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In multicellular organisms and complex ecosystems, cells migrate in a
social context. Whereas this is essential for the basic processes of life,
the influence of neighboring cells on the individual remains poorly
understood. Previous work on isolated cells has observed a stereo-
typical migratory behavior characterized by short-time directional per-
sistence with long-time random movement. We discovered a much
richer dynamic in the social context, with significant variations in
directionality, displacement, and speed, which are all modulated by
local cell density. We developed a mathematical model based on the
experimentally identified “cellular traffic rules” and basic physics
that revealed that these emergent behaviors are caused by the in-
terplay of single-cell properties and intercellular interactions, the
latter being dominated by a pseudopod formation bias mediated
by secreted chemicals and pseudopod collapse following collisions.
The model demonstrates how aspects of complex biology can be
explained by simple rules of physics and constitutes a rapid test bed
for future studies of collective migration of individual cells.
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Collective migration, from migrating cells in tissue (1-3) to
swarming insects (4) to flocks of birds (5) and pedestrians in
heavy traffic (6), constitutes one of the most fascinating spectacles
in nature. In addition to its aesthetic qualities, social cell migration
is involved in embryonic development (7), wound healing (8), and
immune response (9), and unregulated migration leads to disease,
including cancer metastasis (10). Previous work on single-cell
migration has focused on isolated (11-20) or strongly polarized
and aligning (21, 22) cell types, mostly using population-averaged
bulk assays (23) or simple observations in a social context (2, 3).
However, strongly cross-correlated cell motion and collective
substrate deformation has been found to arise in mechanically
interlinked cells transmitting forces through both cell—cell linkages
and the substrate (24-29). These studies revealed useful infor-
mation on cell migration, but because in general the relevant
interactions in a social context and their relative importance are
not established, migratory behavior of cells in a social context
remains as one of the major unresolved problems in biology (30).
Furthermore, striking social effects such as highly sensitive col-
lective responses in a number of sensing systems [e.g., quorum
sensing (31, 32) and onset of collective behavior in Dictyostelium
discoideum (33)] mediated by increased levels of cell-secreted
signals in higher cell density indicate that mechanical links are not
necessary for collective behavior. At the subcellular level, many
types of nonswimming motile cells involved in multicellular bi-
ology [e.g., fibroblasts, Dictyostelium, and neutrophils (13, 14, 16—
18)] have been found to transmit traction force to the substrate by
intracellularly polymerizing their cytoskeletons in dynamically
formed membrane protrusions known as pseudopodia. However,
whether the social context changes this, mechanisms by which the
social context manifests itself, and the implications of being close
to neighboring cells all remain unexplored.

Here we shed light on these fundamental questions using a
combination of high-throughput microfluidic cell culture (34) of
3T3 fibroblast cells expressing fluorescent fusion proteins, time-
lapse microscopy with subcellular resolution, and physical mod-
eling (SI Appendix, Materials and Methods and Model Details).
Contrary to previous work (22, 24-26, 29), these cells form neither
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2D sheets nor 3D structures, nor are they highly polarized, and
their single-cell migratory behavior is established (13, 14, 16). The
microfluidic cell culture platform hosts independent and isolated
culture conditions in each of the isolated 96 polymethylsiloxane
(PDMS) chambers (34-nL volume) that mimic physiological con-
ditions more plausibly than traditional cell-culture environments in
which concentrations of, for instance, secreted signaling molecules
are diluted into large volumes of surrounding fluid. Using only
freshly thawed cells, we cultured them at densities ranging from 15
to ~100% confluence in up to 24 parallel chambers at a time; more
than 8,000 cells were quantified, yielding hundreds of thousands of
data points from a total of only five experimental runs. Experi-
ments on any given density were repeated at least once on dif-
ferent chips, and we studied different densities in parallel on each
chip (S1 Appendix, Table S1). We replaced the chamber volume at
time ¢ = 0, sealed the chamber using the microfluidic membrane
valves, and imaged the cells every 4-6 min for 5-6 h, focusing on a
region of ~500 pm x 700 pm in the center of the chamber to avoid
edge effects, which contained a population consisting of between
36 and 246 cells [corresponding to an average minimum nucleus—
nucleus distance dpin in the range of approximately one to three
cell diameters, which on average is 41.7 um (SI Appendix, Fig.
S124)]. Using different fluorescent fusion proteins to image the
nuclei (green) and cytosols (red) (Fig. 14) coupled with high im-
aging resolution allowed us to track single-cell migration behavior
and pseudopodia, producing a very comprehensive dataset; such
detailed quantitative measurements of single-cell behavior are
emerging as a strong tool for studying biological systems, as re-
cently exemplified for cell cycle stability (35) and inflammatory
signaling (36).

Results

Quantitative Cell Migration Characteristics. Our measurements re-
veal the migration characteristics of cells at different densities.
Although all cells move (Fig. 14 and SI Appendix, Fig. S2 and Table
S2 and Movie S1) with no preferred overall direction (SI Appendix,
Fig. S3), we find large diversity with negligible cross-correlation in
the migratory behavior of the cells at the same density (Figs. 1 and
2E and SI Appendix, Fig. S2): Some cells move along almost
straight lines, other follow curved paths, and yet others traverse
very short distances with little apparent directionality (Fig. 1B).
This continuum of different migratory behaviors, which is very
different from the stereotyped single-cell behavior found for iso-
lated cells (11, 13, 14), suggests that there is a strong effect of the
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Fig. 1. Trajectories of the cells generated during the first 200 min of an
experiment. (A) Trajectories (yellow) displayed on top of the fluorescence
image illustrating the different fusion proteins used for the cytosols (red)
and nuclei (green). (B) Trajectories can be nominally straight, curve, or dis-
play little apparent directionality. The vectorial sum of the pseudopodia of
the cell (marked by red in insets) predicts the observed movement, because
each pseudopod applies nominally the same force (20).

social context on the migration of the individual, even in the
absence of cell—cell linkages (24-26). To fully understand this ef-
fect, including whether it is due to inherent cell-cell motility var-
iations or is an emergent group property, we quantified all aspects
of the migration using a number of cooperating statistical meas-
ures that together fully characterize the migration.

We first focus on an experiment at intermediate cell density
(Emin =91.1 pum) to introduce our statistical measures and illus-
trate our key findings. The speed of the individual cell fluctuates
substantially as a function of time (Fig. 24 Inset) with similar
single-cell speed distributions (Fig. 24), and the average single-cell
distribution from one experiment displays a distinct non-Gaussian
tail (Fig. 2B) that has previously been shown to be a general fea-
ture of non-sheet-forming motile cells (37). The existence of
similar non-Gaussian single-cell speed distributions suggests by
the central limit theorem that each cell does not have an inherent
velocity scale, but rather that cell speed is a dependent variable.
The simultaneous observations of fluctuating single-cell speed and
cell velocity being a dependent variable is consistent with pseu-
dopodia-driven motility (ST Appendix).

130 | www.pnas.org/cgi/doi/10.1073/pnas.1204291110

To quantify the variations in total space sampled by the individ-
uals we introduce the “maximum path distance” (MPD), defined as
the maximum distance between any two points on the trajectory of
the individual cell. This measure, which is equivalent to the span
dimension of polymer physics (38), displayed large variations across
the population, with large and small MPD values corresponding to
cells moving nominally straight and cells that displace themselves
small distances, respectively (MPD is nontrivially related to varia-
tions in single-cell trajectory curvature).

The observed variations in trajectories could be caused by a
relative lack of collisions; however, we observed cells moving
nominally straight even though they were in direct contact with
other cells, as well as cells without direct contact with other cells
displaying little long-term directionality (Movie S1). This indi-
cates that collisions are not solely responsible for the variations
in migratory behavior, and so to further investigate this single-cell
directionality, we compute the directional autocorrelation of the
cellular trajectories using the unit vectors in the direction of in-
stantaneous velocity (SI Appendix, Eq. S3 and Fig. 2D). This
measure describes the average alignment of the direction of mo-
tion of the same cell over time and therefore measures the per-
sistence of the direction of motion. Using the unit vectors in the
direction of instantaneous velocity as opposed to the velocity
vectors themselves removes any bias from the fluctuating speed
and sets the range from 0 (no correlation) to 1 (complete corre-
lation). The chamber-mean directional autocorrelation, which is
representative of the majority of the cells (outliers only nominally
affect the mean because the kurtosis is everywhere low; SI Ap-
pendix, Fig. S5), shows that the instantaneous step taken by each
cell is positively correlated with the previous steps (Fig. 2D). The
first sharp drop-off between the first and second time points occurs
because changes in directionality are measured only every 4-6
min, and the rest of the data are well described by a decaying
exponential ¢e"=/% Here, the persistence time of directionality
7, and the weight ¢ (varying from 0 to 1) describe, respectively, the
time for the average cell to randomize its direction and the extent
of directional motion in the chamber, with higher values of ¢ in-
dicating a larger fraction of directionally persistent cells. For the
present experiment we found ¢ = 0.46 and 7, = 69 min.

Varying the cell density, we continue to observe straight-moving
cells at all densities (Fig. 2E) even though each cell at intermediate
and high densities experiences many collisions (and the ratio of
cell surface area to total available chamber area is around 0.8 at all
times; SI Appendix). The fraction of directionally persistent cells
decreases at higher densities, but the persistence time of the in-
dividual cells remains essentially constant. This is illustrated by the
decrease of the weight ¢ and the constancy of persistence time of
directionality 7, in Fig. 2 F and G. The average single-cell speed
distribution is also independent of density, and this is well-fitted by
generalized extreme value (GEV) distribution, which forms a
natural parameterization (Fig. 2H; example fit shown in Fig. 2B).
Both our measurements of speed distribution and the low-density
limit of the directional autocorrelation agree with previous results
for human fibroblasts (11) (the latter indicated by dashed lines in
Fig. 2 F-H; compare with SI Appendix, Fig. S4). These findings
indicate that the observed directionality does not depend on the
fluctuating speed of the single cell, and the small variations in 7,
both within and across densities suggests that the directional
persistence of motion, unlike cell speed and trajectory, is an in-
herent property of the cell’s motility apparatus (i.e., internal po-
larization). Furthermore, the convergence of all our statistical
measures to the level of isolated cells at dpij, ~# 120 pm determines
the critical density where the social context becomes important.

Pseudopod Formation and Lifetime Is Affected by Social Context. We
verified that the cell migration in the social context is also medi-
ated by pseudopodia (Fig. 1B and Movie S2), and so to probe the
origin of the diverse cellular migratory behavior we therefore next
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Fig. 2. Experimental observations of cell migration and pseudopodia. (A) Single-cell speed distribution, with inset showing speed vs. time for four single cells. (B)
Average single-cell speed distribution (blue; error bars indicate SD) is well fitted by a generalized extreme value (GEV) distribution characterized by the location
parameter m, the scale parameter s, and the shape parameter &. (C) Population distribution of single-cell maximum path distance (MPD). (D) Chamber-average
directional autocorrelation (blue circles) and fit (orange line). Also shown are single-cell autocorrelations from two sample cells moving nominally straight (lines).
The SD of the distribution decays from +0.20 min close to 1,4 = 0 to + = 0.01 at 7j,5 = 200 min (S/ Appendix, Fig. S5). (E-H) Effect of density on collective cellular
migration; dashed lines in F-H indicate results for isolated cells extracted from ref. 11 (compare with S/ Appendix, Fig. S4). (E) Examples of trajectories (compare
with S/ Appendix, Fig. S2) and (F) the corresponding average directional autocorrelations that follow the same exponential decay (/Inset). (G) Weight ¢ and
persistence time t, from least squares fits of average directional autocorrelations to ¢ e~"s/% as a function of the average minimum nucleus-nucleus distance dmin
in the chamber showing that persistence time 7, is not affected by the changing density whereas the weight factor ¢ decreases due to higher collision rate. (H)
Location m, scale s, and shape & from least squares fits of average single-cell speed distributions to the GEV distribution remains constant across densities. (/) Time
periods of contact for colliding cell pairs (combined for all densities) is heavily dominated by short times, and the distribution is independent of cell density (S/
Appendix, Fig. S8A). Also shown are the actual trajectories of two colliding cells (blue and green), with red arrows indicating direction of motion. (J) Pseudopod
formation angle Aa with the current direction of motion (pooled across densities) shows a clear a clear preference of pseudopod formation in the current di-
rection of motion, although pseudopodia are observed to form at all angles. This distribution is independent of cell density (S/ Appendix, Fig. S8C). (K) Position
and angle of pseudopod formation A8 in relation to the nearest neighbor cell. At time t = 0, the entire volume of the microfluidic chamber is replaced with fresh
media, effectively removing any chemokine background and allowing new chemokine gradients to be established (see schematic to the right). The cells over-
whelmingly move to the nearest neighbor during the first 20 min after media replacement but only mildly so (and only when the nearest neighbor is very close)
after 60 min, indicating that secreted chemokines induce pseudopod formation (S/ Appendix).

investigated their pseudopodia. Colliding pseudopodia of differ- and exhibits no dependence of density (Fig. 21 and SI Appendix,
ent cells transiently remain in contact before they collapse (39) in ~ Fig. S84). We found a distribution of pseudopod lifetimes with
a process known as contact inhibition of locomotion (2) (Movie a mean of 11.8 min (SI Appendix, Fig. S6A4), so the directional
S3), which is presumably achieved by locally depolymerizing the  persistence of ~50 min indicated by the autocorrelation analysis
actin cytoskeleton with associated cessation of the local force. The  (Fig. 2 D and G) can only be maintained by the cells through or-
distribution of contact times is strongly dominated by short times  dered pseudopod formation. Further investigations indicated that
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pseudopod formation is dominated by independent biases by the
current direction of motion (Fig. 27) and chemicals (chemokine)
secreted by the cells (Fig. 2K and SI Appendix, Table S2). Evidence
of the former was found by computing the angle between the
current cellular direction of motion and the position of pseudo-
pod formation (Fig. 2J), which displayed a clear bias for the
present direction of motion that is probably mediated by an in-
ternal polarization of key molecules (40), whereas evidence for
the latter was found by studying the influence of neighbor cells in
biasing pseudopod formation: Pseudopodia formed exclusively
toward the nearest neighbor cell during the first 20 min after
medium replacement (Fig. 2K Upper), but much less so when the
analysis was redone starting 60 min after replacement (except
when the neighbor is very close; Fig. 2K Lower). The effect was
reproduced following additional media replacements in separate
control experiments (SI Appendix, Fig. S9). Because these cells
both posses chemotactic ability and furthermore are known to
secrete some chemokines (S Appendix), this effect is most likely
caused by one or several secreted chemokine(s), as evidenced by
the decrease of the response at later times except very close to
neighbors and corroborated by the fact that most chemokine
molecules have diffusivities on the order 107'° m? s~, which sets
the time scale for chamber filling to ~40 min. In other words, the
secreted chemokines will have saturated the chamber by 40 min,
effectively reducing chemokine gradient depths and the signal-to-
noise ratio of chemokine receptor activity. Moreover, the constant
base level of pseudopod formation observed in our investigation
of directional bias (Fig. 2/) further illustrates the existence of an
additional and independent pseudopod formation biasing system
that on average is independent of the current direction of motion,
and therefore is likely achieved by the chemokine bias. Although
we did observe new pseudopods arising from splitting of existing
pseudopodia, similar to the predominant origin of pseudopods
observed in isolated cells (14), this was found to be secondary to
the biased de novo formation of pseudopods just described (S7
Appendix, Fig. S7). These observations indicate that the motile
apparatus of the individual cell is centered around maintaining
a certain direction through an internally controlled pseudopod
formation bias (polarization), and that being in a social context
introduces a second mechanism based on chemokine-mediated
biasing, similar to findings in a previous report for Dictyostelium
cells (41), as well as a higher frequency of pseudopod formation
due to collisions.

Physical Model. To investigate whether these observed traffic rules
on the individual cell level indeed do cause the very varied collec-
tive motion we observed, we formulated an agent-based mathe-
matical model using the simplest physically reasonable assumptions
for the motion of the individual cell based on three types of input:
(!) our own pseudopod observations, (ii) previous experimental
studies on chemotaxis of isolated cells, and (iii) Newton’s second
law of particle motion (SI Appendix, Model Details). This model,
which can be considered an extension of the Vicsek model (21, 22,
42), exploits known cellular biophysics to simulate our experiments
with a few hundred cells, a regime that is inaccessible to continuum
modeling (43, 44). Model cells (Fig. 34) dynamically form pseu-
dopodia that each apply a force F; of constant magnitude F,, radially
away from the nucleus. In a time interval At the resultant force
moves the cell a distance Ax, or equivalently imparts a velocity v =
Ax/At given by

yv = ZE, [

where v is a friction coefficient assumed to be identical for all
model cells. Pseudopod formation is biased by the current direc-
tion of motion and a spatiotemporal field of chemokine
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concentration secreted by all cells. We use biased stochastic
pseudopod activation because of the large thermal fluctuations
in the low concentrations of intra- and extracellular chemicals.
Touching pseudopodia of colliding cells collapse, and their local
forces stop because of contact inhibition of locomotion. We fur-
thermore assume chemokine secretion is identical for all cells; that
force, collision times, and chemokine response function is the
same for all pseudopodia; and that this function is a Hill function
of the local relative chemokine concentration (Fig. 3C). All model
parameters are determined either directly from the data (such as
Fig. 21 andJ) or from reported literature results, except for the cell
friction coefficient y, of which no reliable measurements exist. We
determined y from the ensemble average of velocity distribution
data by fitting one simulation to one experiment; having deter-
mined this single parameter the model predicts all statistical
aspects of the collective motion. This is shown below through a
number of statistical tests. Although simpler theoretical models
have been presented in the past with the objective of investigating
certain traits of the collective migration phenomena (21, 22, 37,
42-45), none of these models is able to simultaneously account for
a wide variety of the migration data such as ours, and our model
thus provides one of the simplest ways of incorporating all of our
observations in a physically transparent formulation.

Comparison with Experiments. The model results are summarized in
Fig. 3 and demonstrate quantitative agreement with the experi-
ments in terms of single-cell speeds (Fig. 3 D and E), trajectories
(Fig. 3 B and G), and directionality (Fig. 3F), thereby verifying our
experimentally derived hypotheses of the role of the social inter-
actions on motility (SI Appendix, Fig. S10 and Movie S4). The
model quantitatively reproduces across cell densities—with a single
value of y—that the individual cells have the same nonnormal
speed distribution (Fig. 3D) with an average that is similar to the
experimental average (Fig. 3E); the exponentially decaying auto-
correlation (Fig. 3F) including the changes in the weight factor ¢,
indicating the importance of the social interactions; and both the
shape and range of the distribution of maximum path distances
(Fig. 3G). The model also predicts the existence of cells moving
along almost straight lines for the entire experiment (Fig. 3B) and
the maximum path distance for these cells [largest single-cell
measurements of maximum path distances are the same for model
and experiment Fig. 3G)], but it does underpredict the ratio of
these cells, as indicated by smaller tail of model predictions in Fig.
3G. In addition, the model value of y = 39 kg-s™" is in fair agree-
ment with an estimate of y ~ 29 kg-s~* extracted from ref. 20 but is
roughly one order of magnitude greater than an estimate from
endothelial cells and a Dictyostelium slug (46) (SI Appendix). Al-
though the model captures many features of our single-cell mi-
croscopy data, it falls short of perfectly reproducing the tail of the
speed distribution (Fig. 3 D and E and SI Appendix, Fig. S11), likely
because of the assumption of identical and time-independent
pseudopod forces (SI Appendix). The model furthermore also does
not precisely capture the exact shape of the average directional
autocorrelations (Fig. 3F), indicating that directional persistence is
likely achieved through a more complex machinery than is assumed
in the model.

Discussion

The agreement of model predictions with experimental data for all
of the emergent properties presented in Fig. 3 suggests that the
subprocesses included in the model govern the motility. We
therefore arrive at the following explanations for our observations:
The dynamically changing positions of pseudopodia cause large
fluctuations in speed at all densities, whereas directional persis-
tence is achieved primarily by the directional bias of pseudopod
formation but heavily influenced by both collisions and the se-
creted chemokine. The cells at low density are effectively isolated
as they rarely collide and the nominally isotropic chemokine field
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Fig. 3. Model formulation and predictions (model, red; experiments, blue). Experimental data are the same as in Fig. 2. (A) Single cells move by dynamically
and stochastically forming pseudopodia (red) while they secrete chemokine, with each pseudopod providing a force, and colliding pseudopodia collapse. (B)
Example model trajectories. (C) Average displacement in a 300-min simulation for different relative gradients (the gradient is applied only in the y direction)
illustrate that model cells reliably respond to gradients above 0.002 pm-m~", as experimentally observed by Melvin et al. (16). The simulation was repeated 20
times for a single cell at each gradient level and error bars indicate SD. (D) Single-cell speed distributions (compare with Fig. 2A). (E) Average single-cell speed
distribution, showing excellent agreement with experiments. (F) Chamber-averaged directional autocorrelation and one single-cell autocorrelation from
a cell moving nominally straight (compare with Fig. 2D; compare with S/ Appendix, Fig. S5. (G) Population distribution of maximum path distance (blue,
experiment; red, model). (H and /) Model results across densities with the latter expressed by the average minimum cell-cell distance dmin (red, model; blue,
experiment). (H) Weight ¢ and persistence time t,, for the fit to ¢e /™. (I) Location parameter m and scale parameter s in fit of average speed distribution to
a GEV distribution. The shape parameter & (S/ Appendix, Fig. S11), describing the tail of the distribution, is not well captured by the model because it
underpredicts this part of the speed distribution, as seen in E.

therefore has little influence on the positions of new pseudopodia,  neighbors, which therefore must be considered critical in achieving
whereas high collision rates at high densities lead to constant  flocking. We nonetheless hypothesize that the observed effects of
randomization of pseudopodia positions and low ¢. At any density,  the neighboring cells on single-cell migration is highly relevant at
straight-moving cells execute this motile behavior because their  physiological conditions. Within a population, the high collision
lateral pseudopodia are more often suppressed by lateral collisions  rate continuously randomizes the directionality of the individual
with other cells or abruptly changing, large chemokine gradients.  cels, so that on average there will always be cells moving away
Cells displaying little overall directionality constantly have their  from the population. In the presence of an external signal, some of
direction of motion cut off, leading to many collisions, whereas  hece houndary cells will be correctly aligned with this signal and
curhpg cells experence few collisions and; or a . and. slowly iy reliably move up the gradient, with the directional persistence
mqwr}[g phemol;me fblas. le?e (:bserved contlnu%ngl OE d1ffer§nt providing the initial stabilization of the movement away from the
trajectories Is therefore a direct consequence of the Huctuating population. This mechanism provides a directionally isotropic and

near-cell environment and is no more surprising than similar . .
observations of very varied trajectories of many interacting bodies f?St sensor of exjterqal signals for tl.1e populatlon,. even thou.gh the
single-cell polarizations vary and single-cell realignment with the

obeying Newtonian mechanics. The model thus provides a com- . = . .
external signal would occur on the time scale of directional per-

prehensible description of social cell migration that captures all of - - . - .
the complexity formulated in terms of biophysically well-defined ~ Sistence (tp)- Whereas this social effect is fundamentally different

single-cell quantities and, furthermore, illustrates how very com- from flocking and other social effect.s such as quorum sensing, 1t1s
plex biological behavior emerges from simple interaction rules. another example of how nature achieves group-level dynamics of

Contrary to several other cell types, such as keratocytes (22), ignorant individuals for biological function beyond the control of
3T3 fibroblast cells do not exhibit large-scale multicellular orga-  the individuals by simply modulating the signal at the level of the
nization such as flocking (21). Fibroblasts deviate from these  individual through increased cell density. This mechanism could
flocking cell types by not having strong local alignment of the be a general biological principle underlying emerging population
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behavior, yet the underpinnings, limits, and consequences remain
to be investigated.

In summary, our investigations of social cell migration for thou-
sands of cells at different densities have revealed a diverse migratory
behavior that is largely controlled by the changing environment:
Whereas the single cell tries to maintain its current direction of
motion through preferentially forming pseudopodia in this di-
rection, secreted chemokine-induced pseudopod formation along
with collisions lead to pseudopod collapse, resulting in much more
complex migratory behaviors than those reported for isolated
cells, even in the absence of cell-cell variations. A simple model
based on these observations quantitatively reproduces most mi-
gration behaviors across densities, including the existence of out-
liers, illustrating that these are the intercellular rules governing
migration. In addition to their biological significance, our findings
illustrate how complex biological behavior arises as a physical
consequence of noisy single-cell behavior and interactions among
the individuals, open a path for the derivation of continuum the-
ory, and illustrate the importance of single-cell data in under-
standing such behavior.

Materials and Methods

Cell Line and Microfluidic Cell Culture Experiments. We used newly thawed
p65~"~ mouse fibroblast (3T3) cells expressing the cytosolic fluorescent fusion
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