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Taylor–Aris dispersion, the shear-induced enhancement of solute diffusion in the flow
direction of the solvent, has been studied intensely in the past half century for the
case of steady flow and single-frequency pulsating flows. Here, combining Aris’s
method of moments with Dirac’s bra–ket formalism, we derive an expression for
the effective solute diffusivity valid for transient Taylor–Aris dispersion in any given
time-dependent, multi-frequency solvent flow through straight channels. Our theory
shows that the solute dispersion may be greatly enhanced by the time-dependent parts
of the flow, and it explicitly reveals how the dispersion coefficient depends on the
external driving frequencies of the velocity field and the internal relaxation rates for
mass and momentum diffusion. Although applicable to any type of fluid, we restrict
the examples of our theory to Newtonian fluids, for which we both recover the known
results for steady and single-frequency pulsating flows, and find new, richer structure
of the dispersion as function of system parameters in multi-frequency systems. We
show that the effective diffusivity is enhanced significantly by those parts of the
time-dependent velocity field that have frequencies smaller than the fluid momentum
diffusion rate and the solute diffusion rate.

Key words: general fluid mechanics, particle/fluid flows

1. Introduction
In his seminal work Taylor (1953) clarified the basic physical principles for the

dispersion of the concentration profiles of solutes in a steady Poiseuille flow: the
shear from the solvent flow acts to increase the dispersion, or effective diffusivity, of
the solute in the direction of the flow. For a channel with a circular cross-section
of radius a, he derived the now classical expression for the effective diffusivity
Deff = (1 + Pé 2

/48)D, where Pé = aUo/D is the Péclet number for the system,
Uo being the average solvent flow speed and D the solute molecular diffusivity.
This work was extended to a wider range of Péclet numbers and geometries by
Aris (1956) using the elegant method of statistical moments. Many other aspects
of shear-enhanced solute dispersion in steady flows have since been studied in the
literature, including buoyancy and channel curvature (Erdogan & Chatwin 1967),
interphase mass transfer (Sankarasubramanian & Gill 1973), transient phenomena
(Chatwin 1977), effects of walls in three-dimensional dispersion (Doshi, Daiya &
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Gill 1978), a stochastic description (van den Broeck 1982), influence of channel aspect
ratio (Chatwin & Sullivan 1982), and generalized dispersion of mass, energy and
momentum in unbounded systems (Brenner & Edwards 1993; Goddard 1993). Taylor
dispersion is now textbook material (Brenner & Edwards 1993; Probstein 1994; Bird,
Stewart & Lightfoot 2006).

Even today shear-flow-enhanced dispersion is studied actively as illustrated by the
recent analyses of Deff in transient anomalous diffusion of point discharges (Latini &
Bernoff 2001), in electro-osmotic flow with random zeta potentials (Gleeson 2002),
in steady flows in a wide class of channel cross-sections (Ajdari, Bontoux & Stone
2006; Bontoux et al. 2006; Dutta, Ramachandran & Leighton 2006), in harmonically
oscillating Couette–Poiseuille flows (Paul & Mazumder 2008), in steady Poiseuille
flows using a Brownian-motion approach (Camassa, Lin & McLaughlin 2010) and in
steady, non-Newtonian fluid flow (Vikhansky & Wang 2011).

In many practical applications (Skafte-Pedersen et al. 2009; Vedel, Olesen & Bruus
2010) flows are unsteady and therefore typically generate more shear than their steady
counterparts. The chemical engineering community has long recognized that increased
mass transfer can be achieved by pulsating the flow, see e.g. Taylor & Leonard (1965)
and Molloy & Leighton (1998), but many physical interpretations and quantitative
aspects of this additional shear remains to be investigated theoretically. This is
surprising given that the first investigation of Taylor dispersion in time-dependent
flows dates back to Aris (1960) and its generalization by Brenner & Edwards (1993),
and also given the large volume of studies dedicated to steady flows. Time-dependent
phenomena that have been studied are non-transient, single-frequency pulsating flows
(Harris & Goren 1967; Chatwin 1975; Watson 1983; Thomas & Narayanan 2001;
Jansons 2006), the first examples of transient-flow analysis of single-frequency flows
by Mazumder and coworkers (Mukherjee & Mazumder 1988; Bandyopadhyay &
Mazumder 1999), and dispersion in a time-dependent flow in an unbounded system
(Leighton 1989).

Here, we go beyond the previous results on dispersion in single-frequency flows
and study any given time-dependent laminar flow in a straight channel of any
constant cross-sectional shape, in particular relevant for microfluidic systems. Based
on Aris’s scheme we derive a general and compact expression for the transient,
effective Taylor–Aris diffusivity Deff (t) with explicit dependence on the externally
applied flow frequencies `ωo and the internal relaxation rates λ1 and αfl for solute
mass diffusion and solvent momentum diffusion, respectively. We show that Deff is
enhanced significantly by those frequency-components of the time-dependent velocity
field which have an oscillation frequency smaller than any relaxation rate of the
system, and thus provide enough time for the solute to equilibrate. We further
show how this enhancement is diminished each time a frequency is increased and
becomes larger than a given relaxation rate. Moreover, for the start-up of a Poiseuille
flow, which includes any flow frequency, we find that the transient time of Deff is
determined by the slowest of the relaxation processes, i.e. the maximum of 1/λ1 and
1/αfl . Finally, we demonstrate the practical usefulness of our theory as a design tool by
characterizing the dispersion generated by a microfluidic, peristaltic pump.

2. The physical model and Aris’s method of moments
In the following we establish our physical model together with our notation and

present the well-known method of moments for calculating the dispersion coefficient
Deff . We consider a long, straight channel parallel to the x-axis, and assume that it is
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translational invariant along this axis with an arbitrary, but constant, cross-section Ω .
The coordinates in the transverse yz-plane are denoted r⊥ = (y, z), so that the full
coordinates are written as r= (x, r⊥), and likewise for the gradient operator ∇ and the
Laplace operator ∇2,

r= (x, r⊥) with r⊥ = (y, z), (2.1a)
∇ = ex∂x +∇⊥ with ∇⊥ = ey∂y + ez∂z, (2.1b)

∇2 = ∂2
x +∇2

⊥ with ∇2
⊥ = ∂2

y + ∂2
z . (2.1c)

The channel has length L , cross-sectional area A = ∫
Ω

dr⊥1 and volume V =L A .
Our analysis involves expansion of the spatial dependence of functions into linear
combinations of suitably chosen basis functions. For notational convenience we shall
therefore rely on a Hilbert-space representation using the compact Dirac bra–ket
notation, employed more often in quantum mechanics (Dirac 1981) than in fluid
mechanics (Bruus 2008; Mortensen, Olesen & Bruus 2006; Mortensen & Bruus 2006).
For any pair of functions f (x, r⊥, t) and g(x, r⊥, t) represented by the bra 〈f | and the
ket |g〉, the inner product 〈f |g〉, is defined by the integral, where the asterisk indicates
complex conjugation,

〈f |g〉 = 1
V

∫ L /2

−L /2
dx
∫
Ω

dr⊥ f ∗(x, r⊥, t) g(x, r⊥, t). (2.2)

This definition also includes the case where the involved functions only depend on the
transverse coordinates r⊥. For f⊥(r⊥, t) and g⊥(r⊥, t) we obtain

〈f⊥|g⊥〉 = 1
A

∫
Ω

dr⊥ f ∗⊥(r⊥, t)g⊥(r⊥, t), (2.3)

as the x-integration trivially gives unity. Details and useful properties of the bra–ket
notation are given in Appendix.

From now on we use dimensionless quantities defined in terms of the characteristic
transverse length Lo, often the shortest distance a from the centre line of the channel
to the wall, the diffusion time To from the molecular diffusivity D of the solute, the
advection velocity Uo from a scale Uchar in the time-dependent flow, and the average
solute concentration Co of the solute concentration field c(x, r⊥, t),

Lo = a, To = L2
o

D
, Uo = Uchar , Co = 〈1|c(x, r⊥, 0)〉 . (2.4)

The specific choice of Uchar in (2.4) is not unique: for a steady flow it could be taken
as the mean velocity; for a single-frequency oscillating flow as the root mean square
(r.m.s.) velocity. See Appendix for a list of symbols.

Denoting the base angular frequency of the solvent flow ω̃o (rad s−1), the system
is characterized by three dimensionless numbers: the Péclet number Pé (the ratio
of advection speed to mass diffusion speed), the Schmidt number Sc (the ratio of
momentum diffusion speed to mass diffusion speed) and the Womersley number Wo
(the square root of the ratio of oscillation speed at frequency ω̃o to momentum
diffusion speed for a Newtonian fluid of kinematic viscosity ν),

Pé = Lo Uo

D
, Sc= ν

D
, Wo=

√
L2

oω̃o

ν
. (2.5)
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For non-Newtonian fluids with an internal molecular stress relaxation time τmol , the
Deborah number De= τmolωo would appear, but this is not treated in this work.

2.1. The time-dependent velocity field
We take the velocity field to be any axis-parallel channel flow v = u(r⊥, t)ex,
and represent u(r⊥, t) by a standard Fourier series with components u` for each
higher harmonic `ωo(` being an integer) in the dimensionless base frequency
ωo = ω̃oTo =Wo2Sc,

u(r⊥, t)=
∞∑

`=−∞
u`(r⊥)e

i`ωot, (2.6)

where complex notation is introduced for the time with i =√−1. By demanding that
u−`(r⊥)= u∗` (r⊥), we ensure that the velocity field is real (Brenner & Edwards 1993).

The fluid responds to changes in external conditions on a time scale which depends
on its internal stress relaxation time, and whether fluid inertia dominates may be
estimated by the product of the driving frequency ω̃o and this internal time scale. For
Newtonian fluids the stress relaxation time scale is given by the momentum diffusion
time 1/αfl , related to the momentum diffusion rate αfl , which is derived from the
momentum diffusion equation ∂tu= Sc∇2

⊥u and given by

αfl ∝ Sc (2.7)

with a geometry-dependent proportionality factor. Note that since αfl ∝ Sc, the square
of the Womersley number is proportional to the ratio of the dimensionless driving
frequency ωo and the momentum diffusion equilibration rate,

Wo2 = ωo

Sc
∝ ωo

αfl
. (2.8)

2.2. Dispersion and the advection–diffusion equation
The transport of the diffusive solute concentration c in the above-mentioned velocity
field is given by the dimensionless advection–diffusion equation,

∂tc(x, r⊥, t)+ Pé u(r⊥, t)∂xc(x, r⊥, t)= (∂2
x +∇2

⊥)c(x, r⊥, t). (2.9)

The corresponding boundary conditions are

n ·∇⊥c = 0, on all walls, (2.10a)
c(x, r⊥, 0) = c̃(x, r⊥), (2.10b)

xs∂q
x c→ 0, for |x| → L

2
and s, q= 0, 1, 2, . . . , (2.10c)

where n is the surface normal and c̃ is a given initial concentration field, and
condition (2.10c) states that all spatial gradients in c as well as c itself vanish far
away along the axis of the channel.

Using Aris’s method of moments the effective diffusivity Deff (t) is defined by the
time derivative of the axial variance µ2(t) =

〈
(x− x̄)2 |c〉 of the solute distribution,

x̄(t) = M1(t) being the centre of mass (A 5b), and may be computed as (Aris
1956, 1960; Chatwin 1975; Barton 1983; Mukherjee & Mazumder 1988; Brenner
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& Edwards 1993)

Deff (t)= 1
2

dµ2(t)

dt
= 1

2
dM2

dt
−M1

dM1

dt
, (2.11)

where the pth full moment Mp(t) of the solute concentration field c(x, r⊥, t) and the
associated axial moment cp(r⊥, t) are defined by

Mp(t)= 〈xp|c〉 = 1
A

∫
Ω

dr⊥ cp(r⊥, t), p= 0, 1, 2, . . . , (2.12a)

cp(r⊥, t)= 1
L

∫ L /2

−L /2
dx xpc(x, r⊥, t), p= 0, 1, 2, . . . . (2.12b)

The derivation of (2.11) is sketched in Appendix, where we also show that the
moments cp(r⊥, t) and Mp(t) evolve according to the recursive equations of motion,

∂tcp(r⊥, t)−∇2
⊥cp(r⊥, t)= p(p− 1)cp−2(r⊥, t)+ Pé u(r⊥, t)pcp−1(r⊥, t),

p= 0, 1, 2, . . . , (2.13a)
dMp(t)

dt
= p(p− 1)〈1|cp−2〉 + Pé p〈u|cp−1〉,

p= 0, 1, 2, . . . , (2.13b)

with the boundary and initial conditions

n ·∇⊥cp = 0 on all walls, (2.14a)

cp(r⊥, t) <∞, (2.14b)

cp(r⊥, 0)= c̃p(r⊥), (2.14c)

Mp(0)= 〈xp|c̃〉 . (2.14d)

The main goal of this paper is to solve (2.11) for general time-dependent flows in
straight channels of arbitrary, constant cross-section, and to study how Deff depends on
the physical frequencies and relaxation rates of the systems.

3. Dispersion for multiple-frequency flow
The solution procedure of the problem was introduced by Barton (1983) for steady

flows and later extended to also include single-frequency harmonic pulsatile flows by
Mukherjee & Mazumder (1988). The expressions presented in this section generalize
their results to any given time-dependent flow. We derive them using the more
compact bra–ket formalism as follows: from (2.13a) with p = 0 and 1 we determine
the axial moment co(r⊥, t) and subsequently c1(r⊥, t). With these at hand, the full
moment M1 as well as the time derivatives dM1/dt and dM2/dt can be obtained from
(2.13b) with p= 1 and 2, which then are fed into (2.11) to determine Deff .

3.1. The zeroth axial moment and basis functions
We begin by analysing the p= 0 axial moment (2.13a) for co(r⊥, t),

(∂t −∇2
⊥)|co(r⊥, t)〉 = 0. (3.1)

This moment fulfills the Neumann boundary condition

n ·∇⊥co = 0 on all walls, (3.2)



100 S. Vedel and H. Bruus

and has the initial condition

co(r⊥, 0)= c̃0(r⊥)=
∫ L /2

−L /2
dx c̃(x, r⊥). (3.3)

Using separation of variables, the solution for co(r⊥, t) can be written as the expansion

|co(r⊥, t)〉 =
∞∑

n=0

a0ne−λnt|fn(r⊥)〉, (3.4)

where the time-independent eigenfunctions fn(r⊥) with eigenvalues λn are defined by

(λn +∇2
⊥)|fn(r⊥)〉 = 0, n= 0, 1, 2, . . . , (3.5a)

n ·∇⊥|fn(r⊥)〉 = 0 on all walls, (3.5b)

and form a complete orthonormal basis in the sense of (A 3). Note that the lowest
n = 0 eigenvalue is zero, λ0 = 0, with eigenfunction unity, f0(r⊥) = 1, while for
n > 0 the eigenvalues are positive, λn > 0. We remark that although the general
advection–diffusion problem (2.9) is non-Hermitian, the reduced, transverse problem
(3.5) is Hermitian, and we can take full advantage of the Dirac Hilbert-space
formulation.

The expansion coefficients a0m are found by multiplying (3.4) at t = 0 by 〈fm|,
a0m = 〈fm|c̃0〉 , m= 0, 1, 2, . . . . (3.6)

For infinite time, all terms in (3.4) except n= 0 decay exponentially, and we obtain

|co(r⊥,∞)〉 = a00|f0(r⊥)〉 = 〈1|c̃0〉 |1〉 = |1〉, (3.7)

representing the state where, by diffusion, the solute concentration has spread out
uniformly in space.

3.2. The first axial moment and basis functions
The p = 1 axial moment equation (2.13a) for c1(r⊥, t) is analysed in a similar manner.
Using that co(r⊥, t) is now a known function, we have

(∂t −∇2
⊥)|c1(r⊥, t)〉 = Pé u(r⊥, t)|co(r⊥, t)〉 = Pé u(r⊥, t)

∞∑
n=0

a0ne−λnt|fn(r⊥)〉, (3.8a)

where c1 fulfills the Neumann boundary condition

n ·∇⊥c1 = 0 on all walls, (3.8b)

and the initial condition

c1(r⊥, 0)= c̃1(r⊥)=
∫ L /2

−L /2
dx x c̃(x, r⊥). (3.8c)

As pointed out by Barton (1983), solving the inhomogeneous partial differential
equation (3.8a) for c1 requires some care regarding the null space of the differential
operator (∂t − ∇2

⊥). Using the time Fourier expansion equation (2.6) of the velocity
field u(r⊥, t), we see that, due to the time-independent ` = 0 component of u, the
right-hand side of (3.8a) contains terms of the form Pé a0nu0(r⊥)e−λnt|fn〉, which have
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non-zero overlap with kets of the form e−λnt|fn〉. Noting that

(∂t −∇2
⊥)[e−λnt|fn〉] = 0, (3.9a)

(∂t −∇2
⊥)[te−λnt|fn〉] = e−λnt|fn〉, (3.9b)

we thus expand c1(r⊥, t) in terms of both e−λnt|fn〉 and te−λnt|fn〉, and seek solutions of
|c1(r⊥, t)〉 of the form

|c1〉 = Pé
∞∑

n=0

[(γ1na0nt + a1n)|fn〉 + a0n|φn〉]e−λnt, (3.10)

where the unknown coefficients, γ1n and a1n, as well as the unknown time-dependent
ket |φn(r⊥, t)〉 are determined in the following. Inserting this trial expansion of
|c1(r⊥, t)〉 into the equation of motion (3.8a) leads to

(∂t −∇2
⊥ − λn)|φn(r⊥, t)〉 = [u(r⊥, t)− γ1n]|fn(r⊥)〉. (3.11)

The unknown ket |φn(r⊥, t)〉 is now expanded in a Fourier series in time and a |fm(r⊥)〉
series in space,

|φn(r⊥, t)〉 =
∞∑

`=−∞

∞∑
m=0

β`mnei`ωot|fm(r⊥)〉, (3.12)

which upon insertion into (3.11) followed by multiplication by 〈fk| results in the
following matrix equation for the coefficients β`kn,

(λk − λn + i`ωo)β
`
kn =

〈
fk|u`|fn

〉− γ1nδ`,0δk,n. (3.13)

Here, we see that the special case of the time-independent term ` = 0, together with
the diagonal term k = n, only allows a solution if we choose

γ1n = 〈fn|u0(r⊥)|fn〉 , (3.14)

while the β coefficients are given by

β`kn = (1− δ`,0δk,n)

〈
fk|u`(r⊥)|fn

〉
λk − λn + i`ωo

. (3.15)

Note that any value of β0
nn is allowed, so for convenience we set it to zero. Moreover,

β−`kn = (β`kn)
∗ ensures real values of the resulting fields.

Finally, the coefficients a1n are found using the initial condition (3.8c) in (3.10) at
t = 0, multiplying by 〈fk|, and finally exchanging the indices n and k,

a1n =
1

Pé
〈fn|c̃1(r⊥)〉 −

∞∑
k=0

a0k

∞∑
l=−∞

β`nk. (3.16)

Collecting all terms, we write the formal solution as

|c1(r⊥, t)〉 = Pé
∞∑

m=0

∞∑
n=0

[
(a0nγ1nt + a1n)δn,m + a0n

( ∞∑
`=−∞

β`mnei`ωot

)]
e−λnt|fm〉. (3.17)
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3.3. Expressions for the effective diffusivity
The effective diffusivity Deff = (1/2)(dM2/dt) −M1(dM1/dt) can now be expressed in
terms of a basis function expansion. The time derivative dM1/dt = Pé 〈u|co〉 of the full
moment M1 in (2.13b) becomes

dM1

dt
= Pé

∞∑
n=0

∞∑
`=−∞

a0n 〈u`|fn〉 e−(λn+i`ωo)t, (3.18a)

where we have used (A 2b) for the phase factor. By proper choice of the coordinate
system, the initial centroid x̄(0) of the distribution is zero. This, combined with (A 5b),
determines the initial value M1(0)= x̄(0)= 0, and time integration of (3.18a) gives

M1 = Pé
∞∑

n=0

∞∑
`=−∞

a0n 〈u`|fn〉 1− e−(λn+i`ωo)t

λn + i`ωo

. (3.18b)

Here, the term (n, `)= (0, 0) depends linearly on time because limq→0[(1−e−qt)/q] = t.
Similarly, for the time derivative (1/2)(dM2/dt)= 〈1|co〉+Pé 〈u|c1〉 of the full moment
M2, (2.13b), we obtain

1
2

dM2

dt
= 1+ Pé 2

∞∑
m=0

∞∑
n=0

∞∑
k=−∞
〈uk|fm〉 e−(λn+ikωo)t

×
[
(a0nγ1nt + a1n)δn,m + a0n

∞∑
`=−∞

β`mnei`ωot

]
. (3.18c)

All expressions derived so far are explicitly real because of the pairwise summation
of complex conjugate terms with index ` and −`. Furthermore, they apply to any
initial solute distributions, such as the non-uniform distributions recently studied by
Camassa et al. (2010), as well as any given velocity field, which can be represented
by (2.6).

We now study the special case of an initial solute distribution c̃ being uniform
in the cross-sectional plane. This introduces significant simplifications in Deff , which
otherwise depends on the channel cross-section, the flow profile u, and the initial
solute distribution c̃ through the coefficients u`, a0n, a1n, γ1n, and β`kn. Transverse
uniformity leads to

|c̃0〉 = |1〉 and |c̃1〉 = 0, (3.19)

and a0n, β`j0 and a1n therefore reduce to

a0n = δn,0 (3.20a)

β`j0 = (1− δ`,0δj,0)

〈
fj|u`

〉
λj + i`ωo

, (3.20b)

a1n =−
∞∑

`=−∞
(1− δ`,0δn,0)

〈fn|u`〉
λn + i`ωo

, (3.20c)

where
〈
fj|u`|f0

〉= 〈fj|u`|1
〉= 〈fj|u`

〉
has been used. Hence, (3.18) becomes

dM1

dt
= Pé

∞∑
k=−∞
〈uk|1〉 e−ikωot, (3.21a)
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M1 = Pé
∞∑

`=−∞
〈u`|1〉 1− e−i`ωot

i`ωo

= Pé

{
〈u0|1〉 t +

∞∑
`=−∞

(1− δ`,0) 〈1|u`〉 ei`ωot − 1
i`ωo

}
, (3.21b)

1
2

dM2

dt
= 1+ Pé 2

{ ∞∑
`=−∞
〈u`|1〉 〈u0|1〉 te−i`ωot +

∞∑
m=0

∞∑
`=−∞

∞∑
k=−∞

〈uk|fm〉 〈fm|u`〉
λm + i`ωo

× (1− δm,0δ`,0)[ei`ωot − e−λmt]e−ikωot

}
, (3.21c)

and after a final index change of m to n we arrive at

Deff (t)= 1+ Pé 2
∞∑

n=1

∞∑
`=−∞

∞∑
k=−∞

〈uk|fn〉 〈fn|u`〉
λn + i`ωo

[ei(`−k)ωot − e−(λn+ikωo)t]. (3.22)

This is the main theoretical result of our work: a closed expression for the transient
Taylor–Aris dispersion Deff (t) for any given time-dependent, axial flow field u(r⊥, t)
in the case of complete transverse diffusion. The flow frequencies `ωo and solute
diffusion relaxation rates λn appears explicitly, while the momentum relaxation rates
αfl are implicit in 〈fn|u`〉. The result (3.22), which generalizes previous steady
and single-frequency results, is particularly relevant in the field of microfluidics
characterized by laminar flow in channels of small cross-sectional dimensions
compared with the channel lengths.

The time-averaged diffusivity Davr
eff (t) over one oscillation period τ0 = 2π/ωo is

Davr
eff (t)=

1
τ0

∫ t+τ0

t
Deff (t)dt (3.23a)

= 1+ Pé 2
∞∑

n=1

∞∑
`=−∞

∞∑
k=−∞

〈uk|fn〉 〈fn|u`〉
λn + i`ωo

×
[
δ`,k − 1− e−λnτ0

(λn + ikωo)τ0
e−(λn+ikωo)t

]
, (3.23b)

which in the long-time limit t� 1/λ1 reduces to

Davr
eff (∞)= 1+ Pé 2

∞∑
n=1

[
| 〈u0|fn〉 |2

λn
+
∞∑
`=1

2λn| 〈u`|fn〉 |2
λ2

n + `2ω2
o

]
. (3.24)

Note that the `-sum only runs over positive integers and not as previously over all
integers.

Finally, in the case of a steady flow given by

|u`〉 = δ`,0|u0〉, (3.25)

expression (3.22) for the effective diffusivity reduces to

Dsteady
eff (t)= 1+ Pé 2

∞∑
n=1

| 〈u0|fn〉 |2
λn

(1− e−λnt), (3.26)

and hence we recover the steady-flow, transient-solute result of Barton (1983).
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4. General aspects of dispersion and relaxation rates
Our main result (3.22) implies directly that for all time-dependent flows the

effective diffusivity depends on the velocity squared, Deff ∝ Pé 2 ∝ U2
o . However, the

specific form of Deff depends on the magnitude of the amplitude ‖u`‖, of a given
velocity component with frequency `ωo, relative to the amplitude ‖u0‖ of the steady
component.

For small oscillation amplitudes ‖u`‖ � ‖u0‖, the velocity field remains
unidirectional, but its magnitude, and hence the shear gradients in the velocity,
oscillates with frequency `ωo around the steady value. Consequently, Deff (t) oscillates
with frequency `ωo around its time-averaged value Davr

eff (∞). For sufficiently large
amplitudes ‖u`‖ � ‖u0‖ (the exact limit depends on the channel cross-section
geometry), the direction of the velocity field changes sign with frequency 2`ωo.
As a result, due to the terms with k = −` in (3.23b), Deff (t) also oscillates with
the double frequency 2`ωo. Moreover, because this frequency doubling ensures a
non-zero, time-averaged effective diffusivity Davr

eff ∝ ‖u` ‖2 Pé 2, Davr
eff increases above

Dsteady
eff . This reflects that now ‖u`‖Uo and not Uo should be chosen as Uchar in (2.4),

thus quantifying the observations made in the chemical engineering community that
pulsating flows lead to increased mass transfer (Taylor & Leonard 1965).

By definition, the variance of the solute distribution µ2(t) is positive at all times,
but this does not imply that the differential variance Deff (t) = (1/2)(dµ2/dt) also
remains positive; in fact, negative values of Deff (t) are often encountered. In general,
for short times t� 1/λ1, 1/(2`maxωo), we find Deff (t) = 1 + tPé 2∑∞

n=1|〈fnu(0)〉 |2 > 0,
see Appendix, while for steady-flow oscillations of large amplitudes ‖u`‖ � ‖u0‖
the transient contraction of the solute concentration field associated with each
reversal of the solvent flow direction leads to negative values of Deff (t). The
cross-over point to negative values of Deff (t) depends on the relative amplitudes
of all components of the velocity field, and is therefore not easily estimated in
the general case. However, for the simple case of a single-frequency flow the
cross-over point can be identified from (3.24). The time-averaged (positive) level
is set by the diagonal terms ` = k for −1, 0 and 1 in the n-sum given by
|〈u0fn〉 |2 /λn + |〈u1fn〉 |2 2λn/(λ

2
n + ω2

o), while the cross-terms ` = −k for −1 and 1
gives the oscillating terms 2Re[(〈u1|fn〉 eiωot)

2
/(λ1 + iωo)]. For the dominant n= 1 term

at the intermediate frequency λ1 � ωo . Sc, we can neglect λ1 in the denominators,
and since Wo =√ωo/Sc . 1 we have 〈u1|fn〉 ≈ 〈u0|fn〉 ‖u1‖/‖u0‖, which results in
Deff ∝ 1 + 2(‖u1 ‖2 /‖u0 ‖2)(λ1/ωo)[(λ1/ωo) + sin(2ωot + 2φ0)], where the phase φ0 is
given by 〈u1|fn〉 = |〈u1fn〉|eiφ0 . Negative values of Deff (t) are therefore expected for
‖u1‖> ‖u0‖

√
ωo/(2λ1).

In the absence of a steady component in the velocity field, u0 = 0, the frequency
doubling is always present. Thus, for purely oscillating flows one finds a shear-
enhanced dispersion above molecular diffusion, even though there is no net flow.

General conclusions for the shape dependence of Deff may be obtained by
applying random matrix theory (Mehta 2004) to the geometry-dependent inner
product/eigenvalue expressions (3.22), (3.24) and (3.26) following the analysis of the
shape-dependent quantum transport through quantum dots (Bruus & Stone 1994). For
a non-integrable system the values of the inner products in (3.26) can be regarded as
a random distribution with an average of the order unity. We therefore expect the sum
to be dominated by the lowest eigenvalues, for which λn ∝ 1/R2, where R is the aspect
ratio of the characteristic length scales of the two cross-section directions (R > 1),
which for a rectangle is the wide ‘width’ divided by the short ‘height’. Consequently
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(Dsteady
eff − 1)∝ Pé 2R2, indicating that the dominating length scale no longer is the short

‘height’ but the wide ‘width’. This is in agreement with the analysis of the shallow,
slowly varying cross-sections studied by Ajdari et al. (2006) and Dutta et al. (2006).

The solute dispersion can be calculated from (3.22), if the Fourier series of the flow
velocity is known, e.g. the single-frequency flow in a Newtonian fluids (Womersley
1955) or steady non-Newtonian fluid flow (Fan & Wang 1966). However, in the rest
of the paper we restrict the application of our theory to the case of incompressible
Newtonian fluids of kinematic viscosity (or momentum diffusivity) ν in the laminar
regime which are governed by the time-dependent Stokes equation,

∂tu(r⊥, t)= Sc

[
∇2
⊥u(r⊥, t)+ 1

L
1p(t)

]
. (4.1)

Here, 1p(t) is the time-dependent pressure drop along the channel of length L ,
resolved by the components ε`1pei`ωot (ε` is a dimensionless amplitude) with the
dimensionless base frequency ωo = Wo2Sc, and the dimension-full pressure has been
normalized by the shear-induced pressure Po = (ηUo)/Lo. The Schmidt number Sc
appears since the time scale has been chosen to be the transverse mass diffusion time
and not the momentum diffusion time. The linearity of this equation allows us to solve
the flow problem analytically and thereby obtain the Fourier coefficients u` and the
momentum diffusion rate αfl . The dispersion Deff (t) depends on αfl , and thus on Wo by
(2.8), implicitly through the velocity components u`.

The effective diffusivity varies greatly depending on the system parameters. Below,
we provide explicit estimates of the relaxation rates of the solute and fluid momentum,
by analysing specific time-dependent systems of increasing complexity through the
addition of more time scales to both motion of the solvent and diffusion of the
solute. We interpret the results for Deff in terms of the relaxation rates and the flow
frequencies in agreement with the general considerations just outlined.

5. Multiple-frequency flow in one-length-scale cross-sections
We begin by analysing channel cross-sections with only one inherent length

scale, such as the circular tube or the infinite parallel-plate slit, and the associated
time scale for transverse solute diffusion. All results presented in this section are
computed for the circular cross-section, but qualitatively they apply to other single-
length cross-sections. We consider a circular tube of unit radius (the radius being
a = Lo in dimension-full coordinates) and calculate the velocity field from the Stokes
equation, (4.1). Using cylindrical coordinates and a generalized wavenumber k`, the
velocity component u` fulfilling the boundary conditions u |r=1 = 0 and ∂ru |r=0 = 0 is
(Womersley 1955)

k` = k`(Wo)=
√
−i`Wo2 =√−i`ωo/Sc, (5.1a)

|u`〉 = ε` 8

k2
`

[
J0(k`r)

J0(k`)
− 1
]
, (5.1b)

where the steady-state Poiseuille solution is u0(r) = lim`→0 u`(r) = ε02(1 − r2). The
velocity scale is taken to be the average steady state velocity Uo = 1p a2/(8ηL ) for
ε0 = 1. The eigenfunctions and eigenvalues corresponding to (3.4) are

|fn〉 = δn,0 + (1− δn,0)
J0(ξ1,n r)

J0(ξ1,n)
, (5.2a)
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λn = (1− δn,0)ξ
2
1,n, (5.2b)

where Js(x) is the Bessel function of the first kind of order s, and ξs,n is the nth root of
Js(x). For cylindrical coordinates (axisymmetric case) 〈f |g〉 = ∫ 1

0 dr2rf ∗(r)g(r), so

〈fn|u`〉 = −ε` 16

(ξ 2
1,n − k2

` )k`

J1(k`)

J0(k`)
for n> 0, (5.3)

and 〈fn|u0〉 = lim`→0 〈fn|u`〉 = −8/ξ 2
1,n for the steady term. Using these 〈fn|u`〉 in (3.22)

allows us to calculate Deff (t) for an unsteady flow, and by inserting them in (3.26) we
recover Dsteady

eff (t) = 1 + Pé 2[(1/48) −∑∞n=1(64/ξ 6
1,n) exp(−ξ 2

1,nt)], the classic result for
a transient solute concentration in a steady flow obtained by Barton (1983).

The fluid momentum equilibration rate for the circular cross-section is αfl = Scξ 2
0,1,

so the generalized wavenumber k` =
√
−i`Wo2 = ξ0,1

√−i`ωo/αfl and the overlap
integrals (5.3) depend explicitly on the fluid inertia through the ratio of the driving
frequency ωo to the fluid momentum equilibration rate αfl .

5.1. A steady-plus-one-frequency flow

We consider now the simple case of a steady flow of fixed amplitude ε0 = 1 with
the addition of one oscillating component of variable amplitude ε1. The dispersion in
this particular flow has previously been studied to various levels of detail (Aris 1960;
Chatwin 1975; Mukherjee & Mazumder 1988). Our theory both recovers, quantifies
and provides insight to the underlying physical mechanisms encountered in these
previous studies.

Deff (t) transiently builds towards a steady-oscillation level on the time scale
1/λ1 = 1/ξ 2

1,1 = 0.068, as seen in the example figure 1(a) (black line) for ε1 = 0.05,
Pé = 20, Sc = 1000, ωo = 200 and Wo = √ωo/Sc = 0.447. As expected from
the general observations in § 4, Deff (t) oscillates around Davr

eff (t) ≈ Dsteady
eff (t) for

ε2
1 � ε2

0 = 1(grey line). The inset shows increasing Davr
eff (t) for growing oscillation

amplitude, ε1 = 0, 3 and 12, where Davr
eff changes from following Deff fairly closely

at ε1 = 3 to being substantially enhanced for ε1 = 12. In figure 1(b) we zoom in
on the two grey zones of (a) to show the excellent agreement between our theory
for Deff (t) − Dsteady

eff (t) (full line), numerics (circles, see Appendix for details), and the
single-frequency theory of Mukherjee & Mazumder (1988) (stars).

Extending the physical analysis provided by Mukherjee & Mazumder (1988), we
have augmented ε1 by a factor of 1000 to the value 50 in figure 1(c), and the
normalized plot Deff (t)/Davr

eff (∞) illustrates that the oscillation-induced enhancement
of Davr

eff (t) shown in the inset of (a) is accompanied by both a frequency doubling
in, and negative values of, Deff (t) as discussed in § 4. The onset of this nonlinearity
in the dispersion is further investigated in figure 1(d), where Davr

eff (∞)/Dsteady
eff (∞) is

plotted versus the oscillation amplitude ε1: a cross-over from the linear regime, where
Davr

eff (∞)/Dsteady
eff (∞) ≈ 1, to the nonlinear regime, where Davr

eff (∞)/Dsteady
eff (∞) ∝ ε2

1 ,
happens at a frequency-dependent critical value εc

1. We estimate εc
1 in the low-

frequency limit Wo . ξ0,1 ≈ 2.40 from (3.24) using that in this case 〈u1|fn〉 ≈ 〈u0|fn〉,
and since

ε` = δ`,0 + ε1(δ`,−1 + δ`,1), (5.4)
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FIGURE 1. Deff (t) calculated by (3.22) in a tube of circular cross-section for a harmonically
oscillating flow of frequency ωo superimposed on a steady flow, Pé = 20. (a) Deff (t) for
ω0 = 200, Wo = 0.447 and velocity amplitudes ε1 = 0.05� ε0 = 1 (black line) oscillating
around Dsteady

eff (t) determined by theory (3.26) (grey line) and by direct numerical simulation
(grey circles). The inset shows Davr

eff (t) for ε1 = 0, 3 and 12, (3.23b). (b) Zoom-in on
Deff (t) for the initial transient period 0 < t < 0.1 (left) and the steady regime 0.9 < t < 1
(right) showing agreement between our theory (black line), our numerics (circles) and the
theory of Mukherjee & Mazumder (1988) (M & M). (c) Normalized effective diffusivity
Deff (t)/Davr

eff (∞) showing frequency doubling; parameters as in (b) except now ε1 = 50.

(d) Davr
eff (∞)/Dsteady

eff (∞), (5.5), versus ε1 for four different frequencies ωo. The cross-over

point εc
1 (open circles) from the linear regime (Davr

eff /D
steady
eff ≈ 1) to the nonlinear one

(Davr
eff /D

steady
eff ∝ ε2

1) increases for increasing ωo, as described by (5.6). (e) Davr
eff (∞)/Dsteady

eff (∞)
versus ωo for two fluids. For Sc = 0.1 (gas-like, dashed line) it decreases to 1 once
ωo > αfl (solvent-momentum-diffusion limited), while for Sc= 1000 (water-like, grey line), it
decreases to 1 when ωo > λ1 (solute-diffusion limited).
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it follows that

Davr
eff (∞)≈ 1+ Pé 2

∞∑
n=1

[
1+ 2ε2

1

1+ (ωo/λn)
2

] | 〈u0|fn〉 |2
λn

. (5.5)

Thus, the cross-over to period-doubled behaviour (dominance of the ε2
1 term) happens

when ε1 equals

εc
1 =

1√
2

√
1+ ω

2
o

λ2
1

=


1√
2

for ωo� λ1,

ωo√
2λ1

for ωo� λ1.

(5.6)

When ωo � λ1, the solute fully equilibrates by diffusion (λ1 is the solute diffusion
equilibration rate) and thereby exploits all velocity gradients, so the cross-over to
frequency-doubled behaviour happens as soon as the amplitude of the sinusoidal part
of the velocity field exceeds that of the steady component, i.e. at the r.m.s. value
εc

1 = 1/
√

2 for ε0 = 1. In contrast, for ωo � λ1 the solute diffusion cannot fully
follow the solvent oscillations, and only by increasing the amplitude significantly will
the oscillation component contribute to Deff , and as a consequence the cross-over
amplitude scales as εc

1 ∝ ωo/λ1. In figure 1(d) is shown that the estimates of (5.6) are
correct. This result further agrees with, and quantifies, the observations of Chatwin
(1975) and Watson (1983), but disagrees with Aris (1960), who based on cases with
ε1 6 1 predicted that the pulsatile contribution to Davr

eff (∞) is less than 1 %, which

is clearly incorrect for large values of ε1. For ε1 > ε
c
1 we have (Davr

eff − 1) ∝ ε2
1Pé 2

signalling the change of characteristic velocity scale discussed in § 4.
In addition to these limitations set by the equilibration of the solute, the dispersion

may also be limited by fluid inertia, which similarly to the solute diffusion
equilibration rate is characterized by a solvent-momentum equilibration rate αfl . All
time scales can be resolved by the solute when the driving frequency is much lower
than the two equilibration rates, allowing time enough to establish the time-dependent
velocity gradients and for the solute to diffuse in them, see figure 1(e). However, Deff

decreases if ωo exceeds either of these equilibration rates.
The behaviour of Deff seems quantitatively similar whether the limiting factor

is solute diffusion or solvent momentum diffusion, but the underlying physical
mechanisms are different. For solute/solvent combinations which are limited by solute
diffusion, λ1� αfl (full grey line in figure 1e), the solute is constantly oscillating back
and forth in addition to the steady motion as caused by the velocity field. This is still
the case when ωo > λ1, but here the solute only has time to diffuse by the gradients
created by the steady velocity; new solute gradients are created by the oscillating part
faster than the old gradients are smoothed out by diffusion. This corresponds to the
case where the fluid is water.

In the other limit of solute/solvent configuration, αfl � λ1, the limiting factor is the
diffusion of fluid momentum (inertia): the fluid momentum does not have time to react
to the pressure oscillations at the driving frequency, so the fluid will only be moved
by the steady part of the pressure. Thus, only the steady velocity field will shear the
solute distribution resulting in the dispersion of only the steady flow. This effect is
seen in the dashed black line in figure 1(e), which corresponds to the case where
channel radius is the same as for the water case above (thus keeping λ1 fixed) but the
fluid is air (Lide 1995).
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5.2. A steady-plus-two-frequencies flow

Through the driving pressure, we now add a second time scale to the flow so it
consists of a steady component, and the two frequencies ωo and ˜̀ωo, ˜̀ being an
integer. The effects in Deff of the previous section extend to the second frequency, and
we continue to find good agreement between theory and numerics, see figure 2. We
first take ˜̀ = 2. As expected from the general observations in § 4, Deff (t) oscillates
around Dsteady

eff with the frequencies of the velocity field when the oscillation amplitudes
ε1 and ε2 are sufficiently small (limits given below), see figure 2(a), while frequency
doubling and negative values appear when ε1 and ε2 become large, see figure 2(b). As
for the single-frequency case, there is substantial increase of Davr

eff (∞)/Dsteady
eff (∞) for

large values of ε1 and ε2 and the cross-over to nonlinearity for ˜̀ = 2 may be predicted
from simple estimates for Wo . ξ0,1 as follows. Since

ε` = δ`,0 + ε1(δ`,−1 + δ`,1)+ ε2(δ`,−2 + δ`,2), (5.7)

we distinguish between the three regimes ε2� 1, ε1� 1 and ε1 = ε2. In the first case
we trivially retrieve the result (5.6), while the second case similarly yields

εc
2 =

1√
2

√
1+ 4ω2

o

λ2
1

=


1√
2

for ωo� λ1,

√
2ωo

λ1
for ωo� λ1.

(5.8)

Hence, the frequency doubling for each of the velocity field frequencies is
independent, since a significant nonlinear effect is found when either ε1 > εc

1 or
ε2 > ε

c
2. In the third case of ε1 = ε2 = ε, we find

εc = 1√
2

√√√√√√√
1+ 5ω2

o

λ2
1

+ 4ω4
0

λ4
1

1+ 5ω2
o

λ2
1

=


1√
2

for ωo� λ1,√
2
5
ωo

λ1
for ωo� λ1,

(5.9)

where the second thresholds is slightly lower than for the single-frequency (5.6).
Our understanding of the behaviour of Davr

eff from the involved diffusion processes of
fluid momentum and solute, presented in the previous section on single-frequency flow,
applies to each of the frequencies of the flow. The addition of a second velocity
frequency introduces more shear and hence more gradients to the concentration
field and Davr

eff therefore increases even further when all velocity frequencies can be
resolved, see dashed line in figure 2(c), where solute diffusion is the limiting process
(λ1� αfl) and where for clarity the second frequency is 30ωo instead of the 2ωo. Two
distinct decreases are found in this curve: the first is when the solute equilibration
rate λ1 surpasses 30ωo and the second when λ1 increases past the base frequency.
The decreases arise because the gradients created by 30ωo and ωo, respectively,
can no longer be exploited by the solute. When both frequencies can be resolved
Davr

eff is almost a factor two greater than the single-frequency case of figure 1(e),
here reproduced as the grey line, so the second velocity frequency leads to a large
enhancement of Deff . Had we chosen αfl � λ1 in the figure, the same decreases would
have been observed around 30ωo ≈ αfl and ωo ≈ αfl .
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eff (∞) versus
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ωo crosses λ1/30 and λ1. The one-frequency case figure 1(e), Sc= 103 (grey curve), is shown
for comparison. (d) Startup of tube flow from rest: calculated Deff (t) versus time for Pé = 20.
For Sc . 1 the dispersion saturates on the solvent acceleration time scale 1/αfl ≈ 1/Sc, while
for Sc� 1 it saturates on the solute diffusion time 1/λ1 = 1/ξ 2

1,1 ≈ 0.07. The Fourier series
has T = 5 and contains 1000 terms.

5.3. Unsteady, unidirectional flow: startup of Poiseuille flow
In the previous sections we found that fluid inertia limits the solute dispersion because
the flow does not equilibrate to a steady state. To further investigate the inertial effects
we consider solute in a circular channel where the solvent, after initially being at rest,
suddenly at t = 0 begins to move due to an instantly applied pressure drop along the
channel. The analytical solution of this startup of a Poiseuille flow is found in terms of
a Fourier–Bessel expansion in the radial coordinate, where each term is multiplied by
an exponential time decay of rate αm (Batchelor 1967),

u(r, t)= 2(r2 − 1)−
∞∑

m=1

16
ξ 3

0,m

J0(ξ0,mr)

J1(ξ0,m)
e−αmt, (5.10a)

αm = Scξ 2
0,m for m= 1, 2, 3, . . . . (5.10b)



Transient Taylor–Aris dispersion for time-dependent flows in straight channels 111

The smallest of these inertial decay rates, α1 = ξ 2
0,1Sc ≈ 5.78Sc = αfl , sets the

characteristic time of the acceleration 1/αfl as in (2.7) and in § 5.1. To align this
solution with the developed theory, the temporal functions are written as Fourier series
with a base period T much larger than the acceleration time, T � 1/αfl . Hence, the
flow will reach a steady state significantly faster than the base period T , and the
approximation will be the correct solution for 0< t < T . We obtain

u(r, t)= 2(1− r2)−
∞∑

m=1

∞∑
`=−∞

16J0(ξ0,mr)

ξ 3
0,mJ1(ξ0,m)

A`mei`ωot, (5.11a)

A`m = 1− e−αmT

αmT + i`2π
, (5.11b)

where ωo = 2π/T so that Wo = √2π/(ScT) = ξ0,1
√

2π/(αflT). The velocity scale is
the same as for a steady flow in a circular tube, so the `th velocity component u`(r) is

u`(r)= 2
(
1− r2

)
δ`,0 −

∞∑
m=1

16 A`mJ0(ξ0,mr)

ξ 3
0,m J1(ξ0,m)

. (5.12)

Combining this with the eigenvalue solution of (5.2), we find for n> 0

〈fn|u`〉 = −8δ`,0
ξ 2

1,n

−
∞∑

m=1

32 (1− e−αmT)

ξ 2
0,m(ξ

2
0,m − ξ 2

1,n)(αmT + i`2π)
. (5.13)

The two physical processes of fluid acceleration and solute dispersion happens on
the two time scales 1/αfl and 1/λ1, respectively, but since fluid motion is required
to generate the shear needed for the Taylor–Aris dispersion effect, the dispersion is
limited by either the solute diffusion, or solvent inertia. In the first case (αfl � λ1),
the fluid reaches steady state much faster than the solute and the dispersion therefore
behaves as in the case of a steady flow. Since αfl ∝ Sc this can be thought of
as having Sc = ∞, so the only transient behaviour observed is that of the solute
diffusion; this is the case of water. For the second case (αfl ∝ Sc� λ1) with slower
momentum equilibration rates 0.1 < Sc < 10 found in gases (Lide 1995), the solute
dispersion evolves in the slow increase of the velocity shear gradients, which now
dominates the transient behaviour, and Deff (t) is thus smaller than Dsteady

eff (t). These
inertial effects are illustrated in figure 2(d), where dispersion co-evolves with the
transient start-up of a Poiseuille flow in a straight tube at Pé = 20, and where the
equilibration rates for solute mass diffusion and solvent momentum diffusion are equal
for Sc = ξ 2

1,1/ξ
2
0,1 = 2.54. We take T = 5, and to diminish unphysical effects of the

Gibbs phenomenon close to t = 0, we include 1000 terms in the Fourier series.
In conclusion, fluid inertia limits fluid shear and hence the solute dispersion.

However, given the characteristic time scale 1/αfl ∝ 1/Sc� 1/λ1, inertial effects only
become important for Taylor–Aris dispersion in gasses.

6. Multiple-frequency flow in two-length-scale cross-sections
We move on to consider the effects of adding a second length scale to the cross-

sectional geometry. We illustrate this case by use of the rectangle, but the presented
findings hold quantitatively for other cross-sections with two length scales, e.g. the
ellipse.
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6.1. The rectangular cross-section
We denote the height of the channel by 2a and the width by 2w, with w > a so that
the aspect ratio R = w/a satisfies R > 1. We take the characteristic length scale to be
Lo = a, so Pé = Uoa/D and Wo =√a2ω̃o/ν, and in non-dimensional units we place
the rectangular cross-section such that −R 6 y 6 R and −1 6 z 6 1. The analytical
velocity field for the steady Poiseuille flow is well known, see e.g. Bruus (2008),
and in analogy with (5.1b) by introducing a generalized wavenumber qj`, the pulsatile
velocity field is found by a trivial extension thereof,

qj` = qj`(Wo)=
√

i4Wo2`+ j2π2, (6.1a)

|u`〉 = ε`(1+ δ`,0)24
Γ

∞∑
j,odd

1

jπq2
j`

1−
cosh

(
qj`

y

2

)
cosh

(
qj`

R

2

)
 sin

(
jπ

z+ 1
2

)
, (6.1b)

where the prefactor Γ and the velocity scale Uo (chosen as the is the cross-sectional
average of the steady flow with ε0 = 1) are given by

Γ = Γ (R)= 1−
∞∑

j,odd

1
j5

192
π5

1
R

tanh
(

jπ
R

2

)
, (6.2a)

Uo = 1p a2 Γ

3ηL
. (6.2b)

The steady flow profile is retrieved from (6.1b) by the limit u0(y, z) = lim`→0 u`(y, z)
using qj0 = jπ. Similar to the circular cross-section, the generalized wavenumber qj`

depends explicitly on the fluid momentum equilibration rate αfl = (1 + 1/R2)(π2/4)Sc
since qj` = π

√
i`(1+ 1/R2)(ωo/αfl)+ j2. The corresponding basis functions and

eigenvalues are

|fnm〉 =
2 cos

(
nπ

y+ R

2R

)
cos
(

mπ
z+ 1

2

)
√(

1+ δn,0

) (
1+ δm,0

) , (6.3a)

λnm =
(nπ

2R

)2
+
(mπ

2

)2
, n,m= 0, 1, 2, . . . , (6.3b)

which satisfy the requirement |f00〉 = 1 with λ00 = 0. The single index n of (5.2) is here
changed to the double index (n,m), and n = 0 to (n,m) = (0, 0). The inner products
〈fn|u`〉 of (3.22) become 〈fnm|u`〉 given by

〈fnm|u`〉 =



ε`(1+ δl,0)√
(1+ δn,0)(1+ δm,0)

96R

Γ π2

×
∞∑

j,odd

qjlRδn,0 − 2 tanh
(

qjlR

2

)
qjl(j2 − m2)(n2π2 + q2

jlR2)
n,m even,

0 otherwise,

(6.4)

and sums
∑∞

n=1 =
∑∞

n6=0 become
∑∞
{n,m}6={0,0}.



Transient Taylor–Aris dispersion for time-dependent flows in straight channels 113

The two inherent length scales of this cross-section introduce two diffusion times,
one along each coordinate direction, and hence two solute equilibration rates,

λ20(R)= π
2

R2
(width) and λ02 = π2 (height). (6.5)

We have previously described how the behaviour of Deff can be understood in terms
of the involved diffusion processes of fluid momentum and solute, and it follows
directly that while this obviously extends to the present case, the presence of the
additional time scales from the second geometric dimension introduces more structure:
for each frequency in the fluid velocity field, the solute dispersion will increase if
it has time to equilibrate along either of its transverse directions (i.e. if ωo . λ20

or ωo . λ02), with more dispersivity when the frequency allows equilibration along
both directions. Thus, for a velocity field with two frequency scales there will be
four critical frequencies: the two solute equilibration rates for each of the two fluid
time scales. This is illustrated in figure 3(a) for the case of ε0 = ε1 = ε30 = 1 with
Pé = 20 and R = 100, and for a solvent/solute composition such that the equilibration
rate of the solvent momentum αfl = (1 + 1/R2)(π2/4)Sc is much greater than those of
the solute diffusion, λ20 and λ02. As function of driving frequency ωo, Davr

eff decreases
in four steps: the first two and most significant drops happen near λ20/30 and λ20,
where the diffusion across the width no longer can exploit the gradients of first the
30ωo-harmonic and then the ωo-harmonic. The last two (minor) drops happen near
λ02/30 and finally λ02, where the height diffusion ceases to be able to follow the
30ωo-harmonic and lastly the ωo-harmonic. The substantial increases in time-averaged
dispersion found for the two-frequency flow of the previous section is again found
in this case: for low frequencies ωo which allow complete solute equilibration, Davr

eff
is almost a factor of two greater than when only the steady velocity contributes to
the solute dispersion (Davr

eff (∞)= 120.41 at ωo = 10−8 compared with Davr
eff (∞)= 60.70

at ωo = 104). For comparison we have also included the special case of R = 1, a
one-length-scale cross-section, where the two solute diffusion equilibration rates λ20

and λ02 are identical, and where we consequently find only two decreasing steps. We
have also validated our theory against numerics for the case R = 1 (details given in
Appendix), and find excellent agreement.

Since the solute equilibration rate λ20 depends on the aspect ratio R, (6.5), the
same frequency ωo and velocity component amplitudes ε` will give rise to different
behaviours of Deff in channels of different R. This is plotted in figure 3(b) for
ωo = 104 and ωo = 10−7 with the flow chosen as in (a) to be a two-frequency
flow with amplitudes ε0 = ε1 = ε30 = 1. For reference we have also plotted the
dependence of Dsteady

eff in the limit R → ∞ where we retrieve the well-known
result (Doshi et al. 1978; Chatwin & Sullivan 1982) Dsteady

eff (∞) = 1 + χrectPé 2 with
χrect = 2/105 + 11532 ζ(5)2/π10 where ζ(x) =∑∞j=1j−x is the Riemann zeta function.
For sufficiently fast oscillation, here ωo = 104 (lower black line), we have ωo � λ02,
and as in figure 2(b) this is too fast for the solute diffusion to follow, and we
recover the steady-flow case (triangles) and Davr

eff (∞) = Dsteady
eff (∞). Had we chosen

larger oscillation amplitudes ε` the nonlinear effect discussed in § 4 would had set
in and increased Davr

eff . For the fixed slow oscillation frequency ωo = 10−7 (top black
line), Davr

eff initially increases with R, as the solute diffusion now is able to follow
the fluid movement. However, due to the R-dependence of λ20 in (6.5), a point is
reached beyond which λ20(R)/30 < ωo, and Davr

eff decreases to a lower value. Later,
when λ20(R) falls below ωo, a second decrease occurs, after which Davr

eff settles
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FIGURE 3. Davr
eff (∞) for a two-frequency flow ε0 = ε1 = ε30 = 1 in rectangular channels of

aspect ratio R. (a) Davr
eff (∞) versus base frequency ωo for R = 1 and R = 100 at Pé = 20, and

with the agreement with numerics (circles) illustrated at R = 1 (details given in Appendix).
As ωo increases Davr

eff decreases in four steps, namely when ωo crosses λ20/30, λ20, λ02/30,
and λ02 (for R = 100). For R = 1 there are only two steps, namely when ωo crosses λ02/30
and λ02 this rate being the same for R = 1 and R = 100. (b) Davr

eff (∞) versus R for fast
oscillation (ωo = 104) and steady flow, both recovering the behaviour of figure 1(a), and for
slow oscillation (ωo = 10−7), for which Deff (∞) reaches a maximum before decreasing in two
steps at λ20(R) = 30 × 10−7 and λ20(R) = 10−7, marked by the aspect ratios Rslow

30ωo
and Rslow

ωo
,

respectively.

at Dsteady
eff (∞) = 1 + χrectPé 2, since none of the added shear of the time-dependent

velocity components contribute to Davr
eff .

The highest value of Davr
eff achievable for a fixed velocity field with fixed frequency

ωo is found in a region with the upper limit set by 3 `maxωo ≈ λ20 = π2/R2, where `max
is the maximum frequency component in the velocity field, and the lower limit is set
by the value of R which ensures that the steady part of the velocity field reaches the
maximum dispersion of Dsteady

eff (∞)= 1+ Pé 2
χrect , R . 100.

Finally, a brief discussion is in order regarding the behaviour of Dsteady
eff (∞) in

the limit R→∞. It is well known that χrect = 2/105 + 11532 ζ(5)2/π10 ≈ 7.95χplate

where χplate = 2/105 is the coefficient for infinite parallel plates (no sidewalls), which
might seem to contradict the general scaling of (Deff − 1) ∝ Pé 2

/R2 described in
§ 4. However, the rectangular cross-section is integrable, and the inner products
〈fn0|u0〉 ∝ 1/R, because as function of the width coordinate y, u0 is constant except
for the ends covering a fraction 1/R of the width, while fn0 oscillates, see (6.1b)
and (6.3a). As a result, the factor R2 from 1/λnm is cancelled by the factor
1/R2 from the inner product, and (Dsteady

eff − 1) ∝ Pé 2, making the small height the
dominant length scale. This explains why in χrect ≈ χplate instead of χrect ≈ χplateR2.
Physically, the steady flow in high-aspect-ratio rectangular channels is independent of
the channel width except for boundary layers of width unity near the sidewalls, while
it remains parabolic in the height. Compared with the infinite parallel plate channel,
the sidewalls therefore increase both the mean velocity and the created gradients
in the concentration field along the height, causing an increase of Deff (∞), which
none the less remains on the order of Deff (∞) from the parallel plates. For channel
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R 2.67 ε0 1.000 αfl 2810
Pé 6.92 ε1 0.352 exp(−2.19i) ωo 2.94
Wo 0.05 ε2 0.203 exp(−2.24i) λ20 1.39
Sc 1000 ε3 0.059 exp(+1.54i) λ02 9.87

TABLE 1. Dimensionless parameters of the flow generated by the peristaltic pump of
Skafte-Pedersen et al. (2009), see § 6.2.
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FIGURE 4. (a) Two periods of the measured time-dependent pressure delivered by the
peristaltic pump (black) by Skafte-Pedersen et al. (2009) and of the approximate Fourier
series (|`| 6 3) used in the analysis (grey). (b) Calculated Deff (t) for the two cycles of the
peristaltic pump following period N = 104 after the decay of all transients: the Fourier series
(black), only the steady component (dashed) and the time-averaged Fourier series (grey).

cross-sections which vary continuously along both cross-section directions
(e.g. elliptic), the characteristic length scale of velocity variations is of order R,
resulting in shear along all of R and the scaling (Dsteady

eff − 1) ∝ Pé 2R2 as described
in § 4.

6.2. Analysis of a peristaltic micropump
To illustrate the practical usefulness of the developed theory, we here shortly describe
dispersion limiting of a micropump. The pressure delivered by the novel 12-channel,
8-roller, peristaltic pump for microfluidics of Skafte-Pedersen et al. (2009) is pulsating
with the operating base frequency ω̃o = 0.52 rad s−1, as measured in a rectangular
channel of R = 2.67 (a = 75 µm,w = 200 µm), and shown by the black line in
figure 4(a). To analyse the influence of this time-dependent flow on the dispersion
of a solute with typical molecular diffusivity D = 10−9 m2 s−1, we approximate the
pressure by a Fourier series with |`| 6 3 (grey line). The discrepancy between the
approximation and the actual signal fluctuates faster than the highest harmonic and is
not resolved by the solute. The velocity scale Uo is taken as the (dominating) steady
component and the dimensionless parameters of the system are listed in table 1.

The pump is designed to have minimal dispersion, which follows from our theory:
it is normally operated at ωo = 2.94, which is faster than the solute equilibration rate
λ20 = 1.39 of the width, so only the diffusion in the height direction with λ02 = 9.87
is resolved. Furthermore, because the square of all oscillation amplitudes are small,
|ε`| < 0.12, their contribution to Deff is minute, and Davr

eff (∞) = 1.004Dsteady
eff (∞), see

figure 4(b). The dispersion may be increased by running the pump at lower frequency,
e.g. Davr

eff (∞) = 1.17Dsteady
eff (∞) changing ωo to 0.1ωo, or with higher oscillation

amplitudes, Davr
eff (∞) = 1.39Dsteady

eff (∞) changing ε` to 10ε` for ` 6= 0. If these changes

are made simultaneously, we find Davr
eff (∞)= 2.76Dsteady

eff (∞).
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7. Concluding remarks
By combining Aris’s method of moments and Dirac’s bra–ket formalism, we have

derived the compact, closed form (3.22) for the transient Taylor–Aris dispersion or
effective diffusivity Deff (t) valid for any time-dependent flow in a long, straight
channel of arbitrary but constant cross-section. For a general time-dependent flow and
as a function of system parameters, Deff (t) exhibits a rich and non-trivial structure due
to the interplay between internal equilibration rates and external driving frequencies.
Our analysis based on (3.22) has led to the following conclusions.

(i) In general, the effective diffusivity is enhanced significantly by those parts of
the time-dependent velocity field that have frequencies `ωo lower than the fluid
momentum diffusion rate αfl and the solute diffusion rate λ1, in which case the
dispersive effect has sufficient time to fully evolve.

(ii) We have explained why sufficiently large oscillation amplitudes ‖u`‖ lead to
negative values of the instantaneous effective diffusivity Deff (t). In § 4 an
amplitude threshold value for this transition has been derived for a steady-plus-
one-frequency flow. This threshold depends on the ratio

√
ωo/(2λ1).

(iii) As function of the normalized amplitudes ε` of the oscillatory flow components,
scaling laws have been derived for the cross-over εc of the time-averaged effective
diffusivity Davr

eff (t) from the linear regime of small oscillatory flow components
superimposed on a large steady-flow component of normalized amplitude ε0, to
the nonlinear, frequency-doubled regime of large oscillation amplitudes. Specific
examples are shown in §§ 5.1 and 5.2 for steady-plus-one-frequency and steady-
plus-two-frequencies flows.

(iv) Our formulation of Deff in terms of inner products (overlap integrals) and
eigenvalues facilitates general analyses in terms of random matrix theory. As an
example of such an analysis we have sketched an explanation for the well-known
fact that the relevant Péclet number for the Taylor–Aris dispersion in a channel of
rectangular cross-section involves the short height and not as expected on general
grounds, the wide width.

(v) For Newtonian solvents we have validated our theory by comparing it with
the special cases of dispersion in steady flow and single-frequency pulsating
flow treated in the literature, and by direct numerical simulations of single- and
multiple-frequency flows in circular (figures 1(b) and 2(a)) and rectangular cross-
sections (figure 3(a)).

(vi) For Newtonian solvents in the cases of one-length scale and steady-plus-one-
frequency flow, figure 1(e), one-length scale and steady-plus-two-frequency flow,
figure 2(c), and two-length scale and steady-plus-two-frequency flows, figure 3(a),
we have characterized the explicit suppression of the oscillatory enhancement
of Davr

eff (ωo) each time a driving frequency `ωo becomes larger than the internal
diffusion relaxation rate λ1 or the momentum relaxation rate αfl . In particular in
figures 1(e) and 2(d), we found that this suppression is controlled by the solute
mass diffusion in liquids and by the solvent momentum diffusion (or inertia) in
gasses.

(vii) In § 6.2 we have illustrated the practical usefulness of the developed theory as a
design tool for dispersion-control in microfluidic systems.

Our work has resulted in a compact, transparent, and efficient theoretical method
for analysing transient Taylor–Aris dispersion in straight channels. Using it, we have
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gained physical insight in, and made explicit predictions of, the effects of general time-
dependent flows on dispersion. The theory opens up for further generalizations such as
including the effects of non-Newtonian solvents and non-trivial channel topologies.
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Appendix. Mathematical and numerical details; list of symbols
A list of quantities used in this work alphabetized by symbol (Latin before Greek) is

given in table 2.

A.1. The Dirac bra–ket notation for spatial dependence
The basic concept of the bra–ket notation is the inner product of functions, defined by
(2.2). It is linear

〈f |A1g1 + A2g2〉 = A1〈f |g1〉 + A2〈f |g2〉, (A 1)

and given the complex representation (2.6) of the velocity field, we often use that

〈u`|g〉 = 〈g|u`〉∗ = 〈g∗|u−`〉, (A 2a)
〈u`ei`ωot|g〉 = e−i`ωot〈u`|g〉. (A 2b)

The bra–ket notation is particularly compact when working with basis function
expansions. A set of functions |fn〉, n = 0, 1, 2, . . . , is said to form an orthonormal
basis when it fulfills the so-called completeness and orthonormal conditions given by

∞∑
n=0

|fn〉〈fn| = 1 and 〈fm|fn〉 = δm,n, (A 3)

respectively, where by definition δm,n = 1 for m= n, and 0 for m 6= n. Any function |g〉
can formally be expressed by an expansion in this basis as

|g〉 =
∞∑

n=0

an|fn〉, (A 4a)

am = 〈fm|g〉 m= 0, 1, 2, . . . . (A 4b)

Here (A 4b) follows from multiplication of (A 4a) from the left by 〈fm| and using (A 3).
Since the functions f and g in general depend on time, the inner product may also
depend on time. We find that the bra–ket notion allows for a better overview during
formal manipulations and lets the underlying structure of the theory stand out more
clearly without the clutter of voluminous expressions of integrals. The formalism is
particularly convenient for problems involving the Laplace operator, like the present
case, because often the corresponding basis functions and eigenvalues are known.

A.2. Method of statistical moments
The great insight of Aris was to realize that the advection–diffusion problem can be
rewritten as a series of equations for statistical moments of the solute distribution,
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Quantity Symbol

Cross-sectional part of the ∇ operator ∇⊥ = ey∂y + ez∂z

Bra of •, and ket of • 〈•|, and |•〉
Complex conjugation ∗
Cross-sectional area A
Channel radius/half-height a
Concentration field of solute c
pth axial moment of concentration cp

Initial value for c(x, r⊥, t) c̃(x, r⊥)
Characteristic concentration Co

Molecular diffusivity D
Effective diffusivity Deff

Effective diffusivity, time averaged Davr
eff

Effective diffusivity, steady flow Dsteady
eff

Cartesian basis vectors ex, ey, ez

nth basis function fn

Bessel function, first kind of order s Js

Generalized wavenumber, (5.1a) k`
Channel length L
Characteristic length Lo

pth full moment of concentration Mp

Surface normal vector n
Pressure p
Characteristic pressure Po

Péclet number Pé = UoLo/D
Generalized wavenumber, (6.1a) qj`

Channel aspect ratio R= w/a
Position vector r
Cross-sectional position vector r⊥ = (y, z)
Schmidt number Sc= ν/D
Characteristic time To

Time t
Characteristic velocity Uo

Axial velocity component of solvent u
Volume V
Velocity field of solvent v
Channel half-width w
Womersley number Wo=√L2

oω̃o/ν

Solute centre of mass x
Cylindrical coordinates x, r, ϕ
Cartesian coordinates x, y, z
Fluid momentum equilibration rate αm, αfl
Prefactor (6.2a) Γ

Kronecker delta δn,m

`th velocity component amplitude ε`
Dynamic viscosity η

nth root of Bessel function Js ξs,n

TABLE 2. (Continued on next page)
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Quantity Symbol

nth diffusion rate eigenvalue λn

pth moment of concentration about the mean µp

Kinematic viscosity of solvent ν

Density of solvent ρ

Diffusivity enhancement χplate, χrect
Cross-section Ω

Base frequency, non-dimensionalized ωo =Wo2Sc
Base frequency, dimension-full ω̃o

Oscillation period τ0 = 2π/ωo

TABLE 2. (cntd) List of quantities used in this work alphabetized by symbol (Latin before
Greek).

which then can be solved sequentially (Aris 1956). Each additional moment adds
new information about the distribution, and some of the lower moments have direct
physical interpretations. We here give Aris’s definitions and resulting equations of
motion for the statistical moments reformulated in the bra–ket notation.

The pth axial moment cp(r⊥, t) of the solute concentration field c(x, r⊥, t) and
the associated full moment Mp(t) are defined by (2.12b) and (2.12a) in the main
text. Taking the time derivative of these equations and using the advection–diffusion
equation (2.9), we obtain the recursive equations of motion (2.13a) and (2.13b) for cp

and Mp as well as their boundary conditions, (2.14). M0 corresponds to the unit norm
of c, while M1 is the time-dependent, axial centre of mass x̄ of c,

M0 = 〈1|c〉 = 1, (A 5a)
M1 = 〈x|c〉 = x̄(t). (A 5b)

The pth moment µp about the centre of mass is defined by

µp(t)= 〈(x− x̄)p |c〉 , (A 6)

and by the linearity of the inner product, (A 1), we find for p= 0, 1 and 2,

µ0(t)= 〈1|c〉 = 1, (A 7a)
µ1(t)= 〈(x− x̄)|c〉 = 0, (A 7b)

µ2(t)=
〈
(x− x̄)2 |c〉=M2(t)−M1 (t)

2 . (A 7c)

In particular the time-dependent spatial variance µ2 of the solute concentration is
of key interest as it relates the to the solute molecular diffusivity and the effective
diffusivity Deff . For a vanishing velocity field, u= 0, µ2 relates to the diffusivity D of
the solute by dµ2/dt = 2D, or in dimensionless form, dµ2/dt = 2, since:

dµ2

dt
= 〈(x− x̄)2 |∂tc

〉− 2 〈(x− x̄)|c〉 dx̄

dt

= 〈(x− x̄)2 |∇2c
〉− 2µ1

dx̄

dt
= 2 〈1|c〉 = 2, (A 8)

where in the last term we have integrated by parts twice and used the boundary
conditions (2.10a) and (2.10c). This corresponds to the well-known result for diffusion
in one dimension, (1x)2 = 2Dt, with µ2 ∼ (1x)2.
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When the solvent velocity field u is non-zero the time-dependence of the variance is
no longer linear. However, by a traditional generalization (Aris 1956, 1960; Chatwin
1975; Barton 1983; Mukherjee & Mazumder 1988; Brenner & Edwards 1993) the
dispersion or effective diffusivity Deff (t) is defined as done in (2.11) in the main
text Deff (t) = (1/2)(dµ2/dt) = (1/2)(dM2/dt) − M1(dM1/dt). Other works have been
concerned with the skewness µ3 of the solute distribution (Barton 1983; Camassa
et al. 2010). More information about the distribution of c is added with each moment,
however, the information contained in each moment remains valid no matter how many
moments have been determined.

A.3. The dispersion for short times
We show here that Deff (t) is positive for short times t� 1/λ1, 1/(2`maxωo). In this
limit we have

ei(`−k)ωot − e−(λn+ikωo)t = (λn + i`ωo)t + O(t2), (A 9)

thus reducing (3.22) for Deff (t) to

Deff (t)≈ 1+ Pé 2
∞∑

n=1

`max∑
`=−`max

`max∑
k=−`max

〈uk|fn〉 〈fn|u`〉 t

= 1+ tPé 2
∞∑

n=1

〈
`max∑

k=−`max
uk|fn

〉〈
fn|

`max∑
`=−`max

u`

〉

= 1+ tPé 2
∞∑

n=1

| 〈fn|u(0)〉 |2, t� 1
λ1
,

1
2`maxωo

. (A 10)

Here u(0) is the total velocity field u(t) evaluated at time t = 0. This expression
becomes problematic to apply in the case where infinitely many harmonics of the
velocity field is present at t = 0 as for the startup of the Poiseuille flow, but for flows
with a maximum frequency we have shown Deff (t) > 0.

A.4. Numerics
For numerical evaluations of the effective diffusivity Deff (t) we relied on three
methods. First, using the commercial finite element package COMSOL MULTIPHYSICS
version 3.5a, we calculated Deff (t) numerically directly from the definition (2.11)
by solving for the concentration field c in the governing advection–diffusion
equation (2.9) using the analytical solutions for the velocity field as input. From
the obtained c(r, t) we determined M1(t), dM1(t)/dt and dM2(t)/dt, and from these
Deff (t). To ensure mass conservation the number of mesh elements was chosen so that
the local Péclet number in each cell (as given by the velocity in the mesh element,
the mesh element length and the global diffusivity) was approximately 0.5. Where
possible, the available symmetries were exploited for computational efficiency. To this
end the solutions of the flow problems in channels of circular cross-section took
advantage of the azimuthal symmetry and the solution was computed in a frame of
reference travelling with the mean speed of the flow.

Second, for rectangular cross-sections the problem was only solved for one quarter
of the cross-section in a frame of reference moving with the flow mean speed.
However, due to memory limitations even these simplifications proved unfeasible
for Péclet numbers exceeding ∼2 and aspect ratios above ∼2. Thus, for the results
presented in figure 3(a) we numerically solved the axial moment equation (2.12b)
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for co and c1, and from these obtained M1(t), dM1(t)/dt, and dM2(t)/dt, as well as
Deff (t). Time averages of the numerical simulation results were computed by running
the simulation for a full period of the base frequency after the decay of all transients,
followed by numerical integration of Deff (t) over the period.

Third, we calculated Deff (t) based on our theoretical expression (3.22), but reduced
the number of terms needed to be calculated by separating the `- and k-sums and
collecting complex conjugated pairs of index {`,−`} and {k,−k},

Deff (t)= 1+ Pé 2
∞∑

n=1

{
〈fn|u0〉
λn
[1− e−λnt] + 2

∞∑
`=1

Re
[ 〈fn|u`〉
λn + i`ωo

(ei`ωot − e−λnt)

]}

×
{
〈fn|u0〉 + 2

∞∑
k=1

Re[〈fn|uk〉 eikωot]
}
. (A 11)

Furthermore, the involved n-, `- and k-dependent terms are calculated and placed in
lists before evaluating the sums. The latter converge quickly, and we have therefore
truncated them after the first 50 terms unless stated otherwise in the text.
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