

8ηL
Δp; ð4dÞ

Rpoi
hyd ¼

8ηL
πa4

: ð4eÞ

Using that Δp=L ¼ −∂p=∂x, we get the Darcy equation

∂p
∂x ¼ −

8η

πa4
Q ¼ −

η

k
v; with v ¼ Q

πa2
; ð5Þ

where v is the flow speed averaged over the cross
section, and k is a coefficient of dimension length squared.
Allowing k to be weakly dependent on the axial position
(∂k=∂x ≪ k=a), Eq. (5) describes what is known as Darcy
flow. The same equation can also describe the situation
where v changes weakly with the axial position, e.g., due to
the influx of liquid through weakly permeable sidewalls;
see Sec. II.D.

The Poiseuille flow is a first illustration of the fact that, for
steady low-Reynolds-number flow, the length scale over
which the velocity field is changing is entirely set by the
geometry of the confining channel, here the radius a of the
cylindrical pipe. A second, and less trivial example of this, is
the entrance length, the distance l into the pipe over which a
nonparaboloid velocity profile vzð0; rÞ at the inlet z ¼ 0
relaxes to the paraboloid Poiseuille profile Eq. (4c) with its
linear pressure drop Eq. (4a), in the following denoted vpoix ðrÞ
and ppoiðxÞ, respectively. Splitting off the Poiseuille solution
in a sum of two solutions, we write the fields as

vxðr; xÞ ¼ v̂xðr; xÞ þ vpoix ðrÞ; ð6aÞ

pðr; xÞ ¼ p̂ðr; xÞ þ ppoiðrÞ; ð6bÞ

and seek to determine v̂x and p̂. The starting point is
∇2p̂ ¼ ∇2p −∇2ppoi ¼ 0, and the fact that far from the
entrance p̂ðr;∞Þ ¼ 0 since pðr;∞Þ ¼ ppoiðrÞ. The pressure
p̂ðr; xÞ can therefore be written as a Fourier-Bessel series
decaying in the axial direction x → ∞, known to solve the
Laplace equation,

p̂ðr; xÞ ¼ p0

X∞
n¼0

cnJ0ðknrÞe−knx; n ¼ 1; 2; 3;…; ð6cÞ

where J0 is the Bessel function of the first kind of order zero
with roots kna, J0ðknaÞ ¼ 0, and with expansion coefficients
cn to be determined later. It is verified by direct substitution
that the solution to the Stokes and continuity equations is

v̂rðr; xÞ ¼
X∞
n¼0

p0

2η

cn
kn

ð−knxÞJ00ðknrÞe−knx; ð6dÞ

v̂xðr; xÞ ¼
X∞
n¼0

p0

2η

cn
kn

ðknxþ 1ÞJ0ðknrÞe−knx: ð6eÞ

The expansion coefficients are determined from the velocity
profile vxðr; 0Þ at the entrance, which in terms of v̂x becomes
v̂xðr; 0Þ ¼ vxðr; 0Þ − vpoix ðrÞ

cn ¼
Z

a

0

ηknr½vxðr; 0Þ − vpoix ðrÞ�
p0½aJ00ðknaÞ�2

J0ðknrÞdr. ð6fÞ

The important implication of this analysis is as follows:
the distance l along the axial direction over which the
velocity profile relaxes to the Poiseuille paraboloid is given
by using the smallest Bessel-function root in the argument
of the exponential decaying term k1l ¼ 1 or l ¼ 1=k1≈
a=2.4048. This result is illustrated in Fig. 2(a), which is a
numerical simulation of the velocity field, given a constant
inlet velocity profile vxðr; 0Þ ¼ v0 at x ¼ 0 for the low
Reynolds number Re ¼ 0.1. Figure 2(b) shows how this
result is modified for the larger Reynolds number
Re ¼ 100, for which the advective term ρðv · ∇Þv present in
the full Navier-Stokes equation, but not in the approximate
Stokes equation (3a), leads to an enhanced entrance length
l ≈ ða=12ÞRe ≈ 8.4a. A similar effect is shown in Fig. 3.
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Here modeling a sieve plate with multiple pores in a plant cell,
Fig. 1(d), a low-Reynolds-number pressure-driven flow is
moving toward a sieve plate in a cylindrical tube (mathemati-
cally equivalent to the flow away from a sieve plate). The flow
profile at the sieve plate adopts to the individual pores with
local maxima at the centers of the pores, while the Poiseuille
paraboloid is established in the main tube a few times the tube
radius a away from the sieve plate.
Next we consider the flow rate q through a single pore in a

sieve plate based on Eq. (3a) in steady state ∂v=∂t ¼ 0.
For a circular pore of radius a in an infinitely thin plate
with a pressure drop Δpsmp applied across the pore as shown
in Fig. 4(a), the hydraulic resistance Rsmp

hyd and circular flow
profile vxðrÞ inside the pore was obtained by Sampson (1891)
and later improved by Roscoe (1949),

Rsmp
hyd ¼ Δpsmp

q
¼ 3η

a3
; ð7aÞ

vxðrÞ ¼
Δpsmp

2πη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − r2

p
; ð7bÞ

where r is the distance in the pore to the center of the pore.
A simple scaling argument explains the form of Eq. (7a):
Hydraulic resistance has the unit Pa s=m3, viscosity has the
unit Pa s, while the infinite plane with a circular hole has the
radius a as the only length scale, consequently Rsmp

hyd ∝ η=a3,
only missing the factor of 3. A real pore plate has a finite
thickness d, so inside the pore a Poiseuille flow develops,
Fig. 4(b), adding to the total hydraulic resistance Rpore

hyd of a

single pore. Thus, for a pore flow with Re ≪ 1, Rpore
hyd is well

approximated by the sum of the Sampson and Poiseuille flow
resistances (Weissberg, 1962; Dagan, Weinbaum, and Pfeffer,
1982),

Rpore
hyd ≈ Rsmp

hyd þ Rpoi
hyd ¼

3η

a3
þ 8ηd

πa4
¼ 3η

a3

�
1þ 8d

3πa

�
: ð8Þ

The error turns out to be greatest when d ¼ 2a, but it is less
than 1% for all values of d=a. Recently, Jensen, Valente, and
Stone (2014) analyzed various corrections to the expression
for the single-pore hydraulic resistance Rpore

hyd . For liquids
flowing through a plate of thickness d with a regular array of
identical circular pores of radius a with a characteristic
distance lp between neighboring pores, the flow pattern from
one pore is influenced by that of the neighboring pores
(hydrodynamic interaction), and inertial effects enter through
the Reynolds number Re, resulting in corrections character-
ized by a term Gða=lpÞ3 and fðReÞ, respectively,

Rarray
hyd ¼ 3η

a3

�
1þ 8d

3πa
− G

a3

l3
p
þ fðReÞ

�
; ð9aÞ

where G is a factor which depends on the geometry of the
array, but is typically around 2 (Jensen, Valente, and Stone,
2014). Similarly, for an ensemble of pores with a statistical
distribution PðaÞ of pore radii a with mean value a and

(a)

(b)

FIG. 2. Color plots of the axial velocity from zero (dark blue) to
vmax
x (dark red) in a cylindrical channel (side view) of length L

and radius a. The velocity field on the inlet to the left is set to be a
constant. (a) In the low-Reynolds-number limit (Re ¼ 0.1) the
entrance length over which a full Poiseuille flow profile is
established is given by l ≈ a. (b) In the medium Reynolds
number limit (Re ¼ 100) the entrance length is given by
Re ≈ ðRe=24Þa. From Bruus, 2011.

FIG. 3. Numerical simulation of the flow moving from
left to right close to a Curcubita maxima sieve plate with
multiple irregularly shaped pores in a cylindrical pipe. Pore
structures were extracted from scanning electron microscopy
images (Mullendore et al., 2010). Three color plots of the
normalized magnitude vðr; xÞ=vmax of the flow velocity (from
blue zero to red unity) at distances z ¼ 2.5a, 0.25a, and 0.05a
from the sieve plate. The flow profile is seen to adapt from
the Poiseuille paraboloid to each of the many pores within a
distance of a few times a from the sieve plate. From Jensen
et al., 2012.

(a) (b)

FIG. 4. (a) Sampson flow defined as a pressure-driven flow
through a circular pore of radius a in an infinitely thin plate. The
pressure drop is Δpsmp ¼ p−∞ − p∞, and the flow rate is q.
(b) Poiseuille flow along a pore of length t equal to the thickness
d of the plate. At low Reynolds numbers, the flow resistance is
well approximated by adding the flow resistance from the
Sampson and Poiseuille flow; see Eq. (8). Adapted from Jensen,
Valente, and Stone, 2014.
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dimensionless statistical moments Mn ¼
R
ξnaPðaξÞdξ with

ξ ¼ a=a, they found the average hydraulic resistance per pore
hRpore

hyd i to be given by

hRpore
hyd i ¼

3η

a3

�
1

M3

þ 1

M4

8d
3πa

�
; ð9bÞ

where hydrodynamic interactions and inertial effects have
been neglected. The relative magnitude of the former is
estimated as

G
a3

l3
p
≈ 2 ×

�
1

3

�
2

≈ 0.1

and of the latter by Re ≈ 5 × 10−4 (see Table I). It is
interesting in this context to mention that recent theoretical
estimates show relative changes of 20% in the sap flow
through bordered pit membranes when electroviscous effects
are included from ions in and just outside the membrane
(Santiago, Pagay, and Stroock, 2013).

B. Advection-diffusion phenomena

To study the transport of suspended particles or molecules
in microfluidics, we introduce for the solute species α in a
given solvent the concentration field cαðr; tÞ defined as the
number of molecules per volume of species α in a small
neighborhood of the point r and thus having the SI unit m−3.
The governing equation of the field cα is the so-called
advection-diffusion equation,

∂cα
∂t þ ∇ · ðvcαÞ ¼ Dα∇2cα þϒ; ð10Þ

where ϒ is a bulk source term (SI unit m−3 s−1) and Dα is the
diffusivity (SI unit m2=s) of solute α in the given solvent.
Using the incompressibility condition ∇ · v ¼ 0 we can
rewrite it as

∂cα
∂t þ ðv · ∇Þcα ¼ Dα∇2cα þϒ. ð11Þ

Typical values of the diffusivity in water at room temperature
are Dion ≈ 2 × 10−9 m2=s (elementary ions), Dsug ≈ 5 ×
10−10 m2=s (sucrose), and DGFP ≈ 9 × 10−11 m2=s (green
fluorescent protein).
Without advection, v ¼ 0, we retrieve the usual diffusion

equation for cαðr; tÞ. A standard example is to place N0

molecules of species α in a pointlike volume at the center of
the coordinate system in an infinite volume. This results in the
well-known Gaussian solution,

∂cα
∂t ¼ Dα∇2cα; cαðr; tÞ ¼

N0

ð4πDαtÞ3=2
e−r

2=4Dαt: ð12Þ

From this and the variance hr2ðtÞi¼R
r2cðr;tÞdV¼6Dαt, we

are led to introduce the diffusion length ldiff for a given
diffusion time tdiff through the root-mean-square value of the
variance of distance r,

ldiffðtdiffÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2ðtdiffÞi

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dDαtdiff

p
; ð13Þ

for diffusion in d spatial dimensions. Characteristic times
tdiff ¼ l2

diff=ð2DαÞ for diffusion along a tube of length ldiff ¼
1 mm are tiondiff ¼ 250 s, tsugdiff ¼ 1000 s, and tGFPdiff ¼ 5556 s.
With advection, v ≠ 0, based on Eq. (11) and in analogy with

the Reynolds number Eq. (1), we introduce for the typical
concentration cα ¼ c0, velocity jvj ¼ U, and length scale L
of concentration variations, the Péclet number Pe, the ratio
between transport by advection and by diffusion,

jðv · ∇Þcαj
jDα∇2cαj

≈
Uc0=L
DαU=L2

¼ UL
Dα

; so Pe ¼ UL
Dα

: ð14Þ

Advection is dominating for Pe ≫ 1 (say large U, large L,
and/or smallDα), while diffusion is dominating for Pe ≪ 1 (say
small U, small L, and/or large Dα). The Péclet number can
also be introduced by considering the time scale for diffusion
tdiff ¼ L2=Dα, which follows from ∂cα=∂t ¼ Dα∇2cα,
and for advection tadv ¼ L=U, which follows from
∂cα=∂t ¼ −ðv · ∇Þcα, as Pe ¼ tdiff=tadv ¼ UL=Dα.
Another aspect of advection-diffusion phenomena is the

different time scales associated with the relaxation of velocity
gradients and of concentration gradients. The former is given
by the diffusivity ν of momentum, Eq. (1), derived from the
Stokes equation (3a) setting ∇p to zero, ∂v=∂t ¼ ν∇2v and
the latter by the mass diffusivity Dα of the solute. The ratio of
these time scales is the Schmidt number Sc,

Sc ¼ tmass
diff

tmom
diff

¼ ν

Dα
: ð15Þ

A typical value for aqueous solutions is Sc ¼ 103, which
implies that the velocity field in a given advection-diffusion
problem adjusts to changes much faster than the solute
concentration profile. Consequently, it is often a good
approximation to treat the velocity field as being in a steady
state, while the solute concentration is time dependent.
As an example of this faster relaxation of the flow than of

the solute concentration profile, we can use Fig. 2(a). Here
Re ¼ 0.1, and now consider a solute entering at the inlet with
a concentration c0 in the lower half and zero in the upper half
having Sc ¼ 4 × 103; see Table I. The ratio tdiff=tadv of the
times it takes the solute to diffuse the same distance across as
it advects along is given by tdiff=tadv ≈ ð1=8ÞScRe ≈ 50. In
the given situation, it thus requires a length L being 50 times
the half-height ð1=2Þh for the solute to have relaxed com-
pletely by diffusion, while the flow is already relaxed on the
length h.

C. Osmosis and the water potential

In plants, due to the presence of ion-selective membranes
at the cell walls (see Sec. III), liquid can be moved by a
difference in the osmotic pressure Π caused by a difference in
concentration c of some solute (nutrient) on either side of the
membrane; see Figs. 1(a) and 1(b). For dilute concentrations,
Π is given in terms of the gas constant R, the absolute
temperature T, and the concentration c by the classical
van ’t Hoff relation (Nobel, 2009),
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Π ¼ RTc: ð16Þ
With this given, we introduce the potential Ψ (SI value
J=m3 ¼ Pa) referred to as the “water potential” by plant
biologists (Nobel, 2009). The water potential is responsible
for moving water through a plant, and when osmosis across an
ideal membrane is involved, it is given as

Ψ ¼ ðp − Π − phsÞ − p0 ≈ p − p0 − RTcþ ρgz; ð17Þ
where p is the pressure of water at height z with solute
concentration c, and p0 is the reference atmospheric pressure
at reference height zero (typically ground level). The osmotic
pressure Π of Eq. (16) and the hydrostatic phs of Eq. (2)
represent the effects of changes in solute concentration and
gravitational energy, respectively, going from the reference
point to the probing point. For this case of an ideal membrane
completely impermeable to the solute, the osmotic velocity v0
of water at the membrane is given in terms of the difference
ΔΨ in the water potential Ψ, and the membrane conductance
Lp or water permeability [SI unit m=(Pa s)] as

v0ðzÞ ¼ −LpΔΨ ¼ LpðRTΔc − ΔpÞ: ð18Þ
Plant cells are elastic and will swell and shrink in response

to changes in the osmotic pressure. If, following Dumais and
Forterre (2012), we consider a cell with initial volume V0,
bulk modulus ϵ ¼ Vð∂P=∂VÞ, and area A, suddenly exposed
to a change π in osmotic pressure, we get from Eq. (18)

dV
dt

≈ ALp

�
π −

ϵ

V0

ðV − V0Þ
�

ð19Þ

which shows that V will approach its new value Vf ¼
V0ð1þ π=ϵÞ exponentially on the time scale

tϵ ¼
V0

ALpϵ
≈

R
Lpϵ

; ð20Þ

where R is a characteristic length scale of the cell. With typical
values for sieve tubes ϵ≈30MPa, Lp ≈ 5 × 10−14 ms−1 Pa−1,
and R ≈ 10 μm, we get tϵ ≈ 7 s. Only well above this time
scale will our “rigid” approach to the water flow be valid.
However, since it is relatively short compared to diurnal
variations in plant vascular transport patterns, we neglect it in
the following.
For nonideal membranes, partly permeable to the solute, the

flux density Jw of water (flow rate per area having the SI unit
m=s) and that of the solute Js (number flow rate per area
having the SI unit m−4 s−1) are coupled since the solvent is
partially dragged by the water and the osmosis is weakened by
solute leaking. The appropriate equations were given by
Kedem and Katchalsky (1958). Here the membrane is treated
like a “black box,” and the transport equations are derived on
the basis of general linearized nonequilibrium thermodynam-
ics, assuming the system to be nearly in equilibrium.
Expressing the “fluxes” Jw and Js in terms of the two “driving
forces,” Δp and Δc across the membrane, one can utilize the
symmetry of the kinetic coefficients to reduce the number of
coefficients from four to three. For a membrane, which can be
modeled as a porous system with pores of nearly constant
cross section, we can write them in the form

Jw ¼ Lp½Δp − ð1 −WÞΔΠ� ¼ Lp½ΔΨþWΔΠ�; ð21aÞ

Js ¼ WJwcþ
1

d
DhΔc; ð21bÞ

here expressed in terms of the advective hindrance factorW of
Dechadilok and Deen (2006) instead of the reflection coef-
ficient σ ¼ 1 −W used by Kedem and Katchalsky (1958). An
ideal membrane has W ¼ 0. The membrane has thickness d,
and Dh is the “hindered” diffusivity of the solute in the
membrane pores, related to the solute mobility ω used by
Kedem and Katchalsky by Dh ¼ dωRT, and c entering the
advective term is the average concentration across the mem-
brane. This framework is appropriate for small Péclet num-
bers, where the concentration will vary approximately linearly
across the membrane. For more details, see Schultz (1980) and
Nobel (2009). Recent reviews include Kargol and Kargol
(2003) and Wang et al. (2014). Note that, for flow through
such a leaky membrane, the water potential does not neces-
sarily have to decrease. As can be seen from Eq. (21a) the
water flow can be positive, i.e., go from 1 to 2, even for
negative ΔΨ, as long as ΔΨ > −WΔΠ since the diffusing
sugar will drag along water. Note also that the equilibrium
state for a leaky membrane is the trivial one, where both
pressure and concentration differences vanish. The state where
Δp ¼ ΔΠ, which is an equilibrium state for a strictly semi-
permeable membrane [Eq. (18)], is thus not an equilibrium
for the leaky membrane. We have the opportunity to use this
formalism in Sec. VI.C.

D. Flow in tubes with membrane walls

An example of relevance for plant microfluidics including
osmosis, Fig. 1(b), is the Aldis flow (Aldis, 1988b). This flow
is defined as a pressure-driven flow through a cylindrical tube
radius a and having a section of the wall of length L consisting
of a permeable membrane through which a radial osmotically
driven flow v0 enters; see Fig. 5. This model forms the basis
for the analysis of osmotically driven flow in the phloem of
plants. In the following we consider an axisymmetric system
and use cylindrical coordinates ðr; xÞ. We employ the notation
that the solvent velocity field is v ¼ vrðr; xÞer þ vxðr; xÞex,
the azimuthal velocity component is vϕ ¼ 0, the in-tube
pressure is pðr; xÞ, the radial component of the osmotically

FIG. 5. Aldis flow through a cylinder of radius a, of which a
section of length L of the wall (dashed) consists of a semi-
permeable membrane through which a radial flow (small vertical
arrows) enters, driven by an osmotic difference in solute con-
centration c between the internal and external liquids. The axial
Poiseuille flow increases (horizontal arrows) for 0 < x < L due
to the radial inflow.
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driven flow through the membrane is v0ðxÞ, while the differ-
ence in solute concentration across the membrane is cðxÞ. In
steady state, Eq. (3a) for this problem becomes

1

r
∂
∂r

�
r
∂vr
∂r

�
−

1

r2
vr þ

∂2vr
∂x2 ¼ 1

η

∂p
∂r ; ð22aÞ

1

r
∂
∂r

�
r
∂vx
∂r

�
þ ∂2vx

∂x2 ¼ 1

η

∂p
∂x ; ð22bÞ

1

r
∂ðrvrÞ
∂r þ ∂vx

∂x ¼ 0: ð22cÞ

The boundary condition along the center axis r ¼ 0 is the
usual vr ¼ 0, whereas at the wall r ¼ a, the tangential
velocity vanishes while the inward radial velocity is −v0,

vrð0; xÞ ¼ 0; vrða; xÞ ¼ −v0ðxÞ; ð23aÞ

∂
∂r vxð0; xÞ ¼ 0; vxða; xÞ ¼ 0: ð23bÞ

In the limit of a long narrow tube a ≪ L, the so-called
lubrication limit, we expect ∂=∂r≃ 1=a and ∂=∂x≃ 1=L.
This together with the continuity equation (22c) implies that
vr ≃ ða=LÞvx ≪ vx, and thus from Eqs. (22a) and (22b) that
∂p=∂r≃ ða=LÞ∂p=∂x ≪ ∂p=∂x. To leading order in a=L
we can therefore disregard the r component of the Stokes
equation (22a). Turning to the x component Eq. (22b), we
need to find an expression for the x-dependent pressure
gradient ∂p=∂x. This is provided by the Darcy law Eq. (5)
using the form involving Q. At the position x, the flow rate is
the surface integral of all fluid influx through the sidewall
between 0 and x, and consequently

1

η

∂p
∂x ¼ −

8

πa4
Q ¼ −

16

a3

Z
x

0

v0ðx0Þdx0: ð24aÞ

Inserting this result into Eq. (23b) together with the ansatz
vxðr; xÞ ¼ RðrÞ R x

0 v0ðx0Þdx0, and neglecting the term
∂2vx=∂x2 ≃ vx=L2 relative to ∂2vx=∂r2 ≃ vx=a2 leads to
an ordinary differential equation for RðrÞ,

1

r
∂
∂r

�
r
∂
∂r R

�
¼ −16=a3.

The solution fulfilling the boundary conditions Eq. (23b) is
RðrÞ ¼ ð4=aÞð1 − r2=a2Þ, which determines vx, which upon
insertion into Eq. (22c) leads to an equation for vr. The
resulting Aldis velocity field is

vrðr; xÞ ¼
�
r3

a3
− 2

r
a

�
v0ðxÞ; ð24bÞ

vxðr; xÞ ¼
�
1 −

r2

a2

�
4

a

Z
x

0

v0ðx0Þdx0: ð24cÞ

The inflow v0 is related to the solute concentration and the
pressure via Eq. (18), and with the membrane at r ¼ a this
has the form v0ðzÞ¼−LpΔΨ¼LpðRTΔcða;xÞ−Δpða;xÞÞ.

Averaging over the cross section, using hvxi ¼ Q=ðπa2Þ and
Eq. (24a), gives�∂vx
∂x

�
¼ 1

πa2
∂Q
∂x ¼ 2

a
v0ðxÞ ¼

2Lp

a
ðRTcða; xÞ − pðxÞÞ;

ð25Þ
where we have dropped the dependence on a in the pressure,
since, as mentioned above, it is almost constant in each cross
section. If, in addition, the solute is well stirred, i.e., if the
radial Péclet number v0a=D is small, we can replace the value
cða; xÞ of the concentration at the membrane by the cross-
sectional average cðxÞ. Equation (25) is the starting point for
analysis of the Münch model for sugar transport in the
phloem; see Sec. V.

E. Free surfaces

A free interface between a liquid and a gas contains a
certain free energy per area, denoted the surface tension γ (SI
unit J=m2). This energy arises because a molecule of the liquid
at the surface has fewer neighboring liquid molecules than one
in the bulk of the liquid. The surface molecules have a higher
free energy, since each neighboring liquid molecule contrib-
utes with a certain (negative) temperature-dependent cohesion
energy, which ultimately is responsible for the existence of the
liquid phase. For a given volume, the liquid tends to minimize
its surface to lower the costly surface free energy. A curved
surface therefore represents a higher free energy than a straight
surface. In equilibrium, thermodynamic arguments (Bruus,
2008) lead to the so-called Young-Laplace law, which states
that a nonzero mean radius of curvature R can be maintained
only by a pressure difference Δpsurf across the interface,

Δpsurf ¼
1

R
γ: ð26Þ

For the surface between water and water-saturated air, the
surface tension is γ ¼ 0.072 J=m2.
A liquid-gas interface touching thewall of a confining tube is

furthermore characterized by the contact angle, defined as the
angle between the tangents of the wall. For angles less than 90°
(hydrophilic), the liquid is attracted by thewall surface stronger
than the gas, while for angles larger than 90° (hydrophobic)
the reverse is the case. If a liquid with a free surface is inside
a hydrophilic capillary tube, a capillary rise results, where the
liquid is sucked into the tube. The most hydrophilic case
corresponds to θ ¼ 0°. For plant tissue, a range of contact
angles have been measured, such as values from 42° to 55° for
bordered pit chambers in various species (Zwieniecki and
Holbrook, 2000), and in some cases this distribution has been
accompanied by a second distribution of values clustering
near 0° (Kohonen, 2006). For a tube with circular cross section
of radius a, the mean curvature of the liquid-gas surface is
determined by a and the contact angle θ, and Δpsurf becomes

Δpsurf ¼
2 cos θ

a
γ: ð27Þ

For such a tube placed vertically, the liquid rises to height h,
where the Young-Laplace pressure balances the hydrostatic
pressure phs, Eq. (2), of the liquid column,
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ρgh ¼ 2 cos θ
a

γ: ð28Þ

For a tube of radius a ¼ 1 μm containing a water column
interfacing with air, the resulting capillary rise height becomes
h ¼ 14 m for θ ¼ 0° and h ¼ 9.6 m for θ ¼ 49°. Capillary rise
thus has the potential to play an important role in the transport of
water in plants, and the details of geometry and contact angles
are crucial, e.g., in the dynamics of the bordered pits connecting
vessels in the xylem (Sec. VI) and protecting the plant against
cavitation (Zwieniecki and Holbrook, 2000). Whether they are
the primary source of the negative pressures in xylem is at
present not fully understood, since gels in the cell walls of the
mesophyll cells also have a strong potential forwater absorption
(Stroock et al., 2014).

F. Final remarks

In this section we presented some basic and important
concepts from continuum microscale hydrodynamics gov-
erning the flow of plant sap. In these flows viscosity
dominates over inertia, and they are thus characterized by
low Reynolds numbers Re ≪ 1. In the framework of con-
tinuum fields, we briefly described the transport of solutes
(nutrients) in various microchannels (phloem cells) adding to
the complexity by including advection-diffusion processes,
cellular sieve plates, osmosis and water potentials, semi-
permeable membrane walls, and free surfaces. In the later
sections we discuss the possible extension of these basic flow
models to take into account the water transport across plasma
membranes mediated by aquaporins and water movement
between cells mediated by the plasmodesmata.
In the theoretical description of microscale hydrodynamics

in plants, a number of unresolved questions remain. One of
these relates to a more complete understanding of the actual
geometrical shape of the channels through which the biofluids
are flowing. While the shape of the phloem cells themselves
may be relatively well modeled, it is far more complex to
describe and model the channel shapes in the intercellular
space, as evident in the following section on the anatomy of
the vascular tissues. Also, the extension of continuum hydro-
dynamics down to the nanometer scale of these structures
must be done with care (Hansen et al., 2015).
Another unresolved question relates to the rheology of the

biofluids. The high and variable content of sugars and other
nutrients and of biomolecules in the sap implies that the
viscosity is not a constant and perhaps to other important non-
Newtonian effects. Some of these can be handled within the
framework of “generalized Newtonian” fluid dynamics (Bird,
Amstrong, and Hassager, 1987), where the starting point is the
stress tensor σ with components σjk, where j; k ¼ x, y, and z.
It involves a shear viscosity ηð∂vÞ and a dilatational viscosity
ζð∂vÞ, none of which are constant but depend on model-
specific functions of the scalar invariants of the spatial
derivatives of the velocity field v, symbolically written as ∂v,

σjk ¼ −pδjk þ η

�∂vj
∂xk þ

∂vk
∂xj

�
þ
�
ζ − 2

3
η

� ∂vk
∂xk δjk: ð29aÞ

Here δjk is the Kronecker delta, and we use the Einstein
summation convention of summing over repeated indices.

With this general tensor formulation, the governing equations
for the mass and momentum densities ρ and ρv for time-
dependent, compressible flows become

∂ρ
∂t ¼ −

∂ρvk
∂xk ; ð29bÞ

∂ðρvjÞ
∂t ¼ ∂σjk

∂xk −
∂ðρvjvkÞ

∂xk ; with j; k ¼ x; y; z; ð29cÞ

where, as one can see, the Newtonian governing Eq. (3a) is
recovered for an incompressible flow with constant viscosity
in the low-Reynolds-number limit. A better description of the
sap flow and sugar transport in plants can thus be obtained by
employing an improved rheological model ηð∂vÞ of the sap
going beyond the simple Newtonian description presented in
Sec. II.A. Such an improved rheological description must also
contain the electroviscous effects briefly mentioned at the end
of Sec. II.A. Indeed the role of this and other electrokinetic
effects due to the ions in the sap needs to be clarified to better
understand the sap flow in plants.

III. ANATOMY AND PHYSIOLOGY OF THE VASCULAR
TISSUES

This section provides a broad overview of plant anatomy
and physiology related to vascular transport. We focus on flow
physics in subsequent sections, but note that it is necessary to
know the basics of phloem anatomy (Sec. III.A) and xylem
anatomy (Sec. III.C) to follow the later discussions.
The pathway of vascular transport in plants is fundamen-

tally different from that of cardiovascular transport in animals.
In plants, nutrients and assimilates move through the lumen of
the conducting cells, and the cell wall of these cells forms the
border of the transport pathway. In contrast, nutrients, electro-
lytes, oxygen, and carbon dioxide as well as blood cells move
through the lumen of blood vessels, the borders of which are
formed by epithelial cells. Accordingly, long-distance vascu-
lar transport in plants takes intracellular pathways, while that
in animals occurs extracellularly.
The vascular tissues in plants consist of assimilate-con-

ducting phloem elements and xylem elements conducting
water and mineral nutrients (Fig. 1). Vascular tissues link the
organs specialized for water and nutrient uptake (roots) with
the organs specialized for photosynthesis (mature leaves)
where the assimilates (sugars and amino acids) are formed.
The architecture of the vascular tissue in the different organs is
quite diverse in different vascular plant taxa. However, a
unifying feature of vascular tissues across nearly all taxa is
that phloem and xylem run parallel to each other and that the
conducting elements in each of the two tissues form an
unbroken continuum between the uptake or loading sites
and the delivery or unloading sites. For an in-depth overview
of the anatomy of vascular tissues in plants, see Evert (2006).
The parallel course of xylem and phloem and the continuity

between uptake and delivery are determined quite early in
development of a plant seedling, where three basic tissues are
founded: the future epidermis, covering and protecting the
plant body, the future cortex and pith, involved in photosyn-
thesis, energy storage, and internal air distribution, and the
procambium, delineating the future vascular bundles in shoot
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and root. Even earlier in plant development, already with the
first divisions of the embryo, two complementary entities can
be discriminated in the young plant body: the porous,
water-filled external apoplast (i.e., the space outside of the
cell membrane comprised of the cell walls) and the living
internal symplasm (Fig. 6). The apoplast and symplasm are
separated from each other by a thin, but physiologically
significant bilayer of phospholipids, the plasma membrane,
which has a thickness of about 10 nm. The symplasm of
neighboring cells are connected by plasmodesmata (Fig. 6(a)),
narrow cylindrical conduits that traverse the cell wall. Most
are formed during division between daughter cells, but can
also develop later [Figs. 6(b) and 6(d)]; for a review, see
Roberts (2005). Each plasmodesma contains a tubule related
to the endoplasmic reticulum, i.e., the network of membra-
nous tubules within the cytoplasm of a cell, connected to the

nuclear membrane thereby offering a cytosolic and an
endoplasmic reticulum pathway from cell to cell [Fig. 6(c)].
Apoplast and symplasm are continuously extended during
plant growth, by cell division, cell expansion, and cell wall
deposition.
In cross sections of stems, vascular bundles form discrete

structures and are often arranged on a circle inside the cortex
(Fig. 7). Phloem elements differentiate in the outer part of the
bundles and xylem elements in the inner parts (Fig. 7). Leaves,
developing as lateral protrusions from the shoot, consistently
contain the phloem in the lower (abaxial) part of the bundles
and the xylem in the upper (adaxial) part, respectively
[Fig. 8(d)].
Even though stem and leaves appear as separate units of the

shoot, the development of their vascular system shows a tight
relationship between them. Vascular bundles are not indepen-
dent from each other, but are connected in a complex manner
in the stem nodes, i.e., the positions where leaves are attached
to the stem. Actually, each stem bundle is the continuation of
leaf traces, i.e., vascular bundles connecting leaf and stem
through the petiole. If one follows the median and lateral
bundle traces of a given leaf down the shoot by carefully
analyzing serial cross and longitudinal sections, bundle fission
and fusion events become evident at different nodes below the
leaf insertion, leading to the eventually constant number of
vascular bundles per stem segment between the nodes (Evert,
2006). In palms and several other monocots the vascular
bundles are spread across the stem diameter leading to an even
more complex interconnected bundle system, which was for
the first time convincingly demonstrated by a cinematographic
presentation of serial cross sections by Zimmermann and
Tomlinson (1965) and Tyree and Zimmermann (2002).
Fission and fusion of vascular bundles happen in the nodes,

but there are also connections between the vascular bundles
between nodes, which are called anastomoses. These can be
individual strands, but also an extensive network of connec-
tions. Such anastomoses consist typically of phloem elements
only and can serve as a bypass for assimilate transport
when vascular bundles are interrupted and/or as part of the
defence system, when the phloem contains protective proteins
(Aloni and Jacobs, 1977; la Cour Petersen et al., 2005;
Gaupels and Ghirardo, 2013).
In woody plants, the vascular bundles in the stem increase

in thickness by secondary growth where the residual cell layer
between phloem and xylem (i.e., the vascular cambium) is
activated and produces additional phloem elements to the
outside and xylem elements to the inside. Secondary growth
results in an annual increase in thickness of root and shoot.
Leaves and reproductive as well as storage organs rarely
experience secondary growth.
Adjustment to light conditions and accessibility to water

import and sugar export pathways are the primary determi-
nants of the specific leaf anatomy. Light is captured by the
mesophyll cells, which are typically only a few cells away
from a vascular bundle, releasing xylem sap and absorbing
phloem sap. Each vascular bundle is encircled by the bundle
sheath [Figs. 8(d) and 8(e)], which controls the transport
processes between bundle and mesophyll. The vascular
bundles form parallel avenues only in leaves of, e.g., grains,
grasses, and palms. They are at regular intervals cross-linked
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FIG. 6. Sketchof plant tissue composedof the living supracellular
symplasm and the external apoplast. (a) Plant cells bordered by the
plasma membrane (thin lines) and connected by narrow plasmo-
desmata channels (short lines) form the internal living symplasm.
They are surrounded by the apoplast which is the water-filled cell
wall matrix. (b) Eight plasmodesmata in the cell wall between two
root cells (electron micrograph). (c) Schematic drawing of a
plasmodesma pore connecting two cells by forming a channel
through the cell wall lined by the plasma membrane (PM). The
desmotubule (DT), enclosed by the endoplasmic reticulum (ER),
fills the center of the pore. The annular space between the plasma
membrane and the desmotubule [the cytoplasmic sleeve (CS)
marked by arrowheads] allows passage of solutes (Δ) and viral
nucleic acids (dark ellipsoids). Solutes inside the endoplasmic
reticulum might be able to travel from cell to cell through the
desmotubule. (d) Electron micrographs showing longitudinal
views of plasmodesmata. Scale bar ¼ 50 nm. Adapted from
Schulz, 1995, (b), (d) and Schulz, 1999, (c).
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by thin anastomoses [Fig. 8(c)]. In most angiosperm leaves,
the vascular system does not form parallel veins but a complex
reticulate network. Here the vascular bundles constitute a
hierarchical vein system with several branching orders, the
midrib being class 1 veins and the veins branching off from the
midrib class 2 and so on [Figs. 8(a) and 8(b)]. The finest
branches, typically class 5, 6, or even 7, called the minor
veins, are pivots where water is leaving the xylem and
assimilates are loaded into the phloem [Figs. 8(d) and 8(e)].
Only the largest classes (1–3) enter the petiole, eventually
forming the main and lateral leaf traces in the stem.

The beautiful bifurcation patterns formed by leaf veins have
been widely studied (Roth-Nebelsick et al., 2001; Prado and
Maurel, 2013; Sack and Scoffoni, 2013; Price and Weitz,
2014), but due to their diverse functionality there is currently
no agreement on precisely how these patterns should be
understood in the sense of being optimal. One remarkable
observation (Bohn et al., 2002; Couder et al., 2002) is that the
bifurcations seem to satisfy a simple vectorial rule in the form
of a “force balance” akin to the patterns formed by drying
gels. Thus a vein can bifurcate into two new veins of different
radii in many different ways, but the angles that the new veins

(a) (c)(b)

FIG. 7. Vascular bundles in the plant stem. (a) Fluorescence micrograph cross section through the stem of Arabidopsis with dull green
xylem, and bright green phloem, translocating water with inorganic ions and sugars, respectively. (b) Bright-field micrograph showing
vascular bundles in cauliflower with xylem and phloem overlayed with green fluorescence of sieve elements. (c) Fluorescence
micrograph of a young apricot tree stem cross section stained with Coriphosphine O (before the onset of secondary growth). The
vascular bundles with phloem (white dashed line) and xylem (blue dashed line) are embedded in the cortex and pith. Arrows point to the
small sieve-element-companion cell complexes, responsible for sugar transport. Tracheary xylem elements show strong yellow
fluorescence in their lignified cell walls. (a), (b) Adapted from Khan et al., 2007. (c) Courtesy of Helle J. Martens, Department of Plant
and Environmental Sciences, University of Copenhagen.

(a)

(b)

(c)

(d) (e)

FIG. 8. Structure of leaf veins. Venation patterns of (a), (b) reticulate and (c) parallel veined leaves. Numbers indicate the vein class.
Adapted from Sack and Scoffoni, 2013. (d) Cross section through a potato leaf at a minor vein. The tissue types are photosynthetically
active mesophyll (green) and the bundle sheath (yellow) encircling the vein. The vein has one xylem treachery element (T, blue), two
phloem sieve elements (beige), and three phloem companion cells (beige). (e) Cross section through the smallest vein class (6) of a
potato leaf consisting of one tracheary xylem element (T), two phloem sieve elements (SE), three phloem companion cells (CC), and two
phloem parenchyma cells (PP). The bundle sheath (BS) surrounds the vein. Adapted from Schulz et al., 1998.
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form with the old one depends on their relative radii. Bohn
et al. (2002) wrote the relation between the three veins as

FðR1Þe1 þ FðR2Þe2 þ FðR3Þe3 ¼ 0; ð30Þ

where ei is the unit vector pointing in the direction of vein i
and F is a function only of the radius of the vein. As seen in
Fig. 9, this function is amazingly close to linear, at least in the
seven species studied.
Although such networks under quite general conditions can

be shown to have minimal resistance or maximal efficiency
when they form a “tree,” i.e., have no loops (Durand, 2006), it
was recently pointed out that the loops, which are abundant in
leaf venation networks, will be advantageous by inducing
multiple connections, if damage occurs to the leaf (Sack et al.,
2008; Katifori, Szollosi, and Magnasco, 2010; Katifori and
Magnasco, 2012). An entirely different understanding of the
venation pattern comes from the analysis of how the leaf is
folded in the bud, which to a certain extent can explain shapes
and symmetries of leaves, and also how adaxial-abaxial
asymmetry built up during growth induces curvature and
folding (Couturier, Pont, and Douady, 2009; Couturier et al.,
2012). Recently, detailed 3D images of intact tomato leaves
were obtained by synchrotron x-ray radiation with a resolution
of 750 nm (Verboven et al., 2015) and this seems a promising
technique, in particular, if one can reduce the necessary
scanning time (currently 10 min) [see also Brodersen and
McElrone (2013) and Fig. 35].

A. Phloem anatomy

Phloem is a complex tissue containing different cell types:
sieve elements, companion or Strasburger cells, parenchyma
cells, and sometimes also sclerenchyma cells. In this section,
we discuss the overall organization of the phloem and the size,
structure, and diversity of the conducting cells. Our emphasis
is on the phloem of trees, which belong to two botanical taxa:
angiosperms (flowering seed plants like most hardwood) and
gymnosperms (nonflowering seed plants such as the conifers).
The function of the phloem varies between source (leaves)

and sink (e.g., roots and fruits) tissues which is partially
reflected in its anatomy. According to their function, the
different phloem sections have been defined as collection
phloem, transport phloem, and release phloem (van Bel, 1996;
Lucas et al., 2013), found in leaves, stem, and sink organs,
respectively. The different functions are overlapping, and it is

sensible to use the term collection phloem for the minor veins
of the leaf only (classes 4–7). Major veins have dual functions:
in the developing leaf they release sugars and amino acids
toward the immature leaf regions, and in the mature leaf they
contain the transport phloem and are thus responsible for the
export from the minor veins to the petiole (Wright et al.,
2003). Transport phloem seems also to have a retrieval
function allowing it to pump leaked assimilates back into
the transport pathway. Release of assimilates from the phloem
to sinks such as young leaves, roots, and seeds is generally a
passive process which is facilitated by wide plasmodesmata as
seen in the spreading behavior of radioactive sugars, tracers,
and fluorescent macromolecules (Schulz, 1995; Lalonde et al.,
2003; Wright et al., 2003; Stadler et al., 2005).
The conducting cells of the phloem are the sieve elements

as evidenced already more than 60 years ago by experiments
with radioactive transport sugars and fluorescent markers
(Schumacher, 1950; Fritz and Eschrich, 1970; Christy and
Fisher, 1978; Knoblauch and Bel, 1998). As all living cells,
sieve elements are separated from the cell wall space by an
intact plasma membrane that controls water and nutrient
exchange. In contrast to other cell types, however, sieve
elements change their structure dramatically when becoming
functional and adapted for long-distance transport. The
structure of active sieve elements has been a matter of dispute
over decades, since the preparation necessary to visualize
them with light or electron microscopy easily causes artifacts
in the phloem system, which is pressurized when functional.
Careful preparation methods and visualization of functional
sieve elements by using tracers and confocal laser scanning
microscopy (Schulz, 1992; Knoblauch and Bel, 1998) have
led to the now generally accepted view of their structure,
which is remarkably uniform in different plant taxa.
The end walls connecting one sieve element with the next

are penetrated by many direct connections, the sieve pores,
which are derived from plasmodesmata. The chain of sieve
elements thus intimately connected is called a sieve tube
[Fig. 10(b)]. The diameters of sieve pores found in different
angiosperms span 0.1–7 μm [Figs. 11(a) and 11(c)]. In
gymnosperms, sieve elements have long-tapering end walls
with numerous sieve areas connecting to the adjacent sieve
element [Fig. 10(d)]. Their sieve pores are rarely wider than
0.3 μm [Fig. 11(d)], suggestive of a higher flow resistance
than in angiosperms. We return to this point in Sec. IV. The
diversity of sieve element lengths, sieve plate areas, and
inclination of the end walls in higher plants is documented in
Esau’s classical handbook on the phloem (Esau, 1969). The
cross section of sieve elements in angiosperms is generally
more or less circular, while those in gymnosperm are
rectangular (Fig. 10), which makes the “diameter” somewhat
ambiguous (Jensen, Berg-Sørensen et al., 2012). Sieve plates
can be oriented perpendicular to the sieve tube, but are often
more or less inclined (Fig. 10).
The organelles and other cellular constituents which could

offer resistance to intracellular transport, like the nucleus,
vacuole(s), and ribosomes, either disappear during cell
maturation or move to the cell periphery as can be seen in
Fig. 10(b). The mitochondria and a modified endoplasmic
reticulum system seem to be fixed at the plasma membrane via
protein linkers (Ehlers, Knoblauch, and van Bel, 2000).

FIG. 9. The function F computed from Eq. (30) for the seven
leaves. As one can see, FðRÞ is close to linear. Adapted from
Bohn et al., 2002.

K. H. Jensen et al.: Sap flow and sugar transport in plants

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035007-14



Specific structural phloem proteins (P-proteins) occurring as
filaments or persistent crystalline structures in the majority of
sieve elements of angiosperms (Fig. 11) do not seem to have a
large influence on assimilate transport in intact sieve tubes
(Froelich et al., 2011; Knoblauch et al., 2014).Wounding of the
phloem by mechanical impacts and pathogen attacks is, how-
ever, thought to lead to the accumulation of such proteins on and
in sieve pores. Together with the deposition of a specific wall
polysaccharide found around sieve pores and plasmodesmata
(callose), this leads to constriction and clogging of sieve tubes

(Schulz, 1986; Knoblauch and Peters, 2004; Furch et al., 2007;
Knoblauch et al., 2012). Gymnosperms do not have P-proteins
(Schulz, 1990). However, their sieve areas are covered by
extended complexes of tubular endoplasmic reticulum on either
side of a sieve area (Fig. 11). Changes of these complexes
after wounding were observed with electron and live confocal
microscopy and indicate a similar clogging mechanism
(Schulz, 1992).
Taken together, the sieve tubes in angiosperms are

symplasmic low-resistance pathways that combine the

(a) (b)

(c) (d) (e)

FIG. 10. Electron microscopic comparison of the phloem of the (a), (b) flowering plant (angiosperm) beech and the
(c)–(e) nonflowering seed plant (gymnosperm) spruce. Shaded areas are the conducting sieve elements. (a) Transverse cross sections
of beech phloem with sieve elements (SE) that are neighbored by companion cells (arrows, CC). The immature sieve element (iSE) still
contains a dense cytoplasm. (b) Longitudinal cross section of beech phloem sieve elements (SE) that are neighbored by companion cells
(CC) with a dense cytoplasmic content. A sieve plate separates two adjacent sieve elements. (c) Transverse cross section of spruce
phloem (P). Sieve elements appear empty, while parenchyma cells are filled with black tannic acid vacuoles. (d), (e) Confocal
micrographs of live phloem in tangential cross-section view, stained with a endoplasmic reticulum specific dye (dark gray). (d) Arrow,
end wall of two overlapping sieve elements marked by the many sieve areas, each of them covered on either side by endoplasmic
reticulum. (e) Arrows pointing to the sieve areas between two parallel sieve elements. Arrowheads show plasmodesmal connections
from a sieve element to a Strasburger cell, which is covered with endoplasmic reticulum on one side only. Adapted from (a)–(c) Schulz
and Behnke, 1987, (d) Schulz, 1990, and (e) Schulz, 1992.
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low-resistant intercellular transport through wide sieve pores
with the low-resistant intracellular transport through the
reduced cytoplasm of sieve elements. The same is valid for
gymnosperm phloem, although the smaller width and
increased complexity of sieve pores seem to offer more
resistance to the intercellular section of the pathway. This
is indeed reflected in smaller transport speeds measured and
theoretically calculated for gymnosperm trees (Jensen,
Berg-Sørensen et al., 2012; Liesche et al., 2015).
Reduction in cytoplasmic contents is a unifying feature in

sieve elements across the higher plant taxa (Behnke and
Sjolund, 1990). However, the cytoplasmic structures persist-
ing in sieve elements, in particular, the plasma membrane, are
dependent upon protein and lipid turnover as well as on
molecular energy carriers which the mature sieve element
cannot provide on its own. Therefore, sieve elements are
strongly dependent on a fully equipped neighbor cell, the
companion cells of angiosperms, and the Strasburger cells of
gymnosperms (Fig. 10). The delivery of energy carriers and
exchange of worn-out proteins and lipids most probably takes
place through the particular contacts consisting of sieve pores
on the sieve element side and branched plasmodesmata on the
neighbor cell side.

B. Phloem physiology

We discussed that the phloem forms a low-resistance path-
way for assimilate transport from source to sink. The question to
be treated in this section is the mechanism and the driving force
of this transport. Phloem transport is mechanistically seen as an
osmotically generated pressure flow driven by accumulation of
sugars in mature leaves and consumption in sinks (Münch,

1930); see Fig. 1. The accumulation of sugars is the direct
consequence of the photosynthetic activity of the leaf meso-
phyll. For the export of sugars from the mature leaf into other
plant organs, it is decisive that the plasmamembrane of the sieve
elements remains intact. The sharp difference in solute potential
across the plasma membrane leads to the osmotic uptake of
water from the apoplast into the phloem and thus to the
development of pressure in the phloem system. The pressure
in the leaf phloem drives a bulk flow of liquid through files of
sieve elements toward regions of low hydrostatic pressure.
Since the majority of sink sites allows for a passive release of
nutrients, the decrease of the sugar concentration toward sink
tissues establishes a pressure differential in the phloem system,
driving the observed transport of sugars and other organic
compounds from source to sink.
Münch’s original hypothesis was that the sugars in the

phloem accumulate due to photosynthesis in the mesophyll
and subsequent loading into the sieve elements by diffusion.
However, this hypothesis was established without the knowl-
edge of active membrane transport systems. Currently we
know that at least three principally different strategies of
phloem loading have developed in evolution. The active ones
show an accumulation of sugars in the leaf veins, and not the
mesophyll, when leaf disks are incubated in radioactive sugar
solutions (Turgeon and Wimmers, 1988). In contrast, leaf
disks of passive symplasmic loading plants do not accumulate
sugars in the veins. This passive loading mode is typical for
woody angiosperms and gymnosperms. The question why
particularly the rapidly growing herbaceous plants have
adopted active loading strategies seems to be related to their
economic life strategy, which is focused on an efficient use of
photosynthates (Turgeon, 2010).

(a)

(b)

(c) (d)

FIG. 11. Comparison between phloem sieve plate pores in beech and sieve area pores in spruce, typical for angiosperms and
gymnosperms, respectively. (a) Cross section of two sieve pores in a beech sieve plate [see face view of a sieve plate without cellular
contents in Fig. 1(d)]. Arrows indicate flow paths which are only loosely occupied by hairlike protein filaments (gray). (b) Oblique view
of beech sieve pores densely filled with protein filaments. (c) Cross section of sieve pores loosely filled with protein filaments. (d) Cross
section of spruce sieve area pores. Arrows mark the orifices of the pores covered on either side with endoplasmic reticulum (ER). The
pores form an extended cavity within the cell wall (CW). Scale bar for all panels 1 μm. Adapted from Schulz and Behnke, 1987.
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1. Active apoplasmic loading

One of the driving forces for the sugar accumulation in
the collection phloem emerged in the 1970s to be an active
sucrose-proton cotransport from the apoplast into the symplasm
(Komor, 1977; Giaquinta, 1980). The uptake of sugars is fueled
by the activity of the plant proton pump which hydrolyzes the
energy carrier adenosine triphosphate (ATP). An important
breakthrough for the understanding of this so-called apoplasmic
loading modewas the purification, characterization, and locali-
zation of the sucrose transporter to the plasma membrane of the
sieve element-companion cell (Stadler et al., 1995; Kühn et al.,
1996, 1997). Since then several sucrose transporters were
characterized in different plant taxa [for their evolution see
Peng et al. (2014)] and, aside from sucrose, they transport sugar
alcohols such as mannitol and sorbitol (Rennie and Turgeon,
2009). Experimental removal of the sucrose transporter protein
led to reduction or loss of phloem transport (Kühn et al., 1996;
Schulz et al., 1998; Gottwald et al., 2000).
The localization of the sugar transporters and the measure-

ments of osmotic pressures in different tissues of mature
leaves confirmed that sugars do accumulate in the minor veins
(Geiger et al., 1973; Geiger, 1975), in agreement with the leaf
disk experiments. Sugars and amino acids to be translocated
long distance in the phloem must first be transported from
mesophyll cell to mesophyll cell into the bundle sheath. This
prephloem transport of assimilates, with sucrose as the most
important representative of sugars, follows the distribution
of plasmodesmata in the cell wall interfaces (Schulz, 2014).
A simplified model on active apoplasmic loading is shown in
Fig. 12. Plant species exploiting apoplasmic phloem loading
are characterized by an isolated phloem, i.e., only few
plasmodesmata link the bundle sheath with the sieve
element-companion cell complex (Fig. 8).

2. Active symplasmic loading by polymer trapping

In contrast to the closed minor vein configuration dis-
cussed, a number of plant families however have numerous
plasmodesmata in the interface between bundle sheath and
sieve element-companion cell complex. This so-called open
configuration (Gamalei, 1989; Batashev et al., 2013) was a
challenge for the understanding of active phloem loading
through sugar transporters up to 1990, since the plasmodes-
mata would allow sucrose to flow back into the mesophyll,
instead of accumulating in the phloem. At that time Robert
Turgeon presented his polymer trap hypothesis for herbaceous
flowering plants with an open minor vein configuration
(Turgeon and Gowan, 1990), called active symplasmic
loading. It combined different ultrastructural and physiologi-
cal observations of a subgroup of plants with an open minor
vein configuration, most importantly: (i) the plasmodesmata
between bundle sheath and companion cells are branched
and very narrow on the companion cell side, (ii) chemical
inhibitors of sugar transporters have no effect on phloem
loading, and (iii) the main transport sugar found in the phloem
of this subgroup is larger raffinose family oligosaccharides
such as raffinose, stachyose, and verbascose, in contrast to the
disaccharide sucrose as used by the majority of plant families
(Turgeon, Webb, and Evert, 1975; Zimmermann and Ziegler,
1975; Schmitz, Cuypers, and Moll, 1987; Turgeon and
Wimmers, 1988; Turgeon and Hepler, 1989).
The polymer trap hypothesis assigns the branched plasmo-

desmata a filtering function: large enough to let sucrose pass
from the bundle sheath into the companion cell, but too small
for the larger sugars, synthesized in the companion cell (see
Fig. 12). Synthesis of the larger sugars in companion cells
leads to an accumulation of sugars which again attracts water
osmotically. Since the metabolic conversions from sucrose to

(a) (c)(b)

(d) (f)(e)

FIG. 12. Models of phloem sugar loading strategies according to Turgeon (2010). Represented cell types are sieve element (SE),
companion cell (CC), and mesophyll (M). (a) Active apoplasmic loading: Sugar transporters (yellow circle) in the companion cell
plasma membrane transfers sucrose (red dots) from the apoplast into the sieve element-companion cell complex, energized by a proton
pump (not shown). (b) Active symplasmic loading (polymer trapping): Sucrose is transferred from the mesophyll to the companion cell
via plasmodesmata gaps in the wall (four arrows). Here it is converted under investment of metabolic energy into larger raffinose
oligosaccharide family sugar polymers (green dots) that are trapped in the sieve element-companion cell complex. They cannot move
back, since the plasmodesmata are too narrow, but can move on into the sieve element through the wide plasmodesma-sieve pore contact.
(c) Passive symplasmic loading: Sugar diffuses from the mesophyll to the sieve element via plasmodesmata in the companion cell wall.
(d)–(f) Visualizes the distribution of regions of high sucrose concentration under the three loading strategies. Accumulation occurs in
veins of active apoplasmic loaders and polymer trappers, but not in passive symplasmic loaders. Adapted from Turgeon, 2010.
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raffinose and/or stachyose demand energy, this loading mode
is denoted active symplasmic loading. Subsequent studies
confirmed the feasibility of the hypothesis and annotated the
relevant plant families within the flowering plants (Holthaus
and Schmitz, 1991; van Bel, Ammerlaan, and van Dijk, 1993;
Kempers, Ammerlaan, and Bel, 1998; Haritatos, Ayre, and
Turgeon, 2000; Turgeon, Medville, and Nixon, 2001). The
polymer trap mechanism is not associated with a specific
growth form as it is found in herbaceous plants like pumpkin,
but also in, for example, olive trees (Davidson, Keller, and
Turgeon, 2011). Direct evidence for the capability of plas-
modesmata to filter sugars with a very small difference in
hydrodynamic radius from each other is still lacking.
Modeling the plasmodesmal substructure and calculation of
the plasmodesmal conductance at the crucial interface
showed, however, that plasmodesmata might indeed be able
to discriminate sucrose from the larger sugars if their cutoff is
close to the hydrodynamic radius of stachyose (Liesche and
Schulz, 2013; Dölger et al., 2014). For more details of this
mechanism, see Sec. VI.C.

3. Passive symplasmic loading

Over the last 15 years, Münch’s original hypothesis
experienced a renaissance for sucrose translocating trees. It
was shown, first in willow, and then in other tree species, that
leaf disks exposed to labeled sucrose did not accumulate
radioactivity in the minor veins and inhibitors of sucrose
uptake did not have any effect. At the same time, the global
sugar concentration in the leaves was higher than in herba-
ceous plants (Rennie and Turgeon, 2009; Davidson, Keller,
and Turgeon, 2011; Fu et al., 2011). They had an open vein
configuration and were accordingly called passive symplasmic
loaders (Turgeon and Medville, 1998) and they appear to be in
good agreement with Münch’s original idea (Münch, 1930)
that sucrose synthesized in the mesophyll moves down its
concentration gradient to the minor veins, where it easily can
enter the companion cells through the abundant plasmodes-
mata at the bundle sheath-companion cell interface (Zhang
et al., 2014); see Fig. 12. Passive symplasmic loading seems
in a way quite energy efficient, since no additional energy is
needed in the phloem itself, and the highest sugar concen-
tration is where it is produced. For the overall transport
process from mesophyll via the phloem to the sink organs, it is
an interesting question where the purely diffusive sucrose
transport starts to be converted into a bulk flow: already on the
prephloem pathway or only in the phloem (Schulz, 2014).
Indications for passive symplasmic loading are given for many
woody angiosperms and for all gymnosperms. The prephloem
pathway of the latter is however much more complex (Canny,
1993; Liesche, Martens, and Schulz, 2011; Schulz, 2014).

C. Xylem anatomy

The principal role of the xylem is to replace water lost from
leaves during transpiration with water from the soil (Tyree and
Zimmermann, 2002). Up to 98% of the water moving through
the xylem exits the leaves through the stomata pores as water
vapor [Fig. 1(a)], with the remaining 2% being used in
photosynthesis and volume growth (Kramer and Boyer,

1995). It is not uncommon for a large tree to lift as much
as 100 liters every day (Vogel, 2012). For comparison, the
fastest growing trees add around 100 kg dry mass per year
(Stephenson et al., 2014). To justify the plant’s insatiable
desire for water, consider the photosynthesis reaction

lightþ 6H2Oþ 6CO2 → C6H12O6 þ 6O2: ð31Þ

Six CO2 molecules are needed to produce one glucose sugar
molecule. This corresponds to approximately 1.4 kg CO2 per
1 kg glucose. Plants obtain CO2 from the atmosphere by
diffusion through stomata pores. The pores expose the interior
of the leaf to the atmosphere and thus invariably also allow
water vapor to escape. The concentration of CO2, at room
temperature, is roughly 4×10−4cair ≈4×10−4×40molm−3¼
1.6×10−2 molm−3, whereas the concentration of water vapor
in the leaf (with 100% humidity) is roughly 1 molm−3. Using
further that water vapor diffuses more rapidly than CO2, i.e.,
DH2O=DCO2

≈ 1.6, and neglecting the concentration of CO2

inside the leaf, and that of water vapor outside, we can make
the rough estimate

JH2O

JCO2

¼ DH2O

DCO2

ΔcH2O

ΔcCO2

≈ 100. ð32Þ

The plant thus loses around 100 water molecules for every
CO2 captured, or around 60 kg water per kg glucose
synthesized. For much more detailed estimates of this
so-called water-use efficiency (WUE), see Nobel (2009).
Apart from water, the xylem also transports dissolved
nutrients, amino acids, hormones, and other signaling mole-
cules (Fisher and Cash-Clark, 2000); but, in contrast to the
phloem, the solution is dilute [typically less than 10 molm−3
(Schurr, 1998; Siebrecht et al., 2003)].
The large amount of energy needed to vaporize water means

that transpiration also serves to cool leaves (Lambers, Chapin,
and Pons, 2008). Yet in considering the role of transpiration in
leaf energy balance it is worth noting that transpiration cools
leaves even when leaf temperatures are lower than optimum
levels for photosynthesis. Furthermore, when soils are dry and
stomata close, transpirational cooling will be lost. For this
reason, other features, such as leaf angle, leaf reflectance, and
leaf size, play an important role in preventing sunlit leaves
from reaching lethal temperatures.
The conduits through which water flows are formed from

cells that (1) have thick cellulosic walls impregnated with a
class of complex organic polymers (C9H10O2, C10H12O3,
C11H14O4) called lignin and (2) lack a membrane-bound
protoplasm at maturity (Fig. 13). Both features contribute
significantly to the ability of plants to pull water from the soil.
Xylem conduits are of two basic types (Fig. 14): single-celled
tracheids and multicellular vessels (Evert, 2006). The latter are
formed from linear files of cells called vessel elements. As
vessel elements mature, the cell wall between them is
chemically broken down. This creates a continuous lumen
that spans multiple cells. The degraded walls between vessel
elements are referred to as perforation plates; these can be
essentially open holes (simple perforation plates) or retain
parallel bars of cell wall material across the opening between
vessel elements (scalariform perforation plates). The presence
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of scalariform perforation plates approximately doubles the
total hydraulic resistance of the conduit lumen (Christman and
Sperry, 2010). Their functional role, in terms of either
reinforcing conduits against implosion (Carlquist, 2001) or
preventing gas from aggregating into larger bubbles following
a freeze-thaw event (Tyree and Zimmermann, 2002), remains
unresolved.
The major significance of vessels is that they can be of larger

diameter andof longer length than tracheids (Sperry,Hacke, and

Pittermann, 2006). Tracheids are typically 10–20 μm in
diameter (40–60 μmmaximum), and less than 10mm in length
(2 cm maximum). Vessel dimensions vary substantially, but in
some cases they can be up to 500 μm in diameter and multiple
meters in length (Tyree and Zimmermann, 2002). As a result,
plants with vessels can support higher rates of water flow and
greater rates of CO2 capture than a plant with only tracheids.
Tracheids are found in all types of vascular plants, whereas
xylem vessels occur in only some groups, most notably in the
flowering plants (angiosperms).
Because of the hydrophobic nature of lignin, the secondary

walls of xylem conduits are relatively impermeable to water.
Thus, all exchange of materials with both adjacent living cells
and other xylem conduits occurs through pits, circular to oval
regions that lack a secondary wall (Evert, 2006); see Fig. 14.
The primary cell wall which is formed while the cell is actively
increasing in size remains intact and thus forms a porous barrier,
referred to as the pit membrane. Unlike cellular (lipid)
membranes, pit membranes are not selectively permeable,
but their presence at the interface between adjacent vessels
significantly impedes flow (Choat et al., 2006). Overall, end
walls are thought to contribute 56%–64% of total xylem
hydraulic resistance (Sperry, Hacke, and Pittermann, 2006).
Pits are sentinel features of xylem that help maintain liquid

continuity (Choat, Cobb, and Jansen, 2008). In the so-called
bordered pits that form between xylem conduits, the secon-
dary walls arch over the circular pit membrane, forming a

FIG. 13. Structure of plant cell walls. (a) Plant cell walls
comprise a network of cellulose microfibrils (green rods) linked
by hemicellulose (thin red strands) and pectin (thicker blue
strands) to form a network. Lignin confers additional mechanical
strength. (b) Electron micrograph of cell wall structure shows
mainly cellulose microfibrils after extraction of pectin and
hemicellulose. Adapted from Alberts et al., 2014.

(b) (c) (d) (e)
(a1)

(a2)

(a3)

(b1)

(b3)

(b2)

(a)

FIG. 14. Principles of wood structure in (a) gymnosperms and (b) angiosperms. (a1), (b1) Typical features of conductive wood
(xylem). In gymnosperms, the longitudinal conducting elements [tracheids; (a1), cross-section view (a2)] are connected via linearly
aligned bordered pits (a3). In angiosperm (b1) wood vessels are composed of large cells that are vertically aligned and joined via per
foration plates, and (b2) vessels are also seen as large ovals in cross section. (b3) Vessels are connected via fields composed of tens to
hundreds of bordered pits. (c)–(e) The structure and function of xylem bordered pit pores vary between species. (c) Bordered pits of
gymnosperm with torus and margo, (d) typical angiosperm pit, and (e) angiosperm with vestured pits. Drawings below (c)–(e) represent
cross sections of bordered pits under normal nonembolized conditions, and their potential function as protection from gas spread.
(c) From Core, Coté, and Day, 1979, (e) from Jansen et al., 2004.
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chamber that is connected to the conduit lumen by a circular-
to-elliptical hole (Fig. 14). When adjacent conduits are water
filled, the pressure difference across the pit membrane is small
relative to its strength, such that there is little deflection of the
pit membrane in the direction of water flow. However, when a
gas-filled conduit (at atmospheric pressure) adjoins a water-
filled conduit that remains under significant tension, the
pressure difference across the pit membrane can be large.
When this happens, the pit membrane deforms elastically and
eventually comes to rest against the physical barrier created by
the overarching secondary cell wall. Capron et al. (2014)
documented this process in Populus xylem by creating
silicone moldings of the pit membrane at different pressure
gradients (Fig. 15). In some species, outgrowths of the
overarching secondary wall extend into the pit chamber,
forming structures referred to as vestures [see Fig. 14(e)].
Vestures restrict the deformation of pit membranes when
exposed to large pressure gradients (Choat et al., 2004). For
reasons that are currently unclear, such vestured pits are most
commonly found in species from warm, tropical climates
(Jansen et al., 2004).
Pit membrane structure is central to how pits prevent air

from spreading between conduits (Jansen, Choat, and Pletsers,
2009). Pit membranes begin as primary cell walls, although
they may be substantially modified during conduit maturation.
Primary cell walls consist of dense layers of cellulose micro-
fibrils, which are crosslinked with other carbohydrate poly-
mers, with the entire network embedded in a pectin hydrogel
as shown in Fig. 13. The characteristic distance between
cellulose fibers has been reported in the range 10–100 nm
(Choat et al., 2004; Capron et al., 2014). In some species,
the pit membranes are thick (up to 1 μm), while in others
the thickness is similar to that of typical primary walls
(≈200 nm). In most plants, the pit membrane appears rela-
tively featureless, with atomic force microscopy indicating the

presence of a soft surface layer that covers the cellulose
network (Lee, Holbrook, and Zwieniecki, 2012). The presence
of hydrogels in pit membranes is indicated by the effect of
cations on hydraulic resistance (Zwieniecki, Melcher, and
Holbrook, 2001; Santiago, Pagay, and Stroock, 2013).
The pit membranes of many gymnosperms are highly

modified into a thick central region (the torus) that is
suspended in the middle of the pit chamber by cellulose
microfibrils (the margo); see Fig. 14(c). This differentiation
creates a region of lower hydraulic resistance than in a
homogeneous pit membrane, while at the same time retaining
a thickened torus that can form a seal to prevent gas from
spreading between conduits (Delzon et al., 2010). The higher
permeability to water of these pits helps explain how gym-
nosperms grow to form tall trees despite producing only
tracheids (Pittermann et al., 2005). Indeed, some of the tallest
trees in the world (notably coastal redwood, giant sequoia,
and douglas firs), reaching heights of 100 m, are also
gymnosperms.
As illustrated in Fig. 13, wood cell walls comprise

cellulose, hemicellulose, lignin, and pectin; in addition, a
structural analysis indicates that particular geometrical con-
structs are dominant. These include honeycomb, foamlike,
and helical structures (Niklas, 1994; Karam, 2005; Tekoglu
et al., 2011; Wegst, 2011; Carlquist, 2012; Gibson, 2012;
Ali and Gibson, 2013). The arrangement of the four basic
building blocks in plant cell walls and the variations in cellular
structure give rise to a remarkably wide range of mechanical
properties: Young’s modulus E varies from E ∼ 0.03 to
∼30 GPa, while the compressive strength σ varies from
σ ∼ 0.3 to ∼300 MPa (Gibson, 2012) (Fig. 16). Models based
on the assumption that the mechanical strength of the wood
depends on the geometrical structure and the density of the
underlying polymer material—composing the cell wall—only,
are quite successful in predicting the mechanical properties of
the particular type of wood (Gibson, 2012). As an example,
one may consider wood organized primarily in honeycomb
structures with prismatic cells, i.e., the honeycomb structure
of the shortest dimensions appears in the plane perpendicular
to the xylem vessels and thereby also perpendicular to the
direction of flow. With a density of the wood of value ρ, the
model predicts that when loaded along the vessels, Young’s
modulus Ejj and the compressive strength σjj are related to the
similar material properties of the cell wall Ecw and σcw through
the ratio of the densities ρ=ρcw,

Ejj ∼ Ecw

�
ρ

ρcw

�
; ð33Þ

σjj ∼ σcw

�
ρ

ρcw

�
: ð34Þ

When one accounts for the spacing between the walls in the
symmetric structure, the density of the wall material, ρcw
should be larger than the density of the wood ρ, as also
apparent from Fig. 16, implying that the elastic moduli Ejj and
σjj are smaller than the values for the cell wall itself, Ecw and
σcw. The same is true for loading perpendicular to the xylem
vessels, also referred to as perpendicular to the grain. In this

(a)

(b)

FIG. 15. Elastic deformation of a pit membrane. (a) Silicone
molding of Populus pits at pressure gradient Δp ¼ 2.2 MPa.
(b) Data points show deflection of the pit membrane as a function
of the normalized radial position r=R, measured from molding
experiments at pressure gradients indicated in the plot. Solid lines
are fits to the linear elastic deflection of a circular plate with
clamped edges. Adapted from Capron et al., 2014.
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situation, at sufficient loading, plastic hinges form between the
wooden cell walls, and the relevant moduli are

E⊥ ∼ Ecw

�
ρ

ρcw

�
3

; ð35Þ

σ⊥ ∼ σcw

�
ρ

ρcw

�
2

: ð36Þ

The scalings in Eqs. (34)–(36) are in rough accord with
observations from woody plants; cf. Fig. 16 (Gibson, 2012).
The data for the perpendicular Young’s modulus E⊥ as a
function of density ρ lie on a line closer to a slope of 2 than 3,
with the data for loading in the tangential direction of the tree
trunk closer to a slope of 3 and those for loading in the radial
direction of the tree trunk closer to a slope of 2. It appears that
in the radial direction rays are formed in the tree trunk and act
as reinforcement (Easterling et al., 1982). With radial loading,
these rays are loaded along their axis and the loading therefore
not only results in bending of the elements of the honeycomb,
a fact that would explain a slope of a value less than 3.

D. Xylem physiology

Having briefly outlined the basic structure of xylem
conduits, we are now ready to consider what drives the flow
of water through the xylem. Water transport in plants is often
described as passive, meaning that no direct expenditure of
metabolic energy is required. Instead, plants make use of an

existing external gradient in chemical potential between wet
soil and dry air (Stroock et al., 2014). Yet to do this, they have
to build structures that maintain liquid continuity such that the
pathway of lowest resistance is through the plant, rather than
through the much shorter distance to the soil surface. Thus,
although water transport is passive in the strict sense, energy is
required to build and maintain the xylem.

1. Cohesion-tension theory

The cohesion-tension theory, first articulated by Dixon and
Joly (1895), unites two important ideas (Pickard, 1981;
Stroock et al., 2014). The first is that the driving force that
pulls water through plants and, ultimately, from the soil,
results from transpiration—specifically, a drop in chemical
potential at the sites where water evaporates. The second is
that intermolecular forces allow water to be pulled through the
lumen of xylem conduits. The cohesion-tension theory differs
from popular conceptions of water transport in plants in which
the driving force is analogized to a mechanical (vacuum)
pump. Plants lack the moving parts needed to decrease air
pressure within the leaf and, even if they could, such a
mechanism would limit plant height to less than 10 m. By
recognizing that the driving force is generated at the sites of
evaporation, the cohesion-tension theory overcomes concern
that capillary forces within xylem conduit lumen are far too
small to account for the movement of water through plants
(Holbrook and Zwieniecki, 2008).
In developing a quantitative description of the forces

involved in moving water through a transpiring plant, we
express the chemical potential of water on a volumetric, rather
than molar, basis (Nobel, 2009). This is the water potential Ψ
[see Eq. (17)] and it describes well regions within the plant
where water exists as a bulk liquid phase, e.g., within xylem
conduits or within the protoplasts of cells (i.e., the region
inside the cell wall). However, in regions where surface
interactions dominate and where hydrogels may be involved
(e.g., soils and cell walls), the situation is more complicated
and a simple separation into pressure and concentration terms
is not possible. For simplicity (and without loss of utility), we
rewrite Eq. (17) as

Ψ ¼ Ψmatrix þ ρgz; ð37Þ

where Ψmatrix represents the sum of capillary, gel-related, and
adsorptive forces that may occur in microporous materials
(Stroock et al., 2014).
Soils are the reservoir of water that plants draw on for

growth, metabolism, and transpiration. Soil water potentials
are typically negative, corresponding with our common
experience that water flows into (and not out of) soils.
Soils are made up of irregularly shaped particles of a variety
of sizes and, unless completely water logged, have a sub-
stantial volume fraction of air (Kramer and Boyer, 1995). The
major force that draws water into soils is thought to be
capillarity, resulting from the curvature of air-water interfaces
in the soil, as described by the Young-Laplace law [Eq. (26)].
As soils dry out, these interfaces recede deeper into the spaces
between soil particles, resulting in greater capillary forces and
lower soil water potentials. This means that plants have to pull

balsa

balsa

spruce

spruce

oak

oak

teak

slope 1

teak

pine

pine

(LD)

(LD)

(MD)

(MD)

(HD)

(HD)

woods,
parallel
to grain

woods,
perpendicular

to grain

cellulose
E = 120–140 GPa

(HD), (MD), (LD) = 
high/medium/low density

Y
ou

ng
’s

 m
od

ul
us

, E
 [

G
Pa

] 
1000

100

10

10

1.0

1.0 3.0

0.1

0.1 0.3
0.01

0.03
Density [Mg m–3]

hemicellulose
E = 5–8  GPa 

solid composites of
cellulose, lignin and

hemicellulose lie
in this envelope

lignin
E = 2.5–3.7 GPa

wood cell wall

slope 2
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Gibson, 2012.

K. H. Jensen et al.: Sap flow and sugar transport in plants

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035007-21



harder to obtain water from a drier soil (Kramer and Boyer,
1995). In addition, as soils dry, the ease with which water
flows through the soil falls precipitously as a result of both the
smaller cross section of the liquid-filled spaces and the
increasingly tortuous pathway for water movement (Hillel,
1998). Thus, in dry soils, plants must contend not only with
less water that is more tightly bound, but also with the fact
that it can only be withdrawn at an ever-diminishing rate.
The agriculturally relevant range of soil water potentials is
generally considered to be greater than −1.5 MPa. Some
plants can make use of water from even drier soils, but
produce many more roots and have lower transpiration rates
than a typical crop plant.
The air, at least during the day, is typically much drier than

the soil. The water potential of liquid water in equilibrium
with air is Ψ ¼ ðRT=VwÞ lnðe=e0Þ, where e is the partial
pressure of water vapor in the air and e0 is the saturated vapor
pressure. If the relative humidity (100e=e0) at midday is 50%,
the equilibrium water potential is on the order of −100 MPa
(Nobel, 2009). Living cells cannot remain metabolically
active at such negative potentials. Thus even as leaves have
to acquire CO2 from the atmosphere, they also have to protect
themselves from desiccation. Typical midday leaf water
potentials are on the order of −1 to −2 MPa, indicating that
the water status of leaves is more closely coupled to that of the
soil than it is to the air (Kramer and Boyer, 1995). To maintain
the hydration of leaves requires both an inflow of water into
leaves via the xylem and the means to restrict water loss to the
atmosphere via a waxy cuticle and stomata that can open and
close. Stomata are the gatekeepers between the humid air
spaces within the leaf and the much drier surrounding air. As a
result, stomata control rates of transpiration and thus the
movement of water from the soil.
Air spaces play a critical role in leaf function by providing a

pathway for the inward diffusion of CO2 (Byott, 1976; Pickard,
1982). The veins within leaves are surrounded by a ring of
bundle sheath cells as shown inFig. 8,which are impermeable to
gasses, and thus xylem conduits do not directly come into
contact with the air (Evert, 2006). Instead, the surfaces of leaf
mesophyll cells, which obtain CO2 from these air spaces, form
the downstream end of the (liquid) transpiration stream. The
interfacial forces that develop in these cell walls maintain their
hydration and thus they serve as a seal that prevents air from
entering into the xylem.
Traditionally the matrix potential of cell walls has been

attributed to capillary forces arising within the network of
cellulose microfibrils (Pickard, 1981; Rand, 1983; Tyree and
Zimmermann, 2002). In this view, curved air-water menisci
within cell walls work in opposition to their curved counter-
parts in the soil. This might be a simplified view. The cellular
wall matrix is not a simple porous rigid structure but an elastic
composite made of cellulose fibers, pectins, and hemicellu-
loses, plus a small amount of structural proteins. In short,
the cell wall is a porous material infiltrated by a gel-like
substance. Such structure may dry out but will not necessarily
allow for retraction of the air-water meniscus into the wall
space. Instead, the water holding capacity of gels originates
from interactions between solvent and polymer as, e.g.,
described by the Flory-Rehner equation (Hong et al., 2008;
Wheeler and Stroock, 2008; Hong, Zhao, and Suo, 2010).

However, a recent experiment (Fig. 17) aimed at studying the
influence of surface tension on a leaf’s ability to sustain water
distribution to sites of evaporation under increasing water
stress revealed that the presence of a surfactant (reducing the
surface tension from 0.072 to 0.037 N=m) limited water
access to minor leaf veins. This might suggest the retraction
of water from minor veins, in support of the menisci
hypothesis. However, alternative explanations might be pos-
sible, depending on what other effects the surfactant (Tween)
could have on the leaf, e.g., closure of the stomata or
inhibition of the cell aquaporins of the cell membrane.
At night, when stomata are closed, the plant will approach

equilibrium with the soil. The water potentials in the plant,
however, will not equal that of the soil; due to gravity
the water potential decreases below that of the soil by

(a)

(b)

FIG. 17. Reduction of xylem sap surface tension in oak leaves
influences distribution of water in the veins of trees experiencing
significant water shortage. Transpiration streams of intact
branches on a tree were supplied with either (a) water (surface
tension ¼ 72 mN=m) or (b) water mixed with surfactant (0.01%
Tween 20, surface tension 37 mN=m). Branches were then cut
and allowed to dehydrate to a water potential of −2.5 MPa. At the
desired stress level, leaf petioles were cut from the branches while
submerged in a fluorescent dye solution (Sulforhodamine G).
Leaves infiltrated with water mixed with surfactant experienced
significant reduction of dye infiltration to minor veins. Experi-
ments by M. Zwieniecki (unpublished).
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ρgh ¼ 0.1 MPa for every 10 m increase in elevation. For
plants that are on the scale of 1 to several meters in height, the
impact of gravity relative to soil water potentials is small. The
water potentials at the top of a 100 m tall tree, however, must
be 1 MPa lower (more negative) than the water potential of the
soil in order to support the water column. Thus even when a
plant is not transpiring, capillary and osmotic forces develop
within leaves to counterbalance the weight of the water
column and to overcome the forces exerted by the soil.
During transpiration even larger forces are needed to over-
come the viscous losses associated with the movement of
water through the plant (Tyree and Zimmermann, 2002).

2. Transpiration

Transpiration results from the gradient in water vapor
concentration between a leaf’s air spaces and the outside air.
Because of the substantial contact with living cells, the vapor
pressure of air spaces remains saturated with respect to the
temperature and water potential of the cells (Nobel, 2009;
Rockwell, Holbrook, and Stroock, 2014). Thus, as water
molecules diffuse out of the leaf through stomata, other water
molecules evaporate from the surfaces of interior leaf cells. In
principle, water could evaporate from the surface of any cell in
contact with an air space, however, the actual sites where water
changes phase will be determined by both the flow of energy
(heat) and liquid water needed to sustain evaporation. Solving
the coupled heat and mass transport indicates that most
evaporation occurs near the stomata, with a second region of
evaporation occurring in the center of a leaf, in the same plane
as where the venation is located (Rockwell, Holbrook, and
Stroock, 2014).
Evaporation rates from leaves are highly variable and depend

on leaf morphology (stomatal size, stomatal density, vein
density, leaf size, leaf shape), physiological status of the leaf
(stomatal aperture, internal CO2 concentration, leaf hydration),
and on environmental conditions (vapor pressure deficit, wind
speed, temperature, light level) (Schuepp, 1993). Themaximum
transpiration rates reported per leaf surface area of angiosperm
plants are in the range of 2 × 10−4 ðkg=m2Þ=s [reported for
Acermacrophyllum bySimonin et al. (2015)]. It is interesting to
contrast this valuewith the evaporation rate Jfs from a free body
of water into a dry atmosphere

Jfs ∼D
Δcmax

l
; ð38Þ

where D ¼ 2.4 × 10−5 m2=s is the diffusion coefficient of
water vapor in air at 20 °C (Nobel, 2009), Δcmax ≃
1 mol=m3 (or 18 g=m3) is the concentration gradient (Taiz
and Zeiger, 2010), and l is the boundary layer thickness.
Assuming a wind speed of u ¼ 10 m=s, we can estimate the
boundary layer thickness as l≃ 4.9

ffiffiffiffiffiffiffiffiffi
νl=u

p ≃ 1.9 mm, where
ν ¼ 1.5 × 10−5 m2=s is the kinematic viscosity of air, and
l ¼ 0.1 m is the leaf size. With these values we find
Jfs ¼ 2.3 × 10−4 ðkg=m2Þ=s. The most efficient plant leaves
thus allow water to escape almost as quickly as from a free
surface. This is remarkable given that stomata pores frequently
cover only 1%–10% of the leaf surface (Franks and Beerling,
2009). For an in-depth discussion of evaporation and gas

diffusion problems related to water transport in plants, see
Pickard (1981) and Rand (1983).
The loss of water molecules from the surfaces of cell walls

decreases the cell’s water potential. Initially, water is drawn
toward the sites of evaporation from adjacent and nearby cell
protoplasts. As water exits from mesophyll cells, their water
potential also falls. Much of this is due to decreases in turgor
pressure as the cell walls relax, with the remainder from
increasing solute concentration and thus osmotic pressure
(Nobel, 2009). Therefore, an important role of turgor pressure
in leaf cells is to mitigate against changes in cell volume
despite large variations in water potential. As transpiration
continues, water will be drawn from cells increasingly further
away from the sites of evaporation. Based on the hydration
times of individual versus aggregates of cells, the movement
of water through plant tissues is thought to occur predomi-
nately through the living interiors of cells, with a smaller
contribution due to apoplasmic flow through the cell walls
(Boyer, 1985). The major pathway for water movement from
one cell interior to another involves traversing the membranes
and walls separating adjacent cells. Plasmodesmata may also
contribute to the movement of water between cells, although
their hydraulic contribution is poorly quantified (Fisher and
Cash-Clark, 2000). The movement of water across cell
membranes is mediated by aquaporins, protein channels with
a high selectivity for water (Maurel et al., 2008).
Mesophyll cells can lose only a small amount of water

before their cellular and metabolic functions become jeop-
ardized. Without an inflow of water from the xylem, leaves
would have to close their stomata within minutes of opening
(Kramer and Boyer, 1995; Schymanski, Or, and Zwieniecki,
2013). The xylem provides that inflow, replacing water lost
via transpiration with water pulled from the soil. As water
flows from xylem conduits toward the sites of evaporation,
the water potentials in the xylem will decrease. How much
depends on both the transpiration rate and the hydraulic
conductance of the xylem, as the drop in xylem water potential
is the result of viscous losses associated with water transport
through the plant (Pickard, 1981; Tyree and Zimmermann,
2002). In the xylem close to the sites of evaporation
(i.e., within a leaf), the water potential during transpiration
can be on the order of 1 MPa more negative than when the
water column is stationary (Rockwell, Holbrook, and
Stroock, 2014).

3. Stability of water under tension in the xylem

Decreases in xylem water potential [Eq. (17)] can be
entirely attributed to decreases in pressure. Because xylem
conduits lack semipermeable membranes, there is no osmotic
contribution to their potential, and, in any event, the concen-
tration of solutes in the xylem is low. Thus, the pressure of the
water within xylem conduits is negative and the liquid is under
tension (Tyree and Zimmermann, 2002). This means that
water is literally pulled through the xylem. However, it also
means that water in the xylem is thermodynamically unstable
with respect to its vapor phase (superheated) and thus prone to
cavitation (boiling) (Debenedetti, 1996; Stroock et al., 2014).
Although cavitation renders xylem conduits useless for trans-
porting water under tension, the activation energy needed to
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nucleate a phase change is large (Pickard, 1981). Stability
limits for homogeneous nucleation, based on theoretical and
experimental data, are on the order of −100 MPa (Zheng
et al., 1991; Herbert and Caupin, 2005; Azouzi et al., 2013).
Thus, water in the xylem is kinetically stable provided it does
not come into contact with the vapor phase (Wheeler and
Stroock, 2008).
In this review we use the term cavitation to refer to any

process in which the local equilibrium of water under tension
is replaced by the thermodynamically more stable state of
water vapor. In this usage, cavitation can result from homo-
geneous nucleation as well as from the expansion of bubbles
drawn in from a neighboring gas-filled conduit or produced
during freezing. Embolism, as used here, refers to the gas
phase that replaces conduits formerly filled with metastable
water.
Xylem conduits remain water filled throughout their devel-

opment and all of the water that enters the xylem in the roots
has previously been forced to flow across endodermal plasma
membranes. For these reasons, gas bubbles should be absent
from the xylem (Pickard, 1981). Other mechanisms, however,
can bring xylem into contact with air. Physical damage that
breaches conduit walls provides one such entry point for air.
Freezing represents another mechanism as dissolved gases are
segregated from the ice lattice, coalescing to form gas bubbles
that can expand once the conduit thaws. The stability limit for
bubbles depends upon both their dimension, which dictate the
forces due to surface tension that serve to push the gas back
into solution, and any tensions in the xylem, which act in an
outward direction on the bubble (Tyree and Sperry, 1989).
Larger diameter conduits are more susceptible to freeze-thaw
embolization due to the formation of larger air bubbles during
freezing as dissolved gases and other impurities are excluded
from the crystal lattice (Sevanto, Holbrook, and Ball, 2012).
Embolization is not solely an issue of losing the transport

capacity of individual conduits. Once a conduit becomes air
filled, cavitation can spread like a disease to neighboring
conduits as air is pulled through pit membranes, something
that plant biologists refer to as “air seeding” (Tyree and
Zimmermann, 2002). The small bubbles pulled through pit
membranes will be unstable in the water-filled conduit and
thus will expand, such that the entire conduit becomes filled
with water vapor, and eventually, as gases come out of
solution, with air. Thus, a plant’s resistance to embolization
lies in both the properties of its pit membranes (Choat, Cobb,
and Jansen, 2008) and the architecture of its vascular network
(Loepfe et al., 2007). At both levels, the system is constrained
in terms of its dual function of allowing water to flow easily
through the xylem and preventing gases from spreading. We
return to these issues in Sec. VI on water transport.

IV. SUGAR TRANSPORT IN PLANTS

A. Experimental results

To obtain a mechanistic understanding of the physiological
processes that drive and regulate sugar transport in plants,
detailed measurements of transport speed, sugar concentra-
tion, and pressure are needed. Experimental investigations of
the phloem, however, have to cope with several factors that

limit the number of applicable tools and techniques. The cells
in question are buried below several tissue layers, making
them difficult to access, for example, for live-cell microscopy
(Fig. 7). In addition, it is difficult to extract phloem cells for
molecular analysis, especially from the leaf, because it is
composed of distinct cell types that are present only in low
number. Furthermore, the pressurized phloem is very sensitive
to manipulation. Any preparatory step that causes the loss of
pressure, such as incision with a blade, potentially changes the
state of cells even though they might be several centimeters
away from the site. In spite of these difficulties, methods and
approaches have been developed to produce experimental data
on the function of the phloem, which will be presented later.

1. Phloem sap sugar concentration

Knowledge of phloem sap composition is important for
any quantitative understanding of resource allocation within
plants. The sugar concentration is typically around 20%
(Fig. 18), but the sap also contains a variety of other organic
molecules and ions (Table II). Assuming that sap viscosity has
a simple dependence on sugar concentration thus suggests that
the liquid is approximately twice as viscous as pure water
[Fig. 26(a)]. One of the first investigations carried out by
Hartig (1860) after discovering and naming phloem sieve
elements was aimed at identifying the sap composition.
He found that the phloem sap of various angiosperm trees,
sampled by the stem incision method, contained 25% to 33%
sugar, most of it in the form of sucrose. The question is still
timely, as it remains difficult to obtain a complete and artifact-
free sample of phloem sap (Turgeon and Wolf, 2009; Jensen,
Savage, and Holbrook, 2013). Phloem sap composition has
been obtained from many trees, several of which bleed sap
for several minutes after stem incision (Hartig, 1860; Münch,
1930). Only a few herbaceous plants, however, bleed as
readily. Castor bean (Ricinus communis) is one exception and
is often used for phloem sap sampling (Hall and Baker, 1972);
see Table II. In other herbaceous plants, the incision causes a
wound reaction that stops phloem sap bleeding, usually within
seconds. The wound reaction can be prevented by making the
cut in solution containing ethylenediaminetetraacetic acid
(EDTA), which binds Ca2þ, effectively suppressing the signal
for clogging (King and Zeevaart, 1974). While sufficient
quantities of phloem sap can be collected from any plant with
this method, it is prone to artifacts (van Helden, Tjallingh, and
van Beek, 1994; Liu, Chao, and Turgeon, 2012). EDTA is

FIG. 18. Histograms showing phloem sap concentration mea-
sured in plants that utilize passive and active phloem loading
strategies (Sec. III.B). See also Fig. 26. From Jensen, Savage, and
Holbrook, 2013.
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known to soften tissue and can induce leakage of ions and
metabolites, including carbohydrates (Hepler, 2005). A less
invasive alternative is the sampling of phloem sap with the
help of stylectomy. For many plants species, phloem-feeding
insects, mostly aphids, can be found (Fisher and Frame,
1984). These insects penetrate the plant tissue with their
stylets without severing cells until they reach a sieve element
to feed on. To obtain phloem sap, the insect body can be
removed and a drop of sap collected from the end of the stylet
(Kennedy and Mittler, 1953). Most of the data on phloem sap
composition in herbaceous plants is based on this technique.
Nevertheless, also in this case there is a potential for artifacts,
because aphids were shown to alter phloem sap composition
by secreting saliva into the phloem to prevent a wound
reaction (Will et al., 2007; Furch, Bel, and Will, 2015).
Independent of the sampling techniques, the collected phloem
sap is generally analyzed with chromatographic and spectro-
metric techniques in order to identify its components and
quantify their abundance. The parallel use of different
methods and control experiments to verify the phloem origin
of the collected sap has resulted in the identification of its
major components. These are sugars, amides and amino acids,
secondary compounds, auxin, proteins, RNAs, potassium, and
other ions. The relative amounts of these components show
only limited species dependence and are shown in Table II for
castor bean phloem sap. The sap sugar composition depends
on the phloem loading type (see Sec. III.B). Castor bean, as an
active apoplasmic loader, transports almost exclusively
sucrose. In contrast, more than half of the sugars in the
phloem sap of active symplasmic loaders are raffinose and
stachyose (Ziegler, 1975; Zimmermann and Ziegler, 1975).
Other species were shown to transport mainly sugar alcohols
(Reidel et al., 2009).

2. Phloem cell pressure

To date, one of the most elusive parameters related to
phloem function has been the pressure inside sieve elements.
The formulation of the pressure-flow hypothesis by Ernst
Münch was based on cryoscopic analysis of expressed tissue
sap and plasmolysis experiments, which showed a gradient
of osmotic pressure from leaves to the stem and roots in
forest trees (Münch, 1930). A conclusive validation of
Münch’s hypothesis requires determining the viscous
pressure gradient dp=dx associated with the flow. For a
flow speed u ¼ 10−4 m=s in a cylindrical tube of radius
a ¼ 10−5 m, the expected magnitude of the pressure gradient

is jdp=dxj≃ 8ηu=a2 ≃ 104 Pa=m, while for a ¼ 10−6 m, it
is jdp=dxj≃ 106 Pa=m.
One method for measuring phloem cell pressure has

taken advantage of the aphid stylectomy approach described
previously (Sec. IV.A.1). After removal of the insect body,
pressure can be measured directly by sealing a micropipette
over the stylet (Wright and Fisher, 1980; Fisher and Cash-
Clark, 2000) or attaching a pressure sensor (Gould, Minchin,
and Thorpe, 2004; Gould et al., 2005). In trees, where the high
number of sieve elements in the bark makes them more
accessible, a needle with a narrow tip produced by pulling a
glass capillary tube has been used (Hammel, 1968; Lee, 1981;
Sovonick-Dunford et al., 1981). This technique was also
recently used to measure pressure inside translocating sieve
elements in the herbaceous bean plant Vicia faba (Knoblauch
et al., 2014). The measured pressures lie in the range of p ¼
0.6–1.4 MPa for trees, while it can reach up to p ¼ 2.4 MPa
in herbaceous plants (Wright and Fisher, 1980; Lee, 1981;
Sovonick-Dunford et al., 1981; Fisher and Cash-Clark, 2000).
This difference in absolute pressure could be related to the
difference in phloem loading type (see Sec. III.B), which is
active in herbs and passive in most trees. Furthermore, the
high pressure in the phloem of herbaceous plants might have
other functions than driving transport, for example, in plant
defense (Turgeon, 2010). The main quantitative question with
respect to the pressure-flow mechanism of Münch—the size
the pressure difference between source and sink—has not
been answered conclusively, because of the technical diffi-
culty of measuring pressure at different positions on the same
plant, ideally on the same phloem strand (Fisher and Gifford,
1986; Pritchard, 1996). The limited available data show
pressure gradients of ∼105 Pa=m in tobacco and sugar beet
(Fellows and Geiger, 1974; Hocking, 1980), not inconsistent
with the Münch hypothesis. Calculations based on pressure
measurements in trees suggest that the pressure gradient is
smaller in these organisms (Turgeon, 2010).

3. Phloem flow speed

Following the transport of photoassimilates from the leaf to
the sink organs has always been of major interest to plant
biologists trying to understand the dynamics and regulation of
growth. Typical translocation speeds range in magnitude from
10−5 to 10−4 m=s (Fig. 19). In some cases, as for maize or
sugar cane, speeds of up to ∼5 × 10−4 ms have been measured
(Hartt et al., 1963; Wardlaw, Carr, and Anderson, 1965).
Much higher values that have been occasionally reported for
stem phloem transport are most likely the result of exper-
imental insufficiencies (Crafts and Crisp, 1971). Transport
speed does not scale with plant height (Windt et al., 2006;
Dannoura et al., 2011; Liesche et al., 2015), instead depend-
ing primarily on sieve element geometry (Mullendore et al.,
2010; Jensen et al., 2011). This can be clearly seen in trees,
where a meta-analysis of all available experimental data
showed a significant difference in phloem transport speed
between gymnosperm and angiosperm species, which is
caused by the difference in sieve element and end-wall
anatomy (Liesche et al., 2015) as shown in Fig. 19.
The most straightforward way to identify allocation patterns

and measure the amount of carbon transported to different

TABLE II. The composition of phloem sap from castor bean
(Ricinus communis). Data from Hall and Baker (1972).

Component Concentration (kg=m3)

Sugars 80–106
Amino acids 5.2
Organic acids 2–3.2
Protein 1.45–2.2
Potassium 2.3–4.4
Chloride 0.355–0.675
Phosphate 0.35–0.55
Magnesium 0.109–0.122
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organs is to monitor the organ’s increase in dry weight over
time (Canny, 1973). More detailed quantifications can be
achieved by using dyes or radioisotopes as tracers, or with
magnetic resonance imaging.
The movement of substances in the phloem can be traced

directly with the help of dyes. After cutting the tip of a leaf of a
potato plant, Dixon and Ball (1922) applied a drop of the dye
eosin and followed its spread to the shoot tip, the roots, and the
tuber (potato). Several have investigated phloem translocation
speeds by further developing this dye tracing approach
(Schumacher, 1948; Froelich et al., 2011; Jensen et al.,
2011; Savage, Zwieniecki, and Holbrook, 2013). Dyes have
also been used to quantify the capacity of loading and
unloading pathways (Oparka et al., 1994; Liesche and
Schulz, 2012), as well as the impact of wounding on a sieve
element function (Schulz, 1992; Knoblauch et al., 2001).
Radioisotope tracers are considered less invasive than dye

techniques, since little or no removal of tissue to access the
phloem is necessary. The technique was instrumental in
establishing the general principles of source to sink transport
[reviewed by Crafts and Crisp (1971), Minchin and Troughton

(1980), and Ho, Grange, and Shaw (1989)] and the measure-
ment of key parameters of phloem transport, such as speed and
volume. Typically, isotopic carbon, in the form of 11CO2,
13CO2, or 14CO2, is applied to leaves, where it is fixed and
built into sugars. The translocation of isotope-labeled sugars is
subsequently tracked by detectors positioned outside the plant
(Epron et al., 2012; Liesche et al., 2015).
In the last decade, magnetic resonance imaging velocimetry

was adapted for measuring phloem transport speed and
volume (Peuke et al., 2001; Windt et al., 2006); see
Fig. 19(d). Magnetic resonance imaging has the advantage
of providing visual information of flow, i.e., the cross-
sectional area of actively translocating sieve elements at the
time of analysis (Windt et al., 2006).

4. Molecular biology of phloem transport

Sucrose transporters transport sucrose either intercellularly
across plasma membranes or intracellularly across the vacuole
membrane (Kühn and Grof, 2010; Ayre, 2011). Sucrose
transporters are essential to phloem function in active apo-
plasmic phloem loaders as they pump sucrose into the
companion cell-sieve element complex in source leaves
(Gahrtz, Stolz, and Sauer, 1994; Riesmeier, Willmitzer, and
Frommer, 1994), thereby determining the phloem loading rate
(Dasgupta et al., 2014); for loading modes, see Sec. III.B.
They are also responsible for retrieval of leaked sucrose along
the transport phloem (Gould et al., 2012). In passive sym-
plasmic phloem loaders, vacuolar sucrose transporters were
shown to similarly influence phloem loading (Payyavula et al.,
2011). In active symplasmic loaders, described more quanti-
tatively in Sec. VI.C, synthesis of the higher molecular weight
sugars raffinose and stachyose, catalyzed by galactinol syn-
thase in the companion cells, determines the phloem loading
rate (Haritatos, Keller, and Turgeon, 1996; McCaskill and
Turgeon, 2007). In symplasmic sinks, such as growing roots,
the unloading rate depends on sucrose utilization, by either
starch synthesis or vacuole import for carbon storage or
energy conversion for growth. Influence on the unloading
rate might be exerted by proteins that control the effective
diameter of plasmodesmata (Schulz, 1995, 1999; Baluška
et al., 2001). In apoplasmic sinks, such as fruits or seeds,
unloading is controlled in two steps: by cell wall invertases
that break down sucrose and by monosaccharide transporters
that import the resulting glucose and fructose molecules into
the storage cells (Patrick, 1997).
During phloem development, sieve pore formation is

preceded by deposition of callose between the plasma
membrane and the cell wall around each plasmodesma.
The pore is formed by widening of the plasmodesma channel,
a process that involves removal of some of the callose. A
specific enzyme was found to be responsible for this process
(Barratt et al., 2011; Xie et al., 2011). Furthermore, mutants
lacking this protein were not able to perform a wound
reaction, demonstrating that callose synthesis is needed in
this process. Inside the sieve element lumen, a variety of
proteins, referred to as P-proteins (Sec. III.A), are present that
have been categorized as amorphous, crystalline, filamentous,
tubular, or fibrillar. The main role of P-proteins is assumed to

(d)

(b)(a) (c)

FIG. 19. Phloem transport speeds u vary in the range 10−5 to
10−4 m=s between (a) gymnosperm trees, (b) angiosperm trees,
and (c) angiosperm herbs. (d) The limited diurnal variation in
phloem transport rates in four herbaceous angiosperms observed
by Windt et al. (2006). Note the difference in the abscissa scale
between (a), (b), and (c). From Liesche et al., 2015: (a), (b) and
Kursanov, 1956, Ziegler and Vieweg, 1961, Hartt et al., 1963,
Moorby, Ebert, and Evans, 1963, Mortimer, 1965, Wardlaw, Carr,
and Anderson, 1965, Hendrix, 1968, Thompson et al., 1979,
Windt et al., 2006, Mullendore et al., 2010, Jensen et al., 2011:
(c). (d) Adapted from Windt et al., 2006.
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be clogging of the sieve tubes in response to wounding
(Eschrich, 1975; Knoblauch and Bel, 1998).
From a wealth of physiological experiments it is clear that

phloem transport is finely regulated and adjusted to the
environmental conditions. So far only few pieces of the
molecular machinery regulating phloem transport have been
identified, such as sensors for the sugar concentration in
source and sink, or membrane transporters facilitating sugar
release from the phloem. However, the emerging improve-
ments of phloem sampling in connection with molecular
biological approaches should soon lead to a better under-
standing of the subtleties of phloem transport (Doering-Saad
et al., 2006; Anstead, Hartson, and Thompson, 2013).

B. Biomimetic models of sugar transport in plants

Experimental systems designed to mimic transport proc-
esses in plants and animals alike have been used to test
mechanistic hypotheses of vascular physiology (Wong et al.,
2012). Biomimetic models of xylem transport played an
important role in validating the cohesion-tension theory,
starting with the work of Dixon and Joly (1895). For an
excellent overview of historical and technical aspects of this
discussion, see Brown (2013) and Stroock et al. (2014). Here
we focus on phloem transport models and begin at the origin
of this field: Münch’s 1927 experiment (Münch, 1927, 1930).
Münch’s device to mimic phloem transport consisted of two
flasks connected by a glass tube [Fig. 20(a)]. Parts of the
flasks were covered by a semipermeable membrane that

allowed water, but not small molecules, to pass. He introduced
a concentrated sugar solution into one of the flasks and
submerged both in a water bath. From this experiment, he
reported a mass flow through the glass tube connecting the
flasks of high and low concentration. By equating the flasks to
source and sink organs, Münch argued that similar flows occur
in plants, since “same causes have same effects” [(Münch,
1930) p. 37, translation by Knoblauch and Peters (2010)].
Following Münch’s example, a number of workers have

improved upon his basic setup to elucidate various factors that
may influence plant transport characteristics. Eschrich, Evert,
and Young (1972) were the first to use a semipermeable
cylindrical pipe to capture the effects of osmotic flow along
the transport pathway [Fig. 20(b)]. Eschrich’s setup comprised
a cylindrical membrane tube (7 mm diameter, ∼20 cm length)
fitted inside a larger water-filled glass tube. At the beginning
of the experiment, a small amount of sugar was introduced
into the near end of the membrane tube. The group conducted
experiments with the far end being either open or closed. They
observed that the front velocity v increased in linear propor-
tion to the initial concentration c0, and that the speed was
either constant in time or decayed exponentially, if the far end
of the tube was either open or closed [Fig. 20(b)]. To
rationalize these observations, Eschrich, Evert, and Young
(1972) used the following conservation argument: for incom-
pressible flow in a closed semipermeable tube of length L and
radius a embedded in water, we imagined the part of the tube
between the base and xð0Þ initially filled with sugar solution
and the rest with pure water. For a wide tube with slow flow,

FIG. 20. Biomimetic models of phloem transport. (a) Device used by Münch (1927) to demonstrate osmotically drive flows between
flasks A (high sugar concentration) and B (negligible sugar concentration) submerged in a water bath W. (b) Osmotic pumping in the
cylindrical membrane tube (Eschrich, Evert, and Young, 1972), and (c) a similar more recent experiment (Jensen, Rio et al., 2009). (d),
(e) Microfabricated osmotic pumps by Jensen, Lee et al. (2009) and Haaning et al. (2013). See details in text (Sec. IV.B). Adapted from
Münch, 1927, Eschrich, Evert, and Young, 1972, Jensen, Lee et al., 2009, and Haaning et al., 2013.
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viscous effects and thus the pressure gradient along the tube is
negligible and the pressure is simply equal to the osmotic
pressure averaged over the tube, i.e., p ¼ RTc, where c ¼
c0xð0Þ=L is the constant average sugar concentration. The
water volume flow through the tube wall ahead of the sugar
front x (where there is no osmosis) is −2πaðL − xÞLpRTc,
where Lp is the permeability of the tube and the flow is
negative since water flows out. This will be equal to the rate of
change of volume ahead of x and thus, due to incompress-
ibility, to −πr2dx=dt. Putting these two expressions together
we get

dx
dt

¼ 2
LpRT c

a
ðL − xÞ. ð39Þ

Thus, the instantaneous front position is xðtÞ ¼ L−
½L − xð0Þ� exp ð−t=τÞ, where the characteristic time
τ ¼ 2LpRTc=a. If by contrast the tube is open, the pressure
is atmospheric everywhere in the liquid and the only driving
force is the osmotic suction. This leads to an inflow behind the
front of 2πaxð0ÞLpRTc0 so in this case the velocity is
constant

vopen ¼ 2
LpRTxð0Þc0

a
: ð40Þ

The initial velocity for the closed tube is vclosed ¼
2LpRTc0xð0Þ½L − xð0Þ�=aL and the ratio of the two velocities
is

vclosed
vopen

¼ L − x0
L

: ð41Þ

The ratio approaches unity when x0 ≪ L, so the characteristic
velocity scale for long tubes is in both cases 2LpRTc0xð0Þ=a.
The experiments by Münch (1927) and Eschrich, Evert, and

Young (1972) were conducted in macroscopic setups with
channel radii of around 5 mm. This is approximately 500
times greater than the typical phloem sieve element size
(radius a ¼ 10 μm). Aided by developments in microfabri-
cation techniques (Xia and Whitesides, 1998; Stone, Stroock,
and Ajdari, 2004), Jensen and co-workers refined the Eschrich
and Lang experiments in microchannels of diameters
50–200 μm (Jensen, Lee et al., 2009; Jensen, Rio et al.,
2009; Jensen et al., 2011) which are comparable in size to
sieve elements of, e.g., Curcubita Maxima (Jensen et al.,
2011). Their base device [Fig. 20(e)] comprised a semi-
permeable membrane squeezed between shallow channels cut
in two PMMA (acrylic glass) plates. The upper channel of
height h ¼ 50–200 μm and width w ¼ 200 μm carried the
sugar solution, while the lower channel provided contact to a
water bath held at atmospheric pressure. By varying the
channel height and sugar concentration, Jensen, Lee et al.
(2009) found good agreement between Eq. (40) and
experiments.
The experiments described thus far have dealt with transient

flows where the system relaxes towards equilibrium from an
initial state of osmotic imbalance [Fig. 20(c)]. The prevailing
situation in plant phloem, however, is likely closer to a steady
state where a continuous influx of sugars at the leaf is

consumed by metabolic and growth processes in distal parts
of the plant. Lang (1973) modified Eschrich’s experiment and
used a long semipermeable tube (L ¼ 7.2 m, d ¼ 6.35 mm)
to study steady-state osmotic flows by slowly injecting a
0.2 M sucrose solution at one end of the pipe. He carefully
documented the approach to steady state and found that the
flow speed increased from the inlet to the outlet by a factor
γ ¼ vout=vin − 1 ¼ 3 due to osmotic inflow along the tube
(from vin ¼ 0.16 cm=min to vout ¼ 0.66 cm=min). The time
to reach steady state observed was set by L=vin ∼ 75 h. When
performing a similar experiment in the aforementioned micro-
fluidic device [Fig. 20(e)] Jensen et al. (2011) found similar
values of the velocity increase γ in a 200 × 200 μm2 rec-
tangular channel. Haaning et al. (2013) conducted the first
systematic experimental study of the factors that influence the
flow amplification factor γ. Their setup used a hollow-fiber
membrane [Fig. 20(d)], a cylindrical tube of length
L ¼ 14 cm, radius a ¼ 500 μm with semipermeable walls.
Haaning et al. (2013) varied the inlet velocity, inlet concen-
tration, and channel length and observed values of γ in the
range 0.1–10. Reasonable accord with theoretical estimates
due to Aldis (1988b) and Thompson and Holbrook (2003b)
were found: Taking the flow speed v and concentration c to be
averaged over the cross section of the pipe, one arrives at the
conservation equations for water volume and solute mass

∂xv ¼ 2
LpRTcðxÞ

a
; ð42Þ

∂xðcvÞ ¼ 0. ð43Þ

With boundary conditions vð0Þ ¼ vin and cð0Þ ¼ c0 these can
be solved to yield the speed profile

vðxÞ ¼ vinð1þ 4LpRTc0x=vinaÞ1=2: ð44Þ

In terms of the flow amplification factor γ ¼ vout=vin − 1 is

γ þ 1 ¼ vout
vin

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

LpRTc0L

vina

s
. ð45Þ

In some cases, however, Haaning et al. (2013) found that this
prediction overestimates the outlet velocity. To account for
this discrepancy, they relaxed the assumption that the solute
concentration cðxÞ is uniform across the tube in Eq. (42) and
derived an expression for γ which reduces to Eq. (45) when
the radial Péclet number is quite small, i.e., when the
concentration is uniform across the tube. For further details
see Sec. V.D.

C. Hydraulic resistor theory

To understand the basic rules for the long-distance trans-
location in the phloem, it is advantageous to start with a simple
“resistor” model of a “one-dimension plant” as shown in
Fig. 21. The plant’s vascular system is viewed as a collection
of parallel tubes of constant diameter that span the full length
of the plant. In each tube, both ends are closed, but near each
end, the walls are semipermeable (penetrable to water but not

K. H. Jensen et al.: Sap flow and sugar transport in plants

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035007-28



to sugar), representing the leaf and the root, respectively. Such
approaches have been used successfully in this field, e.g., by
Minchin, Thorpe, and Farrar (1993), Daudet et al. (2002), and
Lacointe and Minchin (2008), where more complex network
configurations have been modeled. Here we follow Jensen,
Liesche et al. (2012) in the treatment of a single tube, but with
different resistivities coming from axial pressure-driven flow
along the tube and lateral osmotic flows. In reality, the tubes
do not necessarily have the same diameter all the way, and the
tubes do not just connect sugar producing leaves (sources) to
the roots, but also to other sugar consuming sinks such as
young leaves as in Lacointe and Minchin (2008). Thus, the
ideal, globally optimal structure likely resembles the observed
hierarchical network architecture of the plant body. However,
as a simple representation for the longest pathway this
analysis still turns out to be useful. The differences in
concentration between source and sink tissues provides the
driving force for the transport via the osmosis generated in the
leaf section.

1. Optimization of phloem transport speed

Our aim is to determine how this tree translocates sugar
most efficiently. Following Jensen et al. (2011), we argue that
“most efficient” in this context should simply mean that the
rate of sugar transport is maximal for a given investment in
vascular tissue. If we assume that the total cross-sectional area
for the phloem tubes is constant at a given position, this will be
equivalent to maximizing the flow velocity (i.e., flux) in each
tube. In addition a large flow velocity will allow the plant to
respond rapidly to external perturbations. Finally, we note that
phloem transport speed has been shown to influence photo-
synthesis, below-ground respiration, and whole plant transfer
and integration of information (Mencuccini and Hölttä, 2010).
Of course, this simple system does not consider the possibility
of branching architectures, as seen in real plants. It does,
however, capture an important trade-off: a wide tube will
allow rapid flow of sap since the resistance is low, but the
water has to come in by osmotic pumping through the surface
of the leaf part, and for a wide tube this will be inefficient,

since the surface to volume ratio is small. For a narrow tube,
the situation is reversed: now the osmotic pumping through
the surface is efficient, but the flow will be blocked by the
large resistance through the stem. Thus, there should be an
optimal tube radius giving maximal flow velocity.
To determine this optimal radius a�, we consider each of the

tubes separately. It has a radius a, a “leaf” segment of length
l1, a “stem” segment of length l2, and a “root” segment of
length l3 through which fluid of flow rate Q is running, and,
instead of directly solving the fluid dynamical equation, which
is done later in Sec. V, we consider only the basic driving
forces in each section and assign a corresponding “resistance.”
The stem segment is simply treated as a solid tube with
impenetrable walls through which the fluid is driven by the
pressure difference Δp between the leaf and the root. We
further assume that this pressure difference is primarily
created by the difference in osmotic pressure ΔΠ due to
sugar loading in the leaf and unloading in the root. Because of
the low Reynolds numbers, it is thus simply a Poiseuille flow
with flux

Q ¼ Δp
R2

; ð46Þ

where Δp is the pressure drop along the stem and the
resistance for a cylindrical tube and fluid viscosity η is given
by [Eq. (4e)]

R2 ¼
8ηl2
πa4

. ð47Þ

All the osmotic water intake is assumed to take place in the
semipermeable (leaf) part of length l1 which we assume to be
loaded with a sugar solution, such that there is a concentration
difference Δc1 between inside and outside, creating an
osmotic pressure difference of ΔΠ1 ¼ RTΔc1. The concen-
tration difference Δc1 is generated by phloem loading
processes in which sugars produced in mesophyll cells are
transferred into the phloem sieve elements (Sec. III.B,
Fig. 12). Plants that use active loading generally appear
capable of generating larger Δc’s than species which use
passive loading (Fig. 18). The difference in water potential,
Ψ ¼ p − Π ¼ p − RTc drives a transmembrane water flux
with the flow rate

Q ¼ RTΔc − Δp
R1

ð48Þ

with the leaf resistance

R1 ¼
1

2πaLpl1
; ð49Þ

which differs from Eq. (18) by the surface area 2πaL of the
tube, and where we assumed that the Poiseuille resistance in
the leaf part is negligible since l1 ≪ l2.
In the root, the situation is the reverse: here water is

expelled so we similarly obtain the root resistance

(b)(a)

FIG. 21. Resistor model of phloem sugar transport. (a) Circuit
diagram with resistors representing hydraulic resistance in the
source, stem, and sink regions of (b). Adapted from Jensen
et al., 2011.
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R3 ¼
1

2πaLpl3
; ð50Þ

and if we now assume that the pressure drops inside the leaf
and root are small compared to the osmotic pressures (which
corresponds to small Münch number for the leaf and root
segments in the terminology of Sec. V) we can write the
pressure in the entire leaf segment as p1 and that of the root as
p3, and “Ohms’s law” for the whole tube is

RTc1 − p1 ¼ QR1; ð51aÞ

p1 − p3 ¼ QR2; ð51bÞ

p3 − RTc3 ¼ QR3. ð51cÞ

Adding them, we get

RTc1 − RTc3 ¼ RTΔc ¼ QRtot; ð52Þ

where Δc is the difference in concentration between leaf and
root and the total resistance is

Rtot ¼ R1 þ R2 þ R3 ð53Þ

as expected for resistance in series. The flow velocity is

u ¼ Δp
πa2Rtot

¼ 2LpΔp
a2l1l3

Vl1l2l3 þ a3ðl1 þ l3Þ
; ð54Þ

where we used the notation Δp as a generic symbol (in the
present case it should actually be a difference in osmotic
pressure ΔΠ) and

V ¼ 16ηLp ð55Þ

is a characteristic length scale—the “permeability length” to
which we return later. The velocity (54) has, when varying
only a, its maximum at

a� ¼
�
2V

l2
l−11 þ l−13

�
1=3

¼
�
2V

l1l2l3
l1 þ l3

�
1=3

. ð56Þ

If the roots and the leaves are similar in size, we find

a� ¼ ðVl1l2Þ1=3 ¼ ð16ηLpl1l2Þ1=3. ð57Þ

It is perhaps more typical that the roots are considerably
larger than the leaves, at least for trees. With l1 ≪ l3 we get
the result

a� ¼ ð2Vl1l2Þ1=3; ð58Þ

which differs from Eq. (57) only by a factor 21=3 ≈ 1.26.
The corresponding value of the flow velocity is

u� ¼ 2LpΔp
22=3

3

l2=31 l2=33

V1=3l1=32 ðl1 þ l3Þ2=3
. ð59Þ

One can think about the condition Eq. (56) as “impedance
matching”: inserting the expression for a� into Eqs. (47), (49),
and (50) leads to

R2 ¼ 1
2
ðR1 þ R3Þ; ð60Þ

and thus the resistance of the stem has to be matched to the
average of the resistance in the ends.
The flow velocity from Eq. (54) or (59) can be used to give

an estimate of the transit time τ for sugar from the leaves to the
root as τ ≈ l2=u which for optimized phloem tubes gives

τ ≈
l2
u�

¼ 3

25=3LpΔp
V1=3ðl1 þ l3Þ2=3

l2=31 l2=33

l4=32 . ð61Þ

The scaling relation [Eq. (57)] was first obtained by Jensen
et al. (2011) and tested, as shown in Fig. 22(a), against
measured sieve tube radii a and the product of the lengths of
stems and leaves for 20 plants ranging from 10 cm up to 40 m.
Jensen, Liesche et al. (2012) extended this study with a large
number of trees, 32 angiosperms and 38 gymnosperms
(mostly conifers), up to 50 m in height. In gymnosperms,
the cross sections of the sieve tubes are typically not circular,
but closer to rectangular [see Fig. 10(c)], and the scaling
relations have to be modified by a geometrical factor and a
corresponding definition of the effective radius. As discussed
in detail by Jensen, Liesche et al. (2012) (Appendix A),
the scaling relation can in general be written (taking for
concreteness the case of l1 ∼ l3)

FIG. 22. Evidence from field measurements that the radius of
phloem sieve elements is optimized for rapid sugar translocation.
Comparison between the predicted optimal radius ða�Þ3 ∼ l1l2
[Eq. (62)] and the measured radius a. Symbols indicate angio-
sperm herbs (solid circles), angiosperm trees (open circles),
angiosperm shrubs (gray circles), gymnosperm trees (open
squares), and gymnosperm trees with scales (open triangles).
All plants were mature. G is a geometrical factor depending
on the cross-sectional shape of the tubes and similarly a is
an effective radius. From Jensen et al., 2011, and Jensen,
Berg-Sørensen et al., 2012.
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a� ¼ ðGηLpl1l2Þ1=3; ð62Þ

where a� now is an effective radius depending on the shape of
the tubes and G is a geometrical factor.
It is surprising that angiosperms and gymnosperms pretty

much fall on the same scaling curve. Angiosperms are much
younger, around 130 × 106 years is the current estimate of
their age, compared to the gymnosperms which are probably
closer to 300 × 106 years old, and they differ in many
fundamental ways. In Sec. IV.A.3, in particular, in Fig. 19,
it was shown that the typical flow speeds in the phloem of
gymnosperms are considerably smaller than that of angio-
sperms, but still they seem to be optimized in the same way.
As noted, the optimality condition, e.g., Eq. (57), expresses

the optimal radius as the cubic root of three lengths: the length
of the stem, the length of the leaves, and the quantity V ∼ ηLp
with the dimensions of a length. Inserting typical numbers
for sieve tubes, i.e., Lp ≈ 5 × 10−14 ms−1 Pa−1 and η ≈ 2 ×
10−3 Pa s ¼ 2ηw (twice the viscosity of pure water) we find
ηLp ≈ 10−16 m, which seems to be a length scale more
relevant to particle physics than to biophysics. In fact, one
should not think of it as a single length, but as involving
several lengths having to do with the structure of the semi-
permeable plasma membranes producing the osmotic effects.
Let us assume that the membrane has n pores per unit area, for
simplicity cylindrical, each with radius ap and length d, the
thickness of the membrane. The pore density n can be written
in terms of the covering fraction ϕ of the pores as

n ¼ ϕ

πa2p
ð63Þ

and the flux per surface area passing the membrane is
(if ap ≪ d) for a given pressure difference Δp

q ¼ n
πa4p
8ηwd

Δp ¼ ϕa2p
8ηwd

Δp≡ LpΔp; ð64Þ

where we use ηw, since the sugar cannot penetrate the pores.
Thus

ηLp ≈
ϕa2p
4d

. ð65Þ

If we take typical values for the membrane thickness
d ≈ 5 nm, we see that the values ap ≈ 2 Å and ϕ ≈ 0.5 ×
10−4 will lead to the value ηLp ≈ 10−16 m. The same value of
ap corresponds to the water being transported through aqua-
porins, but it implies also that our use of classical Poiseuille
flow is at best suggestive. On the other hand, a typical value
from the literature for the permeability of a single aquaporin is
lp ¼ 10−20 m3 s−1 (Nielsen, 2010, Table I) where

lp ¼ πa2p
RTLp

ϕVw
; ð66Þ

with Vw the molar volume of water. Inserting values above for
Lp and ap gives lp ≈ 10−24ϕ−1 m3 s−1. A comparison of this

number with the value of lp from Eq. (66) gives ϕ ≈ 10−4, in
reasonable agreement with our earlier estimate.
In Fig. 23, a complementary scaling plot showing how the

cross-sectional area of the sieve elements varies with the
length of the stem. The cross-sectional area was used rather
than the radius since the sieve elements of gymnosperms are
typically not cylindrical (Fig. 10). The plot shows that the
width of the sieve tubes grows for small plants (up to around
10 m in size), but for larger plants (trees) this growth basically
stops. The sieve element radius (∼square root of the cross-
sectional area) never exceeds a value of approximately 20 μm.
The reason for this is not known, but one has to keep in mind
that the sieve elements are single living cells, and there might
be good structural reasons for restricting its size.
We end this section by discussing the dependence of the

velocity u, Eq. (54), on the geometric parameters of the
problem. Since the sink length is difficult to ascertain, we
proceed in the simplified case where the sink resistance is
negligible: R3 ≪ R1; R2 (i.e., l3 ≫ l1; l2). In that limit, using
the terminology l1 ¼ l and l2 ¼ h, the velocity [Eq. (54)] is

u ¼ 2a2Lpl

a3 þ 16ηLplh
Δp ð67Þ

and the optimal radius is now ða�Þ3 ¼ 2Vlh as in Eq. (58)
with V given by Eq. (55). The general scaling with the
geometric parameters is illustrated in Fig. 24. At constant h
and l, the speed as a function of conduit radius a can be
expressed in terms of the relative conduit size α ¼ a=a�

uðaÞ
uða�Þ ¼

3α2

1þ 2α3
; uða�Þ ¼ 21=3

3

ðlLpÞ2=3
ðhηÞ1=3 Δp; ð68Þ

FIG. 23. Sieve element cross-sectional area A ¼ πa2 is approx-
imately proportional to stem length l2 for stems shorter than
∼10 m and saturates above that height. Symbols indicate angio-
sperm herbs (solid circles), angiosperm trees (open circles),
angiosperm shrubs (gray circles), gymnosperm trees (open
squares), and gymnosperm trees with scales (open triangles).
From Jensen, Liesche et al., 2012.
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where uða�Þ is the speed at the optimal radius. As a function of
leaf length l, the speed is

uðlÞ
uðl → ∞Þ ¼

λ

Mü−1 þ λ
; uðl → ∞Þ ¼ a2

8hη
Δp; ð69Þ

where λ ¼ l=h and Mü ¼ 16ηLph2=a3 is the Münch number,
which characterizes the ratio of viscous to membrane flow
resistance (discussed in Sec. V), based on the leaf geometry.
Considering only variations in the stem length h we finally
have

uðhÞ
uðh → 0Þ ¼

1

1þMü0λ−1
; uðh → 0Þ ¼ 2

lLp

a
Δp; ð70Þ

where the parameter Mü0 ¼ l2=h2Mü ¼ 16ηLpl2=a3 is the
(much smaller) Münch number, based on the leaf geometry.
The dependence of the speed u on the length scales a, l,

and h, Eqs. (68)–(70), are plotted in Fig. 24. Figure 24(a)
illustrates the optimality criterium, Eq. (58), and that the
speed is reduced by up to 35% for radii in the interval
a�=2 < a < 2a�. Figure 24(b) shows an initial linear growth
with leaf size followed by an asymptotic approach to a
constant level. A larger leaf leads to a greater flow speed
because the flow rate increases along the vasculature in the
leaf due to osmotic exchange of water, acting as tributaries to a
river. As the leaf grows very large, however, the leaf resistance
becomes small compared to the stem resistance R1 ≪ R2,
and ultimately the flow speed can never exceed the value
a2Δp=ð8ηhÞ. Finally, Fig. 24(c) demonstrates a monotonic
decrease in speed as a function of plant height h due to viscous
friction in the stem.
It is amazing that a model as simple as the one proposed

here can say anything useful. We all know the complicated
network structure of leaves, and we would thus assume that a
model treating each phloem path as a simple tube of constant
radius is nonsensical. One should, however, keep in mind that
many of the vein bifurcations seen in a leaf are actually points
where the vascular bundle is split, whereas the number and
size of the individual sieve tubes is constant. In pine needles it
has thus been seen that the area of each individual sieve
element is approximately constant along the length of a pine
needle (Ronellenfitsch et al., 2015). Whether the same is true
for the truly two-dimensional leaves of angiosperms with their
characteristic reticulate networks is not known at present.
Variations in the diameter of the sieve tubes with height along

the stem of trees (pines, ashes, and willows) were recently
investigated by Petit and Crivellaro (2014). The results were
fitted to power laws a ∼ hb, where h is the height along the
stem, with very low powers b ≈ 0.1–0.2 and correspondingly
very slow variation. This corresponds well with the lack of
variations of the radius of sieve tubes (or their cross-sectional
area) with the height of the tree shown in Fig. 23.

2. Limits to leaf size

Leaf sizes in angiosperm trees vary by more than 3 orders
of magnitude, from a few mm to over 1 m (Fig. 25). Leaf
morphology is influenced by a number of factors, including
photosynthesis, gravity, wind, herbivores, and vascular trans-
port efficiency (Onoda et al., 2011). For instance, the leaf
must be kept more or less in the horizontal plane to maximize
photosynthesis. This imposes mechanical constraints on the
length of the petiole and size and mass of the leaf [for a
detailed discussion, see Niklas (1994)].
Remarkably, the large diversity in leaf size is expressed

only in small trees, and the observed leaf size range declines
with tree height, forming well-defined upper and lower
boundaries (solid lines in Fig. 25). Jensen and Zwieniecki
(2013) hypothesized that this could be rationalized based on
considerations related to sugar export from the leaf. The fact
that large trees should have small leaves can be understood
on the basis of the scaling relation (57) or (62) combined
with the experimental finding (Fig. 23) that the sieve tube
radius in large trees apparently approaches a constant value
(amax ≈ 20 μm) leading to the scaling l ∼ 1=h. To obtain the
maximal leaf length Jensen and Zwieniecki (2013) used an
expression for the energy flux E ¼ kcu, where k is a
metabolic constant and u is given in terms of leaf size l and

(a) (b) (c)

FIG. 24. Scaling of the osmotic pumping velocity u [Eq. (67)]
with geometric parameters according to Eqs. (68), (69), and (70).

FIG. 25. The variability of leaf sizes decreases with plant height,
forming upper and lower boundaries (solid lines). Gray triangles
show the reported range of leaf sizes for particular species as the
longest and shortest leaf lamina length l plotted as a function of
tree height h. Solid lines show fits to theory [Eqs. (71) and (72)].
Adapted from Jensen and Zwieniecki, 2013.
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tree height h by Eq. (67). Since the plant invests considerable
amounts of energy in constructing and maintaining photo-
synthetic tissue, they argued that it will curtail the construction
of still larger leaves once the energy flux E approaches the
maximum energy output Emax ¼ kca2Δp=ð8ηhÞ. At this
point, the gain in energy output from increasing the leaf size
is too small to offset the cost of building and maintaining the
leaf, in accord with the marginal value theorem of Charnov
(1976). Further, leaf growth will cease once the energy output
E has reached a fraction E ∼ ð1 − τÞEmax of the maximum
obtainable, where the constant number τ ≪ 1. It follows that
the maximum allowed leaf length lmax at a given height h is

lmax ¼
1

16

a3max

τLpη

1

h
: ð71Þ

While the leaf size derived in Eq. (71) provides a link
between energetic constraints and the maximum leaf size, it
does not account for the apparent lower limit to leaf size
(Fig. 25). Based on the rationale that vascular systems are
formed because cell-to-cell diffusion is insufficient as a
transport mechanism over long distances, Jensen and
Zwieniecki (2013) argued that the lower limit to leaf size
represents a minimum flow phloem speed (LaBarbera, 1990;
Vogel, 2004). With typical plant cell sizes in the range of
d ¼ 10–100 μm, diffusion and advection of sugars are equally
effective over these length scales when the Péclet number
Pe ¼ vd=D ¼ 1, where v is the flow speed and D is the
diffusion coefficient [D ¼ 0.5 × 10−9 m2=s for sucrose
(Haynes, 2012)]. It follows that v≃D=d ¼ 5–50 μm=s
provides a lower estimate of the minimum flow speed umin.
Assuming a velocity equal to this and solving Eq. (67) for leaf
length l leads to the leaf size lmin at which this speed is first
obtained:

lmin ¼
1

16

r3

Lpη

1

hmax − h
: ð72Þ

In Eq. (72), we expressed the minimum leaf size in terms of
hmax ¼ r2Δp=ð8ηuminÞ, the tree height at which it is no longer
possible to obtain the flow speed umin due to resistance to flow
in the stem. Jensen and Zwieniecki (2013) fitted Eqs. (71)
and (72) to outliers of the data in Fig. 25 and found that
the data suggest an efficiency 1 − τ≃ 0.9 and a minimum
speed umin ≃ 100 μm=s for parameter values Δp ¼ 1 MPa,
Lp ¼ 5 × 10−14 m=s=Pa, and η ¼ 5mPa s. The minimum
flow speed 100 μm=s is in rough accord with experimental
data from angiosperm trees [Fig. 19(b)] which have a strong
peak around ∼50 μm=s.
In summary, this suggests that in addition to effects related

to, e.g., photosynthesis, gravity, wind, and herbivores,
efficiency of phloem transport may influence the size of plant
leaves.

3. Optimal sugar concentration

In the preceding sections we have seen examples of how
purely geometric factors influence the speed of sugar transport
in plants. Further, we have found evidence that plants, on
average, are inclined to favor geometric configurations that
maximizes this speed (Fig. 22). The underlying assumption is

of course that the speed u is a proxy for the sugar mass flux uc,
where c is the phloem sap sugar concentration, which implies
that m is optimized if uc is. The proportionality factor c,
however, gives rise to additional dynamics in the flow problem
which is independent of geometry. To see this, consider the
case where the flow resistance is dominated by viscous
resistance along the stem

uc ¼ r2

8

Δp
L

c
ηðcÞ : ð73Þ

The geometric factor r2 and pressure gradient Δp=L are
unchanged, but the ratio of concentration to viscosity c=ηðcÞ
reveals that the mass flux uc is directly influenced by
properties of the sap. It is apparent [Fig. 26(a)] that viscosity
increases rapidly with sugar concentration and that the
function c=ηðcÞ has a maximum around c≃ 23 wt%
[Fig. 26(b)]. The existence of an optimum sugar concentration
derived from Eq. (73) and Figs. 26(a) and 26(b) was first
proposed by Passioura (1976). Similar models have been used
to rationalize observed concentrations in, for instance, blood
flow (Murray, Gold, and Johnson, 1963; Birchard, 1997; Stark
and Schuster, 2012), nectar drinking animals (Kim, Gilet, and
Bush, 2011; Kim and Bush, 2012), and traffic flows (Jensen
et al., 2013). Passioura (1976) argued that efficient transport

(a) (b)

(c) (d)

FIG. 26. (a) Viscosity increases with concentration by almost 2
orders of magnitude between c ¼ 0 and 60 wt %. Viscosity η=η0
plotted as a function of solute concentration c for the substances
indicated in the legend. η0 ¼ 1 mPa s is the viscosity of water and
the solid line is a fit to the sucrose data. (b) The mass flux for
sucrose [Eq. (73)] is optimal around c ¼ 23 wt% (dashed line).
Mass fluxm normalized by the maximum valuemmax plotted as a
function of solute concentration c. (c), (d) Histograms showing
phloem sap concentration measured in plants that utilize passive
and active phloem loading. Solid line is a Gaussian fit to the
frequency distribution. Dashed line shows the optimal concen-
tration; cf. (b). From (a) Haynes, 2012 and (c), (d) Jensen,
Savage, and Holbrook, 2013.
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of sugar requires concentrations in the range 14%–35% based
on increased viscous friction at high concentrations. Later,
Lang (1978) conducted a theoretical comparison of different
sugars and sugar alcohols and concluded that the disaccharide
sucrose at c ¼ 25% is the most advantageous substance to
transport, since it is chemically stable, highly soluble, and
generates only a modest osmotic pressure compared with
other sugars, like its component parts, the monosaccharides
glucose and fructose. An experimental test of the hypothesis
that plants favor the optimum sugar concentration was
performed by Jensen, Savage, and Holbrook (2013), who
collected data from 41 plant species [Figs. 26(c) and 26(d)].
The optimal concentrations discussed above provide a ration-
ale for the observation that the mean sugar concentration in the
phloem sap of the plants found by Jensen, Savage, and
Holbrook (2013) was 18.2%. At this concentration the flux
uc is less than 5% from the maximum value. When consid-
ering active sugar loaders separately, the trend is even more
clear: the average concentration is 21.1% [Fig. 26(d)]. By
contrast, passive loaders [Fig. 26(c)] average at 15.4%, which
corresponds to 10% less than the optimum mass flux.
The loading type appears to impact the sugar concentration

and transport efficiency of the phloem: data suggest that active
loaders achieve more optimal concentrations for transport than
passive loading species. Several caveats are in order, however,
as summarized by Jensen, Savage, and Holbrook (2013): The
concentration observed in nature may deviate from the
theoretical optimum due to the limited availability of light,
water, and nutrients. Although some plant species maintain
fairly constant sugar concentrations in their phloem, other
species appear to exhibit diurnal and seasonal changes in sap
chemistry. Higher sugar concentrations may also prevent
desiccation during extracellular freezing and facilitate super-
cooling during the winter. Therefore, some of the variation
observed in phloem sugar concentration could be the result of
differences in growth and sampling conditions.

D. Final remarks

In this section we presented experimental data on sugar
transport in plants. We discussed attempts to use biomimetic
models and scaling theory to rationalize some observations.
Several of these provided insight into the physical mecha-
nisms that limit the range of observed anatomical and
physiological features. However, a multitude of questions
concerning long-distance flow patterns of sugars, hormones,
and other substances remain. Some of these arise from the
difficulty in obtaining experimental data. Cell turgor pressure,
for instance, is notoriously difficult to quantify, and no
systematic study of pressure gradients in a plant has been
made. These data are critical to an evaluation of the Münch
osmotic pressure-flow hypothesis. Remarkably little data exist
on the global translocation patterns, i.e., on the flow speed and
concentration of phloem sap at various positions in the plant
body. Again, this is because the measurements are demanding,
but it should be noted that the gain from better data on sugar
transport would be considerable, especially if we are to take
full advantage of emerging breeding and gene technology
platforms to increase plant yield by reallocating resources via
the phloem.

Our understanding is even further confounded by the lack
of data on the phloem cell network architecture. We intro-
duced a class of models inspired by electric circuits and used a
simple one-dimensional model of a tree to obtain information
about the conduit sizes in the phloem, the leaf sizes for
different tree heights, and the sugar concentration in the
phloem—based on optimizing the flow speed. Here the entire
leaf was replaced by a segment of a tube, characterized only
by its radius and length. In reality we know that the phloem
network in the leaf is a complicated, hierarchical structure, and
it is a major question for future research to determine how the
effective parameters (such as resistance) are determined for
these networks.

V. FLUID DYNAMICS OF SUGAR TRANSPORT IN PLANTS

To obtain a more reliable description of the osmotically
driven flows, even in a single tube, like those making up the
“one-dimensional tree” of the last section, we now employ
hydrodynamic equations explicitly taking into account the
variations of flow velocities and concentrations along the tube.
We make a number of simplifying assumptions, which,
however, will allow us to expose the important features
without too many confusing details. Still, the material pre-
sented in this section is intended for the mathematically
inclined reader who wants to know the state of the art of
the mathematical modeling of long-distance flow in the
phloem. Other readers can safely proceed to Sec. VI.
The starting point is the Aldis flow of Sec. II.C: a

cylindrical tube along the x axis of length L (0 < x < L)
and radius a, with a sidewall consisting of a semipermeable
membrane with permeability Lp. The tube contains an
aqueous sugar solution with pressure pðr; x; tÞ, concentration
cðr; x; tÞ, and velocity field vðr; x; tÞ. A water reservoir at
constant pressure p ¼ 0 surrounds the tube. We neglect
variations in density ρ and viscosity η induced by the presence
of sugar and assume rotational symmetry of velocity, con-
centration, and pressure. If low-Reynolds-number conditions
prevail, the governing equations are the Stokes equation (3a)
and the advection-diffusion equation (11). Further, the large
values of the Schmidt number (see Sec. II.B) allow us to drop
the time dependence for the velocity field, retaining it only for
the concentration. The boundary conditions at the membrane
interface (r ¼ a) are (see Sec. II.D) tangential no slip of the
water, radial inflow of water, and zero flux of the solute,

vxða; xÞ ¼ 0; no slip; ð74aÞ

vrða; xÞ ¼ Lp½RTcða; xÞ − pða; xÞ�; osmosis; ð74bÞ

D
∂c
∂r

				
a;x

¼ cða; xÞvrða; xÞ; no solute flux: ð74cÞ

To our knowledge, no general solution to these coupled
velocity-concentration equations has been found.Aldis (1988b)
provided numerical solutions for the limit p ≪ RTc, while
Haaning et al. (2013) found analytical solutions for small
deviations between the membrane concentration cða; xÞ and
mean concentration.
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The system complexity, however, can be reduced consid-
erably by seeking equations for the radially averaged con-
centration c ¼ hcir and axial flow speed u ¼ hvxir in the
lubrication approximation [introduced after Eq. (23b)] valid
when a ≪ L. The governing equations for u and c are
obtained from the radial average of the Aldis equations (24a)
and (25) and of the advection-diffusion equation (10). Note
that the latter cannot be replaced by Eq. (11) since the velocity
field cannot be divergence free in this one-dimensional
setting, which would imply a constant velocity u.
Assuming that the solution is well stirred, we have cðx; tÞ ¼
hcðr; x; tÞir such that hvxcir ¼ uc and Eq. (74b) leads to

a
2Lp

∂u
∂x ¼ RTc − p; ð75Þ

which together with Darcy’s law (5)

∂p
∂x ¼ −

8η

a2
u ð76Þ

give the final radial-averaged equations

a
2Lp

∂2u
∂x2 ¼ RT

∂c
∂xþ

8η

a2
u; ð77aÞ

∂c
∂t þ

∂uc
∂x ¼ D

∂2c
∂x2 þϒ. ð77bÞ

These equations, known as the Münch-Horwitz equations for
osmotically driven pipe flows, first appeared in Horwitz
(1958). An overview of the associated literature can be found
in Thompson and Holbrook (2003b), and we give a brief
summary here. Horwitz (1958) used a control-volume
approach to derive equations for the steady flow problem
in the form

A
du
dx

¼ αc − βp; ð78aÞ

d
dx

ðAucÞ ¼ ϒ; ð78bÞ

dp
dx

¼ −ϵu; ð78cÞ

where A ¼ πa2 is the cross-sectional area of the tube and α
and β are physical parameters which in our terminology are
α ¼ LpRT, β ¼ Lp, and ϵ ¼ 8η=a2. His model divided the
plant into three zones: a photosynthetic region, a stem region,
and a consuming region; see Fig. 27. He discussed three
different forms of the loading term ϒ

ϒ ¼ 0; ϒ ¼ −kc; and ϒ ¼ −const; ð79Þ

which correspond to either no loading in the stem region or
concentration dependent or constant unloading in the con-
suming region. Horwitz (1958) did not provide solutions to
Eqs. (78a)–(78c), but noted that (p. 87): “In general one would
expect from the simple pressure flow theory that the rate

of flow varies with distance along the tube, according to
Eq. (78a). The size of this effect, however, depends on
the difference between terms involving concentration in the
phloem and pressure. If the pressure dissipation down the tube
is paralleled by a corresponding decline in concentration
(as by loss to adjacent tissue), there may be only a small
variation in flow rate over long distances.” Subsequent
analyses [Fig. 28 and Christy and Ferrier (1973) and
Thompson and Holbrook (2003b)] have shown that most of
the flow acceleration in the Horwitz model occurs in the
photosynthetic (leaf) region. Work by Eschrich, Evert, and
Young (1972) and Young, Evert, and Eschrich (1973) con-
tinued the mathematical analysis of Münch flow by including
an arbitrary position-dependent loading function ϒðxÞ, noting
that a physiologically relevant loading function must (in a
steady state) ensure that the net transport of solutes into the
tube is zero, i.e.,

R
L
0 ϒðxÞdx ¼ 0. They also performed an

analysis of transient flow based on an integral form of the
Horwitz equations (Sec. IV.B). Phloem flow models were
further refined by Christy and Ferrier (1973) and Tyree,
Lawrence Christy, and Ferrier (1974) who found the first
numerical solutions to the equations of motion using a
discretized version of Horwitz’s equations using constant
loading rates in the source and sink regions constrained by
the Young, Evert, and Eschrich (1973) criteria [Fig. 28(a)].
They also took into account the molar volume of sugar
solutions and xylem pressure gradients. To our knowledge,
Ferrier, Tyree, and Christy (1975) were the first to transient

FIG. 27. A “one-dimensional tree” according to Horwitz: a tube
(S) with semipermeable walls, in contact with another tube (Z)
containing pure water, connected to a water reservoir. From
Horwitz, 1958.
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effects, although equations are not given explicitly and only
numerical solutions were undertaken. Frisch (1976) found an
analytical solution of a time-dependent system [including
explicitly the term ∂c=∂t in Eq. (77b)] in the limit where
viscous contributions to the pressure gradient is small by
relating it to the Burgers equation as described later. Phillips
and Dungan (1993) presented an analytical approach based on
the Stokes and advection-diffusion equations similar to that
leading to Eqs. (77a) and (77b), finding two coupled equations
for concentration c and pressure p by eliminating the velocity
u. Thompson and Holbrook (2003b) criticized Phillips and
Dungan (1993) for claiming that correct predictions can be
achieved in no other way than through direct solution of the
Stokes equation, pointing out that the Horwitz control-volume
approach assumes local Poiseuille flow, thus giving the same
predictions. More recently, Thompson and Holbrook (2003b)
studied the approach to steady flow by numerical solutions to
the Münch-Horwitz equations, Fig. 28(b).
The derivation of the Münch-Horwitz equations assumed

that the water reservoir was all at the same pressure. In fact the
phloem moves basically in parallel with the xylem and the

osmotic flow thus depends on the local external pressure, i.e.,
the pressure in the xylem, mitigated through the intervening
cambium. Denoting this pressure by pextðx; tÞ, it would enter
into the radial inflow (74b) changing it into

vrða; xÞ ¼ LpfRTcða; xÞ − ½pða; xÞ − pextðx; tÞ�g; ð80Þ

where we assumed that the solute concentration in the xylem
is negligible. Such coupling terms have been included in some
studies (Daudet et al., 2002; Holtta et al., 2006; Lacointe and
Minchin, 2008) showing that, e.g., the daily variation in the
xylem can indeed influence the phloem translocation. Here
one needs to model the cambium separating the xylem and the
phloem, the elastic properties of the tissue as well as loading
functions for the sugars. In the model of Holtta et al. (2006) a
sufficiently strong transpiration (gradient in pext) can actually
stop the phloem, but for a large range of transpiration below
this value, the sugar flux is practically unaffected (Holtta
et al., 2006, Fig. 4). We do not discuss these models further
here, but it is clearly an important area for future research.
For more definite modeling of the xylem-phloem interactions
one needs a better understanding of the complex coupling
processes in the leaf, the mathematical modeling of which we
return to briefly in Sec. VI.C.
The Münch-Horwitz equations are difficult to solve numeri-

cally due to imminent shocks (as described in the next
subsection), and various ways of handling them with different
loading mechanisms have been proposed in the literature
(Christy and Ferrier, 1973; Goeschl et al., 1976; Henton et al.,
2002; Thompson and Holbrook, 2003b; Jensen, Rio et al.,
2009; Jensen, Berg-Sørensen et al., 2012). Thompson and
Holbrook (2003b) used a nonsymmetrical slope-limiting total
variation diminishing (TVD) method to obtain results similar
to Fig. 28(b). In their Appendix D, the method is described in
detail as well as the differences with earlier studies. A simpler
form of nonsymmetric differentiation was used by Jensen,
Berg-Sørensen et al. (2012), the standard “upwind” technique,
where only the point in question and its upwind neighbors are
used. In our case the “wind” always comes from the loading
zone (leaf), and therefore the upwind neighbors are those with
smaller x. Well known in gas theory, this gives a simple
approximative way of handling shocks (LeVeque, 1992) and it
works well for the Münch-Horwitz equations (see the dis-
cussion of the target concentration models in Sec. V.C below).
Several studies reported analytical solutions to Eqs. (77a)

and (77b); see, e.g., Frisch (1976), Phillips and Dungan
(1993), Thompson and Holbrook (2003a), Jensen, Rio et al.
(2009), Pickard and Abraham-Shrauner (2009), Jensen et al.
(2011), Jensen, Berg-Sørensen et al., 2012, and Hall and
Minchin (2013). We proceed to discuss general approaches
and some details of these solutions in the following sections.
To simplify the notation in the following mathematical

treatment, we nondimensionalize Eqs. (77a) and (77b) by
using the system length L and inlet concentration c0 as
characteristic scales together with the osmotic pressure,
velocity, and time scale p0, u0, and t0, respectively,

p0 ¼ RTc0; u0 ¼
2L
a

Lpp0; t0 ¼
L
u0

; ð81Þ

(a)

(b)

FIG. 28. Numerical solutions of the Münch-Horwitz equations
by Tyree, Lawrence Christy, and Ferrier (1974) and Thompson
and Holbrook (2003b) illustrate how the flow velocity increases
in the source region, remains approximately constant in the stem,
and approaches zero in the sink. The concentration decreases
along the plant axis. (a) A steady solution by Tyree, Lawrence
Christy, and Ferrier (1974), while (b) illustrates the flow transient
found by Thompson and Holbrook (2003b). Adapted from Tyree,
Christy, and Ferrier, 1974 and Thompson and Holbrook, 2003b.
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to get nondimensional variables C, U, P, X, and τ as

c¼ c0C; u¼ u0U; p¼p0P; x¼LX; t¼ t0τ; ð82Þ

where L was chosen such that 0 < X < 1. Furthermore, we
introduce the dimensionless parameters Mü (Münch number,
hydraulic resistance divided by transmembrane resistance), D
(inverse Péclet number), and ϒ (loading rate divided by radial
diffusion rate),

Mü ¼ 16ηL2Lp

a3
; D ¼ D

u0L
; ϒ ¼ 2t0ϒ

c0a
: ð83Þ

Using this, the nondimensional radially averaged forms of the
Horwitz equations (77a) and (77b) become

∂2U
∂X2

¼ ∂C
∂X þMüU; ð84aÞ

∂C
∂τ þ ∂ðUCÞ

∂X ¼ D
∂2C
∂X2

þϒ; ð84bÞ

with the relations

∂U
∂X ¼ C − P; ð85aÞ

∂P
∂X ¼ −MüU ð85bÞ

for the pressure.
Typical values of Mü andD in different situations are listed

in Table III. The scaling introduced in this way is most
appropriate for smallMünch numbers, and intermediary length
scales, as it is based on the velocity scale u0, Eq. (81), set by the
osmotic pressure, the membrane permeability, and the full
length L of the system (e.g., the tree). Typical observed flow
rates are of the order of 1 m=h ¼ 2.7 × 10−4 m=s, but our u0
varies from 0.044 m=h for the single sieve element to 440 m=h
for a 10 m tree, whereas a leaf of length 2 cm would give
u0 ≈ 1 m=h. This reflects the fact that the real velocity is set by
the length scale where important water inflow takes place and
the appropriate pressure drop for the system. For large Mü, the
dominant resistance comes from the stem, and using Eq. (77a)
without the second derivative and setting ∂c=∂x ≈ c0=L and
r2 ≈ a2, the characteristic velocity u1 in this case would be

u1 ¼
a2

8η

RTc
L

¼ Mü−1u0: ð86Þ

A. Solutions of the time-dependent equations with no sugar
loading

We move on to analyze the Münch-Horwitz equa-
tions (84a)–(85b). The first question to answer is whether
they are well posed. As discussed in Sec. II.B, the very
different time scales for molecular and momentum diffusion
have allowed us to discard the time dependence in the Navier-
Stokes equation, i.e., in Eq. (84a). Thus, like the incompress-
ibility condition in an incompressible fluid, the dynamics
comes from Eq. (84b), whereas Eq. (84a) is in the nature
of a constraint. One possible set of inititial conditions for
Eqs. (84a)–(85b) is to specify the entire concentration field
c0ðxÞ ¼ cðx; t ¼ 0Þ. Then, since Eq. (84a) is linear in u, one
can write

uðx; tÞ ¼
Z

1

0

Gðx; ξÞ ∂cðξ; tÞ∂ξ dξ; ð87aÞ

where the Green’s function satisfies

∂2G
∂x2 −MüG ¼ δðx − ξÞ; ð87bÞ

and whereGðx; ξÞ ¼ Gðξ; xÞ. Further,Gðx; ξÞ is continuous at
x ¼ ξ, whereas its derivatives are not. Integrating Eq. (87a)
over x from ξ − ϵ to ξþ ϵ and letting ϵ tend to 0 we
find G0

xðξþ; ξÞ −G0
xðξ−; ξÞ ¼ G0

ξðx; xþÞ − G0
ξðx; x−Þ ¼ 1.

To determine this Green’s function, one has to specify the
boundary conditions on u, i.e., whether the ends are open or
closed. Oftenwe are particularly interested in the case of closed
ends uð0Þ ¼ uð1Þ ¼ 0 since this is close to the situation in
leaves or roots. Then the pressure (or more correctly the
pressure difference across the membrane) is determined by
Eq. (85a) and cannot be specified independently. Inserting
Eq. (87a) for uðx; tÞ into Eq. (84b) yields an integro-differential
equation for cðx; tÞ, which can be solved by straight forward
numerical techniques. The details of this method can be found
in Appendix B of Jensen, Rio et al. (2009); note that the
function Kðx; ξÞ used there is Kðx; ξÞ ¼ −G0

ξðx; ξÞ.
We begin by looking at the transient behavior of an initially

localized sugar distribution appropriate to many biomimetic
applications, but perhaps less so for real plants. In particular,
we show that the equations in the limit Mü ¼ 0 become
equivalent to variants of the Burger’s equation (Frisch, 1976;
Weir, 1981; Jensen, Rio et al., 2009). Such equations can
develop shocks (discontinuous gradients, but only true shocks
for D ¼ 0), as seen in the velocity field in Fig. 28(b) but as far
as we know, the equations never actually develop shock under
biologically relevant conditions.
In the following, we take the loading function to be zero

ϒ ¼ 0, since we assume, as typical in the biomimetic
applications, that the sugar is present from the outset, and
no sugar is added or taken out subsequently. In the limit of
vanishing Münch number, the equations become particularly
simple and when also the molecular diffusion is neglected
(D ¼ 0), they can be solved by the method of characteristics.
For an arbitrary initial condition, this method will generally
yield an implicit solution. For arbitrary values of Mü and D,
we cannot solve the equations analytically and thus have to

TABLE III. Values of the parameters Mü and D̄ in various positions
in a plant, based on the typical parameters a ¼ 10 μm, η ¼ 2 mPa s,
Lp ¼ 5 × 10−14 m=ðPa sÞ, D ¼ 5 × 10−10 m2=s, and c ¼ 0.5 M,
which yields RTc ¼ 1.22 MPa.

Position in plant Mü D̄

Single sieve element (L ¼ 1 mm) 1.6 × 10−6 4 × 10−2

Leaf (L ¼ 1 cm) 1.6 × 10−4 4 × 10−4

Branch (L ¼ 1 m) 1.6 4 × 10−8

Small tree (L ¼ 10 m) 160 4 × 10−10
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incorporate numerical methods. Because of the large deriv-
atives which can develop, as shown in Fig. 28(b), great care
has to be taken in the numerical analysis, as discussed by
Thompson and Holbrook (2003b), Jensen, Rio et al. (2009),
and Jensen, Berg-Sørensen et al. (2012). In the analysis in the
remainder of this section, we employ the dimensionless
equations, but drop the capital letters, and use t for τ, hoping
thereby to make the reader more at ease without adding too
much confusion.
Let us consider a tube closed at one end (x ¼ 0) and open at

the other (x ¼ 1) with an initial sugar distribution, given as
c0ðtÞ ¼ cðx ¼ 0; tÞ concentrated near the closed end—a case
discussed in Sec. IV.B and shown in Fig. 20(d). When
Mü ¼ 0, there is no variation in the pressure along the tube,
and we can take p ¼ 0 everywhere. Thus Eq. (85a) becomes

c ¼ ∂u
∂x : ð88Þ

Inserting this into the advection-diffusion equation (84b) with
ϒ ¼ 0, interchanging the derivatives with respect to t and x in
the first term and integrating over x gives

∂u
∂t þ u

∂u
∂x −D

∂2u
∂x2 ¼ AðtÞ; ð89aÞ

where A is independent of x. The two first terms on the left-
hand side will vanish at x ¼ 0 at all times due to the boundary
condition uðx ¼ 0; tÞ ¼ 0. In addition, if we prescribe an
initial c0ðxÞ with c00ð0Þ ¼ 0, the last term will remain zero at
x ¼ 0 as long as

∂2u
∂x2

				
x¼0

¼ ∂c
∂x

				
x¼0

¼ 0.

We thus obtain the Burgers’ equation (Whitham, 1974)

∂u
∂t þ u

∂u
∂x ¼ D

∂2u
∂x2 ð89bÞ

for the velocity. In the limit D ¼ 0 this is particularly simple
and instructive. The solution is easily obtained by the method
of characteristics, where the characteristics satisfy

du
dt

¼ 0;
dx
dt

¼ u; ð90Þ

i.e., that u is constant along the trajectory (xðtÞ; t), if xðtÞ
moves with the local speed u. Thus the solution can be
parametrized as

uðξ; tÞ ¼ u0ðξÞ; xðξ; tÞ ¼ ξþ u0ðξÞt; ð91Þ

where u0ðξÞ ¼ uðξ; 0Þ ¼ R ξ
0 c0ðxÞdx. If we assume that the

sugar initially has the uniform concentration c0 ¼ cI in the
interval 0 ≤ x ≤ λ of the tube, the initial velocity must
increase linearly as u0ðξÞ ¼ cIξ for x ≤ λ and become
constant u0ðξÞ ¼ cIλ for x ≥ λ. Solving the characteristic
equations then gives

uðx; tÞ ¼

 ðcIxÞð1þ cItÞ−1; for 0 ≤ x ≤ λð1þ cItÞ;
const ¼ cIλ; for λð1þ cItÞ ≤ x ≤ 1;

ð92Þ

and the front xfðtÞ ¼ λð1þ cItÞ moves with the constant
speed uf ¼ x0fðtÞ ¼ cIλ set by the total amount of sugar
present in the tube, in agreement with Eq. (40). The solution
only works as long as this amount is fixed, i.e., up to the time
t ¼ ð1 − λÞ=cIλ where the front reaches the open boundary. It
is seen that the flow velocity increases up to the front position,
which is typical of osmotically driven flows through a region
of constant concentration difference as, e.g., through a leaf.
In the other case treated in Sec. IV.B and shown in Fig. 20(c),

the tube is closed at both ends, and the Münch-Horwitz
equations (84a)–(85a) with Mü ¼ 0 lead to a slight generaliza-
tion of Eq. (88), as the pressure now increases in the tube,

∂u
∂x ¼ c − pðtÞ: ð93Þ

Using the boundary conditions uð0; tÞ ¼ uð1; tÞ ¼ 0, the
(dimensionless) pressure becomes

pðtÞ ¼
Z

1

0

cdx≡ cðtÞ; ð94Þ

i.e., the mean concentration in the tube. Inserting Eq. (93) into
Eq. (84b) (with D ¼ ϒ ¼ 0) gives

∂
∂x

�∂u
∂t þ u

�∂u
∂x þ c

��
¼ −

dc
dt

¼ 0; ð95Þ

where the last equality expresses the fact that c is constant in time
since the tube is closed. Integrating with respect to x and using
the boundary conditions on u to obtain

∂u
∂t þ u

∂u
∂x ¼ −cu; ð96aÞ

again aBurgers’ equation, but this time a damped one (Gurbatov,
Malakhov, and Saichev, 1991). The characteristic equations are
now

du
dt

¼ −cu;
dx
dt

¼ u ð96bÞ

with solutions

u ¼ u0ðξÞe−ct; ð96cÞ

x ¼ ξþ 1

c
u0ðξÞð1 − e−ctÞ; ð96dÞ

where ξ ¼ x at t ¼ 0.
Assuming and corresponding to the experiments quoted in

Sec. IV.B by Eschrich, Evert, and Young (1972) and by
Jensen, Rio et al. (2009), that the sugar has the uniform
concentration c0 ¼ cI in the interval 0 ≤ x ≤ λ of the tube, we
can use Eqs. (93) and (94) together with c ¼ cIλ to find the
initial condition for u as
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u0ðξÞ ¼ uðξ; 0Þ ¼
Z

ξ

0

½cðx; 0Þ − c�dx. ð97Þ

Then, solving Eq. (96d) for ξðx; tÞ, we can insert this into
Eq. (96c) and compute uðx; tÞ. The solution, derived in detail
in Jensen, Rio et al. (2009) and equivalent to the result
obtained by Weir (1981), is displayed in Fig. 29. The
instantaneous sugar front position xf and front velocity uf is

xfðtÞ ¼ 1 − ð1 − λÞe−ct; ð98Þ

ufðtÞ ¼
dxf
dt

¼ cð1 − λÞe−ct: ð99Þ

Similarly, cðx; tÞ is given by

cðx; tÞ ¼ c
1 − ð1 − λÞ expð−ctÞHðxf − xÞ: ð100Þ

Going back to dimensional variables, Eqs. (98) and (99)
become

xfðtÞ ¼ L − ðL − lÞe−t=t0 ; ð101aÞ

ufðtÞ ¼
L
t0
e−t=t0 ; ð101bÞ

where L is the length of the membrane tube, l is the initial
front position, and the decay time t0 is in accordance with the
simple argument given in Sec. IV.B and Eq. (39) for the front.
To some extent, one can include diffusion in this analysis,

as recognized by Frisch (1976). Indeed, the diffusive Burgers
equation (89b) can be transformed to the linear diffusion
equation by first noting that the substitution

u ¼ ∂ψ
∂x ð102aÞ

yields the nonlinear phase equation

∂ψ
∂t þ

1

2

�∂ψ
∂x

�
2

¼ D
∂2ψ

∂x2 ; ð102bÞ

where we, in analogy with Eq. (89a), discarded an integration
constant AðtÞ. Then the Hopf-Cole transformation (Whitham,
1974)

ψ ¼ −2D
∂
∂x logϕ ð102cÞ

leads to the diffusion equation

∂ϕ
∂t ¼ D

∂2ϕ

∂x2 : ð102dÞ

However, this transformation does not work for the more
general cases like the damped Burgers equation (96a).
It is also hard to generalize these results to nonzero Münch

numbers. For Mü ≫ 1, one can show (Jensen, Rio et al., 2009)
that there is an asymptotic solution valid for intermediate
times, where the sugar concentration is nonzero only in a finite
interval ½0; xfðtÞ� and the sugar front propagates like
xfðtÞ ∼ ðt=MüÞ1=3. The central concentration decays like
c� ∼ t−1=3 and the solution remains valid only as long as
c�ðtÞ ≫ MüD, which becomes invalid at very large Mü and
very large times, where we return to normal diffusive
behavior.

B. Solutions for the stationary equations

Returning to our one-dimensional plant shown in Fig. 21 or
27, the time-dependent equations, starting with a localized
sugar distribution, evolve into a steady state as shown in
Fig. 28. The equations for the stationary flow are found from
Eqs. (84a) and (84b) by omitting the time dependence. In the
two next sections, we also neglect molecular diffusion. The
stationary equations were investigated, e.g., by Christy and
Ferrier (1973), Goeschl et al. (1976), Henton et al. (2002), and
Thompson and Holbrook (2003a). Here we follow Jensen
et al. (2011) and Jensen, Berg-Sørensen et al. (2012), where
attempts were made to simplify the models and the boundary
conditions as far as possible.
For large tube lengths, the nondimensional diffusion con-

stant D becomes very small as discussed. Thus we have to
solve the two equations (writing prime for d=dx),

u00 −Mü u ¼ c0; ðucÞ0 ¼ ϒðxÞ: ð103Þ

The precise form of this stationary state depends on how the
boundary conditions are chosen and how the sugar is assumed
to be loaded and unloaded, i.e., the choice of the function ϒ.
There have also been solutions where the loading and
unloading zones were not taken explicitly into account, but
replaced by boundary conditions at the ends; see, e.g., Pickard
and Abraham-Shrauner (2009). However, we stick to models
with explicit loading and unloading, since, as we see, potential
singularities are lurking at the entrance and exit of the central
translocation zone, which make this replacement difficult. We
use the dimensionless variables defined earlier, but in this case
take L ¼ l2, which (in particular, for trees) is the dominant
length scale. Thus the borders of the different zones are at
x ¼ x1 ¼ l1=L and x ¼ x2 ¼ ðl1 þ l2Þ=L ¼ 1þ l1 and the
end of the roots are at x3 ¼ ðl1 þ l2 þ l3Þ=L ¼
x1 þ 1þ l3=L.
We always assume no outflow in the ends of the phloem

tube, i.e., take uð0Þ ¼ uðx3Þ ¼ 0 (for the dimensionless
variables): Since we are considering the entire length of the

(b)(a)

FIG. 29. Plot of the analytical solutions (100) for the (a) con-
centration and for the (b) velocity in a closed, semipermeable tube
with initial sugar concentration given as c0ðxÞ ¼ cI ¼ 1 for
0 < x < λ ¼ 0.1 and zero elsewhere. The average concentration
is c̄ ¼ 0.1. Adapted from Jensen, Rio et al., 2009.
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tree or plant, water should flow in and out only through the
semipermeable membranes and sugar should be explicitly
loaded or unloaded, and not flow through the ends. This
description is accurate in the case of plants that use apoplas-
mic (active) loading. In symplastic loaders, however, the
phloem is radially connected to the mesophyll by plasmo-
desmata channels. Sugar loading is believed to occur by
molecular diffusion through these narrow conduits. It is worth
noting, however, that an osmotic flow of water from the xylem
to the mesophyll may induce a bulk flow of water (and sugars)
through the plasmodesmata. In passive loaders, sugar loading
may thus be accompanied by a bulk flow of liquid (see further
Sec. VI.B).These effects will not be considered here, where
the long-distance translocation is in focus.
The simplest way of treating the leaves is to assume (Jensen

et al., 2011) that the loading function ϒ is adjusted so that the
concentration in the leaf remains constant (i.e., c ¼ 1). This is
probably not true in detail, but might be a good first
approximation. In the roots, a simple possibility (Jensen et al.,
2011) is to assume that whatever sugar is present at the inlet
is decaying linearly to zero through the root. With these
assumptions the equations for the leaf, translocation part, and
root reduce to

u00 ¼ Müu; ϒ ¼ u0; 0 < x < x1; ð104aÞ

u00 ¼ Müu −
uðx1Þ
u2

u0; ðcuÞ0 ¼ 0; x1 < x < x2; ð104bÞ

u00 ¼ Müu − β; c0 ¼ β; x2 < x < 1; ð104cÞ

where we used c ¼ 1 in the leaf segment (0 < x < x1).
In the translocation part (x1 <x<x2), we see that uðxÞcðxÞ ¼
const ¼ uðx1Þcðx1Þ ¼ uðx1Þ, and thus cðx2Þ ¼ uðx1Þ=uðx2Þ.
In the root part (x2 < x < x3), where by assumption c0 is a
constant, we find c0 ¼ −cðx2Þ=ð1 − x2Þ and thus

c0 ¼ β ¼ uðx1Þ
uðx2Þð1 − x2Þ

: ð105Þ

In this approach, the second derivative of u changes dis-
continuously at the borders x1 and x2 between the different
zones, but we should be able to construct solutions which are
continuous in u and its first derivative u0.
The nature of the solutions to the stationary flow equations

depends strongly on the value of the Münch number. Next, we
briefly look at the form in two limiting cases Mü ≪ 1 and
Mü ≫ 1 following Jensen et al. (2011).
Case 1: Mü ≪ 1. Here the equations take the form

u00 ¼ 0 for 0 < x < x1; ð106aÞ

u00 ¼ −
uðx1Þ
u2

u0 for x1 < x < x2; ð106bÞ

u00 ¼ −β for x2 < x < x3; ð106cÞ

with β given in Eq. (105). The solutions are linear in the leaf
section 0 < x < x1 and quadratic in the root section
x2 < x < 1. In the stem section x1 < x <2 (for

Mü ¼ ϒ ¼ 0) Eq. (103) [or Eq. (106b)] can be integrated
once to the form u0 ¼ u1=uþ A. The solution can be
expressed implicitly as

xðuÞ ¼ u1
A

�
u
u1

−
1

A
log ð1þ Au=u1Þ

�
þ B ð107Þ

for u1 < u < u2, where u1 ¼ uðx1Þ and u2 ¼ uðx2Þ. This
means that it becomes almost constant near the end of a long
stem, where u approaches the value u� ¼ −u1=A (possible for
negative A). By matching u and u0 at x1 and x2 one obtains the
solution shown in Fig. 30(b) top (Mü ¼ 0). Note that the
square root solution in Eq. (44) [i.e., ðu2Þ00 ¼ 0] can be
obtained from Eq. (107) in the limit A → 0.
Case 2: Mü ≫ 1. Again the solutions are simple in the leaf

and root sections. For 0 < x < x1, using Eq. (104a) with
uð0Þ ¼ 0, we find u ¼ A1 sinhðx

ffiffiffiffiffiffiffi
Mü

p Þ and for x2 < x < 1we
get u¼A2sinh½ðx−x2Þ

ffiffiffiffiffiffiffi
Mü

p �þA3cosh½ðx−x2Þ
ffiffiffiffiffiffiffi
Mü

p �þβ=Mü.
To match these solutions correctly in the stem zone
(x1 < x < x2), we have to remember, as discussed earlier,
that the scaling chosen for u is not appropriate for large Mü.
Indeed, from Eq. (86), we should expect u ¼ vðMüÞ−1, where
v is of the order of unity. Inserting this into Eq. (104a) gives

(a)

(b)

FIG. 30. Solutions of the stationary Münch-Horowitz equations
for a single tube with leaf, stem, and root. Adapted from Jensen
et al., 2011.
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v0 ¼ v3

v1
−

1

Mü
v2

v1
v00 ≈

v3

v1
; ð108Þ

where v1 ¼ vðx1Þ. For large Mü and small v00 we neglect the
OðMü−1Þ term and obtain ðv−2Þ0 ¼ −2=v1, so that

vðxÞ ¼ v1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2v1ðx − x1Þ

p ; ð109aÞ

or, returning to the usual scaling,

uðxÞ ¼ u1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Müu1ðx − x1Þ

p ; ð109bÞ

which would diverge when x → x�, where

x� − x1 ¼
1

2Müu1
¼ 1

2v1
. ð110Þ

As long as v1 < 1=2, x� − x1 > 1, and the divergence will not
occur in the physical interval 0 < x < 1. The coefficients A2

and A3 can be found by matching u and u0 at x2, but since we
neglected the highest order term, u00 in Eq. (103), we cannot
ensure continuity of both the u and u0 at x1 without
introducing additional boundary layers. Comparing with
numerics shows that simply matching u while allowing a
small discontinuity of u gives excellent results, as can be seen
by the fits in Fig. 30.
Using these solutions and boundary conditions, we can now

compute the average flow velocity, the quantity which we
optimized in the resistor model of Sec. IV.C.1. As shown in
detail in Jensen et al. (2011), the results are, for small Mü,

u ¼
ffiffiffi
3

p
− 1

2
x1 −

9 − 5
ffiffiffi
3

p

8
x21; for Mü ≪ 1; ð111aÞ

or u ≈ 0.366x1 − 0.042x21, while for large Mü,

u ≈
1

Mü
; for Mü ≫ 1; ð111bÞ

where we for simplicity have used the simplifying assumption
l1 ¼ l3. In the limit l1 ≪ l2 ¼ L, appropriate for a tree, the
low Mü result simplifies to

u ¼
ffiffiffi
3

p
− 1

2
x1; ð112Þ

with the corresponding dimensional value

u ¼
� ffiffiffi

3
p

− 1

2

�
RTc0Lp

a
l1 ¼

� ffiffiffi
3

p
− 1

4

�
x1u0; ð113Þ

where u0 is given by Eq. (81). Aside from the prefactor
ð ffiffiffi

3
p

− 1Þ=2, this result corresponds to the flow predicted by
the simple resistor theory of Sec. IV.C.1 in the case where the
surface resistance R1 in Eq. (49) dominates. The dimensional
result for large Mü is

u ≈
RTc0a2

8ηl2
; ð114Þ

again in accordance with the results of Sec. IV.C.1, when the
bulk resistance R2 in Eq. (47) dominates. With this model, we
can now verify the predictions made there, based on the
coupled resistor model, i.e., the result Eq. (54) for the flow
velocity and Eq. (57) for the optimal tube radius. We have
already seen that the asymptotic behavior agrees [within a
factor ð ffiffiffi

3
p

− 1Þ=2 for the low Mü case]. This behavior is
shown in Fig. 31 together with direct numerical solutions in
the whole interval for varying Münch number. As can be seen
there, the optimal value of a agrees quite well with the simple
estimate obtained by equating the asymptotic curves and in
fact the entire shape of u agrees well with a slightly modified
version of Eq. (54) using l3 ¼ l1, i.e.,

u ¼ 2LpΔp
a2l1

Vl1l2 þ 2ma3
¼ u0

2ml2=l1 þMü
; ð115Þ

where V ¼ 16ηLp [from Eq. (55)], u0 ¼ 2LpΔpl2=a as in

Eq. (81), and m ¼ 2=ð ffiffiffi
3

p
− 1Þ ¼ ffiffiffi

3
p þ 1 ≈ 2.73 instead of

unity. The optimal radius is then

a� ¼ ðm−1Vl1l2Þ1=3 ¼ ½8ð
ffiffiffi
3

p
− 1ÞηLpl1l2�1=3; ð116Þ

in close agreement with the earlier result, Eq. (57).
The factor m which appears in Eq. (115) can be at least

roughly understood within the framework of the resistor
models of Sec. IV.C. It corresponds to replacing the resistance,
Eq. (49), by

FIG. 31. Numerically computed mean velocity ū as a function of
radius a (dots connected by lines) compared to the analytical
results for Mü ≪ 1 [Eq. (113), solid lines] and Mü ≫ 1
[Eq. (114), dashed lines]. These curves clearly show that ū
grows as a2 for small a while it decays as 1=a for large a.
At the intersection between the two lines given by the equation
the transition between the two types of flow occurs and
the velocity is at a maximum. This is shown also by the dotted
curve showing the slightly modified coupled resistor result,
Eq. (115). The plots are made with Lp ¼ 5×10−14 mðPasÞ−11,
l1 ¼ ð0.1; 0.25; 0.50Þ m, l2 ¼ 1 m, RTc0 ¼ 0.54 MPa, and
η ¼ 5 × 10−3 Pa s. Adapted from Jensen et al., 2011.

K. H. Jensen et al.: Sap flow and sugar transport in plants

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035007-41



R1 ¼
m

2πaLpl1
; ð117Þ

i.e., increasing it by a factor ofm. But one has to keep in mind
that the velocity u treated as constant in the resistor model is
not really the average velocity through the loading zone (leaf).
The flux Q that enters Eq. (48) should really be the water
coming in through the outer surface of the tube due to osmosis
and thereby accelerating the flow as Eq. (85a). If the inflow is
roughly constant this means that the flow velocity increases
linearly and thus that the mean value in the loading zone is
roughly half of the total inflow, giving a factor m ¼ 2.

C. Target concentration models

The details of the solutions presented depend on the
particular assumptions about the nature of the loading and
unloading zones. The assumption of constant concentration in
the leaf and linearly decreasing concentration in the root. To
make more specific assumptions would require a more
detailed knowledge of loading and unloading, which as
discussed in Sec. III.B depends strongly on the particular
plant in question and is actually not known in detail, in
particular, because the sugar transport into the phloem cells
carries with it a significant water flow, as we briefly discuss
later (Sec. VI.C). From a more formal point of view, the
asymmetry introduced between the treatment of the source
and the sink also has drawbacks. In our formulation, we so far
concentrated on the sugar transport from leaf to root, since
it is the longest stretch for the plant to overcome. However, a
large part of the sugar transport targets new shoots, fruits, or
immature leaves. The young leaves are particularly interest-
ing, because they will, at some point, switch from sugar sinks
to sugar sources. It would thus be nice to have a model which
treated the sources and the sinks in the same way.
One possibility might be to use a constant concentration in

both ends and then simply let the direction of the sugar flow be
governed by the relative strengths of the concentrations in the
two ends. However, as shown by Jensen, Berg-Sørensen et al.
(2012) this is not possible, since this kind of model will not
allow a local maximum for u, which is necessary since u ¼ 0

in both ends. In this case, the equations would take the form

u00ðxÞ ¼ Müu; for 0 < x < x1; ð118aÞ
u00ðxÞ ¼ c0ðxÞ þMüu; for x1 < x < x2; ð118bÞ

u00ðxÞ ¼ Müu; for x2 < x < x3; ð118cÞ
where in the stem (x1 < x < x2) there is conservation of sugar
uðxÞcðxÞ ¼ const. It is easy to see that the velocity u must be
monotonic in both the leaf and the root sections, since u ¼ 0

in the two ends. Thus the maximum must occur in the stem.
Integrating this equation from xa to xb both in the stem gives
(using sugar conservation)

u0ðxaÞ−u0ðxbÞ¼cðxaÞ−cðxbÞþMü
Z

xb

xa

uðxÞdx

¼cðxaÞ
�
uðxaÞ
uðxbÞ

−1

�
þMü

Z
xb

xa

uðxÞdx: ð119Þ

If there is a maximum point at xm we can choose xa and xb
such that xa < xm < xb and uðxaÞ ¼ uðxbÞ, which, inserted
into Eq. (119), gives

u0ðxaÞ − u0ðxbÞ ¼ Mü
Z

xb

xa

uðxÞdx: ð120Þ

For a positive flow, the right-hand side is positive, but around
the maximum, the left-hand side is negative. Thus there can be
no maximum.
Another possibility that retains the symmetry is to use a

target concentration model, as done, e.g., by Lacointe and
Minchin (2008), where the local loading strength depends
linearly on the difference between the local concentration and
its target value. We thus choose to write the loading function
appearing in Eq. (103) as ϒi ¼ αiðσ1 − ciÞ, whereby these
equations in the loading and unloading zones become

d2u
dx2

−Müu ¼ dc
dx

; ð121aÞ

dðucÞ
dx

¼ αiðσi − cÞ; ð121bÞ

where σ1 is the target value of the concentration in the leaf and
σ3 is the value for the root. No σ2 is defined since the stem
does not load or unload sugar in this model. Similarly, α1 is
the rate constant for the sugar loading and α3 the one for the
unloading. In the loading zone, we have uð0Þ ¼ 0 and in the
unloading zone we have uðx3Þ ¼ 0, and to make close
symmetry between those two zones, we can change the
variables in the unloading zone as u → −u and x → x3 − x
which leaves the equations unchanged, but gives the boundary
condition the form uð0Þ ¼ 0 also in the unloading zone.
Jensen, Berg-Sørensen et al. (2012) solved these equations

in the limits of Mü as very small and very large. For Mü ≪ 1

the solution is implicit, of the form

x

				 uðxÞx
− vþ

				ν
				 uðxÞx

− v−

				1−ν ¼ K; ð122aÞ

where

ν ¼ νþ
νþ − ν−

; ð122bÞ

ν� ¼ −1
2
½K1 þ α�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − K1Þ2 þ 4ασ

q
�; ð122cÞ

where the constant K1 ¼ p=RTc0 is the pressure in the tube,
which is constant for Mü → 0. This can also be expressed as

νþ ¼ −½cð0Þ þ α�; ð123aÞ

ν− ¼ u0ð0Þ. ð123bÞ

From the signs of u0 (positive in the loading zone and negative
in the unloading zone) one can infer that Eq. (122a)
degenerates to a linear solution u ¼ A1x in the loading zone
(since both νþ and ν− are negative), whereas it cannot in
the unloading zone. Correspondingly, the concentration
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c¼ u0ðxÞþK1 becomes constant in the loading zone, but
not in the unloading zone in agreement with the previous
discussion.
For Mü ≫ 1 one finds, again in the loading and unloading

zones, that the concentrations become almost constant, equal
to their target values. We know from the earlier arguments that
they cannot be absolutely constant, but the variation is
concentrated in narrow boundary layers, in particular, at the
entrance of the unloading zone x≳ x2. Thus Eq. (121a)
becomes

αðσ − cÞ ¼ dðcuÞ
dx

≈ c
du
dx

; ð124Þ

whereby

dc
dx

≈ −
σ

α

d2u
dx2

; ð125Þ

and Eq. (121a) becomes

�
1þ σi

αi

�
d2u
dx2

¼ Müu; ð126Þ

with the solution [given uð0Þ ¼ 0]

uðxÞ ¼ B sinh x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Müð1þ σ=αÞ−1

q
: ð127Þ

This is actually appropriate only in the loading zone. In the
unloading zone, a boundary layer forms near the entrance,
since the velocity has its maximum there, as seen in Fig. 32(c).
The large Mü solutions all have order 1=Mü as expected and
combining the results for large and small Mü one finds an
interpolation formula for the average flow velocity of the form
Eq. (115), in this case with m ¼ 2=ð ffiffiffi

5
p

− 1Þ ≈ 1.62, con-
firming the basic ideas of the resistor model of Sec. IV.C.

(a) (b)

(c) (d)

FIG. 32. Solutions of the stationary Münch-Horowitz equations for a single one-dimensional tree with target concentrations. Numerical
solutions (thick gray lines) and analytical solutions for Mü ¼ 0 (thin dashed lines) and Mü ≫ 1 (thin solid lines) are shown for target
concentrations σ1 ¼ 1 and σ3 ¼ 0.1. (a), (c) α1 ¼ α3 ¼ 0.1 and (b), (d) α1 ¼ α3 ¼ 10. For the numerics it is essential to use an upwind
technique, as explained above. From Jensen, Berg-Sørensen et al., 2012.
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D. Concentration boundary layers

The analysis of osmotic flows presented in Sec. V assumed
perfect radial mixing of the solutes, thus presuming that the
sugar concentration c does not vary over the cross section of
the channel. From the no-solute-flux boundary condition at
the membrane interface [Eq. (74c)]

D
∂c
∂r

				
a;x

¼ cða; xÞvrða; xÞ; ð128Þ

however, it is apparent that such an assumption leads to an
inconsistent relationship between concentration and velocity
at the membrane interface cða; xÞvrða; xÞ ¼ 0. A finite,
though possibly small, concentration gradient near the mem-
brane interface must therefore be accounted for to make
accurate predictions.
Substantial literature exists on membrane concentration

boundary layer problems, which are of importance in several
other biological and technical fields (Dainty, 1963; Pedley and
Fischbarg, 1978; Pedley, 1980, 1981, 1983; Aldis, 1988a,
1988b; Jensen, Bohr, and Bruus, 2010). In the vicinity of an
arbitrary perfect osmotic membrane, the concentration ca is
lowered compared to the bulk value c0, because sugar is
advected away from the membrane by the influx of water.
This, in turn, results in a lower influx of water than anticipated
under conditions of perfect mixing. In order to explain water
permeabilities in experiments exploring water transport
through the cell walls of algae (Nitella flexilis and Chara
australis), Dainty (1963) suggested that the formation of
boundary layers was responsible for the differences observed
between osmotically driven transport from the extracellular to
the intracellular side versus an assay exploring the opposite
direction of water transport. To determine how the concen-
tration c changes with distance r from the membrane, Dainty
(1963) considered the flux equation [Eq. (128)] in the bulk
liquid and found cðrÞ ¼ c0 exp ½vrðr − δÞ=D�, where δ is the
distance at which the bulk concentration is reached cðδÞ ¼ c0.
Note that the boundary layer thickness δwill generally depend
on both geometry and the flow itself. In the Dainty (1963)
model, the concentration ca at the membrane interface is

ca ¼ c0 exp

�
−
vrδ
D

�
: ð129Þ

Equation (129) suggests that ca ≃ c0 when the radial Péclet
number Per ¼ vrδ=D ≪ 1. While correct, the situation at
hand is further complicated by the interdependence between
concentration and velocity. The normal velocity is approx-
imately proportional to the membrane concentration
vr ≃ LpRTca, which is exact in the limit when the pressure
p is significantly smaller than the osmotic pressure RTca
(Pedley and Fischbarg, 1978). This implies a transcendental
equation for ca:

ca ¼ c0 exp

�
−
LpRTδ

D
ca

�
: ð130Þ

As discussed by Pedley (1983), Dainty’s simple model of a
boundary layer neither allows for the variation of the normal
flow component vr with the distance from the membrane nor

does it account for any type of stirring in the osmolyte
solution. In a series of papers, several possible modes of
stirring were investigated to determine the parameter range for
which the unstirred boundary layer description would still be
useful, but with an effective value of the boundary layer
thickness (Pedley and Fischbarg, 1978; Pedley, 1980, 1981).
If a stagnation point stirring is included, for a large per-
meability and/or a small diffusion constant, the time-
dependent solution of the boundary layer problem indicates
the appearance of damped oscillations in the osmolyte
concentration. The oscillatory solution, however, corresponds
to parameter values quite far from the diffusion coefficient of
the osmolytes of interest in phloem (simple sugars), for typical
permeabilities and typical concentrations in phloem cells. An
important outcome of the detailed modeling of the stirring
motion is the identification of the relevant effective boundary
layer thicknesses δ [Table I in Pedley (1983)].
In plants, however, there is no reason to consider an external

stirring mechanism—the stirring (i.e., advection) is caused by
the bulk flow, which is also driven by the osmosis. In this self-
consistent problem, the entire flow can be treated in the Stokes
approximation (i.e., as a lubrication flow) and there are no
well-defined boundary layers, but one can find an expression
for the lowered membrane concentrations (i.e., the lowered
osmotic pumping) in the form

ca ¼ c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Pe

p
− 1

2Pe
ð131Þ

valid quite generally when the Péclet number is rescaled in a
geometry dependent way (Jensen, Bohr, and Bruus, 2010).
We now return to the discussion of how concentration

boundary layers affect the predictions made by the Münch-
Horwitz theory. The basic situation in a cylindrical pipe is
sketched in Fig. 33. Close to the membrane, the concentration
c0 is lowered compared to the value at the channel center c0,
because sugar is advected away from the membrane by the
influx of water. This, in turn, results in a lower influx of water
since the radial velocity depends on the local concentration
vrðaÞ ¼ LpðRTca − pÞ; see Eq. (74b).
In the following, we restrict ourselves to conditions relevant

to the experiments by Haaning et al. (2013), i.e., steady-state
flow in a cylindrical tube initiated by a syringe pump which
delivers a solution of velocity u� and concentration c� at x ¼ 0
[see Fig. 20(e)]. The governing equations are the Münch-
Horwitz equations (75) and (76) with Mü ¼ 0 and since the
tube is open, the pressure can be neglected as in Eqs. (42),
(43), and (88) giving

∂u
∂x ¼ 2

LpRT

a
cða; xÞ; ð132aÞ

∂hcui
∂x ¼ 0: ð132bÞ

In the absence of boundary layers, these can be solved to yield
the speed profile uðxÞ ¼ u�ð1þ 4LpRTc0x=u�aÞ1=2 with
boundary conditions uð0Þ ¼ u� and cð0Þ ¼ c�. In terms of
the flow amplification factor γ ¼ uðLÞ=u� − 1 (i.e., the ratio
between inlet and outlet flow speeds), this is

K. H. Jensen et al.: Sap flow and sugar transport in plants

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035007-44



γ þ 1 ¼ vout
vin

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

LpRTc0L

vina

s
: ð133Þ

When the local radial Péclet number Per ¼ vrða; xÞa=D ¼
LpRTcaðxÞa=D is small, the difference in concentration
across the tube will be small. In this limit, it reasonable to
assume that the concentration gradient at the membrane is of
the order ðca − c0Þ=a. To solve the averaged advection-
diffusion equation, we approximate the concentration profile
by a parabolic function cðrÞ ¼ c0 þ ðca − c0Þr2=a2. The
boundary conditions Eq. (128) and no flux across the channel
center line (∂c=∂r ¼ 0 at r ¼ 0) sets a relation [similar to
Eq. (131)] between the concentration at the channel center c0
and wall ca:

c0 ¼ ca þ
LpRTa

2D
c2a ¼ ca þ

Per
2

c2a
c�

; ð134Þ

where Per ¼ LpRTc�a=D is the radial Péclet number. With
this parabolic concentration profile, and using the velocity
profile vr ¼ rðr2 − 2a2ÞLpRTca=a3 [Eq. (24b)] for the radial
averaging, hcui, Eqs. (132a) and (132b) can be written in
nondimensional form

�∂U
∂X þ β

�∂U
∂X

�
2
�
U ¼ Γ; ð135aÞ

where X ¼ x=L, U ¼ u=u�, and

Γ ¼ 2
L
a

LpRTc�

u�
ð135bÞ

is the ratio of the largest obtainable purely osmotic flow
velocity 2πaLLpRTc�=πa2 and the inlet velocity u�. The
parameter

β ¼ 1

6

a
L
u�a
D

¼ 1

3

Per
Γ

ð135cÞ

is proportional to the ratio of the radial Péclet number Per and
the maximum flow gain Γ. Equation (135a) can be solved
analytically (Haaning et al., 2013), and experiments show
close agreement with theory (Fig. 34).
In the limit of strong concentration boundary layers, the

concentration profile in the tube is no longer uniform and the
magnitude of the parameter β can exceed unity. In the limit of
β ≫ 1, the solution of Eq. (135a) for the flow rate gain γ is

γ þ 1 ¼
�
3

2

�
Γ
β

�
1=2

þ 1

�
2=3

ð136Þ

¼
�
3

2

�
12LpRTc�L2D

a3ðu�Þ2
�

1=2

þ 1

�
2=3

; ð137Þ

which should be compared with Eq. (133), valid when β ≪ 1.
Equation (136) provides a simple approximation to the
solution to Eq. (135a) for large values of β=Γ, where the
flow rate gain scales as γ ∝ ðΓ=βÞ1=2. For β ≥ 1 and Γ ≥ 1

FIG. 33. Sketch of the solute concentration cðrÞ [solid red curve
and density of dots] in a cylindrical tube of radius a in contact
with a reservoir containing pure solvent (c ¼ 0). The semi-
permeable membrane separating the two solutions is indicated by
the thick dashed line. The concentration difference between the
reservoir and channel drives an osmotic flow of solvent J ∝ ca
across the membrane. This dilutes the solution next to the
membrane, and the concentration of solute in contact with the
membrane ca is therefore lower than the value c0 at the center of
the tube. The concentration profile cðrÞ is set by the relative
magnitude of diffusive and advective fluxes (thick arrows).
At the membrane interface (r ¼ a), there can be no net flux
of solute molecules Js ¼ −D∂rcþ Jca ¼ 0, which determines
the relative magnitude of c0 and ca; see Eq. (134). Adapted from
Haaning et al., 2013.

FIG. 34. Comparison between experimental and theoretical
values of the flow rate gain γ ¼ uout=uin − 1 obtained using
the Haaning et al. (2013) setup [Fig. 20(e)]. Measured values of γ
plotted as a function of the predicted values using Eq. (135a).
Blue squares and circles are measurements with NaCl as the
solute, for two different lengths of the semipermeable membrane
in the setup, whereas red triangles indicate measurements with
sucrose as the solute. Adapted from Haaning et al., 2013.
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Haaning et al. (2013) found that the error in Eq. (136) is
typically less than 10% when compared to Eq. (135a).
In the experiments by Haaning et al. (2013), both β and Γ

were of moderate magnitude and the boundary layer contrib-
utes significantly to the flow (Fig. 34). In plants, however, we
can estimate the parameter β ¼ a2u=ð6LDÞ≃ 3 × 10−6

for a¼10−5m, u¼10−4m=s, L¼1m, and D¼5×10−10m2=s.
This analysis thus confirms the validity of the Münch-Horwitz
equations under conditions relevant to flow in the phloem
since the nonlinear term βðdu=dxÞ2 in Eq. (135a) can be safely
neglected in this limit.

E. Final remarks

In this section we derived the basic equations for osmoti-
cally driven flows in a one-dimensional system resembling a
plant with leaf, stem, and root. These Münch-Horwitz
equations were obtained via the Aldis flow: a simple pipe
flow perturbed (and driven) by osmotic inflow. Compared to
the full hydrodynamic equations, they present an enormous
simplification, but, due to their strong nonlinearity (from the
coupling between velocity and concentration), the subtle
matching at the border between the different segments, and
the treatment of the loading function, they still remain
challenging.
Osmotically driven flow is not a subject covered in present

day textbooks on hydrodynamics, so we presented simple and
conceptually important solutions of both transient and sta-
tionary states, the latter including different types of loading.
The use of constant concentration in the leaf (Sec. V.B) is very
simple, but leads to an asymmetry between source and sink.
The target concentration models (Sec. V.C) are more com-
plicated, but probably also more physical and allow symmetry
between source and sink. They seem to be good candidates for
further work, e.g., including more complicated architectures
and flow reversals, as when a young leaf is coming of age and
turns from a sink to a source. Finally, we described some
of the effects that have been left out in the simple one-
dimensional description, i.e., the boundary layers that form
near the tube walls and lead to a reduction of the osmotic
strength (Sec. V.D). These effects are more important in the
current biomimetic devices than in the real phloem due to the
small sizes and low velocities in the sieve tubes.
The detailed prediction of velocity and concentration

profiles through a tree as presented in Fig. 30 cannot at
present be sensibly compared to any available data. Hopefully,
this will change over the coming years, when we will be
able to expand the theory to more realistic architectures than
the single tube and when measurements of pressures, flow
velocities, and concentrations will be possible with high
resolution in an active phloem. Until then the models should
serve as inspiration and backing for simpler modeling, e.g., in
the style of Sec. IV.C.

VI. WATER TRANSPORT IN PLANTS

A. Experimental results

The experimental study of water transport in plants involves
the measurement of only a few physical properties, of which

the flow rates, and the gradients of pressure and solute
concentrations that are responsible for generating the flows,
are the most important. While the determination of such
properties is trivial for man-made hydraulic systems, the mere
fact that the water in the xylem is under tension, and,
furthermore, that the system of transport is enclosed in both
ends and along its path by living cells, and that the conduits
have thick and optically opaque cell walls, make their direct
determination difficult if not impossible. In general, any direct
pressure measurement in a functional xylem system results in
the formation of embolism and thereby changes both the
pressure gradient and the flow. Thus plant biologists are left
with indirect methods for estimating flow parameters. An
important difference between xylem and phloem transport is
that water movement through the xylem is coupled to an
external driving gradient (evaporation), which means that flow
rates and pressure gradients are not stationary. Flows approach
zero at night and are typically maximal at midday, and
pressure gradients follow the same pattern although they
are also affected by soil conditions. For the characterization
of xylem transport, we focus on maximal flow rates and
minimal xylem pressures as these determine the nature of the
flow regime and the potential for conductivity loss due to
embolization.

1. Xylem flow rates

Historically, flow (volume flux) was determined from rates
of transpiration, rather than actual measurements of flow in the
xylem. Methods range from analysis of gas exchange between
leaves and ambient air conducted at the level of single leaves
using hand-held devices (McDermitt, 1990) up to the scale of
the entire tree canopy using eddy correlation or heat balance
methods (Jarvis and McNaughton, 1986; Hogg et al., 1997).
These methods provide only approximations of real fluxes as
they either disturb the transpiration environment by enclosing
leaves in gas chambers (thus perturbing the energy balance
and boundary layers) or, in the case of fluxes observed on the
canopy level, not of sufficient resolution to determine the
contribution from single plants. Thermal sensors inserted into
stems overcome, to certain degree, these limitations (Granier,
1987; Swanson, 1994; Granier et al., 1996). This approach
uses heat as a tracer to determine the speed of water passing
by the sensor (Čermák, Kučera, and Nadezhdina, 2004).
Limitations relate to problems with calibration, as each plant
has different heat transfer properties (Lundblad, Lagergren,
and Lindroth, 2001). The most direct method for measuring
flow rates relies on changes in weight to determine water loss
from the plant or soil system. However, this is possible only
for small plants growing in containers or in the field where
lysimeters (devices that measure transpiration in the field) can
be used (Liu, Zhang, and Zhang, 2002).
Estimates of volume flow rates through plants or stems

cannot be directly translated to flow velocities. The reason for
this is that xylem conduits make up only a fraction of the cells
within the xylem tissue. In addition, the diameter of xylem
conduits varies, often markedly. Larger diameter conduits will
have the highest flow rates and carry most of the flow, with
smaller diameter conduits hypothesized to play a role in
permitting water to flow around gas-filled conduits
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(Ford et al., 2004). The speed at which water moves through
xylem conduits is estimated to fall within the range of
1–10 m=h, indicative of low-Reynolds-number-flow [see
our Table I (in Sec. II) and Maier and Clinton (2006)].
Novel methods for flow estimation include the use of
magnetic resonance imaging (MRI) with field gradients,
allowing for observation of not only the spatial concentration
of water but also the spatial distribution of velocity fields
(Köckenberger et al., 1997; Windt et al., 2006). This
promising method, however, requires special equipment and
expertise and has so far had only limited application.

2. Xylem pressure

Measuring the pressures in functional xylem is perhaps the
holy grail of plant hydraulics, connected to the long-standing
questions about the reality of negative pressures in plants and
the stability of water under such conditions. This skepticism
has been fueled by the fact that, until recently, the ability to
transport water under large negative pressures has not been
reproduced in the laboratory (Wheeler and Stroock, 2008).
The challenge, of course, is that anything that breaks the
integrity of xylem walls has the potential to form embolism
or changes in pressure distribution (Rockwell, Wheeler, and
Holbrook, 2014; Jansen, Schuldt, and Choat, 2015). Only a
few direct measurements of xylem pressure have been made
successfully, all carried out using a cell pressure probe with
capillary tip manipulated into the xylem conduit. All of these
were made in plants in which the tensions were low, since
the liquid in the capillary tends to form an embolus around
−0.7 MPa, and only in relatively translucent tissue (excluding
woody stems) (Pockman, Sperry, and O’Leary, 1995; Tomos
and Leigh, 1999; Wei et al., 2001; Wegner and Zimmermann,
2002). Thus, most estimates of xylem pressure are based on
determining the water potential of tissues assumed to be in
equilibration with the xylem. Three major techniques are used
(Boyer, 1995): (1) pressure chamber (Scholander et al., 1965),
(2) psychrometers (Boyer and Knipling, 1965), and (3) tensi-
ometers. These methods give accurate estimates of xylem
tensions as shown in their ability to capture the gradient in
gravitational potential in tall trees (Scholander et al., 1965),
when measured at night (no transpiration), or on material in
which xylem tensions have been experimentally generated
using a centrifuge (Holbrook, Burns, and Field, 1995). Under
nondrought conditions, midday (i.e., minimum) xylem pres-
sures usually fall in the range of −0.5 to −2 MPa. However,
during periods of low soil water availability or in arid regions,
xylem pressures can be much lower (Scholander et al., 1965;
Stroock et al., 2014). For example, there are reports of
gymnosperms in Western Australia having xylem pressures
as low as −10 MPa. Equally impressive are mangroves, which
grow in seawater and have xylem pressures in the range of −2
to −5 MPa. Mangroves exclude most of the salt at their roots
and thus must develop substantial xylem tensions in order
to carry out this form of reverse osmosis (Scholander, 1968;
Ball, 1988; Tomlinson, 1994).

3. Cavitation

Xylem sap often experiences pressures well below atmos-
pheric, and the liquid column is prone to fracture by the

formation of bubbles. Critical to our understanding of xylem
transport in plants are the stability limits for xylem—at what
pressures does cavitation occur and spread between conduits?
This problem was discussed recently in some detail by
Stroock et al. (2014): for mildly reduced pressures, the liquid,
which has been in contact with air at 0.1 MPa, becomes
supersaturated with dissolved gases and thermodynamically
unstable with respect to the formation of air bubbles. For
larger reductions of pressure, the liquid also becomes thermo-
dynamically unstable with respect to the formation of vapor
bubbles or boiling. This doubly unstable situation need not be
malignant because both these thermodynamically unstable
states (supersaturation and superheat) can be kinetically stable
(metastable) down to pressures below −100 MPa owing to the
activation energy required to form a gas nucleus in the liquid.
The basic experimental approach has been to determine the

extent to which the xylem becomes gas filled as xylem
pressures are decreased. Xylem pressures can be manipulated
by withholding water from plants or imposed using centrifu-
gation, while the presence of gas-filled or embolized conduits
can be measured hydraulically (i.e., as a reduction in xylem
conductivity) or using imaging such as magnetic resonance
imaging, cryoscanning electron microscopy, or x-ray tomog-
raphy (Brodersen et al., 2013; Cochard et al., 2013). Acoustic
detectors have also been used to listen for ultrasound produced
by cavitation events and have the advantage that they can be
attached to plants of any size (Kikuta and Richter, 2003).
Some experiments suggest a correlation between ultrasound
emission frequency and the fraction of gas-filled conduits
(Jackson and Grace, 1996), although many emissions appear
to occur from other types of events (Tyree and Dixon, 1983).
Ponomarenko et al. (2014) observed cavitation events in a thin
slice of gymnosperm wood embedded in a hydrogel and
matched acoustic emissions to visual observation of emboli
formation in tracheids, providing experimental support for
using acoustic emission as a nondestructive way of monitoring
embolism formation within trees.
Another approach is to determine the pressure needed to

push air between conduits using a glass capillary glued to an
embolized vessel blocked at the other end (Zwieniecki,
Melcher, and Holbrook, 2001; Choat et al., 2004). This is
a direct measurement of the propagation threshold between
two conduits; the challenge is scaling these measurements so
that they are relevant at the level of the xylem network.
Despite the technical limitations of each method (MRI, x ray,
hydraulic resistance measurement, acoustic, or single vessel),
the general picture is that plants can tolerate xylem tensions
that they normally experience in their natural environment,
whether a wet tropical forest or a dry desert. Only extreme
events such as prolonged droughts, changes in transpiration
rates, or mechanical damage to stems result in plants being
pushed to beyond their hydraulic limits, resulting in cavitation
and the formation of air-filled or embolized xylem conduits.
The reversibility of embolism (Fig. 35) leading to the

restoration of a transport function in xylem conduits of trees
is hotly debated (Zwieniecki and Holbrook, 2009; Brodersen
and McElrone, 2013). While there is no doubt that the
production of new xylem conduits can substitute for the ones
lost to embolism, such growth is generally limited to specific
periods of the year in temperate or semidry climates. In some
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plants, restoration of xylem conductivity can be accomplished
by root pressure in which, under conditions of limited transpi-
ration (night), roots can accumulate solutes in xylem in
concentrations exceeding those of the soil (Cochard, Ewers,
and Tyree, 1994; Yang et al., 2012). This results in the
development of positive pressures within the xylem as water
is drawn into conduits via osmosis. Positive pressures result in
gases being pushed into the solution and thus the refilling of
embolized xylem conduits. Root pressure occurs most com-
monly in herbaceous species or in deciduous trees prior to
spring leaf production (Ewers, Cochard, and Tyree, 1997).
Long-lived woody plants often show no evidence of root
pressure, yet their xylem conductivity is robust against variation
in xylem potentials (Sperry et al., 1994). This may mean that
they have the ability to restore conduit transport function even
while retaining actively transpiring leaves. Such a restoration
processwould require the generation of local potential gradients
to drivewater from surrounding living cells into empty conduits

(Zwieniecki and Holbrook, 2009), perhaps in a manner similar
to the generation of root pressure. Evidence of gradient
formation activity, however, shows that adequate gradients
may exist only in plants in which xylem tensions have been
significantly relaxed by rain or fog events, as the highest
recorded osmotic potential in nonfunctional conduits is in the
range of 0.2 MPa (Secchi and Zwieniecki, 2012). Some
evidence for embolism removal activity in nontranspiring
woody plants that remain under low tension (less than
0.4 MPa) comes from recent observations in both x-ray
tomography and MRI; see Fig. 35 (Brodersen et al., 2010;
Zwieniecki, Melcher, and Ahrens, 2013).

B. Conduit optimization

The potential for embolism formation and restoration of
embolized conduits reflect a plant’s biophysical potential for
dealing with environmental extremes. However, xylem con-
duits are usually formed under conditions when any scarcity
of water is within the range tolerated by particular species. In
such situations, plants tend to build transport systems opti-
mized for their environment (West, Brown, and Enquist, 1999;
McCulloh, Sperry, and Adler, 2003; Savage et al., 2010).
Evidence is observed in the xylem of leaves, where tensions
are expected to be the highest and water delivery to leaves is of
crucial importance to allow for stomatal opening. The analysis
of the xylem structure in pine needles, characterized by a
single vein composed of parallel conduits (tracheids), exhibits
a high level of control over the construction of conduits.
Zwieniecki et al. (2006) observed a characteristic conduit-
tapering trend in several different pine species (Fig. 36) and
rationalized this by considering the pressure drop required to
drive a given rate of transpiration from the leaf surface.
Assuming that the evaporation rate q from the needle is
constant, we can calculate the pressure drop Δp for a given
needle length l by integrating the pressure gradient

(b)(a)

(c)

(d)

FIG. 35. Evidence for restoration of transport function in xylem
conduits by removal of gas bubbles. (a) Refilling of embolized
conduits in a grape vine stem visualized by a time series of x-ray
tomography images. Dark areas are gas filled, and droplets of
water are visible on the walls of the embolized conduits. Over
time, gas bubbles disappear and conductivity is restored. Flow is
from bottom to top. (b) 3D reconstruction of the droplets in the
vessels seen in (a) [for details see Brodersen et al. (2010)].
(c) Changes in water content in a maple tree stem visualized by a
time series of magnetic resonance images. Flow is in the normal
direction. (d) 3D reconstruction of gas pocket formation and
subsequent removal as seen in (c) [for details see Zwieniecki,
Melcher, and Ahrens (2013)]. Adapted from Brodersen et al.,
2010, and Zwieniecki, Melcher, and Ahrens, 2013.

FIG. 36. Pine needles are optimized for efficient water transport.
Measured axial distribution of the number of xylem conduits
NðxÞ plotted as a function of position x along the needle. The
base of the needle is located at x ¼ 0, while x ¼ L corresponds to
the tip. Optimum theoretical distribution that minimizes the
pressure drop across the needle is plotted as a reference line
[Eq. (141)]. Adapted from Zwieniecki et al., 2006.
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∂p
∂x ¼ −

ηuðxÞ
kðxÞ ; ð138Þ

along the needle; cf. Eq. (5). Here u is the flow speed,
k ¼ a2=8 is the conductivity, a is the conduit radius, and η is
the viscosity of the xylem sap. Volume conservation dictates
that q, the rate of evaporation per unit length along the needle,
is related to the flow speed u and conductive area A by

∂
∂x ½AðxÞuðxÞ� ¼ −q; ð139Þ

giving a linear variation of AðxÞuðxÞ. Since the flow speed
vanishes at the needle tip [uðlÞ ¼ 0], we find for the pressure
drop Δp

Δp ¼ ηq
Z

l

0

l − x
kðxÞAðxÞ dx: ð140Þ

Experiments reveal that the conduit radius a is independent of
the position x along the needle. This has two important
consequences. First, the conductivity kðxÞ ¼ a2=8 ¼ const is
independent of position. Likewise, the conductive area
AðxÞ ¼ πa2NðxÞ is proportional to the number of channels
NðxÞ at position x. Minimizing the pressure differential
[Eq. (138)] while keeping the total conduit volume V ¼
πa2

R
l
0 NðxÞdx constant leads to the optimum conduit distri-

bution

N�ðxÞ ¼ Nð0Þ
�
1 −

x
l

�
1=2

; ð141Þ

where Nð0Þ is the number of conduits at the needle base
x ¼ 0. The predicted conduit distribution [Eq. (141)] is in
good agreement with experimental data (Fig. 36). The
quantitative advantage of arranging tracheas according to
Eq. (141) can be gauged by computing the pressure drop
Δpunif assuming a uniform distribution of tubes with both
conduit volume V and number NðxÞ ¼ const. This yields
Δp�=Δpunif ¼ 8=9, suggesting that optimally redistributing
tracheas along the length of the needle might lead to a
reduction in pressure drop by about 10% (Zwieniecki et al.,
2006). Similar conduit arrangements have been observed in
needle phloem (Ronellenfitsch et al., 2015).
A similarly high level of precision exists in the distribution

network of leaves that are characterized by reticulate, inter-
connected network of veins delivering water across flat
surfaces. These reticulate vein networks have been considered
from the perspective of the redundancy needed to tolerate a
significant level of damage and still allow for water distribu-
tion across the leaf blade (Katifori, Szollosi, and Magnasco,
2010). However, a recent study demonstrates that the density
and placement of veins within leaves permits the hydration of
the leaf surface such that even the most distal locations of the
leaf blade are adequately and uniformly supplied with water,
while no unnecessary (redundant) veins are built that would
otherwise consume space that could be used for the chloro-
phyll bearing cells (Noblin et al., 2008).

In the case of sparse vein packing, i.e., when the spacing
between veins d is much greater than the leaf thickness δ, we
assume that the total evaporation rate from the leaf Q is the
sum of the contribution from each vein of radius a and length
L (Fig. 37). This contribution can be found by solving the
steady-state diffusion equation inside the leaf [Eq. (11) with
∂tc ¼ v ¼ ϒ ¼ 0]. We approximate each vein as an isolated
line source in an infinite half plane. The solution to the
Laplace equation in cylindrical coordinates with boundary
conditions c ¼ c0 at the vein surface (r ¼ a), and c ¼ c1 at
the leaf surface (r ¼ δ) is

cðrÞ ¼ c0 þ
c1 − c0
logðδ=aÞ logðr=aÞ: ð142Þ

The evaporation rate for a single vein is
−πaLD∂rcjr¼a ¼ LπDðc0 − c1Þ= logðδ=aÞ. The number of
veins N in a section of width W is N ¼ W=d. The total
evaporation rate from N veins is therefore

Q ¼ π

logðδ=aÞ
Dðc0 − c1Þ

d
LW ∼

Dðc0 − c1Þ
d

LW: ð143Þ

Conversely, for high channel density (d ≪ δ) the isoconcen-
tration lines run mainly parallel to the leaf surface and the
solution can be approximated by a linear profile
cðzÞ ¼ c0 þ ðc1 − c0Þz=δ. This gives for the evaporation rate

Q ¼ Dðc0 − c1Þ
δ

LW; ð144Þ

differing from Eq. (143) only by the replacement of d with δ.
Equation (144) represents the largest possible evaporation rate
for the system. We therefore observe that when the channel
spacing approaches the leaf thickness (d≃ δ) the evaporation

FIG. 37. Measured distance between veins d vs distance to
evaporative surface δ for different plant species. The solid line
corresponds to the optimal case d ¼ δ. Adapted from Noblin
et al., 2008.
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from N channels [Eq. (143)] approaches the saturation value
[Eq. (144)] and no gain in evaporation rate can be achieved by
adding more veins. This seemingly simple scaling law is
observed in many plants (Fig. 37) which suggests that design
features oriented toward optimal utilization of veins in
providing water for evaporation are common among leaves
(Noblin et al., 2008). Recent work has demonstrated that only
angiosperms maintain the anatomical optimum across all leaf
thicknesses, while gymnosperms and ferns are limited by their
inability to produce high vein densities (Zwieniecki and
Boyce, 2014).

C. Water flow for the polymer trap phloem loading mechanism

As seen, leaves maintain an extremely delicate balance
between water and sugar translocation to ensure the outflow
and eventual evaporation of water from the xylem cells
simultaneously with the inflow of water and sugar to the
phloem cells (sieve cell-companion cell complex) nearby. As
discussed in Sec. III and shown schematically in Fig. 38, the
sugar which is generated in the chloroplasts of the mesophyll
cells has to pass through the bundle sheath, a layer of tightly
arranged cells around the vascular bundle, which protects the
veins of both xylem and phloem from the air present in the
space between the mesophyll cells and the stomata, before it is
loaded into the sieve elements. Simultaneously, the water
which leaves the xylem under tension is, for the most part,
evaporated from the walls of the mesophyll cells, but a small
part goes into these cells and takes part in the photosynthesis.
Another part goes (perhaps) directly into the nearby phloem, a
few microns away, which is under positive pressure, through
the aquaporins of the plasma membranes. The route taken by

the water and the relation to the sugar transport is still
not well understood—even though it has been discussed
since the time of Münch. Thus Fig. 39 shows how Münch
envisaged the coupled water and sugar transport in what is
now called a passive loader (see Sec. III.B). As one can see,
the single headed arrows (water) and the double headed
ones (sugars) essentially have to move in opposite direc-
tions. Although the flow of water from xylem to palisade is
small relative to transpiration, this seems rather counter-
productive.
Recently, a study of active apoplasmic loading was carried

out (Sze, Liu, and Dutta, 2013; Sze, Dutta, and Liu, 2014),
including six states for which one can relate the chemical
reaction rates to the sugar and water transport through the
phloem. In the case of passive loading and of active sym-
plasmic loading—the so-called polymer trap described in
Sec. III.B.2—the sugar passes through plasmodesmata appa-
rently without help of transport proteins, which should make
the problem more straightforward to analyze. The polymer
trap case is particularly interesting, since it relies on plasmo-
desmata that are extremely fine-tuned to allow the passage of
the small sugars produced in the mesophyll (primarily the
disaccharide sucrose), but not the heavier ones (the trisac-
charide raffinose and the tetrasaccharide stachyose). As in
active apoplasmic loading, it facilitates a build-up of a large
sugar concentration in the sieve element-companion cell
complex which is much larger than that in the mesophyll,

FIG. 38. Schematic representation of a cross section of a leaf.
The bundle sheath (dark green) forms a protective layer around
the vasculature: xylem treachery elements (blue) and phloem
sieve elements (small circles) with their neighboring companion
cells (orange cells). The water from the xylem passes out through
the bundle sheath and presumably along the cell walls of the
mesophyll (light green) and most of it evaporates through the
stomata (the “holes” in the lower leaf surface). A small part enters
the mesophyll where it takes part in the photosynthesis and the
subsequent transport of sugars from the mesophyll back in
through the bundle sheath, through the companion cells into
the sieve elements. Courtesy of Hanna Rademaker.

FIG. 39. Reproduction of Münch’s Fig. 22, which corresponds
to the passive loading mode in woody angiosperms [Fig. 12(c)].
Assimilates (sugars) in a photosynthetically active leaf (double-
feathered arrows) flow from palisade parenchyma (Pal) through
plasmodesmata via spongy parenchyma (Schw), bundle sheath
(Gsch), companion cell (Gel) finally into a sieve tube (S). Water
(simple arrows) moves the opposite way from the xylem (H)
across cell walls into the bundle sheath and continues up to the
palisade parenchyma where it evaporates. A smaller part (shown
by thin arrows) enters the phloem directly. From Münch, 1930,
p. 153.

K. H. Jensen et al.: Sap flow and sugar transport in plants

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035007-50



allowing the plant to have a highly concentrated phloem
without an equally high concentration in the leaves, which
would make the latter very attractive for unwanted foragers.
The feasibility of this loading strategy was recently analyzed
by Dölger et al. (2014) based on the best available data from
the melon Cucumis melo (Schmitz, Cuypers, and Moll, 1987;
Haritatos, Keller, and Turgeon, 1996; Volk, Turgeon, and
Beebe, 1996); see also the recent review by Schulz (2014).
The geometry of the problem is sketched in Fig. 40, where we
show the bundle sheath cell to the left, a companion cell in the
middle, and a sieve element to the right. The sugar comes into
the bundle sheath in the form of sucrose from the mesophyll
(not shown) and after passage to the companion cell through
the plamodesmata marked “in,” part of the sucrose is trans-
formed to heavier sugars, raffinose and stachyose, and the
mixture passes on through the larger “out” plasmodesmata
into the sieve element. The hydrodynamic radius of raffinose
is only around 25% larger than that of sucrose (Liesche and
Schulz, 2013), so either the filtering properties of the in
plamodesmata are extremely well tuned or the water is
creating such large bulk flow that the sugars cannot move
back through them. The latter does not seem possible, at least
with the data available for Cucumis melo: The total sugar
concentration in the companion cell c2 is much larger (more
than a factor of 2) than that of the bundle sheath c1, mostly due
to the heavy sugars, and this strongly limits the water intake. If
no additional water passes directly through the membrane of
the companion cell, water conservation dictates that the same
water flux must pass the in and the out plasmodesmata. Sugar
must be conserved as well, and since no sugar passes the
membrane the sugar that passes the in and the out plasmo-
desmata must be identical. The sugar concentrations (c2 and
c3) in the companion cell are, however, much larger than the
one (c1) in the bundle sheath (roughly double), and the pores
are larger in the out plasmodesmata, so obviously advective
sugar transport cannot account for the sugar transport alone,
and diffusion has to play a large role, at least through the in
interface.
To understand the filtering properties of the in membrane,

one has to estimate the transport of water and of sugar
through its narrow plasmodesmata. Despite detailed electron
microscopy (Fisher and Gifford, 1986; Volk, Turgeon, and
Beebe, 1996) the unblocked space available for flow in these
“channels” is not known with certainty, but it was sug-
gested by Waigmann et al. (1997) to model them as
circular slits (i.e., annular regions) with half-width of around
1 nm, radius rPD ≈ 25 nm, and length d ≈ 0.1 μm. In the limit
of low Péclet number Pe ¼ uL=D for a channel of length L,
flow velocity u, and diffusion coefficient D, see Sec. II.B, the
flow is diffusion dominated and the variation of the solute
concentration through the plasmodesmata is approximately
linear. In this case the appropriate framework for describing
the coupled sugar-water transport is the Kedem-Katchalsky
equations given in Eqs. (21a) and (21b). Expressing flux
densities of water Jw and sugar Js in terms of the two driving
forces, pressure difference (Δp) and concentration difference
(Δc) across the membrane, one finds

Jw ¼ Lp½ΔΨþWΔΠ�; ð145aÞ

Js ¼ WJwci þ
1

d
DhΔc; ð145bÞ

where Lp is the permeability, Dh is the hindered diffusion
coefficient, and W is the advective hindrance factor. W
expresses how leaky the membrane is, i.e., how easily the
solute can pass it. W ¼ 0 (or σ ¼ 1) allows no solute and the
osmotic strength is the full osmotic pressure Π ¼ RTc. In
the opposite limit W ¼ 1 the sugar travels freely through the
membrane and is advected with the speed of the water flow.
In Dölger et al. (2014), these equations were written down

for the coupled fluxes of water and sugar through each of the
interfaces shown in Fig. 40: bundle sheath and companion cell
(marked in) and companion cell and sieve element (marked
out). They took the concentration ci as the one on the upwind
side, which is being advected through the membrane of width
d. Across the in membrane, these are the sucrose molecules,
and in addition there will be an osmotic term RTco ¼ Πo with
W ¼ 0 on the right-hand side (rhs) of Eq. (145a), from the
oligosacchrides (raffinose and stachyose) that cannot get back
through the narrow plasmodesmata. Note that the boundary
conditions and thus the flows are different from the classic
osmotic flows in a closed system. Here one assumes a steady
state with the flow of both water and sugar going to the right.
This implies, of course that both water and sugar are provided
to the bundle sheath from the mesophyll outside (to the left in
Fig. 40), although the mesophyll/bundle sheath interface is not
explicitly taken into account.

FIG. 40. The polymer trap model with diffusion and bulk flow.
The bundle sheath cell (BSC) is connected to the companion cell
(CC) by narrow plasmodesmata, which prevent the oligomers
from diffusing back into the bundle sheath, through the cell
interface called “in.” Similarly, the companion cell is connected
to the sieve element (SE) through wider plasmodesmata through
the “out” interface. The water flow rates Jw through the cell
interfaces are marked with solid (blue) arrows, the sugar flow
rates Js as dashed (red) arrows. These flows depend on the
pressures p as well as on sucrose and oligomer concentrations ci
inside and outside the cells on the loading pathway. The semi-
permeable cell interfaces are characterized by a permeability Lp,
a bulk hindrance factor W, and an effective diffusion coefficient
D depending on the structure, density, and size of the plamsmo-
desmata connecting them. Adapted from Dölger et al., 2014.
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In addition to these transport equations, sugar and water
must be conserved, and, as mentioned, if no additional water is
taken up, the fluxes Jw through each of the interfaces must be
inverse proportional to their areas. For the sugar, one has to be
a bit more careful, since sugar transport measured in molar
concentration × volumetric flow rate is not conserved, since
molecular weights of the oligosacchrides are larger than that
of sucrose.
Dölger et al. (2014) computed the parameters for the

Kedem-Katchalsky equations for both of the membranes, in
and out. The transport coefficients for a membrane with
narrow pores of density nPD, where d ≫ h, can be found
in analogy with those estimated earlier in, e.g., Sec. IV.C.1.
Thus the membrane permeability is

Lp ≈ nPD
4πrPDh3

3ηcytd
; ð146Þ

where ηcyt is the viscosity of the cytosol. Similarly, the
diffusion coefficient can be found from

Dh ≈ 4πrPDhnPDHDcyt; ð147Þ
where Dcyt is the diffusion coefficient of the molecule in
question in the cytosol andH ¼ HðλÞ is a hindrance factor for
diffusion of a spherical particle in a narrow channel as a
function of the “aspect ratio” λ ¼ rsolute=h, the ratio between
the molecular radius and the channel half-width. The advec-
tive and diffusive hindrance factors WðλÞ and HðλÞ are given
as series expansions in Dechadilok and Deen (2006) and
shown in Fig. 41. To be able to block out raffinose, the channel
half-width must be very close to the radius of the raffinose
molecule, i.e., h ≤ 5.2 Å and to estimate the passage of
sucrose molecules of radius around 4.2 Å we have to use
these functions for λ as large as 0.8 which is at the limit of their
validity (Dechadilok and Deen, 2006), even more so since
these molecules are not spherical, and since, for such small
particles—only about 3 times larger than the water molecules
themselves—hydrodynamics is questionable. If, despite all

these caveats, we do use these values, we find that even with
such small pores, one can, just by pure diffusion, get enough
sucrose through the membrane to account for the observed
transport rates. But, most likely, a substantial amount of water
will follow with the sugar into the companion cell and on to
the sieve element. If not, the companion cell would have to
build up a counterpressure, which will then also make it
difficult to take up water into the sieve element-companion
cell complex directly from the xylem through the plasma
membrane. Lowering the pressure in the companion cell and
the sieve cell will thus have two advantages: it will allow an
enhanced sugar transport, aided by the “bulk” water flow, and
it will transmit water directly into the phloem with the sugar
with no need for additional water uptake across the higher-
resistance membranes. In this way, the simplistic view of the
Münch mechanism, where water is osmotically transported
into the phloem from the nearby xylem—as expressed by the
bent arrows in Fig. 39 from (H) to (Gel) and (S)—is modified,
at least for this kind of loading.
In the concrete example of Cucumis melo, we find that the

water and sugar (sucrose) flows through the plasmodesmata in
the in interface, i.e., from the bundle sheath to the companion
cells, are related as Jinw ≈ 0.3c1Jins —as compared to Jinw ≈ c1Jins
for purely advective transport. So there the sugar transport is
dominated by diffusions, but with a non-negligible water flow.
For the out interface, this would very likely be the other way
around, such that sugar translocation into the sieve elements
would be carried predominantly by bulk water flow through
the plasmodesmata. In fact it was conjectured by Dölger et al.
(2014) that the sugar and water fluxes across this interface are
matched to the sugar concentration in the phloem (i.e., the
sieve element) such that Joutw ¼ c3Jouts , which implies that
many elements such as the one shown in Fig. 40 could emerge
into the same phloem tube without diluting or upconcentrating
the sap. Because of the (small) difference between the
concentrations c2 and c3, there would still be some diffusive
contribution to Joutw , but as mentioned there would be no need
for direct water transport between the xylem and the phloem.
As noted previously, our calculations were based on low

Péclet numbers for the flows through the membranes. A
characteristic value of water flux is Jw ¼ 2 × 10−16 m3 s−1

through the BSC-CC (companion cell) interface area
A ≈ 10−9 m2, i.e., a velocity u ≈ 2 × 10−5 m=s, which should
be modified with the hindrance factor Win ≈ 0.33. With the
length d ≈ 10−7 m of the channel and an effective diffusion
coefficient for sucrose Dh≈4.7×10−14m2s−1 from Eq. (147),
the Péclet number for the sucrose flow through the bundle
sheath cell–companion cell interface (the in interface) is

Pe ¼ dWu
Dh

≈ 0.14; ð148Þ

which validates the approach taken.
It remains to be seen whether the lack of direct water

transport from xylem to phloem is a more general phenome-
non, valid also for other types of loading. In passive loaders,
which include most trees, this might very likely be so, since
the water motion might aid the sugar translocation and, e.g.,
reduce the necessary concentration gradients. For active

FIG. 41. Diffusive and convective hindrance factors H (dashed,
red) and W (solid, blue) in circular slit pores as a function of the
relative solute size λ. Both approximations given by Dechadilok
and Deen (2006) decrease smoothly from 1 to 0 for an increasing
solute size, where a hindrance factor of zero corresponds to total
blockage of the respective molecule. Above λ ¼ 0.8 the curves
should be regarded as extrapolations. Adapted from Dölger
et al., 2014.
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apoplasmic loaders, the situation is less clear since the
transport does not take place throughout plasmodesmata,
but directly through the membrane via aquaporins and sugar
transporting proteins as described in Sec. III.B.1.

D. Final remarks

In this section we described the water transport in plants,
primarily the one taking place in the xylem, closely linked to
the xylem physiology described in Sec. III.C. The description
has been somewhat less detailed and mathematical than that of
the sugar transport covered in the two prior sections. This is a
deliberate choice since, as mentioned in the Introduction, most
recent reviews have concentrated on precisely the xylem,
where the production of negative pressures and the flow in
metastable states has created a lot of attention.
In Sec. VI.A, we assessed the experimental situation for the

water transport through the xylem. We discussed the exper-
imental methodology and the available data for flow rates,
pressures, and the occurrences of cavitation, which is the main
problem for systems running at negative pressures. In
Secs. VI.B and VI.C we presented a theoretical discussion
of aspects of water flow in the leaves. We described how
important geometrical aspects of the venation structure can be
understood by optimization, either minimizing pressure drops
or maximizing evaporation. The methods used there are close
to the ones used in Sec. IV.C. Remaining within the leaves, we
concluded by giving an introduction to recent progress in the
understanding of the coupled water and sugar transport in the
prephloem, responsible for loading sugars into the phloem.
All of the areas covered here are actively pursued in current
research and we describe some important open questions in
the next section.

VII. CONCLUSIONS AND OPEN QUESTIONS

In this paper we reviewed the state of our physical under-
standing of the basic processes that govern translocation of
sap in plants. In the first part of the review, we introduced the
basic tools and background needed for the second part: the
physics of fluid translocation at low Reynolds numbers and
the biology of the vascular system of plants. In the description
of the vascular system, we stressed the structural properties of
the vasculature (sieve elements, vessels, and tracheids) as well
as their connections (plasma membranes, plasmodesmata,
anastomoses, and pit pores), and the special role played by
the leaves in allowing transpiration as well as sugar loading
and accommodating huge pressure gradients. We also pointed
out that important details are missing in our understanding of
the vascular system as a network.
In the second part, we reviewed the current quantitative

understanding of the processes that take place in the vascular
conduits—Secs. IV and V on the flows in the phloem and
Sec. VI on those in the xylem. We started in Sec. IV by
reviewing the current experimental knowledge about phloem
flow: velocities, pressures, and sugar concentrations. We
showed that they are at least in rough accordance with the
Münch mechanism, and we presented evidence that gymno-
sperms and angiosperms, even though they seem to utilize the
same basic principles, have significantly different sap

velocities. We gave examples of biomimetic devices that
run by osmotic pumping and elucidate basic features of the
Münch mechanism. So far these devices are very simple, but
we believe that a development of devices with more complex
architecture and couplings is a very fruitful challenge. We
concluded Sec. IV by a simple hydraulic description of sugar
flows in terms of lumped resistors. In this way were were able
to predict phloem speeds, sizes of the sieve tubes, leaf sizes,
and sugar concentrations in reasonable accordance with the
available field data.
In Sec. V we then presented the more detailed hydrody-

namical description of phloem translocation à la Münch, i.e.,
osmotically driven flows in long tubes, from which precise
velocity and concentration profiles can be computed through-
out even a large tree. These models confirmed the simple
predictions made by the resistor theory, but also predicted
strong velocity gradients as can be understood from their
proximity to variants of the Burger’s equation. Of course,
these more detailed models also require more detailed
assumptions, e.g., in terms of loading mechanisms, but they
do give a general framework which should be useful as better
and more detailed measurements of the flows become avail-
able. Here important challenges are, e.g., to include the
interaction with the xylem in a way simple enough to make
clear predictions. This will require a better understanding of
the processes taking place in the leaves, where the xylem and
phloem conduits are separated only by a few microns.
Finally, Sec. VI reviewed our understanding of the water

transport though the xylem. The main challenge for the
cohesion-tension theory is to explain how plants, in particular,
trees, transporting water at negative pressures can avoid
cavitation or embolisms that stop the flow and dry out the
plants. Here we stressed the progress in the understanding of,
e.g., pit pores and the refilling of embolized vessels which
have added substantial credibility to this theory. Of similar
importance is the vein architecture, and we gave examples of
how important aspects of this architecture can be understood
on the basis of optimization. Finally, we combined water and
sugar flow and gave a quantitative description of the water
flow in the prephloem of active symplasmic loaders.
Our understanding of sap flow in plants has progressed

immensely over the last century, as have many other branches
of biology. As emphasized, many predictions made from
theories describing the two processes responsible for water
and sugar flow in plants were confirmed. The field has
developed in large part due to advances in experimental
techniques. We have seen recent adaptions of x-ray computed
tomography (Brodersen et al., 2010), nuclear magnetic
resonance velocimetry (Windt et al., 2006), and confocal
laser microscopy (Schulz, 1992; Knoblauch and Bel, 1998;
Froelich et al., 2011; Liesche and Schulz, 2012) to biophysical
plant research that hold the promise for further progress.
Simultaneously, the development and application of biophysi-
cal models and of synthetic, biomimetic systems, which have
elucidated many of the mechanisms that drive and regulate
sugar and water transport in plants, have originated through
collaborations between researchers in biology, physics,
chemistry, engineering, informatics, and many other fields.
We believe that such interdisciplinary alliances hold the key
to further progress in this field. We hope soon to see
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biomimetic plant models that can simulate coupled flows in
the soil-plant-atmosphere continuum, transport between cells
in the prevascular pathway, and mixing within individual cells
as well as improvements of techniques to visualize and
quantify vascular flows.
Many questions remain to be answered. The unifying

mechanism of phloem transport is the Münch mechanism,
an osmotically generated pressure flow originating in the
leaves and established by sugar accumulation in the phloem
vein ends. This is undoubtedly an important driving force for
phloem sap, but a conclusive test of the Münch-pressure-flow
hypothesis for long-distance translocation requires measure-
ment of differences in pressure and concentration between
sink and source tissues in the parallel phloem and xylem
conduits throughout a tree. Also, basic aspects of the transport
network architecture, which forms the basis for modeling
approaches, remain unexplored. For example, it is not clear
whether the sieve tubes that start in the leaf minor veins
continue as separate pathways up to the petiole, or whether the
transport architecture is reorganized at specific junctions. In
needles, almost one-dimensional leaves, the situation is some-
what simpler, and here one might be able to arrive at a more
complete picture (Ronellenfitsch et al., 2015).
Another open question concerns the influence of sieve

element content on flow. The membrane material abundant
in the sieve elements of gymnosperms [i.e., the endoplasmic
reticulum covering the sieve areas and passing the sieve pores
(Schulz, 1992) shown in Fig. 11(d)] should lead to increased
resistance, but their effect cannot be seen in transport speed
measurements. They have also been discussed in relation
wound response and of pressure regulation and their content
of aquaporins and sugar transporters should be investigated.
Similarly, it remains uncertain how the highly abundant protein
complexes in angiosperm sieve elements influence flow.
A full description of the Münch mechanism requires a

more complete understanding of water flow in the leaves.
Understanding the sugar transport involved in phloem loading
which powers the Münch pump requires a detailed quantifi-
cation of intercellular transport of sugar and water all the way
from the mesophyll to the phloem sieve elements. After
leaving the xylem, water molecules can move apoplasmically
or symplastically toward the stomata and the mesophyll.
Which path it takes is important for the sugar concentration
and pressure driving the phloem and will be different for the
different loading types described in Sec. III.B. At present it
seems particularly challenging to understand the passive
phloem loading, since intracellular water movement from
vein to mesophyll would tend to cancel the shallow concen-
tration gradient that is supposed to drive diffusion of sugars
from mesophyll to the phloem.
For the xylem, the cohesion-tension theory seems to be

solid, in the sense that the leaves provide the tension needed
for the flow, but the detailed understanding of the origins of
this tension and water transport in a metastable state remains
an important challenge. For the water transport, the mecha-
nism of cavitation due to xylem tension is of major impor-
tance. Currently this is thought to result primarily from
meniscal failure at the pit membranes (air seeding), but
perhaps heterogeneous nucleation might play an important
role (Lintunen, Hölttä, and Kulmala, 2013). Further, there

might be structural and chemical properties of pit membranes
preventing gas penetration (Jansen, Choat, and Pletsers, 2009;
Herbette and Cochard, 2010) and it is important to elucidate
and quantify the basic underlying trade-offs between safety
(from cavitation) and efficiency (for water transport). Such
trade-offs could exist at the level of individual pits, whole
conduits, and entire networks and are thought to underlie the
diversity in xylem structure and function across plant species
and lineages (Tyree and Zimmermann, 2002; Lens et al.,
2011, 2013).
It is still unknown whether cavitation or embolization is a

reversible phenomenon. Can embolized conduits be returned
to a functional state or must they be replaced (Zwieniecki and
Holbrook, 2009)? If they can be “repaired,” what is the
mechanism, how rapidly can this occur (time scale), and with
what physiological constraints (e.g., xylem tensions)? Further,
we ask how plants control the development of xylem tensions
so as to avoid cavitation. Here stomata are clearly the key
players, although buffering of xylem tensions by water drawn
from nearby tissues may also play an important role
(Holbrook, Burns, and Field, 1995; Meinzer et al., 2009).
The central question is what information, both physical and
biochemical, allows stomata to respond to current supply and
demand so as to prevent xylem tensions from reaching
dangerous levels (Tyree and Sperry, 1989)?
In our view it remains an open question whether the tensions

in the leaves are actually, aswritten in the textbooks, capillary in
origin. We did, however, provide some new evidence (shown in
Fig. 17) that changes in capillarity can strongly influence the
ability of theminor veins in a leaf to transport water. In any case,
it is believed that the cell walls of the mesophyll play a major
role in these processes and thus that the key to the resolution of
these questions lies in the detailed understanding of the structure
of plant cell walls. The swelling of cell walls is also the basis for
plant growth, and in this context the specific roles and detailed
dynamics of two of the most important polysaccharides, pectin
and hemicellulose, have been under intense scrutiny [see, e.g.,
Peaucelle et al. (2011) and Cosgrove (2014)]. The implications
for water transport are not clear at present, but the interplay
between growth and water flow seems an important issue for
future studies.
So, from the point of view of a physicist, plants remain full

of mysteries.

LIST OF SYMBOLS AND ABBREVIATIONS

a Conduit radius, pore radius, m
a� Optimal conduit radius, m
A Area, m2

c Concentration, M
d Vein spacing, pore length, m
D Diffusion coefficient, m2 s−1

D Dimensionless diffusivity, 1
e Partial pressure of water vapor in air, Pa
e0 Saturated vapor pressure in air, Pa
E Energy flux, Jm−2 s−1

E Young’s modulus, Pa
g Acceleration of gravity, m s−2

J Current density or flux, Mm s−1
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k Darcy’s constant, m2

l Length, m
l2; h Stem length, m
lp Distance between pores (in a sieve plate), m
L Characteristic width of the conduit, vein

length, m
Lp Membrane permeability, m Pa−1 s−1

lp Permeability for single aquaporin, m3 s−1

mi Mass of liquid molecule i, kg
Mü Münch number, 1
N Number of conduits, 1
p Pressure, Pa
Pé Péclet number, 1
Q Volumetric flow rate, m3 s−1

q Volumetric flow rate per unit length, m2 s−1

q Volumetric flux per surface area, m s−1

r Radial coordinate, m
R Hydraulic resistance, gas constant, Pa sm−3

Re Reynolds number, 1
Sc Schmidt number, 1
tdiff Diffusion time, s
tadv Advection time, s
T Temperature, K
u Axial flow speed, m s−1

u� Axial flow speed at optimal conditions according
to hydraulic resistor theory, m s−1

U Characteristic flow speed, m s−1

vi Velocity of a liquid molecule i, m s−1

vðr; tÞ Velocity field in liquid, at position r at time t, i.e.,
momentum per mass in the volume, m s−1

v Flow speed averaged over the cross section, m s−1

vx, vy, vz Velocity along the Cartesian coordinates, m s−1

V Characteristic length scale, m
ΔV Volume of liquid particle region, m3

Vw Molar volume of water, m3

W Leaf section width, m
W Advective hindrance factor, 1
x, y, z Cartesian coordinates, m
γ Flow amplification factor, 1
γ Surface tension, Jm−2

δ Leaf thickness, 1
η Viscosity, Pa s
ν Kinematic viscosity, m2 s−1

ρ Density, kgm−3

ρcw Density of the cell wall material, kgm−3

τ Nondimensional time, 1
μ Chemical potential, J
μ0 Reference chemical potential of water, J
σ Reflection coefficient, 1
σ Compressive strength, Pa
ΩðrÞ Liquid particle region at r
ϕ Covering fraction of pores, 1
Π Osmotic pressure, Pa
Ψ Water potential, Pa
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