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Abstract
An understanding of all fluid dynamic time scales is needed to fully understand and hence
exploit the capabilities of fluid flow in microfluidic systems. We propose the use of
harmonically oscillating microfluidics as an analytical tool for the deduction of these time
scales. Furthermore, we suggest the use of system-level equivalent circuit theory as an
adequate theory of the behavior of the system. A novel pressure source capable of operation in
the desired frequency range is presented for this generic analysis. As a proof of concept, we
study the fairly complex system of water-filled interconnected elastic microfluidic tubes
containing a large, trapped air bubble and driven by a pulsatile pressure difference. We
demonstrate good agreement between the system-level model and the experimental results,
allowing us to determine the dynamic time scales of the system. However, the generic analysis
can be applied to all microfluidic systems, both ac and dc.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The fluid flow of almost all microfluidic systems so far
presented in the literature operates in a steady state. Though
some of the recently presented highly parallelized systems
depend on on-chip dynamics, such as the system of Thorsen
et al [1] consisting of 256 sub-nanoliter reaction chambers and
2056 microvalves, the flow of liquid is almost exclusively in
a steady state. This is because the system is run for enough
time that any temporal effects such as fluid inertia and system
compliance have died out. In fact, this independence of time is
to many one of the attractions of microfluidics. Apart from the
inherently time-dependent valves, which have been studied for
some time—see e.g. the work of Olsson et al [2] or Brask et al
[3]—few microfluidic systems have been designed to exploit
these temporal dependencies. A recent example is the passive
on-chip switch of Leslie et al [4], which requires an externally
applied harmonically oscillating pressure gradient to drive
the fluid. Elastic membranes on the chip act as sources of
compliance, which are expanded when the fluid pressure inside

the chip increases, and the expanded volume is filled with
incoming fluid. This fluid can be thought of as stored in the
compliant membrane. The converse happens when the fluid
pressure in the system decreases: the membrane contracts and
a volume of fluid is pushed out (negative storage). When the
oscillation frequency is so fast that this expanding/contracting
motion does not have time to occur, the fluid flow will never
reach a steady state and very little of it will have time to
flow downstream; the volume of fluid that has been moved
downstream of the compliant medium is less than would have
been the case, had the fluid moved in a steady state. Using
two channels of different liquid inertias and tuning the driving
frequency, the chip of Leslie et al displays a switching behavior
where the flow in one channel is amplified while the flow in
the other is impeded.

Whether one is designing an ‘ac’ or ‘dc’ system, full
exploitation of the system requires the understanding of all
transient effects. For the system of Thorsen et al the chemical
reactions could be compromised if insufficient volumes of
fluid are delivered to the chambers as a consequence of long
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transient time scales. On the other hand, waiting much longer
than needed for the fluid to reach a steady state limits the
system throughput. The ac system of Leslie et al hinges
critically on the correct tuning of the compliance time scales
of the two channels of the switch. Clearly, understanding and
exploitation of the transient fluidic effects are required to fully
realize the potential of lab-on-a-chip systems as a significant
improvement to ‘regular’ laboratories.

A common method for studying the dynamics of a
physical system is to use harmonically oscillating external
fields, which allow for the study of all time scales of the
system by sweeping the oscillation frequency. For a typical
microfluidic system, pulsatile (harmonically oscillating)
driving pressure would be the typical choice of the external
field. By studying the frequency response of the microfluidic
system, the various time scales are found, and the dominating
time scale can be determined. As illustrated above, these time
scales set the upper limit for when the system reaches a steady
state, and are thus important parameters when more than one
operation is to occur on the chip.

An estimate of the typical transient time scales of a
microfluidic system can be given by considering the start-
up of a pressure driven flow. Such a flow will accelerate and
approach the steady state solution of the Hagen–Poiseuille law
asymptotically with a characteristic time τ [5]. For a circular
cross section, τ is given by

τ = a2

γ 2
1 ν

, (1)

where a is the tube radius, ν is the kinematic viscosity of
the liquid and γ1 = 2.4048 is the first root of the Bessel
function of the first kind of order 0 (see table 1 for a list of
parameters). For a water-filled tube of a ∼ 100 μm this time
scale is τ ∼ 1.7 ms, so in order to use pulsatile microfluidics, a
driving mechanism capable of probing frequencies into the low
kilohertz range is needed. Secondly, this driving mechanism
should deliver characteristic volumes of V ∼ 0.1 mm3 per
cycle. This is to ensure that a volume sufficiently larger than
the characteristic volume of a generic microfluidic system (e.g.
[1, 6]) is delivered by each stroke, thus rendering the flow in
the system fully pulsatile.

Lumped parameter modeling in microfluidics consists of
modeling the system of consideration as a network of ideal
hydraulic resistances Rhyd, inertances Lhyd and compliances
Chyd, corresponding respectively to viscous losses, inertial
losses and volume storage (departure from rigid confinement)
[2, 4, 7–10]. The components depend on various system
parameters such as tube radius, fluid viscosity, etc. The
method is known as equivalent circuit (EC) theory due to the
mathematical equivalency to electric circuits which extends
so far that Kirchoffian network analysis may be applied to the
microfluidic network, and it is therefore customary to represent
the microfluidic circuit by its equivalent electric circuit, see
e.g. figure 9. By direct analogy to electric circuits there are
three dynamic time scales in microfluidics: τRC = RhydChyd,
τLR = Lhyd/Rhyd and τLC = √

LhydChyd. Although derived
for components, the linearity of the governing Stokes equation
of fluid flow assures the validity of the modeling approach to

Table 1. List of parameters, alphabetized by symbol.

Parameter Symbol Unit/value

Area A m2

Inner radius a m
Compliance Chyd m3 Pa−1

Young’s modulus E Pa
Frequency f Hz
Wall thickness h m
Electric current I A
Bessel function the first kind of order n Jn −
Membrane spring constant k N m−1

Actuator force constant kF N A−1

Electric inductance Lel V s A−1

Hydraulic inertance Lhyd Pa s2 m−3

Tube length � m
Plunger mass M kg
Power P J s−1

Pressure p Pa
Flow rate Q m3 s−1

Pressure source chamber flow rate Qc m3 s−1

Electric resistance Rel V A−1

Hydraulic resistance Rhyd Pa s m−3

Radial coordinate r m
Period T s
Time t s
Voltage U V
Wall radial displacement ur m
Volume V m3

Chamber volume Vc m3

Initial chamber volume Vinit m3

Tent volume Vtent m3

Velocity v m s−1

Axial fluid velocity vx m s−1

Coil velocity vcoil m s−1

Plunger coordinate x m
Bubble relative coordinate xrel m
Hydraulic impedance Zhyd Pa s m−3

Womersley number α −
Critical Womersley number αc α/γ1

First root of J0 γ1 2.4048
Wall compliance constant β –
Dynamic viscosity η Pa s
Momentum diffusion length λd m
Kinematic viscosity ν m2 s−1

Density ρ kg m−3

Poisson’s ratio σ −
Dynamic time scale τ s
Angular frequency ω rad s−1

full system-level analysis [11, 12]. The work of these authors
demonstrates the very good level of accuracy attainable by
these models for both steady-state and dynamic systems.

In this paper we suggest the use of experimental pulsatile
microfluidics in connection with EC theory as an analytical
tool for the derivation of the time scales for any microfluidic
system. The use of the predictive capabilities of time-
dependent EC theory have already been demonstrated for a
component by Kim et al [9], who derived the compliance
of a silicone rubber tube from the characteristic time of
the build-up of pressure, and by Leslie et al [4], who as
previously mentioned generated an on-chip switch by use of
rectifying valves and an externally driven ac flow. However,
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the use of pulsatile microfluidics allows for the deduction of
the time scale of any time-dependent component within any
microfluidic system, as long as a valid model of the system
is in place. The analysis will allow for the experimental
determination of these time scales, while system-level EC
analysis will provide a theory to which the experimental
results can be compared. The analysis applies to both ac and
dc microfluidic systems, since even systems intended for dc
operation have inherent dynamic time scales, as mentioned
previously. Since the EC elements are given in terms of
system parameters, deviations between model results and
experimental data will strongly indicate which parameter of the
model is incorrect. However, the real strength of the approach
lies in the fact that one often has components of unknown
compliance in the microfluidic system, such as oddly shaped
membranes, valves, trapped gas bubbles etc, which then may
be determined using the suggested approach. For example, for
many of the bubble-based microfluidic applications such as
pumps [13, 14], valves [15, 16], sensors [17, 18] and actuators
[19, 20] the approach can be used to verify the bubble size and
hence the performance of the system.

As a proof of concept we will in the following expose
a full-microfluidic network containing one component of
unknown compliance to a pulsatile pressure difference. In
addition to the unknown compliance, this ac network consists
of interconnected elastic tubing with one large moving air
bubble and several stationary compliances of known value.
We use system-level EC analysis to model the system in order
to derive a numerical value for said compliance while also
proving the sufficiency of system-level EC modeling. We
note, however, that this generic method of using pulsatile
microfluidics is by no means limited to only this purpose. A
novel pulsatile pressure source capable of probing the desired
low-kilohertz frequencies will be presented and the appropriate
EC circuit elements for the proof-of-concept experiment will
be derived.

2. The physics of pulsatile flow

The analytical solution to pulsatile flow void of start-up effects
is usually credited to Womersley [21], although the problem
has been solved independently by several scholars [22–25].
The solution is found by solving the Navier–Stokes equation
in cylindrical coordinates and not surprisingly, this solution
finds that a harmonically oscillating flow rate arises due to
the pulsatile pressure. From a physical standpoint, the fluid
flow experiences both viscous resistance and inertia, the latter
due to the pulsatility. This is in contrast to the steady-state
Poiseuille solution, where only viscous resistance is present.

Womersley’s solution depends on the dimensionless
Womersley number α ≡

√
a2ω/ν, where ω is the

angular frequency of the pressure oscillations, i.e. p(t) =
Re[p̃ eiωt ] + p0 where the tilde indicates the (in general
complex) amplitude and p0 is a reference pressure. The
Womersley number may be interpreted as a non-dimensional
measure of the diffusion of momentum: The kinematic
viscosity ν is the diffusivity of momentum in the pressure-
driven flow [8], while a2ω is the diffusivity required for
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Figure 1. Axial velocity profiles vx(r) for a liquid with no-slip
boundary conditions driven by a pressure difference p eiωt in a
tube, calculated using MATLAB. All velocity profiles are computed at
the time t = T for four values of αc, where T is the oscillation
period, and αc is defined in equation (2). The four velocity profiles
are not shown to scale. The direction of the pressure difference is
indicated in the figure for αc = 1/5 and is the same for all figures.
The effects of inertia on the velocity profile are clearly observable
for αc > 1 by the deviation from the Poiseuille paraboloid. The
momentum diffusion length λd = √

ν/ω giving the width of the
quasi-steady annular region is indicated for αc = 5.

momentum to diffuse across the channel before the pressure
changes. However, a more intuitive measure may be
introduced by considering the inertial relaxation time of
equation (1), i.e. the time scale on which the fluid reaches
the steady state in response to an instantaneous change in
the driving pressure. A critical Womersley number αc for a
circular tube may then be defined as

αc ≡
√

a2

γ 2
1 ν

ω = √
τω = α

γ1
, (2)

which then measures the fluid relaxation time in response to
the rate of change of the pressure ω. It is immediately seen
that for αc < 1 the fluid at all times reaches a steady state
before changes happen to the pressure, and the fluid flow is
quasi-steady. For αc > 1 the fluid does not reach a steady state
before the pressure changes, and inertia becomes important.
Snapshots of the velocity profile computed using MATLAB are
given in figure 1. The steady-state Poiseuille paraboloid is
retrieved in the quasi-steady limit (αc = 1/5, panel (a)), while
for αc > 1 (panels (c) and (d)) increasingly more pronounced
deviations from this are seen as the flow becomes increasingly
more dominated by inertia.

For αc > 1 the flow still has inertia acting in the
opposite direction when the pressure gradient is reversed.
Consequently, it will take some time before the pressure
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gradient can change the direction of the inertia. This
introduces a phase shift between the fluid motion and the
pressure gradient. However, at the confinement walls, the
no-slip boundary condition enforces very low velocities with
correspondingly low inertia, so fluid close to the walls have a
smaller phase shift than fluid in the center of the confinement.
At αc � 5 a full π phase shift is observed between the flow
close to the walls and that at the center, forming a ‘fluidic
skin effect’ or annular region as documented experimentally
by Richardson [26]. The width of this region is given by the
momentum diffusion length λd which can be found from the
diffusivity of momentum and the characteristic time ω−1 as
λd = √

ν/ω. The parabolic velocity profile in this annular
region observable in figure 1(d) supports the notion that the
flow here remains quasi-static for αc > 1.

As previously shown by Morris and Forster [6], one may
derive an exact fluidic impedance Zhyd from Womersley’s
analytical solution accounting for both inertia and viscous
resistance. It relates pressure and flow rate amplitudes as
p̃ = Zhyd Q̃ with

Zhyd = ρω�

πa2
i

[
1 − 2 J1

(
α i

3
2
)

α i
3
2 J0

(
α i

3
2
)
]−1

, (3)

where Jn is the Bessel function of the first kind of order n, t is
the time and i = √−1.

The field of pulsatile microfluidics is largely unexplored
and has previously only been used in the study of reciprocating
pumps. Olsson et al [2] correctly assumed a plug-flow velocity
profile in the pump chamber without justifying the assumption.
In an experimental study, Sheen et al [27] assumed a parabolic
velocity profile even though their results extended into the
inertially dominated regime where this assumption becomes
invalid. One correct treatment of the fluid physics into this
regime in connection with micropumps is given by Morris and
Forster [6].

2.1. Resistance of pulsatile flow

The hydraulic resistance of a pressure-driven flow is a result
of the conversion of kinetic energy into heat through viscous
power dissipation P. For a fully developed flow in a tube of
circular cross section of radius a and axial length � it is given
by [8]

P = η 2π �

∫ a

0
r[∂rvx(r)]

2 dr, (4)

where vx is the axial velocity. In the quasi-steady limit the
resistance does not differ from that of Poiseuille flow, but
deviations appear in the limit of αc > 1 since the velocity
profile gradient changes. These changes are observable in
figure 1. The velocity amplitude ṽx scales as the acceleration
times the characteristic time, where the former is force per
mass Ap̃/ (ρA�) and the latter is ω−1, so ṽx ∝ p̃/ω. The
integrand ∂rvx ≈ ṽx/λd differs only significantly from zero
within a small annulus of radius a and width λd = √

ν/ω so
the viscous power dissipation can be estimated as

P ∝ 2π a λd
ṽ2

x

λ2
d

∝ p̃2ω− 3
2 . (5)
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Figure 2. Model calculation of the time-averaged resistance of the
pulsatile flow R

puls
hyd normalized by the resistance of the Poiseuille

flow RPois
hyd , plotted as a function of the critical Womersley number

αc. A sharp increase is observed when the flow enters the inertially
dominated regime of αc � 1, where R

puls
hyd ∝ α3

c .

For Poiseuille flow one finds RPois
hyd = 8η�/(πa4) = (p̃)2/P ,

so the hydraulic resistance of the pulsatile flow scales as
R

puls
hyd ∝ ω

3
2 ∝ α3

c for high αc.
This remarkable estimate may be verified from the

impedance of equation (3) by considering the time-averaged
resistance of the pulsatile flow over one oscillation cycle. The
time-averaged power consumption is 〈P 〉 = Re[Q̃∗ p̃]/2,
where Re and the asterisk indicates the real part and the
complex conjugate, respectively. Choosing the pressure
amplitude to be real and defining all phases relative to p̃

while noting that Q̃ = p̃/Zhyd we find

〈P 〉 = 1

2
Re

[
1

Zhyd

]
p̃2. (6)

To correctly compare to a Poiseuille flow, the same pressure
difference must be used. By direct analogy to voltage
in ac electric systems we find prms = p̃/

√
2 yielding

P = p̃2/(2Rhyd), so comparing to equation (6) we then
find the time-averaged resistance of the pulsatile flow to

R
puls
hyd = 1

Re
[

1
Zhyd

] , (7)

which exhibits the suggested dependence on α3
c , as shown in

figure 2 or as seen from equation (3). This result emphasizes
the need to use the correct impedance of equation (3) when
modeling the pulsatile flow.

3. Pressure source

A thorough survey of micropumps and flow generators, both
commercially available and documented in the scientific
literature [28, 29], shows that few which operate up to the
low-kilohertz range generate very small flow rates. To satisfy
the criterion of stroke volumes of V ∼ 0.1 mm3 we have
developed a novel pressure source to better probe the desired
frequency range.
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Figure 3. The constructed pressure source. (a) Sketch of the
working principle. (b) 3D CAD drawing. (c) The assembled
pressure source shown upside-down on a piece of paper with grid
lines intersecting every 5 mm.

3.1. Design and fabrication

The pressure source works by applying a harmonically
oscillating linear force onto a liquid-filled chamber, see
figure 3(a). A linear actuator is used to deliver the force onto
a silicone rubber membrane via a plunger, with the membrane
separating the liquid system from the surroundings.

A linear voice coil actuator (LA08-10-000A by BEI
Kimco Magnetics, San Marcos, CA, USA) was used as the
driving mechanism. By virtue of the Lorentz force, this
actuator delivers a linear force in response to an electric current
in the coil, and it can probe frequencies of up to f = 0.99 kHz
while still delivering stroke volumes of V ∼ 0.1 mm3. Power
was delivered to the actuator from an electric ac generator.

An aluminum holder is used to fixate the actuator and
consists of two parts which are held together by screws. A
two-part titanium plunger is fastened into the actuator coil.
The membrane is clamped between the two parts of the plunger
thereby forcing the thin silicone rubber membrane (0.20 mm
thickness) to follow the motion of the plunger during the
entire oscillation cycle. To ensure a complete sealing of the
liquid in the chamber, the membrane is also clamped between
the bottom part of the holder and the chamber wall, with a
small rubber O-ring placed in a groove around the edge of the
chamber. The chamber (4.50 mm radius and 6.50 mm depth)
has three threaded holes for connection to the fluid system.
The chamber wall is mounted onto the actuator holder by four
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Figure 4. (a) Example of experimentally measured performance of
the pressure source at f = 10 Hz. The generated pressure p (full
line) is clearly pulsatile in response to the applied harmonically
oscillating electric current I (dashed line). (b) Experimentally
determined (full line) and model predictions (dashed line, see
section 3.2) of the pressure amplitude p as a function of
oscillation frequency f for current amplitude of 1.0 A. The
experimental data indicate a resonance around f = 350 Hz, which
the model predicts to be f = 340 Hz. The discrepancy between the
model results and the experimental data for high frequencies can be
explained by the simplifying assumption that the actuator membrane
acts as a linear spring (see equation (8)). It is likely that the
membrane does in fact exhibit a viscoelastic behavior which would
account for the large value of the experimentally observed damping.

screws. An exploded 3D CAD drawing of the pressure source
is given in figure 3(b), while the assembled source is shown in
panel (c).

The performance of the pressure source is illustrated in
figure 4. Panel (a) shows that the pressure source does
in fact deliver a pulsatile pressure when operated with a
10 Hz harmonically oscillating electric current, while panel
(b) indicates the attainable pressure amplitude as a function of
frequency for a current amplitude of 1.0 A. The capability of
the source is thus demonstrated to deliver pressures in the kPa
range up to at least f = 0.8 kHz, the largest applied frequency
in the measurement.

3.2. Pressure source circuit model

In order to couple the pressure source to the EC equations
for the microfluidics of the system it acts on, a simple circuit
model has been developed to account for the coupled electric,
mechanical and microfluidic physics governing the pressure
source. Assuming that all fields vary harmonically in time as
g(t) = g̃ eiωt , the derivatives with respect to time simplify as
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kFĨ
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Ctent

(a)
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Figure 5. (a) Schematic illustration of the pressure source
indicating the coil voltage U and current I, the initial chamber
volume Vinit and membrane ‘tent’ volume Vtent, as well as the fluidic
responses: pressure p and the chamber flow rate Qc.
(b) Equivalent circuit diagram for the pressure source with a plunger
of mass M and area A, a membrane of stiffness k and compliance
Ctent, and the coil of current amplitude Ĩ and back-EMF constant kF .
The fluidic loading is determined by the system the source acts on.

∂t → iω. A schematic representation of the pressure source is
given in figure 5(a).

The motion of the coil is governed by Newton’s second
law, where the external forces are the electromagnetic force
on the actuator Fact = kFI (t), the assumed linear spring
force of the membrane Fm = −kx(t), and the force arising
when a pressure difference exists across the membrane Fp =
−Ap(t), where A is the effective area the plunger acts on.
The motion of the plunger of mass M is then given by

−Mω2x̃ = kF Ĩ − kx̃ − Ap̃, (8)

where x̃ is the plunger displacement amplitude, and the coil
velocity ṽcoil is found as

ṽcoil = iωx̃. (9)

The coil electric circuit obeys the equation

Ũ = RelĨ + iωLelĨ + kF ṽcoil, (10)

where kF is the back-EMF constant.
During operation, the volume of the chamber Vc depends

on the position of the plunger and the expansion of the
membrane due to the generated over-pressure in the chamber.
The plunger radius is 3.53 mm while the chamber radius is
4.50 mm, so a small free-membrane area exists between the
plunger and the chamber and holder walls. This part of the
membrane will expand when a pressure difference is present
across it due to its elastic nature, and the expanded volume will
be filled with incoming fluid. Denoting the volume of fluid
stored in the expanded membrane Vtent—so named due to the
resemblance of the expanded membrane to a tent—and noting
that the volume displaced by the actuator is Vdisp(t) = Ax(t),
the chamber volume is given by

Vc = Vtent − Ax(t) + Vinit. (11)

Vinit is the volume of the chamber when the system is at rest,
and the negative sign arises since a positive displacement of
the plunger pushes liquid out of the chamber. The volume Vtent

is related to the generated over-pressure through a compliance
as

Vtent = Ctent p(t). (12)

A positive flow rate Qc exits the chamber when its volume is
diminished, so this flow rate is found as the negative time rate
of change of equation (11):

Q̃c = Aṽcoil − iωCtentp̃. (13)

Equations (8)–(10) and (13) couple the six unknown
amplitudes x̃, ṽcoil, Ũ , Ĩ , p̃ and Q̃c, so two additional
equations are required to close the system. These are derived
from the ‘fluidic loading’ on the source, i.e. expressions for
the flow rate and total pressure difference of the system driven
by the source. However, the following equation relating the
generated flow rate and over-pressure may be deduced from
equations (8), (9) and (13):

Q̃c = kF Ĩ

A
(

k
A2

1
iω + M

A2 iω
)

−p̃

[(
k

A2

1

iω
+

M

A2
iω

)
iωCtent + 1

]
. (14)

An expression for the pressure amplitude as a function of the
electric current amplitude and plunger velocity can also be
derived from equations (8) and (13):

p̃ = kF Ĩ

A
−

(
k

A2

1

iω
+

M

A2
iω

)
ṽcoilA. (15)

Equations (14) and (15) reveal that the pressure source does
deliver a pressure, which can maximally be pmax = kF Ĩ /A.
However, not all of the actuator force is deposited as pressure
in the fluid, as some is used to accelerate the plunger and
membrane. These time-dependent losses are observed to
enter the fluid equations as a hydraulic inertance M/A2 and
compliance A2/k, which are both given in terms of the known
quantities M, k and A. This compliance is a consequence of
the spring behavior of the membrane, which arises because
some of the coil force is required to elongate the membrane.
Hence, the flow rate leaving the chamber is less than what
would have been the case if no force were required to deflect
the membrane. This, in the view of the microfluidics, is the
same as a storage of volume inside the chamber, and it is
therefore not surprising to find the membrane elasticity enter
into the equations as another compliance in addition to Ctent.

The circuit diagram for the EC model of the pressure
source is given in figure 5(b), and table 2 lists the values of
the physical parameters. The membrane spring constant k was
determined experimentally by fitting the model results to the
experimental data in figure 4(b), and fair agreement is found.
However, the width of the resonance peak in the experimental
data around 350 Hz and the weak amplitude decrease above
50 Hz are not well reproduced by the model. These deviations
can be explained by the simplifying assumption that the
actuator membrane acts as a Hookean spring, but it is likely
that it does in fact display a viscoelastic behavior, which would
account for the large value of the observed damping.
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Pressure source Syringe

Pressure sensor

Ruler

High-speed camera
Air bubble

Figure 6. Schematic illustration of the experimental setup used for
the proof of concept experiment.

Table 2. Physical parameters for the pressure source circuit model.

Symbol Value

A 7.61 × 10−5 m2

Ctent 2.0 × 10−13 m3 Pa−1

k 1.1 × 104 N m−1

kF 2.7 V s m−1

Lel 2.1 × 10−4 H
M 8.64 × 10−3 kg
Rel 2.4 �

4. Experimental considerations

The proposed method is generic and thus applies to all systems
exhibiting temporal dependence. For illustration, we study
in the following the fairly complex physical system of a
full water-filled system of interconnected elastic microfluidic
tubes with a trapped air bubble driven by a pulsatile pressure
difference. A schematic drawing of the system is given in
figure 6. We will compare the experimental results to the
predictions of a system-level EC model, with one unknown
parameter, see section 7. We emphasize that even though the
proof of concept study presented here involves an ac system,
no such limitations apply to the method of using the pulsatile
pressure source to deduce the time scales of a system.

The motion of gas bubbles in liquids has been studied
extensively in the literature, see e.g. [30–35], but very
few accounts using the EC approach have been found, e.g.
Fuerstman et al [36].

4.1. Setup and method

A schematic illustration of the setup is shown in figure 6. A
differential pressure sensor (Honeywell 40PC by Honeywell
International Ltd, Morristown, NJ, USA) was connected to
one of the three chamber outlets through a teflon tube (�sen =
4.1 cm, asen = 0.125 mm, hsen = 0.669 mm) and a milli-Q
water-filled 10 mL syringe (filled to 8.1 mL) to another of
the outlets via a teflon tube of dimensions �syr = 17.5 cm,
asyr = 0.125 mm and hsyr = 0.669 mm. A long transparent
tube (� = 42.9 cm, a = 0.254 mm, h = 0.540 mm) was
connected to the last chamber outlet, allowing the tube to
exit into an open reservoir. The bubble (relaxed axial length
�bub = 1.35 cm) was placed in this tube, roughly halfway
between the chamber and the tube outlet. A metric ruler was
placed next to the tube and just above the bubble for scale.

The bubble motion was detected using a Photron Fastcam
APX RS high-speed camera (Photron USA Inc., San Diego,

Bubble
Tube

Ruler

Pressure source

Leading bubble interfaceTrailing bubble interface

Figure 7. Example of a raw bubble image from the camera showing
part of the tube exiting the pressure source chamber. The right end
of the tube is connected to the pressure source while the left end
exits into atmospheric conditions. The bubble is found roughly in
the middle of the tube. A mm-scale ruler (numbers indicate
centimeter) is positioned below the tube for scale.

CA, USA) fitted with a 1:2.8D lens (AF Micro Nikkor
by Nikon Corp., Imaging Company, Tokyo, Japan), with
dedicated Photron software used for storage. Individual gray
scale images were framed at 1 kHz sampling rate and stored in
tiff format, for a time interval comprising several oscillation
periods. An example of an image is given in figure 7, where
the pressure source found to the right of the photo. The
bubble interface closest to the pressure source—the right-most
interface in the photo—is termed the ‘leading interface’ while
the interface the furthest away from the source is referred to
as the ‘trailing bubble interface’.

The bubble position was adjusted using the syringe. Once
in place and with a specified pressure frequency, the ac
generator and camera were activated simultaneously. Images
were taken for 6 s, after which the supply voltage to the
pressure source was turned off. The experiment was conducted
at the frequencies of 1 Hz, 30 Hz, 50 Hz and 100 Hz, and for
each experiment, the pressure and the electric current driving
the actuator were recorded.

4.2. Image processing

An image-processing routine has been developed in MATLAB

to deduce the motion of the air–water interfaces of the
bubble. Upon loading the raw tiff image and converting
it to black/white (represented as 0 and 1, respectively), the
routine searches for the first white pixel in a specified region
by searching for the first pixel with value above 0.5. This
first pixel of the bubble is approximately the position of the
boundary. The position of this pixel is stored and the routine
continues to the next image in the set. This analysis is done
for both left and right bubble interface, and the positions of
both interfaces are plotted versus time. A scale is found as the
horizontal distance between 2 mm marks on the ruler in the
first image of the set.

5. Experimental results

A bubble-relative reference frame, denoted by a subscript ‘rel’,
is placed with the x-axis along the axis of the tube and with
the origin at the bubble equilibrium position. The motion of
the two bubble interfaces about this equilibrium position as

7
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Figure 8. The measured motion of the leading (dashed line) and
trailing (full line) air bubble boundaries about an equilibrium
position as picked out by the image-processing routine at four
different frequencies. The time axis has been normalized by the
oscillation period T. Resistance dominates the pulsatile flow of
liquid for αc < 1 while inertia dominates for αc > 1. The resonance
indicated by the data is likely caused by the interplay of the
compliance of the bubble and the inertia of the liquid.

picked out by the image-processing routine is given in figure
8 for all four frequencies. The critical Womersley number for
the milli-Q water is given for all frequencies and it is observed
that inertia dominates the water for all but the case of 1 Hz
since αc > 1 for the former and αc < 1 for the latter.

The motion of both interfaces is approximately sinusoidal
in the entire frequency range, and clearly so at the intermediate
frequencies of f = 30 Hz and f = 50 Hz. The
deviations at f = 1 Hz may be attributed to the fact that
the plunger displacement at this frequency vastly exceeds the
displacements at the following frequencies, so the assumed
linear spring behavior of the membrane is no longer valid. At
f = 100 Hz noticeable pixelation makes it somewhat difficult
to see the sinusoidal motion of the interfaces.

The two interfaces move completely in phase at f = 1 Hz
(hence the dashed line cannot be seen), but shifts in both phase
and amplitude are found for all subsequent frequencies. At
30 Hz the trailing bubble interface has a larger amplitude than
the leading interface, which is reversed at 50 Hz. At f =
100 Hz there is no motion of the trailing bubble interface. This
sudden increase followed by a rapid decrease in amplitude
coupled with a simultaneous change in phase lag from 0
through π/2 to π indicates a resonance near 30 Hz.

The pressure source stroke volumes can also be verified
deduced from this simple experiment. The displacement of
the air bubble �disp in either direction about its equilibrium
position is due to the displacement of liquid. Thus, the stroke

Table 3. Elastic wave speeds for common tube materials used in
experimental microfluidics, and stainless steel for comparison.

Young’s modulus Wave speed
Material (GPa) (m s−1)

Silicone rubber 0.002 1.75 × 102

Teflon 0.50 9.41 × 102

PEEK 3.60 2.38 × 103

Stainless steel 210 6.04 × 103

volume is V = �dispπa2
bub. With abub = 0.254 mm, the stroke

volume varies from about 2 mm3 at f = 1 Hz to ∼ 0.03 mm3 at
f = 100 Hz. The stroke volume is above or close to the desired
0.1 mm3 during the entire probed interval, and higher volumes
can easily be achieved by increasing the electric power to the
actuator.

5.1. EC interpretation of the observations

To interpret the observed resonance frequency at f = 30 Hz,
the physical system of the bubble in the long, water-filled
tube is analyzed as an electric RCL-circuit. Since inertia
in the liquid dominates at 30 Hz (αc = 1.45) the observed
resonance is believed to be of the LC-type with the dominating
compliance stemming from the bubble. Using the regular
expressions for inertance Lhyd = ρ�/(πa2) and isothermal
compliance of an air bubble Chyd = V0/p0 [8] where the
subscript ‘0’ indicates a reference state and V0 = �bubπa2

bub,
we find

f = 1

2π
√

LhydCbub
= 30.86 Hz. (16)

This is in good agreement with the experimental observation of
f ≈ 30 Hz, so the resonance is likely caused by the interplay
of liquid inertia and bubble compliance. Also, this simple
analysis indicates the strength of EC modeling in predicting
system dynamics.

6. Compliance of elastic tubing

The system under consideration consists of interconnected
elastic tubes of the circular cross section with sub-millimeter
inner radius. To account for all temporal effects of the system
in a system-level EC model, an expression for this elastic
tube wall compliance is needed. This may be derived from
the definition of compliance Chyd = dV/dp [8], and the
elastodynamic equation, see e.g. [37]. Under the assumption
of radial displacements only, the elastic wave speeds of the wall
displacements for common tube materials from experimental
microfluidics are listed in table 3 based on data from
[38, 39]. A typical tube has the wall thickness h ∼ 0.5 mm, so
changes in the pressure inside the tube will traverse the wall
in t ∼ 3 μs for a silicone rubber tube, and faster for all other
materials listed due to their higher wave speeds, so the wall
can be considered quasi-static even for pressure oscillations in
the kilohertz regime.

8
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Figure 9. System-level EC model for the experiment. (a) The schematic representation of the setup shown for convenience. (b) The EC
model of the full system.

The steady state tube wall displacement is [37]

ur(r) = (1 + σ)

[
(1 − σ) +

(a + h)2

r2

]
a2

(a + h)2 − a2

p

E
r,

(17)

where E is Young’s modulus and σ is Poisson’s ratio. The
volume increase associated with the displaced wall is V =
2 π a � ur(a). The compliance is then found as

Chyd = β
2πa3�

Eh
, (18)

with the non-dimensional constant β given by

β = a

h + 2a
(1 + σ)

[
2 (1 − σ) + 2

h

a
+

h2

a2

]
. (19)

The compliance of equation (18) applies to all anisotropic
materials of all wall thicknesses. In the limit h � a we
find β ≈ 1 − σ 2 with σ 2 ≈ 0 since 0 � σ � 0.5, so
the wall compliance becomes Chyd = 2πa3�/ (Eh). This
is a well-known result used in several cases to model the
arterial wall [40–44]. In the other limit of h � a, usually
found in experimental microfluidics, the compliance becomes
Chyd = 2πa2� (1 + σ) /E, which is independent of the wall
thickness h.

A typical teflon tube segment has the dimensions � ∼
102 mm, h ∼ 0.5 mm and a ∼ 0.2 mm, and since the
Poisson ratio is σ = 0.45 the compliance of the tube is
Chyd ∼ 3×10−17 m3 Pa−1. The air bubble for this experiment
has the rest volume V0 = �bubπa2

bub which is Vbub ∼ 3 mm3

since abub = 0.254 mm, and the experiment was done at
standard atmospheric conditions, so p0 ∼ 105 Pa. The
compliance of this air bubble is then Chyd ∼ 3×10−14 m3 Pa−1,
which is three orders of magnitude greater than the compliance
of the elastic wall. This latter may therefore be neglected when
modeling the experiment.

7. System-level EC model

The full system-level model is summarized in figure 9, where
the elastic walls have been neglected as just described. The
numerical values of the circuit elements are easily obtained
from equation (3) and Chyd = p0/V0, but the compliance of

Table 4. Values for the EC elements of the model of the full system
at f = 1 Hz.

Element Value

Cbub 2.70 × 10−14 m3 Pa−1

Csyr 3.61 × 10−13 m3 Pa−1

Zdown 1.23 × 1012 + i 8.26 × 109 Pa s m−3

Zsen 6.80 × 1011 + i 1.11 × 1011 Pa s m−3

Zsyr 1.83 × 1012 + i 2.98 × 1010 Pa s m−3

Zup 1.36 × 1012 + i 8.86 × 109 Pa s m−3

the pressure sensor is difficult to determine from theoretical
considerations. This compliance arises since the senor detects
pressure through the deflection of a silicon membrane. Hence,
we choose to determine this compliance from the experiment
by measuring both pressure in the sensor and actuator electric
current, and fitting Csen. In turn, this approach proves the
applicability of the method to any undetermined compliance
in a microfluidic system.

The syringe is connected to the pressure source chamber
using the same teflon tubing as for the pressure sensor. In
theory, the connecting tubing and the syringe should each
be modeled using individual impedances and compliances;
however, the syringe itself has a much larger radius than the
tubing, so the syringe impedance may be neglected to a good
approximation since Zhyd ∝ a−2, but its compliance cannot
since Chyd of equation (18) depends on a3.

The imaged bubble is modeled as previously mentioned
with Cbub = V0/p0 using V0 = �bubπa2

bub for simplicity,
although the axial length of the bubble is observed to change
during experimentation for 30 Hz and 50 Hz. Given the level of
approximation otherwise employed the deviations introduced
by this simplification are negligible. The values of the circuit
elements for f = 1 Hz are listed in table 4; the impedances of
course change as they are frequency dependent.

The motion of the bubble interfaces are derived from
the flow rates up and downstream of the bubble by noting
that the volume and flow rate are related as V = ∫

Q(t) dt

with V = xrelπa2 using xrel of section 5. The bubble-
interface displacement amplitudes xLI

rel (leading interface) and
xTI

rel (trailing interface) are given in terms of the applied electric

9
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Figure 10. Sensor pressure difference used for determining the
correct value of the sensor compliance by comparison of
experimental and system-level EC model results. The figure shows
the best fit which is found for the value
Csen = 2.50 × 10−14 m3 Pa−1.

current amplitude Ĩ by

x̃LI
rel =

k
iωA2 + iω M

A2

Ztot

1

iωπa2
bub

1

Zup

kFĨ

A
, (20)

x̃TI
rel =

k
iωA2 + iω M

A2

Ztot

1

iωπa2
bub

× 1

Zdown + Zup + iωCbubZdownZup

kFĨ

A
, (21)

where the total system impedance Ztot is

Ztot = k

iωA2
+ iω

M

A2
+

{
iωCtent

+ [Zsyr + (iωCsyr)
−1]−1 + [Zsen + (iωCsen)

−1]−1

+
[
Zup +

(
iωCbub + Z−1

down

)−1 ]−1}−1
. (22)

8. Comparison of system-level EC model and
experiment

In order to compare the model and experimental results,
the undetermined value of the pressure sensor compliance
is first determined as follows: the pressure in the sensor is
computed from the system-level model using the measured
electric coil current as input, and then compared to the
measured pressure in the same location. Csen is tuned until
the best agreement between experimental and model data is
found at all probed frequencies, which turns out to be for
Csen = 2.50 × 10−14 m3 Pa−1, see figure 10.

The results of the system-level EC model, given in
figure 11, shows that the model correctly predicts the observed
dynamics for all probed frequencies, while also giving the
correct amplitudes and phase shift between the leading and
trailing interfaces. The complex microfluidic system can thus
be adequately modeled by EC theory.

The model captures the amplitudes of the oscillations of
the leading interface better than the trailing interface, with
some of the discrepancy at 1 Hz and 30 Hz attributed to the
assumption of constant bubble length in the model although
the experimental data suggests otherwise. The resolution
of the images is 40.0 μm per pixel, so the discrepancy of

8.0
4.0
0.0
-4.0
-8.0x

re
l
[m

m
] (a) f = 1 Hz, αc = 0.26

0.8
0.4
0.0
-0.4
-0.8x

re
l
[m

m
] (b) f = 30 Hz, αc = 1.45

0.4

0.0

-0.4x
re

l
[m

m
] (c) f = 50 Hz, αc = 1.87

0.0 1.0 2.0

0.1

0.0

-0.1

t/T

x
re

l
[m

m
] (d) f = 100 Hz, αc = 2.64

Figure 11. Comparison of experimental and model results for the
motion of the leading (dashed) and trailing (solid) air bubble
interfaces at four frequencies. The time axis is normalized by the
oscillation period T. The experimental results (thick lines) and
model results (thin and starred lines) show very good agreement for
all four frequencies.

the trailing interface at 100 Hz is below this threshold and
the motion predicted by the model cannot be ruled out.
Furthermore, the existence of a resonance around 30 Hz
observed experimentally and further suggested from the
simplest circuit analysis is also captured by the system-level
model.

9. Concluding remarks

In conclusion, we have proposed the use of pulsatile
microfluidics as an analytical tool leading to understanding and
determination of the transient time scales of any microfluidic
system. A novel pressure source has been fabricated and
tested. It resolves the appropriate frequency range for most
such systems, while still delivering stroke volumes of V ∼
0.1 mm3.

As a proof of concept, pulsatile kilohertz microfluidics
has been applied to a full system of interconnected and
milli-Q water-filled elastic tubes of sub-millimeter radius
containing a trapped air bubble, and good agreement between
an equivalent circuit theory model and the experimental results
have been found. Moreover, the predictive capabilities of the
equivalent circuit model have been demonstrated by deducing
an unknown compliance from the comparison of model results
and experimental data.
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Although the method suggested in this paper is directly
analogous to the approaches of experimental electric circuit
analysis, its realization is substantially more cumbersome.
This is due to the scaling of fluid inertia and the (unexpected)
scaling of fluid resistance with driving frequency, which
combine to make pulsatile microfluidics into the low-kilohertz
range with stroke volumes of V ∼ 0.1 mm3 very difficult to
produce. However, the prospect of microfluidic systems with
application-tuned dynamic time scales and the just mentioned
difficulties of experimentally conducting system-level circuit
analysis only emphasize the need for analytical tools like the
one presented here.
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