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Acoustofluidics 2: Perturbation theory and
ultrasound resonance modes
Henrik Bruus
DOI: 10.1039/c1lc20770a
In the second part of the thematic tutorial

series ‘‘Acoustofluidics -- exploiting
ultrasonic standing waves forces and
acoustic streaming in microfluidic systems
for cell and particle manipulation’’, we
develop the perturbation theory of the

acoustic field in fluids and apply the result

in a study of acoustic resonance modes in

microfluidic channels.
I. Introduction

Ultrasound acoustics in the low MHz-

range are well suited for applications

within microfluidics, because frequencies

f T 1.5 MHz combined with the speed of

sound in water at room temperature, cwa
z 1.5 � 103 m s�1, leads to wavelengths

lwa ( 1 mm, which may fit into the

submillimeter-sized channels and cavities

in microfluidic systems and form standing

pressure waves known as resonance
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modes. For several reasons it is often

advantageous to operate an acousto-

fluidic device at these resonance modes:

they are usually both stable and repro-

ducible, their spatial patterns are

controlled by the geometry of the micro-

fluidic channel, and at resonance

a maximum of acoustic power is delivered

from the transducer to where it is needed

in the system in the form of acoustic

radiation force on suspended particles1–3

or acoustic streaming of the solvent.4–7

For microchips, the ultrasound is typi-

cally generated as bulk or surface acoustic

waves driven by an ac voltage applied to

externally mounted piezo-ceramic

transducers8,9 or to interdigitated

metal electrodes deposited internally

on a piezo-electric substrate,10,11

respectively.

In the following section we derive the

linear wave equation for the acoustic field

in a fluid using regular, first order

perturbation theory. A more complete

treatment of this theory can be found in

the textbooks by Lighthill,12 Pierce,13 and

Landau & Lifshitz.14 Here, as in Part 1 of

the Tutorial series presenting the
l series on Acoustofluidics. Each of the forth c

ted to microfluidics and acoustic forces on flu

us, develops the perturbation theory of the aco

microfluidic channels. Both first- and secon

ented. Acoustic eigenmode analysis, taking int

d the resonancemodes observed in acoustoflui

rehensive document for further discussions on

This journ
governing equations of microfluidics,15

we shall use the notation of the textbook

by Bruus.16 The derivation is based on

a combination of the thermodynamic

equation of state expressing pressure p in

terms of density r, the kinematic conti-

nuity equation for r, and the dynamic

Navier–Stokes equation for the velocity v

(see more details in ref. 16),

p ¼ p(r), (1a)

vtr ¼ �V$(rv), (1b)

rvtv ¼ �Vp � r(v$V)v + hV2v

+ bhV(V$v). (1c)

For water, the values of the viscosity h

and the viscosity ratio b are given in

Table 1. Throughout this tutorial paper,

we disregard for simplicity all external

fields, e.g. gravity and electromagnetism,

and study only the isothermal case to

avoid involving the heat transfer equa-

tion. Even so, the set eqn (1) of coupled

non-linear, partial differential equations

is notoriously difficult to solve analyti-

cally. However, good and useful
oming Lab on a chip issues will contain

ids and particles in microenvironments.

ustic field in fluids and applies the result

d-order perturbation theory as well as

o account the wall boundary conditions,

dic microsystems. It is our hope that this

acoustofluidics in the following issues of

al is ª The Royal Society of Chemistry 2012
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Table 1 Parameters at 25 �C used for acoustic modeling. For water h ¼ 1 mPa s, b z 1.7, and (at f ¼ 1 MHz) g z 10�6

Material Longitudinal speed of sound Density Young’s modulus Poisson’s ratio

Water cwa ¼ 1497 m s�1 rwa¼ 998 kg m�3 — —
Polystyrene cps ¼ 2350 m s�1 rps ¼ 1050 kg m�3 — —
Silicon csi ¼ 8490 m s�1 rsi ¼ 2331 kg m�3 Ysi ¼ 164 GPa �nsi ¼ 0.10
Pyrex cpy ¼ 5661 m s�1 rpy ¼ 2230 kg m�3 Ypy ¼ 63 GPa �npy¼ 0.22
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approximate solutions can be found by

perturbation theory.
g ¼ ð1þ bÞhu
2r0c

2
a

z10�6; (6c)
II. First-order perturbation
theory and the acoustic wave
equation

Consider a quiescent liquid, which before

the presence of any acoustic wave has

constant density r0 and pressure p0. Let

an acoustic wave constitute tiny pertur-

bations (subscript 1) in the fields of

density r, pressure p, and velocity v,

r ¼ r0 + r1, p ¼ p0 + c2ar1, and v ¼ v1.(2)

In the (isentropic) expansion of the

equation of state p(r) ¼ p0 + (vp/vr)sr1,

the derivative has the dimension of

a velocity squared, written as c2a. Below we

find that ca can be identified with the

(isentropic) speed of sound in the liquid.

Inserting eqn (2) into eqn (1b) and (1c),

and neglecting products of first-order

terms, leads to the first-order continuity

and Navier–Stokes equation,

vtr1 ¼ �r0V$v1, (3a)

r0vtv1¼�c2aVr1 + hV2v1 + bhV(V$v1).(3b)

A single equation for r1 is obtained by

taking the time derivative of eqn (3a)
Henrik Bruus
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followed by insertion of eqn (3b) in the

resulting expression,

v2t r1 ¼ �V$ðr0vtv1Þ
¼ c2aV

2r1�ð1þ bÞhV2ðV$v1Þ

¼ c2a

�
1þ ð1þ bÞh

r0c
2
a

vt

�
V2r1: (4)

In microfluidics, even for a non-zero n0,

with v0 ( 0.1 m s�1, eqn (3) and (4) are

approximately correct to order v0/ca (

10�4, see ref. 14.

Tomake further analytical progress, we

assume harmonic time dependence of all

fields,

r1(r, t) ¼ r1(r)e
�iut, (5a)

p1(r, t) ¼ c2ar1(r)e
�iut, (5b)

v1(r, t) ¼ v1(r)e
�iut, (5c)

where u ¼ 2pf is the angular frequency

and f the frequency of the acoustic field.

The harmonic time dependence is ex-

pressed by the complex phase e�iut to ease

the mathematical treatment. The physical

fields are obtained simply by taking the

real part. With this, each time derivative

vt in eqn (4) gives a factor �iu, and the

equation for the pressure becomes

V2p1 ¼ �k2p1, (6a)
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k ¼ ð1þ igÞk0 ¼ ð1þ igÞ u
ca
; (6b)
where we have used p1 ¼ c2ar1 as well as

introduced the wavenumber k0, the

complex-valued wavenumber k, and the

viscous damping factor g (for values see

Table I). Eqn (6a) is the Helmholtz equa-

tion for a damped wave with wavenumber

k and angular frequency u. As g � 1, we

can neglect the viscosity in the bulk part of

the acoustic wave, and going back to the

explicitly time-dependent eqn (4) using u

/ ivt, we obtain the wave equation

V2p1 ¼ 1

c2a
v2t p1; for h ¼ 0: (7)

The solutions in 1D to this standard wave

equation have the form p1 ¼ p1(x � cat)

showing that a pressure perturbation

p1(x) at t ¼ 0 propagates a distance Hcat

in time t, and thus that ca indeed can be

interpreted as the speed of sound. In the

inviscid limit it furthermore follows by

inserting eqn (2) into eqn (3b) that v1 ¼ v

(r)e�iut is a gradient of a potential f1,

v1¼�i
1

r0u
Vp1 ¼ Vf1; for h ¼ 0; (8a)

f1 ¼
�i

r0u
p1; for h ¼ 0: (8b)

Thus both the density r1 and velocity v1
can be calculated from the pressure p1,

which itself is determined by the Helm-

holtz equation and the boundary

conditions.
III. Second-order perturbation
theory and non-zero time
averages

As the Navier–Stokes equation is

nonlinear, the first-order fields calculated

in the previous section cannot in general

be an exact solution. A more accurate

description may be obtained by
Lab Chip, 2012, 12, 20–28 | 21
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Fig. 1 Acoustic streaming and radiation forces at the 2.17MHz-acoustic resonance in a square silicon/glass chamber of area 2mm� 2mmand depth 0.2

mm. (a) Color plot of the pressure field p1 (red: positive, green: zero, blue: negative) calculated by numerical simulation in the 2D chamber model of the

2.17 MHz pressure eigenmode. Nodal lines are shown in black. (b) Top-view gray-scale photograph of 5-mm-diameter polystyrene beads undergoing

acoustophoretic motion in the water-filled chamber due to the acoustic radiation force. The particle velocity (overlaid yellow arrows) 1 ms after the onset

of the 2.17MHz ultrasound wave were measured bymicro-PIV. After 1 s the particles have accumulated at the pressure nodal lines (black wavy lines). (c)

Experiments on 1-mm-diameter polystyrene beads, under the same conditions as in the previous panel. In this case the acoustic radiation force is much

weaker than the Stokes drag from the acoustic streaming motion of the water, so in the resulting 6 � 6 flow-roll pattern no particle accumulation at the

pressure nodal lines is observed. Adapted from ref. 17.
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continuing the first-order expansion in

eqn (2) to second order,

p ¼ p0 + p1 + p2, (9a)

r ¼ r0 + r1 + r2, (9b)

v ¼ 0 + v1 + v2, (9c)

where all zero- and first-order terms are

assumed to be known. These expansions

are inserted into eqn (1), and upon collect-

ing all second-order terms, we find that the

second-order fields p2, r2, and v2 fulfil the

following second-order equation of state,

continuity and Navier–Stokes equation,
p2 ¼ c2ar2 þ
1

2

�
vrc

2
a

�
0
r21; (10a)
vtr2 ¼ �r0V$v2 � V$(r1v1), (10b)

r0vtv2 ¼ �Vp2 + hV2v2 + bhV(V$v2)

�r1vtv1 � r0(v1$V)v1. (10c)

Normally, the second-order fields

would be negligible compared to the

first-order fields. However, if the latter

have a harmonic time dependence as in

eqn (5), then they do not contribute to

any time-averaged effect as hcos(ut)i ¼
0, where hXi denotes the time average

over a full oscillation period s of

a quantity X(t),

hXih1

s

ðs
0

dt XðtÞ: (11)

In contrast, the time average of a product

of two first order terms both proportional

to cos(ut) is non-zero, as hcos2ðutÞi ¼ 1

2
.

Assuming harmonic time dependence,

the time average of the second-order
22 | Lab Chip, 2012, 12, 20–28
continuity and Navier–Stokes eqn (10b)

and (10c), becomes

r0V$hv2i ¼ �V$hr1v1i, (12a)

hV2hv2i + bhV(V$hv2i) � Vhp2i
¼ hr1vtv1i + r0h(v1$V)v1i. (12b)

Clearly, the time-averaged, second-order

fields will in general be non-zero, due to

the time-averaged products of first-order

terms acting as source terms in the gov-

erning equations. Physically, the non-zero

velocity hv2i is the so-called acoustic

streaming, where the bulk fluid is moving

steadily in time due to the absorption of

energy and momentum from the acoustic

wave, while the non-zero pressure hp2i
gives rise to the acoustic radiation force

coming from the scattering of acoustic

waves on the particles and causing

acoustophoretic motion of the particles.

In Fig. 1 is shown an example from

ref. 17 of these effects observed by

measuring the motion of polystyrene

tracer beads in a water-filled, square

silicon/glass chamber of side length 2

mm and depth 0.2 mm, under the

influence of an ultrasound field at the

resonance frequency 2.17 MHz applied

through an externally attached piezo

transducer. Panel (a) is a color plot of

the pressure field p1 at a given time

calculated using the theory of Sections V

and VI B. Red represents positive, blue

negative, and green zero pressure. Half

a cycle later the sign of the pressure field

has changed, but the green pressure

nodal lines remain fixed in space ap-

pearing as six horizontal sinusoidal

waves undergoing three full oscillations
This journ
across the chamber. In panel (b) is

shown the result of measuring on 5-mm-

diameter tracer beads. Initially, the

beads are distributed homogeneously in

the chamber. After the onset of the

ultrasound field, the particles move away

from the high pressure oscillations under

the influence of the acoustic radiation

force. The first 1 ms of this motion is

recorded by micro particle image veloc-

imetry (micro-PIV), and the obtained

velocity of the particles is represented by

the yellow arrows. After 1 s all tracer

particles have moved to the nodal lines,

where they appear as the black wavy line

on the gray scale top-view photograph

of the device. In panel (c) the same

experiment is repeated with 1-mm-diam-

eter tracer beads. For these smaller

particles the acoustic radiation force is

weak, and the particle motion is domi-

nated by Stokes drag from the circu-

lating acoustic streaming of the water.

No particle accumulation at the nodal

lines takes place, and instead the de-

picted 6 � 6 flow-roll pattern persists.

The acoustic radiation force1–3 and the

acoustic streaming4–7 are central

concepts in acoustofluidics and will be

studied in more detail throughout the

Tutorial series. In the rest of this tutorial

paper, we study the basics of the

underlying first-order acoustic resonant

modes.
IV. Basics of acoustic
resonances in viscous liquids

As mentioned in the introduction,

acoustic resonance modes are
al is ª The Royal Society of Chemistry 2012
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particularly useful to establish for

acoustic handling of cells and particles

in microfluidic systems. To illustrate the

fundamental properties of such reso-

nance modes, we study the simple 1D

setup sketched in Fig. 2(a). Two planar

walls are placed parallel to the yz-plane

at x ¼ �L and x ¼ L, respectively, and

the gap is filled with water. To mimic the

action of the piezo transducer, the walls

are forced to oscillate in anti-phase at

a frequency f z 1 MHz and with an

amplitude l z 0.1 nm. As a simplifica-

tion we neglect the actual tiny displace-

ment of the walls and instead model the

oscillation by the velocity boundary

condition sketched in Fig. 2(a),

v1(�L, t) ¼ �ul e�iut, (13a)

v1(+L, t) ¼ +ul e�iut. (13b)

Starting from rest the resonance builds

up until the incoming power equals the

heat dissipation due to viscosity, and

a steady state at constant temperature is

reached. The standing 1D wave v1 ¼ f

(x)e�iut ex has V � v1 ¼ 0, so v1 ¼ Vf1

and vjvi ¼ vivj. To find the viscid

velocity potential f1, we note that vjvjvi
¼ vjvivj ¼ vivjvj, i.e. V

2v1 ¼ V(V$v1), and

from eqn (3a) we have V$v1 ¼ iup1/

(r0c
2
a). Inserting these two expressions

together with v1 ¼ Vf into eqn (3b), we

find,

f1ðr; tÞ ¼
�i

ur0ð1þ igÞ2 p1ðr; tÞ;

forV� v1 ¼ 0: (14)
Fig. 2 (a) A liquid slab (blue) between two paral

amplitude is minute, l� L, the wall positions are c

e�iut. (b) Sketch of the two terms in the resonant ve

oscillatory boundary condition with amplitude �u

obeying the hard-wall condition with zero velocity

This journal is ª The Royal Society of Chemistry
Because f1 f p1, the wave eqn (6a) also

holds for f1, and we can therefore write

the solution for f1 as a superposition of

a pair of counter-propagating plane

waves with a complex wave number k ¼
k0(1 + ig) and unknown coefficients f+

and f� to be determined,

f1(x, t) ¼ [f+e
ikx + f�e�ikx]e�iut. (15)

The corresponding first-order velocity is

v1(x, t) ¼ vxf1(x, t)

¼ ik[f+e
ikx � f�e�ikx]e�iut. (16)

The antisymmetric boundary condition

on v1 in eqn (13) combined with eqn (16)

leads to f+ ¼ f�, as well as an expression

for the coefficients,

fþ ¼ f� ¼ �ul

2ksinðkLÞ: (17)

From this, we can obtain the following

expression for v1,

v1ðx; tÞ ¼ ul
sinðkxÞ
sinðkLÞe

�iut

zul
sinðk0xÞ þ igk0xcosðk0xÞ
sinðk0LÞ þ igk0Lcosðk0LÞe

�iut; (18)

where we have used gk0L � 1 to make

Taylor expansions in kL around k0L. We

note that when k0L differs sufficiently

from integer multiples of p, i.e. g �
|k0L � np|, then the imaginary part of

the denominator can be neglected. This

corresponds to off-resonance character-

ized by a small maximum magnitude |v1|

of the velocity,
lel planar walls (thick lines) that oscillate harmoni

onsidered fixed, while the first-order velocity v1(t) at

locity field v1 eqn (22b). The small component (full

l. The large resonant component (dashed line) pro

amplitude.

2012
jv1jzul ¼ ul

ca
caz10�7ca;ðoff resonanceÞ;

(19)

where the value is calculated by

assuming u z 107 rad s�1, l z 0.1 nm

and ca z 103 m s�1.

More interesting, perhaps, are the

acoustic resonances, where the acoustic

field acquires particularly large ampli-

tudes and thus contains a large amount of

stored energy, see Fig. 2(b). Theoretically,

the resonances are identified by the

minima in the denominators of v1 in eqn

(18), i.e.by sin(k0L)¼ 0ork0L¼ np,n¼ 1,

2, 3,.,

k0 ¼ knhn
p

L
; n ¼ 1; 2; 3;.

ðresonance conditionÞ: (20)

In practice, the resonance is achieved by

tuning the frequency u to the resonance

frequency un given by

unhcakn ¼ n
pca
L
; n ¼ 1; 2; 3;.: (21)

At the nth resonance sin(knL)¼ 0 and cos

(knL) ¼ (�1)n, so the acoustic fields

become

f1ðx; tÞzð�1Þncal e�iunt

�
�

i

npg
cos

�
np

x

L

�
þ x

L
sin

�
np

x

L

��
; (22a)

v1ðx; tÞzð�1Þnul e�iunt

�
� �i

npg
sin

�
np

x

L

�
þ x

L
cos

�
np

x

L

��
: (22b)
cally in counter-phase (double arrows). As the

the walls is changing harmonically, v1(t) ¼ �ul

line) proportional to (x/L) cos(px/L) obeys the

portional to (1/pg) sin(px/L) is an eigenmode

Lab Chip, 2012, 12, 20–28 | 23
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From these expressions it follows that

each of the fields acquires a resonant

component with an amplitude that is

a factor of 1/(npg) z (1/n) � 105 larger

than the non-resonant component, e.g.

jv1ðx; tÞjz 1

npg

unl

ca
caz

1

n
10�2ca;

ðnth resonanceÞ: (23)

Despite the huge multiplication factor,

1/(pg) z 104, the perturbation approach

remains valid as the density fluctuation is

small, jr1j=r0 ¼ jv1j
�
caz

1

n
10�2 � 1.

From eqn (22b) we see that the term

actually obeying the velocity boundary

condition v1(�L) ¼ �ul is 105 times

smaller than the other term, which obeys

the hard-wall condition v1(�L, t) ¼ 0 and

thus in fact is an eigenmode of the system.

Consequently, when coupling into

a system with a frequency near an eigen-

mode frequency, the corresponding

eigenmode gets excited with a huge

amplitude, approximately a factor 1/g

larger than the coupling amplitude, inde-

pendent of the actual boundary condi-

tion, see Fig. 2(b).

As the energy density Eac for an

harmonically oscillating system is twice

the time-averaged kinetic energy density,

eqn (18) implies Eac ¼ 1

2L

ðL
�L

dx
1

2
r0jv1ðxÞj2

¼ 1

4
r0u

2l2
�jsinðkLÞj2: By Taylor

expanding this expression

in kL ¼ ð1þ igÞL
ca

u around the reso-

nance knL¼ np, we find a Lorentzian line

shape as a function of frequency,

EacðuÞ ¼
1

4
r0u

2l2				Lcaðu�unÞ þ ignp

				2

¼ r0u
2l2

4n2p2

u2
n

ðu� unÞ2þg2u2
n

; foruzun:

(24)

At resonance we find the energy density

EacðunÞ ¼ 1

ðnpgÞ2 �
1

4
r0u

2
nl

2, which is

much larger than the off-resonance

energy density of about r0u
2l2. At u¼ un

the energy density Eac(u) is at its

maximum, while it decreases to half of
24 | Lab Chip, 2012, 12, 20–28
this value when changing the frequency to

u ¼ un + gun. Therefore, the full width

Du at half maximum of the resonance

peak is seen to be Du ¼ 2gun, and by

definition the quality factor Q of the

resonance therefore becomes,

Q ¼ un

Du
¼ 1

2g
: (25)

We emphasize that this result over-

estimates the Q-factor, because it builds

on the simplifying assumption that

viscous dissipation in the bulk liquid is the

only source to loss of acoustic energy. In

a real device, acoustic energy is also lost as

viscous friction at the walls and as sound

waves emitted into the chip holder and

fluidic connectors as well as into the

surrounding air.18
V. Acoustic eigenmodes

The above result indicates that we can

gain insight in the nature of acoustic

resonances in externally driven systems by

analyzing the eigenmodes pn ¼ pn(r)e
�iunt

of the equivalent isolated liquid-filled

chamber. If more specific details are

needed, it is necessary to calculate the

acoustic response of the entire system

driven by the piezo transducer, i.e.

combining the wave equation of the liquid

with the elastic equations of the

surrounding solids. Such more complete

descriptions will be discussed in Part 3 of

this Tutorial series.19
A. Boundary conditions

In the simple chamber model of the liquid

domain, the acoustic pressure eigenmodes

pn¼ pn(r)e
�iunt in the liquid are determined

by the Helmholtz eqn (6a) with appro-

priate boundary conditions. In the

following we use either the soft-wall, the

hard-wall, or the lossy-wall boundary

condition.

The soft-wall condition is used when

the medium interfacing with the liquid

cannot sustain any appreciable pressure.

Examples of this are a free liquid/air

interface or, as in ref. 20, liquid sur-

rounded by a thin glass wall and then air.

The mathematical form of the boundary

condition is

p1 ¼ 0,

soft-wall boundary condition. (26a)
This journ
The hard-wall condition applies when

the liquid is interfacing with an infinitely

hard wall, not yielding to the velocity v1 of

the liquid. Consequently, the normal

velocity of the liquid at the wall is zero,

which by eqn (8a) leads to a zero normal

gradient of the pressure,

n$Vp1 ¼ 0,

hard-wall boundary condition. (26b)

The lossy-wall condition is an approx-

imative description of partial radiative

acoustic losses from the liquid to the

surrounding medium. Consider a planer

configuration with the liquid placed in the

half-space x < 0 next to an ideally

absorbing medium (subscript m) at x > 0.

A radiative loss can be described by

a wave in the medium having only the

right-ward propagating component: fm¼
A eikmx. From eqn (8) follows vm ¼ ikmfm

and pm ¼ iurmfm, and thus pm ¼ rmcmvm
at the interface. Combining this with

continuity in pressure (p1 ¼ pm) and

velocity (v1¼ vm) across the interface, and

with n$Vp1 ¼ iur0n$v1 from eqn (8), we

arrive at

n$Vp1 ¼ i
ur0

rmcm
p1;

lossy-wall boundary condition; (26c)

where the planar case is generalized to any

curved surface. The product rmcm is

known as the specific acoustic impedance

of the medium. The soft-wall condition

eqn (26a) is recovered from eqn (26c) in

the limit of zero impedance of the

surrounding medium, while the hard-wall

condition eqn (26b) corresponds to infi-

nitely large impedance. If the liquid and

the medium have the same impedance,

acoustic waves pass the interface without

suffering any scattering.

Finally, we note that since (rsicsi)/

(rwacwa) ¼ 13.2 and (rpycpy)/(rwacwa) ¼
8.4 (using the longitudinal sound veloci-

ties of Table 1), it may be a reasonable

first approximation to use the hard-wall

boundary condition for water channels in

silicon/glass chips.
B. An ideal water-filled rectangular

channel

We proceed by studying the acoustic

modes for a rectangular water-filled

channel placed along the coordinate axes
al is ª The Royal Society of Chemistry 2012
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with its opposite corners at (0, 0, 0) and (l,

w, h) surrounded by either hard or soft

walls. As can be verified easily by direct

substitution, the eigenmodes of this ideal

rectangular channel are

p1ðx; y; zÞ ¼ pasinðkxxÞsin
�
kyy

�
sinðkzzÞ;

with kj ¼ nj
p

Lj

; soft wall; (27a)

p1ðx; y; zÞ ¼ pacosðkxxÞcos
�
kyy

�
cosðkzzÞ;

with kj ¼ nj
p

Lj

; hardwall; (27b)

where pa is the pressure amplitude, where

(Lx, Ly, Lz) ¼ (l, w, h), and where nj ¼
(0),1, 2, 3,. is the number of half wave-

lengths (nj > 0 for the sine-waves). The

corresponding three-index resonance

frequencies fnx,ny,nz ¼ unx,ny,nz
/(2p) are

fnx ;ny ;nz ¼
cwa
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x
l2

þ n2y
w2

þ n2z
h2

s
;

with nx; ny; nz ¼ ð0;Þ1; 2; 3; 4;.: (28)

Examples of these analytically deter-

mined eigenmodes are shown in Fig. 3.

Note the relatively low frequency of (d)

and (e) having nz ¼ 0 along the smallest

dimension in contrast to nz ¼ 1 of the

other four eigenmodes. In (f) one half-

length is squeezed in along the z-direction

(nz ¼ 1) and the frequency increases

significantly. In fact, as (a) and (f) have
Fig. 3 Color slice plots (red: positive, green: zero, b

microchannel of length l ¼ 2 mm, width w ¼ 0.38 m

density wall surrounds the channel. (d)–(f) Hard-wa

This journal is ª The Royal Society of Chemistry
the same indices they also have the same

frequency, namely f1,1,1 despite their

different boundary conditions. It turns

out that the anti-symmetric resonance (d),

having a perfect nodal plane in the

vertical center plane, is an ideal configu-

ration for acoustophoretic separation.

C. Radiation loss in rectangular

channels

When energy dissipates from the acoustic

field near resonance, the resonance peak

in the form of acoustic energy density

plotted versus frequency acquires a finite

full width at half maximum, Du ¼ un/Q,

where Q is the quality factor of the reso-

nance at frequency un. If the only source

of energy dissipation is the viscous

damping in the liquid, then it follows from

eqn (6c) and (25) that the Q-factor is of

the order Q z 106 for water. However, it

is found experimentally that typical Q-

factors are in the range 100 < Q < 1000,

see e.g. Fig. 4 and ref. 18, mainly due to

the radiative losses to the sample holder,

the surrounding air, and inlet/outlet

tubes.

In the simple chamber model, this

lowering of the Q-factor can be modeled

using the lossy-wall boundary condition

(26c) with the acoustic impedance rmcm as

a fitting parameter. For the rectangular

channel, this can be argued as follows:

Consider the transverse half-wavelength

standing wave between the walls at y ¼
�l/2 given by p1(y) ¼ A sin[p(1 + i~g)y/l],
lue: negative) of some inviscid eigenmodes of the pre

m, and height h ¼ 0.15 mm. (a)–(c) Soft-wall bound

ll boundary condition n$Vp1¼ 0, i.e. the surrounding

2012
where the unknown ~g is the damping

factor given by the radiative loss. Note

that this form is similar to eqn (18), but

with a different interpretation of ~g. In this

case the lossy-wall boundary conditions

become

ð1þ ig~Þcos
�
p

2
þ ig~

p

2

�

¼ i
r0c0
rmcm

sin

�
p

2
þ ig~

p

2

�
: (29)

Assuming ~g � 1, a Taylor expansion

leads to

g~ z� 2r0c0
prmcm

; (30)

so that the damping factor ~g due to

radiation loss can be thought of as a ratio

between the impedances of water and the

surrounding (ideally absorbing) medium.

Radiative losses to ideally absorbing

walls can lower the Q-factor to as much as

Q z 10. However, the real surroundings

(sample holder, inlet/outlet tubes, and the

air) are not completely absorbing, which

is why the measured Q-factors are in the

range Q z 100–1000.

Experimentally, the global structure of

the acoustic eigenmodes can be mapped

out using an automated micro-PIV

setup.22
VI. Geometrical effects

For geometrical shapes more irregular

than rectangular it is in generally not
ssure field p1 in a rectangular, single, water-filled

ary conditions p1 ¼ 0 at the surface, i.e. a zero-

wall is of infinite density. Adapted from ref. 21.

Lab Chip, 2012, 12, 20–28 | 25
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Fig. 4 Experimental determination of the Q factor of an acoustic mode. (a) The silicon/glass chips containing straight channels of length l ¼ 40 mm,

widthw¼ 377 mm, and height h¼ 157 mm.The channels are etched down into the silicon chip of thickness 350 mm, and they are covered by a pyrex glass lid

of thickness 1.13mm. The chips are 50mm long and have widths of 2.5mm (a¼ 1), 4.7mm (a¼ 2), 6.8mm (a¼ 3), and 9.0mm (a¼ 4). (b) A photograph

of the experimental setup showing how a chip is coupled mechanically to the piezo actuator, the PMMA holder, and the inlet/outlet tubes. (c) Plot of the

measured acoustic energy densityEac versus frequency f (red dots) for the a¼ 2 chip. The two observed acoustic resonance peaks are fitted well by the sum

of two Lorentzian line shapes (eqn (24), blue line). The resonance frequencies are f1¼ 2.0021MHz and f1¼ 1.9927MHz, while the Q-factors areQ1¼ 209

and Q2 ¼ 577. Adapted from ref. 23.
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possible to find analytical solutions to the

acoustic wave equation and one must

resort to numerical simulations. Below we

sketch the basic principle of the finite

element method (FEM), one of the most

widely used numerical methods.

With numerical methods at hand, it is

possible to study the effects of specific

geometrical shapes on the resonance

modes in the liquid domain. In fact, we

have already seen an example of this in

Fig. 1(a). According to eqn (27b), the

corresponding pressure resonance of

a perfect hard-walled square cavity of side

length L in the xy-plane should have the

form p1(x, y) ¼ pacos(6px/L) cos(6py/L),

which is symmetric along the diagonal

x ¼ y. However, the figure clearly shows

that the presence of the inlet and outlet

channels along the x-direction breaks this

symmetry.
A. Finite element method (FEM)

simulations

A general and versatile method to solve

the acoustic wave equations (and other

continuum field equations) is the so-called

weak form suitable for implementation in

the finite element method (FEM) used by

the COMSOL Multiphysics software

(www.comsol.com). In FEM analysis the

governing equations are not satisfied in

each and every point of the computa-

tional domain U, but only on average in

each of the small regions defined by

a mesh.

As a main example we study the

Helmholtz equation vkvkp1 ¼ �u2

c2a
p1 for
26 | Lab Chip, 2012, 12, 20–28
acoustic waves, eqn (6a). To discretize

this equation, the domain U is divided

by a mesh into a large number M of

small cells m. A corresponding number

of scalar test functions ~pm are intro-

duced, each being different from zero

only in their respective cell m. The given

field p1(r) is represented by a linear

combination of test functions with

coefficients Pm,

p1ðrÞ ¼
XM
m¼1

Pm
~pmðrÞ: (31)

In the weak form, a given differential

equation in the continuous space is

transformed into M equations, one for

each coefficient Pm, by multiplying it by

each of the test functions, integrating of

the domain, and demand that all these

integrals should be zero,

Ð
U
dr ~p m

�
vkvkp1 þ u2

c2a
p1

�
¼ 0;

m ¼ 1; 2;.;M: (32)

As a result the integrand is zero on aver-

age, and the equation vkvkp1 þ u2

c2a
p1 ¼ 0

is fulfilled approximatively. By partial

integration only first derivatives are left in

the integrand, and a specific surface inte-

gral appears, through which the

boundary conditions can be applied,ð
vU

da ~pmnkvkp1

þ
ð
U

dr

�
vk ~pmð�vkp1Þþ;~pm

u2

c2a
p1

�
¼ 0;

(33)
This journ
where n is the outward-pointing surface

normal of vU. The Neumann boundary

condition n$Vp1 ¼ N(r) is therefore

imposed by

ð
vU

da ~pmNðrÞ

þ
ð
U

dr

�
vk ~pmð�vkp1Þ þ ~pm

u2

c2a
p1

�
¼ 0;

(34)

For the hard-wall condition eqn (26b), N

(r) ¼ 0 and the surface integral vanishes.

The Dirichlet condition p1 ¼ D(r) is

more tricky to impose on the boundary.

In this case the normal derivative on the

boundary is free to vary such that the

imposed Dirichlet boundary condition

indeed is fulfilled. This case therefore

requires the introduction of an auxiliary

field f(r) on the boundary together with

a number J of associated test functions
~f j(r), the so-called Lagrange multipliers,

each defined the along the edges of the

outer edges of the J mesh cells at the

surface vU,ð
vU

da
�
~pmf þ ~f jðDðrÞ � p1Þ

�
þ
ð
U

dr

�
vk ~pmð�vkp1Þ þ ~pm

u2

c2a
p1

�
¼ 0: (35)

As the Lagrange multiplier test functions
~f j only exists on the boundary, the

demand for zero-valued integrals forces

the coefficient (D(r) � p1) to be zero for

any converged solution of the problem.

On the other hand, the coefficient f(r) of

the pressure test function ~pm is
al is ª The Royal Society of Chemistry 2012
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Fig. 5 (a) Sketches of a 2 mm square microfluidic chamber placed symmetrically and asymmetrically (shifted 1 mm to the right) relative to 0.4 mm wide

and 11.5mm long inlet/outlet channels (not drawn to scale). (b) Photograph of the position of 5-mm-diameter tracer beads (black bands) in a silicon/pyrex

chip having the asymmetric geometry of panel (a) after 1 s of motion in the 2.06MHz ultrasound resonance mode. (c) The same as the previous panel, but

for the 2.08MHz resonancemode. (d) Color plot of the pressure field p1 (blue: negative, green: zero, red: positive) of the resonance near the 2.1MHz in the

symmetric geometry with hard-wall boundary conditions found by numerical simulation using COMSOL. Notice the left-right symmetry of p1. (e) Same

as the previous panel, except for the asymmetric device. Notice the slightly larger amplitude of p1 left of the symmetry line as in panel (b). (f) Same has the

previous panel, but for the resonance mode with a frequency 0.028MHz higher. Notice the slightly larger amplitude of p1 right of the symmetry line as in

panel (c). Adapted from ref. 17.
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a dependent variable, which through Vp1
couples to the terms of the volume inte-

gral. Since this coefficient is also the

normal derivative of the pressure, we find

that it has been determined as n$Vp1 ¼ f

for a converged solution.

With this method we can calculate the

acoustic resonance modes for any shape

of acoustic cavities with any boundary

condition. The soft-wall condition eqn

(26a) is obtained by settingD(r)¼ 0, while

the lossy-wall condition eqn (26c) requires

DðrÞ ¼ �i
rmcm
ur0

n$Vp1.
B. Symmetry breaking in acoustic

resonances

As an example of the effects of non-trivial

geometrical shapes on the acoustic reso-

nances, we take the study of symmetry

breaking in a water-filled silicon/glass

microchamber of ref. 17, see Fig. 5. The 2-

mm-by-2-mm square chamber has

a depth of 0.2 mm, and two inlet/outlet

channels of width 0.4 mm and unequal

lengths (12.5 mm and 10.5 mm) are

attached on opposite sides as sketched in

panel (a). Experimentally, two close lying

resonances of nearly identical resonance

pattern are observed at 2.06 MHz and
This journal is ª The Royal Society of Chemistry
2.08 MHz, see panels (b) and (c). The

pattern of the lower-frequency resonance

is shifted slightly to the left, towards the

longer and thus less confining channel,

while the opposite is the case of the

higher-frequency resonance.

A similar trend is seen in the numerical

simulation presented in the color plots of

the pressure field p1 in panels (d)–(f) ob-

tained by solving the 2D Helmholtz eqn

(6a) with the hard-wall condition (26b). In

panel (d) is shown the result for the

symmetric case of equal-length (11.5 mm)

inlet/outlet channels: a left-right

symmetric pressure field. To quantita-

tively explain the non-symmetric pressure

modes observed experimentally, the

pressure resonances are also calculated in

the asymmetric case of inlet/outlet chan-

nels of unequal lengths (12.5 mm and

10.5 mm). Two nearly identical resonance

patterns are found near the frequency of

the symmetric case in panel (d), one mode

with a frequency 0.028 MHz lower than

the other similar to the observed

frequency difference. In agreement with

the experimental observations, the lower-

frequency mode is seen to be shifted to

towards the left inlet channel, which is

longer and thus supports a resonance at

a slightly lower frequency, while the other
2012
is shifted towards the short, right inlet

channel thus giving rise to a slight

increase in resonance frequency.

The simple acoustic model, where the

chip surrounding the water channel is

merely modeled as a hard wall, thus offers

some qualitative insight in the behavior of

acoustic resonance modes.
VII. Concluding remarks

In this tutorial paper we have used first-

order perturbation theory to derive the

governing equation for acoustic waves in

fluids. We have noted that non-vanishing

time-average effects can only be explained

by applying second-order perturbation

theory.

The acoustic wave theory was used to

study various aspects of resonance modes

including effects of viscous and radiative

damping of systems driven by an exter-

nally applied ultrasound frequency.

Furthermore, after establishing the soft-

wall, the hard-wall, and the lossy-wall

boundary conditions, the basic features of

acoustic eigenmodes in 3D rectangular-

shaped inviscid liquid domains were

studied. And finally, it was shown by

comparison to experiments that the

simplified 2D chamber model, where
Lab Chip, 2012, 12, 20–28 | 27
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the surrounding elastic solid has been

decoupled, did offer qualitative insight

into the physical nature of the resonance

modes in flat microchambers. However,

to obtain quantitative agreement between

simulation and experiment, it is necessary

to include modeling of the elastic walls

and its coupling to the liquid-filled mi-

crochannels. This is the topic of Part 3 of

this Tutorial series.19
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