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Acoustofluidics 7: The acoustic radiation force on
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In this paper, Part 7 of the thematic tutorial

series ‘‘Acoustofluidics – exploiting
ultrasonic standing waves, forces and
acoustic streaming in microfluidic systems
for cell and particle manipulation ’’, we
present the theory of the acoustic radiation

force; a second-order, time-averaged effect

responsible for the acoustophoretic motion

of suspended, micrometre-sized particles in

an ultrasound field.
I. Introduction

When an ultrasound field is imposed on

a fluid containing a suspension of parti-

cles, the latter will be affected by the

so-called acoustic radiation force arising

from the scattering of the acoustic waves

on the particle. The particle motion

resulting from the acoustic radiation force

is denoted acoustophoresis, and plays

a key role in on-chip microparticle

handling, as briefly reviewed in Part 1 of

the Tutorial Series.1
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The studies of acoustic radiation forces

on suspended particles have a long

history. The analysis of incompressible

particles in acoustic fields dates back to

the work in 1934 by King,2 while the

forces on compressible particles in plane

acoustic waves were calculated in 1955 by

Yosioka and Kawasima.3 Their work was

admirably summarized and generalized in

1962 in a short paper by Gorkov,4 and we

follow his approach here in deriving the

acoustic radiation force, filling in the

details originally left out.

The theory of the radiation force relies

on a perturbation expansion of the

acoustic fields in the fluid. This pertur-

bation theory is treated in detail in Part 2

of the Tutorial Series,5 but we summarize

the main results. The ultrasound pertur-

bations on a quiescent fluid are consid-

ered to first and second order (subscript 1

and 2, respectively) in density r, pressure

p, and velocity y,

r ¼ r0+r1 + r2, (1a)

p ¼ p0+c
2
0r1 + p2, (1b)

y ¼ y1 + y2, (1c)

where c0 is the speed of sound in the fluid,

and where p1 ¼ c20r1. Neglecting viscosity
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in the bulk fluid,5 the first-order conti-

nuity and Navier–Stokes equations are

vtr1 ¼ �r0V$y1, (2a)

r0vty1 ¼ �c20Vr1. (2b)

We assume time-harmonic fields,

r1 ¼ r1(r)e
�iut, (3a)

p1 ¼ p1(r)e
�iut, (3b)

y1 ¼ y1(r)e
�iut, (3c)

and introduce the velocity potential, f1,

y1(r) ¼ Vf1(r), (4a)

p1(r) ¼ ir0uf1(r), (4b)

r1ðrÞ ¼ i
r0u

c20
f1ðrÞ: (4c)

The potential fulfils the wave equation

V2f1 ¼
1

c20
v2t f1 ¼ �u2

c20
f1; (5)

which forms the starting point for the

scattering theory used below to calculate

the acoustic radiation force acting on the

particle.
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imposedMHz ultrasound wave, but is the

result of the radiation force averaged over

a full oscillation cycle. Thus, regarding the

second-order perturbation terms, we only

need to study time averages hXi over a full
oscillation period s of quantities, X(t),

hXih 1

s

ðs
0

dt XðtÞ: (6)

The time-averaged, second-order

acoustic pressure hp2i in the inviscid bulk

fluid is given by5

Vhp2i ¼ �hp1vty1i � r0h(y1$V)y1i, (7a)

h p2i ¼ 1

2
k0
�
p21
�� 1

2
r0hy21i; (7b)

where in the latter equality we have used

eqn (2b) and (4a) to obtain �hr1vty1i ¼
(c20/2r0)Vhr21i and h(y1$V)y1i ¼ (1/2)Vhy21i,
respectively, and introduced the

compressibility k0 ¼ 1/(r0c
2
0) of the fluid.

We note that the physical, real-valued

time average hf gi of two harmonically

varying fields f and g with the complex

representation eqn (3), is given by the

real-part rule

h f gi ¼ 1

2
Re

�
f ðrÞg�ðrÞ�; (8)

where the asterisk denotes complex

conjugation.

II. The acoustic radiation force

Below we calculate the acoustic radiation

force on a compressible, spherical, micro-

metre-sized particle of radius a suspended in

an inviscid fluid in an ultrasound field of

wavelength l. A small particle, i.e. a� l, of

density rp and compressibility kp acts as

a weak point-scatterer of acoustic waves,

which thus can be treated by first-order
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scattering theory. An incoming wave

described by some given velocity potential

fin, results in a scattered wave fsc propa-

gating away from the particle. For suffi-

ciently weak incoming and scattered waves,

the total first-order acoustic field f1 is given

by the sum of the two as sketched in

Fig. 1(a),

f1 ¼ fin + fsc, (9a)

y1 ¼ Vf1 ¼ Vfin + Vfsc, (9b)

p1 ¼ ir0uf1 ¼ ir0ufin +ir0ufsc. (9c)

Once the first-order scattered field fsc

has been determined for the given

incoming first-order field fin, the acoustic

radiation force Frad on the particle can be

calculated as the surface integral of the

time-averaged second-order pressure p2
and momentum flux tensor r0hy1y1i at

a fixed surface just outside the oscillating

sphere, represented by the black circle and

green arrows in Fig. 1(b). This follows

from the general method of calculating

the rate of change of the momentum

applied to the inviscid fluid, see Part 1 of

the Tutorial Series.1 The expression for

Frad becomes

Frad ¼ �
ð
vU

da
n
h p2inþ r0hðn$y1Þy1i

o

¼ �
ð
vU

da

��
1

2
k0
�
p21
�� 1

2
r0hy21i

�
n

þr0hðn$y1Þy1i
	
: (10)

As there are no body forces in this

problem, any fixed surface vU encom-

passing the sphere experiences the same
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force, and given the result of the following

scattering theory analysis, it is advanta-

geous to choose a sphere of radius r [ l

in the far-field region, represented by the

dashed circle and the red arrows in

Fig. 1(b), with its centre coinciding with

that of the spherical particle.
III. Scattering theory

In scattering theory, the scattered field fsc

from a point scatterer at the centre of the

coordinate system, is represented by

a time-retarded multipole expansion. In

the far-field region, the monopole and

dipole components dominate, fsc z
fmp + fdp. As verified by insertion into

eqn (5), these two components have the

form fmp(r,t)¼ b(t� r/c0)/r and fdp(r,t)¼
V$[B(t � r/c0)/r], where b is a scalar

function and B a vector function of the

retarded argument t � r/c0. In first-order

scattering theory, fsc must be propor-

tional to the incoming field fin. The only

physically relevant scalar field is the

density, b � rin, while the only relevant

vector field is the velocity, B � yin. Here

both rin and yin are evaluated at the

particle position with time-retarded

arguments, and the far-field region fsc

must have the form

fscðr; tÞ ¼ �f1
a3

3r0

vtrinðt � r=c0Þ
r

�f2
a3

2
V$



yinðt � r=c0Þ

r

�
;

for r[l; (11)

where the particle radius a, the unper-

turbed density r0, and the time derivative

vt are introduced to ensure the correct

physical dimension of fsc, namely m2 s�1.

The factors 1/3 and 1/2 are inserted for

later convenience. The main goal of the

calculation is to determine the dimen-

sionless scattering coefficients f1 and f2.

In the following we use a spherical

coordinate system with unit vectors (er,

eq,ef) located at the instantaneous centre

of the particle. Due to the azimuthal

symmetry of the problem, the velocities

have no azimuthal component, y ¼ yrer +

yqeq, and all fields depend only on r and q.

The polar axis ez points along the

instantaneous direction of the incoming

velocity yin, such that yin ¼ yinez. By the

azimuthal symmetry of the problem, the

particle must also move in that direction,

yp ¼ ypez,
Lab Chip, 2012, 12, 1014–1021 | 1015



Fig. 1 (a) Sketch of the far-field region r[ l of an incoming acoustic wave fin (blue lines) of wavelength l scattering off a small particle (black dot) with

radius a � l, leading to the outgoing scattered wave fsc (red circles and arrows). The resulting first-order wave is f1 ¼ fin + fsc. (b) Sketch of

a compressible spherical particle (yellow disk) of radius a, compressibility kp, and density rp, surrounded by the compressible inviscid bulk fluid (light

blue) of compressibility k0 and density r0. The fluid is divided into the near-field region for r� l, with the instantaneous field fsc(t), and the far-field region

with the time-retarded field fsc(t� r/c0). The radiation force, Frad (red arrows), evaluated at any surface in the far-field region (dashed circle), equals that

evaluated at the surface of the sphere (green arrows
yin ¼ yinez ¼ cosq yiner � sinq yineq, (12a)

yp ¼ ypez ¼ cosq yper � sinq ypeq. (12b)
A. Scattering and the radiation force

Before the values of the scattering coeffi-

cients are determined, we are able to

express the radiation force Frad in terms of

the incoming acoustic wave evaluated at

the particle position as well as the coeffi-

cients f1 and f2 as follows. When inserting

the velocity potentials eqn (9a) and (11)

into eqn (10) for Frad, we obtain a sum of

terms each proportional to the square of

f1¼fin +fsc. This results in three types of

contributions: (i) squares offin containing

no information about the scattering and

therefore yielding zero, (ii) squares of fsc

proportional to the square of the particle

volume a6 and therefore negligible

compared to (iii) the mixed products

finfsc proportional to particle volume a3,

and therefore the most dominant contri-

bution to the radiation force. Keeping

only these mixed terms, which physically

can be interpreted as interference between

the incoming and the scattered wave, and

using the index notation1 (including

summation of repeated indices), the ith

component of eqn (10) becomes

Frad
i ¼ �

ð
vU

da nj

��
c20
r0

hrinrsci

� r0hyink ysck i
�
dij þ r0hyini yscj i

þ r0

D
vsci v

in
j

Eo
(13a)
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¼ �
ð
dr v

��
c20 hr r i � r

�
yinysc


�
d

U
j

r0
in sc 0 k k ij

þr0
D
vini v

sc
j

E þ r0
D
vsci v

in
j

Eo
(13b)

¼ �
ð
U

dr

�
c20
r0

½hrinvirsci þ hrscvirini�

þr0
��
yini vjy

sc
j

�þ �
ysci vjy

in
j

���
(13c)

¼ �
ð
U

dr
�� hrinvtysci i � hrscvtyini i

þ r0
�
yini vjy

sc
j

�� hyscj vtrini
�

(13d)

¼ �
ð
U

dr
�hyini vtrsci þ r0

�
yinj vjy

sc
j

��
(13e)

¼ �
ð
U

drr0

�
yini



vjvjfsc �

1

c20
v2t fsc

�


(13f)

Here, we have used p1¼ c20r1 in eqn (13a),

Gauss’s theorem in eqn (13b), exchange of

indices vivk¼ vivkf¼ vkvif¼ vkvi to cancel

terms in eqn (13c), introduction of time

derivatives by the continuity equation

vtr1 ¼ �r0vjv1,j and the Navier–Stokes

equation r0vtv1,i ¼ �vip1 ¼ �c20vir1 in

eqn (13d), vanishing of time-averages

of total time derivatives hvt(rvi)i ¼ 0 or

hrvtvii ¼ �hvivtri for cancellation and

rearrangement in eqn (13e), and finally

reintroduction of the vector potential fsc in

eqn (13f).

The d’Alembert wave operator vjvj �
(1/c20)v

2
t acting on fsc appears in the

integrand of eqn (13f), and since fsc is

).
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a sumof simplemonopole and dipole terms,

significant simplifications are possible. Just

as the Laplace operator acting on the

monopole potential f¼ q/(4p30r) yields the

point-charge distribution, v2jf¼�(q/30)d(r),

in the static case, the d’Alembert operator

acting on the retarded-time monopole and

dipole expressions (11) also yields delta

function distributions,

v2j fsc �
1

c20
v2t fsc ¼ f1

4pa3

3r0
vtrindðrÞ

þf22pa
3V$½yindðrÞ�;

for r[l:

(14)

Now we see the great advantage of

working in the far-field limit. The first

term is easily integrated, when appearing

in eqn (13f), but for the second term we

need to get rid of the divergence operator

acting on the delta function before we can

evaluate the integral. This we manage by

Gauss’s theorem. First we note that

V$[v(r)u(r)] ¼ vV$u + u$Vv for any

scalar function v and vector function

u. Therefore,
Ð
vU dan$ðvuÞ ¼ Ð

U drV$ðvuÞ
¼ Ð

UdrðvV$uþ u$VvÞ; and we have deri-

ved the integral identity
Ð
UdrvV$u ¼

�Ð
Udru$Vvþ

Ð
vUdan$ðvuÞ: Now, since u

f yd(r) we obtain in eqn (13f) a volume

integral encompassing the delta

function singularity, thus yielding

a non-zero contribution, and a surface

integral avoiding the delta function

singularity thus yielding zero. Conse-

quently, the resulting expression for Frad

becomes
al is ª The Royal Society of Chemistry 2012



Frad ¼ � 4p

3
a3h f1yinvtrini

þ2pa3r0h f2ðyin$VÞyini
(15a)

¼ þ 4p

3
a3h f1pinvtyini

þ2pa3r0h f2ðyin$VÞyini
(15b)

¼ � 4p

3r0c
2
0

a3h f1pinVpini

þ2pa3r0h f2ðyin$VÞyini
(15c)

¼ �Re½ f1� 2p
3
a3k0Vhr2ini

þRe½ f2�pa3r0Vhy2ini;
(15d)

with pin and yin evaluated at r ¼ 0.

Here we have integrated over the

delta function in eqn (15a), applied

the previously used rule hrinvtyini
¼ �hyinvtrini in eqn (15b), inserted rin ¼
pin/c

2
0 and vtyin ¼ �Vpin/r0 in eqn (15c),

and finally pulled f1 and f2 outside the

time averages (using eqn (8)) together

with the nabla operator in eqn (15d). The

final expression for the radiation force

acting on a small particle (a � l) is,

Frad ¼ � 4p

3
a3V

�
1

2
Re½ f1�k0

�
p2in

�

� 3

4
Re½ f2�r0hy2ini

�
:

(16)

Now we need to determine the coeffi-

cients f1 and f2.
B. The near-field potential

As sketched in Fig. 1(b), the time-retarded

argument t � r/c0 of the acoustic field f1

can be replaced by the instantaneous

argument t in the vicinity of the particle of

radius a. The reason is that within one

oscillation period s ¼ 2p/u, the retarda-

tion time over the distances r x a is

negligible, r/c0 x a/c0 � l/c0 ¼ s. There-
fore, in the near-field region, finderived in

eqn (12a) and the scattering potential fsc

of eqn (11) with its monopole and dipole

term become
fin(r,q) ¼ yinrcosq, (17a)

fsc(r,q) ¼ fmp(r) + fdp(r,q),

for r � l, (17b)
This journal is ª The Royal Society of Chemistry
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fmpðrÞ ¼ �f1

3r0
vtrin r

; (17c)

fdpðr; qÞ ¼ þ f2
a3

2
yin

cosq

r2
; (17d)

where vtrin and vin are evaluated at

the position of the particle, r ¼ 0. In

first-order scattering theory, the mono-

pole and dipole parts of the problem do

not mix: f1is the coefficient in the

monopole scattering potential fmp from

a stationary sphere in the incoming

density wave rin, while f2 is the coeffi-

cient in the dipole scattering potential

fdp from an incompressible sphere

moving with velocity yp in the incoming

velocity wave yin.
C. The monopole coefficient f1

The presence of the particle gives rise to

a mass rate vtm of scattered fluid mass

given by the first-order, scattered mass

flux r0Vfmp. By integration over the

surface of the sphere we obtain

vtm ¼
ð
vU

daer$
�
r0Vfmp

�

¼ f1
4p

3
a3vtrin:

(18)

The factor 1/3 was introduced in eqn

(11) to make the particle volume Vp ¼
(4p/3)a3 appear here. The rate of scattered

fluid mass can also be written in terms of

the rate of change of the incoming density

r0 + rin multiplied by Vp as vtm¼ vt[{r0 +

rin(t)}Vp(t)]. Expressing this through the

compressibility k ¼ �(1/V)(vV/vp) of the

particle, kp, and of the fluid, k0 ¼ 1/(r0c
2
0),

we obtain,

vtm ¼
�
1� kp

k0

�
Vpvtrin; (19)

by using vtVp¼ vpVpvtpin¼�c20Vpkpvtrin.

Now, f1is obtained by equating eqn (18)

and (19),

f1
�
~k
� ¼ 1� ~k;with ~k ¼ kp

k0
: (20)

D. The dipole coefficient f2

The dipole coefficient f2 is related to the

translational motion of the particle. For

an inviscid fluid, there is only a boundary

condition for the radial-direction

components of the particle velocity yp of
2012
eqn (12b) and the dipole part of the fluid

velocity,

er$yp ¼ er$V(fin + fdp). (21)

At r ¼ a we obtain er$V(fin + fdp) ¼
(1 � f2)vincosq from eqn (17a) and (17d),

whereby eqn (21) becomes

vp ¼ (1 � f2)vin. (22)

The particle velocity vp is also given by

Newton’s second law with vtvp ¼ �iuvp
and the dipole part pin + pdp of the fluid

pressure acting on the surface of the

sphere,

�i
4

3
pa3rpuyp

¼ �2pa2
ð1
�1

dðcosqÞ�pin þ pdp
�
cosq:

(23)

From eqn (9c), (17a), and (17d) we obtain

pin þ pdp ¼ ir0u
�
fin þ fdp

�

¼ ir0ua

�
1þ 1

2
f2

�
yincosq;

(24)

which together with eqn (23) leads to

~rvp ¼
�
1þ 1

2
f2

�
vin;with ~r ¼ rp

r0
: (25)

The dipole coefficient f2 follows from eqn

(22) and (25),

f2
�
~r
� ¼ 2ð~r� 1Þ

2~rþ 1
: (26)

E. The resulting radiation force

In summary, the resulting radiation force

Frad on a small, spherical particle (a � l)

in an inviscid fluid is the gradient of an

acoustic potential Urad,

Frad ¼ �VUrad, (27a)

Urad ¼ 4p

3
a3
�
f1
1

2
k0
�
p2in

�� f2
3

4
r0
�
v2in

��
;

(27b)

f1
�
~k
� ¼ 1� ~k; with ~k ¼ kp

k0
; (27c)

f2
�
~r
� ¼ 2ð~r� 1Þ

2~rþ 1
;with ~r ¼ rp

r0
: (27d)

IV. Standing plane wave

Our prime example of the acoustic radi-

ation force is the 1D planar standing
Lab Chip, 2012, 12, 1014–1021 | 1017



l/2-wave, p1(z)¼ pacos(kz), where k¼ 2p/

l¼ u/c0 and l/2¼ w, w being the channel

width, see Fig. 2. This has been realized in

numerous applications in microchannel

acoustophoresis.1 Here, we analyze the

radiation force resulting from such a field.

The first-order, incoming, acoustic fields

are given by

finðz; tÞ ¼
pa
r0u

cosðkzÞcosðutÞ (28a)

pin(z,t) ¼ pacos(kz)sin(ut), (28b)

rinðz; tÞ ¼
pa
c20

cosðkzÞsinðutÞ; (28c)

yinðz; tÞ ¼ � pa
r0c0

sinðkzÞcosðutÞez; (28d)

where we have used the usual real-time

representation. With these fields, the time

averages needed in eqn (27) are

simply hcos2ðutÞi ¼ hsin2ðutÞi ¼ 1

2
; and

we arrive at the following expression for

the radiation potential

Urad ¼
�
f1
3
cos2ðkzÞ � f2

2
sin2ðkzÞ

�

�pa3k0p
2
a:

(29)

The radiation force is found by

differentiation,

Frad
z ¼ �vzU

rad

¼ 4pF(~k,~r)ka3Eacsin(2kz), (30a)

Eac ¼ p2a
4r0c

2
0

; (30b)

F
�
~k; ~r

� ¼ 1

3
f1
�
~k
�þ 1

2
f2
�
~r
�

¼ 1

3

�
5~r� 2

2~rþ 1
� ~k

�
; (30c)

where Eac is the acoustic energy density

and F(~k,~r) is the so-called acousto-

phoretic contrast factor. The factor
Fig. 2 A cross-sectional sketch of a straight, hard-walled (green) water-filled channel (blue) of

width w with a transverse, standing, ultrasound l/2-pressure resonance pin(z) ¼ pacos(kz) (gray

dashed line), k ¼ p/w. Relative to pin(z), the radiation force Frad
z (z) on a small suspended particle is

period doubled and phase shifted. For a contrast factor F > 0 we have Frad(z)f + sin(2kz) (black

arrows), and for F < 0 we have Frad(z)f�sin(2kz) (red arrows). Consequently, the resulting particle

motion is towards and away from the nodal plane (yellow dashed line), respectively.
sin(2kz) makes the radiation force period

doubled and phase shifted relative to the

pressure wave pacos(kz). Note that F is

positive (negative) if the density ratio

(5~r � 2)/(2~r + 1) is bigger (smal-

ler) than the compressibility ratio ~k.

This sign-difference was used by the

Laurell group in its seminal work from

2004 on acoustophoretic separation of

red blood cells and lipid particles.6–8 A

sketch of the acoustic radiation force is

shown in Fig. 2.
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Most of the parameters needed as input

for theoretical calculations can easily be

estimated from table values of materials

and from the geometry of the given

acoustofluidic device. However, the

energy density is not so easy to estimate,

since the coupling of acoustic energy from

the piezo transducer into the fluidic

system is hard to predict as discussed in

Part 3 and 4 of the Tutorial Series.9,10 A

typical value for low-voltage ((10 V)

piezo transducers running at a few MHz

on silicon/glass chips is11–14

Eac z 10–100 Jm�3. (31)

In the following, we present experi-

mental validation of the above theory of

the acoustic radiation force.
V. Acoustophoretic particle tracks

Basic physical properties of acousto-

phoresis, such as energy density, local

pressure amplitudes, acoustophoretic

velocity fields, resonance line shapes, and

resonance Q factors, are most easily

studied in simple rectangular channels

embedded in silicon/glass chips like those

described in Part 5 of the Tutorial Series.15

Examples of this approach are given in

refs. 13 and 14. In both of these papers,

themicrofluidic chips under study contain

a straight channel with one inlet and one

outlet. Typical dimensions of the channels

are length l¼ 40 mm, width w¼ 0.38 mm,

and height h ¼ 0.16 mm. The particles

were liquid suspensions of 5 mm-diameter

polystyrene microbeads in concentrations

ranging from 0.1 g L�1 to 0.5 g L�1. The

ultrasound frequency is around 2 MHz

corresponding to l around 0.75 mm

ensuring the validity of the basic

assumption a � l of the theory.
This journ
In Part 2 of the Tutorial Series5we have

already reviewed the determination of the

acoustic resonance properties in ref. 13,

such as the Q factor and the resonance

width. Here we will illustrate the experi-

mental validation of the above theory

by briefly reviewing the study of the

acoustophoretic particle tracks in refs. 13

and 14.

Assuming the channel is aligned with

the x-axis and the ultrasonic standing

wave is applied in the transverse z-direc-

tion, the path of a microbead moving by

acoustophoresis is traced out by the time-

dependent co-ordinates (x(t),z(t)). A

particularly simple analytical expression

for the transverse part, z(t), of such a path

can be obtained from the acoustic radia-

tion force eqn (30a), valid for the 1D

planar standing l/2-wave p1(z,t), eqn

(28b). For slowly moving micrometre-

sized particles we can safely neglect iner-

tial effects and determine the transverse

path, z(t), by balancing the acousto-

phoretic force Frad
z with the viscous Stokes

drag force, Fdrag
z ¼ �6phavp, from the

quiescent liquid. This force balance

results in an expression for the position-

dependent particle speed vp,

ypðzÞ ¼ 2pFka2Eac

3ph
sinð2kzÞ: (32)

Writing vp ¼ dz/dt, the resulting

differential equation for the transverse

particle path z(t) can be solved analyti-

cally by separation in the variables z and t,

and using the integral 2
Ð
ds/sin(2s) ¼ ln|

tan(s)|,

zðtÞ ¼ 1

k
arctan

�
tan½kzð0Þ�

� exp

�
4F

3
ðkaÞ2 Eac

h
t

�	
; (33)
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Fig. 3 Experimental validation of the theory of the acoustic radiation force for 5 mm-diameter

polystyrene particles in water (~k¼ 0.72, ~r¼ 1.05, andF¼ 0.11) in a 1D planar standing l/2-pressure

wave. (a) Plot of the transverse path z(t) (blue circles) and corresponding fitting lines eqn (33) (black

lines) for 16 out of 100 measured particle tracks. For each fit, Eac is the only fitting parameter. The

average of all fits resulted in Eac ¼ (103 � 12) J m�3. (b) Plot of the average (uz)x (blue circles) along

the channel of the z -component uz(x,z) of the particle velocity measured bymicro-PIV. The data are

obtained from the first image-pair in 100 repeated experiments of acoustophoretic focusing, each

starting from a homogeneous particle distribution. The acoustophoretic particle velocity vp of eqn

(32) is fitted to data with Eac as the only fitting parameter resulting in Eac ¼ (98.0 � 1.1) J m�3.

Adapted from ref. 14.
where z(0) is the transverse position at

time t ¼ 0. In Fig. 3(a) is shown the

experimental validation of eqn (33) from

ref. 14. The blue points are data for actual

particle paths determined by particle

tracking frame by frame from a recorded

CCD video of the particle motion. The

black lines are fitted to data using eqn (33)

with only one fitting parameter, the

acoustic energy density Eac. The average

of the determination of Eac for 100

particle tracks by this method resulted in

Eac ¼ (103 � 12) J m�3.

In Fig. 3(b) are shown micro-particle

image velocimetry (micro-PIV) measure-

ments of the transverse acoustophoretic

velocity vp(z). For a microscope field-of-

view covering a 0.85-mm-long segment of

the 0.38-mm-wide channel, the data are

obtained from the first image-pair in 100

repeated experiments of acoustophoretic

focusing each starting from a homoge-

neous particle distribution. After aver-

aging along the channel length, the data

are fitted to the acoustophoretic particle

velocity vp(z) of eqn (32) with Eac as the

only fitting parameter. The resulting value

of Eac ¼ (98.0 � 1.1) J m�3 is in excellent

agreement with, and more precise than,

the particle trackingmethod.These results

provide a good validation of the theory.

Inverting the expression, we can also

calculate the time t it takes a particle to

move from any initial position z(0) to any

final position z(t),

t ¼ 3h

4Fðka2ÞEac

ln

�
tan½kzðtÞ�
tan½kzð0Þ�

�

¼ 3

4F

c20
u2a2

h

Eac

ln

�
tan½kzðtÞ�
tan½kzð0Þ�

�
:

(34)

This expression is important for

designing acoustofluidic devices to sepa-

rate particles having the same sign of their

acoustophoretic contrast factor F. In this

case separation must be based on varia-

tions in the time t(w) it takes a particle to

be focused transversely given the width w

of the microfluidic channel. If the axial

convection speed of the carrier liquid is v0,

then the distance Dl(v0,w) a given particle

has to flow along the channel before it has

moved the transverse focus distance w can

be written as

Dl(v0,w) ¼ v0t(w) f a�2F�1v0u
�2E�1

ac . (35)

The larger a particle, the shorter it has

to be convected before it has

been focused. An analysis of the
This journal is ª The Royal Society of Chemistry
acoustophoretic focus time in terms of the

focusing ability is provided in ref. 14.
VI. Energy density as function
of the applied piezo voltage

In Part 4 of the Tutorial Series,10 the basic

theory of piezoelectric actuation of

ultrasonic resonances in water-filled

silicon/glass microchannels is presented.

It is shown that a linear relation exists

between the applied peak-to-peak voltage

Upp of the piezo transducer responsible

for exciting the ultrasonic resonance

and the induced acoustic pressure ampli-

tude pa,

pa f Upp. (36)

By eqn (30b) Eac thus scales with the

square of Upp,

Eac f p2a f U2
pp. (37)
2012
This scaling law was tested in ref. 13 by

plotting the values of Eac extracted by the

above-mentionedparticle-trackingmethod

versus the applied piezo-transducer voltage

Upp. The result is shown in Fig. 4 for ten

values ofUpp in the range 0.4 V to 1.9 V. A

power-law fit resulted in the power 2.07,

less than 5% from the expected power of 2.

The measurements of the acoustic

energy density Eac also allows for a deter-

mination of the pressure amplitude pa.

For water at room temperature we obtain

from eqn (30b) that

pa ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0c

2
0Eac

q
¼ 0:094 MPa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eac

1 J m�3

r
:

(38)

For the energy density Eac z 100 J m�3,

obtained in Fig. 3, we find pa z 1 MPa or

4� 10�4 times the cohesive energy density

2.6 GPa of water. Equivalently, the

density fluctuations are 4 � 10�4 times r0,
Lab Chip, 2012, 12, 1014–1021 | 1019



Fig. 4 Measured acoustic energy density Eac versus applied peak-to-peak voltage Upp on the piezo

transducer (points) using the particle-tracking method on 5 mm-diameter polystyrene particles in

water. The power law fit (full line) to the data is close to the expected square law,EacfU2
pp. Adapted

from ref. 13.
and thus the acoustic perturbation theory

is expected to hold even at resonance.

VII. Viscous corrections to the
radiation force

The theory of the acoustic radiation force

has so far been developed under the

assumption of an inviscid fluid. Going

back to the perturbation theory reviewed

in Part 2 of the Tutorial Series,5 this

amounts to neglecting the viscous term

hV2y1 relative to r0vty1 in the Navier–

Stokes equation. Far from any rigid

boundaries, this is a good approximation.

However, the bulk velocity oscillating at

an ultrasound frequency, u, must match

the no-slip boundary condition at any

given rigid wall, and it is well known by

momentum diffusion considerations16,17

that during one oscillation period, the

presence of a wall can be felt up to the

penetration depth d, given in terms of the

kinematic viscosity n ¼ h/r0 as,

d ¼
ffiffiffiffiffi
2n

u

r
z0:6mm; (39)

where the value is for 1 MHz ultrasound

in water at room temperature. For

distances within a few times d, large

velocity gradients may occur in eqn (2b),

such that hv1/d
2 T r0vtv1, and viscosity

cannot be neglected. This viscous fluid

layer surrounding a given particle is

referred to as the acoustic boundary layer.

For a particle radius a[ d the boundary

layer is of negligible relative size, and the

inviscid theory is expected to be a good

approximation.

In previous works by Doinikov18 and

by Danilov and Mironov,19 general theo-

retical schemes for the radiation force

have been developed, but analytical

expressions were only provided in the

special limits of a� d� l and d� a� l.

Given themagnitude of d above, the range

of applicability of these published

expressions for viscous corrections is

severely limited. In recent work by Settnes

and Bruus,20,21 an analytical expression

for the radiation force was derived for any

(small) particle size d,a � l using the

classic Prandtl–Schlichting boundary-

layer theory combined with a stream-

function formulation of the acoustic

boundary layer.17The inviscid bulk field is

coupled to the motion of the particle

through the boundary layer, and not

directly as in eqn (21) above.
1020 | Lab Chip, 2012, 12, 1014–1021
The result of the analysis of ref. 21 is

that the monopole scattering coefficient f1
is unchanged (the mass scattering and the

compressibility are unaffected by

viscosity), while f2 becomes complex-

valued,

f2
�
~r;~d

� ¼ 2
�
1� g

�
~d
��ð~r� 1Þ

2~rþ 1� 3g
�
~d
� ; (40a)

g
�
~d
� ¼ � 3

2

�
1þi

�
1þ ~d

��
~d;

with ~d ¼ d

a
:

(40b)

The viscosity-dependent correction to

the final expression (27) consists in re-

placing f2(~r) by Re[f2(~r,~d)]. In the inviscid

case ~d¼ 0, we find that f2(~r,~d¼ 0)¼ f2(~r),

as expected, and for neutral-buoyancy

particles (~r ¼ 1) f2 is identically zero. As

a function of decreasing particle radius a,

the value of f2(~r,~d) saturates asymptoti-

cally, and f2(~r,~d [ 1) ¼ (2/3)(~r � 1).

Using tabulated values of the material

parameters, it is found that the relative

change in the acoustic contrast factor F is

about 1% or less for 5 mm-diameter, near-

neutral buoyancy, polystyrene particles in

water, but as much as 25% for pyrex glass

particles with a diameter of 0.5 mm.21

VIII. Concluding remarks

In this Tutorial Paper we have used first-

order and time-averaged second-order

perturbation theory to derive an expres-

sion for the acoustic radiation force Frad at

wavelength l for a small spherical particle

of radius a in an inviscid fluid.
This journ
The expression is the sumof themonopole

term for a compressible, stationary

particle with coefficient f1, which depends

only on the relative compressibility ~k, and

the dipole term for a moving, incom-

pressible particle with coefficient f2, which

depends only on the relative density ~r.

Examples of experimental validation of

the theory have beenpresented, and abrief

review of how the inclusion of the fluid

viscosity alters the result. Viscosity plays

no role for near-neutral buoyancy parti-

cles, while significant corrections appear

for particles with a density differing

greatly from water. A more detailed

treatment of the acoustic boundary layer

is given in the coming parts of Tutorial

Series treating acoustic streaming.

In this tutorial paper, we have not dis-

cussed size effects for particles with radius

a comparable to or larger than the

acoustic wavelength l. A good entry to

such studies is the theoretical analysis by

Hasegawa.22

Another aspect not touched upon here,

and which also needs more studies is

particle–particle interactions. We have

only studied the single-particle theory.

However, at least two effects play a role as

the concentration of the suspended parti-

cles is increased. One is hydrodynamic

interaction, where one particle feels the

Stokes drag from thewake producedby the

motion of another particle. A very good

and general introduction is given in the

textbook by Happel and Brenner,23 while

an explicit example ofmany-particle effects

in microchannel magnetophoresis as func-

tion of concentration is given in ref. 24.
al is ª The Royal Society of Chemistry 2012



In the coming years we will likely see

more work on acoustofluidics25 and high

particle concentration acoustophoresis

and its application to biomedical samples.
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