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For a microchamber filled with a binary electrolyte and containing a flat unbiased center electrode at one
wall, we employ three numerical models to study the strength of the resulting induced-charge electro-osmotic
�ICEO� flow rolls: �i� a full nonlinear continuum model resolving the double layer, �ii� a linear slip-velocity
model not resolving the double layer and without tangential charge transport inside this layer, and �iii� a
nonlinear slip-velocity model extending the linear model by including the tangential charge transport inside the
double layer. We show that, compared to the full model, the slip-velocity models significantly overestimate the
ICEO flow. This provides a partial explanation of the quantitative discrepancy between observed and calculated
ICEO velocities reported in the literature. The discrepancy increases significantly for increasing Debye length
relative to the electrode size, i.e., for nanofluidic systems. However, even for electrode dimensions in the
micrometer range, the discrepancies in velocity due to the finite Debye length can be more than 10% for an
electrode of zero height and more than 100% for electrode heights comparable to the Debye length.
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I. INTRODUCTION

Within the last decade the interest in electrokinetic phe-
nomena in general and induced-charge electro-osmosis
�ICEO� in particular has increased significantly as the field of
lab-on-a-chip technology has developed. Previously, the re-
search in ICEO has primarily been conducted in the context
of colloids, where experimental and theoretical studies have
been carried out on the electric double layer and induced
dipole moments around spheres in electric fields, as reviewed
by Dukhin �1� and Murtsovkin �2�. In microfluidic systems,
electrokinetically driven fluid motion has been used for fluid
manipulation, e.g., mixing and pumping. From a microfabri-
cation perspective planar electrodes are easy to fabricate and
relatively easy to integrate in existing systems. For this rea-
son much research has been focused on the motion of fluids
above planar electrodes. ac electrokinetic micropumps based
on ac electro-osmosis have been thoroughly investigated as a
possible pumping and mixing device. Experimental observa-
tions and theoretical models were initially reported around
year 2000 �3–6�, and further investigations and theoretical
extensions of the models have been published by numerous
groups since �7–12�. Recently, ICEO flows around inert po-
larizable objects have been observed and investigated theo-
retically �13–18�. For a thorough historical review of re-
search leading up to these results, we refer the reader to
Squires et al. �13� and references therein.

In spite of the growing interest in the literature, not all
aspects of the flow-generating mechanisms have been ex-
plained so far. While qualitative agreement is seen between
theory and experiment, quantitative agreement is often lack-
ing as reported by Gregersen et al. �11�, Harnett et al. �16�,
and Soni et al. �19�. Specifically, the latter experiments show
two-order-of-magnitude lower velocity scales when com-
pared to velocities predicted by linear slip-velocity �LS�
simulations �see Sec. IV A�. A nonlinear slip-velocity �NLS�
model �see Sec. IV B� captures more �but not all� of the

relevant physics and agrees to within approximately one or-
der of magnitude with the experimental data. In the present
work we seek to illuminate some of the possible reasons
underlying these observed discrepancies.

ICEO flow is generated when an external electric field
polarizes an object in an electrolytic solution. Counter ions
in the electrolyte screen out the induced dipole, having a
potential difference � relative to the bulk electrolyte, by
forming an electric double layer of width �D at the surface of
the object. The ions in the diffuse part of the double layer
then electromigrate in the external electric field and drag the
entire liquid by viscous forces. At the outer surface of the
double layer a resulting effective slip velocity vslip is thus
established. Many numerical models of ICEO problems ex-
ploit this characteristic by applying the so-called Helmholtz-
Smoluchowski slip condition on the velocity field at the elec-
trode surface �20–24�. Generally, the slip-condition based
model remains valid as long as

�D

ac
exp� Ze�

2kBT
� � 1, �1�

where kBT / �Ze� is the thermal voltage and ac denotes the
radius of curvature of the surface �13�. The slip-velocity con-
dition may be applied when the double layer is infinitely thin
compared to the geometrical length scale of the object; how-
ever, for planar electrodes, condition �1� is not well defined.
In the present work we investigate to what extent the slip
condition remains valid.

Squires et al. �13� have presented an analytical solution to
the ICEO flow problem around a metallic cylinder with ra-
dius ac using a linear slip-velocity model in the two-
dimensional �2D� plane perpendicular to the cylinder axis.
In this model with its infinitely thin double layer, the sur-
rounding electrolyte is charge neutral, and hence the strength
of the ICEO flow can be defined solely in terms of the
hydrodynamic stress tensor �, as the mechanical power
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Pmech=��r�=ac
n̂ ·� ·vslipda exerted on the electrolyte by the

tangential slip velocity vslip=ueot̂, where n̂ and t̂ is the nor-
mal and tangential vectors to the cylinder surface, respec-
tively. In steady flow, this power is equal to the total kinetic-
energy dissipation Pkin= 1

2�	ac��r���iv j +� jvi�2dr of the
resulting quadrupolar velocity field in the electrolyte.

When comparing the results for the strength of the ICEO
flow around the cylinder obtained by the analytical model
with those obtained by a numerical solution of the full equa-
tion system, where the double layer is fully resolved, we
have noted significant discrepancies. These discrepancies,
which are described in the following, have become the pri-
mary motivation for the study presented in this paper.

First, in the full double-layer resolving simulation we de-
termined the value Pmech

� �R0�=��r�=R0
n̂ ·� ·vda of the me-

chanical input power, where R0 is the radius of a cylinder
surface placed coaxially with the metallic cylinder. Then, as
expected due to the electrical forces acting on the net charge
in the double layer, we found that Pmech

� �R0� varied substan-
tially as long as the integration cylinder surface was inside
the double layer. For R0
ac+6�D the mechanical input
power stabilized at a certain value. However, this value is
significantly lower than the analytical value while the dis-
crepancy decreased for decreasing values of �D. Remarkably,
even for a quite thin Debye layer, �D=0.01ac, the value of
the full numerical simulation was about 40% lower than the
analytical value. Clearly, the analytical model overestimates
the ICEO effect, and the double-layer width must be ex-
tremely thin before the simple analytical model agrees well
with the full model.

A partial explanation of the quantitative failure of the ana-
lytical slip-velocity model is the radial dependence of the
tangential field E� combined with the spatial extent of the
charge density �el of the double layer. In the Debye-Hückel
approximation E� and �el around the metallic cylinder of ra-
dius ac become

E��r,�� = E0�1 +
ac

2

r2 − 2
ac

r

K1� r

�D
�

K1� ac

�D
�sin � , �2a�

�el�r,�� = 2
	E0ac

�D
2

K1� r

�D
�

K1� ac

�D
� cos � , �2b�

where K1 is the decaying modified Bessel function of order
1. The slowly varying part of E� is given by E0�1
+ �ac /r�2�sin �. For very thin double layers it is well approxi-
mated by the r-independent expression 2E0 sin �, while for
wider double layers, the screening charges sample the de-
crease in E� as a function of the distance from the cylinder.
Also tangential hydrodynamic and osmotic-pressure gradi-
ents developing in the double layer may contribute to the
lower ICEO strength when taking the finite width of the
double layer into account.

In this work we analyze quantitatively the impact of a
finite Debye length on the kinetic energy of the flow rolls
generated by ICEO for three different models: �i� the full
nonlinear �FN� electrokinetic model with a fully resolved
double layer, �ii� the LS model, where electrostatics and hy-
drodynamics are completely decoupled, and �iii� a NLS
model including the double layer charging through Ohmic
currents from the bulk electrolyte and the surface conduction
in the Debye layer. The latter two models are only strictly
valid for infinitely thin double layers, and we emphasize that
the aim of our analysis is to determine the errors introduced
by these models neglecting the finite width of the double
layers compared to the full nonlinear model resolving the
double layer. We do not seek to provide a more accurate
description of the physics in terms of extending the modeling
by adding, say, the Stern layer �not present in the model� or
the steric effects of finite-sized ions �not taken into account�.

II. MODEL SYSTEM

To keep our analysis simple, we consider a single unbi-
ased metallic electrode in a uniform external electric field.
The electrode of width 2a and height h is placed at the bot-
tom center, −a�x�a and z=0, of a square 2L
2L domain
in the xz plane filled with an electrolyte, see Fig. 1. The
system is unbounded and translational invariant in the per-
pendicular y direction. The uniform electric field, parallel to
the surface of the center electrode, is provided by biasing the
driving electrodes placed at the edges x= �L with the dc
voltages �V0, respectively. This antisymmetry in the bias
voltage ensures that the constant potential of the center elec-
trode is zero. A double layer, or a Debye screening layer, is
induced above the center electrode, and an ICEO flow is

2L

L

a

h

x

z

Electrode

+V0 −V0

FIG. 1. A sketch of the square 2L
2L electrolytic microcham-
ber in the xz plane. The external voltage �V0 is applied to the two
electrodes �thick black lines� at x= �L, respectively. It induces two
counter-rotating flow rolls �curved black arrows� by electro-osmosis
over the unbiased metallic center electrode of length 2a and height
h placed at the bottom wall around �x ,z�= �0,0�. The spatial extent
of the flow rolls is represented by the streamline plot �thin black
curves� drawn as equidistant contours of the flow rate. The inset is
a zoom in on the right half, 0�x�a, of the unbiased center elec-
trode and the nearby streamlines.
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generated consisting of two counter-rotating flow rolls. Elec-
tric insulating walls at z=0 �for �x��a� and at z=2L confine
the domain in the z direction. The symmetry of the system
around x=0 is exploited in the numerical calculations.

III. FN MODEL

We follow the usual continuum approach to the electroki-
netic modeling of the electrolytic microchamber and treat
only steady-state problems. For simplicity we consider a
symmetric binary electrolyte, where the positive and nega-
tive ions with concentrations c+ and c−, respectively, have the
same diffusivity D and charge number Z. Using the ideal-gas
model for the ions, an ion is affected by the sum of an elec-
trical and an osmotic force given by F�= Ze��
− �kBT /c���c�. Here e is the elementary charge, T is the
absolute temperature, and kB is Boltzmann’s constant. As-
suming a complete force balance between each ion and the
surrounding electrolyte, the resulting body force density
fion=�i=�ciFi, appearing in the Navier-Stokes equation for
the electrolyte due to the forces acting on the ions, is

fion = − Ze�c+ − c−� � � − kBT � �c+ + c−� . �3�

As the second term is a gradient, namely, the gradient of the
osmotic pressure of the ions, it can in the Navier-Stokes
equation be absorbed into the pressure gradient �p=�pdyn
+�pos, which is the gradient of the sum of hydrodynamic
pressure and the osmotic pressure. Only the electric force is
then kept as an explicit body force.

A. Bulk equations

Neglecting bulk reactions in the electrolyte, the ionic
transport is governed by the particle conservation

� · J� = 0, �4�

where J� is the flux density of the two ionic species. Assum-
ing the electrolytic solution to be dilute, the ion flux densities
are governed by the Nernst-Planck equation

J� = − D��c� +
�Ze

kBT
c� � �� + c�v , �5�

where the first term expresses ionic diffusion and the second
term expresses ionic electromigration due to the electrostatic
potential �. The last term expresses the convective transport
of ions by the fluid velocity field v.

The electrostatic potential is determined by the charge
density �el=Ze�c+−c−� through Poisson’s equation

� · �	 � �� = − �el, �6�

where � is the fluid permittivity, which is assumed constant.
The fluid velocity field v and pressure field p are governed
by the continuity equation and the Navier-Stokes equation
for incompressible fluids,

� · v = 0, �7a�

�m�v · ��v = − �p + ��2v − �el � � , �7b�

where �m and � are the fluid mass density and viscosity,
respectively, both assumed constant.

B. Dimensionless form

To simplify the numerical implementation, the governing
equations are rewritten in dimensionless form, as summa-
rized in Fig. 2, using the characteristic parameters of the
system: the geometric half length a of the electrode, the ionic
concentration c0 of the bulk electrolyte, and the thermal volt-
age �0=kBT / �Ze�. The characteristic zeta potential � of the
center electrode, i.e., its induced voltage, is given as the volt-
age drop along half of the electrode, �= �a /L�V0, and we
introduce the dimensionless zeta potential � as ����0, or
�= �aV0� / �L�0�. The characteristic velocity u0 is chosen as
the Helmholtz-Smoluchowski slip velocity induced by the
local electric field E=� /a, and finally the pressure scale is set
by the characteristic microfluidic pressure scale p0=�u0 /a.
In summary,

∂zc = 0, vx = vz = 0
∂zρ = 0, ∂zφ = 0

∂zc = 0, vx = vz = 0
∂zρ = 0, φ = 0

c = 1, vx = vz = 0
ρ = 0, φ = −α

L
a

∂zc = 0, vx = vz = 0
∂zρ = 0, ∂zφ = 0

vx = 0, ∂xvz = 0
φ = 0, ∂xc = 0
ρ = 0

p = 0
∂jvj = 0

Re vj∂jvi = ∂jσij − 1
ε2α2 ρ ∂iφ

∂
2
j φ = − 1

ε2 ρ

∂j(∂jc + ρ∂jφ) = P é vj∂jc

∂j(∂jρ + c∂jφ) = P é vj∂jρ

x

z

0−L L
0

2L

FIG. 2. The governing equations �without box� and boundary conditions �with boxes, arrows point to specific boundaries� in dimension-
less form �the tilde is omitted for clarity� for the entire quadratic 2L
2L domain �not shown in correct aspect ratio� bisected into two
symmetric halves. Only the right half �x�0� of the domain is included in the simulations. The boundaries are the surface of the unbiased
center electrode �black rectangle�, the solid insulating walls �dark gray lines�, the external electrode �black line�, and the symmetry line
�dashed black line�.
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�0 =
kBT

Ze
, u0 =

��

�

�

a
=

��0
2

�a
�2, p0 =

�u0

a
. �8�

The new dimensionless variables �denoted by a tilde� thus
become

r̃ =
r

a
, c̃i =

ci

c0
, �̃ =

�

�0
, ṽ =

v
u0

, p̃ =
p

p0
. �9�

To exploit the symmetry of the system and the binary elec-
trolyte, the governing equations are reformulated in terms of
the average ion concentration c��c++c−� /2 and half the
charge density ���c+−c−� /2. Correspondingly, the average
ion flux density Jc= �J++J−� /2 and half the current density
J�= �J+−J−� /2 are introduced. Thus, the resulting full system
of coupled nonlinear equations takes the following form for
the ionic fields

�̃ · J̃c = �̃ · J̃� = 0, �10a�

J̃c = − �̃�̃�̃ − �̃c̃ + Pe c̃ṽ , �10b�

J̃� = − c̃�̃�̃ − �̃�̃ + Pe �̃ṽ , �10c�

Pe =
u0a

D
, �10d�

while the electric potential obeys

�̃2�̃ = −
1

	2 �̃ , �11�

and finally the fluid fields satisfy

�̃ · ṽ = 0, �12a�

Re�ṽ · �̃�ṽ = − �̃p̃ + �̃2ṽ −
�̃

	2�2�̃�̃ , �12b�

Re =
�u0a

�
. �12c�

Here the small dimensionless parameter 	=�D /a has been
introduced, where �D is the Debye length,

	 =
�D

a
=

1

a
� �kBT

2�Ze�2c0
. �13�

We note that the dimensionless form of the osmotic force,

the second term in Eq. �3�, is f̃ion
os =−�1 /	2�2�� c̃.

C. Boundary conditions

We exploit the symmetry around x=0 and consider only
the right half �0�x�L� of the domain, see Fig. 2. As bound-
ary conditions on the driving electrode, we take both ion
concentrations to be constant and equal to the bulk charge
neutral concentration. Correspondingly, the charge density is
set to zero. Consequently, we ignore all dynamics taking

place on the driving electrode and simply treat it as an equi-
potential surface with the value V0. We set a no-slip condi-
tion for the fluid velocity, and thus at x=L we have

c̃ = 1, �̃ = 0, �̃ =
V0

�0
= �

L

a
, ṽ = 0 . �14�

On the symmetry axis �x=0� the potential and the charge
density must be zero due to the antisymmetry of the applied
potential. Moreover, there is neither a fluid flux nor a net ion
flux in the normal direction and the shear stresses vanish. So
at x=0 we have

�̃ = 0, n̂ · J̃c = 0, �̃ = 0, �15a�

t̂ · �̃ · n̂ = 0, n̂ · ṽ = 0, �15b�

where the stress tensor is ���ik=−p�ik+���iuk+�kui�, and n̂
and t̂ are the normal and tangential unit vectors, respectively,
which in two dimensions, contrary to three dimensions, are
uniquely defined. The constant potential on the unbiased me-
tallic electrode is zero due to symmetry, and on the electrode
surface we apply a no-slip condition on the fluid velocity and
no-current condition in the normal direction. So on the elec-
trode surface we have

n̂ · J̃c = 0, n̂ · J̃� = 0, �̃ = 0, ṽ = 0 . �16�

On the solid insulating walls there are no fluxes in the nor-
mal direction, the normal component of the electric field
vanishes, and there are no slip on the fluid velocity,

n̂ · J̃c = 0, n̂ · J̃� = 0, n̂ · ��̃ = 0, ṽ = 0 . �17�

A complete overview of the governing equations and bound-
ary conditions is given in Fig. 2.

D. Strongly nonlinear regime

At high values of the induced � potential, the concentra-
tions of counter- and co-ions acquire very large and very
small values, respectively, near the center electrode. Numeri-
cally this is problematic. The concentration ratio becomes
extremely large and the vanishingly small concentration of
co-ions is comparable to the round-off error and may even
become negative. However, this numerical problem can be
circumvented by working with the logarithms �marked by a
breve accent� of the concentration fields, c̆�=log�c� /c0�. By
inserting

c� = c0 exp�c̆�� �18�

in governing equations �5�, �6�, and �7b�, a new equivalent
set of governing equations is derived. The symmetry is ex-
ploited by defining the symmetric c̆= c̆++ c̆− and antisymmet-
ric �̆= c̆+− c̆− combinations of the logarithmic fields, and the
corresponding formulation of the governing equations is

�̃2c̆ = Pe ṽ · �̃c̆ −
��̃c̆�2 + ��̃�̆�2

2
− �̃�̃ · �̃�̆ , �19a�

�̃2��̆ + 2�̃� = Pe ṽ · �̃�̆ − �̃c̆ · �̃�̆ − �̃�̃ · �̃�̆ , �19b�
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�̃2�̃ = −
1

	2ec̆/2 sinh� �̆

2
� , �19c�

Re�ṽ · �̃�ṽ = − �̃p̃ + �̃2ṽ −
1

	2�2ec̆/2 sinh� �̆

2
��̃�̃ ,

�19d�

while the continuity equation remains the same as in Eq.
�12a�. The governing equations and boundary conditions for
the logarithmic fields �breve notation� are summarized in
Fig. 3. This transformation serves to help linearize solutions
of the dependent variables, c̆ and �̆, at the expense of intro-
ducing more nonlinearity into the governing equations.

IV. SLIP-VELOCITY MODELS

The numerical calculation of ICEO flows in microfluidic
systems is generally connected with computational limita-
tions due to the large difference of the inherent length scales.
Typically, the Debye length is much smaller than the geomet-
ric length scale, �D�a, making it difficult to resolve both the
dynamics of the Debye layer and the entire microscale ge-
ometry with the available computer capacity. Therefore, it is
customary to use slip-velocity models, where it is assumed
that the electrodes are screened completely by the Debye
layer leaving the bulk electrolyte charge neutral. The dynam-
ics of the Debye layer is modeled separately and applied to
the bulk fluid velocity through an effective so-called
Helmholtz-Smoluchowski slip-velocity condition at the elec-
trode surface,

vHS = −
�

�
�E� , �20�

where � is the zeta potential at the electrode surface, and E�

is the electric field parallel to the surface. Regardless of the
modeled dynamics in the double layer the slip-velocity mod-
els are only strictly valid in the limit of infinitely thin double
layers �D�a.

A. LS model

The double-layer screening of the electrodes leaves the
bulk electrolyte charge neutral, and hence the governing

equations only include the potential �, the pressure field p,
and the flow velocity field v. In dimensionless form they
become

�̃2�̃ = 0, �21a�

Re�ṽ · �̃�ṽ = − �̃p̃ + �̃2ṽ , �21b�

�̃ · ṽ = 0. �21c�

The electrostatic problem is solved independently of the
hydrodynamics, and the potential is used to calculate the
effective slip velocity applied to the fluid at the unbiased
electrode surface. The boundary conditions of the potential
and fluid velocity are equivalent to the conditions applied to
the full nonlinear system, except at the surface of the unbi-
ased electrode. Here, the normal component of the electric
field vanishes, and the effective slip velocity of the fluid is
calculated from the electrostatic potential using �=−� and

E� =−��t̂ · �̃��̃�t̂,

n̂ · ��̃ = 0, �22a�

ṽHS =
1

�2 �̃��t̂ · �̃��̃�t̂ . �22b�

This represents the simplest possible so-called linear slip-
velocity model; a model that is widely applied as a starting
point for numerical simulations of actual microfluidic sys-
tems �20,21�. In this simple model all the dynamics of the
double layer has been neglected, an assumption known to be
problematic when the voltage across the electrode exceeds
the thermal voltage.

B. NLS model

The linear slip-velocity model can be improved by taking
into account the nonlinear charge dynamics of the double
layer. This is done in the so-called nonlinear slip-velocity
model, where, although still treated as being infinitely thin,
the double layer has a nontrivial charge dynamics with cur-
rents from the bulk in the normal direction and currents
flowing tangential to the electrode inside the double layer.

∂z c̆ = 0, vx = vz = 0
∂zρ̆ = 0, ∂zφ = 0

∂z c̆ = 0, vx = vz = 0
∂zρ̆ + 2∂zφ = 0, φ = 0

c̆ = 0, vx = vz = 0
ρ̆ = 0, φ = −α

L
a

∂z c̆ = 0, vx = vz = 0
∂zρ̆ = 0, ∂zφ = 0

vx = 0, ∂xvz = 0
φ = 0, ∂xc̆ = 0
ρ̆ = 0, ∂xρ̆ + 2∂xφ = 0

p = 0
∂jvj = 0

Re vj∂jvi = ∂jσij − 1
ε2α2 e

c̆/2 sinh( ρ̆
2 ) ∂iφ

∂
2
j φ = − 1

ε2 e
c̆/2 sinh( ρ̆

2 )

−∂
2
j c̆ + P é vj∂j c̆ = 1

2

[
(∂j c̆)2 + (∂j ρ̆)2

]
+ (∂jφ)(∂j ρ̆)

−∂
2
j (ρ̆ + 2φ) = (∂j c̆)(∂j ρ̆) + (∂jφ)(∂j c̆) − P é vj∂j ρ̆

x

z

0−L L
0

2L

FIG. 3. The governing equations �without box� and boundary conditions �with boxes� in dimensionless form �the tilde is omitted� using
the logarithmic concentrations �denoted by a breve� of Eq. �18�. Otherwise the figure is identical to Fig. 2.
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For simplicity we assume in the present nonlinear model that
the neutral salt concentration c0 is uniform. This assumption
breaks down at high zeta potentials, where surface transport
of ionic species can set up gradients in the salt concentra-
tions leading to chemiosmotic flow. In future more complete
studies of double-layer charge dynamics, these effects should
be included.

The charging of the double layer by the Ohmic bulk cur-
rent is assumed to happen in quasiequilibrium characterized
by a nonlinear differential capacitance Cdl given by the
Gouy-Chapmann model, Cdl=� cosh�ze� / �2kBT�� /�D, which
in the low-voltage linear Debye-Hückel regime reduces to
Cdl=� /�D. Ignoring the Stern layer, the zeta potential is di-
rectly proportional to the bulk potential right outside the
double layer, �=−�.

The current along the electrode inside the Debye layer is
described by a 2D surface conductance �s, which for a bi-
nary symmetric electrolyte is given by �1�

�s = 4�D��1 + m�sinh2� Ze�

4kBT
� , �23�

where � is the bulk three-dimensional conductivity and

m = 2
�

�D
� kBT

Ze
�2

�24�

is a dimensionless parameter indicating the relative contribu-
tion of electro-osmosis to surface conduction. In steady state
the conservation of charge then yields �25�

0 = n̂ · �� � �� + �s · ��s�s�� , �25�

where the operator �s= t̂�t̂ ·�� is the gradient in the tangen-
tial direction of the surface.

Given the length scale a of the electrode, the strength of
the surface conductance can by characterized by the dimen-
sionless Dukhin number Du defined by

Du =
�s

a�
=

4�D

a
�1 + m�sinh2�Ze�

kBT
� . �26�

Conservation of charge then takes the dimensionless form

0 = n̂ · ��̃�̃� + �̃s · �Du�̃s · �̃� , �27�

and this effective boundary condition for the potential on the
flat electrode constitutes a one-dimensional �1D� partial dif-
ferential equation and as such needs accompanying boundary
conditions. As a boundary condition the surface flux is as-
sumed to be zero at the edges of the electrode,

�s�t̂ · ����x=�a = 0, �28�

which is well suited for the weak formulation we employ in
our numerical simulation as seen in Eq. �34�.

V. NUMERICS IN COMSOL

The numerical calculations are performed using the com-
mercial finite-element-method software COMSOL with
second-order Lagrange elements for all the fields except the
pressure, for which first-order elements suffice. We have ap-

plied the so-called weak formulation mainly to be able to
control the coupling between the bulk equations and the
boundary constraints, such as Eqs. �22b� and �25�, in the
implementation of the slip-velocity models in script form.

The Helmholtz-Smoluchowski slip condition poses a nu-
merical challenge because it is a Dirichlet condition includ-
ing not one but up to three variables, for which we want a
one-directional coupling from the electrostatic field � to the
hydrodynamic fields v and p. We use the weak formulation
to unambiguously enforce the boundary condition with the
explicit introduction of the required hydrodynamic reaction
force f on the unbiased electrode

f = � · n̂ . �29�

The x and z components of Navier-Stokes equation are mul-
tiplied with test functions ux and uz, respectively, and subse-
quently integrated over the whole domain �. Partial integra-
tion is then used to move the stress tensor contribution to the
boundaries ��,

0 = �
��

ui�ijnjds − �
�

��� jui��ij + uiBi�da , �30�

where Bi=Re�v j� j�vi+���i�� / �	2�2�. The boundary integral
on the unbiased electrode ��ue is rewritten as

�
��ue

ui�ijnjds = �
��ue

�uif i + Fi�vi − vHS,i��ds , �31�

where Fi are the test functions belonging to the components
f i of the reaction force f. These test functions are used to
enforce the Helmholtz-Smoluchowski slip boundary condi-
tion consistently. This formulation is used for both slip-
velocity models.

In the nonlinear slip-velocity model, the Laplace equation
�21a� is multiplied with the electrostatic test function �, and
partially integrated to get a boundary term and a bulk term

0 = �
��

���i��nids − �
�

��i����i��da . �32�

The boundary integration term on the electrode is simplified
by substitution of Eq. �25�, which results in

�
��ue

���i��nids = − �
��ue

��t̂i�i�Du t̂ j� j���ds . �33�

Again, the resulting boundary integral is partially integrated,
which gives us explicit access to the end points of the unbi-
ased electrode. This is necessary for applying the boundary
conditions on this 1D electrode,

�
��ue

��t̂i�i�Du t̂ j� j���ds = ��Du�t̂i�i���x=−a
x=+a

− �
��ue

�t̂i�i��Du�t̂ j� j��ds ,

�34�

The no-flux boundary condition can be explicitly included
with this formulation. Note that in both slip-velocity models
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the zeta potential is given by the potential just outside the
Debye layer, �=−�, and it is therefore not necessary to in-
clude it as a separate variable.

The accuracy and the mesh dependence of the simulation
have been investigated as follows. The comparison between
the three models quantifies relative differences of orders
down to 10−3, and the convergence of the numerical results is
ensured in the following way. COMSOL has a build-in adap-
tive mesh generation technique that is able to refine a given
mesh so as to minimize the error in the solution. The adap-
tive mesh generator increases the mesh density in the imme-
diate region around the electrode to capture the dynamics of
the ICEO in the most optimal way under the constraint of a
maximum number of degrees of freedom �DOFs�. For a
given set of physical parameters, the problem is solved each
time by increasing the number of DOFs and comparing con-
secutive solutions. As a convergence criterium we demand
that the standard deviation of the kinetic energy relative to
the mean value should be less than a given threshold value
typically chosen to be around 10−5. All of the simulations
ended with more than 106 DOFs, and the ICEO flow is there-
fore sufficiently resolved even for the thinnest double layers
in our study for which 	=10−4.

VI. RESULTS

Our comparison of the three numerical models is prima-
rily focused on variations in the three dimensionless param-
eters 	, �, and � relating to the Debye length �D, the applied
voltage V0, and the height h of the electrode, respectively,

	 =
�D

a
, � =

aV0

L�0
, � =

h

a
. �35�

As mentioned in Sec. I, the strength of the generated ICEO
flow can be measured as the mechanical power input Pmech
exerted on the electrolyte by the slip velocity just outside the
Debye layer or equivalently by the kinetic-energy dissipation
Pkin in the bulk of the electrolyte. However, both these meth-
ods suffer from numerical inaccuracies due to the depen-
dence of both the position of the integration path and of the
less accurately determined velocity gradients in the stress
tensor �. To obtain a numerically more stable and accurate
measure, we have chosen in the following analysis to char-
acterize the strength of the ICEO flow by the kinetic energy
Ekin of the induced flow field v,

Ekin =
1

2
�m�

�

v2dxdz , �36�

which depends on the velocity field and not its gradients, and
which furthermore is a bulk integral of good numerical sta-
bility.

A. Zero height of the unbiased center electrode

We assume the height h of the unbiased center electrode
to be zero, i.e., �=0, while varying the Debye length and the
applied voltage through the parameters 	 and �. We note that
linear slip-velocity model equations �21� and �22� are inde-

pendent of the dimensionless Debye length 	. It is therefore
natural to use the kinetic energy Ekin

LS of this model as a
normalization factor.

In the lin-log plot of Fig. 4 we show the kinetic energy
Ekin

NLS and Ekin
FN normalized by Ekin

LS as a function of the inverse
Debye length 1 /	 for three different values of the applied
voltage, �=0.05, 0.5, and 5, ranging from the linear to the
strongly nonlinear voltage regime.

We first note that in the limit of vanishing Debye length
�to the right in the graph� all models converge toward the
same value for all values of the applied voltage �. For small
values of � the advanced slip-velocity model Ekin

NLS is fairly
close to the linear slip-velocity model Ekin

LS, but as � in-
creases, it requires smaller and smaller values of 	 to obtain
the same results in the two models. In the linear regime �
=0.05 a deviation less than 5% is obtained already for 	
�1. In the nonlinear regime �=0.5 the same deviation re-
quires 	�10−2 while in the strongly nonlinear regime 	
�10−4 is needed to obtain a deviation lower than 5%.

In contrast, it is noted how the more realistic full model
Ekin

FN deviates strongly from Ekin
LS for most of the displayed

values of 	 and �. To obtain a relative deviation less than 5%
in the linear ��=0.05� and nonlinear ��=0.5� regimes, a
minute Debye length of 	�10−3 is required, and in the
strongly nonlinear regime the 5% level is not reached at all.

The deviations are surprisingly large. The Debye length in
typical electrokinetic experiments is �D=30 nm. For a value
of 	=0.01 this corresponds to an electrode of width 2

3 �m=6 �m, comparable to those used in Refs.
�7,10,11�. In Fig. 4 we see that, for �=5, corresponding to a
moderate voltage drop of 0.26 V across the electrode, the
linear slip-velocity model overestimates the ICEO strength
by a factor 1 /0.4=2.5. The nonlinear slip model does a better
job. For the same parameters it only overestimates the ICEO
strength by a factor 0.5 /0.4=1.2.

For more detailed comparisons between the three models,
the data of Fig. 4 are plotted in a different way in Fig. 5.
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FIG. 4. The total induced kinetic energy Ekin
NLS �gray dashed� and

Ekin
FN �black� for the nonlinear slip-velocity model and the full

model, respectively, relative to Ekin
LS �horizontal black line� of the

linear slip-velocity model as a function of dimensionless inverse
Debye length 1 /	. Each are shown for three values of the dimen-
sionless applied voltage �=0.05, 0.5, and 5. The value of 	 de-
creases from 1 to 10−4 going from left to right.
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Here the overestimates �Ekin
LS /Ekin

FN�−1 and �Ekin
NLS /Ekin

FN�−1 of
the two slip-velocity models relative to the more correct full
model are plotted in a log-log plot as a function of the in-
verse Debye length 1 /	 for three different values of the ap-
plied voltage. It is clearly seen how the relative deviation
decreases proportional to 	 as 	 approaches zero.

Finally, in Fig. 6 the relative deviations �Ekin
LS /Ekin

FN�−1 and
�Ekin

NLS /Ekin
FN�−1 are plotted versus the voltage � in a log-log

plot. For any value of the applied voltage �, both slip-
velocity models overestimates by more than 100% for large
Debye lengths 	=10−1 and by more than 10% for 	=10−2.
For the minute Debye length �D=1.8
10−3 the overesti-
mates are about 3% in the linear and weakly nonlinear re-
gime ��1; however, as we enter the strongly nonlinear re-
gime with �=5 the overestimation increases to a level above
10%.

B. Finite height of the unbiased electrode

Compared to the full numerical model, the slip-velocity
models are convenient to use but even for small Debye

lengths, say �D=0.01a, they are prone to significant quanti-
tative errors as shown above. Similarly, it is of relevance to
study how the height of the unbiased electrode influences the
strength of the ICEO flow rolls. In experiments the thinnest
electrodes are made by evaporation techniques. The resulting
electrode heights are of the order of 50–200 nm, which rela-
tive to the typical electrode widths a
5 �m results in di-
mensionless heights 10−3���10−1.

In Fig. 7 is shown the results for the numerical calculation
of the kinetic energy Ekin

FN�	 ,�� using the full numerical
model. The dependence on the kinetic energy of the dimen-
sionless Debye length 	=�D /a and the dimensionless elec-
trode height �=h /a is measured relative to the value
Ekin

FN�	 ,�� of the infinitely small Debye length for an elec-
trode of zero height. For small values of the height no major
deviations are seen. The curve for �=0 and �=0.001 are
close. As the height is increased to �=10−2 we note that the
strength of the ICEO is increased by 20–25 % as ��	. This
tendency is even stronger pronounced for the higher elec-
trode �=10−1. Here the ICEO strength is increased by ap-
proximately 400% for a large range of Debye lengths. We
speculate that this strong � dependence may be due to the
fact that there is an increased electric field in the region of
high curvature of the raised electrode as compared to the flat
electrode.

C. Thermodynamic efficiency of the ICEO system

Conventional electro-osmosis is known to have a low
thermodynamic efficiency defined as the delivered mechani-
cal pumping power relative to the total power delivered by
the driving voltage. Typical efficiencies are of the order of
1% �26� while in special cases an efficiency of 5.6% has
been reported �27�. In the following we provide estimates
and numerical calculations of the corresponding thermody-
namic efficiency of the ICEO system.

The applied voltage drop 2V0=2E0L across the system in
the x direction is written as the average electrical field E0
times the length 2L while the electrical current is given by
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tively, relative to the full model Ekin
FN as a function of the inverse

Debye length 1 /	 for five different applied voltages �
=0.050,0.158,0.500,1.580,5.000.

10−1 100

10−1

100

101

ε

α

E
k
in

(ε
,α

)/
E

F
N

k
in

(ε
,α

)
−

1

LS ε = 0.0018 NLS ε = 0.0018

LS ε = 10−2 NLS ε = 10−2

LS ε = 10−1 NLS ε = 10−1

FIG. 6. The difference between the induced kinetic energies Ekin
LS

and Ekin
NLS of the linear and nonlinear slip-velocity models, respec-

tively, relative to the full model Ekin
FN as a function of the voltage

bias � for three different Debye layer thicknesses 	=1.8
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I=WH�E0, where W and H is the width and height in the y
and z directions, respectively, and �=D� /�D

2 =� /�D is the
conductivity written in terms of the Debye time �D=�D

2 /D.
The total power consumption to run the ICEO system is thus

Ptot = 2V0I =
4

�D
�1

2
�E0

2�LWH . �37�

This expression can be interpreted as the total energy,
1
2�E0

2LWH, stored in the average electrical field of the system
with volume LWH multiplied by the characteristic electroki-
netic rate 4 /�D.

The velocity-gradient part of the hydrodynamic stress ten-
sor is denoted �̃, i.e., ��̃�ij =���iv j +� jvi�. In terms of �̃, the
kinetic-energy dissipation Pkin necessary to sustain the
steady-state flow rolls is given by Pkin= W

2�	0
Ldx	0

Hdz Tr��̃2�.
In the following estimate we work in the Debye-Hückel limit
for an electrode of length 2a, where the induced zeta poten-
tial is given by �ind=aE0 and the radius of each flow roll is
approximately a. In this limit the electro-osmotic slip veloc-
ity ueo and the typical size of the velocity gradient ��iv j� are

ueo =
��ind

�
E0 =

�a

�
E0

2, �38a�

��iv j� 

ueo

a
=

�

�
E0

2. �38b�

Thus, since the typical area covered by each flow roll is �a2,
we obtain the following estimate of Pkin,

Pkin 
 2
W

2�
�a24��

ueo

a
�2

= 8
�E0

2

�
�1

2
�E0�2

�a2W . �39�

Here the power dissipation can be interpreted as the energy
of the electrical field in the volume �a2W occupied by each
flow roll multiplied by an ICEO rate given by the electric
energy density �E0

2 divided by the rate of viscous energy
dissipation per volume given by �.

The thermodynamic efficiency can now be calculated as
the ratio Pkin / Ptot using Eqs. �37� and �39�,

Pkin

Ptot



2�a2

LH

�E0
2

�/�D

 2.4 
 10−8. �40�

This efficiency is the product of the ratio between the vol-
umes of the flow rolls and the entire volume multiplied, and
the ratio of the electric energy density in the viscous energy

density � /�D. The value is found using L=H=15a
=0.15 mm, E0=2.5 kV /m, and �D=20 nm, which is in
agreement with the conventional efficiencies for conven-
tional electro-osmotic systems quoted above.

VII. CONCLUSION

We have shown that the ICEO velocities calculated using
the simple zero-width models significantly overestimates
those calculated in more realistic models taking the finite
size of the Debye screening length into account. This may
provide a partial explanation of the observed quantitative
discrepancy between observed and calculated ICEO veloci-
ties. The discrepancy increases substantially for increasing 	,
i.e., in nanofluidic systems.

Even larger deviations of the ICEO strength is calculated
in the full numerical model when a small but finite height of
the unbiased electrode is taken into account.

A partial explanation of the quantitative failure of the ana-
lytical slip-velocity model is the decrease in the tangential
electric field as a function of the distance to the surface of the
polarized ICEO object combined with the spatial extent of
the charge density of the double layer. Also tangential hydro-
dynamic and osmotic-pressure gradients developing inside
the double layer may contribute to the lowering ICEO
strength when taking the finite width of the double layer into
account. The latter may be related to the modification of the
classical Helmholtz-Smoluchowski expression of the slip ve-
locity obtained by adding a term proportional to the gradient
of the salt concentration c �28�.

Our work shows that for systems with a small but nonzero
Debye length of 0.001–0.01 times the size of the electrode,
and even when the Debye-Hückel approximation is valid, a
poor quantitative agreement between experiments and model
calculations must be expected when applying the linear slip-
velocity model based on a zero Debye length. It is advised to
employ the full numerical model of ICEO, when comparing
simulations with experiments.
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