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Continuum modeling of hydrodynamic particle–
particle interactions in microfluidic high-
concentration suspensions

Mikkel W. H. Ley and Henrik Bruus*

A continuum model is established for numerical studies of hydrodynamic particle–particle interactions in

microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic chan-

nel and influenced by an external force, is described by a continuous particle-concentration field coupled

to the continuity and Navier–Stokes equation for the solution. The hydrodynamic interactions are

accounted for through the concentration dependence of the suspension viscosity, of the single-particle

mobility, and of the momentum transfer from the particles to the suspension. The model is applied on a

magnetophoretic and an acoustophoretic system, respectively, and based on the results, we illustrate three

main points: (1) for relative particle-to-fluid volume fractions greater than 0.01, the hydrodynamic interac-

tion effects become important through a decreased particle mobility and an increased suspension viscosity.

(2) At these high particle concentrations, particle-induced flow rolls occur, which can lead to significant

deviations of the advective particle transport relative to that of dilute suspensions. (3) Which interaction

mechanism that dominates, depends on the specific flow geometry and the specific external force acting

on the particles.

1 Introduction

The ability to sort and manipulate biological particles
suspended in bio-fluids is a key element in contemporary lab-
on-a-chip technology.1–7 Such suspensions often contain bio-
particles in concentrations so high that the particle–particle
interactions change the flow behavior significantly compared
to that of dilute suspensions. The main goal of this paper is
to present a continuum model of hydrodynamic interaction
effects in particle transport of high-concentration suspensions
moving through microchannels in the presence of external
forces.

One important example of high-concentration suspensions
is full blood in blood vessels with diameters in the cm to
sub-millimeter range or in artificial microfluidic channels.
State-of-the-art calculations of the detailed hydrodynamics of
blood involve direct numerical simulations (DNS).8–11 DNS
models can simultaneously resolve the deformation dynamics
of the elastic cell membranes of up to several thousand red
blood cells (RBCs) as well as the inter-cell hydrodynamics of
the fluid plasma, all in full 3D.9 However, such calculations
require a steep price in computational efforts, as large com-
puter clusters running thousands of CPUs in parallel may be

involved,9 and the computations may take days.8 The compu-
tational cost may be reduced significantly by continuum
modeling. Lei et al.12 investigated the limit of small ratios
a/H of the particle radius a and the container size H. They
found that, to a good approximation, continuum descriptions
are valid for a/H ≲ 0.02. This is used in the computationally
less demanding approach called mixture theory, or theory of
interacting continua, where blood flow is modeled as two
superimposed continua, representing the plasma and
RBCs.13,14 In a recent study, Kim et al.14 used the method to
simulate blood flow in a microchannel, and the results com-
pared favorably to experiments. However, it is debated how
to correctly calculate the coupling between the two phases, as
well as formulate the stress tensor for the solid phase RBCs.
This is called the ‘closure problem’ of mixture theory.15

Another important example is the hydrodynamics of
macroscopic suspensions of hard particles, such as in
gravity-driven sedimentation. These systems have been de-
scribed by effective-medium theories of the effective viscosity
of the suspension and of the effective single-particle mobility.
The textbook by Happel and Brenner16 summarizes work
from 1920 to 1960, in particular unit-cell modeling and
infinite-array modeling, both approaches imposing a regular
distribution of particles. Later, Batchelor17 improved the
effective-medium models by applying statistical mechanics
for irregularly places particles. In 1982, Mazur and Van
Saarloos18 developed the induced-force method for explicit
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calculation of the hydrodynamic interactions between many
rigid spheres. A few years later, this method was extended by
Ladd19,20 to allow for a higher number of particles to be con-
sidered in an efficient manner. In 1990, Ladd21 used the
induced-force method in high-concentration suspensions to
calculate three central hydrodynamic transport coefficients:
the effective suspension viscosity η, the particle diffusivity D,
and the particle mobility μ. The obtained results compare well
with both experiments and with preceding theoretical work.

While studies of high-density suspensions with active trans-
port are very important in lab-on-a-chip systems, such as in
electro-, magneto-, and acoustophoresis,1,3,4,22 they have not
been treated by the microfluidic DNS-models mentioned above.
On the other hand, while the effective-medium theories do
treat active transport, they have rarely been used to analyze
microfluidic systems. In this work, we present a continuum
model of high-density suspensions in microchannels exposed
to an external force causing particle migration. Based on the re-
sults of Lei et al.12 mentioned above, we are justified to use the
computationally less demanding continuum description in not
too small microfluidic channels, a/H ≲ 0.02. Moreover, with
the hydrodynamic transport coefficients obtained by Ladd,21

we can fairly easy write down the governing equations for high-
density suspensions following the Nernst–Planck-like approach
presented by Mikkelsen and Bruus,23 but here extended to in-
clude the hydrodynamic particle–particle interactions.

We establish a continuum effective-medium theory, in
which the hydrodynamic interactions between particles in a
high-density suspension flowing through a microchannel are
modeled by including the concentration dependency of the
effective suspension viscosity, the particle diffusivity and
mobility, and the transfer of momentum from the particles to
the suspension. We then illustrate the use of the theory by two
examples: The first is strongly inspired by the magneto-
phoretic device studied by Mikkelsen and Bruus.23 The second
is taken from the emerging field of acoustofluidics24,25 and in-
volves an acoustophoretic device, for which the dilute limit is
well described,26–28 but where the behavior in the high-
concentration limit is still poorly characterized.

2 Theory

We consider a microchannel at ambient temperature, such as
the one sketched in Fig. 1. In a steady-state pressure-driven
flow of average inlet velocity v0, an aqueous suspension of
microparticles, with the homogeneous concentration c0
(number of particles per volume) at the inlet, is flowing
through the microchannel. Only a section of length L is
shown. The effects of side-walls, present in actual systems,
are negligible for channels with a large width-to-height ratio.
Localized in the channel is an active area, where the micro-
particles are subjected to a transverse single-particle migra-
tion force Fmig. This force changes the particle distribution,
resulting in an inhomogeneous distribution downstream to-
wards the outlet. In this process, the particles are transported
by advection, active migration, and diffusion, all of which are

affected by hydrodynamic particle–particle interactions at
high concentrations.

2.1 Model system

As a simple generic model system, we consider a section of
length L of a microchannel with constant rectangular cross-
section of height H and width W. In specific calculations we
take L = 7H and study for simplicity the flat-channel limit W =
10H, for which the system, in a large part of the center, is rea-
sonably well approximated by a parallel-plate channel. We take
the microparticles to be rigid spheres with diameter 2a. Their
local concentration (number per volume) is described by the
continuous field cĲr), but often it is practical to work with the
dimensionless concentration (particle volume fraction),

(1)

We are particularly interested in high inlet concentrations ϕ0 be-
tween 0.001 and 0.1, and for this range with the typical values
2a = 2 μm and H = 50 μm, the number of particles in the vol-
ume L × W × H is between 104 and 106, which in practice ren-
ders direct numerical simulation of the suspension infeasible.
We therefore employ continuum modeling in terms of the three
continuous fields: the particle concentration cĲr), the pressure
pĲr), and the velocity ν(r) of the suspension.

2.2 Forces and effective particle transport

Our continuum model for the particle current density J
includes diffusion (diff), advection (adv), and migration
(mig),29 for which we include hydrodynamic particle–particle
interactions through cĲr),

J = Jdiff + Jadv + Jmig (2a)

= −D(c)∇c + cν + cμ(c)Fmig (2b)

= −χD(ϕ)D0∇c + cν + cχμ(ϕ)μ0Fmig. (2c)

Fig. 1 Sketch of the model system. Spherical microparticles of diameter
2a are suspended in a Newtonian fluid with a homogeneous number

concentration c0, or volume fraction . The suspension

enters from the inlet with velocity v0 and flows towards the localized
active area, where the particles experience a transverse migration force
Fmig, which redistributes the particles before they leave the channel at the
outlet. The resulting particle transport is determined by the relative
strength between particle diffusion, advection and migration, which is
characterized by three dimensionless numbers: the particle concentration
ϕ0, the transient Strouhal number St, and the Péclet number Pé.
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Here,

D(c) = χD(ϕ)D0 and μ(c) = χμ(ϕ)μ0 (2d)

is the effective single-particle diffusivity and mobility, respec-
tively, χD(ϕ) and χμ(ϕ) are concentration-dependent correction
factors described in more detail in section 2.5, while μ0 =
(6πη0a)

−1 and D0 = kBTμ0 is the dilute-limit mobility and diffu-
sivity, respectively, where kB is the Boltzmann constant, T is
the temperature, and η0 is the dilute-limit viscosity of the sus-
pension. We do not in this work consider any effects of van
der Waals interactions or steric interactions.29 Due to conser-
vation of particles, the particle current density obeys a
steady-state continuity equation,

0 = ∇·J. (3)

2.3 Effective viscosity and flow of the suspension

The flow of the suspension is governed by the continuity
equations for momentum and mass. Treating the suspension
as an effective continuum medium with the particle concen-
tration ϕĲr), its density and viscosity are

ρ(ϕ) = χρ(ϕ) ρ0 and η(ϕ) = χη(ϕ)
−1 η0, (4)

with the dimensionless correction factors χρ(ϕ) and χη(ϕ)
−1 in

front of the density ρ0 and viscosity η0 of pure water, respec-
tively. A given particle experiences a drag force, when it is
moved relative to the suspension by the migration force Fmig,
and in turn, an equal but opposite reaction force is exerted
on the suspension. In the continuum limit this is described
by the force density cFmig. In steady state, the momentum
continuity equation for an incompressible suspension with
the stress tensor σ therefore becomes

0 = ∇·[σ(ϕ) − ρ(ϕ)νν] + cFmig, (5a)

σ(ϕ) = −1p + χη(ϕ)
−1η0[∇ν + (∇ν)T], (5b)

where 1 is the unit tensor. Likewise, the steady-state mass
continuity equation for an incompressible suspension is writ-
ten as

0 = ∇·[χρ(ϕ)ρ0ν]. (6)

2.4 Boundary conditions

We assume a concentration c = c0 and a parabolic flow profile

at the inlet, and vanishing axial gradients

∂xc = 0 and ∂xν = 0 at the outlet. At the walls, we assume a
no-slip condition ν = 0, while the condition for c depends on
the specific physical system. Lastly, we fix the pressure level
to be zero at the lower corner of the outlet p(L, 0) = 0.

2.5 Dimensionless, effective transport coefficients

The dependency of the effective diffusion, mobility, viscosity
and density on the particle concentration ϕ is described by
the correction factors χD(ϕ), χμ(ϕ), χη(ϕ), and χρ(ϕ), respectively,
which can be interpreted as dimensionless effective transport
coefficients. The suspension density is a weighted average of
the water density ρ0 and the particle density ρp,

. For bio-fluids, particles are often neu-

trally buoyant, so ρp ≈ ρ0 and χρ ≈ 1. In a comprehensive nu-
merical study of finite-sized, hard spheres suspended in an
Newtonian fluid at low Reynolds numbers (the Stokes limit),
the remaining transport coefficients χD, χμ, and χη were calcu-
lated by Ladd21 at 14 specific values of ϕ between 0.001 and
0.45. For each of the coefficients χ, we have fitted a fourth-
order polynomial to the discrete set of values χ−1, while im-
posing the condition χ(0)−1 = 1 to ensure agreement with the
dilute-limit value,

χη(ϕ)
−1 = 1 + 2.476(7)ϕ + 7.53(2)ϕ2

− 16.34(5)ϕ3 + 83.7(3)ϕ4 + (ϕ5), (7a)

χD(ϕ)
−1 = 1 + 1.714(3)ϕ + 6.906(13)ϕ2

− 17.05(3)ϕ3 + 61.2(1)ϕ4 + (ϕ5), (7b)

χμ(ϕ)
−1 = 1 + 5.55(3)ϕ + 43.4(3)ϕ2

− 149.6(9)ϕ3 + 562(3)ϕ4 + (ϕ5), (7c)

where the uncertainty of the last digit is given in the paren-
theses. To quantify the quality of the fits χfit compared to the
simulated data points χdata, we calculated the relative differ-

ence . We found the standard deviation of Δχ

to be 0.003, 0.0019 and 0.0058 for χη, χD and χμ, respectively.
Thus, the fourth-order polynomials describe the data points
well. The resulting fits from eqn (7) and the original data
points21 are plotted in Fig. 2. Note that the mobility χμ is the
most rapidly decreasing function of concentration ϕ.

We note that the dilute-limit relation and

the definitions μ = χμμ0 and η−1 = χηη0
−1 do not imply equality

of χμ and χη. In fact, χμ < χη, which highlights the complex na-
ture of the interaction problem at high densities.

2.6 Dimensionless parameters

The dynamics of the system can be characterized by three
dimensionless numbers. One is the particle concentration ϕ0,
which is a measure of the magnitude of the hydrodynamic
interactions. The other two are related to the relative magni-
tude of the diffusion, advection and migration current densi-
ties in eqn (2), each characterized by the respective time

scales , and . A small time scale
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means that the corresponding process is fast and thus domi-
nating. The importance of advection relative to diffusion and
of migration relative to advection is characterized by the Péclet
number and the transient Strouhal number, respectively,

(8a)

(8b)

(8c)

3 Numerical implementation

Following Nielsen and Bruus,30 we implement the governing
eqn (2)–(6) in the general weak-form PDE module of the finite
element software COMSOL Multiphysics v. 5.0.31 To avoid
spurious, numerically induced, negative values of cĲr) near
vanishing particle concentration, we replace c by the logarith-
mic variable s = logĲc/c0). This variable can assume all real
numbers, and it ensures that c = c0 exp(s) is always positive.
We implement the weak form using Lagrangian test func-
tions of first order for p and second order for s, vx, and vy.

A particular numerical problem needs to be taken care of
in dealing with the advection in our system. The typical aver-
age flow speed is u0 = 200 μm s−1 in our channels of height H
= 50 μm, corresponding to a Péclet number Pé = 1.7 × 104. To
resolve this flow numerically, a prohibitively fine spatial mesh
is needed. However, this problem can be circumvented by arti-
ficially increasing the particle diffusivity to χD = 50 instead of
using eqn (7b). This decreases the Péclet number to Pé = 2.3 ×
102, but since Pé ≫ 1 for both the actual and the artificial
diffusivity, advection still dominates in both cases, and as
discussed in appendix A, the simulation results for the artifi-
cial diffusivity are accurate, but a coarser mesh suffices. In this
highly advective regime Pé ≫ 1, the detailed transport in the
active area depends on the remaining parameters: the tran-
sient Strouhal number St and the inlet concentration ϕ0.

More details on the numerical implementation are given
in appendix A.

4 Model results and discussion

To exemplify our continuum effective-medium model, we
present two examples using the same channel geometry,
but different particle migration mechanisms, namely
magnetophoresis (MAP) and acoustophoresis (ACP). The
magnetophoresis model is the one introduced by Mikkelsen
and Bruus,23 but here extended to include the concentration
dependence of the effective transport coefficients χ intro-
duced in section 2.5. This model primarily serves as a model
validation. The acoustophoresis model is inspired by the
many experimental works reported in Lab on a Chip.24,32–35

4.1 Results for magnetophoresis (MAP)

As in Mikkelsen and Bruus,23 we consider the parallel-plate
system sketched in Fig. 3(a) of height H = 50 μm, length L =
350 μm, and the boundary conditions of section 2.4. The par-
ticles are paramagnetic with magnetic susceptibility χmag = 1
and diameter 2a = 2 μm. A pair of long parallel thin wires is
placed perpendicular to the xy-plane with their midpoint at
r0 = (x0, y0) = (250, 55) μm, separated by d = dex, and carrying
electric currents ±I. The currents lead to a magnetic field,
which induces a paramagnetic force Fmap on each particle
resulting in magnetophoresis. For a particle at position r, the
force is given by23

(9)

where μem0 is the vacuum permeability. Note how the rapid
fifth-power decrease as a function of the wire distance |r −
r0|, signals that Fmap is a short-ranged local force. Dipole–di-
pole interactions are neglected. Using the expression for
Fmap, we can determine the migration time τmig for a particle

Fig. 2 Plot of the fitted dimensionless effective transport coefficients
χη, χD and χμ as a function of concentration ϕ. The full lines represent
the fits from eqn (7), while the circles are the original 14 simulation
data points by Ladd.21

Fig. 3 Specific realizations of the generic system shown in Fig. 1 with
height H = 50 μm and length L = 350 μm. The microparticles are rigid
spheres of diameter 2a = 2 μm and a paramagnetic susceptibility χmag

= 1. A Poiseuille flow with mean velocity u0 is imposed at the inlet. (a)
Magnetophoresis: a pair of thin long wires carrying electrical currents
±I is placed at the top of the channel 100 μm upstream from the
outlet. The resulting magnetic force Fmap (gray scale) attracts the
particles towards the wires. (b) Acoustophoresis: a standing pressure
half-wave (magenta) is imposed between x1 and x2. The resulting
acoustic force Facp (gray scale) causes the particles to migrate towards

the pressure node at .
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to migrate vertically from the channel center

, directly below the wires, to the wall (x, y) =

(x0, H). From this we infer the magnetic transient Strouhal
number Stmap,

(10)

Wall boundary conditions for the particles. Following the
simplifying model of Mikkelsen and Bruus,23 we assume that
once a particle reaches the wall near the wires, it sticks and
is thus removed from the suspension. For the upper wall at y
= H, we therefore set the total particle flux in the y-direction
equal to the active migration Jy = cμFmap,y, while at the pas-
sive bottom wall at y = 0, we choose the standard no-flux con-
dition Jy = 0. For short times, this is a good model, but even-
tually in a real system, the build-up of particles at the wall is
likely to occur, which leads to a dynamically change of the
channel geometry.

Particle capture as a function of ϕ0 and Stmap. In Fig. 4 we
have plotted the normalized steady-state particle concentra-

tion of the system shown in Fig. 3(a) for the nine com-

binations of ϕ0 = 0.001, 0.01, 0.1 with Stmap = 1, 2, 5. Firstly,
it is evident from the figure that for a given fixed ϕ0 and in-
creasing Stmap, an increasing number of particles are cap-
tured by the wire-pair, thus decreasing ϕĲr) in a region of in-
creasing size down-stream from the wires. Note also how the
slow-moving particles near the bottom wall are pulled up-
wards by the action of the wires, leaving a decreased particle
density there. Secondly, for a fixed Stmap, the particle capture
is non-monotonic as a function of ϕ0: it increases going from
ϕ0 = 0 via 0.001 to 0.01, but then decreases going from 0.01
to 0.1. Thirdly, for the highest concentration ϕ0 = 0.1, the
morphology of the depleted region has changed markedly: a
small region depleted of particles forms around the wires at
the top wall together with narrow downstream depletion re-

gions along both the top and bottom wall. All three regions
increase somewhat in size for increasing Stmap.

The normalized capture rate βmap. We analyze the particle
capture quantitatively in terms of the normalized capture rate
βmap defined as the ratio between the flux Γtopwall of particles
captured on the top wall by the wires, and the flux Γinlet of
particles entering through the inlet,23

(11a)

(11b)

where n is the surface normal of a given surface. In Fig. 5(a),
we have plotted βmap as a function of ϕ0 for different Stmap

values. All of the curves in this plot show the same qualitative
behavior: the capture fraction increases with inlet concentra-
tion until a certain point, beyond which it declines.

This general behavior is illustrated by the three specific
cases ϕ0 = 0.02, 0.045, and 0.1 denoted by the purple bullets
A, B and C on the purple “Stmap = 1”-curve. For these three
cases, we have in Fig. 5(b1–d1) plotted the magnetically-
induced change Δν = ν − ν0 in the suspension velocity, and in
Fig. 5(b2–d2) the magnetic force density f = cFmap overlaid by
contour lines of c (white). For A in Fig. 5(b1) and (b2) with
ϕ0 = 0.02, more particles are captured compared to the dilute
case, because cFmap induces a clockwise flow-roll that advects
the upstream particles closer to the wires. For B in
Fig. 5(c1) and (c2) with ϕ0 = 0.045, cFmap induces two flow
rolls, of which the upstream one rotates counter clockwise
and advects particles away from the wires, thus lowering the
capture compared to A. For C in Fig. 5(d1) and (d2) with ϕ0 =
0.1, cFmap induces a single strong counter-clockwise flow roll
that more efficiently advects the upstream particles away
from the wires, and βmap decreases further.

While the initial increase in βmap for ϕ0 increasing from
0 to 0.03 is in agreement with Mikkelsen and Bruus,23 black
circles in Fig. 5(a), the following decrease in βmap for ϕ0

Fig. 4 Heat color plot of the normalized concentration field from 1 (white, inlet concentration) to 0 (black, no particles) in the

magnetophoretic system Fig. 3(a), for the nine combinations of ϕ0 = 0.001, 0.01, 0.1 with Stmap = 1, 2, 5.
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increasing beyond 0.03 was not observed by them. The devia-
tion is not due to our inclusion of the effective transport coef-
ficients χη and χμ, since repeating the simulations23 with χη =
χμ = 1 resulted in a curve indistinguishable from the green
curve Stmap = 0.7 in Fig. 5(a). We speculate that this deviation
is due to our improved mesh resolution.

4.2 Results for acoustophoresis (ACP)

We consider a system identical to the one described in sec-
tion 4.1, except that the single-particle migration force Fmig

now is taken to be the acoustic radiation force Facp arising
from the scattering of an imposed standing ultrasound wave
on the microparticles. It is given by36

Facp = −∇Uac, (12a)

(12b)

where κ0 and ρ0 is the compressibility and mass density of
the carrier fluid, respectively, f0 and f1 are two scattering coef-
ficients, a is the particle radius, and 〈p1

2〉 and 〈v1
2〉 is the

time-average of the squared acoustic pressure and velocity
fields in the suspension, respectively. Inspired by experimen-
tally observed localized fields,26 we take the acoustic field to
be a standing half-wave resonance localized in the dashed

area for x between and as indicated by the

magenta curves in Fig. 3(b),

(13a)

(13b)

Here, ω = 2πf is the angular actuation frequency with the fre-
quency f typically in the MHz range, and pa is the acoustic
pressure amplitude typically in the 0.1 MPa range.26,32 The
acoustophoretic force Facp is obtained by inserting the acous-
tic fields (13) into eqn (12), and the result is a force, which
focuses the particles at the pressure node in the channel cen-

ter at , see appendix B for details.

Given Facp, we then calculate the transient Strouhal num-
ber from the acoustic migration time τmig in the dilute limit
(χμ = 1) for a single particle migrating from

to ,26 and from the ad-

vection time given by ,

(14)

Here, Eac = pa
2/(4ρ0cliq

2) is the acoustic energy density (typi-
cally 1–100 J m−3), cliq is the speed of sound in the carrier

liquid, and is the so-called acoustic contrast

factor.37

Wall boundary condition for the particles. As the particles
in this model enter from the inlet, focus towards the channel

center , and leave through the outlet, we choose the

simple no-flux boundary condition, n·J|y=0,H = 0, for the bot-
tom and top walls.

Particle capture as a function of ϕ0 and Stacp. In Fig. 6 is
plotted the normalized steady-state particle concentration

Fig. 5 (a) Lin–log plot of the capture fraction βmap as a function of the
inlet concentration ϕ0 for different transient Strouhal numbers Stmap

(full lines). The original results of Mikkelsen and Bruus23 are plotted as
circles connected by a dashed line. The purple bullets on the curve for
Stmap = 1 mark the three situations A, B, and C plotted in (b)–(d) below.
(b1), (c1) and (d1) Color plot from 0 (black) to {1.0, 1.6, 2.0}u0 (white)
and vector plot of the particle-induced velocity Δν = ν − ν0 near the
wire-pair for situation A, B and C, respectively. (b2), (c2) and (d2) Color
plot from 0 (black) to 2 × 105 N m−3 (white) and vector plot of the ex-
ternal force on the suspension f = cFmap. The white lines are contour
lines of the concentration field ϕĲr).
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of the system shown in Fig. 3(b) for the nine combina-

tions of ϕ0 = 0.001, 0.01, 0.1 to Stacp = 0.5, 1, 2. Clearly, for a
given fixed ϕ0 and increasing Stacp, an increasing number of
particles are focused in the center region. This is expected
since Stacp is proportional to the acoustic energy density Eac.
For ϕ0 = 0.001, the center-region concentration (white) is 1.73
times the inlet concentration (orange). Secondly, for a fixed
Stacp, the particle focusing is monotonically decreasing as a
function of ϕ0 as seen from the decrease in both the width of
the particle-free black regions and the magnitude of the
downstream center-region concentration. See in particularly
the change from ϕ0 = 0.01 to 0.1.

To quantify the acoustic focusing for a given inlet concen-
tration, we introduce in analogy with eqn (11) the normalized
flux βacp of focused particles leaving through the middle 30%
of the outlet,

(15a)

(15b)

In the lin–log plot Fig. 7(a) of βacp versus ϕ0 for the four
Strouhal numbers Stacp = 0.1, 0.5, 1, and 2, the above-
mentioned monotonic decrease in acoustophoretic focusing
is clear. Especially for ϕ0 exceeding 0.01 a dramatic reduction
in focusability sets in.

To determine the dominant hydrodynamic interaction
mechanism behind this reduction, we introduce the normal-
ized particle focusing fraction Δβacp(ϕ0, Stacp) by the definition,

(16)

Here, the difference in normalized center out-flux βacp at an
inlet concentration ϕ0 between “acoustics on” (Stacp > 0) and
“acoustics off” (Stacp = 0), is calculated relative to the same dif-

ference computed in the dilute limit cFmig = 0 and χμ = χη = 1,
which is written as ϕ0 = 0. We notice that Δβacp(ϕ0, Stacp) is
unity if there is no hydrodynamics interaction effects, and zero
if there is no acoustophoretic focusing. In Fig. 7(b), using the
full model (χμ = χμ(ϕ) and χη = χη(ϕ) denoted “all effects”), Δβacp
is plotted versus ϕ0 (black lines) for the same four Stacp values

Fig. 6 Heat color plot of the normalized concentration field from 1.73 (white, maximum value) to 0 (black, no particles) in the

acoustophoretic system Fig. 3(b), for the nine combinations of ϕ0 = 0.001, 0.01, 0.1 with Stacp = 0.5, 1, 2.

Fig. 7 (a) Lin–log plot of the acoustic particle focusing fraction βacp
(given by eqn (15a)) versus the inlet concentration ϕ0 for four different
Stacp values. (b) Lin–log plot of the rescaled particle focusing fraction
Δβacp, given by eqn (16), as a function of ϕ0. The line styles denote
different Stacp values, and the colors denote the inclusion of one or all
hydrodynamic interaction effects, described in section 2. Black: all
interaction effects included, green: only effective mobility χμ(ϕ), purple:
only effective suspension viscosity χη(ϕ), blue: only momentum transfer
from the particles to the suspension cFmig, and red: no interaction
effects included.
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as in Fig. 7(a). We note that for the full model (black lines),
Δβacp is almost independent of the strength Stacp of the
acoustophoretic force, which makes it ideal for studying the
interaction effects through its ϕ0 dependency.

To elucidate the origin of the observed reduction in
focusability, we also plot the following special cases: “no ef-
fects” with χμ = χη = 1 and cFmig = 0 (red lines), “only cFmig”

with χμ = χη = 1 (blue lines), “only χη” with χμ = 1 and χη =
χη(ϕ) (purple lines), and “only χμ” with χμ = χμ(ϕ) and χη = 1
(green lines). These curves reveal that most of the interaction
effect is due to the effective mobility: the green curves “only
χμ” are nearly identical to the black curves “all effects”, and
both groups of curves show no or little dependence on Stacp.
The effective suspension viscosity χη(ϕ) and the particle-
induced bulk force cFacp on the suspension only have a mi-
nor influence on Δβacp.

Finally, in Fig. 8 we show the first step towards an experi-
mental validation of our continuum model of hydrodynamic
interaction effects. In the figure are seen two micrographs of
acoustophoretic focusing of 5.1 μm-diameter polystyrene par-
ticles in water in the silicon-glass microchannel setup de-
scribed in Augustsson et al.26 The micrographs are recorded
at Lund University by Kevin Cushing and Thomas Laurell un-
der stop-flow conditions u0 = 0 after 0.43 s of acoustophoresis
with the acoustic energy Eac = 102 J m−3. The field of view is
near the right edge x2 of the active region sketched in Fig. 3(b).
The good focusing obtained at the low density ϕ0 = 0.001 is well
reproduced by our model, see Fig. 8(a) and (c). Likewise, the
much reduced focusing obtained at the high density ϕ0 = 0.1 is
also well reproduced by our model, see Fig. 8(b) and (d). More-
over, which is not shown in the figure, the observed transient
behavior of the two cases is also reproduced by simulations:
For the low concentration ϕ0 = 0.001, the particles are migrat-

ing towards to pressure node directly in straight lines, while
for the high concentration ϕ0 = 0.1, pronounced flow rolls are
induced, similar to those shown in Fig. 5.

4.3 Discussion

The results of the continuum effective model simulations of
the MAP and the ACP models show that the dominating
transport mechanisms differ. For the ACP model, the behav-
ior of a suspension in the high-density regime ϕ0 ≳ 0.01 is
dominated by the strong decrease in the effective single-
particle mobility χμ shown in Fig. 2. Here, the particle–parti-
cle interactions are so strong that the suspension moves as a
whole with suppressed relative single-particle motion. The re-
sponse is a steady degradation of the focusing fraction βacp
shown in Fig. 7, as it becomes increasingly difficult for a
given particle to migrate towards the center line, where the
concentration increases and the mobility consequently de-
creases. In contrast, for the MAP model, the capture fraction
βmap increases as ϕ0 increases from 0 to 0.03, confirming the
results of Mikkelsen and Bruus.23 The reason for the in-
creased capture is that the particle concentration in the near-
wire region is low due to the removal of particles, leaving the
single-particle mobility unreduced there, while in the region
a little farther away, particles attracted by the wires pull along
other particles in a positive feedback due to the high-density
“stiffening” of the suspension there. Thus, for the MAP sys-
tem, the dominating interaction effect is through the
particle-induced body force cFmig in eqn (5a).

For ϕ0 increasing beyond 0.03, the observed non-
monotonic behavior of βmap and continued monotonic behav-
ior of βacp as a function of increasing ϕ0, depends on whether
or not the specific forces and model geometry lead to the for-
mation of flow rolls, such as shown for the MAP model in
Fig. 5. The flow-roll-induced decrease observed in the capture
efficiency βmap for ϕ0 ≳ 0.03, see Fig. 7(a), was not observed
by Mikkelsen and Bruus,23 presumably because of their rela-
tively coarse mesh. For the ACP model, no strong influence
from induced flow rolls was observed, and the resulting de-
crease in focus efficiency was monotonic as a function of ϕ0.
This difference in response is caused by differences in spatial
symmetry and in the structure of the two migration forces.
The MAP model is asymmetric around the horizontal center
line, while the ACP model is symmetric, which accentuates
the appearance of flow rolls in the former case. Moreover,
the rotation of the body force density cFmig can be calculated
as ∇ × [cFmig] = c∇ × Fmig − Fmig × ∇c. In the MAP model, both
of these rotations are non-zero, while in the ACP model, the
first term is zero as Facp is a gradient force, and this feature
leads to significant flow rolls in the MAP model and weak
ones in the ACP model.

In the above discussion of the results of our model, we
have attempted to describe general aspects of hydrodynamic
interaction effects, which may be used in future device de-
sign considerations. Given the sensitivity on the specific

Fig. 8 Topview near the right edge x2 of the acoustic active region of
the particle concentration in a 370 μm-wide microchannel after 0.43 s
of acoustophoresis with the acoustic energy Eac = 102 J m−3 on 5.1
μm-diameter polystyrene particles under stop-flow conditions u0 = 0.
(a) Experiment with ϕ0 = 0.001. (b) Experiment with ϕ0 = 0.1. (c) Con-
tinuum modeling with ϕ0 = 0.001. (d) Continuum modeling with ϕ0 =
0.1. The experimental micrographs courtesy of Kevin Cushing and
Thomas Laurell, Lund University.
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geometry and on the form of external forces, it is clear that
detailed design rules are difficult to establish. However, the
simplicity of the model allows for relatively easy implementa-
tion in numerical simulations of specific device setups.

5 Conclusion

We have presented a continuum effective medium model in-
cluding hydrodynamic particle–particle interactions, which
requires only modest computational resources and time. The
results presented in this paper could be obtained in the order
of minutes on an ordinary PC. We have validated the model
by comparison to previously published models and found
quantitative agreement. Moreover, as a first step towards ex-
perimental validation, we have found qualitative agreement
with experimental observations of acoustophoretic focusing.

Using our numerical model, we have shown that the re-
sponse of a suspension to a given external migration force de-
pends on the system geometry, the flow, and the specific form
of the migration forces. At high densities ϕ0 ≳ 0.01 the suspen-
sion “stiffens” and relative single-particle motion is suppressed
due to a decreasing effective mobility χμ. However, the detailed
response depends on whether or not particle-induced flow rolls
appear with sufficient strength to have an impact.

The continuum effective medium model may prove to be a
useful and computationally cheap alternative to the vastly
more cumbersome direct numerical simulations in the de-
sign of lab-on-a-chip systems involving high-density suspen-
sions, for which hydrodynamic particle–particle interactions
are expected to play a dominant role.

Appendix A: Numerical
implementation, details

The numerical implementation has been carefully checked
and validated. To avoid spurious numerical errors, we
have performed a mesh convergence analysis as described
in details in Muller et al.37 For a continuous field g on
a given mesh, we have calculated the relative error

, where gref is the solution

obtained for the finest possible mesh. For all fields involved
in this study, C falls in the range between 10−5 and 10−3, and
it has the desired exponential decrease as function of hmesh

−1,
where hmesh is the mesh element size. The number of mesh
points and degrees of freedom used in our final simulations
are listed in Table 1.

We have compared our results with previous work in the
literature. Setting χμ = χη = 1, our MAP model in section 4.1 is
identical to the one by Mikkelsen and Bruus.23 For this set-
ting, we have calculated the capture fraction βmap as a func-
tion of the rescaled quantity (Id)2/u0 (which also appears in
the definition (10) for Stmap), and found exact agreement, in-
cluding the remarkable data collapse, with the results
presented in Fig. 3 of Mikkelsen and Bruus.23

The numerical stability of the finite-element simulation is
controlled by the mesh Péclet number Pémesh = hmeshu0/(χDD0)
that involves the mesh size hmesh instead of a physical length
scale. We found that convergence was ensured for Pémesh ≲
10, which implies the condition hmesh ≲ 10χDD0/u0 for the
mesh size. The higher an advection velocity u0, the finer a
mesh is needed. In order to obtain computation times of the
order of minutes per variables (Pé, St, ϕ0) on our standard
PC, while still keeping Pémesh ≲ 10, we artificially increased
χD. In Fig. 9 we have plotted the capture fraction βmap and
the focusing fraction βacp as functions of the transient
Strouhal number St for χD ranging from 25 to 10 000 in the
dilute limit with χμ = χη = 1 and cFmig = 0. It is clear from
Fig. 9 that the β(St)-curves converge for sufficiently small
values of χD. For χD ≤ 50, we determine that acceptable con-
vergence is obtained in both models, and we thus fix χD = 50
for all calculation performed in this work. This choice of χD =
50 allows for acceptable computation times (∼10 min per var-
iable set). In other words, once the Péclet number is suffi-
ciently high, the convergence is ensured by the dominance of
advection over diffusion.

Table 1 The number of mesh elements Nmesh, the degrees of freedom
DOF, and the mesh Péclet number Pémesh used in the numerical simula-
tions of the MAP and ACP models

Model Nmesh DOFs Pémesh

MAP 70 000–225 000 200 000–2 000 000 5–10
ACP 50 000–200 000 400 000–2 000 000 5–10

Fig. 9 Log–log plot of (a) the capture fraction βmap and (b) the focusing
fraction βacp, both as a function of the transient Strouhal number St in
the dilute limit (χμ = χη = 1 and cFmig = 0) for χD = 25, 50, 100, 200, 500,
100, 2000, 5000, and 10000. Only simulations with St-values outside
the gray areas have been included in the analysis of Fig. 4–7.
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Appendix B: The acoustophoretic force

The acoustophoretic force Facp is found from the gradient of
Uac in eqn (12) using the acoustic fields p1 and v1 defined in
eqn (13). In Fig. 10 is shown a combined color and vector
plot of the resulting force Facp given by the explicit expres-
sions of its components Facp,x and Facp,y,

(17a)

(17b)

Here, and ỹ = kyy are dimensionless coor-

dinates, and kx = 7π/(3L), ky = π/H, and k2 = kx
2 + ky

2 are wave
numbers. For water-suspended polystyrene spheres with ra-
dius a ≳ 1 μm, we have f0 = 0.444 and f1 = 0.034.37 The acous-
tic energy density is set to Eac = 102 J m−3.
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