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Based on the method of moments, we derive a general theoretical expression for the
time-dependent dispersion of an initial point concentration in steady and unsteady
laminar flows through long straight channels of any constant cross-section. We retrieve
and generalize previous case-specific theoretical results, and furthermore predict new
phenomena. In particular, for the transient phase before the well-described steady
Taylor–Aris limit is reached, we find anomalous diffusion with a dependence of the
temporal scaling exponent on the initial release point, generalizing this finding in
specific cases. During this transient we furthermore identify maxima in the values
of the dispersion coefficient which exceed the Taylor–Aris value by amounts that
depend on channel geometry, initial point release position, velocity profile and Péclet
number. We show that these effects are caused by a difference in relaxation time
of the first and second moments of the solute distribution and may be explained by
advection-dominated dispersion powered by transverse diffusion in flows with local
velocity gradients.
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1. Introduction
We have previously developed a compact and comprehensive analytical theory for

the dispersion in any unsteady flow valid for any initial distribution of solute (Vedel
& Bruus 2012). Motivated by the vast majority of the literature, e.g. Taylor (1953),
Aris (1956), Barton (1983), Watson (1983), Mukherjee & Mazumder (1988), Ajdari,
Bontoux & Stone (2006) and Paul & Mazumder (2008), that paper focused on the
important special case of initial transverse uniform distribution. Here, we consider the
logical next special case of an initial point distribution. Although no less important
in neither practical nor theoretical regards (e.g. Fallon, Howell & Chauhan 2009),
this case has attracted considerably less attention. Presumably this failing interest
is, at least in part, due to its mathematical difficulty: the first treatments of the
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problem focused on steady linear shear flow (Foister & van de Ven 1980; Rhines
& Young 1983), which were followed by work neglecting the confining walls for
a time-oscillating linear shear flow (Leighton 1989) and steady Poiseuille flow in a
circular cross-section (Latini & Bernoff 2001), before Camassa, Lin & McLaughlin
(2010) recently presented steady-flow solutions for both the parallel-plate and circular
cross-sections which did include the physical boundary conditions at the wall.

The framework put forth in Vedel & Bruus (2012) is easily applied to the
present problem, and allows for both general conclusions independent of the specific
cross-section, physical interpretation and treatment of particular channel geometries.
Hence, in the following we present the general theoretical expression for the effective
diffusivity Deff of a point concentration valid for any steady or unsteady flow in a
straight channel of any (but constant) cross-section. We focus on steady flows and
only briefly touch on unsteady flows, because the latter do not lead to qualitatively
different results. We identify and explain fundamental transient phenomena in Deff

before the well-described Taylor–Aris limit of transversely uniform solute distribution
is reached by transverse diffusion.

2. The initial point distribution and its physical relevance
We consider an initial distribution of No solute molecules which are confined to a

single point ro in space. The initial condition c̃ for the dimensionfull concentration
c(r, t) is

c̃(x, r⊥)= c(r, 0)=No δ(r − ro), (2.1)

where δ(x) is the three-dimensional Dirac delta function. This concentration is
released in a long, straight and translational-invariant channel of length L , which is
parallel to the x-axis and has a constant cross-section Ω with area A . The transverse
coordinates are denoted r⊥ = (y, z) and the full coordinates as r = (x, r⊥). For
convenience we define the origin in the axial direction by the initial solute position,
so ro = (0, ro

⊥).
The initial point distribution is an idealized physical model of a droplet of

solute. This has practical interest as a model of e.g. drugs injected into the blood
stream (Fallon et al. 2009) or additives injected into flows in industrial applications.
Furthermore, the point distribution is the next logical step following the transverse
uniform distribution in building basic physical understanding of the dispersion
phenomenon and the roles of the different basic physical processes of varying
fluid speed and diffusion; finally, the Dirac delta function of (2.1) has attractive
mathematical properties which makes this problem analytically tractable.

3. Mathematical expression for the effective diffusivity Deff

Using Aris’s method of statistical moments Mi for the solute distribution, the
effective diffusivity Deff of a solute is determined from the time derivative of the
variance µ2(t) about the solute centre of mass (Aris 1956, 1960; Barton 1983;
Mukherjee & Mazumder 1988)

Deff (t)= 1
2

dµ2(t)
dt
= 1

2
dM2

dt
−M1

dM1

dt
, (3.1)

where the full moments M2(t), M1(t) and the time derivative dM1(t)/dt for any
initial distribution are defined in (3.18) of Vedel & Bruus (2012). Owing to the time
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derivative, the statistic Deff (t) in (3.1) measures the instantaneous changes to the axial
dispersion of the solute (the solute variance) and thus is the natural measure for
investigating time-dependent dispersion phenomena. The spatiotemporal dependencies
of Mi are treated by a diffusion-eigenmode expansion in space and a Fourier expansion
in time. We present only the main expressions using non-dimensional variables and
refer the reader to Vedel & Bruus (2012) for the full description of the formalism.

Using the Dirac bra-ket notation for Hilbert spaces, the time-independent
orthonormal basis for the spatial expansion

∣∣ f (x, r⊥, t)
〉 = ∑n An(x, t)

∣∣ fn(r⊥)
〉

of
any function f (x, r⊥) consists of the diffusion eigenmodes

∣∣ fn(r⊥)
〉

with eigenvalues
λn defined by

(λn +∇2
⊥)
∣∣ fn(r⊥)

〉 = 0, n= 0, 1, 2, . . . , (3.2a)

n · ∇⊥
∣∣ fn(r⊥)

〉 = 0, on all walls, (3.2b)〈
fn| fm

〉 = δn,m, (3.2c)

where the inner product
〈
f |g〉 for function pairs f (x, r⊥, t) and g(x, r⊥, t) is defined

as
〈
f |g〉= 1

V

∫ L /2

−L /2
dx
∫

Ω

dr⊥ f ∗(x, r⊥, t) g(x, r⊥, t), (3.3)

with ∗ indicating complex conjugation and V = A L . For functions f⊥(r⊥, t) and
g⊥(r⊥, t) depending only on r⊥, we obtain

〈
f⊥|g⊥

〉= (1/A )
∫
Ω

dr⊥ f ∗⊥(r⊥, t)g⊥(r⊥, t),
since the x-integration trivially gives unity. The index n is enumerating the eigenmodes
by ascending eigenvalue, λn 6 λn+1. However, in the case of symmetric cross-sections,
e.g. axisymmetric or mirror symmetric as in § 5, the enumeration is better done
using pair indices (n, m) in which case n is replaced by (n, m) and sums

∑∞
n=0

are replaced by
∑∞

n=0

∑∞
m=0. We emphasize that the use of this Hilbert-space

representation of the spatial dependencies does not introduce new physics, but merely
serves as a convenient notation: it allows us to express our theoretical results in a
compact, general and physically transparent form that is independent of the channel
cross-section, and whose structure reveals how the involved processes of advection,
diffusion and external actuation interact to produce the dispersion.

The physical time t̃ is substituted by the dimensionless time t = Dt̃/L2
o, where Lo

is characteristic length scale and D is the solute diffusivity. The temporal dependence
is then expressed by Fourier expansions in the harmonics of the dimensionless base
frequency ωo = L2

oω̃o/D, where ω̃o is a dimensionfull base frequency of the pulsatile
flow. This can also be written as ωo=Wo2Sc, where Wo=√L2

oω̃o/ν is the Womersley
number of the pulsatile flow in the channel, Sc= ν/D is the Schmidt number and ν
the kinematic viscosity (momentum diffusivity). The velocity field v in the channel is
normalized by a characteristic velocity Uo and is assumed to be axis parallel, e.g. of
the form v= u(r⊥, t)ex. Thus, u(r⊥, t) is represented by

u(r⊥, t)=
∞∑

`=−∞
u`(r⊥) ei`ωot, ωo =Wo2Sc= L2

oω̃o

D
, (3.4)

where complex notation with i=√−1 is introduced for the time. By demanding that
u−`(r⊥)= u∗`(r⊥), we ensure that the velocity field is real.
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Using this notation, the effective diffusivity Deff of (3.1) is determined by inserting
the initial point distribution of (2.1) into (3.18) of Vedel & Bruus (2012). After
straightforward algebra we obtain the result

D point
eff = 1+ Pé2

∞∑

n=0

∞∑

m=0

∞∑

`=−∞

∞∑

k=−∞
fn(ro

⊥)
〈
uk| fm

〉
e−(λm+ikωo)t

×
[〈

fm

∣∣u`
∣∣ fn
〉e(λm−λn+i`ωo)t − 1
λm − λn + i`ωo

+ fm(ro
⊥)
〈
u`| fn

〉e−(λn+i`ωo)t − 1
λn + i`ωo

]
. (3.5)

For the important special case of steady flow given by
∣∣ u`
〉= δ`,0

∣∣ u0
〉
, this simplifies

to

D pnt,std
eff = 1+ Pé2

∞∑

n=0

∞∑

m=0

fn(ro
⊥)
〈
u0| fm

〉
e−λmt

×
[〈

fm

∣∣u0

∣∣ fn
〉e(λm−λn)t − 1
λm − λn

+ fm(ro
⊥)
〈
u0| fn

〉e−λnt − 1
λn

]
. (3.6)

Terms of the form (e0t− 1)/0 are to be interpreted as the limiting value limq→0
[
(eqt−

1)/q
]= t. To facilitate some of the subsequent discussion we also give the following

form of (3.6), where the m=0 term and n=0 term have been separated out explicitly,

D pnt,std
eff = 1+ Pé2

{ ∞∑

n=1

〈
u0| fn

〉[
fn(ro

⊥)
(〈

fn

∣∣u0

∣∣ fn
〉− 〈u0|1

〉)
t e−λnt

+ 〈 fn|u0
〉1− e−λnt

λn
+ f 2

n (r
o
⊥)
〈
u0| fn

〉e−2λnt − e−λnt

λn

]

+
∞∑

n=1

∞∑

m=1
m6=n

fn(ro
⊥)
〈
u0| fm

〉[〈
fm

∣∣u0

∣∣ fn
〉e−λnt − e−λmt

λm − λn

+ fm(ro
⊥)
〈
u0| fn

〉e−(λm+λn)t − e−λmt

λn

]}
. (3.7)

From this expression it is obvious that we recover the well-known result from
transversely uniform initial distributions (Barton 1983) in the long-time limit t� 1/λ1
where all transient exponential terms have vanished,

D point
eff (∞)=Dunif

eff (∞)= 1+ Pé2
∞∑

n=1

|〈u0| fn
〉|2

λn
. (3.8)

The ro
⊥ dependence has dropped out since f0(r⊥)= 1, and as expected in this limit, the

initial point concentration has spread out uniformly in the transverse direction. Only
in the initial transient period t . 1/λ1 does the initial point case deviate from the
transverse uniform case, and we consequently only study this period in the rest of
this paper.

The infinite sums above are formal expressions that have not been analysed for
general convergence properties. However, as seen in § 6 and our previous work
(Vedel & Bruus 2012) we have made direct comparisons between specific theoretical
predictions derived from our formal theory and direct numerical simulations, and
found good agreement in all cases.
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4. General observations on point concentration dispersion

Many features of the behaviour of D point
eff (t) are similar to the transversely uniform

case Dunif
eff (t), including the scaling with Pé2, the additivity of the response to the flow

frequencies, the frequency-doubled response at 2ωo` to any flow frequency ωo`, the
negative values of D point

eff at large amplitudes of the oscillating flow components, and
the long-time behaviour, t� 1/λ1. Negative values of D point

eff has previously been found
for point releases in unbounded harmonically oscillating linear shear flows (Leighton
1989), but the theory above shows that this is a general feature of bounded flows as
well. Here D point

eff depends on the initial release position through fn(ro
⊥) in any cross-

section, thereby generalizing the ro
⊥-dependence found for a few specific cross-sections

(Latini & Bernoff 2001; Camassa et al. 2010). Furthermore, and contrary to the case
of transverse uniform distributions, the centre of mass initially does not move with
the channel mean speed but relaxes to it on the time scale 1/λ1.

Equations (3.5) and (3.6), valid for any channel cross-section, explicitly confirm
the hypothesis put forth by Latini & Bernoff (2001) and supported by Camassa
et al. (2010) that transient anomalous diffusion – a time-dependent D point

eff – is a
hallmark of Taylor–Aris dispersion of point concentrations; this of course going
beyond the transient phase of anomalous Dunif

eff ∝ t exhibited by transverse uniform
initial distributions before they reach the steady Taylor–Aris limit. In § 6.1, we show
the existence of anomalous diffusion with power-law exponents 2 and 3 in the
temporal scaling of D point

eff both by using (3.6) and by direct numerical simulation of
the governing advection–diffusion equation. We find that these two methods are in
quantitative agreement.

We have not been able to provide closed analytical expressions based on (3.5)
and (3.6) for this anomalous diffusion behaviour of D point

eff (t). However, the prefactors〈
u`| fm

〉
and

〈
fm

∣∣u`
∣∣ fn
〉

are decaying sufficiently rapidly to ensure convergence.
For example, for the parallel-plate system detailed in § 5, the mode index for the
horizontal mode is always zero, and for the vertical mode index we find for a
steady Poiseuille flow that fm(ro

⊥) ∝ cos
[
mπ(1 + z0)/2

]
, λm ∝ m2,

〈
u0| fm

〉 ∝ m−2,〈
fm

∣∣u0

∣∣ fm
〉 ∝ m−2 and

〈
fm

∣∣u0

∣∣ fn
〉 ∝ (m2 + n2)/(m2 − n2)2. Applying the triangle

inequality on the absolute value of the double sum, an upper bound is found by
setting all time-dependent factors and terms |fm(ro

⊥)| equal to unity resulting in
convergent sums. Note, that in this argument we do not rely neither on the cut-offs
supplied by the decaying exponential factors nor on the alternating signs provided
by the factors fm(ro

⊥), two features which further speed up convergence. For general
non-integrable cross-sections, we suggest that statistical estimates for D point

eff may
be obtained applying random-matrix theory on the quantities fm(ro

⊥),
〈
u`| fn

〉
, and〈

fm

∣∣u`
∣∣ fn
〉
, a method that has been successfully applied to problems in nuclear

physics and condensed matter physics (Mehta 2004).
In the rest of the paper we apply our general theory to the special cases of the

circular tube and the parallel-plate channel, since we found in our previous paper that
general channel cross-section geometries only deviate by having two inherent time
scales but otherwise exhibit the same dynamics (Vedel & Bruus 2012).

5. Specific eigenmodes, flow fields and overlap integrals
For a circular channel of radius a, the laminar flow field of magnitude Uo is

assumed to be axisymmetric, a symmetry not possessed by the concentration field
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due to the initial point concentration. The radial coordinate is normalized by a
so 0 < r < 1 while the azimuthal angle φ is between 0 and 2π. The pair index
eigenmodes

∣∣ fnm
〉
, flow field Fourier components

∣∣ u`
〉

(in units of Uo) and overlap
integrals

〈
fnm|u`

〉
, thus become

∣∣ fnm(r, φ)
〉 = δn,0δm,0 + (1− δn,0δm,0)

[
1− n2

ξ 2
m,n

]−1/2 Jn(ξm,nr)
Jn(ξm,n)

einφ, (5.1a)

λnm = (1− δn,0δm,0) ξ
2
m,n, n,m= 0, 1, 2, . . . , (5.1b)

∣∣ u`
〉 = ε`

8
k2
`

[
J0(k`r)
J0(k`)

− 1
]
, k` =

√−i`ωo/Sc, (5.1c)

〈
fnm|u`

〉 = −ε`δn,0

[
δ`,0

8
ξ 2

1,m
+ (1− δ`,0) 16

(ξ 2
1,m − k2

`)k`

J1(k`)
J0(k`)

]
. (5.1d)

Here Jn is the nth-order Bessel function, ξn,m is the mth root of the derivative
J′n(ξn,m) = 0 and ε` is the relative amplitude of the `th Fourier component of the
velocity field. We compute the remaining overlap integrals

〈
f0m

∣∣u`
∣∣ f0m

〉
in D point

eff
numerically. Note that axisymmetry of the velocity field implies that only the n= 0
term can be non-zero in

〈
fnm|u`

〉
and the azimuthal angle φ drops out.

For the infinite parallel-plate channel of height h in the xy plane and aligned with
the x-axis, the height coordinate z is normalized by the half-height a = h/2 such
that −1 6 z 6 1. Using the same length scale, the width coordinate is restrained to
the interval −R < y < R, where R is a cutoff introduced to regularize the transverse
diffusion eigenmodes. For an initial point concentration placed at ro

⊥ = (0, z0), our
analysis is thus a priori restricted to times less than the diffusion time R2a2/D
where no molecules have had time to reach the cutoff at y = ±R. The pair-index
eigenmodes

∣∣ fnm
〉
, flow field Fourier components

∣∣ u`
〉

(in units of Uo), and overlap
integrals

〈
fnm|u`

〉
thus become

∣∣ fnm(y, z)
〉 = 2√

(1+ δn,0)(1+ δm,0)
cos
[
n
π

2

(
1+ y

R

)]
cos
[
m

π

2
(1+ z)

]
(5.2a)

λnm =
(nπ

2R

)2 +
(mπ

2

)2
, n,m= 0, 1, 2, . . . (5.2b)

∣∣ u`
〉 = ε`

3
k`2

[
cos (k`z)
cos (k`)

− 1
]
, k` =

√−i`Wo, (5.2c)

〈
fnm|u`

〉 = ε`
6
√

2
(
1+ (−1)m

)
δn,0√

1+ δm,0

1
k`

tan (k`)− δm,0

4k`2 −m2π2
. (5.2d)

The remaining overlap integrals
〈

f0m

∣∣u`
∣∣ f0n
〉

are computed numerically, but for the
steady flow we find

〈
f0n

∣∣u0

∣∣ f0m
〉=

[
1− 3

π2m2

]
δm,n − (1− δm,n)

12
[
1+ (−1)n+m

]
(m2 + n2)

π2(m2 − n2)2
. (5.2e)

Note that the y-independence of the velocity field implies that only the n= 0 term can
be non-zero in

〈
fnm|u`

〉
. The resulting expressions thus depend neither on the width

coordinate y nor on the value of the transverse cutoff R, and consequently the results
are valid for all times following the release.
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FIGURE 1. (a) Plot of D pnt,std
eff (t) of (3.6) in a circular cross-section at steady flow Pé=100

with initial droplet position ro
⊥ = (r0, φ0). It exhibits a peak with a relative amplitude of

1 % before relaxing to the Taylor–Aris limit (inset). (b1)–(b2) Comparison of the theory
(line) for the circular cross-section with ro

⊥ = (0, 0) at Pé = 10 to axisymmetric direct
numerical simulation (circles, see appendix A) of D pnt,std

eff (t) confirming the slope of the
transient and the peak. (c) Plot of D pnt,std

eff (t) of (3.6) in a parallel-plate cross-section at
steady flow Pé= 100 with ro

⊥= (z0, y0). The relative peak amplitudes are markedly lower
(less than ζ = 10−6, see inset) due to the lack of velocity gradients in the y direction. (d)
Maximum peak amplitude P =maxt

{
1D pnt,std

eff (t)
}

in a circular cross-section confirms the
scaling P ∝ Pé2 predicted by (6.2).

6. Point releases in steady flows

Using our analytical result for D point
eff , we now study the transient development of the

dispersion D pnt,std
eff (t) in steady flows. In figure 1(a,b) it is shown for times up to the

Taylor–Aris limit for a circular cross-section with initial position ro
⊥ = (r0, φ0) and in

figure 1(c) for a parallel-plates channel with ro
⊥= (z0, y0). Note that we have confirmed

our analytical results by direct numerical simulation in figure 1(b) with details of the
numerical simulations given in appendix A.
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6.1. Scaling with time in the transient phase
The initial phase dominated by molecular diffusion (D pnt,std

eff ≈ D∝ t0) is followed by
a transient phase where D pnt,std

eff ∝ ts with the ro
⊥-dependent exponent s = s(ro

⊥) > 2.
Finally, D pnt,std

eff reaches the Taylor–Aris limit of complete transverse mixing with the
time-independent dispersion D pnt,std

eff ∝ t0. For the circular channel, off-axis releases
ro
⊥ = (r, φ0) lead to the scaling D pnt,std

eff ∝ t2, while an on-axis release ro
⊥ = (0, 0)

leads to the dispersion D pnt,std
eff ∝ t3 due to the vanishing of the on-axis radial velocity

gradient. This scaling behaviour is the same for the two geometries, while the limiting
value D point

eff (∞) and the transverse diffusive time scale 1/λ1 of course do depend on
the specific geometry. The initial position also affects the waiting time before the axial
dispersion increases past pure diffusion; it is longer for channel-centre releases than
for off-centre releases. This is in agreement with both short-time studies ignoring the
wall (Foister & van de Ven 1980; Rhines & Young 1983; Latini & Bernoff 2001) and
a study that employed a stochastic differential equation approach to specifically these
two geometries including the confining wall (Camassa et al. 2010).

We can rationalize these temporal scalings using a simple physical model capturing
the essentials of the phenomenon. Consider a Poiseuille velocity profile u(r) ∝ 1 −
r2 in a circular channel, and let a point concentration be released at the position
r0. For short times, the radial diffusion of the solute is well described by molecular
diffusion with a spread 1r(t)∝√t around r0. This radial diffusion implies different
axial displacements 1x±=

∫
u
[
r0±1r(t)

]
dt. For the Poiseuille profile we find 1x±∝

(1− r2
0)t− (1/2)t2∓ (4/3)r0t3/2. With the centre of mass of the solute being displaced

axially as x∝ u(r0)t, the variance about this centre of mass will scale as

µ2(t)=
〈
(x− x)2|c〉∝ 1

2

[
(1x− − x)2 + (1x+ − x)2

]
= 1

4 t4 + 16
9 r2

0t3. (6.1)

Hence, in general the short-time scaling is D pnt,std
eff ∝ dµ2/dt ∝ t2, except when the

initial release point is at the channel centre r0 = 0, in which case D pnt,std
eff ∝ t3. These

scalings agree with the observations from figure 1. Due to diffusion across streamlines
separating regions of different flow speeds, the transient dispersion along the direction
of the flow proportional to t2 or t3 is faster even than the ‘ballistic’ dispersion by
pure advection (i.e. D pnt,std

eff ∝ t). Furthermore, the difference in initial waiting time is a
result of the small velocity gradients present in the vicinity of the centre axis. A point
concentration starting at the centre axis must diffuse greater distances than off-axis
release points to experience a substantial speed change which leads to the increase in
D pnt,std

eff above unity. Hence, while it is powered by transverse diffusion, the transient in
D pnt,std

eff at small times is caused by the advective stretching of the solute, and D pnt,std
eff

is consequently not expected to be diffusive.
We observe that D pnt,std

eff (t) for ro
⊥= (0.75, 0) in both cross-sections (panels a and c)

for small times changes from a t2 to t scaling, seemingly violating the explanation just
given. This is because the solute in this case quickly begins to interact with the wall,
which limits the different speeds sampled by the transversely diffusing solute. This
effect is not included in the simple model. As the channel wall is always felt, similar
to the case of transverse uniform initial distribution (see § 4), the speed variations
sampled by the solute is smaller than for a bulk release, and this changes the scaling
to D pnt,std

eff ∝ t.



Time-dependent Taylor–Aris dispersion of an initial point concentration 115

6.2. Peaks in the effective diffusivity

Contrary to the transverse uniform case, peaks in D pnt,std
eff (t) exceeding the Taylor–Aris

limit Deff (∞) are observed in both geometries before this limit is finally reached,
see the insets in figure 1(a,c). The existence of this phenomenon has also been
confirmed by direct numerical simulation for a centreline initial position in a circular
cross-section at Pé= 10 in figure 1(b2).

6.2.1. Mathematical analysis
Since the peaks exceed the dispersion for transverse uniform distributions, we can

study the peaks by subtracting from (3.6) the dispersion from a transverse uniform
initial distribution Dunif

eff (t) = 1 + Pé2 ∑∞
n=1 |

〈
fn|u0

〉|2/λn
(
1− e−λnt

)
(Vedel & Bruus

2012). We therefore investigate 1D pnt,std
eff (t)=D pnt,std

eff (t)−Dunif
eff (t) and write this using

(3.7) as

1D pnt,std
eff (t) = Pé2

{ ∞∑

n=1

〈
u0| fn

〉[
fn(ro

⊥)
(〈

fn

∣∣u0

∣∣ fn
〉− 〈u0|1

〉)
t e−λnt

+ f 2
n (r

o
⊥)
〈
u0| fn

〉e−2λnt − e−λnt

λn

]

+
∞∑

n=1

∞∑

m=1
m6=n

fn(ro
⊥)
〈
u0| fm

〉[〈
fm

∣∣u0

∣∣ fn
〉e−λnt − e−λmt

λm − λn

+ fm(ro
⊥)
〈
u0| fn

〉e−(λm+λn)t − e−λmt

λn

]}
. (6.2)

In the long-time limit, t � 1/λ1, the above equation is dominated by the terms
proportional to t e−λnt, since all other terms depends on time via decaying exponentials.
These dominating terms express the difference in relaxation times to the steady state
between the time rate of change of the first and second moments. Furthermore, in
this long-time limit, these dominating terms are themselves dominated by the longest-
surviving n = 1 mode, so 1D pnt,std

eff (t) ≈ Pé2
〈
u0| f1

〉
f1(ro

⊥)
(〈

f1

∣∣u0

∣∣ f1
〉− 〈u0|1

〉)
t e−λ1t

for t� 1/λ1. For t→∞ the exponential ensures that 1D pnt,std
eff (t→∞)= 0, i.e. the

retrieval of the Taylor–Aris limit as discussed previously in § 3. It also follows directly
from (6.2) that 1D pnt,std

eff (0)= 0, so for any initial position for which 1D pnt,std
eff (t)> 0 in

the long-time limit t� 1/λ1 a peak is present in D pnt,std
eff (t), as this then is converging

towards Dunif
eff (∞) from above. This corresponds to those situations where the prefactor〈

u0| f1
〉
f1(ro

⊥)
(〈

f1

∣∣u0

∣∣ f1
〉− 〈u0|1

〉)
is positive in the dominant n= 1 term. Since D point

eff

is proportional to the slope of the variance µ2, D point
eff ∝ dµ2/dt, this change in the

sign of the slope of D point
eff from positive prior to the peak to negative following the

peak signifies an inflection point in µ2. Correspondingly, the peak, along with this
inflection point, is absent wherever

〈
u0| f1

〉
f1(ro

⊥)
(〈

f1

∣∣u0

∣∣ f1
〉− 〈u0|1

〉)
< 0.

Mathematically, the peaks occur when the time derivative of the second moment
relaxes slower than the time derivative of the square of the first moment, i.e. situations
where the solute still disperses unevenly although the centre of mass has equilibrated.
Since this depends on the transient interplay of flow field and solute distribution,
it in general depends on the initial release position ro

⊥ in a complicated manner.
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For the circular cross-section where the f1 is given by (5.1a),
〈

f1|u0
〉 = −8/ξ 2

1,1,
(5.1d) and

〈
f1

∣∣u0

∣∣ f1
〉 = 4/3, the prefactor to G(t) is positive for f1(ro

⊥) < 0, i.e. for
r0 < ξ0,1/ξ1,1 = 0.63. For the parallel plates cross-section (where the lowest eigenstate
present is f02), the prefactor is positive for |z0| > 1/2 according to (5.2a) and
(5.2d) using

〈
f02

∣∣u0

∣∣ f02
〉 = 1 − 3/(4π2) > 0. These results are confirmed from

figure 1(a,c,d). Furthermore, (6.2) illustrates that the peak amplitude has the normal
scaling 1D pnt,std

eff ∝ Pé2 also found for the Taylor–Aris dispersion increase, see
figure 1(d) where we plot the maximum peak amplitude P = maxt 1D pnt,std

eff (t)
as a function of Pé. Mathematically, these peaks are absent for transverse uniform
initial solute distributions because the first and second moments relax on the same
time scale (Vedel & Bruus 2012).

6.2.2. Physical explanation
Such peaks would not be expected in a dissipative process such as diffusion, but

as discussed above, the transient is dominated by advection. This observation is
key to understanding the phenomenon. While the solute diffuses from the channel
centre to the walls on the time scale 1/λ1, the concentration field of an initial
point release is not transversely uniform at this time, but remains concentrated
towards the initial release position ro

⊥. Thus, while at the time 1/λ1 the Taylor–Aris
effect of axial dispersion sets in as the centre of mass relaxes to the channel mean
speed, the transversely non-uniform concentration field implies that more solute will
diffuse transversely outward from the release point ro

⊥ than in the opposite direction.
Therefore, the amount of solute moving from higher to lower speeds does not
equal the opposite process, which transiently results in an enhanced axial spreading
exceeding the Taylor–Aris limit Deff (∞). As the transverse distribution eventually
becomes uniform at a given axial position after the solute has made first contact
with the wall, D pnt,std

eff (t) approaches Deff (∞). It follows from these arguments and the
mathematical analysis that the largest peaks are expected to occur for values of ro

⊥
that imply the spreading of solute in the largest velocity gradients (most pronounced
variation in relaxation times between the first and second moments). For the parallel
plates, see figure 1(b), the largest effect is found when the solute is released close
to one of the walls (|z0| > 1/2), because then the solute must pass through the
high-gradient regions at both walls before reaching the opposite wall. For the circular
tube, the effect is only present when starting towards the centre since the solute then
reaches the circumference with its large velocity gradients more evenly, and a large
peak in D pnt,std

eff results, see figure 1(a). This peak value is even larger than that of the
parallel-plate channel because the circular tube has velocity gradients in two spatial
dimensions contrary to the one dimension of the parallel-plate channel. No peak is
observed if the solute is released close to the wall (r0 > ξ0,1/ξ1,1 = 0.63) because
the solute will sample a mix of large gradients along the wall and small gradients
towards the centre during the transient.

6.2.3. Increased peak amplitude in a suitably chosen velocity field
From the above explanation it is clear that a velocity profile with a larger radial

velocity gradient should lead to an increased peak amplitude. To investigate this
further, we used the velocity profile of a Ostwald–de Waele power-law fluid of
exponent q which has the rheological relationship τ = κ (∂u/∂x)q between shear
stress τ and shear rate ∂u/∂x (Ostwald 1929; Bruus 2008). We applied it only to



Time-dependent Taylor–Aris dispersion of an initial point concentration 117

Exponent q 10−1 100 101 102 103 104 105

Prel (%) 9× 10−8 1.201 3.500 3.886 3.926 3.930 3.931

TABLE 1. Maximum relative peak amplitude Prel, see (6.4), for a Ostwald–de Waele
power-law fluid with exponent q, see (6.3). For the circular tube the velocity profiles are
nearly flat for q� 1, parabolic for q= 1, and nearly linear for q� 1.

centreline releases in pressure-driven flow in the circular tube since the peaks are
more pronounced here. The velocity profile in this fluid is

u(r)= 1+ 3q
1+ q

[
1− r1+1/q

]
, (6.3)

using the average channel speed Uo = qa2
[
21/q(1 + 3q)

]−1[
1p/(L κ)

]1/q as the
velocity scale. The case of q= 1 corresponds to a Newtonian fluid with the paraboloid
velocity profile, q< 1 yields shear-thinning fluids (such as blood) with more plug-like
velocity profiles and q> 1 corresponds to shear-thickening fluids (such as corn starch
solutions) with more conic velocity profiles; the radial velocity profile becomes linear
as q tends to infinity, limq→∞ u(r)= 3 (1− r). Thus, by increasing q we achieved a
velocity profile with greater speed variations across the tube radius. The increase of
the maximum value of D pnt,std

eff from the Taylor–Aris limit is indeed found to increase
with q to as much as 3.9 %, see table 1 where we give the maximum relative peak
amplitude Prel,

Prel =
max

t

{
D pnt,std

eff (t)
}
−D pnt,std

eff (∞)
D pnt,std

eff (∞) . (6.4)

6.2.4. Why have the peaks not previously been observed?
Spatially localized initial release of the solute produces interesting inflection points

in the variance µ2, which gives rise to the peaks in the instantaneous change in
dispersion D point

eff . To the best of the authors’ knowledge, this is the first report of
such inflection points and peaks, and as shown above, the effect is also confirmed
from numerics. While the differential dispersion D point

eff studied in this paper is
proportional to the slope of the variance, Camassa et al. (2010) did not observe
the peaks using the integrated dispersion measure DCamassa

eff (t) = 1/t
∫ t

0 D point
eff (t′) dt′.

Thus, normalizing by time rather than using the slope of the variance can hide these
features, in addition to providing a less clear image of the instantaneous changes in
dispersion. Furthermore, Latini & Bernoff (2001) did not observe the effect because
it depends on the channel walls which they did not take into account. Unfortunately,
the few reported experimental investigations of the temporal evolution of Taylor–Aris
dispersion (Codd et al. 1999; Bontoux et al. 2006) have not included point releases,
so the existence of the peaks still awaits experimental verification.

In general, the cross-sectional averages underlying Aris’ method of moments are not
easily interpreted for asymmetric initial solute distributions; it is e.g. not clear that
the centre-of-mass well describes the behaviour of the entire distribution during the
transient. Using the physically transparent framework presented here allows for easier
analysis of the underlying physics, as illustrated by the identification of the root cause
of the peaks, and hence for fuller exploitation of the powerful method of moments for
non-trivial distributions.
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FIGURE 2. (a) The effective diffusivity D point
eff (t) in a purely oscillating (Womersley) flow

at (Pé,Wo,ωo)= (20,6,6) in the circular channel. Here D point
eff exhibits a frequency-doubled

response and its largest value is reached for the droplet released at the peak of the velocity
boundary layer (r0=1−Wo−1). (b) Plot of D point

eff when adding a steady flow to the flow of
(a). The largest value is now found by release points between the maximum of the steady
flow component (r=0) and the maximum of the oscillating flow component (r=1−Wo−1).
D point

eff oscillates around the Taylor–Aris value Deff (∞) for the purely steady flow. Legends
are given in (b).

7. Unsteady flows

Our analytical expression (3.5) describes the exact behaviour of D point
eff for any

unsteady flow and any initial release position ro
⊥. The behaviour of D point

eff for unsteady
flows can in general be explained as a combination of the previous results for Deff
for transverse uniform initial concentrations in any time-dependent flow (Vedel &
Bruus 2012), combined with the effects presented above which are particular to point
releases in steady flows. Hence, a lengthy discussion of the evolution of D point

eff is not
warranted, and we will therefore only briefly touch on this subject here.

The velocity profile of a Newtonian fluid in a channel exposed to a harmonically
varying pressure gradient changes systematically as the Womersley number Wo, the
non-dimensional frequency of (3.4), is increased; this is in addition to its harmonic
time dependence (Womersley 1955). At Wo< 1 the profile is the Poiseuille paraboloid,
but as Wo increases past the first root of Bessel function J0, the velocity profile will
begin to deviate as shown in the inset of figure 2(a): since momentum can no longer
diffuse across the entire channel to set up the Poiseuille profile, the maximum speed
is at some times found in a boundary layer around the wall, implying that the fluid in
the centre and within this boundary layer oscillate out of phase. The maximum value
of the speed in this boundary layer is found at the diffusion distance from the wall
set by the fluid oscillation frequency which in non-dimensional units is at the position
r = 1−Wo−1 (Vedel, Olesen & Bruus 2010). Thus, releasing the point concentration
here will produce the same effect as releasing it at the centre of the channel in
steady Poiseuille flow; since this is the point where laterally diffusing solute will
experience the greatest velocity gradients, the transient axial spreading is maximized
at this release position. This is shown to be the case by the full line in figure 2(a)
(computed for a circular tube), where furthermore the dashed and dotted lines are for
a channel centre and intermediate release points, respectively. Furthermore, the phase
lag between the velocity of the centre and the boundary layer of course means that
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a similar phase lag will be found between two droplets released in the centre and
within the boundary layer, respectively, as is also evident from figure 2(a).

The addition of a steady pressure gradient (of the same pressure amplitude) to the
pulsating component yields an oscillating flow which is nonetheless always positive,
and the position with the largest proximal speed variations is now no longer at
r = 1 − Wo−1 during the entire oscillation cycle; during the periods with a negative
contribution from the oscillating flow component in the near-wall boundary layer, the
channel centre speed will experience a positive contribution due to the transverse
phase lag of the oscillating flow field. Hence, a position between the channel centre
(r = 0) and the boundary layer (r = 1 − Wo−1) will have the largest time-averaged
proximal speed variations over a cycle, and will consequently experience the most
significant transient axial spreading. This can be seen in figure 2(b) for the position
ro
⊥ = (1/2, 0) which is clearly dominating during the transient. In general, the

release position of the largest cycle-averaged proximal speed variations will have
the most significant transient effects, even when more velocity frequencies are added.
Naturally, this position shifts as more frequencies are added. Nonetheless, our formula
(3.5) captures and contains all of these effects, and can be used to determine exactly
where this ‘optimal’ position is for any given flow, channel cross-section and release
position ro

⊥.

8. Conclusion and outlook
Using our previously described framework (Vedel & Bruus 2012), we have in

this paper presented a general expression for the dispersion D point
eff (t) of initial point

concentrations in steady and unsteady flows in a long straight channel having any
constant cross-section. While our formal expressions in §§ 3 and 4 have not been
investigated for convergence properties, we have found excellent agreement between
specific theoretical predictions obtained from these general expressions and numerical
simulations in both § 6 as well as our previous paper (Vedel & Bruus 2012). Focusing
on the transient phase prior to the well-described Taylor–Aris limit, we have showed
that transient anomalous diffusion with release-point-dependent temporal scaling
is a hallmark of Taylor–Aris dispersion for any channel cross-section, and have
furthermore identified and analysed peaks in D point

eff exceeding the Taylor–Aris limit
arising from inflection points in the solute variance µ2. In addition, we have showed
and explained how the aforementioned effects are modulated in a time-dependent
flow. All of these effects can be understood as consequences of the involved
fundamental processes of solute diffusion, fluid momentum diffusion and local velocity
gradients. Moreover, our work has illustrated that the cross-sectional averages used in
Taylor–Aris dispersion theory are not representative of an initial point concentration
before it fills a substantial part of the channel (in the transverse direction), so the
transient advective stretching of the point concentration is convoluted with the rest
of the channel to produce what appears at a glance as physically counterintuitive
results. Using the framework presented in this paper provides a deeper insight into
the structure of the solution and thereby extends the possibilities of Aris’ method of
moments without abandoning physical understanding.

In addition to its scientific relevance, the predicted transients in D point
eff persist

long enough in physical systems that it has important implications for medical and
industrial applications. Since it decays on a non-dimensional time scale of 1/λ1, which
is typically of the order of 10−1 (Vedel & Bruus 2012), and since the normalization
time scale is given by diffusion as L2

o/D, decay of the transient for a solute with
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D = 10−10 m2 s−1 in 1000 s will only occur in channels with Lo 6 10−3 m; these
time scales are long compared to the resting times for drug delivery and many
industrial applications, so the non-symmetric solute distributions and rapid spreading
associated with the transient are present long enough that they cannot be ignored.
In unsteady flows such transiently asymmetric solute distributions coupled with our
previous finding that the dispersion under certain conditions in such flows can reach
a steady state exceeding the normal Taylor–Aris limit suggests that radially uneven
absorption of e.g. injected drugs could occur over unexpectedly long distances of
the arteries. Furthermore, recent findings of Taylor–Aris dispersion for solutes acting
as signals and nutrition within biofilms (Davit et al. 2013) suggests that our results
may also be useful in the growing community of biofilm control, for which both
the promotion of desirable biofilms (for e.g. wastewater treatment) as well as the
inhibition of undesirable biofilms (e.g. microbially influenced corrosion in pipelines,
chronic infections) are major goals.
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Appendix A. Numerics
A.1. Direct numerical simulations

Using the commercial finite-element package COMSOL MULTIPHYSICS version 3.5a,
we have calculated Deff (t) numerically directly from the definition (3.1) by solving
for the concentration field c in the governing advection–diffusion equation using the
analytical solutions for the velocity field as input. From the obtained c(r, t) field we
determined M1(t), dM1(t)/dt and dM2(t)/dt, and from these Deff (t). The azimuthal
symmetry was exploited for computational efficiency and the solution was furthermore
computed in a frame of reference traveling with the mean speed of the flow. We used
a Gaussian initial distribution placed at (r, z)= (0, 0) with variance corresponding to
an elapsed time of t=10−4 since release (non-dimensional units), which is much lower
than t≈ 10−2 where the distribution begins to deviate from the Gaussian, see figure 1.

To ensure mass conservation, the number of mesh elements was chosen so
that the local Péclet number in each cell (as given by the velocity in the mesh
element, the mesh element length and the molecular diffusivity) did not exceed
0.5, which corresponds to the requirement that the maximal mesh element length
is Lmesh = (2 Pé)−1. Furthermore, we increased the mesh resolution in a small box
of non-dimensional length 0.2 around the solute release position to ensure good
resolution of the short-time dynamics, using a resolution in this domain of Lmesh/50.
Interpolation between the two meshing length scales were achieved by requiring a
maximum relative mesh element growth rate of 1.1. The high mesh resolution locally
around the release point combined with the mass-conservation considerations limited
the solution to Pé . 12 on a dedicated 12 core, 48 GB RAM computer, where each
solution took ∼24 h to complete. Owing to these severe limitations, off-centreline
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FIGURE 3. Mesh-convergence plot of the figure of merit K from (A 1) versus the mesh
element parameter α, where the smaller values of the latter correspond to larger mesh
elements. Convergence is achieved around α= 2 (filled circle) and we consequently used
this value for the simulations in figure 1(b).

initial positions in the circular cross-section and simulations in the parallel-plate
cross-section were not investigated.

In order to verify the correctness of our numerical solutions, we present in figure 3
a mesh-convergence analysis by comparing the solutions for decreasing sizes of
Lmesh = 1/(α Pé) (increasing values of α) using the convergence measure

K(α)=

√√√√√√√

∑

i

[
Dnum

eff (α; ti)−Deff (ti)
]2

∑

i

Deff (ti)
2

, (A 1)

where Dnum
eff (α; t) is the numerically computed effective diffusivity for a given value

of the mesh-resolution parameter α while Deff (t) is the effective diffusivity of (3.6).
We use the parameter α to obtain a mesh parametrization which is independent of
the Péclet number, since in general the mesh element size must scale with the inverse
of Pé to achieve mass conservation (cell Péclet numbers below unity). Figure 3
(computed at Pé = 3) shows that convergence has been obtained for the used value
of α = 2 indicated by the filled circle.

A.2. Evaluation of our theoretical formulae
Numerical evaluations of our theoretical expressions for (3.5) and (3.6) were obtained
by truncating the sums after 100 terms; the inclusion of additional terms did not
further improve the results. Additional numerical tricks for speeding up the evaluation
of these sums were described in our previous paper (Vedel & Bruus 2012).
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