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ABSTRACT: This paper presents a theoretical and computational
investigation of convection, diffusion, and adsorption in surface-based
biosensors. In particular, we study the transport dynamics in a model
geometry of a surface plasmon resonance (SPR) sensor. The work,
however, is equally relevant for other microfluidic surface-based
biosensors, operating under flow conditions. A widely adopted
approximate quasi-steady theory to capture convective and diffusive
mass transport is reviewed, and an analytical solution is presented. An
expression of the Damköhler number is derived in terms of the nondimensional adsorption coefficient (Biot number), the
nondimensional flow rate (Pećlet number), and the model geometry. Transient dynamics is investigated, and we quantify the
error of using the quasi-steady-state assumption for experimental data fitting in both kinetically limited and convection-diffusion-
limited regimes for irreversible adsorption, in specific. The results clarify the conditions under which the quasi-steady theory is
reliable or not. In extension to the well-known fact that the range of validity is altered under convection-diffusion-limited
conditions, we show how also the ratio of the inlet concentration to the maximum surface capacity is critical for reliable use of the
quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally
obtained adsorption rate constants.

■ INTRODUCTION
This work investigates transient convection, diffusion, and
adsorption in surface-based biosensors. Even though surface
plasmon resonance (SPR) sensors have formed the principal
basis for this investigation, it is of equal relevance to other
related methods, where a sensor surface is placed in a flow cell
unit, which is continuously perfused with sample. Such
biosensors are used in diverse areas, such as for DNA
hybridization,1,2 chemiluminescence detection,3 and cell attach-
ment and release from surfaces.4 From a theoretical viewpoint,
similar physics also occur in other systems, such as protein
microarrays.5 Theoretical research, related to biosensor
applications, typically attempts to include novel mechanisms,
such as the ac electrothermal (ACET) effect,6 or aims at
developing analytical and semianalytical models for better data
interpretation.7,8

Surface plasmon resonance (SPR) spectroscopy, in partic-
ular, is an advanced optical sensing method that enables label
free monitoring of macromolecular interactions. The technique
is widely used in biomolecular research, medical diagnostics,
food analysis, and environmental monitoring.9,10 In particular,
SPR sensors are used to study macromolecular interactions at
the surface of a sensor chip, where so-called ligand molecules
have been immobilized. The overall principle of SPR is that
adsorption of analyte to the sensor chip surface changes the

refractive index of the surface, which is detected by an optical
reader.11

While the SPR technique, developed and commercialized by,
for example, Biacore, is well capable of capturing qualitative
behavior, quantitative studies of chemical rate constants and
equilibrium constants are more challenging. Inconsistencies in
derived rate constants have led to both experimental and
theoretical investigations of the effect of convection and
diffusion on the SPR signal.12,13 Significant progress was
made by the application of a quasi-steady-state approximation,
that is, a steady-state bulk mass transport coupled to a dynamic
adsorption scheme (explained in detail below). This approx-
imation has been widely adopted for Biacore data analysis.13−19

However, practice in the biochemical society still, to a large
degree, consists of empirical and qualitative studies.20−23

The quasi-steady-state approximation leads to a nondimen-
sional number called the Damköhler number, which is
sometimes referred to as the limit coefficient. An expression
of the Damköhler number is derived in terms of the
nondimensional adsorption coefficient (Biot number), the
nondimensional flow rate (Pećlet number), and the model
geometry. The ability of the quasi-steady theory to capture
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mass transport is thoroughly tested, by comparison with
numerical simulations of the transient dynamics. In this way,
the consequences of using the quasi-steady theory for
experimental data fitting in both kinetically limited and
convection-diffusion limited regimes are properly quantified.

■ THEORY
This section provides a theoretical treatment of mass transport, that is,
convection, diffusion, and adsorption, in a microfluidic device with a
surface-based biosensor. We consider only unimolecular systems, that
is, a single solute in solution. First, the system geometry is presented,
along with the evolution equations governing the system dynamics.
We present results of using two different time scales, namely, a kinetic
time and a diffusion time, with the former proving useful if adsorption
kinetics is slow compared to bulk mass transport to the surface, and
the latter proving useful in the opposite case. The nondimensional
parameters are discussed, and estimates of numerical values are
provided. The section ends with a thorough description and analysis of
the quasi-steady theory, including a discussion of its inherent
parameter: the Damköhler number. The analysis contains an analytical
solution of the quasi-steady theory.
System Geometry and 2D Approximation. We investigate

transport dynamics in a model geometry of a surface plasmon
resonance (SPR) sensor, which by far is the most common SPR
platform used.24 The finite distance from the inlet of the microfluidic

flow cell to the sensor surface is included, as shown in Figure 1. The
length scales are l = 2.3 mm, w = 0.5 mm, and h = 0.02 mm.
Adsorption is probed by the SPR chip located on the surface in the
middle of the flow cell. The SPR chip has a length of lc = 0.6 mm and a
width of wc = 0.16 mm. The fluid flows in the lengthwise direction (x),
with a parabolic velocity profile along the direction (y) of the height of
the flow cell, that is, vx(y) = 4vm(y/h)(1 − y/h), where vm is the
maximum velocity. Based on the large geometric aspect ratio w/h = 10
and the small Reynolds numbers often present in the system, we have
assumed total invariance in the direction (z) of the width of the flow
cell,25 essentially ending up with a two-dimensional consideration of
the transport. Hereby we do not take boundary effects from the side
walls of the flow cell at z = {0,w} into account.
Evolution Equations.We define two dependent variables, namely,

the bulk concentration field c = c(x,y,t) and the surface concentration
field γ = γ(x,t), where t is time. We name the bulk domain Ω,
nonadsorbing surface domains ∂Ω, and surfaces where adsorption
takes place ∂Ωads. The spatiotemporal evolution of the bulk
concentration field c = c(x,y,t) is governed by the convection-diffusion
equation
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where the Laplacian ∇2 = ∂
2/∂x2 + ∂

2/∂y2 and D is the diffusion
coefficient. The boundary conditions for the bulk concentration are
given by
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The former is simply a no-flux condition, whereas the latter is a
balance between diffusive flux perpendicular to the surface and net
adsorption rate, captured in the adsorption term (γ,c) in eq 5. At the
inlet of the flow cell, at x = 0, the concentration is equal to the
injection concentration, c = c0. At the outlet of the flow cell, x = l, we
assume free convection, that is, essentially ∂c/∂x = 0. The
spatiotemporal evolution of the surface concentration field γ = γ(x,t)
is governed by the adsorption-diffusion equation26
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where Ds is the surface diffusion coefficient, which in general can be a
function of both the independent variables, x and t, as well as the
dependent variables γ and c. The adsorption term (γ,c) represents
the net rate of change of surface concentration due to adsorption and
desorption, and is determined by the kinetics of some chosen
adsorption−desorption scheme. (γ,c) can, in general, include
arbitrarily complex surface kinetics. No-flux boundary conditions for
γ, that is, ∂γ/∂x = 0, are imposed at the end of the adsorbing domain;
that is, surface bound molecules only leave the chip by desorption.

Adsorption Kinetics. The adsorption kinetics is modeled by a
phenomenological model, which ultimately captures experimental data
and thereby provides reasonable and consistent phenomenological
parameters. The standard adsorption model that still contains the
feature of a maximum surface capacity γm is the Langmuir adsorption
model. This model is essentially a first order scheme between bulk
molecules at the interface c|y=0 and free surface sites (γm − γ), with
adsorption rate constant ka and desorption rate constant kd. This first
order model may be written in the form

γ γ γ γ= − −=c k c k( , ) ( )ya 0 m d (5)

When c|y=0 is independent of γ, this is a linear relation between (γ,c)
and γ. This particular adsorption model is a local theory in both space
and time; that is, the evolution of γ at (x,t) depends only on the
present state at (x,t). The ultimate goal is often to obtain consistent
values for the triplet (ka,kd,γm) of phenomenological parameters from
experimental biosensor data. In this linear model, the adsorption and
desorption rate constants, ka and kd, respectively, are assumed
unaltered by the density on the surface. In reality, one might expect
interactions between adsorbed particles at high densities. However, in
spite of its simplicity, it has been argued that this model is general
enough to explain the majority of adsorption/desorption processes in
molecular biology.8 Substituting eq 5 into eq 4 and eq 3, these two
equations together with eq 1, and the remaining boundary conditions,
form a nonlinear system of partial differential equations for the two
concentration fields c = c(x,y,t) and γ = γ(x,t). The system is of such
complexity that a numerical study is necessary for detailed analysis.

Nondimensional Parametrization. Nondimensional formula-
tions are developed for a more comprehensible parametrization of the
evolution equations. Two different nondimensional formulations are
introduced and discussed.

Nondimensional Parametrization: Kinetic Scaling. In order to put
the evolution equations on nondimensional form, we introduce the
following spatial and temporal scales:

̅ = ̅ = ̅ =x
x
h

y
y
h

t k c t, , a 0 (6)

Note in particular that time has been made nondimensional by the
adsorption rate. For the dependent concentration variables, we
introduce the following scaled dependent variables:

γ γ
γ̅ = ̅ =c

c
c

,
0 m (7)

Figure 1. (a) Rectangular flow cell of length l, height h, and width w.
The SPR chip of length lc and width wc is indicated as the square in the
middle of the flow cell. The buffer flow is represented by the velocity
vector v. (b) Two-dimensional approximation of the system in the
vertical xy-plane. The parabolic velocity profile is indicated at the inlet
of the flow cell.
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In terms of these nondimensional variables and the definitions f(y)̅ =
4y(̅1 − y)̅, ∇̅2 = ∂

2/∂x ̅
2 + ∂

2/∂y ̅
2, we obtain the nondimensional

evolution equation for the bulk concentration field
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with the boundary condition (eq 3) given by
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The nondimensional evolution equation for the surface concentration
field is given by
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The remaining boundary conditions are trivially translated into the
nondimensional form. These nondimensional evolution equations are
parametrized by the following five nondimensional groups.

= v h DPe /m (11)

γ= k h DBi /a m (12)

γ̅ =c c h/0 0 m (13)

=K k k c/d a 0 (14)

=d D D/s s (15)

The Pećlet number Pe measures the ratio of transport by convection
to perpendicular diffusion and is essentially the nondimensional flow
rate. The Biot number Bi measures the ratio of adsorption rate to
diffusion along the height of the flow cell and is essentially the
nondimensional adsorption rate constant. c0̅ is a nondimensional inlet
concentration. In the limit of no flow, c0̅ is the reciprocal of the
fraction of the height h needed to fill the surface up to γ = γm. This
interpretation explains the close relationship between c0̅ and the so-
called depletion depth introduced by ref 27. K is the kinetic
equilibrium constant. ds is the ratio of the surface and bulk diffusion
coefficients, and if Ds < D, ds ∈ {0,1} measures the hindrance of
diffusion caused by the presence of the surface. Interestingly, the
magnitude of the transient term in eq 8 is weighed by the product c0̅Bi
= kac0h

2/D, meaning essentially that adsorption dynamics for large
inlet concentrations of molecules with a high affinity to the surface
evolves in a transient regime. This result is supported by Squires et
al.28 in their eq 21.
Nondimensional Parametrization: Diffusion Scaling. Following a

similar approach as above, but with the difference of scaling time with
a diffusion time, that is, t ̅ = Dt/h2, the nondimensional evolution
equation for the bulk concentration field takes the form
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while the boundary condition (eq 3) is now given by
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The nondimensional evolution equation for the surface concentration
field becomes
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The correspondence between the time scales for kinetic scaling (ks)
and diffusion scaling (ds) are

̅ = ̅ = ̅ ̅t t k c h D B c t/ iks ds
a 0

2
0

ds (19)

Kinetic/Diffusion Limitation and the Role of Scaling. The kinetic
scaling of time is particularly advantageous in the regime of kinetically
limited dynamics. Generally speaking, kinetically limited dynamics is
characterized by a stronger dependence on the adsorption kinetics
(Biot number) than on the convection and diffusion (Pećlet number).
On the other hand, if the adsorbing molecules have a very high affinity
to the surface, the Biot number Bi ≫ 1. In this limit, the dynamics is
convection-diffusion limited, which is characterized by a stronger
dependence on convection and diffusion than on the adsorption
kinetics. In this limit, it is advantageous to use the diffusion scaling of
time. Disregarding the dynamical limit of the system, there are other
pros and cons for applying the two different time scales. As seen
below, the quasi-steady theory adopts a minimal number of
nondimensional parameters by using kinetic scaling. Hence, kinetic
scaling is advantageous when working with the quasi-steady theory.
This is consistent with the fact that the quasi-steady-state
approximation is only theoretically supported for kinetically limited
dynamics. This is further elaborated on in the later section on the
quasi-steady theory. Usually, ka is a parameter one wishes to determine
from an adsorption experiment. It is therefore unknown a priori,
whereby kinetic scaling is not practical for experimental data fitting.
This issue is avoided by using diffusion scaling. Dependent on the
experimental regime, it might as well be preferable to present and fit
experimental data unscaled.

Estimates of Nondimensional Numbers. In this section, we
estimate some reasonable values for the nondimensional numbers.
Concerning typical operating conditions, flow rates are in the range Q
= 1−100 μL min−1, which amounts to maximum velocities of vm = 3Q/
2hw = 10−3−10−1 ms−1. Injection concentrations typically range from
c0 = 10−1−102 μM. To proceed, we need to consider a model binder.
We take as an example30 a globular protein with a diameter of 2R = 5
nm and molecular weight Mw = 30 kDa = 3 × 104 g mol−1. A simple
estimate of the maximum surface capacity γm is simply the weight of
one molecule divided by its diameter squared. Namely, γm = Mw/
4NAR

2 ≈ 2 × 103μg m−2, where NA is the Avogadro number. However,
in biochemical, studies the surface of the chip, or the dextran layer, is
sometimes prepared with a relatively low number of binding sites, with
the aim of reducing rebinding probability and neighbor interactions
among the adsorbing binders. This implies that the above estimate for
γm, which is based on a packing occurring for, for example, self-
assembled monolayers, represents an upper limit. In several
applications, the maximum surface capacity can be significantly
lower. The diffusion coefficient can be estimated from the Stokes−
Einstein relation. In aqueous solution at room temperature, the
dynamic viscosity is μ ≈ 10−3 N s m−2, and T ≈ 300 K, hence D =
kBT/6πμR ≈ 10−10 m2 s−1.

Based on the above values, we can estimate the regime of the
nondimensional numbers. By choosing c0 ≈ 1 μM, we obtain c0̅ = c0h/
γm ≈ 1, in the case of close packing on the surface. For surfaces
prepared with a lower number of binding sites, c0̅ > 1. For the Pećlet
number, we obtain Pe = vmh/D ≈ 5 × 102−5 × 104.

The Quasi-Steady Theory. Ideally, one would like to interpret
SPR data by assuming simply that the concentration near the sensor
cy=0 is identical to the injection concentration c0, that is by assuming
that there is no resistance to mass transfer. To account for the
corrections due to some mass transfer resistance, it has been suggested
to interpret data by means of a mass transport model, saying that the
overall flux of solute J to the surface is proportional to the difference
between the far field concentration c0, usually taken as the injection
concentration, and the concentration close to the surface of the sensor
c|y=0, that is, J = kL(c0 − c|y=0). In fact, this is based on a solution to the
stationary diffusion-convection equation for the concentration field c =
c(x,y) on a semi-infinite domain x,y ≥ 0.

∂
∂

= ∂
∂

>v
c
x

D
c

y
y, 0x

2

2 (20)

The velocity vx = vx(y) is linearized close to the surface, that is, vx(y) =
γẇy, with γẇ being the shear rate at the surface, and the boundary
conditions for the concentration field are c(x,y)|y=0 = const, c(x,y)|x,y→∞
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= 0, and c(x,y)|x=0 = c0. The solution consists of a concentration
boundary layer close to the surface y = 0, and a flux of solute to the
surface J = kL(c0 − c|y=0), where the mass transport parameter kL is
given by26

γ
=

Γ

̇⎛
⎝⎜

⎞
⎠⎟( )

k
D

Dl
2

9L 7
3

w
1/3

(21)

This mass transport parameter is often chosen as a free fitting
parameter, although it may in fact be predicted from the operating
conditions. Given a flow rate Q, the shear rate at the wall is

γ ̇ = Q
h w
6

w 2 (22)

The coupling of this stationary convection-diffusion solution with the
adsorption kinetics on the surface is performed by loosening up the
Dirichlet boundary condition c(x,y)|y=0 = const. Letting these bulk
particles c|y=0 adsorb, they are converted into surface particles γ, and a
simple mass balance on the surface dictates J = dγ/dt = (γ,c). The
critical assumption here is that the adsorption is so slow that the bulk
concentration on the surface c|y=0 is practically constant, and use of the
steady-state flux J = kL(c0 − c|y=0), with kL given by eq 21, is still
reasonable.
Inserting the steady-state flux into the mass balance on the surface,

we obtain kL(c0 − c|y=0) = (γ,c). In the case of linear kinetics (eq 5),
this becomes an algebraic equation for c|y=0, with the solution

γ
γ γ

| =
+

− +=c
k c k

k k( )y 0
L 0 d

a m L (23)

Substituting this into eq 5 gives the following nonlinear ordinary
differential equation for the evolution of the surface concentration γ =
γ(t)

γ γ γ γ
γ γ
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Using kinetic scaling, we can write eq 24 as

γ γ
γ

̅
̅

= − + ̅
+ − ̅t
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1 (1 )
1 Da(1 )

ks
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with the additional introduction of the important nondimensional
Damköhler number

γ= k kDa /a m L (26)

which is the ratio of the adsorption rate and the rate of mass transport
to the surface. The Damköhler number measures the limiting effect of
convection-diffusion on the adsorption process. In terms of the
Damköhler number, the basic assumption of slow adsorption translates
to Da ≪ 1. For increasing Damköhler numbers, the theory is not
expected to correctly capture the adsorption dynamics. In a later
section, we quantify the deviation from full numerical treatments for
increasing Damköhler numbers. Note that when Da = 0, we recover

γ γ̅
̅

= − + ̅ =
t

K
d
d

1 (1 ) , Da 0
ks

(27)

which is simply the nondimensional form of eq 5, that is, a purely
adsorption-limited, linear, kinetic process. Also, the initial rate of
adsorption, starting from the initial condition of zero surface
concentration, γ ̅ = 0, is predicted to be

γ γ̅
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=
+

=
+t t

c k
d
d
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Using diffusion scaling, the formulation of the quasi-steady theory
involves the two additional parameters, Bi and c0̅, namely,

γ γ γ
γ

̅
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= ̅ − ̅ − ̅
− ̅ −t

c Kd
d

Bi (1 )
Da(1 ) 1

ds
0
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Correspondence between the Damköhler, Biot, and Péclet
Number. The kinetic scaling of the evolution equations (eqs 8−10)
clarifies the assumptions in the quasi-steady theory. By setting Bi = 0,
we essentially obtain the conditions for the solution in eq 21; that is,
time dependency drops out of the bulk convection-diffusion equation,
consistent with an instantaneous buildup of the concentration
boundary layer above the adsorbing surface in the quasi-steady theory.
In addition, the quasi-steady theory approximates reality by a semi-
infinite bulk domain, a linear velocity profile, and no inlet distance to
the sensor surface. The latter assumption implies a constant
concentration field along the y-axis at the x-value where the sensor
surface begins.

The kinetically scaled quasi-steady theory in eq 25 is parametrized
only by the Damköhler number Da and the equilibrium constant K. As
the quasi-steady theory combines steady-state convection-diffusion
with adsorption in the Damköhler number, through the mass transport
coefficient kL, it is naturally possible to express the Damköhler number
in terms of the Pećlet number and the Biot number. First, from eq 22,
γẇ = 4vm/h. By defining the number α = 2(4/9)1/3/Γ(7/3) ≈ 1.2819,
the mass transport coefficient kL can be expressed as

α=
⎛
⎝⎜

⎞
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v h
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D
l hL
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Hence, the Damköhler number is given by

γ
α= = − −k

k
l hDa ( / ) BiPea m

L
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(30)

Note that the quasi-steady theory is parametrized by the Damköhler
number and at the same time is based on the assumption Da = 0. It is
clear from eq 30 that the Damköhler number increases linearly with
the Biot number and decreases with the cubic root of the Pećlet
number. Practically speaking, if the binders adsorb fast to the surface
(large Biot number), it may be impossible to reduce the Damköhler
number significantly by simply increasing the flow rate, that is, Pećlet
number.

Analytical Solution of the Quasi-Steady Theory. Equation 25
can be solved analytically in implicit form, that is, t ̅= t(̅γ)̅ instead of the
explicit form γ ̅ = γ(̅t)̅. It is determined simply by separation of variables
and integration, with initially γ(̅t ̅ = 0) = 0:

κγ κ κ κγ
κ

̅ = ̅ − + − − ̅t
Da ( Da( 1))ln(1 )

2 (31)

where κ ≡ 1 + K. For irreversible adsorption K = 0, κ = 1, the solution
condenses into

γ γ̅ = ̅ − − ̅t Da ln(1 ) (32)

This solution may not be so useful for physical insight, but has its
practical advantage when performing nonlinear least-squares data
fitting in the time domain. Data fitting in the time domain involves a
numerical solution of the ordinary differential equation (eq 25) at
every parameter space iteration, which can be avoided with the implicit
solution above. Another option is simply fitting data in the phase
plane.29 This method also does not involve the solution of eq 25, is
explicit, but as a trade-off involves differentiation of data.

■ NUMERICAL RESULTS AND DISCUSSIONS
This section is concerned with numerical simulations of the
dynamics of real adsorption experiments in surface-based
biosensors, as described by eqs 8−10, or similarly eqs 16−18.
(Collectively referred to as the simulations.) In particular, we
investigate the quality of the quasi-steady theory by comparison
with the numerical simulations. Deviations between the
simulations and the quasi-steady theory reveal the effects of
the transient dynamics in the simulations, which of course are
also present in real adsorption experiments. The results are
presented and analyzed in the phase plane, spanned by the
mean surface concentration Γ ≡ (1/lc)∫ sensorγ ̅ dx and its time
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derivative Γ̇ ≡ (1/lc)∫ sensor ∂γ/̅∂t ̅dx. This representation clearly
illustrates the transient regime, and is the most straightforward
approach to analyze deviations from linear adsorption kinetics
due to mass transport. A typical procedure for interpreting data
from adsorption experiments is to fit the data with the quasi-
steady theory eq 24 to reveal an adsorption rate constant
ka.

20−23 To mimic this procedure, we fit the quasi-steady theory,
using a least-squares method, to the simulation with Bi as the
free fitting parameter. Since the quasi-steady theory has no
chance of fitting initial data, the simulation time from the origin
of the phase plane to the extremum (highest adsorption rate) is
cut off in the fitting procedure, corresponding to typical
practice of representing SPR data in the phase plane, that is,
Goren et al.29 The error of the quasi-steady theory is then
quantified by the relative difference between the fitted Bi
number and the real Bi number used for the simulation. Strictly
speaking, we define the error as (Bifit − Bi)/Bi. The choice of
parameters spans both kinetically limited and convection-
diffusion limited dynamics; hence, the results are presented
using both kinetic and diffusion scaling of time. Note in
particular that purely kinetically limited dynamics, that is, the
linear kinetics in eq 5, is represented by a linear curve in the
phase plane. The universality characteristic of kinetic scaling is
that this linear curve is the diagonal from the point (0,1) on the
ordinate to the point (1,0) on the abscissa. We take offset in the
estimated regime for the nondimensional parameters and, to
constrain the available parameter space, choose to consider the
case of irreversible adsorption of binders, which are immobile
on the surface, hence K = ds = 0.
Kinetic Scaling. Figure 2 contains a representative

collection of phase plane curves using kinetic scaling, that is,

t ̅ks = kac0t. Four different simulations for the combinations of
concentrations c0̅ ∈ {1,20}, Bi ∈ {1,10}, and Pe = 500 are
presented (thick line), each in a separate plot, along with the
prediction of the quasi-steady theory for identical parameters
(thin line), as well as a fit of the quasi-steady theory to the
simulations (dashed line). Importantly, the quasi-steady theory

scales linearly with c0̅, taken into account in the kinetic scaling
of time in eq 25. Hence the quasi-steady theory does not
explicitly include the c0̅ degree of freedom, whereby essentially
only two distinctive predictions occur in Figure 2. In this way,
the thin black curves denoted (QST) are identical in Figure 2a
and b, as well as in Figure 2c and d. Several points are
immediately apparent from the simulations. The simulation
curves start at the origin of the phase plane, whereas the quasi-
steady theory has the finite initial adsorption rate given in eq
28. It is important to note that the kinetic scaling of time
implicitly includes a linear scaling of the adsorption rate with
both Bi and c0̅. The decrease in adsorption rate for both
increasing Bi and increasing c0̅ in Figure 2 amounts to a
sublinear increase with both Bi and c0̅ in dimensional variables.
The sublinear scaling naturally arises from convection-diffusion
limitation in the nonlinear dynamics of the system. Apart from
in the initial phase, predictions of the quasi-steady theory
practically coincides with the simulations, and thereby also the
fits, for c0̅ = 1. Increasing the concentration to c0̅ = 20 leads to
significant alteration of the simulation curves. Since there are
no knobs to turn for the kinetically scaled quasi-steady theory,
regarding changes in concentration c0̅, this leads to equally
significant deviations between the simulations and predictions
of the quasi-steady theory. The observed dependency of c0̅ is
expected, since c0̅ parametrizes time dependency in eq 8, and
hence transient behavior in the system dynamics, which is not
taken into account in the quasi-steady theory. Physically
speaking, the surface simply saturates faster than a steady-state
can be achieved in the bulk.

Diffusion Scaling. Figure 3 contains a representative
collection of phase plane curves using diffusion scaling, that

is, t ̅ds = Dt/h2. Four different simulations for the combination of
parameters c0̅ ∈ {20}, Bi = {1,10,50,100}, and Pe = 2500 are
presented, each in a separate plot, along with the prediction of
the quasi-steady theory for identical parameters, as well as a fit
of the quasi-steady theory to the simulations. The universality
characteristic obtained with diffusion scaling of time is that the

Figure 2. Phase plane dynamics using kinetic scaling. Simulation
(thick line): numerical solution of eqs 8−10. QST (thin line): quasi-
steady theory (eq 25) for corresponding value of Da through eq 30.
QST Fit (dashed line): fit of the quasi-steady theory to simulation with
Da as free fitting parameter. Parameters: c0̅ ∈ {1,20}, Bi = {1,10}, Pe =
500.

Figure 3. Phase plane dynamics using diffusion scaling. Simulation
(thick line): numerical solution of eqs 8−10. QST (thin line): quasi-
steady theory (eq 25) for corresponding value of Da through eq 30.
QST Fit (dashed line): fit of the quasi-steady theory to simulation with
Da as free fitting parameter. Parameters: c0̅ = 20, Bi = {1,10,50,100},
Pe = 2500.
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simulations approach a limiting curve, representing predom-
inantly convection-diffusion limited dynamics, for large Biot
numbers. This limiting curve in Figure 3d is observed to have a
very symmetric, parabolic-like, characteristic form. Inconsistent
with the simulations, quasi-steady theory predicts a linear
scaling of adsorption rate with concentration, which is explicit
when using diffusion scaling as in Figure 3. This naturally leads
to an increasing deviation between quasi-steady theory and
simulations for increasing Bi.
Flow Rate Dependency. The nature of the Pećlet number

dependency is presented in Figure 4, containing four different

simulations for the combination of parameters c0̅ = 10, Bi =
{1,100}, and Pe = {500,10 000}. Again, the simulations are
presented, each in a separate plot, along with the prediction of
the quasi-steady theory for identical parameters, as well as a fit
of the quasi-steady theory to the simulations. Kinetic scaling,
that is, t ̅ks = kac0t is applied. Clearly the increase of Pećlet
number leads to less convection-diffusion limitation. Thereby
the simulations approach the diagonal in Figure 4, representing
purely adsorption limited linear kinetics, for increasing Pe. This
behavior is very clear for Bi = 1, where the dynamics is
predominantly kinetically limited. For Bi = 100, where the
dynamics is much more convection-diffusion limited, we again
observe increased agreement between quasi-steady theory and
simulations as the Pećlet number is increased. The agreement is
however not as good as for Bi = 1. Note that the ordinate axis
are different in Figure 4c and d where Bi = 100. The specific
case in Figure 4c, where c0̅ = 10, Bi = 100, Pe = 500, is clearly in
a regime where the quasi-steady theory has little value, and little
ability to fit data well. The approach to adsorption limited
dynamics is consistent with a decrease in the Damköhler
number as Da ∼ Pe−1/3 from eq 30. Figure 4 also serves to
show that, due to this slow cubic root dependency,
experimental practicalities often precludes to cope with
convection-diffusion limitation by simply increasing the flow
rate for systems with a high Biot number.

In summary, Figures 2−4 stress some nonlinearities present
in the real system dynamics, which are not well captured in the
approximate quasi-steady theory.

Error of the Quasi-Steady Theory. The numerical
investigation concludes with a quantification of the error of
the quasi-steady theory, measured as the relative difference
between the Biot number used to fit the quasi-steady theory to
simulations, and the Biot number used for the simulation itself.
The nondimensional parameter space is spanned by Bi ∈
{1,...,100}, Pe ∈ {500,...,10 000}, for c0̅ = {1,10,20}. Figure 5a−

c presents the relative error (Bifit − Bi)/Bi, by contour lines in
the nondimensional parameter space (Pe,Bi) for c0̅ = {1,10,20},
respectively. Every contour is labeled with the matching error.
Equal for all values of c0̅ is that the error is largest for slow flows
of fast binders, that is, small Pe and large Bi numbers. For c0̅ =
1, only relatively minor errors, up to around 0.2 (20%), are
observed in the spanned parameter space. However, the
quantitative increase of the error with c0̅ is significant. For c0̅
= 20, the errors increase to above 2.5 (250%), which amounts
to a factor of 3−4, in the spanned parameter space.
Importantly, the quasi-steady theory consequently overesti-
mates the Biot number, and thereby the adsorption rate
constant, as long as the error is over a few percent. (Below

Figure 4. Phase plane dynamics using kinetic scaling. Simulation
(thick line): numerical solution of eqs 8−10. QST (thin line): quasi-
steady theory (eq 25) for corresponding value of Da through eq 30.
QST Fit (dashed line): fit of the quasi-steady theory to simulation with
Da as free fitting parameter. Parameters: c0̅ = 10, Bi = {1,100}, Pe =
{500,10 000}.

Figure 5. Contour lines of the relative error (Bifit − Bi)/Bi, in the
parameter space (Pe,Bi), for c0̅ ∈ {1,10,20}. The errors increase with
increasing Bi, increasing c0̅, and decreasing Pe.
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errors of a few percent, the fit and the prediction are so close
that this is not always the case.) Hence, the parameter planes
shown in Figure 5 provide a tool to quantitatively correct
experimentally obtained adsorption rate constants, which are
derived by fitting data with the quasi-steady theory.

■ CONCLUSION
This paper presented theoretical and computational inves-
tigations of convection, diffusion, and adsorption dynamics in
microfluidic surface-based biosensors. The nondimensional
Damköhler number Da = kaγm/kL, inherent in the quasi-steady
theory, was expressed in terms of the Biot number Bi = kaγmh/
D, the Pećlet number Pe = vmh/D, and the model geometry. In
addition, an analytical solution to the quasi-steady theory was
derived. The results provided the regimes of both reliable and
unreliable use of the quasi-steady theory for experimental data
analysis, by quantifying the error of the quasi-steady theory in
the space of parameters for irreversible adsorption. This can be
used as a tool to correct adsorption rate constants obtained by
fitting the quasi-steady theory to experimental data. We
deduced a nondimensional inlet concentration, the value of
which measures the critical importance of the inlet concen-
tration in relation to the maximum surface capacity.
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