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Morphological instability during steady electrodeposition at overlimiting currents
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We present a linear stability analysis of a planar metal electrode during steady electrodeposition. We extend the
previous work of Sundstrom and Bark by accounting for the extended space-charge density, which develops at
the cathode once the applied voltage exceeds a few thermal voltages. In accordance with Chazalviel’s conjecture,
the extended space-charge region is found to greatly affect the morphological stability of the electrode. To
supplement the numerical solution of the stability problem, we have derived analytical expressions valid in the
limit of low and high voltage, respectively.
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I. INTRODUCTION

One of the most interesting aspects of systems, involving
transport between matter in different phases, is their tendency
to become morphologically unstable and develop ramified
growth patterns. Well-known examples include snowflake
formation and dendritic growth during metal solidification
[1,2]. A particularly interesting and challenging growth prob-
lem is encountered in electrodeposition from an electrolyte
onto an electrode [3–11]. Whereas snowflake formation and
solidification are mainly driven by diffusion of water vapor
and heat, respectively [1,2], electrodeposition is driven by
electromigration in addition to diffusion [12,13]. For this
reason, the electrodeposition rate can be driven to exceed the
diffusion limit, at which point the system enters a nonlinear
regime not encountered in the purely diffusion-driven systems.
One of the features of this nonlinear regime is the development
of a nonequilibrium space-charge region, which extends from
the cathode into the electrolyte [12,14–16]. This extended
space-charge region significantly affects the transport in the
system, and it is a central component in the well-known
electroosmotic instability [17–19]. In 1990 Chazalviel realized
that the extended space-charge region is crucial to the un-
derstanding of ramified growth during electrodeposition [12].
Nevertheless, there has been very little work which actually
takes this effect into account.

In this paper we investigate the morphological stability of
the cathode during electrod position in both the linear and the
nonlinear regime. We follow the approach of Sundstrom and
Bark [20] and investigate steady electrodeposition in a system
composed of an electrolyte sandwiched between two, initially
planar, metal electrodes. We solve the stability problem numer-
ically and find that the higher the applied voltage difference
is, the more unstable the electrode surface becomes. Also,
the most unstable wavelength becomes smaller as the voltage
bias is increased. In the numerical solution we employ the
widely used Butler-Volmer reaction expression with constant
charge-transfer coefficients. Apart from the extensive use of
this model in the literature, the main reason for choosing it here
is its conceptual simplicity and reliance on only a few reaction
parameters, allowing for a basic understanding of the system.
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Also, while the model may not describe reaction kinetics
as well as more elaborate models, it nevertheless correctly
captures the exponential dependence on overpotential, which
is an almost universal feature in reaction models [21,22].

In addition to solving the stability problem numerically, we
derive analytical expressions for the perturbation growth rate,
valid in the low and high voltage limit, respectively. In deriving
these expressions, we make use of an accurate analytical model
for the extended space-charge region, which we presented in
a recent paper [16]. While our numerical results are restricted
to the standard Butler-Volmer model, our analytical models
cover a more general class of reaction models, including, e.g.,
Marcus kinetics and Butler-Volmer-Frumkin kinetics.

II. MODEL SYSTEM

Following Sundstrom and Bark [20], we consider a binary
electrolyte trapped between two coplanar metal electrodes at
x = 0 and x = 2L. The electrolyte has initial concentration
c0 and is assumed symmetric with valence Z. The coordinate
system is moving in the negative x direction with velocity
U , which is the rate of deposited layer growth and thus
related to the average deposition rate on the electrodes. We
consider the dilute solution limit, in which the effect of the
moving coordinate system is negligible everywhere except in
the surface evolution equation. A sketch of the system is shown
in Fig. 1.

In the analysis, we investigate the stability of the electrodes
under y-dependent perturbations along the x direction. How-
ever, our analysis is general and applies to perturbations along
any direction in the yz plane.

III. GOVERNING EQUATIONS

The current densities of either ion are given as

2 J± = −c±∇μ±, (1a)

μ± = ln(c±) ± Zφ, (1b)

where we have nondimensionalized the currents J± by the
limiting currents 2D±c0/L, the electrochemical potentials
μ± by kBT , the electric potential φ by the thermal voltage
VT = kBT/e, the coordinates by half the electrode spacing
L, and the concentrations c± by the initial concentration c0.
Normalizing the time by the diffusion time t0 = L2/(2D+),
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FIG. 1. (Color online) Sketch of the studied system with lower
and upper electrode surfaces at x = f�(y,t) and x = 2 + fu(y,t),
respectively. The coordinates are given relative to the moving frame
of reference, following the mean rate of deposition on the electrode
surfaces. The coordinates are also normalized by half the electrode
spacing L.

the nondimensionalized ion-conservation equations become

D+
D±

∂tc± = −∇ · J±. (2)

At the electrodes, the current of anions vanishes, while the
current of cations is given by a reaction expression

np · J− = 0, (3a)

np · J+ = −Rp, (3b)

where Rp is the reaction rate at the lower and upper electrode,
respectively, as indicated by the subscript p = �,u. We model
the reaction rates Ru and R� using a reaction expression of the
general form

Rp = K0[c+e−γ̄ κ+αc(φ,c+)Z(φ+Vp) − e−γ̄ κ−αa(φ,c+)Z(φ+Vp)].

(4)

Here K0 is the dimensionless version of the dimensionfull rate
constant k0 for the electrode reaction,

K0 = k0

2D+c0/L
, (5)

Vp is the normalized electrode potential, κ is the normalized
curvature of the surface, and γ̄ is the nondimensionalized
version of the dimensionfull surface energy γ ,

γ̄ = a3γ

kBT L
. (6)

We allow the cathodic and anodic charge-transfer coefficients
αc and αa to vary with the potential φ and the cation
concentration c+. In this way, Eq. (4) represents a wide range
of reaction models from classical Butler-Volmer kinetics to
Marcus kinetics and Butler-Volmer-Frumkin kinetics [20–22].
In agreement with most realistic reaction models, we do
impose one restriction on the charge transfer coefficients,
namely, that they vary slowly as a function of φ and ln(c+),

∂φ{αc(φ,c+)φ} ≈ αc(φ,c+), (7)

∂ln(c+){αc(φ,c+) ln(c+)} ≈ αc(φ,c+). (8)

The electrostatic part of the problem is governed by the Poisson
equation,

2λ̄2
D∇2φ = −ρ = −Zc+ + Zc−, (9)

where the nondimensional Debye length λ̄D is given as

λ̄D = λD

L
, with λD =

√
kBT εw

2e2c0
. (10)

For simplicity, and to be in accordance with most previous
work, we choose not to explicitly model the Debye layers
adjoining the electrodes. Instead, we apply the boundary
conditions (3) just outside the Debye layer. Following Ref. [23]
we implement the boundary condition

nu · ∇c+ = 0, (11)

at the upper electrode, to indicate the minimum in c+ at the
outer edge of the Debye layer. We note that the Debye layers
can be included implicitly by including the Frumkin correction
to the reaction model. This correction can be implemented by
an appropriate choice of the charge-transfer coefficients [22].
Together with Eq. (3b), condition (11) corresponds to ascribing
the entire current into the upper electrode to electromigration.

Finally, since the anions cannot enter or leave the system
the total number of anions is conserved,∫

�

(c− − 1) dV = 0. (12)

We introduce functions x = fp(y) describing the position
of the upper and lower electrode u and �. The time evolution of
fp is determined by the single-ion volume a3 and the current
into the electrode,

(∂tf� − U )ex · n� = −a3c0n� · J+, anode, (13a)

(∂tfu − U )ex · nu = −a3c0nu · J+, cathode. (13b)

Here the filling factor a3c0 is much less than unity, since
we are dealing with dilute solutions. The normalized velocity
U of the coordinate system accounts for the mean current into
or out of the electrodes, and ∂tfp accounts for local deviations
from the mean current.

The curvature κ and the normal vectors are related to the
surface function fp by

n� = ex − ey∂yf�√
1 + (∂yf�)2

, nu = −ex + ey∂yfu√
1 + (∂yfu)2

, (14a)

κ� = ∂2
yf�√

1 + (∂yf�)2
, κu = − ∂2

yfu√
1 + (∂yfu)2

. (14b)

In defining the above equations and boundary conditions,
we have chosen slightly different normalizations than in
Ref. [20], the main difference being that we allow for a nonzero
space charge density.

IV. PERTURBATION

The stability of the electrodes is investigated using linear
perturbation theory; that is, we impose a small perturbation on
a steady-state base state and investigate how the perturbation
evolves. The base state is identified by a superscript “0” and
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the first-order perturbation by superscript “1”,

fp(y,t) ≈ f 1
p (y,t), (15a)

c±(x,y,t) ≈ c0
±(x) + c1

±(x,y,t), (15b)

φ(x,y,t) ≈ φ0(x) + φ1(x,y,t). (15c)

In first-order perturbation theory, we substitute the second-
order factor

√
1 + (∂yfp)2 in Eq. (14) by unity,

n� ≈ ex − ey∂yf
1
� , nu ≈ −ex + ey∂yf

1
u , (16a)

κ� ≈ ∂2
yf 1

� , κu ≈ −∂2
yf 1

u . (16b)

To find the field values at the perturbed surface, we Taylor
expand to first order and obtain

φ
(
f 1

� ,y,t
) ≈ φ0(0) + ∂xφ|0f 1

� (y,t) + φ1(0,y,t), (17a)

∇φ
(
f 1

� ,y,t
) ≈ ∂yφ

1|0ey + (
∂xφ

0|0 + ∂2
xφ0|0f 1

� + ∂xφ
1|0

)
ex.

(17b)

Similar expressions apply for c± and at the upper electrode.
Evaluating the reaction rate at the lower electrode and
expanding to first order, we find

R� ≈ R0
� + R1

� , (18a)

R0
�

K0
= c0

+eαcZ(φ0+V�) − e−αaZ(φ0+V�), (18b)

R1
�

K0
= eαcZ(φ0+V�)

{
c1
+ + ∂xc

0
+f 1

�

+ c0
+(αa + αc)Z

[
φ1 + ∂xφ

0f 1
�

]}
+ R0

�

K0

{ − γ̄ ∂2
yf 1

� − αaZ
[
φ1 + ∂xφ

0f 1
�

]}
, (18c)

where all fields are evaluated at x = 0, and the expression
for R0

� was used to simplify the expression for R1
� . Since the

charge-transfer coefficients vary slowly with φ and ln(c+),
we have neglected their first order contributions. Similar
expressions apply at the upper electrode.

Hence, the full zeroth-order problem becomes

0 = −∂xJ
0
±, (19a)

2J 0
± = −∂xc

0
± ∓ Zc0

±∂xφ
0, (19b)

2λ̄2
D∂2

xφ0 = −Z(c0
+ − c0

−) = −ρ0, (19c)

with the following boundary conditions and constraints:

J 0
−(0) = 0, J 0

−(2) = 0, (20a)

J 0
+(0) = −R0

� , J 0
+(2) = R0

u, (20b)∫ 2

0
(c0

− − 1) dx = 0, ∂xc
0
+(2) = 0, (20c)

and the mean growth velocity U derived from Eq. (13),

U = a3c0J
0
+. (21)

Similarly, the first-order problem is given by

D+
D±

∂tc
1
± = −∇ · J1

±, (22a)

2 J1
± = −∇c1

± ∓ Zc0
±∇φ1 ∓ Zc1

±∇φ0, (22b)

2λ̄2
D∇2φ1 = −Z(c1

+ − Zc1
−), (22c)

and the boundary conditions,

ex · J1
−(2) = 0, ex · J1

−(0) = 0, (23a)

ex · J1
+(2) = R1

u, ex · J1
+(0) = −R1

� , (23b)

∂2
x c0

+(2)f 1
u + ∂xc

1
+(2) = 0, (23c)

together with the first-order electrode growth rates ∂tf
1
� and

∂tf
1
u derived from Eq. (13),

∂tf
1
� = a3c0R

1
� , ∂tf

1
u = −a3c0R

1
u. (24)

To find the eigenmodes, we make the following harmonic
ansatz for the first-order fields:

c1
±(x,y,t) = c∗

±(x)e�t+iky, (25a)

φ1(x,y,t) = φ∗(x)e�t+iky, (25b)

f 1
p (y,t) = Fpe�t+iky, (25c)

where � is the nondimensional growth rate of the perturbation,
and k is the wave number of the transverse eigenmode. For
convenience we also define

R1
p = R∗

pe�t+iky . (25d)

With this ansatz, the first-order bulk equations become

2
D+
D±

�c∗
± = −k2(c∗

± ± Zc0
±φ∗) (26a)

+ ∂x{∂xc
∗
± ± Zc∗

±∂xφ
0 ± Zc0

±∂xφ
∗},

2λ̄2
D

(
∂2
xφ∗ − k2φ∗) = −Z(c∗

+ − c∗
−), (26b)

and the first-order reaction rate at the lower electrode is

R∗
�

K0
= eαcZ(φ0+V�)

{
c∗
+ + ∂xc

0
+F�

+ c0
+(αa + αc)Z[φ∗ + ∂xφ

0F�]
}

+ R0
�

K0

{ − γ̄ k2F� − αaZ[φ∗ + ∂xφ
0F�]

}
. (27)

Inserting the ansatz in the growth equations (24) yields

�F� = a3c0R
∗
� , �Fu = −a3c0R

∗
u. (28)

V. ANALYTICAL RESULTS

For large wave numbers, k � 1, we can neglect f� and
the left-hand side in Eq. (26a). Analytical expressions for the
growth rate can then be obtained in the limit of overlimiting
and underlimiting current, respectively. In Appendices A and
B we find that the growth rate can be expressed as

� = a3c0kJ 0 ξ − γ̄ k2

ξ + k
. (29)
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Here, in the linear underlimiting regime, ξ is given as

ξ = (1 + αa + αc)K0e
αcZ(φ0+Vu) − αa

J 0

c0+
, (30)

c0
+ = 1 − J 0, linear case, (31)

while in the nonlinear overlimiting regime ξ is

ξ = 2(αa + αc)K0e
αcZ(φ0+Vu) − αa

2J 0

c0+
, (32a)

c0
+ ≈ λ̄D

Z

√
2J 0

1 − 1
J 0

, nonlinear case. (32b)

The factors K0e
αcZ(φ0+Vu) are found by solving the zeroth-order

reaction expression,

J 0 = R0
u = K0

[
c0
+eαcZ(φ0+Vu) − e−αaZ(φ0+Vu)

]
. (33)

The charge-transfer coefficients αc and αa may depend on φ0

and c0
+, so there is no general solution to Eq. (33). In the limit

K0 � 1 the deposition term in Eq. (33) dominates, and we
simply have

K0e
αcZ(φ0+Vu) = J 0

c0+
. (34)

In that limit ξ becomes

ξ = (1 + αc)
J 0

c0+
, linear case, (35)

ξ = 2αc
J 0

c0+
, nonlinear case. (36)

In the case of simple Butler-Volmer kinetics with constant
charge transfer coefficients αc = αa = 1

2 , it is also possible to
obtain simple solutions to Eq. (33). In that case we find

ξ = J 0

c0+

⎡
⎣1

2
+

√
1 + 4

(
K0

J 0

)2

c0+

⎤
⎦, linear, (37)

ξ = J 0

c0+

√
1 + 4

(
K0

J 0

)2

c0+, nonlinear. (38)

The critical wave number kc, where the perturbation is
marginally stable, is found to be

kc =
√

ξ

γ̄
, (39a)

and the wave number kmax, at which the growth rate is
maximum, is given as

kmax = ξ

2

[(
2 − ξ γ̄ + 2

√
1 − ξ γ̄

ξ γ̄

)1/3

+
(

2 − ξ γ̄ + 2
√

1 − ξ γ̄

ξ γ̄

)−1/3

− 1

]
. (39b)

We note that the analytical model takes the zeroth-order
current density J 0 as input variable through ξ . If one wants
the results as a function of the potential drop instead, a model

of the system’s current-voltage characteristic is needed. For
simplicity, we just use the numerically calculated current-
voltage characteristic in the following.

To compute the results without reference to a numerical
solution, an analytical model for the system’s current-voltage
characteristic is required. Such a model can be found in our
previous work [16]. To obtain the total voltage drop over the
system, the interfacial voltages from Eq. (18b) should also be
taken into account.

VI. NUMERICAL SOLUTION

The numerical simulations are carried out in the commer-
cially available finite element software COMSOL MULTIPHYSICS

ver. 4.3a. Following our previous work [16,23,26], the zeroth-
and first-order problems are rewritten in weak form and
implemented in the mathematics module of COMSOL. In the
first-order problem we set the parameter Fu to unity, meaning
that the magnitude of the remaining first-order fields are given
relative to the amplitude of the upper electrode perturbation.
We choose to model the reaction using simple Butler-Volmer
kinetics with αc = αa = 1

2 . To limit the parameter space, we
choose fixed, physically reasonable values for the parameters
listed in Table I. The values are chosen to correspond to copper
electrodes in a copper sulfate solution. We note that the surface
tension is quite difficult to determine experimentally, and most
measurements are carried out at temperatures around 1000 ◦C
[27,28]. Ab initio calculations can give some impression of
the behavior at lower temperatures [29], but these can hardly
stand alone. Extrapolating the linear fit of Ref. [27] down to
0 K yields surface tension values close to those obtained from
ab initio calculations in Ref. [29]. This makes it somewhat
plausible to apply the model from Ref. [27] in the region of
interest around 300 K. This yields a copper-gas surface energy
of 1.92 J/m2. The contact angle at the copper-water interface
is very small [30], so finding the copper-water surface energy
is just a matter of subtracting the surface energy of water from
that of copper. The resulting surface energy is γ ≈ 1.85 J/m2,
as listed in Table I.

These choices leave us with three free parameters, which
are the bias voltage V0, the electrolyte concentration c0, and
the system length L.

TABLE I. Fixed parameter values used in the numerics.

Parameter Symbol Value

Cation diffusivity [24] D+ 0.714 × 10−9 m2 s−1

Anion diffusivity [24] D− 1.065 × 10−9 m2 s−1

Ion valence Z 2
Surface energy γ 1.85 J m−2

Temperature T 300 K
Permittivity of water εw 6.90 × 10−10 F m−1

Charge-transfer coefficients αc,αa
1
2

Reaction constanta k0 9.4 × 1019 m−2 s−1

Diameter of a copper atomb a 0.228 nm

aCalculated using the exchange current I0 = 30 A m−2 from Ref. [25]
and k0 = I0/(Ze).
bThe cube root of the volume per atom in solid copper [24].
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FIG. 2. (Color online) Zeroth-order cation concentrations c0
+

shown in full (black) lines and zeroth-order charge densities ρ0/Z

shown in dashed (red) lines. The inset shows the fields close to
the electrode. In the simulation the parameter values c0 = 10 mM,
L = 10 μm, and V0 = {1,5,12,30} were used.

The solution procedure is as follows: First, the zeroth-order
problem is solved for a given set of parameters. Then the
first-order problem is solved for a range of wave numbers k. For
each k value, the corresponding growth rate � and perturbation
amplitude of the lower electrode, F�, are obtained.

In Fig. 2 the zeroth-order cation concentrations c0
+ and

space-charge density ρ0 are shown for c0 = 10 mM, L =
10 μm, and varying bias voltage V0. It is seen, that when
the bias voltage exceeds V0 	 12, local electroneutrality is
violated near the cathode. For V0 = 30 the nonequilibrium
space-charge region extends far (0.04L) into the electrolyte.

A. Results

For plotting purposes we introduce the dimensionfull
perturbation wavelength λ = 2πL/k. In Fig. 3 the growth
rate � is plotted versus λ for V0 = 30, c0 = 10 mM, and

FIG. 3. (Color online) The growth rate � plotted versus the
perturbation wavelength λ for V0 = 30, c0 = 10 mM, and L = 10 μm.
The full (black) line shows the growth rate obtained from numerical
simulations, and the dashed (red) line shows the growth rate according
to the analytical model [Eq. (29)]. For perturbation wavelengths
smaller than the critical wavelength λc = 51 nm the system is stable
and for larger wavelengths it is unstable. At the most unstable
wavelength λmax = 110 nm the growth rate is �max = 0.0193.

FIG. 4. (Color online) The growth rate � plotted versus the
perturbation wavelength λ and voltage V0 for c0 = 10 mM, and
L = 10 μm. The (cyan) space curves are plots of � versus λ for
V0 = {5, 10, 15, 20, 25, 30}. The shade of the in plane contour plot
is based on the logarithm of �, which is why there are no contours
in the low λ limit where � is negative. The thick (blue) in plane line
marks the crest of the hill; i.e., it marks the most unstable wavelength
for each value of V0.

L = 10 μm. Visible in the figure is a stable region for
wavelengths smaller than the critical wavelength λc = 51 nm,
and an unstable region for larger wavelengths. The most
unstable wavelength we denote λmax, and the corresponding
growth rate we denote �max.

To enable a more compact representation of the data, we
introduce a gray-scale contour plot of the magnitude of �, as
illustrated in Fig. 4. Here � is plotted versus the wavelength λ

for V0 = {5, 10, 15, 20, 25, 30}. The gray scale in the λ − V0

plane is created by projecting the � values from the above
curves onto the plane. The solid (blue) line in the (λ, V0)-plane
marks the crest of the hill, thus representing the most unstable
wavelength for each value of V0.

In Fig. 5 we make use of the contour plots to show results for
12 sets of (c0,L)-values. In each contour plot, � is normalized
by its maximum value, which is given above each plot. Shown
in thick lines are λmax in bright (yellow) and λc in black. The
corresponding analytical results are shown in dashed (blue)
and dotted (green) lines, respectively. The thin black lines show
contours, where � equals {0.01,0.2,0.7} times the maximum
value. There is a clear tendency in all of the panels that the
growth rate � increases rapidly with V0, and the most unstable
wavelength decreases as V0 increases. Across the panels, the
maximum growth rate is seen to increase for increasing c0 and
increasing L. Also, the most unstable wavelength λmax and the
critical wavelength λc become smaller as c0 increases and as
L decreases.

A common feature seen in all of the panels is the kink in
the V0-versus-λmax and V0-versus-λc lines. At this kink, the
slope of the lines changes markedly. The kink is located at the
voltage, where the current reaches the limiting current, and
it thus signifies that there is a qualitatively different behavior
for over- and underlimiting current. This qualitative difference
between the two regimes is in accordance with the analytical
models. We also see that the kink voltage changes with c0

and L. Specifically, it increases with c0 and decreases with
L. The main reason for this behavior is easily understood
with reference to the zeroth-order Butler-Volmer reaction
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FIG. 5. (Color online) Contour plots of � plotted versus wavelength λ and voltage V0 for c0 = {1 mM,10 mM,100 mM} and L =
{1 μm,10 μm,100 μm,1 mm}. In each plot, � is normalized by its maximum value, and the contours are logarithmically spaced. The maximum
value �max of � is given on top of each plot, and the point where the maximum value is attained is indicated with a dark (red) circle. The three
thin black lines in each plot indicate contours where � equals 0.01, 0.2, and 0.7 times �max. The thick bright (yellow) line marks λmax for each
value of V0, and the dashed (blue) lines mark the two corresponding analytical limits. The thick black line marks λc for each value of V0, and
the dotted (green) lines mark the two corresponding analytical limits.

expression (18b). Setting the current in the system to the
limiting current J 0

+ = 1, the reaction rates at the electrodes
become

ex · np = −K0[c+eαcZ(φ+Vp) − e−αaZ(φ+Vp)]. (40)

At the cathode, the first term in the bracket dominates, and at
the anode the other. Therefore, both potential drops over the
electrode interfaces scale as

�V ∼ − ln(K0) = ln

(
2D+c0

L

)
− ln(k0), (41)

which increases monotonically with increasing c0/L. As a
consequence, the total potential drop at the limiting current
also increases with increasing c0/L, just as observed in Fig. 5.

In addition to the instability growth rate �, which gives a
time scale for the development of instabilities, it is useful to
have a measure for the characteristic instability length scale.
For instance, we would like to estimate the thickness of the
deposited layer, when instabilities start to develop. We define
this instability length scale as the product of the zeroth-order
growth rate Eq. (21) and the instability time scale at the most
unstable wavelength

L� = L
a3c0J

0
+

�max
, (42)

where the prefactor L ensures a dimensionfull expression.
In Fig. 6 we plot the instability length L� versus applied
voltage V0 for L = 100 μm and varying c0. The most unstable
wavelength λmax is also plotted in the same figure (dashed
lines). It is seen that L� decreases as V0 increases, but for
small voltages L� is largest for high concentrations, while the

FIG. 6. (Color online) The instability length scale L� (full line)
and most unstable wavelength λmax (dashed line) plotted versus
bias voltage V0. The concentration varies between the values c0 =
{1 mM,10 mM,100 mM} and the length L = 100 μm was used.
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opposite is true for high voltages. The reason for this reversal
is that the interfacial voltage drops are largest for large c0.
At small voltages the bulk driving force in the systems with
large c0 is therefore small, and this causes the system to be
less unstable than the low c0 systems. We also see that λmax

scales in the same way as L� . While the reason for this is not
immediately obvious, it is seen to follow from the analytical
expressions. Inserting Eq. (29) in Eq. (42) yields

L� = λmax

2π

ξ + 2πL
λmax

ξ − γ̄
(

2πL
λmax

)2 , (43)

which confirms the approximate scaling between L� and λmax.
The connection between L� and λmax implies that λmax sets the
scale, not only for the variations in the horizontal direction, but
also for variations in the vertical direction. We might therefore
expect that the ramified electrodeposits, emerging at much
longer times than �−1

max, have a universal length scale roughly
set by λmax.

VII. DISCUSSION

The main feature which sets our work apart from previous
stability analyses of electrodeposition is the inclusion of
the overlimiting regime. Presumably this regime has so far
been avoided due to the nonlinearities arising at overlimiting
current, which necessitate a more complicated treatment. How-
ever, the overlimiting regime is highly relevant for ramified
growth problems [7,8]. As seen in Fig. 5, the instability growth
rate increases markedly in the overlimiting regime, and there is
also a change in qualitative behavior between the two regimes.
Of course, the conclusions we reach, based on our model, are
only strictly valid for planar electrodes. It does, however, seem
reasonable to expect that the most unstable wavelength λmax

is comparable to the characteristic dimensions encountered
in a ramified growth experiment. Our analysis can thus be
used to rationalize experimental results. In this regard, our
analytical models are particularly useful, since they allow for
easy computation of the key quantities for other systems than
the one treated here.

Perhaps the most important application of the stability
analysis is as a means of validating more elaborate numerical
models of ramified growth. A model of ramified growth
must necessarily deal with a moving interface, and this,
as well as other complications, makes for highly complex
numerical models. To validate such models it is very useful to
have a comparatively simple model, like the present one, to
benchmark against in the relevant limit. Indeed, this was what
originally motivated us to treat the stability problem.

An obvious shortcoming of the given analysis is the
restriction to a steady-state zeroth-order solution. The principal
reason for this choice is that it makes for a simpler problem.
Furthermore, the numerical ramified growth model, to which
we wish to compare our model, is at present also restricted to
quasisteady state. In time, we wish to extend both models to
the fully transient regime.

There is, however, some physical justification for making
the steady-state assumption. As seen in Fig. 5, the growth rate
� is considerably smaller than unity in a large part of the
investigated parameter space. The time it takes the system to

reach steady state is given by the diffusive time, which in our
normalization has the value one. Thus, as long as � is much
smaller than unity, the system reaches steady state long before
any instabilities build up. In this case it is therefore justified to
assume steady state. It should be noted that in this argument we
make the reasonable assumption that the true growth rate in the
transient regime does not significantly exceed the steady-state
value.

In the numerical model we employ the widely used Butler-
Volmer model with equal cathodic and anodic charge-transfer
coefficients. The analytical model is however not restricted
to this particular reaction model. In deriving the analytical
results we only required that the charge-transfer coefficients
vary slowly with the interfacial potential drop and the cation
concentration. Thus, we expect the analytical model to apply
equally well to Marcus kinetics and Butler-Volmer kinetics
with asymmetric charge-transfer coefficients. Also, the effects
of an electric double layer can be included implicitly by
applying the Frumkin correction.

In future work, it would of course be interesting to extend
the implicit general modeling of the electric double layers to
explicit and more specific schemes, such as those presented in
Refs. [31–34]. Also, it would be relevant to study the influence
of advection on the morphological stability, in particular the
effect of electroosmotic instabilities [17–19].

Finally, we hope that our results may inspire experimen-
talists in the field to analyze electrodeposition experiments in
terms of our theoretical framework.

VIII. CONCLUSION

We have successfully solved the stability problem in the
under- and overlimiting regime for the case of a copper sulfate
solution trapped between two copper electrodes. In addition to
the numerical solution of this particular problem, we have de-
rived analytical solutions valid in either the overlimiting or the
underlimiting limit. The behavior in the overlimiting regime
differs qualitatively from the behavior in the underlimiting
regime, and we find that the electrode becomes increasingly
unstable as the current is increased above the limiting current.
The stability analysis, and in particular the analytical limits,
are valuable both for rationalizing experimental results and
for validating more elaborate numerical models of ramified
growth.

APPENDIX A: THE ELECTRONEUTRAL LIMIT

In the limit where the electrolyte is locally electroneutral
and the time derivatives in the first-order transport problem are
negligible, analytical solutions to the problem can be obtained.
Setting the point of zero electrostatic potential at x = 1, it is
easily found that

c = c+ = c− = eZφ. (A1)

It follows that c = eZ(φ0+φ1) ≈ eZφ0 + eZφ0
Zφ1, and thus

c0 = eZφ0
and c1 = eZφ0

Zφ1. (A2)

Solving the zeroth-order problem yields

c0 = 1 − J 0(x − 1), Zφ0 = ln[1 − J 0(x − 1)]. (A3)
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Using the electroneutrality assumption in Eq. (26a) we find

0 = ∂2
x c∗ − k2c∗. (A4)

This equation has two solutions, but as long as the perturbation
wavelength is considerably smaller than the electrode spacing,
the solution which increases with x is dominant:

c∗ ≈ Cek(x−2), (A5)

where C is a constant to be determined. From Eq. (A2) we
then find

φ∗ = 1

Z

c∗

c0
= C

Z

ek(x−2)

1 − J 0(x − 1)
. (A6)

At the upper electrode, x = 2, the first-order reaction rate is
(we set Fu = 1)

R∗
u

K0
= eαcZ(φ0+Vu)[c∗ + ∂xc

0 + c0(αa + αc)Z(φ∗ + ∂xφ
0)]

+ R0
u

K0
[γ̄ k2 − αaZ(φ∗ + ∂xφ

0)]. (A7)

Evaluating the fields at x = 2, this expression becomes

R∗
u

K0
= (1 + αa + αc)(C − J 0)eαcZ(φ0+Vu)

+ J 0

K0

[
γ̄ k2 − αa

C − J 0

1 − J 0

]
. (A8)

The first-order current into the upper electrode is J ∗ =
−∂xc

∗ = −kC, meaning that

− kC = R∗
u = (1 + αa + αc)(C − J 0)K0e

αcZ(φ0+Vu)

+ J 0γ̄ k2 − αaJ0
C − J 0

1 − J 0
, (A9)

and solving for C, we obtain

C = J 0
(1 + αa + αc)K0e

αcZ(φ0+Vu) − γ̄ k2 − αa
J 0

1−J 0

(1 + αa + αc)K0eαcZ(φ0+Vu) + k − αa
J 0

1−J 0

.

(A10)

The growth rate can be expressed as

� = −a3c0J
∗ = a3c0kC, (A11)

so we have

� = a3c0kJ 0 ξ − γ̄ k2

ξ + k
, (A12)

with the parameter ξ given as

ξ = (1 + αa + αc)K0e
αcZ(φ0+Vu) − αa

J 0

1 − J 0
. (A13)

To test whether the time derivatives in the first-order
problem really are negligible, we compare the time derivative
term 2�c∗ with the transverse diffusion term k2c∗. Since
Eq. (A12) implies � � a3c0kJ 0, our assumption is justified
if

2a3c0J
0 � k. (A14)

Consequently, because a3c0 � 1 for dilute systems and J 0

is of order unity, it is justified to neglect the time derivative,

unless the perturbation wavelength is much larger than the
electrode spacing.

The critical wave number kc is found by setting the
nominator in Eq. (A12) equal to zero,

kc =
√

ξ

γ̄
. (A15)

To find the wave number kmax, at which � attains its maximum
�max, we set the derivative of � equal to zero and solve for k,

kmax = ξ

2

[(
2 − ξ γ̄ + 2

√
1 − ξ γ̄

ξ γ̄

)1/3

+
(

2 − ξ γ̄ + 2
√

1 − ξ γ̄

ξ γ̄

)−1/3

− 1

]
, (A16)

with the asymptotic solutions,

kmax ≈
⎧⎨
⎩

(
ξ

3γ̄

)1/2
, for γ̄ ξ � 1,(

ξ 2

2γ̄

)1/3 − ξ

2 , for γ̄ ξ � 1.
(A17)

APPENDIX B: THE STRONGLY NONLINEAR LIMIT

In the limit where the driving force is very large, some of
the terms in Eqs. (26a) and (26b) become dominant, which
makes an analytical solution of the problem possible.

If the system is strongly driven, the field gradients are large
close to the upper electrode, and this makes the electrode
surface much more unstable. It follows that a larger k value
is needed for the surface tension to stabilize the system, so
the most unstable value of k will be larger than for less driven
systems. In the strongly driven limit, we might therefore expect
that Eq. (26b) largely is a balance between ∂2

xφ∗ and k2φ∗ in
the region of interest. This leads us to making the ansatz

φ∗ = �ek(x−2), (B1)

where � is a constant. We now consider Eq. (26a) for the
cation concentration, neglecting the left-hand side

0 = −∂x{−∂xc
∗
+ − Zc∗

+∂xφ
0 − Zc0

+∂xφ
∗}

− k2(c∗
+ + Zc0

+φ∗). (B2)

We assume that the terms ∂xc
∗
+ and Zc∗

+∂xφ
0 are negligible

compared to Zc0
+∂xφ

∗ and insert the ansatz Eq. (B1),

0 ≈ Z∂xc
0
+kφ∗ + Zc0

+k2φ∗ − k2(c∗
+ + Zc0

+φ∗) (B3)

≈ Z∂xc
0
+kφ∗ − k2c∗

+, (B4)

implying that

c∗
+ ≈ Z

k
∂xc

0
+φ∗. (B5)

To test the assumptions leading to this result, we need
expressions for c0

+, ∂xc
0
+, and ∂xφ

0. From Ref. [16] we have
such expressions, and in the extended space-charge region
(ESC) they take the simple forms

c0
+(x) ≈

√
2
λ̄D

Z

√
J 0

[
x − 1 − 1

J 0

]−1/2

, (B6)
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∂xc
0
+(x) ≈ −

√
2

2

λ̄D

Z

√
J 0

[
x − 1 − 1

J 0

]−3/2

, (B7)

∂xφ
0(x) ≈ −

√
2

λ̄D

√
J 0

[
x − 1 − 1

J 0

]1/2

. (B8)

The width of the ESC is given as LESC = 1 − 1/J 0, so in the
region close to the electrode, compared to the width of the
ESC, the fields can be written as

c0
+(x) ≈

√
2
λ̄D

Z

√
J 0L

−1/2
ESC , (B9)

∂xc
0
+(x) ≈ − c0

+
2LESC

, (B10)

∂xφ
0(x) ≈ −Zc0

+
λ̄2

D

LESC. (B11)

Evaluating ∂xc
∗
+ we find

∂xc
∗
+ ≈ Z

k

3c0
+

4L2
ESC

φ∗ − Z
c0
+

2LESC
φ∗, (B12)

which is seen to be much smaller than Zc0
+∂xφ

∗ if

2k � 1

LESC
, (B13)

that is, if the perturbation wavelength satisfies

λ̄ � 4πLESC. (B14)

Similarly, we find that Zc∗
+∂xφ

0 is much smaller than Zc0
+∂xφ

∗
if

λ̄2 � 8π2

Z2

λ̄2
D

c0+(2)
. (B15)

Finally, the ansatz Eq. (B1) is justified if 2λ̄2
Dk2φ∗ � Zc∗

+,
which is equivalent to

λ̄3 � 32π3

Z2

λ̄2
D

c0+(2)
LESC. (B16)

This last requirement is seen to follow if the two first
requirements Eqs. (B14) and (B15) are fulfilled.

In the strongly driven regime, where Eqs. (B14) and (B15)
are satisfied, the first-order current is approximately

2J ∗
+ ≈ −Zc0

+∂xφ
∗ = −Zkc0

+�, (B17)

at the upper electrode. The zeroth-order diffusive contribution
is also very small at the upper electrode, meaning that we can
simplify Eq. (A7)

R∗
u ≈ K0e

αcZ(φ0+Vu)c0
+(αa + αc)Z(φ∗ + ∂xφ

0)

+R0
u[γ̄ k2 − αaZ(φ∗ + ∂xφ

0)] (B18)

≈ K0e
αcZ(φ0+Vu)(αa + αc)(c0

+Z� − 2J 0)

+R0
u

[
γ̄ k2 − αa

(
Z� − 2J 0

c0+

)]
. (B19)

Inserting R∗
u = J ∗

+ ≈ − 1
2Zkc0

+� we find

Z

2
kc0

+� = kJ 0
2(αa + αc)K0e

αcZ(φ0+Vu) − γ̄ k2 − αa
2J 0

c0+

2(αa + αc)K0eαcZ(φ0+Vu) + k − αa
2J 0

c0+

,

(B20)

and since � = −a3c0J
∗
+,

� = a3c0kJ 0 ξ − γ̄ k2

ξ + k
(B21)

with

ξ = 2(αa + αc)K0e
αcZ(φ0+Vu) − αa

2J 0

c0+
. (B22)

Like in the electroneutral limit, neglecting the time derivative
in the first-order problem is justified, unless the perturbation
wavelength is much larger than the electrode spacing. The
expressions (A15) and (A16) are also valid for the strongly
nonlinear limit, if we use the nonlinear expression for ξ .
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